201
|
Reis H, van der Vos KE, Niedworok C, Herold T, Módos O, Szendrői A, Hager T, Ingenwerth M, Vis DJ, Behrendt MA, de Jong J, van der Heijden MS, Peyronnet B, Mathieu R, Wiesweg M, Ablat J, Okon K, Tolkach Y, Keresztes D, Nagy N, Bremmer F, Gaisa NT, Chlosta P, Kriegsmann J, Kovalszky I, Timar J, Kristiansen G, Radzun H, Knüchel R, Schuler M, Black PC, Rübben H, Hadaschik BA, Schmid KW, van Rhijn BW, Nyirády P, Szarvas T. P
athogenic and targetable genetic alterations in 70 urachal adenocarcinomas. Int J Cancer 2018; 143:1764-1773. [PMID: 29672836 DOI: 10.1002/ijc.31547] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 03/12/2018] [Accepted: 03/28/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Henning Reis
- Institute of Pathology, West German Cancer Center, University of Duisburg‐Essen, University Hospital EssenEssen Germany
- German Cancer Consortium (DKTK), Partner Site University Hospital EssenEssen Germany
| | - Kristan E. van der Vos
- Division of Molecular CarcinogenesisNetherlands Cancer Institute ‐ Antoni van Leeuwenhoek HospitalAmsterdam Netherlands
| | - Christian Niedworok
- Department of UrologyWest German Cancer Center, University of Duisburg‐Essen, University Hospital EssenEssen Germany
| | - Thomas Herold
- Institute of Pathology, West German Cancer Center, University of Duisburg‐Essen, University Hospital EssenEssen Germany
- German Cancer Consortium (DKTK), Partner Site University Hospital EssenEssen Germany
| | - Orsolya Módos
- Department of UrologySemmelweis UniversityBudapest Hungary
| | | | - Thomas Hager
- Institute of Pathology, West German Cancer Center, University of Duisburg‐Essen, University Hospital EssenEssen Germany
| | - Marc Ingenwerth
- Institute of Pathology, West German Cancer Center, University of Duisburg‐Essen, University Hospital EssenEssen Germany
| | - Daniël J. Vis
- Division of Molecular CarcinogenesisNetherlands Cancer Institute ‐ Antoni van Leeuwenhoek HospitalAmsterdam Netherlands
| | - Mark A. Behrendt
- Department of Surgical Oncology (Urology)Netherlands Cancer Institute ‐ Antoni van Leeuwenhoek HospitalAmsterdam Netherlands
- Department of Surgery, Division of UrologyUniversity Hospital of BaselBasel Switzerland
| | - Jeroen de Jong
- Department of PathologyNetherlands Cancer Institute ‐ Antoni van Leeuwenhoek HospitalAmsterdam Netherlands
| | - Michiel S. van der Heijden
- Division of Molecular CarcinogenesisNetherlands Cancer Institute ‐ Antoni van Leeuwenhoek HospitalAmsterdam Netherlands
- Department of Medical OncologyNetherlands Cancer Institute ‐ Antoni van Leeuwenhoek HospitalAmsterdam Netherlands
| | | | | | - Marcel Wiesweg
- Department of Medical OncologyWest German Cancer Center, University of Duisburg Essen, University Hospital EssenEssen Germany
| | - Jason Ablat
- Vancouver Prostate CentreUniversity of British ColumbiaVancouver BC Canada
| | - Krzysztof Okon
- Department of PathomorphologyJagiellonian UniversityCracow Poland
| | - Yuri Tolkach
- Institute of Pathology, University of BonnBonn Germany
| | | | - Nikolett Nagy
- Department of UrologySemmelweis UniversityBudapest Hungary
| | - Felix Bremmer
- Institute of Pathology, University of GöttingenGöttingen Germany
| | - Nadine T. Gaisa
- Institute of Pathology, RWTH Aachen UniversityAachen Germany
| | - Piotr Chlosta
- Department of PathomorphologyJagiellonian UniversityCracow Poland
| | - Joerg Kriegsmann
- Center for Histology, Cytology and Molecular Diagnostics TrierTrier Germany
| | - Ilona Kovalszky
- First Institute of Pathology and Experimental Cancer Research, Semmelweis UniversityBudapest Hungary
| | - József Timar
- Second Department of PathologySemmelweis UniversityBudapest Hungary
| | | | | | - Ruth Knüchel
- Institute of Pathology, RWTH Aachen UniversityAachen Germany
| | - Martin Schuler
- German Cancer Consortium (DKTK), Partner Site University Hospital EssenEssen Germany
- Department of Medical OncologyWest German Cancer Center, University of Duisburg Essen, University Hospital EssenEssen Germany
| | - Peter C. Black
- Vancouver Prostate CentreUniversity of British ColumbiaVancouver BC Canada
| | - Herbert Rübben
- Department of UrologyWest German Cancer Center, University of Duisburg‐Essen, University Hospital EssenEssen Germany
| | - Boris A. Hadaschik
- Department of UrologyWest German Cancer Center, University of Duisburg‐Essen, University Hospital EssenEssen Germany
- German Cancer Consortium (DKTK), Partner Site University Hospital EssenEssen Germany
| | - Kurt Werner Schmid
- Institute of Pathology, West German Cancer Center, University of Duisburg‐Essen, University Hospital EssenEssen Germany
- German Cancer Consortium (DKTK), Partner Site University Hospital EssenEssen Germany
| | - Bas W.G. van Rhijn
- Department of Surgical Oncology (Urology)Netherlands Cancer Institute ‐ Antoni van Leeuwenhoek HospitalAmsterdam Netherlands
| | - Péter Nyirády
- Department of UrologySemmelweis UniversityBudapest Hungary
| | - Tibor Szarvas
- Department of UrologyWest German Cancer Center, University of Duisburg‐Essen, University Hospital EssenEssen Germany
- Department of UrologySemmelweis UniversityBudapest Hungary
| |
Collapse
|
202
|
Armignacco R, Cantini G, Canu L, Poli G, Ercolino T, Mannelli M, Luconi M. Adrenocortical carcinoma: the dawn of a new era of genomic and molecular biology analysis. J Endocrinol Invest 2018; 41:499-507. [PMID: 29080966 DOI: 10.1007/s40618-017-0775-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 09/29/2017] [Indexed: 01/04/2023]
Abstract
Over the last decade, the development of novel and high penetrance genomic approaches to analyze biological samples has provided very new insights in the comprehension of the molecular biology and genetics of tumors. The use of these techniques, consisting of exome sequencing, transcriptome, miRNome, chromosome alteration, genome, and epigenome analysis, has also been successfully applied to adrenocortical carcinoma (ACC). In fact, the analysis of large cohorts of patients allowed the stratification of ACC with different patterns of molecular alterations, associated with different outcomes, thus providing a novel molecular classification of the malignancy to be associated with the classical pathological analysis. Improving our knowledge about ACC molecular features will result not only in a better diagnostic and prognostic accuracy, but also in the identification of more specific therapeutic targets for the development of more effective pharmacological anti-cancer approaches. In particular, the specific molecular alteration profiles identified in ACC may represent targetable events by the use of already developed or newly designed drugs enabling a better and more efficacious management of the ACC patient in the context of new frontiers of personalized precision medicine.
Collapse
Affiliation(s)
- R Armignacco
- Endocrinology Unit, Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini, 6, 50139, Florence, Italy
| | - G Cantini
- Endocrinology Unit, Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini, 6, 50139, Florence, Italy
| | - L Canu
- Endocrinology Unit, Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini, 6, 50139, Florence, Italy
| | - G Poli
- Endocrinology Unit, Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini, 6, 50139, Florence, Italy
| | - T Ercolino
- Endocrinology Unit, Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini, 6, 50139, Florence, Italy
| | - M Mannelli
- Endocrinology Unit, Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini, 6, 50139, Florence, Italy
| | - M Luconi
- Endocrinology Unit, Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini, 6, 50139, Florence, Italy.
| |
Collapse
|
203
|
Fry EA, Inoue K. Aberrant expression of ETS1 and ETS2 proteins in cancer. CANCER REPORTS AND REVIEWS 2018; 2:10.15761/CRR.1000151. [PMID: 29974077 PMCID: PMC6027756 DOI: 10.15761/crr.1000151] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The ETS transcription factors regulate expression of genes involved in normal cell development, proliferation, differentiation, angiogenesis, and apoptosis, consisting of 28 family members in humans. Dysregulation of these transcription factors facilitates cell proliferation in cancers, and several members participate in invasion and metastasis by activating gene transcription. ETS1 and ETS2 are the founding members of the ETS family and regulate transcription by binding to ETS sequences. They are both involved in oncogenesis and tumor suppression depending on the biological situations used. The essential roles of ETS proteins in human telomere maintenance have been suggested, which have been linked to creation of new Ets binding sites. Recently, preferential binding of ETS2 to gain-of-function mutant p53 and ETS1 to wild type p53 (WTp53) has been suggested, raising the tumor promoting role for the former and tumor suppressive role for the latter. The oncogenic and tumor suppressive functions of ETS1 and 2 proteins have been discussed.
Collapse
Affiliation(s)
- Elizabeth A. Fry
- The Dept. of Pathology, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157 USA
| | - Kazushi Inoue
- The Dept. of Pathology, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157 USA
| |
Collapse
|
204
|
Quintanal-Villalonga Á, Mediano M, Ferrer I, Meléndez R, Carranza-Carranza A, Suárez R, Carnero A, Molina-Pinelo S, Paz-Ares L. Histology-dependent prognostic role of pERK and p53 protein levels in early-stage non-small cell lung cancer. Oncotarget 2018; 9:19945-19960. [PMID: 29731995 PMCID: PMC5929438 DOI: 10.18632/oncotarget.24977] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 03/11/2018] [Indexed: 12/17/2022] Open
Abstract
Lung tumors represent a major health problem. In early stage NSCLC tumors, surgical resection is the preferred treatment, but 30-55% of patients will relapse within 5 years after surgery. Thus, the identification of prognostic biomarkers in early stage NSCLC patients, especially those which are therapeutically addressable, is crucial to enhance survival of these patients. We determined the immunohistochemistry expression of key proteins involved in tumorigenesis and oncogenic signaling, p53, EGFR, pAKT and pERK, and correlated their expression level to clinicopathological characteristics and patient outcome. We found EGFR expression is higher in the squamous cell carcinomas than in adenocarcinomas (p=0.043), and that nuclear p53 staining correlated with lower differentiated squamous tumors (p=0.034). Regarding the prognostic potential of the expression of these proteins, high pERK levels proved to be an independent prognostic factor for overall (p<0.001) and progression-free survival (p<0.001) in adenocarcinoma patients, but not in those from the squamous histology, and high p53 nuclear levels were identified as independent prognostic factor for progression-free survival (p=0.031) only in squamous cell carcinoma patients. We propose a role as early prognostic biomarkers for pERK protein levels in adenocarcinoma, and for nuclear p53 levels in squamous cell lung carcinoma. The determination of these potential biomarkers in the adequate histologic context may predict the outcome of early stage NSCLC patients, and may offer a therapeutic opportunity to enhance survival of these patients.
