201
|
Detecting Alzheimer's disease biomarkers: From antibodies to new bio-mimetic receptors and their application to established and emerging bioanalytical platforms – A critical review. Anal Chim Acta 2016; 940:21-37. [DOI: 10.1016/j.aca.2016.08.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 08/07/2016] [Accepted: 08/08/2016] [Indexed: 11/17/2022]
|
202
|
Arezumand R, Mahdian R, Zeinali S, Hassanzadeh-Ghassabeh G, Mansouri K, Khanahmad H, Namvar-Asl N, Rahimi H, Behdani M, Cohan RA, Eavazalipour M, Ramazani A, Muyldermans S. Identification and characterization of a novel nanobody against human placental growth factor to modulate angiogenesis. Mol Immunol 2016; 78:183-192. [PMID: 27648860 DOI: 10.1016/j.molimm.2016.09.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 09/06/2016] [Accepted: 09/10/2016] [Indexed: 01/02/2023]
Abstract
Placental growth factor (PlGF), a member of vascular endothelial growth factors (VEGF) family, is considered as an important antigen associated with pathological conditions such as cancer cell growth, and metastasis. PlGF-targeting via nanobody (Nb) therefore could be beneficial to modulate these pathologies. In this work, phage-display and computational approach was employed to develop a high affinity PlGF-specific Nb. An Nb library was constructed against human recombinant PlGF (rPlGF). After panning on immobilized rPlGF the periplasmic-extract (PE) of individual colonies were screened by ELISA (PE-ELISA). The 3D structures of selected Nbs were then homology modeled and energy minimized using the AMBER force field. Binding score calculations were also assessed to reveal possible Nb-PlGF interactions. Via ELISA-based affinity/specificity determinations, the best-qualified Nb was further evaluated by proliferation, migration, 3D capillary formation, invasion assays and on Chick chorioallantoic membrane (CAM) model. An immune library of 1.5×107 individual Nb clones was constructed. By PE-ELISA 12 clones with strong signals were selected. Three out of 12 sequenced Nbs (Nb-C13, Nb-C18 and Nb-C62) showed high binding scores ranging between -378.7 and -461kcal/mol. Compared to a control Nb, Nb-C18 significantly inhibited proliferation, migration and the 3D-capillary formation of HUVEC cells (p<0.05) with an EC50 of 35nM, 42nM and 24nM and invasion of MDA-MB231was significantly suppressed (p<0.05) with an EC50 of57nM. The result of the CAM assay shows that Nb-C18 could inhibit the vascular formation in the chicken chorioallantoic membrane. This Nb can be used as anti-angiogenesis agent in future.
Collapse
Affiliation(s)
- Roghaye Arezumand
- Department of Medical Biotechnology and Molecular Science, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran; Department of Molecular Medicine, Pasture Institute of Iran, Tehran, Iran
| | - Reza Mahdian
- Department of Molecular Medicine, Pasture Institute of Iran, Tehran, Iran
| | - Sirous Zeinali
- Department of Molecular Medicine, Pasture Institute of Iran, Tehran, Iran.
| | - Gholamreza Hassanzadeh-Ghassabeh
- Vrije University Brussel, Research group Cellular & Molecular Immunology, Brussels, Belgium; VIB, Nanobody Service Facility, Vrije University Brussel, Brussels, Belgium
| | - Kamran Mansouri
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hossein Khanahmad
- Department of Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nabiollah Namvar-Asl
- Laboratory of Animal Sciences, Production and Research Complex for Pasteur Institute of Iran, Tehran, Iran
| | - Hamzeh Rahimi
- Department of Molecular Medicine, Pasture Institute of Iran, Tehran, Iran
| | - Mahdi Behdani
- Department of Molecular Medicine, Pasture Institute of Iran, Tehran, Iran
| | - Reza Ahangari Cohan
- Department of Pilot Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Mehdi Eavazalipour
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Ali Ramazani
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Serge Muyldermans
- Vrije University Brussel, Research group Cellular & Molecular Immunology, Brussels, Belgium; VIB, Department of Structural Biology, Vrije University Brussel, Belgium
| |
Collapse
|
203
|
Vrentas CE, Moayeri M, Keefer AB, Greaney AJ, Tremblay J, O'Mard D, Leppla SH, Shoemaker CB. A Diverse Set of Single-domain Antibodies (VHHs) against the Anthrax Toxin Lethal and Edema Factors Provides a Basis for Construction of a Bispecific Agent That Protects against Anthrax Infection. J Biol Chem 2016; 291:21596-21606. [PMID: 27539858 DOI: 10.1074/jbc.m116.749184] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 08/08/2016] [Indexed: 01/08/2023] Open
Abstract
Infection with Bacillus anthracis, the causative agent of anthrax, can lead to persistence of lethal secreted toxins in the bloodstream, even after antibiotic treatment. VHH single-domain antibodies have been demonstrated to neutralize diverse bacterial toxins both in vitro and in vivo, with protein properties such as small size and high stability that make them attractive therapeutic candidates. Recently, we reported on VHHs with in vivo activity against the protective antigen component of the anthrax toxins. Here, we characterized a new set of 15 VHHs against the anthrax toxins that act by binding to the edema factor (EF) and/or lethal factor (LF) components. Six of these VHHs are cross-reactive against both EF and LF and recognize the N-terminal domain (LFN, EFN) of their target(s) with subnanomolar affinity. The cross-reactive VHHs block binding of EF/LF to the protective antigen C-terminal binding interface, preventing toxin entry into the cell. Another VHH appears to recognize the LF C-terminal domain and exhibits a kinetic effect on substrate cleavage by LF. A subset of the VHHs neutralized against EF and/or LF in murine macrophage assays, and the neutralizing VHHs that were tested improved survival of mice in a spore model of anthrax infection. Finally, a bispecific VNA (VHH-based neutralizing agent) consisting of two linked toxin-neutralizing VHHs, JMN-D10 and JMO-G1, was fully protective against lethal anthrax spore infection in mice as a single dose. This set of VHHs should facilitate development of new therapeutic VNAs and/or diagnostic agents for anthrax.
Collapse
Affiliation(s)
- Catherine E Vrentas
- From the Department of Biology, Frostburg State University, Frostburg, Maryland 50010.,Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, Maryland 20892, and
| | - Mahtab Moayeri
- Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, Maryland 20892, and
| | - Andrea B Keefer
- Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, Maryland 20892, and
| | - Allison J Greaney
- Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, Maryland 20892, and
| | - Jacqueline Tremblay
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine at Tufts University, North Grafton, Maryland 01536
| | - Danielle O'Mard
- Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, Maryland 20892, and
| | - Stephen H Leppla
- Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, Maryland 20892, and
| | - Charles B Shoemaker
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine at Tufts University, North Grafton, Maryland 01536
| |
Collapse
|
204
|
Bernedo-Navarro RA, Yano T. Phage display and Shiga toxin neutralizers. Toxicon 2016; 113:60-9. [DOI: 10.1016/j.toxicon.2016.02.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 02/03/2016] [Accepted: 02/11/2016] [Indexed: 02/01/2023]
|
205
|
Prado NDR, Pereira SS, da Silva MP, Morais MSS, Kayano AM, Moreira-Dill LS, Luiz MB, Zanchi FB, Fuly AL, E. F. Huacca M, Fernandes CF, Calderon LA, Zuliani JP, Pereira da Silva LH, Soares AM, Stabeli RG, F. C. Fernandes C. Inhibition of the Myotoxicity Induced by Bothrops jararacussu Venom and Isolated Phospholipases A2 by Specific Camelid Single-Domain Antibody Fragments. PLoS One 2016; 11:e0151363. [PMID: 27028872 PMCID: PMC4814101 DOI: 10.1371/journal.pone.0151363] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 02/27/2016] [Indexed: 02/07/2023] Open
Abstract
Antivenoms, produced using animal hyperimmune plasma, remains the standard therapy for snakebites. Although effective against systemic damages, conventional antivenoms have limited efficacy against local tissue damage. Additionally, the hypersensitivity reactions, often elicited by antivenoms, the high costs for animal maintenance, the difficulty of producing homogeneous lots, and the instability of biological products instigate the search for innovative products for antivenom therapy. In this study, camelid antibody fragments (VHH) with specificity to Bothropstoxin I and II (BthTX-I and BthTX-II), two myotoxic phospholipases from Bothrops jararacussu venom, were selected from an immune VHH phage display library. After biopanning, 28 and 6 clones recognized BthTX-I and BthTX-II by ELISA, respectively. Complementarity determining regions (CDRs) and immunoglobulin frameworks (FRs) of 13 VHH-deduced amino acid sequences were identified, as well as the camelid hallmark amino acid substitutions in FR2. Three VHH clones (KF498607, KF498608, and KC329718) were capable of recognizing BthTX-I by Western blot and showed affinity constants in the nanomolar range against both toxins. VHHs inhibited the BthTX-II phospholipase A2 activity, and when tested for cross-reactivity, presented specificity to the Bothrops genus in ELISA. Furthermore, two clones (KC329718 and KF498607) neutralized the myotoxic effects induced by B. jararacussu venom, BthTX-I, BthTX-II, and by a myotoxin from Bothrops brazili venom (MTX-I) in mice. Molecular docking revealed that VHH CDRs are expected to bind the C-terminal of both toxins, essential for myotoxic activity, and to epitopes in the BthTX-II enzymatic cleft. Identified VHHs could be a biotechnological tool to improve the treatment for snake envenomation, an important and neglected world public health problem.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Marcos B. Luiz
- Fundação Oswaldo Cruz, Fiocruz Rondônia, Porto Velho-RO, Brazil
| | | | - André L. Fuly
- Universidade Federal Fluminense, UFF, Rio de Janeiro-RJ, Brazil
| | | | | | - Leonardo A. Calderon
- Fundação Oswaldo Cruz, Fiocruz Rondônia, Porto Velho-RO, Brazil
- Universidade Federal de Rondônia, UNIR, Porto Velho-RO, Brazil
| | - Juliana P. Zuliani
- Fundação Oswaldo Cruz, Fiocruz Rondônia, Porto Velho-RO, Brazil
- Universidade Federal de Rondônia, UNIR, Porto Velho-RO, Brazil
| | | | | | - Rodrigo G. Stabeli
- Fundação Oswaldo Cruz, Fiocruz Rondônia, Porto Velho-RO, Brazil
- Universidade Federal de Rondônia, UNIR, Porto Velho-RO, Brazil
| | - Carla F. C. Fernandes
- Fundação Oswaldo Cruz, Fiocruz Rondônia, Porto Velho-RO, Brazil
- Centro de Pesquisa em Medicina Tropical, CEPEM, Porto Velho-RO, Brazil
| |
Collapse
|
206
|
Van Audenhove I, Denert M, Boucherie C, Pieters L, Cornelissen M, Gettemans J. Fascin Rigidity and L-plastin Flexibility Cooperate in Cancer Cell Invadopodia and Filopodia. J Biol Chem 2016; 291:9148-60. [PMID: 26945069 DOI: 10.1074/jbc.m115.706937] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Indexed: 01/15/2023] Open
Abstract
Invadopodia and filopodia are dynamic, actin-based protrusions contributing to cancer cell migration, invasion, and metastasis. The force of actin bundles is essential for their protrusive activity. The bundling protein fascin is known to play a role in both invadopodia and filopodia. As it is more and more acknowledged that functionally related proteins cooperate, it is unlikely that only fascin bundles actin in these protrusions. Another interesting candidate is L-plastin, normally expressed in hematopoietic cells, but considered a common marker of many cancer types. We identified L-plastin as a new component of invadopodia, where it contributes to degradation and invasiveness. By means of specific, high-affinity nanobodies inhibiting bundling of fascin or L-plastin, we further unraveled their cooperative mode of action. We show that the bundlers cannot compensate for each other due to strikingly different bundling characteristics: L-plastin bundles are much thinner and less tightly packed. Composite bundles adopt an intermediate phenotype, with fascin delivering the rigidity and strength for protrusive force and structural stability, whereas L-plastin accounts for the flexibility needed for elongation. Consistent with this, elevated L-plastin expression promotes elongation and reduces protrusion density in cells with relatively lower L-plastin than fascin levels.
