201
|
Iannazzo D, Espro C, Celesti C, Ferlazzo A, Neri G. Smart Biosensors for Cancer Diagnosis Based on Graphene Quantum Dots. Cancers (Basel) 2021; 13:3194. [PMID: 34206792 PMCID: PMC8269110 DOI: 10.3390/cancers13133194] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/29/2021] [Accepted: 06/24/2021] [Indexed: 02/07/2023] Open
Abstract
The timely diagnosis of cancer represents the best chance to increase treatment success and to reduce cancer deaths. Nanomaterials-based biosensors containing graphene quantum dots (GQDs) as a sensing platform show great promise in the early and sensitive detection of cancer biomarkers, due to their unique chemical and physical properties, large surface area and ease of functionalization with different biomolecules able to recognize relevant cancer biomarkers. In this review, we report different advanced strategies for the synthesis and functionalization of GQDs with different agents able to selectively recognize and convert into a signal specific cancer biomarkers such as antigens, enzymes, hormones, proteins, cancer related byproducts, biomolecules exposed on the surface of cancer cells and changes in pH. The developed optical, electrochemical and chemiluminescent biosensors based on GQDs have been shown to ensure the effective diagnosis of several cancer diseases as well as the possibility to evaluate the effectiveness of anticancer therapy. The wide linear range of detection and low detection limits recorded for most of the reported biosensors highlight their great potential in clinics for the diagnosis and management of cancer.
Collapse
Affiliation(s)
- Daniela Iannazzo
- Department of Engineering, University of Messina, Contrada Di Dio, 98166 Messina, Italy; (C.E.); (C.C.); (A.F.); (G.N.)
| | | | | | | | | |
Collapse
|
202
|
Addressing the Theoretical and Experimental Aspects of Low-Dimensional-Materials-Based FET Immunosensors: A Review. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9070162] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Electrochemical immunosensors (EI) have been widely investigated in the last several years. Among them, immunosensors based on low-dimensional materials (LDM) stand out, as they could provide a substantial gain in fabricating point-of-care devices, paving the way for fast, precise, and sensitive diagnosis of numerous severe illnesses. The high surface area available in LDMs makes it possible to immobilize a high density of bioreceptors, improving the sensitivity in biorecognition events between antibodies and antigens. If on the one hand, many works present promising results in using LDMs as a sensing material in EIs, on the other hand, very few of them discuss the fundamental interactions involved at the interfaces. Understanding the fundamental Chemistry and Physics of the interactions between the surface of LDMs and the bioreceptors, and how the operating conditions and biorecognition events affect those interactions, is vital when proposing new devices. Here, we present a review of recent works on EIs, focusing on devices that use LDMs (1D and 2D) as the sensing substrate. To do so, we highlight both experimental and theoretical aspects, bringing to light the fundamental aspects of the main interactions occurring at the interfaces and the operating mechanisms in which the detections are based.
Collapse
|
203
|
Rai M, Bonde S, Yadav A, Bhowmik A, Rathod S, Ingle P, Gade A. Nanotechnology as a Shield against COVID-19: Current Advancement and Limitations. Viruses 2021; 13:1224. [PMID: 34202815 PMCID: PMC8310263 DOI: 10.3390/v13071224] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/21/2021] [Accepted: 06/21/2021] [Indexed: 12/15/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a global health problem that the WHO declared a pandemic. COVID-19 has resulted in a worldwide lockdown and threatened to topple the global economy. The mortality of COVID-19 is comparatively low compared with previous SARS outbreaks, but the rate of spread of the disease and its morbidity is alarming. This virus can be transmitted human-to-human through droplets and close contact, and people of all ages are susceptible to this virus. With the advancements in nanotechnology, their remarkable properties, including their ability to amplify signal, can be used for the development of nanobiosensors and nanoimaging techniques that can be used for early-stage detection along with other diagnostic tools. Nano-based protection equipment and disinfecting agents can provide much-needed protection against SARS-CoV-2. Moreover, nanoparticles can serve as a carrier for antigens or as an adjuvant, thereby making way for the development of a new generation of vaccines. The present review elaborates the role of nanotechnology-based tactics used for the detection, diagnosis, protection, and treatment of COVID-19 caused by the SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Mahendra Rai
- Nanobiotechnology Lab., Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati 444 602, Maharashtra, India; (S.B.); (A.Y.); (P.I.); (A.G.)
| | - Shital Bonde
- Nanobiotechnology Lab., Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati 444 602, Maharashtra, India; (S.B.); (A.Y.); (P.I.); (A.G.)
| | - Alka Yadav
- Nanobiotechnology Lab., Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati 444 602, Maharashtra, India; (S.B.); (A.Y.); (P.I.); (A.G.)
| | - Arpita Bhowmik
- Faculty of Medicine, Dentistry and Health, The University of Sheffield, Sheffield S10 2TN, UK;
| | - Sanjay Rathod
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - Pramod Ingle
- Nanobiotechnology Lab., Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati 444 602, Maharashtra, India; (S.B.); (A.Y.); (P.I.); (A.G.)
| | - Aniket Gade
- Nanobiotechnology Lab., Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati 444 602, Maharashtra, India; (S.B.); (A.Y.); (P.I.); (A.G.)
| |
Collapse
|
204
|
Misra R, Acharya S, Sushmitha N. Nanobiosensor-based diagnostic tools in viral infections: Special emphasis on Covid-19. Rev Med Virol 2021; 32:e2267. [PMID: 34164867 PMCID: PMC8420101 DOI: 10.1002/rmv.2267] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 06/10/2021] [Indexed: 01/09/2023]
Abstract
The rapid propagation of novel human coronavirus 2019 and its emergence as a pandemic raising morbidity calls for taking more appropriate measures for rapid improvement of present diagnostic techniques which are time‐consuming, labour‐intensive and non‐portable. In this scenario, biosensors can be considered as a means to outmatch customary techniques and deliver point‐of‐care diagnostics for many diseases in a much better way owing to their speed, cost‐effectiveness, accuracy, sensitivity and selectivity. Besides this, these biosensors have been aptly used to detect a wide spectrum of viruses thus facilitating timely delivery of correct therapy. The present review is an attempt to analyse such different kinds of biosensors that have been implemented for virus detection. Recently, the field of nanotechnology has given a great push to diagnostic techniques by the development of smart and miniaturised nanobiosensors which have enhanced the diagnostic procedure and taken it to a new level. The portability, hardiness and affordability of nanobiosensor make them an apt diagnostic agent for different kinds of viruses including SARS‐CoV‐2. The role of such novel nanobiosensors in the diagnosis of SARS‐CoV‐2 has also been addressed comprehensively in the present review. Along with this, the challenges and future position of developing such ultrasensitive nanobiosensors which should be taken into consideration before declaring these nano‐weapons as the ideal futuristic gold standard of diagnosis has also been accounted for here.
Collapse
Affiliation(s)
- Ranjita Misra
- Centre for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Sarbari Acharya
- Department of Life Science, School of Applied Sciences, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, India
| | - Nehru Sushmitha
- Centre for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| |
Collapse
|
205
|
Yur D, Lieser RM, Sullivan MO, Chen W. Engineering bionanoparticles for improved biosensing and bioimaging. Curr Opin Biotechnol 2021; 71:41-48. [PMID: 34157601 DOI: 10.1016/j.copbio.2021.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/10/2021] [Accepted: 06/03/2021] [Indexed: 12/15/2022]
Abstract
The importance of bioimaging and biosensing has been clear with the onset of the COVID-19 pandemic. In addition to viral detection, detection of tumors, glucose levels, and microbes is necessary for improved disease treatment and prevention. Bionanoparticles, such as extracellular vesicles and protein nanoparticles, are ideal platforms for biosensing and bioimaging applications because of their propensity for high density surface functionalization and large loading capacity. Scaffolding large numbers of sensing modules and detection modules onto bionanoparticles allows for enhanced analyte affinity and specificity as well as signal amplification for highly sensitive detection even at low analyte concentrations. Here we demonstrate the potential of bionanoparticles for bioimaging and biosensing by highlighting recent examples in literature that utilize protein nanoparticles and extracellular vesicles to generate highly sensitive detection devices with impressive signal amplification.
Collapse
Affiliation(s)
- Daniel Yur
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, DE 19716 United States
| | - Rachel M Lieser
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, DE 19716 United States
| | - Millicent O Sullivan
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, DE 19716 United States.
| | - Wilfred Chen
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, DE 19716 United States.
| |
Collapse
|
206
|
Akgöl S, Ulucan-Karnak F, Kuru Cİ, Kuşat K. The usage of composite nanomaterials in biomedical engineering applications. Biotechnol Bioeng 2021; 118:2906-2922. [PMID: 34050923 DOI: 10.1002/bit.27843] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 05/04/2021] [Accepted: 05/23/2021] [Indexed: 12/23/2022]
Abstract
Nanotechnology is still developing over the decades and it is commonly used in biomedical applications with the design of nanomaterials due to the several purposes. With the investigation of materials on the molecular level has increased the develop composite nanomaterials with exceptional properties using in different applications and industries. The application of these composite nanomaterials is widely used in the fields of textile, chemical, energy, defense industry, electronics, and biomedical engineering which is growing and developing on human health. Development of biosensors for the diagnosis of diseases, drug targeting and controlled release applications, medical implants and imaging techniques are the research topics of nanobiotechnology. In this review, overview of the development of nanotechnology and applications which is use of composite nanomaterials in biomedical engineering is provided.