Collapse
Affiliation(s)
- Álvaro Quintanal-Villalonga
- H120-CNIO Lung Cancer Clinical Research Unit, Instituto de Investigación 12 de Octubre and CNIO, Madrid, Spain
| | - Mariló Mediano
- Instituto de Biomedicina de Sevilla (IBIS) (HUVR, CSIC, Universidad de Sevilla), Sevilla, Spain.,Hospital Universitario Virgen del Rocío (HUVR), Sevilla, Spain
| | - Irene Ferrer
- H120-CNIO Lung Cancer Clinical Research Unit, Instituto de Investigación 12 de Octubre and CNIO, Madrid, Spain.,CiberOnc, Madrid, Spain
| | - Ricardo Meléndez
- Instituto de Biomedicina de Sevilla (IBIS) (HUVR, CSIC, Universidad de Sevilla), Sevilla, Spain
| | - Andrés Carranza-Carranza
- Instituto de Biomedicina de Sevilla (IBIS) (HUVR, CSIC, Universidad de Sevilla), Sevilla, Spain.,Hospital Universitario Virgen del Rocío (HUVR), Sevilla, Spain
| | - Rocío Suárez
- H120-CNIO Lung Cancer Clinical Research Unit, Instituto de Investigación 12 de Octubre and CNIO, Madrid, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla (IBIS) (HUVR, CSIC, Universidad de Sevilla), Sevilla, Spain
| | - Sonia Molina-Pinelo
- Instituto de Biomedicina de Sevilla (IBIS) (HUVR, CSIC, Universidad de Sevilla), Sevilla, Spain.,CiberOnc, Madrid, Spain
| | - Luis Paz-Ares
- H120-CNIO Lung Cancer Clinical Research Unit, Instituto de Investigación 12 de Octubre and CNIO, Madrid, Spain.,Medical Oncology Department, Hospital Universitario Doce de Octubre & Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain.,Medical School, Universidad Complutense, Madrid, Spain.,CiberOnc, Madrid, Spain
| |
Collapse
|
205
|
Gomes AS, Trovão F, Andrade Pinheiro B, Freire F, Gomes S, Oliveira C, Domingues L, Romão MJ, Saraiva L, Carvalho AL. The Crystal Structure of the R280K Mutant of Human p53 Explains the Loss of DNA Binding. Int J Mol Sci 2018; 19:ijms19041184. [PMID: 29652801 PMCID: PMC5979565 DOI: 10.3390/ijms19041184] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/10/2018] [Accepted: 04/11/2018] [Indexed: 01/29/2023] Open
Abstract
The p53 tumor suppressor is widely found to be mutated in human cancer. This protein is regarded as a molecular hub regulating different cell responses, namely cell death. Compelling data have demonstrated that the impairment of p53 activity correlates with tumor development and maintenance. For these reasons, the reactivation of p53 function is regarded as a promising strategy to halt cancer. In the present work, the recombinant mutant p53R280K DNA binding domain (DBD) was produced for the first time, and its crystal structure was determined in the absence of DNA to a resolution of 2.0 Å. The solved structure contains four molecules in the asymmetric unit, four zinc(II) ions, and 336 water molecules. The structure was compared with the wild-type p53 DBD structure, isolated and in complex with DNA. These comparisons contributed to a deeper understanding of the mutant p53R280K structure, as well as the loss of DNA binding related to halted transcriptional activity. The structural information derived may also contribute to the rational design of mutant p53 reactivating molecules with potential application in cancer treatment.
Collapse
Affiliation(s)
- Ana Sara Gomes
- LAQV-REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal.
| | - Filipa Trovão
- UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| | - Benedita Andrade Pinheiro
- UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| | - Filipe Freire
- UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| | - Sara Gomes
- LAQV-REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal.
| | - Carla Oliveira
- CEB-Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal.
| | - Lucília Domingues
- CEB-Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal.
| | - Maria João Romão
- UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| | - Lucília Saraiva
- LAQV-REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal.
| | - Ana Luísa Carvalho
- UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| |
Collapse
|
206
|
Abstract
Most human cancers harbor mutations in the gene encoding p53. As a result, research on p53 in the past few decades has focused primarily on its role as a tumor suppressor. One consequence of this focus is that the functions of p53 in development have largely been ignored. However, recent advances, such as the genomic profiling of embryonic stem cells, have uncovered the significance and mechanisms of p53 functions in mammalian cell differentiation and development. As we review here, these recent findings reveal roles that complement the well-established roles for p53 in tumor suppression.
Collapse
Affiliation(s)
- Abhinav K Jain
- Department of Epigenetics and Molecular Carcinogenesis, Center for Stem Cell and Development Biology, Center for Cancer Epigenetics, The University of Texas MD Anderson UT Health Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Michelle Craig Barton
- Department of Epigenetics and Molecular Carcinogenesis, Center for Stem Cell and Development Biology, Center for Cancer Epigenetics, The University of Texas MD Anderson UT Health Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
207
|
Inoue K, Fry EA. Aberrant Expression of p14 ARF in Human Cancers: A New Biomarker? TUMOR & MICROENVIRONMENT 2018; 1:37-44. [PMID: 30740529 PMCID: PMC6364748 DOI: 10.4103/tme.tme_24_17] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The ARF and INK4a genes are located on the CDKN2a locus, both showing tumor suppressive activity. ARF has been shown to monitor potentially harmful oncogenic signalings, making early stage cancer cells undergo senescence or programmed cell death to prevent cancer. Conversely, INK4a detects both aging and incipient cancer cell signals, and thus these two gene functions are different. The efficiency of detection of oncogenic signals is more efficient for the for the former than the latter in the mouse system. Both ARF and INK4a genes are inactivated by gene deletion, promoter methylation, frame shift, aberrant splicing although point mutations for the coding region affect only the latter. Recent studies show the splicing alterations that affect only ARF or both ARF and INK4a genes suggesting that ARF is inactivated in human tumors more frequently than what was previously thought. The ARF gene is activated by E2Fs and Dmp1 transcription factors while it is repressed by Bmi1, Tbx2/3, Twist1, and Pokemon nuclear proteins. It is also regulated at protein levels by Arf ubiquitin ligase named ULF, MKRN1, and Siva1. The prognostic value of ARF overexpression is controversial since it is induced in early stage cancer cells to eliminate pre-malignant cells (better prognosis); however, it may also indicate that the tumor cells have mutant p53 associated with worse prognosis. The ARF tumor suppressive protein can be used as a biomarker to detect early stage cancer cells as well as advanced stage tumors with p53 inactivation.
Collapse
Affiliation(s)
- Kazushi Inoue
- The Department of Pathology, Wake Forest University Health Sciences, Winston-Salem, NC 27157
| | - Elizabeth A. Fry
- The Department of Pathology, Wake Forest University Health Sciences, Winston-Salem, NC 27157
| |
Collapse
|
208
|
Zhai J, Yang Z, Cai X, Yao G, An Y, Wang W, Fan Y, Zeng C, Liu K. ZNF280B promotes the growth of gastric cancer in vitro and in vivo. Oncol Lett 2018; 15:5819-5824. [PMID: 29556309 DOI: 10.3892/ol.2018.8060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 11/07/2016] [Indexed: 12/26/2022] Open
Abstract
Zinc finger protein 280B (ZNF280B) mediates pro-survival and pro-growth functions in prostate cancer. However, in gastric cancer, its clinical significance remains poorly characterized. In the present study, the expression levels of ZNF280B in 60 patients with gastric cancer were examined using immunohistochemistry. The association between ZNF280B expression and clinicopathological features was assessed. Positive ZNF280B staining was demonstrated for 38 (63.3%) samples out of 60 gastric cancer cases in immunohistochemical analysis. ZNF280B expression was significantly associated with tumor size (P=0.017) and TNM stage (P=0.001). Furthermore, the proliferation index in the positive ZNF280B expression group was significantly higher (38.8±6.2) compared with that of the negative ZNF280B expression group (16.9±8.9; P<0.01). These results suggest that ZNF280B expression may be associated with the proliferation of gastric cancer cells. The role of ZNF280B in the growth of gastric cancer cells (MGC-803) was also investigated in vitro and in vivo by enhancing the expression of ZNF280B. A colony formation assay indicated that the number of colonies in the MGC-803 cells with enhanced ZNF280B (146±5.8) was significantly higher than that of the MGC-803 control group (97±5.1) and the negative control group (101±6.5; P<0.05). An MTT assay demonstrated that ZNF280B significantly promoted the proliferation of MGC-803 cells at days 3 and 4 (P<0.05). It was observed that the overexpression of ZNF280B may promote the growth of gastric cancer in vivo in xenograft studies. These findings indicate that ZNF280B may be a novel therapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Jingming Zhai
- Department of General Surgery, First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Zheng Yang
- Department of Pathology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Xiaodong Cai
- Department of Neurology, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Guoliang Yao
- Department of General Surgery, First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Yanhui An
- Department of General Surgery, First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Wei Wang
- Department of General Surgery, First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Yonggang Fan
- Department of General Surgery, First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Chao Zeng
- Department of Pathology, Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Kefeng Liu
- Department of General Surgery, First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| |
Collapse
|
209
|
Aktary Z, Alaee M, Pasdar M. Beyond cell-cell adhesion: Plakoglobin and the regulation of tumorigenesis and metastasis. Oncotarget 2018; 8:32270-32291. [PMID: 28416759 PMCID: PMC5458283 DOI: 10.18632/oncotarget.15650] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 12/16/2016] [Indexed: 12/13/2022] Open
Abstract
Plakoglobin (also known as? -catenin) is a member of the Armadillo family of proteins and a paralog of β -catenin. Plakoglobin is a component of both the adherens junctions and desmosomes, and therefore plays a vital role in the regulation of cell-cell adhesion. Similar to β -catenin, plakoglobin is capable of participating in cell signaling in addition to its role in cell-cell adhesion. In this context, β -catenin has a well-documented oncogenic potential as a component of the Wnt signaling pathway. In contrast, while some studies have suggested a tumor promoting activity of plakoglobin in a cell/malignancy specific context, it generally acts as a tumor/metastasis suppressor. How plakoglobin acts as a growth/metastasis inhibitory protein has remained, until recently, unclear. Recent evidence suggests that plakoglobin may suppress tumorigenesis and metastasis by multiple mechanisms, including the suppression of oncogenic signaling, interactions with various proteins involved in tumorigenesis and metastasis, and the regulation of the expression of genes involved in these processes. This review is primarily focused on various mechanisms by which plakoglobin may inhibit tumorigenesis and metastasis.