Collapse
Affiliation(s)
| | | | | | - Leen Pieters
- Basic Medical Science, Faculty of Medicine and Health Sciences, Ghent University, B-9000 Ghent, Belgium
| | - Maria Cornelissen
- Basic Medical Science, Faculty of Medicine and Health Sciences, Ghent University, B-9000 Ghent, Belgium
| | | |
Collapse
|
207
|
Krüwel T, Nevoltris D, Bode J, Dullin C, Baty D, Chames P, Alves F. In vivo detection of small tumour lesions by multi-pinhole SPECT applying a (99m)Tc-labelled nanobody targeting the Epidermal Growth Factor Receptor. Sci Rep 2016; 6:21834. [PMID: 26912069 PMCID: PMC4766429 DOI: 10.1038/srep21834] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 02/02/2016] [Indexed: 11/09/2022] Open
Abstract
The detection of tumours in an early phase of tumour development in combination with the knowledge of expression of tumour markers such as epidermal growth factor receptor (EGFR) is an important prerequisite for clinical decisions. In this study we applied the anti-EGFR nanobody (99m)Tc-D10 for visualizing small tumour lesions with volumes below 100 mm(3) by targeting EGFR in orthotopic human mammary MDA-MB-468 and MDA-MB-231 and subcutaneous human epidermoid A431 carcinoma mouse models. Use of nanobody (99m)Tc-D10 of a size as small as 15.5 kDa enables detection of tumours by single photon emission computed tomography (SPECT) imaging already 45 min post intravenous administration with high tumour uptake (>3% ID/g) in small MDA-MB-468 and A431 tumours, with tumour volumes of 52.5 mm(3) ± 21.2 and 26.6 mm(3) ± 16.7, respectively. Fast blood clearance with a serum half-life of 4.9 min resulted in high in vivo contrast and ex vivo tumour to blood and tissue ratios. In contrast, no accumulation of (99m)Tc-D10 in MDA-MB-231 tumours characterized by a very low expression of EGFR was observed. Here we present specific and high contrast in vivo visualization of small human tumours overexpressing EGFR by preclinical multi-pinhole SPECT shortly after administration of anti-EGFR nanobody (99m)Tc-D10.
Collapse
Affiliation(s)
- Thomas Krüwel
- Department of Diagnostic and Interventional Radiology, University Medical Center Goettingen, Robert-Koch-Str. 40, 37075 Goettingen, Germany
| | - Damien Nevoltris
- Antibody therapeutics and Immunotargeting, CRCM, Inserm U1068, Institut PaoliCalmettes, Aix-Marseille Université UM 105, CNRS UMR7258, F-13009, Marseille, France
| | - Julia Bode
- Molecular Mechanisms of Tumour Cell Invasion (V077), German Cancer Research Center, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
| | - Christian Dullin
- Department of Diagnostic and Interventional Radiology, University Medical Center Goettingen, Robert-Koch-Str. 40, 37075 Goettingen, Germany
| | - Daniel Baty
- Antibody therapeutics and Immunotargeting, CRCM, Inserm U1068, Institut PaoliCalmettes, Aix-Marseille Université UM 105, CNRS UMR7258, F-13009, Marseille, France
| | - Patrick Chames
- Antibody therapeutics and Immunotargeting, CRCM, Inserm U1068, Institut PaoliCalmettes, Aix-Marseille Université UM 105, CNRS UMR7258, F-13009, Marseille, France
| | - Frauke Alves
- Department of Diagnostic and Interventional Radiology, University Medical Center Goettingen, Robert-Koch-Str. 40, 37075 Goettingen, Germany.,Department of Haematology and Medical Oncology, University Medical Center Goettingen, Robert-Koch-Str. 40, 37075 Goettingen, Germany.,Molecular Biology of Neuronal Signals, Max-Planck-Institute for Experimental Medicine, Hermann-Rein-Str. 3, 37075 Goettingen, Germany
| |
Collapse
|
208
|
Adenoviral Expression of a Bispecific VHH-Based Neutralizing Agent That Targets Protective Antigen Provides Prophylactic Protection from Anthrax in Mice. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2016; 23:213-8. [PMID: 26740390 DOI: 10.1128/cvi.00611-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 12/27/2015] [Indexed: 01/01/2023]
Abstract
Bacillus anthracis, the causative agent of anthrax, secretes three polypeptides, which form the bipartite lethal and edema toxins (LT and ET, respectively). The common component in these toxins, protective antigen (PA), is responsible for binding to cellular receptors and translocating the lethal factor (LF) and edema factor (EF) enzymatic moieties to the cytosol. Antibodies against PA protect against anthrax. We previously isolated toxin-neutralizing variable domains of camelid heavy-chain-only antibodies (VHHs) and demonstrated their in vivo efficacy. In this work, gene therapy with an adenoviral (Ad) vector (Ad/VNA2-PA) (VNA, VHH-based neutralizing agents) promoting the expression of a bispecific VHH-based neutralizing agent (VNA2-PA), consisting of two linked VHHs targeting different PA-neutralizing epitopes, was tested in two inbred mouse strains, BALB/cJ and C57BL/6J, and found to protect mice against anthrax toxin challenge and anthrax spore infection. Two weeks after a single treatment with Ad/VNA2-PA, serum VNA2-PA levels remained above 1 μg/ml, with some as high as 10 mg/ml. The levels were 10- to 100-fold higher and persisted longer in C57BL/6J than in BALB/cJ mice. Mice were challenged with a lethal dose of LT or spores at various times after Ad/VNA2-PA administration. The majority of BALB/cJ mice having serum VNA2-PA levels of >0.1 μg/ml survived LT challenge, and 9 of 10 C57BL/6J mice with serum levels of >1 μg/ml survived spore challenge. Our findings demonstrate the potential for genetic delivery of VNAs as an effective method for providing prophylactic protection from anthrax. We also extend prior findings of mouse strain-based differences in transgene expression and persistence by adenoviral vectors.
Collapse
|
209
|
Van Audenhove I, Gettemans J. Use of Nanobodies to Localize Endogenous Cytoskeletal Proteins and to Determine Their Contribution to Cancer Cell Invasion by Using an ECM Degradation Assay. Methods Mol Biol 2016; 1365:225-41. [PMID: 26498788 DOI: 10.1007/978-1-4939-3124-8_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
There are numerous ways to study actin cytoskeletal structures, and thereby identify the underlying mechanisms of organization and their regulating proteins. Traditional approaches make use of protein overexpression or siRNA. However to study or modulate resident endogenous proteins, complementary methods are required. Since the discovery of nanobodies in 1993, they have proven to represent interesting tools in a variety of applications due to their high affinity, solubility, and stability. Especially their intracellular functionality makes them ideally suited for the study of actin cytoskeletal regulation. Here we provide a protocol to clone nanobody cDNAs in frame with an EGFP or mCherry fluorescent tag. We explain how to transfect this fusion protein in eukaryotic (cancer) cells and how to perform immunofluorescence. This allows microscopic analysis of endogenous (cytoskeletal) proteins and gives insight into their endogenous localization. Moreover, we outline an extracellular matrix (ECM) degradation assay as an application of the general protocol. By seeding cells onto a fluorescently labeled gelatin matrix, degradation can be quantified by means of a matrix degradation index. This assay demonstrates the contribution of a protein during cancer cell invasiveness in vitro and the potential of a nanobody to inhibit this degradation through modulation of its target.