Collapse
Affiliation(s)
- Sinan Akgöl
- Department of Biochemistry, Faculty of Science, Ege University, İzmir, Turkey
| | | | - Cansu İlke Kuru
- Department of Biochemistry, Faculty of Science, Ege University, İzmir, Turkey
| | - Kevser Kuşat
- Department of Chemistry, Faculty of Science, Dokuz Eylul University, İzmir, Turkey
| |
Collapse
|
207
|
Nemiwal M, Kumar D. TiO2 and SiO2 encapsulated metal nanoparticles: Synthetic strategies, properties, and photocatalytic applications. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108602] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
208
|
Synthesis and fabrication of 2D Tungsten trioxide nanosheets based platform for impedimetric sensing of cardiac biomarker. SENSING AND BIO-SENSING RESEARCH 2021. [DOI: 10.1016/j.sbsr.2021.100423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
209
|
Bahl S, Bagha AK, Rab S, Javaid M, Haleem A, Singh RP. Advancements in Biosensor Technologies for Medical Field and COVID-19 Pandemic. JOURNAL OF INDUSTRIAL INTEGRATION AND MANAGEMENT 2021. [DOI: 10.1142/s2424862221500081] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
World health organization (WHO) has declared the COVID-19 outbreak as a public health emergency of international concern and then as a pandemic on 30th of January and 11th of March 2020, respectively. After such concern, the world scientific communities have rushed to search for solutions to bring down the disease’s spread, fast-paced vaccine development, and associated medical research using modern technologies. Biosensor technologies play a crucial role in diagnosing various medical diseases, including COVID-19. The present paper describes the major advancement of biosensor-based technological solutions for medical diagnosis, including COVID-19. This review-based work covers the biosensors and their working principles in the context of medical applications. The paper also discusses different biosensors and their applications to tackle medical issues, including this ongoing pandemic.
Collapse
Affiliation(s)
- Shashi Bahl
- Department of Mechanical Engineering, I.K. Gujral Punjab Technical University, Hoshiarpur Campus, Hoshiarpur 146001, India
| | - Ashok Kumar Bagha
- Department of Mechanical Engineering, Dr. B.R. Ambedkar National Institute of Technology, Jalandhar 144011, India
| | - Shanay Rab
- Department of Mechanical Engineering, Jamia Millia Islamia, New Delhi 110025, India
| | - Mohd Javaid
- Department of Mechanical Engineering, Jamia Millia Islamia, New Delhi 110025, India
| | - Abid Haleem
- Department of Mechanical Engineering, Jamia Millia Islamia, New Delhi 110025, India
| | - Ravi Pratap Singh
- Department of Industrial and Production Engineering, Dr. B.R. Ambedkar National Institute of Technology, Jalandhar 144011, India
| |
Collapse
|
210
|
Peltomaa R, Benito-Peña E, Gorris HH, Moreno-Bondi MC. Biosensing based on upconversion nanoparticles for food quality and safety applications. Analyst 2021; 146:13-32. [PMID: 33205784 DOI: 10.1039/d0an01883j] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Food safety and quality regulations inevitably call for sensitive and accurate analytical methods to detect harmful contaminants in food and to ensure safe food for the consumer. Both novel and well-established biorecognition elements, together with different transduction schemes, enable the simple and rapid analysis of various food contaminants. Upconversion nanoparticles (UCNPs) are inorganic nanocrystals that convert near-infrared light into shorter wavelength emission. This unique photophysical feature, along with narrow emission bandwidths and large anti-Stokes shift, render UCNPs excellent optical labels for biosensing because they can be detected without optical background interferences from the sample matrix. In this review, we show how this exciting technique has evolved into biosensing platforms for food quality and safety monitoring and highlight recent applications in the field.
Collapse
Affiliation(s)
- Riikka Peltomaa
- Department of Biochemistry/Biotechnology, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland
| | | | | | | |
Collapse
|
211
|
Monteserín M, Larumbe S, Martínez AV, Burgui S, Francisco Martín L. Recent Advances in the Development of Magnetic Nanoparticles for Biomedical Applications. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2021; 21:2705-2741. [PMID: 33653440 DOI: 10.1166/jnn.2021.19062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The unique properties of magnetic nanoparticles have led them to be considered materials with significant potential in the biomedical field. Nanometric size, high surface-area ratio, ability to function at molecular level, exceptional magnetic and physicochemical properties, and more importantly, the relatively easy tailoring of all these properties to the specific requirements of the different biomedical applications, are some of the key factors of their success. In this paper, we will provide an overview of the state of the art of different aspects of magnetic nanoparticles, specially focusing on their use in biomedicine. We will explore their magnetic properties, synthetic methods and surface modifications, as well as their most significative physicochemical properties and their impact on the in vivo behaviour of these particles. Furthermore, we will provide a background on different applications of magnetic nanoparticles in biomedicine, such as magnetic drug targeting, magnetic hyperthermia, imaging contrast agents or theranostics. Besides, current limitations and challenges of these materials, as well as their future prospects in the biomedical field will be discussed.
Collapse
Affiliation(s)
- Maria Monteserín
- Centre of Advanced Surface Engineering and Advanced Materials, Asociación de la Industria Navarra, Ctra. Pamplona, s/n, Edificio AIN, C.P. 31191, Cordovilla, Navarra (Spain)
| | - Silvia Larumbe
- Centre of Advanced Surface Engineering and Advanced Materials, Asociación de la Industria Navarra, Ctra. Pamplona, s/n, Edificio AIN, C.P. 31191, Cordovilla, Navarra (Spain)
| | - Alejandro V Martínez
- Centre of Advanced Surface Engineering and Advanced Materials, Asociación de la Industria Navarra, Ctra. Pamplona, s/n, Edificio AIN, C.P. 31191, Cordovilla, Navarra (Spain)
| | - Saioa Burgui
- Centre of Advanced Surface Engineering and Advanced Materials, Asociación de la Industria Navarra, Ctra. Pamplona, s/n, Edificio AIN, C.P. 31191, Cordovilla, Navarra (Spain)
| | - L Francisco Martín
- Centre of Advanced Surface Engineering and Advanced Materials, Asociación de la Industria Navarra, Ctra. Pamplona, s/n, Edificio AIN, C.P. 31191, Cordovilla, Navarra (Spain)
| |
Collapse
|
212
|
Pothipor C, Aroonyadet N, Bamrungsap S, Jakmunee J, Ounnunkad K. A highly sensitive electrochemical microRNA-21 biosensor based on intercalating methylene blue signal amplification and a highly dispersed gold nanoparticles/graphene/polypyrrole composite. Analyst 2021; 146:2679-2688. [PMID: 33687386 DOI: 10.1039/d1an00116g] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Numerous clinical studies suggest that microRNAs (miRNAs) are indicative biomolecules for the early diagnosis of cancer. This work aims to develop a cost-effective and label-free electrochemical biosensor to detect miRNA-21, a biomarker of breast cancer. An electrochemical sensor is fabricated using a nanocomposite, consisting of graphene (GP), polypyrrole (PPY) and gold nanoparticles (AuNPs), modified onto a screen-printed carbon electrode (SPCE) to improve electron transfer properties and increase the degree of methylene blue (MB) intercalation for signal amplification. The GP/PPY-modified electrode offers good electrochemical reactivity and high dispersibility of AuNPs, resulting in excellent sensor performance. Peak current of the MB redox process, which is proportional to miRNA-21 concentration on the electrode surface, is monitored by differential pulse voltammetry (DPV). Under optimal conditions, this sensor is operated by monitoring the MB signal response due to the amount of hybridization products between miRNA-21 target molecules and DNA-21 probes immobilized on the electrode. The proposed biosensor reveals a linear range from 1.0 fM to 1.0 nM with a low detection limit of 0.020 fM. In addition, the miRNA-21 biosensor provides good selectivity, high stability, and satisfactory reproducibility, which shows promising potential in clinical research and diagnostic applications.
Collapse
Affiliation(s)
- Chammari Pothipor
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand. and The Graduate School, Chiang Mai University, Chiang Mai, 50200, Thailand and Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Noppadol Aroonyadet
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Suwussa Bamrungsap
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Jaroon Jakmunee
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand. and Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand and Research Center on Chemistry for Development of Health Promoting Products from Northern Resources, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Kontad Ounnunkad
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand. and Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand and Research Center on Chemistry for Development of Health Promoting Products from Northern Resources, Chiang Mai University, Chiang Mai, 50200, Thailand and Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
213
|
Ali SA, Mittal D, Kaur G. In-situ monitoring of xenobiotics using genetically engineered whole-cell-based microbial biosensors: recent advances and outlook. World J Microbiol Biotechnol 2021; 37:81. [PMID: 33843020 DOI: 10.1007/s11274-021-03024-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 02/25/2021] [Indexed: 02/07/2023]
Abstract
Industrialisation, directly or indirectly, exposes humans to various xenobiotics. The increased magnitude of chemical pesticides and toxic heavy metals in the environment, as well as their intrusion into the food chain, seriously threatens human health. Therefore, the surveillance of xenobiotics is crucial for social safety and security. Online investigation by traditional methods is not sufficient for the detection and identification of such compounds because of the high costs and their complexity. Advancement in the field of genetic engineering provides a potential opportunity to use genetically modified microorganisms. In this regard, whole-cell-based microbial biosensors (WCBMB) represent an essential tool that couples genetically engineered organisms with an operator/promoter derived from a heavy metal-resistant operon combined with a regulatory protein in the gene circuit. The plasmid controls the expression of the reporter gene, such as gfp, luc, lux and lacZ, to an inducible gene promoter and has been widely applied to assay toxicity and bioavailability. This review summarises the recent trends in the development and application of microbial biosensors and the use of mobile genes for biomedical and environmental safety concerns.