Collapse
Affiliation(s)
- Zackie Aktary
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada.,Institut Curie, Orsay, France
| | - Mahsa Alaee
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Manijeh Pasdar
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
210
|
Hlosrichok A, Sumkhemthong S, Sritularak B, Chanvorachote P, Chaotham C. A bibenzyl from Dendrobium ellipsophyllum induces apoptosis in human lung cancer cells. J Nat Med 2018; 72:615-625. [PMID: 29488156 DOI: 10.1007/s11418-018-1186-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 01/31/2018] [Indexed: 12/22/2022]
Abstract
Failure of current chemotherapeutic drugs leads to the recurrence of tumor pathology and mortality in lung cancer patients. This study aimed to evaluate the anticancer activity and related mechanisms of 4,5,4'-trihydroxy-3,3'-dimethoxybibenzyl (TDB), a bibenzyl extracted from Dendrobium ellipsophyllum Tang and Wang, in human lung cancer cells. Cytotoxicity of TDB (0-300 µM) in different types of human lung cancer cells (H460, H292 and H23) and human dermal papilla cells (DPCs) was evaluated via MTT viability assay. Selective anticancer activity of TDB against human lung cancer cells was demonstrated with a high IC50 (approximately > 300 µM) in DPCs, while IC50 in human lung cancer H460, H292 and H23 cells was approximately 100 ± 5.18, 100 ± 8.73 and 188.89 ± 8.30 µM, respectively. After treatment with 50 µM of TDB for 24 h, flow cytometry analysis revealed the significant increase of early and late apoptosis with absence of necrosis cell death in human lung cancer cells. The up-regulation of p53, a tumor-suppressor protein, was elucidated in human lung cancer cells treated with 10-50 µM of TDB. Alteration to down-stream signaling of p53 including activation of pro-apoptosis protein (Bcl-2-associated X protein; Bax), reduction of anti-apoptosis (B cell lymphoma 2; Bcl-2 and myeloid cell leukemia 1; Mcl-1) and suppression on protein kinase B (Akt) survival pathway were notified in TDB-treated lung cancer cells. The information obtained from this study strengthens the potential development of TDB as an anticancer compound with a favorable human safety profile and high efficacy.
Collapse
Affiliation(s)
- Anirut Hlosrichok
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Somruethai Sumkhemthong
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Boonchoo Sritularak
- Departments of Pharmacognosy and Pharmaceutical Botany, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pithi Chanvorachote
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.,Cell-based Drug and Health Products Development Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Chatchai Chaotham
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand. .,Cell-based Drug and Health Products Development Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
211
|
Hernandez-Borrero LJ, Zhang S, Lulla A, Dicker DT, El-Deiry WS. CB002, a novel p53 tumor suppressor pathway-restoring small molecule induces tumor cell death through the pro-apoptotic protein NOXA. Cell Cycle 2018; 17:557-567. [PMID: 28749203 PMCID: PMC5969548 DOI: 10.1080/15384101.2017.1346762] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 06/21/2017] [Accepted: 06/21/2017] [Indexed: 12/12/2022] Open
Abstract
P53 tumor suppressor gene mutations occur in the majority of human cancers and contribute to tumor development, progression and therapy resistance. Direct functional restoration of p53 as a transcription factor has been difficult to achieve in the clinic. We performed a functional screen using a bioluminescence-based transcriptional read-out to identify small molecules that restore the p53 pathway in mutant p53-bearing cancer cells. We identified CB002, as a candidate that restores p53 function in mutant p53-expressing colorectal cancer cells and without toxicity to normal human fibroblasts. Cells exposed to CB002 show increased expression of endogenous p53 target genes NOXA, DR5, and p21 and cell death which occurs by 16 hours, as measured by cleaved caspases or PARP. Stable knockdown of NOXA completely abrogates PARP cleavage and reduces sub-G1 content, implicating NOXA as the key mediator of cell death induction by CB002. Moreover, CB002 decreases the stability of mutant p53 in RXF393 cancer cells and an exogenously expressed R175H p53 mutant in HCT116 p53-null cells. R175H p53 expression was rescued by addition of proteasome inhibitor MG132 to CB002, suggesting a role for ubiquitin-mediated degradation of the mutant protein. In summary, CB002, a p53 pathway-restoring compound that targets mutant p53 for degradation and induces tumor cell death through NOXA, may be further developed as a cancer therapeutic.
Collapse
Affiliation(s)
- Liz J. Hernandez-Borrero
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics,Department of Medical Oncology and Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Shengliang Zhang
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics,Department of Medical Oncology and Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Amriti Lulla
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics,Department of Medical Oncology and Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - David T. Dicker
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics,Department of Medical Oncology and Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Wafik S. El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics,Department of Medical Oncology and Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| |
Collapse
|
212
|
Wang H, Gao Z, Liu X, Agarwal P, Zhao S, Conroy DW, Ji G, Yu J, Jaroniec CP, Liu Z, Lu X, Li X, He X. Targeted production of reactive oxygen species in mitochondria to overcome cancer drug resistance. Nat Commun 2018; 9:562. [PMID: 29422620 PMCID: PMC5805731 DOI: 10.1038/s41467-018-02915-8] [Citation(s) in RCA: 222] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 01/08/2018] [Indexed: 11/09/2022] Open
Abstract
Multidrug resistance is a major challenge to cancer chemotherapy. The multidrug resistance phenotype is associated with the overexpression of the adenosine triphosphate (ATP)-driven transmembrane efflux pumps in cancer cells. Here, we report a lipid membrane-coated silica-carbon (LSC) hybrid nanoparticle that targets mitochondria through pyruvate, to specifically produce reactive oxygen species (ROS) in mitochondria under near-infrared (NIR) laser irradiation. The ROS can oxidize the NADH into NAD+ to reduce the amount of ATP available for the efflux pumps. The treatment with LSC nanoparticles and NIR laser irradiation also reduces the expression and increases the intracellular distribution of the efflux pumps. Consequently, multidrug-resistant cancer cells lose their multidrug resistance capability for at least 5 days, creating a therapeutic window for chemotherapy. Our in vivo data show that the drug-laden LSC nanoparticles in combination with NIR laser treatment can effectively inhibit the growth of multidrug-resistant tumors with no evident systemic toxicity. Multidrug resistance is a major challenge in cancer therapy. Here, the authors develop a mitochondria-targeting nanoparticle system that inhibits adenosine triphosphate transporter activity via reactive oxygen species generation and can thus be used to target multidrug-resistant cancer.
Collapse
Affiliation(s)
- Hai Wang
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, 43210, USA.,Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA.,Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Zan Gao
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, USA
| | - Xuanyou Liu
- Division of Cardiovascular Medicine, Center for Precision Medicine, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Pranay Agarwal
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, 43210, USA.,Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Shuting Zhao
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, 43210, USA.,Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Daniel W Conroy
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Jianhua Yu
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA.,Division of Hematology, The Ohio State University, Columbus, OH, 43210, USA
| | - Christopher P Jaroniec
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA
| | - Zhenguo Liu
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA.,Division of Cardiovascular Medicine, Center for Precision Medicine, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Xiongbin Lu
- Department of Medical and Molecular Genetics and Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Xiaodong Li
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, USA.
| | - Xiaoming He
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, 43210, USA. .,Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA. .,Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA. .,Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
213
|
Manji GA, Olive KP, Saenger YM, Oberstein P. Current and Emerging Therapies in Metastatic Pancreatic Cancer. Clin Cancer Res 2018; 23:1670-1678. [PMID: 28373365 DOI: 10.1158/1078-0432.ccr-16-2319] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 02/03/2017] [Accepted: 02/03/2017] [Indexed: 02/06/2023]
Abstract
Targeted therapies and immunotherapy have changed the face of multiple solid malignancies, including metastatic melanoma and lung cancer, but no such therapies exist for pancreatic ductal adenocarcinoma (PDAC) despite the knowledge of key mutations and an increasing understanding of the tumor microenvironment. Until now, most clinical studies have not been biomarker driven in this highly immunosuppressive and heterogeneous cancer. Ongoing basic and translational studies are better classifying the disease in hopes of identifying critical pathways that distinguish the unique PDAC subtypes, which will lead to personalized therapies. In this review, we discuss the current treatment options for metastatic pancreatic cancer and highlight current ongoing clinical trials, which aim to target the stroma and the immune microenvironment either alone or in combination with standard chemotherapy. Identifying biomarkers and key resistance pathways and targeting these pathways in a personalized manner in combination with chemotherapy are likely to yield a more immediate and durable clinical benefit. Clin Cancer Res; 23(7); 1670-8. ©2017 AACRSee all articles in this CCR Focus section, "Pancreatic Cancer: Challenge and Inspiration."
Collapse
Affiliation(s)
- Gulam Abbas Manji
- Division of Medical Oncology, Columbia University Medical Center, and New York Presbyterian Hospital, Herbert Irving Pavilion, New York, New York.
| | - Kenneth P Olive
- Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Yvonne M Saenger
- Division of Medical Oncology, Columbia University Medical Center, and New York Presbyterian Hospital, Herbert Irving Pavilion, New York, New York
| | - Paul Oberstein
- Division of Medical Oncology, Columbia University Medical Center, and New York Presbyterian Hospital, Herbert Irving Pavilion, New York, New York
| |
Collapse
|
214
|
β-Sitosterol targets Trx/Trx1 reductase to induce apoptosis in A549 cells via ROS mediated mitochondrial dysregulation and p53 activation. Sci Rep 2018; 8:2071. [PMID: 29391428 PMCID: PMC5794769 DOI: 10.1038/s41598-018-20311-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/16/2018] [Indexed: 12/20/2022] Open
Abstract
β-Sitosterol (BS), a major bioactive constituent present in plants and vegetables has shown potent anticancer effect against many human cancer cells, but the underlying mechanism remain elusive on NSCLC cancers. We found that BS significantly inhibited the growth of A549 cells without harming normal human lung and PBMC cells. Further, BS treatment triggered apoptosis via ROS mediated mitochondrial dysregulation as evidenced by caspase-3 & 9 activation, Annexin-V/PI positive cells, PARP inactivation, loss of MMP, Bcl-2-Bax ratio alteration and cytochrome c release. Moreover, generation of ROS species and subsequent DNA stand break were found upon BS treatment which was reversed by addition of ROS scavenger (NAC). Indeed BS treatment increased p53 expression and its phosphorylation at Ser15, while silencing the p53 expression by pifithrin-α, BS induced apoptosis was reduced in A549 cells. Furthermore, BS induced apoptosis was also observed in NCI-H460 cells (p53 wild) but not in the NCI-H23 cells (p53 mutant). Down-regulation of Trx/Trx1 reductase contributed to the BS induced ROS accumulation and mitochondrial mediated apoptotic cell death in A549 and NCI-H460 cells. Taken together, our findings provide evidence for the novel anti-cancer mechanism of BS which could be developed as a promising chemotherapeutic drug against NSCLC cancers.