Collapse
Affiliation(s)
- Isabel Van Audenhove
- Nanobody Laboratory, Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Albert Baertsoenkaai 3, 9000, Ghent, Belgium
| | - Jan Gettemans
- Nanobody Laboratory, Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Albert Baertsoenkaai 3, 9000, Ghent, Belgium.
| |
Collapse
|
210
|
Liu H, Wang Y, Duan H, Zhang A, Liang C, Gao J, Zhang C, Huang B, Li Q, Li N, Xiao S, Zhou EM. An intracellularly expressed Nsp9-specific nanobody in MARC-145 cells inhibits porcine reproductive and respiratory syndrome virus replication. Vet Microbiol 2015; 181:252-60. [PMID: 26525739 DOI: 10.1016/j.vetmic.2015.10.021] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 10/17/2015] [Accepted: 10/20/2015] [Indexed: 02/04/2023]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is a widespread viral disease affecting the swine industry, with no cure or effective treatment. Current vaccines are inefficient mainly due to the high degree of genetic and antigenic variation within PRRS virus (PRRSV) strains. Thus, the development of novel anti-PRRSV strategies is an important area of research. The nonstructural protein 9 (Nsp9) of PRRSV is essential for viral replication, and its sequence is relatively conserved, making it a logical antiviral target for PRRSV. Camel single-domain antibodies (nanobodies) represent a promising antiviral approach because of their small size, high specificity, and solubility. However, no nanobodies against PRRSV have been reported to date. In this study, Nsp9-specific nanobodies were isolated from a phage display library of variable domains of Camellidaeheavy chain-only antibodies (VHH). One of the isolated nanobodies, Nb6, was chosen for further investigation. Co-immunoprecipitation experiments indicated that Nb6 can still maintain antigen binding capabilities when expressed in the cell cytoplasm. A MARC-145 cell line stably expressing Nb6 was established to investigate its potential antiviral activity. Our results showed that intracellularly expressed Nb6 could potently suppress PRRSV replication by inhibiting viral genome replication and transcription. More importantly, Nb6 could protect MARC-145 cells from virus-induced cytopathic effect (CPE) and fully block PRRSV replication at an MOI of 0.01 or lower. To our knowledge, this is the first report of a nanobody based antiviral strategy against PRRSV, and this finding has the potential to lead to future developments of novel antiviral treatments for PRRSV infection.
Collapse
Affiliation(s)
- Hongliang Liu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| | - Yan Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| | - Hong Duan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| | - Angke Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| | - Chao Liang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| | - Jiming Gao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| | - Chong Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| | - Baicheng Huang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| | - Qiongyi Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| | - Na Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| | - Shuqi Xiao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| | - En-Min Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
211
|
Tillib SV, Vyatchanin AS, Muyldermans S. Molecular analysis of heavy chain-only antibodies of Camelus bactrianus. BIOCHEMISTRY (MOSCOW) 2015; 79:1382-90. [PMID: 25716733 DOI: 10.1134/s000629791412013x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this work, IgG content and structures of antigen-binding domains and hinge regions of different IgG subtypes of Camelus bactrianus were analyzed in detail for the first time. Our data demonstrate that C. bactrianus contains a very large amount of heavy chain-only antibodies that can be used as a source of VHH domain-containing molecules. Despite some minor sequence differences identified in this study, C. bactrianus VHH domains possess principally the same unique features as those of C. dromedarius and the llama. These features are important for developing an efficient phage display-based antibody selection technology. We conclude that C. bactrianus is a very suitable animal to raise an immune response that serves as a source to identify antigen-specific VHHs selected after phage display.
Collapse
Affiliation(s)
- S V Tillib
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
| | | | | |
Collapse
|
212
|
Gong X, Zhu M, Li G, Lu X, Wan Y. Specific determination of influenza H7N2 virus based on biotinylated single-domain antibody from a phage-displayed library. Anal Biochem 2015; 500:66-72. [PMID: 26450565 DOI: 10.1016/j.ab.2015.09.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 09/22/2015] [Accepted: 09/24/2015] [Indexed: 12/16/2022]
Abstract
The unpredicted spread of avian influenza virus subtype H7N2 in the world is threatening animals and humans. Specific and effective diagnosis and supervision are required to control the influenza. However, the existing detecting methods are laborious, are time-consuming, and require appropriate laboratory facilities. To tackle this problem, we isolated VHH antibodies against the H7N2 avian influenza virus (AIV) and performed an enzyme-linked immunosorbent assay (ELISA) to detect the H7N2 virus. To obtain VHH antibodies with high affinity and specificity, a camel was immunized. A VHH antibody library was constructed in a phage display vector pMECS with diversity of 2.8 × 10(9). Based on phage display technology and periplasmic extraction ELISA, H7N2-specific VHH antibodies were successfully isolated. According to a pairing test, two VHH antibodies (Nb79 and Nb95) with good thermal stability and specificity can recognize different epitopes of H7N2 virus. The capture antibody (Nb79) was biotinylated in vivo, and the detection antibody (Nb95) was coupled with horseradish peroxidase (HRP). Based on biotin-streptavidin interaction, a novel sandwich immune ELISA was performed to detect H7N2. The immunoassay exhibited a linear range from 5 to 100 ng/ml. Given the above, the newly developed VHH antibody-based double sandwich ELISA (DAS-ELISA) offers an attractive alternative to other diagnostic approaches for the specific detection of H7N2 virus.
Collapse
Affiliation(s)
- Xue Gong
- Institute of Life Sciences, Southeast University, Nanjing 210096, People's Republic of China
| | - Min Zhu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Guanghui Li
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Xiaoling Lu
- National Center for International Research Targeting Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China; Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China; Department of Immunology, Guangxi Medical University, Nanning 530021, People's Republic of China
| | - Yakun Wan
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China.
| |
Collapse
|
213
|
Naderi Beni S, Kouhpayeh S, Hejazi Z, Heidari Hafshejani N, Khanahmad H. Construction and Characterization of Recombinant HEK Cell Over Expressing α4 Integrin. Adv Pharm Bull 2015; 5:429-34. [PMID: 26504766 DOI: 10.15171/apb.2015.058] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 05/13/2015] [Accepted: 05/14/2015] [Indexed: 11/09/2022] Open
Abstract
PURPOSE Integrins are heterodimeric membrane proteins, which are exposed to post translational modifications in eukaryotic cells in contrast to prokaryotic cells. These modifications provide advantages for production of proper nanobody, mono and polyclonal antibody against this surface protein and also in aptamer selection process. Since the majority of diagnostic and therapeutic antibodies, target the surface epitopes, eukaryotic membrane proteins provide an appropriate model for further investigation on therapeutic agents. METHODS Escherichia coli strain top 10, was used as host for ITGA-4 expression vector encoding the human integrin α4. The plasmid was extracted and consequently, ITGA-4 vector was digested to make a linear plasmid. Human Embryonic Kidney-293 (HEK-293) cell transfected with linear plasmid and subsequently screened for stable ITGA-4 expressing Cells. Three separated clones were isolated twenty one days after transfection. Chromosomal DNA was extracted from ITGA-4-transfected cells. The presence of ITGA-4 gene in HEK-293 genome was confirmed by PCR. The expression level of ITGA-4 on HEK-293 cells was also analyzed by Flow cytometry. RESULTS Flow cytometric analysis showed that HEK-293 cells have no expression of integrin α4 on their surface while 95% of transfected HEK-293 cells with ITGA4, expressed different levels of integrin α4 on their surfaces which correlates well with genomic DNA PCR amplification results. CONCLUSION The results suggest that we have successfully constructed the integrin α4 expressing HEK293 cell, which will facilitate further research into the production of antibody, nanobody and aptamer against α4 integrin.
Collapse
Affiliation(s)
- Shamsi Naderi Beni
- Isfahan University of Medical Sciences, School of Medicine, Department of Genetic and Molecular Biology, Isfahan, Iran
| | - Shirin Kouhpayeh
- Isfahan University of Medical Sciences, School of Medicine, Department of Immunology, Isfahan, Iran
| | - Zahra Hejazi
- Isfahan University of Medical Sciences, School of Medicine, Department of Genetic and Molecular Biology, Isfahan, Iran
| | - Nahid Heidari Hafshejani
- Isfahan University of Medical Sciences, School of Medicine, Department of Genetic and Molecular Biology, Isfahan, Iran
| | - Hossein Khanahmad
- Isfahan University of Medical Sciences, School of Medicine, Department of Genetic and Molecular Biology, Isfahan, Iran
| |
Collapse
|
214
|
Pereira PMR, Korsak B, Sarmento B, Schneider RJ, Fernandes R, Tomé JPC. Antibodies armed with photosensitizers: from chemical synthesis to photobiological applications. Org Biomol Chem 2015; 13:2518-29. [PMID: 25612113 DOI: 10.1039/c4ob02334j] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Targeting photosensitizers to cancer cells by conjugating them with specific antibodies, able to recognize and bind to tumor-associated antigens, is today one of the most attractive strategies in photodynamic therapy (PDT). This comprehensive review updates on chemical routes available for the preparation of photo-immunoconjugates (PICs), which show dual chemical and biological functionalities: photo-properties of the photosensitizer and the immunoreactivity of the antibody. Moreover, photobiological results obtained with such photo-immunoconjugates using in vitro and in vivo cancer models are also discussed.