Collapse
Affiliation(s)
- Syed Azmal Ali
- Proteomics and Cell Biology Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal, Haryana, India. .,Proteomics and Cell Biology Lab, Animal Biotechnology Center, ICAR-National Dairy Research Institute, 132001, Karnal, Haryana, India.
| | - Deepti Mittal
- Animal Biochemistry Division, National Dairy Research Institute, Karnal, Haryana, India
| | - Gurjeet Kaur
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, 2052, Sydney, NSW, Australia
| |
Collapse
|
214
|
Gopalan D, Pandey A, Alex AT, Kalthur G, Pandey S, Udupa N, Mutalik S. Nanoconstructs as a versatile tool for detection and diagnosis of Alzheimer biomarkers. NANOTECHNOLOGY 2021; 32:142002. [PMID: 33238254 DOI: 10.1088/1361-6528/abcdcb] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The current review focuses towards the advancements made in the past decade in the field of nanotechnology for the early Alzheimer's disease (AD) diagnosis. This review includes the application of nanomaterials and nanosensors for the early detection of the main AD biomarkers (amyloid beta, phosphorylated tau, apolipoprotein E4 allele or APOE4, microRNAs, cholesterol, hydrogen peroxide etc) in biological fluids, to detect the biomarkers at a very low concentration ranging in pico, femto and even atto molar concentrations. The field of drug development has always aimed and is constantly working on developing disease modifying drugs, but these drugs will only succeed when given in the early disease stages. Thus, developing efficient diagnostic tools is of vital importance. Various nanomaterials such as liposomes; dendrimers; polymeric nanoparticles; coordination polymers; inorganic nanoparticles such as silica, manganese oxide, zinc oxide, iron oxide, super paramagnetic iron oxides; quantum dots, silver nanoparticles, gold nanoparticles, and carbon based nanostructures (carbon nanotubes, graphene oxide, nanofibres, nanodiamonds, carbon dots); Up-conversion nanoparticles; 2D nanomaterials; and radioactive nanoprobes have been used in constructing and improving efficiency of nano-sensors for AD biosensing at an early stage of diagnosis.
Collapse
Affiliation(s)
- Divya Gopalan
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576 104, India
| | - Abhijeet Pandey
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576 104, India
| | - Angel Treasa Alex
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576 104, India
| | - Guruprasad Kalthur
- Department of Clinical Embryology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka 576 104, India
| | - Sureshwar Pandey
- School of Pharmacy, Faculty of Medical Sciences, The university of West Indies, St. Augustine, Trinidad and Tobago, Jamaica
| | - Nayanabhirama Udupa
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576 104, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576 104, India
| |
Collapse
|
215
|
The biomedical significance of multifunctional nanobiomaterials: The key components for site-specific delivery of therapeutics. Life Sci 2021; 277:119400. [PMID: 33794255 DOI: 10.1016/j.lfs.2021.119400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/08/2021] [Accepted: 03/13/2021] [Indexed: 01/07/2023]
Abstract
The emergence of nanotechnology has provided the possibilities to overcome the potential problems associated with the development of pharmaceuticals including the low solubility, non-specific cellular uptake or action, and rapid clearance. Regarding the biomaterials (BMs), huge efforts have been made for improving their multi-functionalities via incorporation of various nanomaterials (NMs). Nanocomposite hydrogels with suitable properties could exhibit a variety of beneficial effects in biomedicine particularly in the delivery of therapeutics or tissue engineering. NMs including the silica- or carbon-based ones are capable of integration into various BMs that might be due to their special compositions or properties such as the hydrophilicity, hydrophobicity, magnetic or electrical characteristics, and responsiveness to various stimuli. This might provide multi-functional nanobiomaterials against a wide variety of disorders. Meanwhile, inappropriate distribution or penetration into the cells or tissues, bio-nano interface complexity, targeting ability loss, or any other unpredicted phenomena are the serious challenging issues. Computational simulations and models enable development of NMs with optimal characteristics and provide a deeper knowledge of NM interaction with biosystems. This review highlights the biomedical significance of the multifunctional NMs particularly those applied for the development of 2-D or 3-D BMs for a variety of applications including the site-specific delivery of therapeutics. The powerful impacts of the computational techniques on the design process of NMs, quantitation and prediction of protein corona formation, risk assessment, and individualized therapy for improved therapeutic outcomes have also been discussed.
Collapse
|
216
|
Tandale P, Choudhary N, Singh J, Sharma A, Shukla A, Sriram P, Soni U, Singla N, Barnwal RP, Singh G, Kaur IP, Suttee A. Fluorescent quantum dots: An insight on synthesis and potential biological application as drug carrier in cancer. Biochem Biophys Rep 2021; 26:100962. [PMID: 33763604 PMCID: PMC7973288 DOI: 10.1016/j.bbrep.2021.100962] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 02/11/2021] [Accepted: 02/22/2021] [Indexed: 02/01/2023] Open
Abstract
Quantum dots (QDs) are nanocrystals of semiconducting material possessing quantum mechanical characteristics with capability to get conjugated with drug moieties. The particle size of QDs varies from 2 to 10 nm and can radiate a wide range of colours depending upon their size. Their wide and diverse usage of QDs across the world is due to their adaptable properties like large quantum yield, photostability, and adjustable emission spectrum. QDs are nanomaterials with inherent electrical characteristics that can be used as drug carrier vehicle and as a diagnostic in the field of nanomedicine. Scientists from various fields are aggressively working for the development of single platform that can sense, can produce a microscopic image and even be used to deliver a therapeutic agent. QDs are the fluorescent nano dots with which the possibilities of the drug delivery to a targeted site and its biomedical imaging can be explored. This review is mainly focused on the different process of synthesis of QDs, their application especially in the areas of malignancies and as a theranostic tool. The attempt is to consolidate the data available for the use of QDs in the biomedical applications. QDs are nonmaterial's that can be used for drug delivery, imaging and diagnostic tool in the field of nanomedicine. The various approaches to synthesize the QDs were explored. QDs are accepted in the treatment strategies due to their biocompatibility with human physiology. QDs posses' several biomedical application particularly in the area of cancer theranostics. Fluorescents dots (QDs) can illuminate the complicated terrain of oncology sciences, novel biomarkers and a patient compliant treatment regimens.
Collapse
Affiliation(s)
- P Tandale
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | - Neeraj Choudhary
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | - Joga Singh
- Univesity Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Akanksha Sharma
- Univesity Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India.,Department of Biophysics, Panjab University, Chandigarh, India
| | - Ananya Shukla
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Pavani Sriram
- Vaagdevi College of Pharmacy, Kakatiya University. Warangal, Telangana State, India
| | - Udit Soni
- Teri School of Advanced Studies, Teri University, New Delhi, India
| | - Neha Singla
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Ravi P Barnwal
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Gurpal Singh
- Univesity Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Indu Pal Kaur
- Univesity Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Ashish Suttee
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| |
Collapse
|
217
|
Advances in Gold Nanoparticles-Based Colorimetric Aptasensors for the Detection of Antibiotics: An Overview of the Past Decade. NANOMATERIALS 2021; 11:nano11040840. [PMID: 33806173 PMCID: PMC8066193 DOI: 10.3390/nano11040840] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 12/17/2022]
Abstract
Misuse of antibiotics has recently been considered a global issue because of its harmful effects on human health. Since conventional methods have numerous limitations, it is necessary to develop fast, simple, sensitive, and reproducible methods for the detection of antibiotics. Among numerous recently developed methods, aptasensors are fascinating because of their good specificity, sensitivity and selectivity. These kinds of biosensors combining aptamer with colorimetric applications of gold nanoparticles to recognize small molecules are becoming more popular owing to their advantageous features, for example, low cost, ease of use, on-site analysis ability using naked eye and no prerequisite for modern equipment. In this review, we have highlighted the recent advances and working principle of gold nanoparticles based colorimetric aptasensors as promising methods for antibiotics detection in different food and environmental samples (2011–2020). Furthermore, possible advantages and disadvantages have also been summarized for these methods. Finally, the recent challenges, outlook, and promising future perspectives for developing novel aptasensors are also considered.
Collapse
|
218
|
Kim KH, Hwang A, Song Y, Lee WS, Moon J, Jeong J, Bae NH, Jung YM, Jung J, Ryu S, Lee SJ, Choi BG, Kang T, Lee KG. 3D Hierarchical Nanotopography for On-Site Rapid Capture and Sensitive Detection of Infectious Microbial Pathogens. ACS NANO 2021; 15:4777-4788. [PMID: 33502164 DOI: 10.1021/acsnano.0c09411] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Effective capture and rapid detection of pathogenic bacteria causing pandemic/epidemic diseases is an important task for global surveillance and prevention of human health threats. Here, we present an advanced approach for the on-site capture and detection of pathogenic bacteria through the combination of hierarchical nanostructures and a nuclease-responsive DNA probe. The specially designed hierarchical nanocilia and network structures on the pillar arrays, termed 3D bacterial capturing nanotopographical trap, exhibit excellent mechanical reliability and rapid (<30 s) and irreversible bacterial capturability. Moreover, the nuclease-responsive DNA probe enables the highly sensitive and extremely fast (<1 min) detection of bacteria. The bacterial capturing nanotopographical trap (b-CNT) facilitates the on-site capture and detection of notorious infectious pathogens (Escherichia coli O157:H7, Salmonella enteritidis, Staphylococcus aureus, and Bacillus cereus) from kitchen tools and food samples. Accordingly, the usefulness of the b-CNT is confirmed as a simple, fast, sensitive, portable, and robust on-site capture and detection tool for point-of-care testing.