Collapse
|
215
|
Abstract
PURPOSE OF REVIEW The most common type of ovarian cancer, high-grade serous ovarian carcinoma (HGSOC), was originally thought to develop from the ovarian surface epithelium. However, recent data suggest that the cells that undergo neoplastic transformation and give rise to the majority of HGSOC are from the fallopian tube. This development has impacted both translational research and clinical practice, revealing new opportunities for early detection, prevention, and treatment of ovarian cancer. RECENT FINDINGS Genomic studies indicate that approximately 50% of HGSOC are characterized by mutations in genes involved in the homologous recombination pathway of DNA repair, especially BRCA1 and BRCA2. Clinical trials have demonstrated successful treatment of homologous recombination-defective cancers with poly-ribose polymerase inhibitors through synthetic lethality. Recently, amplification of CCNE1 was found to be another major factor in HGSOC tumorigenesis, accounting for approximately 20% of all cases. Interestingly, amplification of CCNE1 and mutation of homologous recombination repair genes are mutually exclusive in HGSOC. SUMMARY The fallopian tube secretory cell is the cell of origin for the majority of ovarian cancers. Although it remains unclear what triggers neoplastic transformation of these cells, certain tumors exhibit loss of BRCA function or amplification of CCNE1. These alterations represent unique therapeutic opportunities in ovarian cancer.
Collapse
|
216
|
Parrales A, Thoenen E, Iwakuma T. The interplay between mutant p53 and the mevalonate pathway. Cell Death Differ 2017; 25:460-470. [PMID: 29238070 DOI: 10.1038/s41418-017-0026-y] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 10/02/2017] [Accepted: 10/25/2017] [Indexed: 02/08/2023] Open
Abstract
Missense mutations in the TP53 gene lead to accumulation of dysfunctional TP53 proteins in tumors, showing oncogenic gain-of-function (GOF) activities. Stabilization of mutant TP53 (mutp53) is required for the GOF; however, the mechanisms by which mutp53 promotes cancer progression and how mutp53 stability is regulated are not completely understood. Recent work from our laboratory has identified statins, inhibitors of the mevalonate pathway, as degraders of conformational mutp53. Specific reduction of mevalonate-5-phosphate (MVP), a metabolic intermediate in the mevalonate pathway, by statins or mevalonate kinase (MVK) knockdown triggers CHIP ubiquitin ligase-mediated degradation of conformational mutp53 by inhibiting interaction between mutp53 and DNAJA1, a Hsp40 family member. Thus, the mevalonate pathway contributes to mutp53 stabilization. Given that mutp53 is shown to promote cancer progression by upregulating mRNA expression of mevalonate pathway enzymes by binding to the sterol regulatory element-binding protein 2 (SREBP2) and subsequently increasing activities of mevalonate pathway-associated oncogenic proteins (e.g., Ras, Rho, YAP/TAZ), there is a positive-feedback loop between mutp53 and the mevalonate pathway. Here, we summarize recent evidence linking the mevalonate pathway-mutp53 axis with cancer progression and further discuss the clinical relevance of this axis.
Collapse
Affiliation(s)
- Alejandro Parrales
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Elizabeth Thoenen
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Tomoo Iwakuma
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
217
|
Malami I, Muhammad A, Etti IC, Waziri PM, Alhassan AM. An in silico approach in predicting the possible mechanism involving restoration of wild-type p53 functions by small molecular weight compounds in tumor cells expressing R273H mutant p53. EXCLI JOURNAL 2017; 16:1276-1287. [PMID: 29333130 PMCID: PMC5763090 DOI: 10.17179/excli2017-299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 12/04/2017] [Indexed: 02/06/2023]
Abstract
R273H mutant p53 is a DNA-contact mutant that renders p53 dysfunctional due to a single substitution of Arg273 for His273. Rescuing R273 mutant p53 implies that a competent molecule would have to bind to the site of DNA-contact hot spots to complement the loss of contact with the DNA-binding domain. Here, curcumin, flavokawain B, and alpinetin were docked against the crystal structure of R273H mutant p53 in silico. Consequently, all the compounds bind to the cavity of R273H mutant p53 with a dissociation constant estimated to have 36.57, 70.77, and 75.11 µM for curcumin, flavokawain B, and alpinetin, respectively. Subsequently, each molecule was able to bind to the R273H mutant p53 by interacting with the DNA-contact hot spot Arg248 and mutant R273H, thereby compensating for the loss of direct contact with the DNA-binding domain. Furthermore, all the molecules were able to induce a direct contact with the consensus site of the DNA binding domain, thus maintaining DNA-contact residues with the DNA. The present findings offer preliminary indirect supporting evidence that small molecular weight compounds may certainly rescue DNA-contact mutant p53, which may lay a foundation for designing a competent and effective molecule capable of rescuing mutant p53 in tumor cells expressing R273H mutant p53.
Collapse
Affiliation(s)
- Ibrahim Malami
- Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Aliyu Muhammad
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Imaobong C Etti
- Department of Pharmacology and Toxicology, Universiti of Uyo, Uyo, Nigeria
| | - Peter M Waziri
- Department of Biochemistry, Kaduna State University, Kaduna, Nigeria
| | - Alhassan M Alhassan
- Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
| |
Collapse
|
218
|
Zhao D, Tahaney WM, Mazumdar A, Savage MI, Brown PH. Molecularly targeted therapies for p53-mutant cancers. Cell Mol Life Sci 2017; 74:4171-4187. [PMID: 28643165 PMCID: PMC5664959 DOI: 10.1007/s00018-017-2575-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 05/30/2017] [Accepted: 06/15/2017] [Indexed: 02/08/2023]
Abstract
The tumor suppressor p53 is lost or mutated in approximately half of human cancers. Mutant p53 not only loses its anti-tumor transcriptional activity, but also often acquires oncogenic functions to promote tumor proliferation, invasion, and drug resistance. Traditional strategies have been taken to directly target p53 mutants through identifying small molecular compounds to deplete mutant p53, or to restore its tumor suppressive function. Accumulating evidence suggest that cancer cells with mutated p53 often exhibit specific functional dependencies on secondary genes or pathways to survive, providing alternative targets to indirectly treat p53-mutant cancers. Targeting these genes or pathways, critical for survival in the presence of p53 mutations, holds great promise for cancer treatment. In addition, mutant p53 often exhibits novel gain-of-functions to promote tumor growth and metastasis. Here, we review and discuss strategies targeting mutant p53, with focus on targeting the mutant p53 protein directly, and on the progress of identifying genes and pathways required in p53-mutant cells.
Collapse
Affiliation(s)
- Dekuang Zhao
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit Number: 1360, Room Number: CPB6.3468, Houston, TX, 77030, USA
| | - William M Tahaney
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit Number: 1360, Room Number: CPB6.3468, Houston, TX, 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Abhijit Mazumdar
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit Number: 1360, Room Number: CPB6.3468, Houston, TX, 77030, USA
| | - Michelle I Savage
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit Number: 1360, Room Number: CPB6.3468, Houston, TX, 77030, USA
| | - Powel H Brown
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit Number: 1360, Room Number: CPB6.3468, Houston, TX, 77030, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
219
|
Funderburk KM, Auerbach SS, Bushel PR. Crosstalk between Receptor and Non-receptor Mediated Chemical Modes of Action in Rat Livers Converges through a Dysregulated Gene Expression Network at Tumor Suppressor Tp53. Front Genet 2017; 8:157. [PMID: 29114260 PMCID: PMC5660693 DOI: 10.3389/fgene.2017.00157] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/06/2017] [Indexed: 12/20/2022] Open
Abstract
Chemicals, toxicants, and environmental stressors mediate their biologic effect through specific modes of action (MOAs). These encompass key molecular events that lead to changes in the expression of genes within regulatory pathways. Elucidating shared biologic processes and overlapping gene networks will help to better understand the toxicologic effects on biological systems. In this study we used a weighted network analysis of gene expression data from the livers of male Sprague-Dawley rats exposed to chemicals that elicit their effects through receptor-mediated MOAs (aryl hydrocarbon receptor, orphan nuclear hormone receptor, or peroxisome proliferator-activated receptor-α) or non-receptor-mediated MOAs (cytotoxicity or DNA damage). Four gene networks were highly preserved and statistically significant in each of the two MOA classes. Three of the four networks contain genes that enrich for immunity and defense. However, many canonical pathways related to an immune response were activated from exposure to the non-receptor-mediated MOA chemicals and deactivated from exposure to the receptor-mediated MOA chemicals. The top gene network contains a module with 33 genes including tumor suppressor TP53 as the central hub which was slightly up-regulated in gene expression compared to control. Although, there is crosstalk between the two MOA classes of chemicals at the TP53 gene network, more than half of the genes are dysregulated in opposite directions. For example, Thromboxane A Synthase 1 (Tbxas1), a cytochrome P450 protein coding gene regulated by Tp53, is down-regulated by exposure to the receptor-mediated chemicals but up-regulated by the non-receptor-mediated chemicals. The regulation of gene expression by the chemicals within MOA classes was consistent despite varying alanine transaminase and aspartate aminotransferase liver enzyme measurements. These results suggest that overlap in toxicologic pathways by chemicals with different MOAs provides common mechanisms for discordant regulation of gene expression within molecular networks.
Collapse
Affiliation(s)
- Karen M. Funderburk
- Department of Biology and Department of Mathematics & Statistics, College of Arts & Sciences, University of North Carolina at Greensboro, Greensboro, NC, United States
- Microarray and Genome Informatics Group, Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Durham, NC, United States
| | - Scott S. Auerbach
- Toxicoinformatics Group, Biomolecular Screening Branch, National Institute of Environmental Health Sciences, Durham, NC, United States
| | - Pierre R. Bushel
- Microarray and Genome Informatics Group, Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Durham, NC, United States
| |
Collapse
|
220
|
Wang Z, Peng S, Jiang N, Wang A, Liu S, Xie H, Guo L, Cai Q, Niu Y. Prognostic and clinicopathological value of p53 expression in renal cell carcinoma: a meta-analysis. Oncotarget 2017; 8:102361-102370. [PMID: 29254251 PMCID: PMC5731961 DOI: 10.18632/oncotarget.21971] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 09/21/2017] [Indexed: 12/20/2022] Open
Abstract
Background The prognostic value of p53 expression in renal cell carcinoma (RCC) had been investigated in previous studies; however, the results remain inconsistent. This study was performed to investigate the prognostic and clinicopathological significance of p53 protein expression in RCC. Materials and Methods Literature was identified from PubMed, Embase, Web of Science, and Cochrane database, which investigated the relationships between p53 expression and outcomes. Hazard ratios (HRs) for survival outcomes and odds ratios (ORs) for clinical parameters associated with p53 were extracted from eligible studies. Heterogeneity was assessed using the I2 value. The fixed-effects model was used if there was no evidence of heterogeneity; otherwise, the random-effects model was used. Publication bias was evaluated using Begg's funnel plots and Egger's regression test. Results A total of 2,013 patients from 22 studies were included in the meta-analysis. The results showed that p53 positive expression is associated with poor overall survival (OS) (HR = 2.17, 95% confidence [CI]: 1.51–3.13) and cancer-specific survival (CSS) (HR = 1.59, 95% CI: 1.19–2.12) in RCC. In addition, p53 positive expression was closely correlated with TNM stage (III/IV vs. I/II: OR = 2.51, 95% CI: 1.05–6.00), Fuhrman grade (III/IV vs. I/II: OR = 1.80, 95% CI: 1.24–2.63), and distant metastasis (M1 vs. M0: OR = 1.70, 95% CI: 1.16–2.49), but not related to lymph node involvement (N1 vs. N0: OR = 1.32, 95% CI: 0.80–2.18), primary tumor stage (pT3/pT4 vs. pT1/pT2: OR = 1.16, 95% CI: 0.88–1.53), and sex (n = 2, male vs. female, OR = 1.09, 95% CI: 0.70–1.68). Conclusions This study suggests that p53 positive expression is correlated with poor prognosis and advanced clinicopathological features in patients with RCC, which indicates that p53 is a potentially effective therapeutic target.