Collapse
Affiliation(s)
- Patricia M R Pereira
- QOPNA and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | | | | | | | | | | |
Collapse
|
215
|
Abstract
The use of cancer biomarkers is emerging as one of the most promising strategies for early detection and management of cancer. Biosensors can provide advanced platforms for biomarker analysis with the advantages of being easy to use, inexpensive, rapid and offering multi-analyte testing capability. The intention of this article is to discuss recent advances and trends in affinity biosensors for cancer diagnosis, prognosis and even theragnosis. The different types of affinity biosensors will be reviewed in terms of molecular recognition element. Current challenges and trends for this technology will be also discussed, with a particular emphasis on recent developments in miRNA detection.
Collapse
|
216
|
Ta DT, Redeker ES, Billen B, Reekmans G, Sikulu J, Noben JP, Guedens W, Adriaensens P. An efficient protocol towards site-specifically clickable nanobodies in high yield: cytoplasmic expression in Escherichia coli combined with intein-mediated protein ligation. Protein Eng Des Sel 2015; 28:351-63. [PMID: 26243885 DOI: 10.1093/protein/gzv032] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 07/01/2015] [Indexed: 11/13/2022] Open
Abstract
In this study, several expression strategies were investigated in order to develop a generic, highly productive and efficient protocol to produce nanobodies modified with a clickable alkyne function at their C-terminus via the intein-mediated protein ligation (IPL) technique. Hereto, the nanobody targeting the vascular cell adhesion molecule 1 (NbVCAM1) was used as a workhorse. The highlights of the protocol can be ascribed to a cytoplasmic expression of the nanobody-intein-chitin-binding domain fusion protein in the Escherichia coli SHuffle(®) T7 cells with a C-terminal extension, i.e. LEY, EFLEY or His6 spacer peptide, in the commonly used Luria-Bertani medium. The combination of these factors led to a high yield (up to 22 mg/l of culture) and nearly complete alkynation efficiency of the C-terminally modified nanobody via IPL. This yield can even be improved to ∼45 mg/l in the EnPresso(®) growth system but this method is more expensive and time-consuming. The resulting alkynated nanobodies retained excellent binding capacity towards the recombinant human VCAM1. The presented protocol benefits from time- and cost-effectiveness, which allows a feasible production up-scaling of generic alkynated nanobodies. The production of high quantities of site-specifically modified nanobodies paves the way to new biosurface applications that demand for a homogeneously oriented nanobody coupling. Prospectively, the alkynated nanobodies can be covalently coupled to a multitude of azide-containing counterparts, e.g. contrast labeling agents, particles or surfaces for numerous innovative applications.
Collapse
Affiliation(s)
- Duy Tien Ta
- Biomolecule Design Group, Institute for Materials Research (IMO), Hasselt University, Agoralaan-Building D, Diepenbeek BE-3590, Belgium Faculty of Food Technology and Biotechnology, Can Tho University of Technology, Can Tho, Vietnam
| | - Erik Steen Redeker
- Maastricht Science Programme, Maastricht University, Maastricht 6200 MD, The Netherlands
| | - Brecht Billen
- Biomolecule Design Group, Institute for Materials Research (IMO), Hasselt University, Agoralaan-Building D, Diepenbeek BE-3590, Belgium
| | - Gunter Reekmans
- Applied and Analytical Chemistry, Institute for Materials Research (IMO), Hasselt University, Agoralaan-Building D, Diepenbeek BE-3590, Belgium
| | - Josephine Sikulu
- Biomolecule Design Group, Institute for Materials Research (IMO), Hasselt University, Agoralaan-Building D, Diepenbeek BE-3590, Belgium
| | - Jean-Paul Noben
- Biomedical Research Institute (Biomed) and School of Life Sciences, Transnationale Universiteit Limburg, Hasselt University, Agoralaan-Building C, Diepenbeek BE-3590, Belgium
| | - Wanda Guedens
- Biomolecule Design Group, Institute for Materials Research (IMO), Hasselt University, Agoralaan-Building D, Diepenbeek BE-3590, Belgium
| | - Peter Adriaensens
- Biomolecule Design Group, Institute for Materials Research (IMO), Hasselt University, Agoralaan-Building D, Diepenbeek BE-3590, Belgium Applied and Analytical Chemistry, Institute for Materials Research (IMO), Hasselt University, Agoralaan-Building D, Diepenbeek BE-3590, Belgium
| |
Collapse
|
217
|
Pre-Clinical Intravenous Serum Pharmacokinetics of Albumin Binding and Non-Half-Life Extended Nanobodies®. Antibodies (Basel) 2015. [DOI: 10.3390/antib4030141] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
218
|
Van Roy M, Ververken C, Beirnaert E, Hoefman S, Kolkman J, Vierboom M, Breedveld E, 't Hart B, Poelmans S, Bontinck L, Hemeryck A, Jacobs S, Baumeister J, Ulrichts H. The preclinical pharmacology of the high affinity anti-IL-6R Nanobody® ALX-0061 supports its clinical development in rheumatoid arthritis. Arthritis Res Ther 2015; 17:135. [PMID: 25994180 PMCID: PMC4476083 DOI: 10.1186/s13075-015-0651-0] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 05/11/2015] [Indexed: 12/21/2022] Open
Abstract
Introduction The pleiotropic cytokine interleukin-6 (IL-6) plays an important role in the pathogenesis of different diseases, including rheumatoid arthritis (RA). ALX-0061 is a bispecific Nanobody® with a high affinity and potency for IL-6 receptor (IL-6R), combined with an extended half-life by targeting human serum albumin. We describe here the relevant aspects of its in vitro and in vivo pharmacology. Methods ALX-0061 is composed of an affinity-matured IL-6R-targeting domain fused to an albumin-binding domain representing a minimized two-domain structure. A panel of different in vitro assays was used to characterize the biological activities of ALX-0061. The pharmacological properties of ALX-0061 were examined in cynomolgus monkeys, using plasma levels of total soluble (s)IL-6R as pharmacodynamic marker. Therapeutic effect was evaluated in a human IL-6-induced acute phase response model in the same species, and in a collagen-induced arthritis (CIA) model in rhesus monkeys, using tocilizumab as positive control. Results ALX-0061 was designed to confer the desired pharmacological properties. A 200-fold increase of target affinity was obtained through affinity maturation of the parental domain. The high affinity for sIL-6R (0.19 pM) translated to a concentration-dependent and complete neutralization of sIL-6R in vitro. In cynomolgus monkeys, ALX-0061 showed a dose-dependent and complete inhibition of hIL-6-induced inflammatory parameters, including plasma levels of C-reactive protein (CRP), fibrinogen and platelets. An apparent plasma half-life of 6.6 days was observed after a single intravenous administration of 10 mg/kg ALX-0061 in cynomolgus monkeys, similar to the estimated expected half-life of serum albumin. ALX-0061 and tocilizumab demonstrated a marked decrease in serum CRP levels in a non-human primate CIA model. Clinical effect was confirmed in animals with active drug exposure throughout the study duration. Conclusions ALX-0061 represents a minimized bispecific biotherapeutic of 26 kDa, nearly six times smaller than monoclonal antibodies. High in vitro affinity and potency was demonstrated. Albumin binding as a half-life extension technology resulted in describable and expected pharmacokinetics. Strong IL-6R engagement was shown to translate to in vivo effect in non-human primates, demonstrated via biomarker deregulation as well as clinical effect. Presented results on preclinical pharmacological properties of ALX-0061 are supportive of clinical development in RA. Electronic supplementary material The online version of this article (doi:10.1186/s13075-015-0651-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | - Els Beirnaert
- Ablynx NV, Technologiepark 21, 9052, Zwijnaarde, Belgium. .,VIB, Rijvisschestraat 120, 9052, Zwijnaarde, Belgium.
| | - Sven Hoefman
- Ablynx NV, Technologiepark 21, 9052, Zwijnaarde, Belgium.
| | - Joost Kolkman
- Ablynx NV, Technologiepark 21, 9052, Zwijnaarde, Belgium. .,Crucell, Archimedesweg 4-6, 2333, CA, Leiden, The Netherlands.
| | - Michel Vierboom
- Department of Immunobiology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ, Rijswijk, The Netherlands.
| | - Elia Breedveld
- Department of Immunobiology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ, Rijswijk, The Netherlands.
| | - Bert 't Hart
- Department of Immunobiology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ, Rijswijk, The Netherlands. .,Department of Neuroscience, University of Groningen, University Medical Center, Hanzeplein 1, 9700 RB, Groningen, The Netherlands.
| | - Sofie Poelmans
- Ablynx NV, Technologiepark 21, 9052, Zwijnaarde, Belgium.
| | | | - Alex Hemeryck
- Ablynx NV, Technologiepark 21, 9052, Zwijnaarde, Belgium.
| | - Sandy Jacobs
- Ablynx NV, Technologiepark 21, 9052, Zwijnaarde, Belgium.