Collapse
Affiliation(s)
- Kyung Hoon Kim
- Division of Nano-Bio Sensors/Chips Development, National NanoFab Center (NNFC), Daejeon 34141, Republic of Korea
| | - Ahreum Hwang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Younseong Song
- Division of Nano-Bio Sensors/Chips Development, National NanoFab Center (NNFC), Daejeon 34141, Republic of Korea
| | - Wang Sik Lee
- Environmental Disease Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Jeong Moon
- Bionanotechnology Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jinyoung Jeong
- Environmental Disease Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Nam Ho Bae
- Division of Nano-Bio Sensors/Chips Development, National NanoFab Center (NNFC), Daejeon 34141, Republic of Korea
| | - Young Mee Jung
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jiyoung Jung
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Seunghwa Ryu
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- KI for NanoCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Seok Jae Lee
- Division of Nano-Bio Sensors/Chips Development, National NanoFab Center (NNFC), Daejeon 34141, Republic of Korea
| | - Bong Gill Choi
- Department of Chemical Engineering, Kangwon National University, Samcheok 25913, Republic of Korea
| | - Taejoon Kang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Kyoung G Lee
- Division of Nano-Bio Sensors/Chips Development, National NanoFab Center (NNFC), Daejeon 34141, Republic of Korea
| |
Collapse
|
219
|
Kumar S, Gupta N, Malhotra BD. Ultrasensitive biosensing platform based on yttria doped zirconia-reduced graphene oxide nanocomposite for detection of salivary oral cancer biomarker. Bioelectrochemistry 2021; 140:107799. [PMID: 33774391 DOI: 10.1016/j.bioelechem.2021.107799] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/18/2021] [Accepted: 03/09/2021] [Indexed: 12/26/2022]
Abstract
Herein, we report results of the studies relating to the fabrication of yttria-doped zirconia-reduced graphene oxide nanocomposite (nYZR) based biosensing platform for detection of salivary CYFRA-21-1 biomarker. The nYZR nanocomposite was hydrothermally synthesized and amine-functionalized using 3-aminopropyl triethoxysilane (APTES). This functionalized nanocomposite (APTES/nYZR) was electrophoretically deposited (45 V; 3 min) onto pre-hydrolyzed indium tin oxide (ITO) coated glass substrate (APTES/nYZR/ITO) followed by biofunctionalization via covalent immobilization of the anti-CYFRA-21-1 antibodies (anti-CYFRA-21-1/APTES/nYZR/ITO). The synthesized nanomaterial and the fabricated electrodes were characterized to investigate crystal structure, morphology and electrochemical properties via X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, cyclic voltammetry, differential pulse voltammetry and electrochemical impedance spectroscopy. The fabricated biosensing electrode (BSA/anti-CYFRA-21-1/APTES/nYZR/ITO) has an operating shelf life of 56 days and can be used to detect salivary CYFRA-21-1 biomarker concentration as low as 7.2 pg mL-1 with wide linear detection range of 0.01-50 ng mL-1. This work opens new opportunities to explore the electrochemical behavior of nanostructured yttria stabilized zirconia (YSZ) and its composites at room temperature and its utility in developing biosensors and other electrochemical devices.
Collapse
Affiliation(s)
- Suveen Kumar
- Nanobioelectronics Laboratory, Department of Biotechnology, Delhi Technological University, Delhi 110042, India; Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Niharika Gupta
- Nanobioelectronics Laboratory, Department of Biotechnology, Delhi Technological University, Delhi 110042, India
| | - Bansi D Malhotra
- Nanobioelectronics Laboratory, Department of Biotechnology, Delhi Technological University, Delhi 110042, India.
| |
Collapse
|
220
|
Tortolini C, Capecchi E, Tasca F, Pofi R, Venneri MA, Saladino R, Antiochia R. Novel Nanoarchitectures Based on Lignin Nanoparticles for Electrochemical Eco-Friendly Biosensing Development. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:718. [PMID: 33809211 PMCID: PMC8001205 DOI: 10.3390/nano11030718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/02/2021] [Accepted: 03/06/2021] [Indexed: 11/17/2022]
Abstract
Novel nanoarchitectures based on lignin nanoparticles (LNPs) were designed and realized for electrochemical eco-friendly biosensing development. Two types of lignin nanoparticles were utilized for the modification of a gold bare electrode, namely organosolv (OLNPs) and kraft lignin (KLNPs) nanoparticles, synthetized from a sulfur-free and a sulfur lignin, respectively. The electrochemical behavior of LNP-modified electrodes was studied using two electrochemical techniques, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Compared to the gold bare electrode, an evident decrease in the faradaic current and increase of the ΔEp were observed in cyclic voltammograms. In addition, larger semicircles were registered in Nyquist plots. These results suggest a strong inhibition effect of the electron transfer reaction by LNPs layer, especially in the case of KLNPs. The modified electrodes, properly assembled with concanavalin A (ConA) and glucose oxidase (GOx), were successively tested as biosensing platforms for glucose, showing a sensitivity of (4.53 ± 0.467) and (13.74 ± 1.84) μA mM-1 cm2 for Au/SAMCys/OLNPs/ConA/GOx and Au/KLNPs/ConA/GOx biosensors, respectively. Finally, different layers of the KNLPs/ConA/GOx-modified Au electrode were tested, and the three-layered Au(KNLPs/ConA/GOx)3 showed the best analytical performance.
Collapse
Affiliation(s)
- Cristina Tortolini
- Department of Chemistry and Drug Technologies, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy;
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00166 Rome, Italy; (R.P.); (M.A.V.)
| | - Eliana Capecchi
- Department of Biological and Ecological Sciences, University of Tuscia, Via s. Camillo de Lellis snc, 01100 Viterbo, Italy; (E.C.); (R.S.)
| | - Federico Tasca
- Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40, Correo 33, Sucursal Matucana, Santiago 9170022, Chile;
| | - Riccardo Pofi
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00166 Rome, Italy; (R.P.); (M.A.V.)
| | - Mary Anna Venneri
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00166 Rome, Italy; (R.P.); (M.A.V.)
| | - Raffaele Saladino
- Department of Biological and Ecological Sciences, University of Tuscia, Via s. Camillo de Lellis snc, 01100 Viterbo, Italy; (E.C.); (R.S.)
| | - Riccarda Antiochia
- Department of Chemistry and Drug Technologies, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy;
| |
Collapse
|
221
|
Sharma S, Saini S, Khangembam M, Singh V. Nanomaterials-Based Biosensors for COVID-19 Detection-A Review. IEEE SENSORS JOURNAL 2021; 21:5598-5611. [PMID: 37974905 PMCID: PMC8768986 DOI: 10.1109/jsen.2020.3036748] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/31/2020] [Accepted: 11/03/2020] [Indexed: 11/19/2023]
Abstract
This review paper discusses the properties of nanomaterials, namely graphene, molybdenum disulfide, carbon nanotubes, and quantum dots for unique sensing applications. Based on the specific analyte to be detected and the functionalization techniques that are employed, some noteworthy sensors that have been developed are discussed. Further, biocompatible sensors fabricated from these materials capable of detecting specific chemical compounds are also highlighted for COVID-19 detection purposes, which can aid in efficient and reliable sensing as well as timely diagnosis.
Collapse
Affiliation(s)
- Sakshi Sharma
- Department of Applied PhysicsDelhi Technological UniversityNew Delhi110042India
| | - Sonakshi Saini
- Department of Applied PhysicsDelhi Technological UniversityNew Delhi110042India
| | - Maya Khangembam
- Department of Applied PhysicsDelhi Technological UniversityNew Delhi110042India
| | - Vinod Singh
- Department of Applied PhysicsDelhi Technological UniversityNew Delhi110042India
| |
Collapse
|
222
|
Li P, Lee GH, Kim SY, Kwon SY, Kim HR, Park S. From Diagnosis to Treatment: Recent Advances in Patient-Friendly Biosensors and Implantable Devices. ACS NANO 2021; 15:1960-2004. [PMID: 33534541 DOI: 10.1021/acsnano.0c06688] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Patient-friendly medical diagnostics and treatments have been receiving a great deal of interest due to their rapid and cost-effective health care applications with minimized risk of infection, which has the potential to replace conventional hospital-based medical procedures. In particular, the integration of recently developed materials into health care devices allows the rapid development of point-of-care (POC) sensing platforms and implantable devices with special functionalities. In this review, the recent advances in biosensors for patient-friendly diagnosis and implantable devices for patient-friendly treatment are discussed. Comprehensive analysis of portable and wearable biosensing platforms for patient-friendly health monitoring and disease diagnosis is provided, including topics such as materials selection, device structure and integration, and biomarker detection strategies. Moreover, specific challenges related to each biological fluid for wearable biosensor-based POC applications are presented. Also, advances in implantable devices, including recent materials development and wireless communication strategies, are discussed. Furthermore, various patient-friendly surgical and treatment approaches are reviewed, such as minimally invasive insertion and mounting, in vivo electrical and optical modulations, and post-operation health monitoring. Finally, the challenges and future perspectives toward the development of the patient-friendly diagnosis and treatment are provided.