Collapse
Affiliation(s)
- Zhun Wang
- Departments of Urology, Tianjin Institute of Urology, The second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Shuanghe Peng
- Departments of Urology, Tianjin Institute of Urology, The second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Ning Jiang
- Departments of Urology, Tianjin Institute of Urology, The second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Aixiang Wang
- Departments of Urology, Tianjin Institute of Urology, The second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Shuguang Liu
- Departments of Urology, Tianjin Institute of Urology, The second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Hui Xie
- Departments of Urology, Tianjin Institute of Urology, The second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Linpei Guo
- Departments of Urology, Tianjin Institute of Urology, The second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Qiliang Cai
- Departments of Urology, Tianjin Institute of Urology, The second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Yuanjie Niu
- Departments of Urology, Tianjin Institute of Urology, The second Hospital of Tianjin Medical University, Tianjin, 300211, China
| |
Collapse
|
221
|
Simon L, Abdul Salam AA, Madan Kumar S, Shilpa T, Srinivasan KK, Byrappa K. Synthesis, anticancer, structural, and computational docking studies of 3-benzylchroman-4-one derivatives. Bioorg Med Chem Lett 2017; 27:5284-5290. [PMID: 29074256 DOI: 10.1016/j.bmcl.2017.10.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 10/12/2017] [Accepted: 10/13/2017] [Indexed: 12/28/2022]
Abstract
A series of 3-Benzylchroman-4-ones were synthesized and screened for anticancer activity by MTT assay. The compounds were evaluated against two cancerous cell lines BT549 (human breast carcinoma), HeLa (human cervical carcinoma), and one noncancerous cell line vero (normal kidney epithelial cells). 3b was found to be the most active molecule against BT549 cells (IC50 = 20.1 µM) and 3h against HeLa cells (IC50 = 20.45 µM). 3b also exhibited moderate activity against HeLa cells (IC50 = 42.8 µM). The molecular structures of 3h and 3i were solved by single crystal X-ray crystallographic technique. Additionally, the molecular docking studies between the tumour suppressor protein p53 with the lead compound 3h, which exhibited better anticancer activity against HeLa cells was examined.
Collapse
Affiliation(s)
- Lalitha Simon
- Department of Chemistry, Manipal Institute of Technology, Manipal University, Manipal 576 104, India
| | - Abdul Ajees Abdul Salam
- Department of Atomic and Molecular Physics, Manipal Institute of Technology, Manipal University, Manipal 576 104, India.
| | - S Madan Kumar
- PURSE Lab, Mangalagangotri, Mangalore University, Mangalore 574 199, India
| | - T Shilpa
- Department of Atomic and Molecular Physics, Manipal Institute of Technology, Manipal University, Manipal 576 104, India
| | - K K Srinivasan
- Department of Chemistry, Shri Madhwa Vadiraja Institute of Technology and Management, Vishwothama Nagar, Bantakal, Udupi 576 115, India
| | - K Byrappa
- Department of Material Science, Mangalagangotri, Mangalore University, Mangalore 574 199, India
| |
Collapse
|
222
|
Kastenhuber ER, Lowe SW. Putting p53 in Context. Cell 2017; 170:1062-1078. [PMID: 28886379 DOI: 10.1016/j.cell.2017.08.028] [Citation(s) in RCA: 1329] [Impact Index Per Article: 166.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/09/2017] [Accepted: 08/15/2017] [Indexed: 02/06/2023]
Abstract
TP53 is the most frequently mutated gene in human cancer. Functionally, p53 is activated by a host of stress stimuli and, in turn, governs an exquisitely complex anti-proliferative transcriptional program that touches upon a bewildering array of biological responses. Despite the many unveiled facets of the p53 network, a clear appreciation of how and in what contexts p53 exerts its diverse effects remains unclear. How can we interpret p53's disparate activities and the consequences of its dysfunction to understand how cell type, mutation profile, and epigenetic cell state dictate outcomes, and how might we restore its tumor-suppressive activities in cancer?
Collapse
Affiliation(s)
- Edward R Kastenhuber
- Department of Cancer Biology and Genetics, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Scott W Lowe
- Department of Cancer Biology and Genetics, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Howard Hughes Medical Institute, New York, NY 10065, USA.
| |
Collapse
|
223
|
Cornelius A, Foley J, Bond J, Nagulapally AB, Steinbrecher J, Hendricks WPD, Rich M, Yendrembam S, Bergendahl G, Trent JM, Sholler GS. Molecular Guided Therapy Provides Sustained Clinical Response in Refractory Choroid Plexus Carcinoma. Front Pharmacol 2017; 8:652. [PMID: 28993730 PMCID: PMC5622196 DOI: 10.3389/fphar.2017.00652] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/01/2017] [Indexed: 12/17/2022] Open
Abstract
Choroid plexus carcinomas (CPCs) are rare, aggressive pediatric brain tumors with no established curative therapy for relapsed disease, and poor survival rates. TP53 Mutation or dysfunction correlates with poor or no survival outcome in CPCs. Here, we report the case of a 4 month-old female who presented with disseminated CPC. After initial response to tumor resection and adjuvant-chemotherapy, the tumor recurred and metastasized with no response to aggressive relapse therapy suggesting genetic predisposition. This patient was then enrolled to a Molecular Guided Therapy Clinical Trial. Genomic profiling of patient tumor and normal sample identified a TP53 germline mutation with loss of heterozygosity, somatic mutations including IDH2, and aberrant activation of biological pathways. The mutations were not targetable for therapy. However, targeting the altered biological pathways (mTOR, PDGFRB, FGF2, HDAC) guided identification of possibly beneficial treatment with a combination of sirolimus, thalidomide, sunitinib, and vorinostat. This therapy led to 92% reduction in tumor size with no serious adverse events, excellent quality of life and long term survival.
Collapse
Affiliation(s)
- Albert Cornelius
- Pediatric Oncology Translational Research Program, Helen DeVos Children's Hospital at Spectrum HealthGrand Rapids, MI, United States
| | - Jessica Foley
- Pediatric Oncology Translational Research Program, Helen DeVos Children's Hospital at Spectrum HealthGrand Rapids, MI, United States
| | - Jeffrey Bond
- Pediatric Oncology Translational Research Program, Helen DeVos Children's Hospital at Spectrum HealthGrand Rapids, MI, United States
| | - Abhinav B Nagulapally
- Pediatric Oncology Translational Research Program, Helen DeVos Children's Hospital at Spectrum HealthGrand Rapids, MI, United States
| | - Julie Steinbrecher
- Pediatric Oncology Translational Research Program, Helen DeVos Children's Hospital at Spectrum HealthGrand Rapids, MI, United States
| | - William P D Hendricks
- Pediatric Oncology Translational Research Program, Helen DeVos Children's Hospital at Spectrum HealthGrand Rapids, MI, United States
| | - Maria Rich
- Pediatric Oncology Translational Research Program, Helen DeVos Children's Hospital at Spectrum HealthGrand Rapids, MI, United States
| | - Sangeeta Yendrembam
- Pediatric Oncology Translational Research Program, Helen DeVos Children's Hospital at Spectrum HealthGrand Rapids, MI, United States
| | - Genevieve Bergendahl
- Pediatric Oncology Translational Research Program, Helen DeVos Children's Hospital at Spectrum HealthGrand Rapids, MI, United States
| | - Jeffrey M Trent
- Pediatric Oncology Translational Research Program, Helen DeVos Children's Hospital at Spectrum HealthGrand Rapids, MI, United States
| | - Giselle S Sholler
- Pediatric Oncology Translational Research Program, Helen DeVos Children's Hospital at Spectrum HealthGrand Rapids, MI, United States
| |
Collapse
|
224
|
Contino G, Vaughan TL, Whiteman D, Fitzgerald RC. The Evolving Genomic Landscape of Barrett's Esophagus and Esophageal Adenocarcinoma. Gastroenterology 2017; 153:657-673.e1. [PMID: 28716721 PMCID: PMC6025803 DOI: 10.1053/j.gastro.2017.07.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 06/21/2017] [Accepted: 07/11/2017] [Indexed: 12/13/2022]
Abstract
We have recently gained unprecedented insight into genetic factors that determine risk for Barrett's esophagus (BE) and progression to esophageal adenocarcinoma (EA). Next-generation sequencing technologies have allowed us to identify somatic mutations that initiate BE and track genetic changes during development of tumors and invasive cancer. These technologies led to identification of mechanisms of tumorigenesis that challenge the current multistep model of progression to EA. Newer, cost-effective technologies create opportunities to rapidly translate the analysis of DNA into tools that can identify patients with BE at high risk for cancer, detect dysplastic lesions more reliably, and uncover mechanisms of carcinogenesis.
Collapse
Affiliation(s)
- Gianmarco Contino
- Medical Research Council Cancer Unit, Hutchison/Medical Research Council Research Centre, University of Cambridge, Cambridge, UK.
| | - Thomas L Vaughan
- Cancer Epidemiology Program, Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington
| | - David Whiteman
- Cancer Control, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Rebecca C Fitzgerald
- Medical Research Council Cancer Unit, Hutchison/Medical Research Council Research Centre, University of Cambridge, Cambridge, UK
| |
Collapse
|
225
|
Kunz M, Göttlich C, Walles T, Nietzer S, Dandekar G, Dandekar T. MicroRNA-21 versus microRNA-34: Lung cancer promoting and inhibitory microRNAs analysed in silico and in vitro and their clinical impact. Tumour Biol 2017; 39:1010428317706430. [DOI: 10.1177/1010428317706430] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs are well-known strong RNA regulators modulating whole functional units in complex signaling networks. Regarding clinical application, they have potential as biomarkers for prognosis, diagnosis, and therapy. In this review, we focus on two microRNAs centrally involved in lung cancer progression. MicroRNA-21 promotes and microRNA-34 inhibits cancer progression. We elucidate here involved pathways and imbed these antagonistic microRNAs in a network of interactions, stressing their cancer microRNA biology, followed by experimental and bioinformatics analysis of such microRNAs and their targets. This background is then illuminated from a clinical perspective on microRNA-21 and microRNA-34 as general examples for the complex microRNA biology in lung cancer and its diagnostic value. Moreover, we discuss the immense potential that microRNAs such as microRNA-21 and microRNA-34 imply by their broad regulatory effects. These should be explored for novel therapeutic strategies in the clinic.