| | | | - Hans Ulrichts
- Ablynx NV, Technologiepark 21, 9052, Zwijnaarde, Belgium.
| |
Collapse
|
219
|
Yan J, Wang P, Zhu M, Li G, Romão E, Xiong S, Wan Y. Characterization and applications of Nanobodies against human procalcitonin selected from a novel naïve Nanobody phage display library. J Nanobiotechnology 2015; 13:33. [PMID: 25944262 PMCID: PMC4475299 DOI: 10.1186/s12951-015-0091-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 04/15/2015] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Nanobodies (Nbs) are single-domain antigen-binding fragments derived from the camelids heavy-chain only antibodies (HCAbs). Their unique advantageous properties make Nbs highly attractive in various applications. The general approach to obtain Nbs is to isolate them from immune libraries by phage display technology. However, it is unfeasible when the antigens are toxic, lethal, transmissible or of low immunogenicity. Naïve libraries could be an alternative way to solve the above problems. RESULTS We constructed a large camel naïve phage display Nanobody (Nb) library with great diversity. The generated library contains to 6.86 × 10(11) clones and to our best of knowledge, this is the biggest naïve phage display Nb library. Then Nbs against human procalcitonin (PCT) were isolated from this library. These Nbs showed comparable affinity and antigen-binding thermostability at 37°C and 60°C compared to the PCT Nbs from an immune phage-displayed library. Furthermore, two PCT Nbs that recognize unique epitopes on PCT have been successfully applied to develop a sandwich enzyme-linked immunosorbent assay (ELISA) to detect PCT, which showed a linear working range from 10-1000 ng/mL of PCT. CONCLUSION We have constructed a large and diverse naïve phage display Nb library, which potentially functioning as a good resource for selecting antigen-binders with high quality. Moreover, functional Nbs against PCT were successfully characterized and applied, providing great values on medical application.
Collapse
Affiliation(s)
- Junrong Yan
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, PR China.
| | - Pingyan Wang
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, PR China.
| | - Min Zhu
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, PR China.
| | - Guanghui Li
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, PR China.
| | - Ema Romão
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Faculty of Science, Pleinlaan 2, 1050, Brussels, Belgium.
| | - Sheng Xiong
- Institute of Biomedicine & National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, 510630, PR China.
| | - Yakun Wan
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, PR China. .,Jiangsu Nanobody Engineering and Research Center, Nantong, 226010, PR China.
| |
Collapse
|
220
|
Ghannam A, Kumari S, Muyldermans S, Abbady AQ. Camelid nanobodies with high affinity for broad bean mottle virus: a possible promising tool to immunomodulate plant resistance against viruses. PLANT MOLECULAR BIOLOGY 2015; 87:355-69. [PMID: 25648551 DOI: 10.1007/s11103-015-0282-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 01/06/2015] [Indexed: 05/03/2023]
Abstract
Worldwide, plant viral infections decrease seriously the crop production yield, boosting the demand to develop new strategies to control viral diseases. One of these strategies to prevent viral infections, based on the immunomodulation faces many problems related to the ectopic expression of specific antibodies in planta. Camelid nanobodies, expressed in plants, may offer a solution as they are an attractive tool to bind efficiently to viral epitopes, cryptic or not accessible to conventional antibodies. Here, we report a novel, generic approach that might lead to virus resistance based on the expression of camelid specific nanobodies against Broad bean mottle virus (BBMV). Eight nanobodies, recognizing BBMV with high specificity and affinity, were retrieved after phage display from a large 'immune' library constructed from an immunized Arabic camel. By an in vitro assay we demonstrate how three nanobodies attenuate the BBMV spreading in inoculated Vicia faba plants. Furthermore, the in planta transient expression of these three selected nanobodies confirms their virus neutralizing capacity. In conclusion, this report supports that plant resistance against viral infections can be achieved by the in vivo expression of camelid nanobodies.
Collapse
Affiliation(s)
- Ahmed Ghannam
- Division of Plant Pathology, Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), P. O. Box 6091, Damascus, Syria,
| | | | | | | |
Collapse
|
221
|
Caljon G, Hussain S, Vermeiren L, Van Den Abbeele J. Description of a nanobody-based competitive immunoassay to detect tsetse fly exposure. PLoS Negl Trop Dis 2015; 9:e0003456. [PMID: 25658871 PMCID: PMC4320081 DOI: 10.1371/journal.pntd.0003456] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 12/05/2014] [Indexed: 12/23/2022] Open
Abstract
Background Tsetse flies are the main vectors of human and animal African trypanosomes. The Tsal proteins in tsetse fly saliva were previously identified as suitable biomarkers of bite exposure. A new competitive assay was conceived based on nanobody (Nb) technology to ameliorate the detection of anti-Tsal antibodies in mammalian hosts. Methodology/Principal Findings A camelid-derived Nb library was generated against the Glossina morsitans morsitans sialome and exploited to select Tsal specific Nbs. One of the three identified Nb families (family III, TsalNb-05 and TsalNb-11) was found suitable for anti-Tsal antibody detection in a competitive ELISA format. The competitive ELISA was able to detect exposure to a broad range of tsetse species (G. morsitans morsitans, G. pallidipes, G. palpalis gambiensis and G. fuscipes) and did not cross-react with the other hematophagous insects (Stomoxys calcitrans and Tabanus yao). Using a collection of plasmas from tsetse-exposed pigs, the new test characteristics were compared with those of the previously described G. m. moristans and rTsal1 indirect ELISAs, revealing equally good specificities (> 95%) and positive predictive values (> 98%) but higher negative predictive values and hence increased sensitivity (> 95%) and accuracy (> 95%). Conclusion/Significance We have developed a highly accurate Nb-based competitive immunoassay to detect specific anti-Tsal antibodies induced by various tsetse fly species in a range of hosts. We propose that this competitive assay provides a simple serological indicator of tsetse fly presence without the requirement of test adaptation to the vertebrate host species. In addition, the use of monoclonal Nbs for antibody detection is innovative and could be applied to other tsetse fly salivary biomarkers in order to achieve a multi-target immunoprofiling of hosts. In addition, this approach could be broadened to other pathogenic organisms for which accurate serological diagnosis remains a bottleneck. Our previous studies have revealed that the saliva of the savannah tsetse fly (Glossina morsitans morsitans) and the main constituting Tsal proteins are sensitive immunological probes to detect contact with tsetse flies. A nanobody (Nb) library was generated against tsetse salivary gland proteins and used to select Nbs against the highly immunogenic Tsal proteins by a procedure of phage display and selection for binding onto the recombinant Tsal proteins. One Nb family was identified with the appropriate characteristics for the development of a competitive assay to detect Tsal-specific antibodies raised by the mammalian host when exposed to tsetse fly bites. In this immunoassay, exposure was detected by the inhibition of Nb binding by tsetse fly saliva induced antibodies in plasma. Evaluation of the competitive ELISA test using a set of porcine plasmas revealed an improved accuracy as compared to previously described tests. Moreover, the advantage of this assay is that it does not require adaptation to the sampled host species. We propose the Nb-based competitive ELISA as an additional tool to the indirect ELISA to serologically detect tsetse bite exposure and to monitor the impact of vector control programs and to detect re-invasion of cleared areas by tsetse flies on the African continent. In addition, the concept of using Nbs for the development of competitive antibody detection tests is innovative and broadens the scope of medical diagnostic applications of Nbs.
Collapse
Affiliation(s)
- Guy Caljon
- Unit of Veterinary Protozoology, Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp (ITM), Antwerp, Belgium
- Unit of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Laboratory of Myeloid Cell Immunology, VIB, Brussels, Belgium
- * E-mail: (GC); (JVDA)
| | - Shahid Hussain
- Unit of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Laboratory of Myeloid Cell Immunology, VIB, Brussels, Belgium
| | - Lieve Vermeiren
- Unit of Veterinary Protozoology, Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp (ITM), Antwerp, Belgium
| | - Jan Van Den Abbeele
- Unit of Veterinary Protozoology, Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp (ITM), Antwerp, Belgium
- Laboratory of Zoophysiology, Department of Physiology, University of Ghent, Ghent, Belgium
- * E-mail: (GC); (JVDA)
| |
Collapse
|
222
|
Fascin actin bundling controls podosome turnover and disassembly while cortactin is involved in podosome assembly by its SH3 domain in THP-1 macrophages and dendritic cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:940-52. [PMID: 25601713 DOI: 10.1016/j.bbamcr.2015.01.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 12/11/2014] [Accepted: 01/08/2015] [Indexed: 11/21/2022]
Abstract
Podosomes are dynamic degrading devices present in myeloid cells among other cell types. They consist of an actin core with associated regulators, surrounded by an adhesive ring. Both fascin and cortactin are known constituents but the role of fascin actin bundling is still unclear and cortactin research rather focuses on its homologue hematopoietic lineage cell-specific protein-1 (HS1). A fascin nanobody (FASNb5) that inhibits actin bundling and a cortactin nanobody (CORNb2) specifically targeting its Src-homology 3 (SH3) domain were used as unique tools to study the function of these regulators in podosome dynamics in both THP-1 macrophages and dendritic cells (DC). Upon intracellular FASNb5 expression, the few podosomes present were aberrantly stable, long-living and large, suggesting a role for fascin actin bundling in podosome turnover and disassembly. Fascin modulates this by balancing the equilibrium between branched and bundled actin networks. In the presence of CORNb2, the few podosomes formed show disrupted structures but their dynamics were unaffected. This suggests a role of the cortactin SH3 domain in podosome assembly. Remarkably, both nanobody-induced podosome-losses were compensated for by focal adhesion structures. Furthermore, matrix degradation capacities were altered and migratory phenotypes were lost. In conclusion, the cortactin SH3 domain contributes to podosome assembly while fascin actin bundling is a master regulator of podosome disassembly in THP-1 macrophages and DC.