Collapse
Affiliation(s)
- Pei Li
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Gun-Hee Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Su Yeong Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Se Young Kwon
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hyung-Ryong Kim
- College of Dentistry and Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714, Republic of Korea
| | - Steve Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
223
|
|
224
|
Taeño M, Maestre D, Ramírez-Castellanos J, Li S, Lee PS, Cremades A. Towards Control of the Size, Composition and Surface Area of NiO Nanostructures by Sn Doping. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:444. [PMID: 33578664 PMCID: PMC7916375 DOI: 10.3390/nano11020444] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 11/17/2022]
Abstract
Achieving nanostructures with high surface area is one of the most challenging tasks as this metric usually plays a key role in technological applications, such as energy storage, gas sensing or photocatalysis, fields in which NiO is gaining increasing attention recently. Furthermore, the advent of modern NiO-based devices can take advantage of a deeper knowledge of the doping process in NiO, and the fabrication of p-n heterojunctions. By controlling experimental conditions such as dopant concentration, reaction time, temperature or pH, NiO morphology and doping mechanisms can be modulated. In this work, undoped and Sn doped nanoparticles and NiO/SnO2 nanostructures with high surface areas were obtained as a result of Sn incorporation. We demonstrate that Sn incorporation leads to the formation of nanosticks morphology, not previously observed for undoped NiO, promoting p-n heterostructures. Consequently, a surface area value around 340 m2/g was obtained for NiO nanoparticles with 4.7 at.% of Sn, which is nearly nine times higher than that of undoped NiO. The presence of Sn with different oxidation states and variable Ni3+/Ni2+ ratio as a function of the Sn content were also verified by XPS, suggesting a combination of two charge compensation mechanisms (electronic and ionic) for the substitution of Ni2+ by Sn4+. These results make Sn doped NiO nanostructures a potential candidate for a high number of technological applications, in which implementations can be achieved in the form of NiO-SnO2 p-n heterostructures.
Collapse
Affiliation(s)
- María Taeño
- Departamento de Física de Materiales, Facultad de Ciencias Físicas, Universidad Complutense de Madrid, 28040 Madrid, Spain; (D.M.); (A.C.)
| | - David Maestre
- Departamento de Física de Materiales, Facultad de Ciencias Físicas, Universidad Complutense de Madrid, 28040 Madrid, Spain; (D.M.); (A.C.)
| | - Julio Ramírez-Castellanos
- Departamento de Química Inorgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain;
| | - Shaohui Li
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; (S.L.); (P.S.L.)
| | - Pooi See Lee
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; (S.L.); (P.S.L.)
| | - Ana Cremades
- Departamento de Física de Materiales, Facultad de Ciencias Físicas, Universidad Complutense de Madrid, 28040 Madrid, Spain; (D.M.); (A.C.)
| |
Collapse
|
225
|
Puopolo R, Sorrentino I, Gallo G, Piscitelli A, Giardina P, Le Goff A, Fiorentino G. Self-assembling thermostable chimeras as new platform for arsenic biosensing. Sci Rep 2021; 11:2991. [PMID: 33542380 PMCID: PMC7862302 DOI: 10.1038/s41598-021-82648-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/21/2021] [Indexed: 01/30/2023] Open
Abstract
The correct immobilization and orientation of enzymes on nanosurfaces is a crucial step either for the realization of biosensors, as well as to guarantee the efficacy of the developed biomaterials. In this work we produced two versions of a chimeric protein, namely ArsC-Vmh2 and Vmh2-ArsC, which combined the self-assembling properties of Vmh2, a hydrophobin from Pleurotus ostreatus, with that of TtArsC, a thermophilic arsenate reductase from Thermus thermophilus; both chimeras were heterologously expressed in Escherichia coli and purified from inclusion bodies. They were characterized for their enzymatic capability to reduce As(V) into As(III), as well as for their immobilization properties on polystyrene and gold in comparison to the native TtArsC. The chimeric proteins immobilized on polystyrene can be reused up to three times and stored for 15 days with 50% of activity loss. Immobilization on gold electrodes showed that both chimeras follow a classic Langmuir isotherm model towards As(III) recognition, with an association constant (KAsIII) between As(III) and the immobilized enzyme, equal to 650 (± 100) L mol-1 for ArsC-Vmh2 and to 1200 (± 300) L mol-1 for Vmh2-ArsC. The results demonstrate that gold-immobilized ArsC-Vmh2 and Vmh2-ArsC can be exploited as electrochemical biosensors to detect As(III).
Collapse
Affiliation(s)
- Rosanna Puopolo
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy
| | - Ilaria Sorrentino
- Department of Molecular Chemistry, CNRS, University Grenoble Alpes, 38000, Grenoble, France
| | - Giovanni Gallo
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy
| | - Alessandra Piscitelli
- Department of Chemical Sciences, University of Naples Federico II, 80126, Naples, Italy
| | - Paola Giardina
- Department of Chemical Sciences, University of Naples Federico II, 80126, Naples, Italy
| | - Alan Le Goff
- Department of Molecular Chemistry, CNRS, University Grenoble Alpes, 38000, Grenoble, France.
| | | |
Collapse
|
226
|
Salek Maghsoudi A, Hassani S, Mirnia K, Abdollahi M. Recent Advances in Nanotechnology-Based Biosensors Development for Detection of Arsenic, Lead, Mercury, and Cadmium. Int J Nanomedicine 2021; 16:803-832. [PMID: 33568907 PMCID: PMC7870343 DOI: 10.2147/ijn.s294417] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/14/2021] [Indexed: 12/11/2022] Open
Abstract
Heavy metals cause considerable environmental pollution due to their extent and non-degradability in the environment. Analysis and trace levels of arsenic, lead, mercury, and cadmium as the most toxic heavy metals show that they can cause various hazards in humans' health. To achieve rapid, high-sensitivity methods for analyzing ultra-trace amounts of heavy metals in different environmental and biological samples, novel biosensors have been designed with the participation of strategies applied in nanotechnology. This review attempted to investigate the novel, sensitive, efficient, cost-benefit, point of care, and user-friendly biosensors designed to detect these heavy metals based on functional mechanisms. The study's search strategies included examining the primary databases from 2015 onwards and various keywords focusing on heavy metal biosensors' performance and toxicity mechanisms. The use of aptamers and whole cells as two important bio-functional nanomaterials is remarkable in heavy metal diagnostic biosensors' bioreceptor design. The application of hybridized nanomaterials containing a specific physicochemical function in the presence of a suitable transducer can improve the sensing performance to achieve an integrated detection system. Our study showed that in addition to both labeled and label-free detection strategies, a wide range of nanoparticles and nanocomposites were used to modify the biosensor surface platform in the detection of heavy metals. The detection limit and linear dynamic range as an essential characteristic of superior biosensors for the primary toxic metals are studied. Furthermore, the perspectives and challenges facing the design of heavy metal biosensors are outlined. The development of novel biosensors and the application of nanotechnology, especially in real samples, face challenges such as the capability to simultaneously detect multiple heavy metals, the interference process in complex matrices, the efficiency and stability of nanomaterials implemented in various laboratory conditions.
Collapse
Affiliation(s)
- Armin Salek Maghsoudi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Shokoufeh Hassani
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Kayvan Mirnia
- Department of Neonatology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
227
|
Siew QY, Tan SH, Pang EL, Loh HS, Tan MTT. A graphene-based dengue immunosensor using plant-derived envelope glycoprotein domain III (EDIII) as the novel probe antigen. Analyst 2021; 146:2009-2018. [PMID: 33523052 DOI: 10.1039/d0an02219e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The envelope glycoprotein domain III (EDIII) of dengue virus (DENV) has been recognised as the antigenic region responsible for receptor binding. In the present work, we have proposed a novel immunosensor constructed on a graphene-coated screen-printed carbon electrode (SPCE) using plant-derived EDIII as the probe antigen to target DENV IgG antibodies. The developed immunosensor demonstrated high sensitivity towards DENV IgG within a wide linear working range (125-2000 ng mL-1) under the optimised sensing conditions. The limit of detection was determined to be 22.5 ng mL-1. The immunosensor also showed high specificity towards DENV IgG, capable of differentiating DENV IgG from the antibodies of other infectious diseases including the similarly structured Zika virus (ZIKV). The ability of the immunosensor to detect dengue antibodies in serum samples was also verified by conducting tests on mouse serum samples. The proposed immunosensor was able to provide a binary (positive/negative) response towards the serum samples comparable to the conventional enzyme-linked immunosorbent assay (ELISA), indicating promising potential for realistic applications.
Collapse
Affiliation(s)
- Qi Yan Siew
- Department of Electrical and Electronic Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor, Malaysia.
| | | | | | | | | |
Collapse
|
228
|
Antiochia R. Developments in biosensors for CoV detection and future trends. Biosens Bioelectron 2021; 173:112777. [PMID: 33189015 PMCID: PMC7591947 DOI: 10.1016/j.bios.2020.112777] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 12/24/2022]
Abstract
This review summarizes the state of art of biosensor technology for Coronavirus (CoV) detection, the current challenges and the future perspectives. Three categories of affinity-based biosensors (ABBs) have been developed, depending on their transduction mechanism, namely electrochemical, optical and piezoelectric biosensors. The biorecognition elements include antibodies and DNA, which undergo important non-covalent binding interactions, with the formation of antigen-antibody and ssDNA/oligonucleotide-complementary strand complexes in immuno- and DNA-sensors, respectively. The analytical performances, the advantages and drawbacks of each type of biosensor are highlighted, discussed, and compared to traditional methods. It is hoped that this review will encourage scientists and academics to design and develop new biosensing platforms for point-of-care (POC) diagnostics to manage the coronavirus disease 2019 (COVID-19) pandemic, providing interesting reference for future studies.