Collapse
Affiliation(s)
- Meik Kunz
- Functional Genomics and Systems Biology Group, Department of Bioinformatics, Biocenter, Würzburg, Germany
| | - Claudia Göttlich
- Department of Tissue Engineering and Regenerative Medicine (TERM), University Hospital Würzburg, Würzburg, Germany
| | - Thorsten Walles
- Department of Cardiothoracic Surgery, University Hospital Magdeburg, Magdeburg, Germany
| | - Sarah Nietzer
- Department of Tissue Engineering and Regenerative Medicine (TERM), University Hospital Würzburg, Würzburg, Germany
| | - Gudrun Dandekar
- Department of Tissue Engineering and Regenerative Medicine (TERM), University Hospital Würzburg, Würzburg, Germany
- Translational Center Würzburg “Regenerative Therapies in Oncology and Musculoskeletal Disease”, Branch of the Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB), Würzburg, Germany
| | - Thomas Dandekar
- Functional Genomics and Systems Biology Group, Department of Bioinformatics, Biocenter, Würzburg, Germany
| |
Collapse
|
226
|
Abstract
Liver cancer remains one of the most common human cancers with a high mortality rate. Therapies for hepatocellular carcinoma (HCC) remain ineffective, due to the heterogeneity of HCC with regard to both the etiology and mutation spectrum, as well as its chemotherapy resistant nature; thus surgical resection and liver transplantation remain the gold standard of patient care. The most common etiologies of HCC are extrinsic factors. Humans have multiple defense mechanisms against extrinsic factor-induced carcinogenesis, of which tumor suppressors play crucial roles in preventing normal cells from becoming cancerous. The tumor suppressor p53 is one of the most frequently mutated genes in liver cancer. p53 regulates expression of genes involved in cell cycle progression, cell death, and cellular metabolism to avert tumor development due to carcinogens. This review article mainly summarizes extrinsic factors that induce liver cancer and potentially have etiological association with p53, including aflatoxin B1, vinyl chloride, non-alcoholic fatty liver disease, iron overload, and infection of hepatitis viruses.
Collapse
Affiliation(s)
- Tim Link
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Tomoo Iwakuma
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
227
|
Chen H, Li Y, Long Y, Tang E, Wang R, Huang K, Xie C, Chen G. Increased p16 and p53 protein expression predicts poor prognosis in mucosal melanoma. Oncotarget 2017; 8:53226-53233. [PMID: 28881806 PMCID: PMC5581105 DOI: 10.18632/oncotarget.18367] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 05/10/2017] [Indexed: 12/14/2022] Open
Abstract
Primary mucosal melanoma (MM) is a rare, and aggressive, neoplasm with a poor prognosis. To date, few prognostic markers of MM have been well-defined. The aim of this study is to clarify the prognostic value of p53 and p16 proteins in predicting the clinical outcome of Chinese patients with MM. A total of 59 MM samples were contained from biopsy specimens, and, expressions of p53 and p16 proteins were assessed by immunohistochemistry. Cox regression analysis was performed to investigate the association of these proteins with the overall survival of MM patients. Increased p16 expression was significantly associated with reduced survival at three years (P=0.039). Increased p53 expression correlates with reduced one-year (P=0.025), and, two-year survival (P=0.037). Increased p53 and p16 protein expression may be helpful prognostic indicators for the management of these patients.
Collapse
Affiliation(s)
- Hanbin Chen
- Department of Radiotherapy and Chemotherapy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yangyang Li
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yin Long
- Center for Translational Medicine, Yangpu Hospital, Tongji University School of Medicine, Yangpu, Shanghai, China
| | - Erjiang Tang
- Center for Translational Medicine, Yangpu Hospital, Tongji University School of Medicine, Yangpu, Shanghai, China
| | - Rongrong Wang
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Kate Huang
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Congying Xie
- Department of Radiotherapy and Chemotherapy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Guorong Chen
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
228
|
Mutant p53 Protein and the Hippo Transducers YAP and TAZ: A Critical Oncogenic Node in Human Cancers. Int J Mol Sci 2017; 18:ijms18050961. [PMID: 28467351 PMCID: PMC5454874 DOI: 10.3390/ijms18050961] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/11/2017] [Accepted: 04/24/2017] [Indexed: 02/07/2023] Open
Abstract
p53 protein is a well-known tumor suppressor factor that regulates cellular homeostasis. As it has several and key functions exerted, p53 is known as “the guardian of the genome” and either loss of function or gain of function mutations in the TP53 coding protein sequence are involved in cancer onset and progression. The Hippo pathway is a key regulator of developmental and regenerative physiological processes but if deregulated can induce cell transformation and cancer progression. The p53 and Hippo pathways exert a plethora of fine-tuned functions that can apparently be in contrast with each other. In this review, we propose that the p53 status can affect the Hippo pathway function by switching its outputs from tumor suppressor to oncogenic activities. In detail, we discuss: (a) the oncogenic role of the protein complex mutant p53/YAP; (b) TAZ oncogenic activation mediated by mutant p53; (c) the therapeutic potential of targeting mutant p53 to impair YAP and TAZ oncogenic functions in human cancers.
Collapse
|
229
|
Wamsley JJ, Gary C, Biktasova A, Hajek M, Bellinger G, Virk R, Issaeva N, Yarbrough WG. Loss of LZAP inactivates p53 and regulates sensitivity of cells to DNA damage in a p53-dependent manner. Oncogenesis 2017; 6:e314. [PMID: 28394357 PMCID: PMC5520489 DOI: 10.1038/oncsis.2017.12] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 12/22/2016] [Accepted: 02/10/2017] [Indexed: 02/07/2023] Open
Abstract
Chemotherapy and radiation, the two most common cancer therapies, exert their anticancer effects by causing damage to cellular DNA. However, systemic treatment damages DNA not only in cancer, but also in healthy cells, resulting in the progression of serious side effects and limiting efficacy of the treatment. Interestingly, in response to DNA damage, p53 seems to play an opposite role in normal and in the majority of cancer cells-wild-type p53 mediates apoptosis in healthy tissues, attributing to the side effects, whereas mutant p53 often is responsible for acquired cancer resistance to the treatment. Here, we show that leucine zipper-containing ARF-binding protein (LZAP) binds and stabilizes p53. LZAP depletion eliminates p53 protein independently of its mutation status, subsequently protecting wild-type p53 cells from DNA damage-induced cell death, while rendering cells expressing mutant p53 more sensitive to the treatment. In human non-small-cell lung cancer, LZAP levels correlated with p53 levels, suggesting that loss of LZAP may represent a novel mechanism of p53 inactivation in human cancer. Our studies establish LZAP as a p53 regulator and p53-dependent determinative of cell fate in response to DNA damaging treatment.
Collapse
Affiliation(s)
- J J Wamsley
- Division of Otolaryngology, Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - C Gary
- Division of Otolaryngology, Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - A Biktasova
- Division of Otolaryngology, Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - M Hajek
- Division of Otolaryngology, Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - G Bellinger
- Division of Otolaryngology, Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - R Virk
- Division of Otolaryngology, Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - N Issaeva
- Division of Otolaryngology, Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - W G Yarbrough
- Division of Otolaryngology, Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
230
|
Molecularly targeted therapies in cancer: a guide for the nuclear medicine physician. Eur J Nucl Med Mol Imaging 2017; 44:41-54. [PMID: 28396911 PMCID: PMC5541087 DOI: 10.1007/s00259-017-3695-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 03/27/2017] [Indexed: 01/01/2023]
Abstract
Molecular imaging continues to influence every aspect of cancer care including detection, diagnosis, staging and therapy response assessment. Recent advances in the understanding of cancer biology have prompted the introduction of new targeted therapy approaches. Precision medicine in oncology has led to rapid advances and novel approaches optimizing the use of imaging modalities in cancer care, research and development. This article focuses on the concept of targeted therapy in cancer and the challenges that exist for molecular imaging in cancer care.
Collapse
|
231
|
|
232
|
Friesen WJ, Trotta CR, Tomizawa Y, Zhuo J, Johnson B, Sierra J, Roy B, Weetall M, Hedrick J, Sheedy J, Takasugi J, Moon YC, Babu S, Baiazitov R, Leszyk JD, Davis TW, Colacino JM, Peltz SW, Welch EM. The nucleoside analog clitocine is a potent and efficacious readthrough agent. RNA (NEW YORK, N.Y.) 2017; 23:567-577. [PMID: 28096517 PMCID: PMC5340919 DOI: 10.1261/rna.060236.116] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 01/05/2017] [Indexed: 06/01/2023]
Abstract
Nonsense mutations resulting in a premature stop codon in an open reading frame occur in critical tumor suppressor genes in a large number of the most common forms of cancers and are known to cause or contribute to the progression of disease. Low molecular weight compounds that induce readthrough of nonsense mutations offer a new means of treating patients with genetic disorders or cancers resulting from nonsense mutations. We have identified the nucleoside analog clitocine as a potent and efficacious suppressor of nonsense mutations. We determined that incorporation of clitocine into RNA during transcription is a prerequisite for its readthrough activity; the presence of clitocine in the third position of a premature stop codon directly induces readthrough. We demonstrate that clitocine can induce the production of p53 protein in cells harboring p53 nonsense-mutated alleles. In these cells, clitocine restored production of full-length and functional p53 as evidenced by induced transcriptional activation of downstream p53 target genes, progression of cells into apoptosis, and impeded growth of nonsense-containing human ovarian cancer tumors in xenograft tumor models. Thus, clitocine induces readthrough of nonsense mutations by a previously undescribed mechanism and represents a novel therapeutic modality to treat cancers and genetic diseases caused by nonsense mutations.