Collapse
|
223
|
Moayeri M, Leysath CE, Tremblay JM, Vrentas C, Crown D, Leppla SH, Shoemaker CB. A heterodimer of a VHH (variable domains of camelid heavy chain-only) antibody that inhibits anthrax toxin cell binding linked to a VHH antibody that blocks oligomer formation is highly protective in an anthrax spore challenge model. J Biol Chem 2015; 290:6584-95. [PMID: 25564615 DOI: 10.1074/jbc.m114.627943] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Anthrax disease is caused by a toxin consisting of protective antigen (PA), lethal factor, and edema factor. Antibodies against PA have been shown to be protective against the disease. Variable domains of camelid heavy chain-only antibodies (VHHs) with affinity for PA were obtained from immunized alpacas and screened for anthrax neutralizing activity in macrophage toxicity assays. Two classes of neutralizing VHHs were identified recognizing distinct, non-overlapping epitopes. One class recognizes domain 4 of PA at a well characterized neutralizing site through which PA binds to its cellular receptor. A second neutralizing VHH (JKH-C7) recognizes a novel epitope. This antibody inhibits conversion of the PA oligomer from "pre-pore" to its SDS and heat-resistant "pore" conformation while not preventing cleavage of full-length 83-kDa PA (PA83) by cell surface proteases to its oligomer-competent 63-kDa form (PA63). The antibody prevents endocytosis of the cell surface-generated PA63 subunit but not preformed PA63 oligomers formed in solution. JKH-C7 and the receptor-blocking VHH class (JIK-B8) were expressed as a heterodimeric VHH-based neutralizing agent (VNA2-PA). This VNA displayed improved neutralizing potency in cell assays and protected mice from anthrax toxin challenge with much better efficacy than the separate component VHHs. The VNA protected virtually all mice when separately administered at a 1:1 ratio to toxin and protected mice against Bacillus anthracis spore infection. Thus, our studies show the potential of VNAs as anthrax therapeutics. Due to their simple and stable nature, VNAs should be amenable to genetic delivery or administration via respiratory routes.
Collapse
Affiliation(s)
- Mahtab Moayeri
- From the Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine at Tufts University North Grafton, Massachusetts 01536 and
| | - Clinton E Leysath
- From the Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine at Tufts University North Grafton, Massachusetts 01536 and
| | - Jacqueline M Tremblay
- Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, Maryland 20892
| | - Catherine Vrentas
- From the Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine at Tufts University North Grafton, Massachusetts 01536 and
| | - Devorah Crown
- From the Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine at Tufts University North Grafton, Massachusetts 01536 and
| | - Stephen H Leppla
- From the Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine at Tufts University North Grafton, Massachusetts 01536 and
| | - Charles B Shoemaker
- Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
224
|
Li M, Zhu M, Zhang C, Liu X, Wan Y. Uniform orientation of biotinylated nanobody as an affinity binder for detection of Bacillus thuringiensis (Bt) Cry1Ac toxin. Toxins (Basel) 2014; 6:3208-22. [PMID: 25474492 PMCID: PMC4280530 DOI: 10.3390/toxins6123208] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 11/10/2014] [Accepted: 11/17/2014] [Indexed: 12/26/2022] Open
Abstract
Nanobodies are the smallest natural fragments with useful properties such as high affinity, distinct paratope and high stability, which make them an ideal tool for detecting target antigens. In this study, we generated and characterized nanobodies against the Cry1Ac toxin and applied them in a biotin-streptavidin based double antibodies (nanobodies) sandwich-ELISA (DAS-ELISA) assay. After immunizing a camel with soluble Cry1Ac toxin, a phage displayed library was constructed to generate Nbs against the Cry1Ac toxin. Through successive rounds of affinity bio-panning, four nanobodies with greatest diversity in CDR3 sequences were obtained. After affinity determination and conjugating to HRP, two nanobodies with high affinity which can recognize different epitopes of the same antigen (Cry1Ac) were selected as capture antibody (Nb61) and detection antibody (Nb44). The capture antibody (Nb61) was biotinylated in vivo for directional immobilization on wells coated with streptavidin matrix. Both results of specificity analysis and thermal stability determination add support for reliability of the following DAS-ELISA with a minimum detection limit of 0.005 μg·mL-1 and a working range 0.010-1.0 μg·mL-1. The linear curve displayed an acceptable correlation coefficient of 0.9976. These results indicated promising applications of nanobodies for detection of Cry1Ac toxin with biotin-streptavidin based DAS-ELISA system.
Collapse
Affiliation(s)
- Min Li
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Sipailou NO. 2, Southeast University, Nanjing 210096, China.
| | - Min Zhu
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Sipailou NO. 2, Southeast University, Nanjing 210096, China.
| | - Cunzheng Zhang
- Institute of Food Safety, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Xianjin Liu
- Institute of Food Safety, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Yakun Wan
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Sipailou NO. 2, Southeast University, Nanjing 210096, China.
| |
Collapse
|
225
|
Jovčevska I, Zupanec N, Kočevar N, Cesselli D, Podergajs N, Stokin CL, Myers MP, Muyldermans S, Ghassabeh GH, Motaln H, Ruaro ME, Bourkoula E, Turnšek TL, Komel R. TRIM28 and β-actin identified via nanobody-based reverse proteomics approach as possible human glioblastoma biomarkers. PLoS One 2014; 9:e113688. [PMID: 25419715 PMCID: PMC4242679 DOI: 10.1371/journal.pone.0113688] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 10/27/2014] [Indexed: 01/23/2023] Open
Abstract
Malignant gliomas are among the rarest brain tumours, and they have the worst prognosis. Grade IV astrocytoma, known as glioblastoma multiforme (GBM), is a highly lethal disease where the standard therapies of surgery, followed by radiation and chemotherapy, cannot significantly prolong the life expectancy of the patients. Tumour recurrence shows more aggressive form compared to the primary tumour, and results in patient survival from 12 to 15 months only. Although still controversial, the cancer stem cell hypothesis postulates that cancer stem cells are responsible for early relapse of the disease after surgical intervention due to their high resistance to therapy. Alternative strategies for GBM therapy are thus urgently needed. Nanobodies are single-domain antigen-binding fragments of heavy-chain antibodies, and together with classical antibodies, they are part of the camelid immune system. Nanobodies are small and stable, and they share a high degree of sequence identity to the human heavy chain variable domain, and these characteristics offer them advantages over classical antibodies or antibody fragments. We first immunised an alpaca with a human GBM stem-like cell line prepared from primary GBM cultures. Next, a nanobody library was constructed in a phage-display vector. Using nanobody phage-display technology, we selected specific GBM stem-like cell binders through a number of affinity selections, using whole cell protein extracts and membrane protein-enriched extracts from eight different GBM patients, and membrane protein-enriched extracts from two established GBM stem-like cell lines (NCH644 and NCH421K cells). After the enrichment, periplasmic extract ELISA was used to screen for specific clones. These nanobody clones were recloned into the pHEN6 vector, expressed in Escherichia coli WK6, and purified using immobilised metal affinity chromatography and size-exclusion chromatography. Specific nanobody:antigen pairs were obtained and mass spectrometry analysis revealed two proteins, TRIM28 and β-actin, that were up-regulated in the GBM stem-like cells compared to the controls.