Collapse
Affiliation(s)
- Riccarda Antiochia
- Department of Chemistry and Drug Technologies, Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|
229
|
FEAST of biosensors: Food, environmental and agricultural sensing technologies (FEAST) in North America. Biosens Bioelectron 2021; 178:113011. [PMID: 33517232 DOI: 10.1016/j.bios.2021.113011] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 01/04/2021] [Accepted: 01/16/2021] [Indexed: 02/08/2023]
Abstract
We review the challenges and opportunities for biosensor research in North America aimed to accelerate translational research. We call for platform approaches based on: i) tools that can support interoperability between food, environment and agriculture, ii) open-source tools for analytics, iii) algorithms used for data and information arbitrage, and iv) use-inspired sensor design. We summarize select mobile devices and phone-based biosensors that couple analytical systems with biosensors for improving decision support. Over 100 biosensors developed by labs in North America were analyzed, including lab-based and portable devices. The results of this literature review show that nearly one quarter of the manuscripts focused on fundamental platform development or material characterization. Among the biosensors analyzed for food (post-harvest) or environmental applications, most devices were based on optical transduction (whether a lab assay or portable device). Most biosensors for agricultural applications were based on electrochemical transduction and few utilized a mobile platform. Presently, the FEAST of biosensors has produced a wealth of opportunity but faces a famine of actionable information without a platform for analytics.
Collapse
|
230
|
Choi JW, Yoon J, Lim J, Shin M, Lee SN. Graphene/MoS 2 Nanohybrid for Biosensors. MATERIALS (BASEL, SWITZERLAND) 2021; 14:518. [PMID: 33494525 PMCID: PMC7865552 DOI: 10.3390/ma14030518] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/11/2021] [Accepted: 01/19/2021] [Indexed: 12/21/2022]
Abstract
Graphene has been studied a lot in different scientific fields because of its unique properties, including its superior conductivity, plasmonic property, and biocompatibility. More recently, transition metal dicharcogenide (TMD) nanomaterials, beyond graphene, have been widely researched due to their exceptional properties. Among the various TMD nanomaterials, molybdenum disulfide (MoS2) has attracted attention in biological fields due to its excellent biocompatibility and simple steps for synthesis. Accordingly, graphene and MoS2 have been widely studied to be applied in the development of biosensors. Moreover, nanohybrid materials developed by hybridization of graphene and MoS2 have a huge potential for developing various types of outstanding biosensors, like electrochemical-, optical-, or surface-enhanced Raman spectroscopy (SERS)-based biosensors. In this review, we will focus on materials such as graphene and MoS2. Next, their application will be discussed with regard to the development of highly sensitive biosensors based on graphene, MoS2, and nanohybrid materials composed of graphene and MoS2. In conclusion, this review will provide interdisciplinary knowledge about graphene/MoS2 nanohybrids to be applied to the biomedical field, particularly biosensors.
Collapse
Affiliation(s)
- Jeong-Woo Choi
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-Ro, Mapo-Gu, Seoul 04107, Korea
| | - Jinho Yoon
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-Ro, Mapo-Gu, Seoul 04107, Korea
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Joungpyo Lim
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-Ro, Mapo-Gu, Seoul 04107, Korea
| | - Minkyu Shin
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-Ro, Mapo-Gu, Seoul 04107, Korea
| | - Sang-Nam Lee
- Uniance Gene Inc., 1107 Teilhard Hall, 35 Baekbeom-Ro, Mapo-Gu, Seoul 04107, Korea
| |
Collapse
|
231
|
Abstract
Electrochemical immunosensors are affinity-based biosensors characterized by several useful features such as specificity, miniaturizability, low cost and simplicity, making them very interesting for many applications in several scientific fields. One of the significant issues in the design of electrochemical immunosensors is to increase the system’s sensitivity. Different strategies have been developed, one of the most common is the use of nanostructured materials as electrode materials, nanocarriers, electroactive or electrocatalytic nanotracers because of their abilities in signal amplification and biocompatibility. In this review, we will consider some of the most used nanostructures employed in the development of electrochemical immunosensors (e.g., metallic nanoparticles, graphene, carbon nanotubes) and many other still uncommon nanomaterials. Furthermore, their diagnostic applications in the last decade will be discussed, referring to two relevant issues of present-day: the detection of tumor markers and viruses.
Collapse
|
232
|
Wei S, Guo C, Wang L, Xu J, Dong H. Bacterial synthesis of PbS nanocrystallites in one-step with L-cysteine serving as both sulfur source and capping ligand. Sci Rep 2021; 11:1216. [PMID: 33441850 PMCID: PMC7806705 DOI: 10.1038/s41598-020-80450-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/21/2020] [Indexed: 11/27/2022] Open
Abstract
The green bacterial biosynthesis of lead sulfide nanocrystallites by L-cysteine-desulfurizing bacterium Lysinibacillus sphaericus SH72 was demonstrated in this work. Nanocrystals formed by this bacterial method were characterized using the mineralogical and morphological approaches. The results revealed that the microbially synthesized PbS nanocrystals assume a cubic structure, and are often aggregated as spheroids of about 105 nm in size. These spheroids are composed of numerous nanoparticles with diameter 5-10 nm. Surface characterization of the bacterial nanoparticles with FTIR spectroscopy shows that the L-cysteine coats the surface of PbS nanoparticle as a stabilizing ligand. The optical features of the PbS nanocrystallites were assessed by UV-Vis spectroscopy and PL spectroscopy. The maximum absorption wavelength of the bacterial PbS particles occurs at 240 nm, and the photoluminescence emission band ranges from 375 to 550 nm. The band gap energy is calculated to be 4.36 eV, compared to 0.41 eV for the naturally occurring bulk PbS, with this clear blue shift attributable to the quantum size effect.
Collapse
Affiliation(s)
- Shiping Wei
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China.
- School of Marine Sciences, China University of Geosciences, Beijing, 100083, China.
| | - Ce Guo
- School of Marine Sciences, China University of Geosciences, Beijing, 100083, China
| | - Lijuan Wang
- School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, China
| | - Jiangfeng Xu
- School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, China
| | - Hailiang Dong
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China
| |
Collapse
|
233
|
Nangare S, Patil P. Nanoarchitectured Bioconjugates and Bioreceptors Mediated Surface Plasmon Resonance Biosensor for In Vitro Diagnosis of Alzheimer’s Disease: Development and Future Prospects. Crit Rev Anal Chem 2021; 52:1139-1169. [DOI: 10.1080/10408347.2020.1864716] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Sopan Nangare
- Department of Pharmaceutical Chemistry, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| | - Pravin Patil
- Department of Pharmaceutical Chemistry, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| |
Collapse
|
234
|
Albalawi F, Hussein MZ, Fakurazi S, Masarudin MJ. Engineered Nanomaterials: The Challenges and Opportunities for Nanomedicines. Int J Nanomedicine 2021; 16:161-184. [PMID: 33447033 PMCID: PMC7802788 DOI: 10.2147/ijn.s288236] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/05/2020] [Indexed: 12/14/2022] Open
Abstract
The emergence of nanotechnology as a key enabling technology over the past years has opened avenues for new and innovative applications in nanomedicine. From the business aspect, the nanomedicine market was estimated to worth USD 293.1 billion by 2022 with a perception of market growth to USD 350.8 billion in 2025. Despite these opportunities, the underlying challenges for the future of engineered nanomaterials (ENMs) in nanomedicine research became a significant obstacle in bringing ENMs into clinical stages. These challenges include the capability to design bias-free methods in evaluating ENMs' toxicity due to the lack of suitable detection and inconsistent characterization techniques. Therefore, in this literature review, the state-of-the-art of engineered nanomaterials in nanomedicine, their toxicology issues, the working framework in developing a toxicology benchmark and technical characterization techniques in determining the toxicity of ENMs from the reported literature are explored.
Collapse
Affiliation(s)
- Fahad Albalawi
- Department of Medical Laboratory and Blood Bank, King Fahad Specialist Hospital-Tabuk, Tabuk, Saudi Arabia
- Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mohd Zobir Hussein
- Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Sharida Fakurazi
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Natural Medicine and Product Research Laboratory Institute of Bioscience, Serdang, Selangor, Malaysia
| | - Mas Jaffri Masarudin
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
235
|
Colino CI, Lanao JM, Gutierrez-Millan C. Recent advances in functionalized nanomaterials for the diagnosis and treatment of bacterial infections. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 121:111843. [PMID: 33579480 DOI: 10.1016/j.msec.2020.111843] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 12/21/2020] [Accepted: 12/27/2020] [Indexed: 02/06/2023]
Abstract
The growing problem of resistant infections due to antibiotic misuse is a worldwide concern that poses a grave threat to healthcare systems. Thus, it is necessary to discover new strategies to combat infectious diseases. In this review, we provide a selective overview of recent advances in the use of nanocomposites as alternatives to antibiotics in antimicrobial treatments. Metals and metal oxide nanoparticles (NPs) have been associated with inorganic and organic supports to improve their antibacterial activity and stability as well as other properties. For successful antibiotic treatment, it is critical to achieve a high drug concentration at the infection site. In recent years, the development of stimuli-responsive systems has allowed the vectorization of antibiotics to the site of infection. These nanomaterials can be triggered by various mechanisms (such as changes in pH, light, magnetic fields, and the presence of bacterial enzymes); additionally, they can improve antibacterial efficacy and reduce side effects and microbial resistance. To this end, various types of modified polymers, lipids, and inorganic components (such as metals, silica, and graphene) have been developed. Applications of these nanocomposites in diverse fields ranging from food packaging, environment, and biomedical antimicrobial treatments to diagnosis and theranosis are discussed.