Collapse
Affiliation(s)
| | | | - Yuki Tomizawa
- PTC Therapeutics, Inc., South Plainfield, New Jersey 07080, USA
| | - Jin Zhuo
- PTC Therapeutics, Inc., South Plainfield, New Jersey 07080, USA
| | - Briana Johnson
- PTC Therapeutics, Inc., South Plainfield, New Jersey 07080, USA
| | - Jairo Sierra
- PTC Therapeutics, Inc., South Plainfield, New Jersey 07080, USA
| | - Bijoyita Roy
- PTC Therapeutics, Inc., South Plainfield, New Jersey 07080, USA
| | - Marla Weetall
- PTC Therapeutics, Inc., South Plainfield, New Jersey 07080, USA
| | - Jean Hedrick
- PTC Therapeutics, Inc., South Plainfield, New Jersey 07080, USA
| | | | - James Takasugi
- PTC Therapeutics, Inc., South Plainfield, New Jersey 07080, USA
| | | | - Suresh Babu
- PTC Therapeutics, Inc., South Plainfield, New Jersey 07080, USA
| | - Ramil Baiazitov
- PTC Therapeutics, Inc., South Plainfield, New Jersey 07080, USA
| | - John D Leszyk
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01655-0122, USA
| | - Thomas W Davis
- PTC Therapeutics, Inc., South Plainfield, New Jersey 07080, USA
| | | | - Stuart W Peltz
- PTC Therapeutics, Inc., South Plainfield, New Jersey 07080, USA
| | - Ellen M Welch
- PTC Therapeutics, Inc., South Plainfield, New Jersey 07080, USA
| |
Collapse
|
233
|
|
234
|
Abstract
Oncolytic virus (OV) therapy utilizes replication-competent viruses to kill cancer cells, leaving non-malignant cells unharmed. With the first U.S. Food and Drug Administration-approved OV, dozens of clinical trials ongoing, and an abundance of translational research in the field, OV therapy is poised to be one of the leading treatments for cancer. A number of recombinant OVs expressing a transgene for p53 (TP53) or another p53 family member (TP63 or TP73) were engineered with the goal of generating more potent OVs that function synergistically with host immunity and/or other therapies to reduce or eliminate tumor burden. Such transgenes have proven effective at improving OV therapies, and basic research has shown mechanisms of p53-mediated enhancement of OV therapy, provided optimized p53 transgenes, explored drug-OV combinational treatments, and challenged canonical roles for p53 in virus-host interactions and tumor suppression. This review summarizes studies combining p53 gene therapy with replication-competent OV therapy, reviews preclinical and clinical studies with replication-deficient gene therapy vectors expressing p53 transgene, examines how wild-type p53 and p53 modifications affect OV replication and anti-tumor effects of OV therapy, and explores future directions for rational design of OV therapy combined with p53 gene therapy.
Collapse
|
235
|
Su SC, Lin CW, Liu YF, Fan WL, Chen MK, Yu CP, Yang WE, Su CW, Chuang CY, Li WH, Chung WH, Yang SF. Exome Sequencing of Oral Squamous Cell Carcinoma Reveals Molecular Subgroups and Novel Therapeutic Opportunities. Am J Cancer Res 2017; 7:1088-1099. [PMID: 28435450 PMCID: PMC5399578 DOI: 10.7150/thno.18551] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 01/02/2017] [Indexed: 12/12/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC), an epithelial malignancy affecting a variety of subsites in the oral cavity, is prevalent in Asia. The survival rate of OSCC patients has not improved over the past decades due to its heterogeneous etiology, genetic aberrations, and treatment outcomes. Improvement in therapeutic strategies and tailored treatment options is an unmet need. To unveil the mutational spectrum, whole-exome sequencing of 120 OSCC from male individuals in Taiwan was conducted. Analyzing the contributions of the five mutational signatures extracted from the dataset of somatic variations identified four groups of tumors that were significantly associated with demographic and clinical features. In addition, known (TP53, FAT1, EPHA2, CDKN2A, NOTCH1, CASP8, HRAS, RASA1, and PIK3CA) and novel (CHUK and ELAVL1) genes that were significantly and frequently mutated in OSCC were discovered. Further analyses of gene alteration status with clinical parameters revealed that the tumors of the tongue were enriched with copy-number alterations in several gene clusters containing CCND1 and MAP4K2. Through defining the catalog of targetable genomic alterations, 58% of the tumors were found to carry at least one aberrant event potentially targeted by US Food and Drug Administration (FDA)-approved agents. Strikingly, if targeting the p53-cell cycle pathway (TP53 and CCND1) by the drugs studied in phase I-III clinical trials, those possibly actionable tumors are predominantly located in the tongue, suggesting a better prediction of sensitivity to current targeted therapies. Our work revealed molecular OSCC subgroups that reflect etiological and prognostic correlation as well as defined the landscape of major altered events in the coding regions of OSCC genomes. These findings provide clues for the design of clinical trials for targeted therapies and stratification of OSCC patients with differential therapeutic efficacy.
Collapse
|
236
|
Liu G, Pei F, Yang F, Li L, Amin AD, Liu S, Buchan JR, Cho WC. Role of Autophagy and Apoptosis in Non-Small-Cell Lung Cancer. Int J Mol Sci 2017; 18:E367. [PMID: 28208579 PMCID: PMC5343902 DOI: 10.3390/ijms18020367] [Citation(s) in RCA: 269] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/22/2017] [Accepted: 02/03/2017] [Indexed: 02/07/2023] Open
Abstract
Non-small-cell lung cancer (NSCLC) constitutes 85% of all lung cancers, and is the leading cause of cancer-related death worldwide. The poor prognosis and resistance to both radiation and chemotherapy warrant further investigation into the molecular mechanisms of NSCLC and the development of new, more efficacious therapeutics. The processes of autophagy and apoptosis, which induce degradation of proteins and organelles or cell death upon cellular stress, are crucial in the pathophysiology of NSCLC. The close interplay between autophagy and apoptosis through shared signaling pathways complicates our understanding of how NSCLC pathophysiology is regulated. The apoptotic effect of autophagy is controversial as both inhibitory and stimulatory effects have been reported in NSCLC. In addition, crosstalk of proteins regulating both autophagy and apoptosis exists. Here, we review the recent advances of the relationship between autophagy and apoptosis in NSCLC, aiming to provide few insights into the discovery of novel pathogenic factors and the development of new cancer therapeutics.
Collapse
Affiliation(s)
- Guangbo Liu
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA.
| | - Fen Pei
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA.
| | - Fengqing Yang
- Department of Obstetrics and Gynecology, Dong'e No. 4 People's Hospital, Liaocheng 252200, China.
| | - Lingxiao Li
- Department of Medicine, Division of Hematology-Oncology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Amit Dipak Amin
- Department of Medicine, Division of Hematology-Oncology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Songnian Liu
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA.
| | - J Ross Buchan
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong, China.
| |
Collapse
|
237
|
Gilardini Montani MS, Granato M, Santoni C, Del Porto P, Merendino N, D'Orazi G, Faggioni A, Cirone M. Histone deacetylase inhibitors VPA and TSA induce apoptosis and autophagy in pancreatic cancer cells. Cell Oncol (Dordr) 2017; 40:167-180. [PMID: 28160167 DOI: 10.1007/s13402-017-0314-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2017] [Indexed: 02/06/2023] Open
Abstract
PURPOSE Histone deacetylase inhibitors (HDACi) are anti-neoplastic agents that are known to affect the growth of different cancer types, but their underlying mechanisms are still incompletely understood. Here, we compared the effects of two HDACi, i.e., Trichostatin A (TSA) and Valproic Acid (VPA), on the induction of cell death and autophagy in pancreatic cancer-derived cells that exhibit a high metastatic capacity and carry KRAS/p53 double mutations. METHODS Cell viability and proliferation tests were carried out using Trypan blue dye exclusion, MTT and BrdU assays. FACS analyses were carried out to assess cell cycle progression, apoptosis, reactive oxygen species (ROS) production and mitochondrial depolarization, while Western blot and immunoprecipitation analyses were employed to detect proteins involved in apoptosis and autophagy. RESULTS We found that both VPA and TSA can induce apoptosis in Panc1 and PaCa44 pancreatic cancer-derived cells by triggering mitochondrial membrane depolarization, Cytochrome c release and Caspase 3 activation, although VPA was more effective than TSA, especially in Panc1 cells. As underlying molecular events, we found that ERK1/2 was de-phosphorylated and that the c-Myc and mutant p53 protein levels were reduced after VPA and, to a lesser extent, after TSA treatment. Up-regulation of p21 and Puma was also observed, concomitantly with mutant p53 degradation. In addition, we found that in both cell lines VPA increased the pro-apoptotic Bim level, reduced the anti-apoptotic Mcl-1 level and increased ROS production and autophagy, while TSA was able to induce these effects only in PaCA44 cells. CONCLUSIONS From our results we conclude that both VPA and TSA can induce pancreatic cancer cell apoptosis and autophagy. VPA appears have a stronger and broader cytotoxic effect than TSA and, thus, may represent a better choice for anti-pancreatic cancer therapy.
Collapse
Affiliation(s)
| | - Marisa Granato
- Department of Experimental Medicine, La Sapienza University of Rome, V.le Regina Elena 324, 00161, Rome, Italy
| | - Claudio Santoni
- Department of Ecological and Biological Sciences (DEB), Tuscia University, Viterbo, Italy
| | - Paola Del Porto
- Department of Biology and Biotechnology 'Charles Darwin', La Sapienza University of Rome, Rome, Italy
| | - Nicolò Merendino
- Department of Ecological and Biological Sciences (DEB), Tuscia University, Viterbo, Italy
| | - Gabriella D'Orazi
- Department of Research, Advanced Diagnostic and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy.,Department of Medical Sciences, Tumor Biology Unit, University "G. D'Annunzio", Chieti, Italy
| | - Alberto Faggioni
- Department of Experimental Medicine, La Sapienza University of Rome, V.le Regina Elena 324, 00161, Rome, Italy.
| | - Mara Cirone
- Department of Experimental Medicine, La Sapienza University of Rome, V.le Regina Elena 324, 00161, Rome, Italy.
| |
Collapse
|
238
|
Signorelli S, Santini S, Yamada T, Bizzarri AR, Beattie CW, Cannistraro S. Binding of Amphipathic Cell Penetrating Peptide p28 to Wild Type and Mutated p53 as studied by Raman, Atomic Force and Surface Plasmon Resonance spectroscopies. Biochim Biophys Acta Gen Subj 2017; 1861:910-921. [PMID: 28126403 DOI: 10.1016/j.bbagen.2017.01.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 12/21/2016] [Accepted: 01/20/2017] [Indexed: 10/20/2022]
Abstract
BACKGROUND Mutations within the DNA binding domain (DBD) of the tumor suppressor p53 are found in >50% of human cancers and may significantly modify p53 secondary structure impairing its function. p28, an amphipathic cell-penetrating peptide, binds to the DBD through hydrophobic interaction and induces a posttranslational increase in wildtype and mutant p53 restoring functionality. We use mutation analyses to explore which elements of secondary structure may be critical to p28 binding. METHODS Molecular modeling, Raman spectroscopy, Atomic Force Spectroscopy (AFS) and Surface Plasmon Resonance (SPR) were used to identify which secondary structure of site-directed and naturally occurring mutant DBDs are potentially altered by discrete changes in hydrophobicity and the molecular interaction with p28. RESULTS We show that specific point mutations that alter hydrophobicity within non-mutable and mutable regions of the p53 DBD alter specific secondary structures. The affinity of p28 was positively correlated with the β-sheet content of a mutant DBD, and reduced by an increase in unstructured or random coil that resulted from a loss in hydrophobicity and redistribution of surface charge. CONCLUSIONS These results help refine our knowledge of how mutations within p53-DBD alter secondary structure and provide insight on how potential structural alterations in p28 or similar molecules improve their ability to restore p53 function. GENERAL SIGNIFICANCE Raman spectroscopy, AFS, SPR and computational modeling are useful approaches to characterize how mutations within the p53DBD potentially affect secondary structure and identify those structural elements prone to influence the binding affinity of agents designed to increase the functionality of p53.