Collapse
Affiliation(s)
- Ivana Jovčevska
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Neja Zupanec
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Nina Kočevar
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Daniela Cesselli
- Department of Medical and Biological Sciences (DSMB), University of Udine, Udine, Italy
| | - Neža Podergajs
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology (NIB), Ljubljana, Slovenia
| | - Clara Limbaeck Stokin
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Michael P. Myers
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Serge Muyldermans
- Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Structural Biology Research Center, VIB, Brussels, Belgium
| | - Gholamreza Hassanzadeh Ghassabeh
- Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Nanobody Service Facility, VIB, Brussels, Belgium
| | - Helena Motaln
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology (NIB), Ljubljana, Slovenia
| | | | - Evgenia Bourkoula
- Department of Medical and Biological Sciences (DSMB), University of Udine, Udine, Italy
| | - Tamara Lah Turnšek
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology (NIB), Ljubljana, Slovenia
| | - Radovan Komel
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- * E-mail:
| |
Collapse
|
226
|
Halewyck H, Schotte L, Oita I, Thys B, Van Eeckhaut A, Heyden YV, Rombaut B. Affinity capillary electrophoresis to evaluate the complex formation between poliovirus and nanobodies. J Sep Sci 2014; 37:3729-37. [DOI: 10.1002/jssc.201400406] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 09/29/2014] [Accepted: 09/29/2014] [Indexed: 11/07/2022]
Affiliation(s)
- Hadewych Halewyck
- Department of Pharmaceutical Biotechnology and Molecular Biology; Vrije Universiteit Brussel; Brussels Belgium
- Center for Neurosciences; Vrije Universiteit Brussel; Brussels Belgium
| | - Lise Schotte
- Department of Pharmaceutical Biotechnology and Molecular Biology; Vrije Universiteit Brussel; Brussels Belgium
- Center for Neurosciences; Vrije Universiteit Brussel; Brussels Belgium
| | - Iuliana Oita
- Department of Analytical Chemistry and Pharmaceutical Technology; Center for Pharmaceutical Research (CePhar); Vrije Universiteit Brussel; Brussels Belgium
| | - Bert Thys
- Department of Pharmaceutical Biotechnology and Molecular Biology; Vrije Universiteit Brussel; Brussels Belgium
- Center for Neurosciences; Vrije Universiteit Brussel; Brussels Belgium
| | - Ann Van Eeckhaut
- Department of Pharmaceutical Chemistry and Drug Analysis; Vrije Universiteit Brussel; Brussels Belgium
- Center for Neurosciences; Vrije Universiteit Brussel; Brussels Belgium
| | - Yvan Vander Heyden
- Department of Analytical Chemistry and Pharmaceutical Technology; Center for Pharmaceutical Research (CePhar); Vrije Universiteit Brussel; Brussels Belgium
| | - Bart Rombaut
- Department of Pharmaceutical Biotechnology and Molecular Biology; Vrije Universiteit Brussel; Brussels Belgium
- Center for Neurosciences; Vrije Universiteit Brussel; Brussels Belgium
| |
Collapse
|
227
|
Adenovirus vector expressing Stx1/Stx2-neutralizing agent protects piglets infected with Escherichia coli O157:H7 against fatal systemic intoxication. Infect Immun 2014; 83:286-91. [PMID: 25368111 DOI: 10.1128/iai.02360-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Hemolytic-uremic syndrome (HUS), caused by Shiga toxin (Stx)-producing Escherichia coli (STEC), remains untreatable. Production of human monoclonal antibodies against Stx, which are highly effective in preventing Stx sequelae in animal models, is languishing due to cost and logistics. We reported previously that the production and evaluation of a camelid heavy-chain-only VH domain (VHH)-based neutralizing agent (VNA) targeting Stx1 and Stx2 (VNA-Stx) protected mice from Stx1 and Stx2 intoxication. Here we report that a single intramuscular (i.m.) injection of a nonreplicating adenovirus (Ad) vector carrying a secretory transgene of VNA-Stx (Ad/VNA-Stx) protected mice challenged with Stx2 and protected gnotobiotic piglets infected with STEC from fatal systemic intoxication. One i.m. dose of Ad/VNA-Stx prevented fatal central nervous system (CNS) symptoms in 9 of 10 animals when it was given to piglets 24 h after bacterial challenge and in 5 of 9 animals when it was given 48 h after bacterial challenge, just prior to the onset of CNS symptoms. All 6 placebo animals died or were euthanized with severe CNS symptoms. Ad/VNA-Stx treatment had no impact on diarrhea. In conclusion, Ad/VNA-Stx treatment is effective in protecting piglets from fatal Stx2-mediated CNS complications following STEC challenge. With a low production cost and further development, this could presumably be an effective treatment for patients with HUS and/or individuals at high risk of developing HUS due to exposure to STEC.
Collapse
|
228
|
Rissiek B, Koch-Nolte F, Magnus T. Nanobodies as modulators of inflammation: potential applications for acute brain injury. Front Cell Neurosci 2014; 8:344. [PMID: 25374510 PMCID: PMC4204521 DOI: 10.3389/fncel.2014.00344] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Accepted: 10/06/2014] [Indexed: 12/22/2022] Open
Abstract
Nanobodies are single domain antibodies derived from llama heavy-chain only antibodies (HCAbs). They represent a new generation of biologicals with unique properties: nanobodies show excellent tissue distribution, high temperature and pH stability, are easy to produce recombinantly and can readily be converted into different formats such as Fc-fusion proteins or hetero-dimers. Moreover, nanobodies have the unique ability to bind molecular clefts, such as the active site of enzymes, thereby interfering with the function of the target protein. Over the last decade, numerous nanobodies have been developed against proteins involved in inflammation with the aim to modulate their immune functions. Here, we give an overview about recently developed nanobodies that target immunological pathways linked to neuroinflammation. Furthermore, we highlight strategies to modify nanobodies so that they can overcome the blood brain barrier and serve as highly specific therapeutics for acute inflammatory brain injury.
Collapse
Affiliation(s)
- Björn Rissiek
- Department of Neurology, University Medical Center Hamburg-Eppendorf Hamburg, Germany
| | - Friedrich Koch-Nolte
- Department of Immunology, University Medical Center Hamburg-Eppendorf Hamburg, Germany
| | - Tim Magnus
- Department of Neurology, University Medical Center Hamburg-Eppendorf Hamburg, Germany
| |
Collapse
|
229
|
Schweizer D, Serno T, Goepferich A. Controlled release of therapeutic antibody formats. Eur J Pharm Biopharm 2014; 88:291-309. [DOI: 10.1016/j.ejpb.2014.08.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 06/30/2014] [Accepted: 08/03/2014] [Indexed: 10/24/2022]
|
230
|
Zhu M, Hu Y, Li G, Ou W, Mao P, Xin S, Wan Y. Combining magnetic nanoparticle with biotinylated nanobodies for rapid and sensitive detection of influenza H3N2. NANOSCALE RESEARCH LETTERS 2014; 9:528. [PMID: 25328501 PMCID: PMC4199786 DOI: 10.1186/1556-276x-9-528] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 09/07/2014] [Indexed: 05/31/2023]
Abstract
Our objective is to develop a rapid and sensitive assay based on magnetic beads to detect the concentration of influenza H3N2. The possibility of using variable domain heavy-chain antibodies (nanobody) as diagnostic tools for influenza H3N2 was investigated. A healthy camel was immunized with inactivated influenza H3N2. A nanobody library of 8 × 10(8) clones was constructed and phage displayed. After three successive biopanning steps, H3N2-specific nanobodies were successfully isolated, expressed in Escherichia coli, and purified. Sequence analysis of the nanobodies revealed that we possessed four classes of nanobodies against H3N2. Two nanobodies were further used to prepare our rapid diagnostic kit. Biotinylated nanobody was effectively immobilized onto the surface of streptavidin magnetic beads. The modified magnetic beads with nanobody capture specifically influenza H3N2 and can still be recognized by nanobodies conjugated to horseradish peroxidase (HRP) conjugates. Under optimized conditions, the present immunoassay exhibited a relatively high sensitive detection with a limit of 50 ng/mL. In conclusion, by combining magnetic beads with specific nanobodies, this assay provides a promising influenza detection assay to develop a potential rapid, sensitive, and low-cost diagnostic tool to screen for influenza infections.
Collapse
Affiliation(s)
- Min Zhu
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing 210096, People’s Republic of China
- Jiangsu Nanobody Engineering and Research Center, Nantong 226010, People’s Republic of China
| | - Yonghong Hu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, People’s Republic of China
| | - Guirong Li
- Jiangsu Nanobody Engineering and Research Center, Nantong 226010, People’s Republic of China
| | - Weijun Ou
- Jiangsu Nanobody Engineering and Research Center, Nantong 226010, People’s Republic of China
| | - Panyong Mao
- 302 Military Hospital of China, Beijing 100039, People’s Republic of China
| | - Shaojie Xin
- 302 Military Hospital of China, Beijing 100039, People’s Republic of China
| | - Yakun Wan
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing 210096, People’s Republic of China
- Jiangsu Nanobody Engineering and Research Center, Nantong 226010, People’s Republic of China
- Sipailou No. 2, Southeast University, Nanjing 210096, People’s Republic of China
| |
Collapse
|
231
|
Huang Y, Nokhrin S, Hassanzadeh-Ghassabeh G, Yu CH, Yang H, Barry AN, Tonelli M, Markley JL, Muyldermans S, Dmitriev OY, Lutsenko S. Interactions between metal-binding domains modulate intracellular targeting of Cu(I)-ATPase ATP7B, as revealed by nanobody binding. J Biol Chem 2014; 289:32682-93. [PMID: 25253690 DOI: 10.1074/jbc.m114.580845] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The biologically and clinically important membrane transporters are challenging proteins to study because of their low level of expression, multidomain structure, and complex molecular dynamics that underlies their activity. ATP7B is a copper transporter that traffics between the intracellular compartments in response to copper elevation. The N-terminal domain of ATP7B (N-ATP7B) is involved in binding copper, but the role of this domain in trafficking is controversial. To clarify the role of N-ATP7B, we generated nanobodies that interact with ATP7B in vitro and in cells. In solution NMR studies, nanobodies revealed the spatial organization of N-ATP7B by detecting transient functionally relevant interactions between metal-binding domains 1-3. Modulation of these interactions by nanobodies in cells enhanced relocalization of the endogenous ATP7B toward the plasma membrane linking molecular and cellular dynamics of the transporter. Stimulation of ATP7B trafficking by nanobodies in the absence of elevated copper provides direct evidence for the important role of N-ATP7B structural dynamics in regulation of ATP7B localization in a cell.