Collapse
Affiliation(s)
- Clara I Colino
- Area of Pharmacy and Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Salamanca, Spain; The Institute for Biomedical Research of Salamanca (IBSAL), Spain
| | - José M Lanao
- Area of Pharmacy and Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Salamanca, Spain; The Institute for Biomedical Research of Salamanca (IBSAL), Spain.
| | - Carmen Gutierrez-Millan
- Area of Pharmacy and Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Salamanca, Spain; The Institute for Biomedical Research of Salamanca (IBSAL), Spain
| |
Collapse
|
236
|
Zheng X, Wang J, Rao J. The Chemistry in Surface Functionalization of Nanoparticles for Molecular Imaging. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00021-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
237
|
Soundharraj P, Dhinasekaran D, Rajendran AR, Prakasarao A, Ganesan S. N-Doped zinc oxide as an effective fluorescence sensor for urea detection. NEW J CHEM 2021. [DOI: 10.1039/d1nj00372k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This paper reports on the development of N-doped zinc oxide nanoparticle (N–ZnO) based optical biosensor for selective urea detection.
Collapse
Affiliation(s)
| | | | - Ajay Rakkesh Rajendran
- Department of Physics and Nanotechnology
- SRM Institute of Science and Technology
- Chennai
- India
| | | | | |
Collapse
|
238
|
Mohajeri M, Behnam B, Tasbandi A, Jamialahmadi T, Sahebkar A. Carbon-based Nanomaterials and Curcumin: A Review of Biosensing Applications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1291:55-74. [PMID: 34331684 DOI: 10.1007/978-3-030-56153-6_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Curcumin, the main active constituent of turmeric (Curcuma longa L.), is a naturally occurring phenolic compound with a wide variety of pharmacological activities. Although it has multiple pharmaceutical properties, its bioavailability and industrial usage are hindered due to rapid hydrolysis and low water solubility. Due to the growing market of curcumin, exact determination of curcumin in trade and human biological samples is important for monitoring therapeutic actions. Different nanomaterials have been suggested for sensing curcumin; and in this case, carbon-based nanomaterials (CNMs) are one of the most outstanding developments in nanomedicine, biosensing, and regenerative medicine. There are a considerable number of reports which have shown interesting potential of CNMs-based biosensors in the sensitive and selective detection of curcumin. Therefore, this review aims to increase understanding the interaction of curcumin with CNMs in the context of biosensing.
Collapse
Affiliation(s)
- Mohammad Mohajeri
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Behzad Behnam
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran.
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Aida Tasbandi
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Tannaz Jamialahmadi
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran
- Department of Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland.
- Halal Research Center of IRI, FDA, Tehran, Iran.
| |
Collapse
|
239
|
Application of biosynthesized metal nanoparticles in electrochemical sensors. JOURNAL OF THE SERBIAN CHEMICAL SOCIETY 2021. [DOI: 10.2298/jsc200521077d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Recently, the development of eco-friendly, cost-effective and reliable methods for synthesis of metal nanoparticles has drawn a considerable attention. The so-called green synthesis, using mild reaction conditions and natural resources as plant extracts and microorganisms, has established as a convenient, sustainable, cheap and environmentally safe approach for synthesis of a wide range of nanomaterials. Over the past decade, biosynthesis is regarded as an important tool for reducing the harmful effects of traditional nanoparticle synthesis methods commonly used in laboratories and industry. This review emphasizes the significance of biosynthesized metal nanoparticles in the field of electrochemical sensing. There is increasing evidence that green synthesis of nanoparticles provides a new direction in designing of cost-effective, highly sensitive and selective electrode-catalysts applicable in food, clinical and environmental analysis. The article is based on 157 references and provided a detailed overview on the main approaches for green synthesis of metal nanoparticles and their applications in designing of electrochemical sensor devices. Important operational characteristics including sensitivity, dynamic range, limit of detection, as well as data on stability and reproducibility of sensors have also been covered.
Collapse
|
240
|
Chang W, Zhao J, Liu L, Xing X, Zhang C, Meng H, Gopinath SCB, Liu Y. Graphene Oxide-Gold Star Construct on Triangular Electrodes for Alzheimer's Disease Identification. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2021; 2021:6661799. [PMID: 33688447 PMCID: PMC7920714 DOI: 10.1155/2021/6661799] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/09/2020] [Accepted: 01/02/2021] [Indexed: 05/14/2023]
Abstract
Nanotechnology is playing a major role in the field of medical diagnosis, in particular with the biosensor and bioimaging. It improves the performance of the desired system dramatically by displaying higher selectivity and sensitivity. Carbon nanomaterial, gold nanostructure, magnetite nanoparticle, and silica substrate are the most popular nanomaterials greatly contributed to make the affordable and effective biosensor at low-cost. This research work is introducing a new sensing strategy with graphene oxide-constructed triangular electrodes to diagnose Alzheimer's disease (AD). MicroRNA-137 (miRNA-137) was found as a suitable biomarker for AD, and the sensing method was established here to detect miRNA-137 on the complementary sequence. To enhance the immobilization of capture miRNA-137, gold nanostar (GNS) was conjugated with capture miRNA and immobilized on the GO-modified surface through an amine linker. This immobilization process enhanced the hybridization of the target and reaches the detection limit at 10 fM with the sensitivity of 1 fM on the linear curve with a regression coefficient of 0.9038. Further control sequences of miRNA-21 and single and triple base mismatched miRNA-137 did not show a significant response in current changes, indicating the specific miRNA-137 detection for diagnosing AD.
Collapse
Affiliation(s)
- Wenlong Chang
- Endocrine Laboratory, Baoding No.1 Central Hospital, Baoding, Hebei 071000, China
| | - Jing Zhao
- Department of First Neurology, Baoding No.1 Central Hospital, Baoding, Hebei 071000, China
| | - Lu Liu
- Department of Clinical Psychology, Baoding No.1 Central Hospital, Baoding, Hebei 071000, China
| | - Xiaoming Xing
- Department of First Neurology, Baoding No.1 Central Hospital, Baoding, Hebei 071000, China
| | - Chao Zhang
- Department of First Neurology, Baoding No.1 Central Hospital, Baoding, Hebei 071000, China
| | - Huihong Meng
- Department of First Neurology, Baoding No.1 Central Hospital, Baoding, Hebei 071000, China
| | - Subash C. B. Gopinath
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis (UniMAP), Arau 02600, Perlis, Malaysia
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar 01000, Perlis, Malaysia
| | - Yonggang Liu
- Department of First Neurology, Baoding No.1 Central Hospital, Baoding, Hebei 071000, China
| |
Collapse
|
241
|
Sonuç Karaboğa MN, Sezgintürk MK. A nano-composite based regenerative neuro biosensor sensitive to Parkinsonism-associated protein DJ-1/Park7 in cerebrospinal fluid and saliva. Bioelectrochemistry 2020; 138:107734. [PMID: 33421895 DOI: 10.1016/j.bioelechem.2020.107734] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 10/22/2022]
Abstract
In this study, we developed an electrochemical-based single-use neurobiosensor based on multiwalled carbon nanotube (MWCNT)-gold nanoparticle (AuNP) nanocomposite doped, 11-amino-1-undecanethiol (11-AUT)-modified polyethylene terephthalate coated indium tin oxide (ITO-PET) electrodes. This electrode was used for the sensitive determination of DJ-1, a protein responsible for mitochondrial dysfunction in Parkinson's disease (PD) with the task of eliminating oxidative stress. The design strategy and analytical studies for the neurobiosensor were monitored with electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and single frequency impedance (SFI) techniques. The selective determination range for DJ-1 of the developed neurobiosensor system is 4.7-4700 fg mL-1 in accordance with the charge transfer resistance (Rct) associated with a limit of detection of 0.5 fg mL-1. Since changes in the expression of DJ-1 protein is particularly important in cerebrospinal fluid (CSF) and saliva, the ability of the developed neurobiosensor system to detect the DJ-1 protein in these media was tested by the standard addition method. The statistical results show that the biosensor decorated with MWCNT-AuNP-AUT may be recommended for the selective determination of DJ-1 protein.
Collapse
|
242
|
Li J, Li H, Xu J, Zhao X, Song S, Zhang H. Myocardial infarction biomarker C-reactive protein detection on nanocomposite aptasensor. Biotechnol Appl Biochem 2020; 69:166-171. [PMID: 33370481 DOI: 10.1002/bab.2093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/22/2020] [Indexed: 11/12/2022]
Abstract
Myocardial infarction (MI) is considered as one of the major life-threatening health issues worldwide. Growing number of cases every year is demanding rapid, portable, and early detection by the sensing devices for the identification of MI. This research work introduces a modified interdigitated electrode (IDE) sensing surface constructed with single-walled carbon nanotube (SWCN) to detect the cardiac biomarker, C-reactive protein (CRP). CRP-specific aptamer was conjugated with gold nanoparticle and attached on SWCN-constructed IDE surface. This probe-modified sensing surface has reached the limit of CRP detection to 10 pM on a linear regression curve with the regression coefficient of R² = 0.9223 [y = 0.9198x - 0.4326]. Further, control molecules, such as random aptamer sequence and nontarget cardiac biomarker (Troponin I), did not show the current response, indicating the specific CRP detection. This sensing strategy helps to detect the lower level of CRP and diagnose the MI at its earlier stages.
Collapse
Affiliation(s)
- Jing Li
- Department of Second Cardiology, Affiliated Hospital of Hebei University, Baoding, Hebei, People's Republic of China
| | - Haitao Li
- Department of Cardiology, Xushui Huayi hospital, Baoding, Hebei, People's Republic of China
| | - Jinpeng Xu
- Department of Second Cardiology, Affiliated Hospital of Hebei University, Baoding, Hebei, People's Republic of China
| | - Xingzhou Zhao
- Department of Second Cardiology, Affiliated Hospital of Hebei University, Baoding, Hebei, People's Republic of China
| | - Shujiang Song
- Department of Second Cardiology, Affiliated Hospital of Hebei University, Baoding, Hebei, People's Republic of China
| | - Huitao Zhang
- Department of Third Emergency, Baoding First Central Hospital West Hospital, Baoding, Hebei, People's Republic of China
| |
Collapse
|
243
|
Castillo-Henríquez L, Brenes-Acuña M, Castro-Rojas A, Cordero-Salmerón R, Lopretti-Correa M, Vega-Baudrit JR. Biosensors for the Detection of Bacterial and Viral Clinical Pathogens. SENSORS (BASEL, SWITZERLAND) 2020; 20:E6926. [PMID: 33291722 PMCID: PMC7730340 DOI: 10.3390/s20236926] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 01/09/2023]
Abstract
Biosensors are measurement devices that can sense several biomolecules, and are widely used for the detection of relevant clinical pathogens such as bacteria and viruses, showing outstanding results. Because of the latent existing risk of facing another pandemic like the one we are living through due to COVID-19, researchers are constantly looking forward to developing new technologies for diagnosis and treatment of infections caused by different bacteria and viruses. Regarding that, nanotechnology has improved biosensors' design and performance through the development of materials and nanoparticles that enhance their affinity, selectivity, and efficacy in detecting these pathogens, such as employing nanoparticles, graphene quantum dots, and electrospun nanofibers. Therefore, this work aims to present a comprehensive review that exposes how biosensors work in terms of bacterial and viral detection, and the nanotechnological features that are contributing to achieving a faster yet still efficient COVID-19 diagnosis at the point-of-care.
Collapse
Affiliation(s)
- Luis Castillo-Henríquez
- National Center for High Technology (CeNAT), National Laboratory of Nanotechnology (LANOTEC), San José 1174-1200, Costa Rica;
- Physical Chemistry Laboratory, Faculty of Pharmacy, University of Costa Rica, San José 11501-2060, Costa Rica
| | - Mariana Brenes-Acuña
- Chemistry School, National University of Costa Rica, Heredia 86-3000, Costa Rica; (M.B.-A.); (A.C.-R.); (R.C.-S.)
| | - Arianna Castro-Rojas
- Chemistry School, National University of Costa Rica, Heredia 86-3000, Costa Rica; (M.B.-A.); (A.C.-R.); (R.C.-S.)
| | - Rolando Cordero-Salmerón
- Chemistry School, National University of Costa Rica, Heredia 86-3000, Costa Rica; (M.B.-A.); (A.C.-R.); (R.C.-S.)
| | - Mary Lopretti-Correa
- Nuclear Research Center, Faculty of Science, Universidad de la República (UdelaR), Montevideo 11300, Uruguay;
| | - José Roberto Vega-Baudrit
- National Center for High Technology (CeNAT), National Laboratory of Nanotechnology (LANOTEC), San José 1174-1200, Costa Rica;
- Chemistry School, National University of Costa Rica, Heredia 86-3000, Costa Rica; (M.B.-A.); (A.C.-R.); (R.C.-S.)
| |
Collapse
|
244
|
|
245
|
McBeth C, Paterson A, Sharp D. Pad-printed Prussian blue doped carbon ink for real-time peroxide sensing in cell culture. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
246
|
Piroozmand F, Mohammadipanah F, Faridbod F. Emerging biosensors in detection of natural products. Synth Syst Biotechnol 2020; 5:293-303. [PMID: 32954023 PMCID: PMC7484522 DOI: 10.1016/j.synbio.2020.08.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 01/10/2023] Open
Abstract
Natural products (NPs) are a valuable source in the food, pharmaceutical, agricultural, environmental, and many other industrial sectors. Their beneficial properties along with their potential toxicities make the detection, determination or quantification of NPs essential for their application. The advanced instrumental methods require time-consuming sample preparation and analysis. In contrast, biosensors allow rapid detection of NPs, especially in complex media, and are the preferred choice of detection when speed and high throughput are intended. Here, we review diverse biosensors reported for the detection of NPs. The emerging approaches for improving the efficiency of biosensors, such as microfluidics, nanotechnology, and magnetic beads, are also discussed. The simultaneous use of two detection techniques is suggested as a robust strategy for precise detection of a specific NP with structural complexity in complicated matrices. The parallel detection of a variety of NPs structures or biological activities in a mixture of extract in a single detection phase is among the anticipated future advancements in this field which can be achieved using multisystem biosensors applying multiple flow cells, sensing elements, and detection mechanisms on miniaturized folded chips.
Collapse
Affiliation(s)
- Firoozeh Piroozmand
- Pharmaceutical Biotechnology Lab, Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, 14155-6455, Tehran, Iran
| | - Fatemeh Mohammadipanah
- Pharmaceutical Biotechnology Lab, Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, 14155-6455, Tehran, Iran
| | - Farnoush Faridbod
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
247
|
Nishan U, Gul R, Muhammad N, Asad M, Rahim A, Shah M, Iqbal J, Uddin J, Ali Shah AUH, Shujah S. Colorimetric based sensing of dopamine using ionic liquid functionalized drug mediated silver nanostructures. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105382] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
248
|
Wang X, Li F, Guo Y. Recent Trends in Nanomaterial-Based Biosensors for Point-of-Care Testing. Front Chem 2020; 8:586702. [PMID: 33195085 PMCID: PMC7596383 DOI: 10.3389/fchem.2020.586702] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/07/2020] [Indexed: 12/15/2022] Open
Abstract
In recent years, nanomaterials of different shape, size, and composition have been prepared and characterized, such as gold and silver nanoparticles, quantum dots, mesoporous silica nanoparticles, carbon nanomaterials, and hybrid nanocomposites. Because of their unique physical and chemical properties, these nanomaterials are increasingly used in point-of-care testing (POCT) to improve analytical performance and simplify detection process. They are used either as carriers for immobilizing biorecognition elements, or as labels for signal generation, transduction and amplification. In this commentary, we highlight recent POCT technologies that employ nanotechnology for the analysis of disease biomarkers, including small-molecule metabolites, enzymes, proteins, nucleic acids, cancer cells, and pathogens. Recent advances in lateral flow tests, printable electrochemical biosensors, and microfluidics-based devices are summarized. Existing challenges and future directions are also discussed.
Collapse
Affiliation(s)
- Xu Wang
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States
| | - Feng Li
- College of Chemistry, Sichuan University, Chengdu, China.,Department of Chemistry, Brock University, St. Catharines, ON, Canada
| | - Yirong Guo
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China
| |
Collapse
|
249
|
Preeti, Radhakrishnan VS, Mukherjee S, Mukherjee S, Singh SP, Prasad T. ZnO Quantum Dots: Broad Spectrum Microbicidal Agent Against Multidrug Resistant Pathogens E. coli and C. albicans. FRONTIERS IN NANOTECHNOLOGY 2020. [DOI: 10.3389/fnano.2020.576342] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
250
|
Antiochia R. Nanobiosensors as new diagnostic tools for SARS, MERS and COVID-19: from past to perspectives. Mikrochim Acta 2020; 187:639. [PMID: 33151419 PMCID: PMC7642243 DOI: 10.1007/s00604-020-04615-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 10/21/2020] [Indexed: 12/23/2022]
Abstract
The severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS) and novel coronavirus 19 (COVID-19) epidemics represent the biggest global health threats in the last two decades. These infections manifest as bronchitis, pneumonia or severe, sometimes fatal, respiratory illness. The novel coronavirus seems to be associated with milder infections but it has spread globally more rapidly becoming a pandemic. This review summarises the state of the art of nanotechnology-based affinity biosensors for SARS, MERS and COVID-19 detection. The nanobiosensors are antibody- or DNA-based biosensors with electrochemical, optical or FET-based transduction. Various kinds of nanomaterials, such as metal nanoparticles, nanowires and graphene, have been merged to the affinity biosensors to enhance their analytical performances. The advantages of the use of the nanomaterials are highlighted, and the results compared with those obtained using non-nanostructured biosensors. A critical comparison with conventional methods, such as RT-PCR and ELISA, is also reported. It is hoped that this review will provide interesting information for the future development of new reliable nano-based platforms for point-of-care diagnostic devices for COVID-19 prevention and control.
Collapse
Affiliation(s)
- Riccarda Antiochia
- Department of Chemistry and Drug Technologies, Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|