Collapse
Affiliation(s)
- Yiping Huang
- From the Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Sergiy Nokhrin
- the Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Gholamreza Hassanzadeh-Ghassabeh
- the Vrije Universiteit Brussel, Structural Biology Research Center, and Nanobody Service Facility, VIB, 1050 Brussels, Belgium, and
| | - Corey H Yu
- the Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Haojun Yang
- From the Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Amanda N Barry
- From the Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Marco Tonelli
- the Department of Biochemistry, National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - John L Markley
- the Department of Biochemistry, National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Serge Muyldermans
- the Vrije Universiteit Brussel, Structural Biology Research Center, and
| | - Oleg Y Dmitriev
- the Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada,
| | - Svetlana Lutsenko
- From the Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205,
| |
Collapse
|
232
|
Mukherjee J, Dmitriev I, Debatis M, Tremblay JM, Beamer G, Kashentseva EA, Curiel DT, Shoemaker CB. Prolonged prophylactic protection from botulism with a single adenovirus treatment promoting serum expression of a VHH-based antitoxin protein. PLoS One 2014; 9:e106422. [PMID: 25170904 PMCID: PMC4149568 DOI: 10.1371/journal.pone.0106422] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Accepted: 07/29/2014] [Indexed: 12/19/2022] Open
Abstract
Current therapies for most acute toxin exposures are limited to administration of polyclonal antitoxin serum. We have shown that VHH-based neutralizing agents (VNAs) consisting of two or more linked, toxin-neutralizing heavy-chain-only VH domains (VHHs), each binding distinct epitopes, can potently protect animals from lethality in several intoxication models including Botulinum neurotoxin serotype A1 (BoNT/A1). Appending a 14 amino acid albumin binding peptide (ABP) to an anti-BoNT/A1 heterodimeric VNA (H7/B5) substantially improved serum stability and resulted in an effective VNA serum half-life of 1 to 2 days. A recombinant, replication-incompetent, adenoviral vector (Ad/VNA-BoNTA) was engineered that induces secretion of biologically active VNA, H7/B5/ABP (VNA-BoNTA), from transduced cells. Mice administered a single dose of Ad/VNA-BoNTA, or a different Ad/VNA, via different administration routes led to a wide range of VNA serum levels measured four days later; generally intravenous > intraperitoneal > intramuscular > subcutaneous. Ad/VNA-BoNTA treated mice were 100% protected from 10 LD50 of BoNT/A1 for more than six weeks and protection positively correlated with serum levels of VNA-BoNTA exceeding about 5 ng/ml. Some mice developed antibodies that inhibited VNA binding to target but these mice displayed no evidence of kidney damage due to deposition of immune complexes. Mice were also successfully protected from 10 LD50 BoNT/A1 when Ad/VNA-BoNTA was administered up to 1.5 hours post-intoxication, demonstrating rapid appearance of the protective VNA in serum following treatment. Genetic delivery of VNAs promises to be an effective method of providing prophylactic protection and/or acute treatments for many toxin-mediated diseases.
Collapse
Affiliation(s)
- Jean Mukherjee
- Department of Infectious Disease and Global Health, Tufts Cummings School of Veterinary Medicine, North Grafton, Massachusetts, United States of America
| | - Igor Dmitriev
- Department of Radiation Oncology, Washington University, St. Louis, Missouri, United States of America
| | - Michelle Debatis
- Department of Infectious Disease and Global Health, Tufts Cummings School of Veterinary Medicine, North Grafton, Massachusetts, United States of America
| | - Jacqueline M. Tremblay
- Department of Infectious Disease and Global Health, Tufts Cummings School of Veterinary Medicine, North Grafton, Massachusetts, United States of America
| | - Gillian Beamer
- Department of Infectious Disease and Global Health, Tufts Cummings School of Veterinary Medicine, North Grafton, Massachusetts, United States of America
| | - Elena A. Kashentseva
- Department of Radiation Oncology, Washington University, St. Louis, Missouri, United States of America
| | - David T. Curiel
- Department of Radiation Oncology, Washington University, St. Louis, Missouri, United States of America
| | - Charles B. Shoemaker
- Department of Infectious Disease and Global Health, Tufts Cummings School of Veterinary Medicine, North Grafton, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
233
|
Characterization of camel nanobodies specific for superfolder GFP fusion proteins. Mol Biol Rep 2014; 41:6887-98. [DOI: 10.1007/s11033-014-3575-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 06/30/2014] [Indexed: 02/02/2023]
|
234
|
Ahmed A, Rushworth JV, Hirst NA, Millner PA. Biosensors for whole-cell bacterial detection. Clin Microbiol Rev 2014; 27:631-46. [PMID: 24982325 PMCID: PMC4135896 DOI: 10.1128/cmr.00120-13] [Citation(s) in RCA: 365] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Bacterial pathogens are important targets for detection and identification in medicine, food safety, public health, and security. Bacterial infection is a common cause of morbidity and mortality worldwide. In spite of the availability of antibiotics, these infections are often misdiagnosed or there is an unacceptable delay in diagnosis. Current methods of bacterial detection rely upon laboratory-based techniques such as cell culture, microscopic analysis, and biochemical assays. These procedures are time-consuming and costly and require specialist equipment and trained users. Portable stand-alone biosensors can facilitate rapid detection and diagnosis at the point of care. Biosensors will be particularly useful where a clear diagnosis informs treatment, in critical illness (e.g., meningitis) or to prevent further disease spread (e.g., in case of food-borne pathogens or sexually transmitted diseases). Detection of bacteria is also becoming increasingly important in antibioterrorism measures (e.g., anthrax detection). In this review, we discuss recent progress in the use of biosensors for the detection of whole bacterial cells for sensitive and earlier identification of bacteria without the need for sample processing. There is a particular focus on electrochemical biosensors, especially impedance-based systems, as these present key advantages in terms of ease of miniaturization, lack of reagents, sensitivity, and low cost.
Collapse
Affiliation(s)
- Asif Ahmed
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Jo V Rushworth
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Natalie A Hirst
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Paul A Millner
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
235
|
Kanca O, Ochoa-Espinosa A, Affolter M. IV. Tools and methods for studying cell migration and cell rearrangement in tissue and organ development. Methods 2014; 68:228-32. [PMID: 24631575 DOI: 10.1016/j.ymeth.2014.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 03/03/2014] [Indexed: 10/25/2022] Open
Abstract
A vast diversity of biological systems, ranging from prokaryotes to multicellular organisms, show cell migration behavior. Many of the basic cellular and molecular concepts in cell migration apply to diverse model organisms. Drosophila, with its vast repertoire of tools for imaging and for manipulation, is one of the favorite organisms to study cell migration. Moreover, distinct Drosophila tissues and organs offer diverse cell migration models that are amenable to live imaging and genetic manipulations. In this review, we will provide an overview of the fruit fly toolbox that is of particular interest for the analysis of cell migration. We provide examples to highlight how those tools were used in diverse migration systems, with an emphasis on tracheal morphogenesis, a process that combines morphogenesis with cell migration.
Collapse
Affiliation(s)
- Oguz Kanca
- Biozentrum der Universität Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | | | - Markus Affolter
- Biozentrum der Universität Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland.
| |
Collapse
|
236
|
Taussig MJ, Schmidt R, Cook EA, Stoevesandt O. Development of proteome-wide binding reagents for research and diagnostics. Proteomics Clin Appl 2014; 7:756-66. [PMID: 24178846 DOI: 10.1002/prca.201300060] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Revised: 09/09/2013] [Accepted: 09/10/2013] [Indexed: 01/11/2023]
Abstract
Alongside MS, antibodies and other specific protein-binding molecules have a special place in proteomics as affinity reagents in a toolbox of applications for determining protein location, quantitative distribution and function (affinity proteomics). The realisation that the range of research antibodies available, while apparently vast is nevertheless still very incomplete and frequently of uncertain quality, has stimulated projects with an objective of raising comprehensive, proteome-wide sets of protein binders. With progress in automation and throughput, a remarkable number of recent publications refer to the practical possibility of selecting binders to every protein encoded in the genome. Here we review the requirements of a pipeline of production of protein binders for the human proteome, including target prioritisation, antigen design, 'next generation' methods, databases and the approaches taken by ongoing projects in Europe and the USA. While the task of generating affinity reagents for all human proteins is complex and demanding, the benefits of well-characterised and quality-controlled pan-proteome binder resources for biomedical research, industry and life sciences in general would be enormous and justify the effort. Given the technical, personnel and financial resources needed to fulfil this aim, expansion of current efforts may best be addressed through large-scale international collaboration.
Collapse
Affiliation(s)
- Michael J Taussig
- Protein Technology Group, The Babraham Institute, Cambridge, UK; Cambridge Protein Arrays Ltd, Babraham Research Campus, Cambridge, UK
| | | | | | | |
Collapse
|
237
|
Chakravarty R, Goel S, Cai W. Nanobody: the "magic bullet" for molecular imaging? Am J Cancer Res 2014; 4:386-98. [PMID: 24578722 PMCID: PMC3936291 DOI: 10.7150/thno.8006] [Citation(s) in RCA: 205] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 01/07/2014] [Indexed: 12/13/2022] Open
Abstract
Molecular imaging involves the non-invasive investigation of biological processes in vivo at the cellular and molecular level, which can play diverse roles in better understanding and treatment of various diseases. Recently, single domain antigen-binding fragments known as 'nanobodies' were bioengineered and tested for molecular imaging applications. Small molecular size (~15 kDa) and suitable configuration of the complementarity determining regions (CDRs) of nanobodies offer many desirable features suitable for imaging applications, such as rapid targeting and fast blood clearance, high solubility, high stability, easy cloning, modular nature, and the capability of binding to cavities and difficult-to-access antigens. Using nanobody-based probes, several imaging techniques such as radionuclide-based, optical and ultrasound have been employed for visualization of target expression in various disease models. This review summarizes the recent developments in the use of nanobody-based probes for molecular imaging applications. The preclinical data reported to date are quite promising, and it is expected that nanobody-based molecular imaging agents will play an important role in the diagnosis and management of various diseases.
Collapse
|