Collapse
Affiliation(s)
- Sara Signorelli
- Biophysics and Nanoscience Centre, DEB, Università della Tuscia, Viterbo, Italy; Department of Science, University Roma Tre, Rome, Italy
| | - Simona Santini
- Biophysics and Nanoscience Centre, DEB, Università della Tuscia, Viterbo, Italy
| | - Tohru Yamada
- Department of Surgery, Division of Surgical Oncology, University of Illinois College of Medicine, Chicago, IL, USA
| | - Anna Rita Bizzarri
- Biophysics and Nanoscience Centre, DEB, Università della Tuscia, Viterbo, Italy.
| | - Craig W Beattie
- Department of Surgery, Division of Surgical Oncology, University of Illinois College of Medicine, Chicago, IL, USA
| | | |
Collapse
|
239
|
Non-Canonical Cell Death Induced by p53. Int J Mol Sci 2016; 17:ijms17122068. [PMID: 27941671 PMCID: PMC5187868 DOI: 10.3390/ijms17122068] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/30/2016] [Accepted: 12/06/2016] [Indexed: 12/19/2022] Open
Abstract
Programmed cell death is a vital biological process for multicellular organisms to maintain cellular homeostasis, which is regulated in a complex manner. Over the past several years, apart from apoptosis, which is the principal mechanism of caspase-dependent cell death, research on non-apoptotic forms of programmed cell death has gained momentum. p53 is a well characterized tumor suppressor that controls cell proliferation and apoptosis and has also been linked to non-apoptotic, non-canonical cell death mechanisms. p53 impacts these non-canonical forms of cell death through transcriptional regulation of its downstream targets, as well as direct interactions with key players involved in these mechanisms, in a cell type- or tissue context-dependent manner. In this review article, we summarize and discuss the involvement of p53 in several non-canonical modes of cell death, including caspase-independent apoptosis (CIA), ferroptosis, necroptosis, autophagic cell death, mitotic catastrophe, paraptosis, and pyroptosis, as well as its role in efferocytosis which is the process of clearing dead or dying cells.
Collapse
|
240
|
Zhou G, Liu Z, Myers JN. TP53 Mutations in Head and Neck Squamous Cell Carcinoma and Their Impact on Disease Progression and Treatment Response. J Cell Biochem 2016; 117:2682-2692. [PMID: 27166782 PMCID: PMC5493146 DOI: 10.1002/jcb.25592] [Citation(s) in RCA: 235] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 05/09/2016] [Indexed: 12/19/2022]
Abstract
Recent studies describing the mutational landscape of head and neck squamous cell carcinoma (HNSCC) on a genomic scale by our group and others, including The Cancer Genome Atlas, have provided unprecedented perspective for understanding the molecular pathogenesis of HNSCC progression and response to treatment. These studies confirmed that mutations of the TP53 tumor suppressor gene were the most frequent of all somatic genomic alterations in HNSCC, alluding to the importance of the TP53 gene in suppressing the development and progression of this disease. Clinically, TP53 mutations are significantly associated with short survival time and tumor resistance to radiotherapy and chemotherapy in HNSCC patients, which makes the TP53 mutation status a potentially useful molecular factor for risk stratification and predictor of clinical response in these patients. In addition to loss of wild-type p53 function and the dominant-negative effect on the remaining wild-type p53, some p53 mutants often gain oncogenic functions to promote tumorigenesis and progression. Different p53 mutants may possess different gain-of-function properties. Herein, we review the most up-to-date information about TP53 mutations available via The Cancer Genome Atlas-based analysis of HNSCC and discuss our current understanding of the potential tumor-suppressive role of p53, focusing on gain-of-function activities of p53 mutations. We also summarize our knowledge regarding the use of the TP53 mutation status as a potential evaluation or stratification biomarker for prognosis and a predictor of clinical response to radiotherapy and chemotherapy in HNSCC patients. Finally, we discuss possible strategies for targeting HNSCCs bearing TP53 mutations. J. Cell. Biochem. 117: 2682-2692, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ge Zhou
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030
| | - Zhiyi Liu
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030
| | - Jeffrey N Myers
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030.
| |
Collapse
|
241
|
Mantovani F, Walerych D, Sal GD. Targeting mutant p53 in cancer: a long road to precision therapy. FEBS J 2016; 284:837-850. [PMID: 27808469 DOI: 10.1111/febs.13948] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 10/05/2016] [Accepted: 10/31/2016] [Indexed: 12/14/2022]
Abstract
The TP53 tumor suppressor is the most frequently mutated gene in human cancers. In recent years, a blooming of research efforts based on both cell lines and mouse models have highlighted how deeply mutant p53 proteins affect fundamental cellular pathways with cancer-promoting outcomes. Neomorphic mutant p53 activities spread over multiple levels, impinging on chromatin structure, transcriptional regulation and microRNA maturation, shaping the proteome and the cell's metabolic pathways, and also exerting cytoplasmic functions and displaying cell-extrinsic effects. These tumorigenic activities are inextricably linked with the blend of highly corrupted processes that characterize the tumor context. Recent studies indicate that successful strategies to extract core aspects of mutant p53 oncogenic potential and to identify unique tumor dependencies entail the superimposition of large-scale analyses performed in multiple experimental systems, together with a mindful use of animal models. This will hopefully soon lead to the long-awaited inclusion of mutant p53 as an actionable target of clinical antitumor therapies.
Collapse
Affiliation(s)
- Fiamma Mantovani
- Laboratorio Nazionale CIB (LNCIB), Trieste, Italy.,Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Italy
| | | | - Giannino Del Sal
- Laboratorio Nazionale CIB (LNCIB), Trieste, Italy.,Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Italy
| |
Collapse
|
242
|
Niu ZS, Niu XJ, Wang WH. Genetic alterations in hepatocellular carcinoma: An update. World J Gastroenterol 2016; 22:9069-9095. [PMID: 27895396 PMCID: PMC5107590 DOI: 10.3748/wjg.v22.i41.9069] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 09/20/2016] [Accepted: 10/19/2016] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths worldwide. Although recent advances in therapeutic approaches for treating HCC have improved the prognoses of patients with HCC, this cancer is still associated with a poor survival rate mainly due to late diagnosis. Therefore, a diagnosis must be made sufficiently early to perform curative and effective treatments. There is a need for a deeper understanding of the molecular mechanisms underlying the initiation and progression of HCC because these mechanisms are critical for making early diagnoses and developing novel therapeutic strategies. Over the past decade, much progress has been made in elucidating the molecular mechanisms underlying hepatocarcinogenesis. In particular, recent advances in next-generation sequencing technologies have revealed numerous genetic alterations, including recurrently mutated genes and dysregulated signaling pathways in HCC. A better understanding of the genetic alterations in HCC could contribute to identifying potential driver mutations and discovering novel therapeutic targets in the future. In this article, we summarize the current advances in research on the genetic alterations, including genomic instability, single-nucleotide polymorphisms, somatic mutations and deregulated signaling pathways, implicated in the initiation and progression of HCC. We also attempt to elucidate some of the genetic mechanisms that contribute to making early diagnoses of and developing molecularly targeted therapies for HCC.
Collapse
MESH Headings
- Animals
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Gene Expression Regulation, Neoplastic
- Genetic Predisposition to Disease
- Genomic Instability
- Humans
- Liver Neoplasms/drug therapy
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Molecular Diagnostic Techniques
- Molecular Targeted Therapy
- Mutation
- Patient Selection
- Phenotype
- Polymorphism, Single Nucleotide
- Precision Medicine
- Predictive Value of Tests
- Signal Transduction
Collapse
|
243
|
Morita K, Miyazaki S, Numako C, Ikeno S, Sasaki R, Nishimura Y, Ogino C, Kondo A. Characterization of titanium dioxide nanoparticles modified with polyacrylic acid and H 2O 2 for use as a novel radiosensitizer. Free Radic Res 2016; 50:1319-1328. [PMID: 27778515 DOI: 10.1080/10715762.2016.1241879] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
An induction of polyacrylic acid-modified titanium dioxide with hydrogen peroxide nanoparticles (PAA-TiO2/H2O2 NPs) to a tumor exerted a therapeutic enhancement of X-ray irradiation in our previous study. To understand the mechanism of the radiosensitizing effect of PAA-TiO2/H2O2 NPs, analytical observations that included DLS, FE-SEM, FT-IR, XAFS, and Raman spectrometry were performed. In addition, highly reactive oxygen species (hROS) which PAA-TiO2/H2O2 NPs produced with X-ray irradiation were quantified by using a chemiluminescence method and a EPR spin-trapping method. We found that PAA-TiO2/H2O2 NPs have almost the same characteristics as PAA-TiO2. Surprisingly, there were no significant differences in hROS generation. However, the existence of H2O2 was confirmed in PAA-TiO2/H2O2 NPs, because spontaneous hROS production was observed w/o X-ray irradiation. In addition, PAA-TiO2/H2O2 NPs had a curious characteristic whereby they absorbed H2O2 molecules and released them gradually into a liquid phase. Based on these results, the H2O2 was continuously released from PAA-TiO2/H2O2 NPs, and then released H2O2 assumed to be functioned indirectly as a radiosensitizing factor.
Collapse
Affiliation(s)
- Kenta Morita
- a Department of Chemical Science and Engineering, Graduate School of Engineering , Kobe University , Nada-ku , Kobe , Japan
| | - Serika Miyazaki
- b Graduate School of Science , Chiba University , Inage , Chiba , Japan
| | - Chiya Numako
- b Graduate School of Science , Chiba University , Inage , Chiba , Japan
| | - Shinya Ikeno
- c Graduate School of Life Science and Systems Engineering , Kyushu Institute of Technology , Wakamatsu-ku , Kitakyushu , Japan
| | - Ryohei Sasaki
- d Division of Radiation Oncology , Kobe University Graduate School of Medicine , Chuou-ku , Kobe , Japan
| | - Yuya Nishimura
- e Organization of Advanced Science and Technology, Kobe University , Nada-ku , Kobe , Japan
| | - Chiaki Ogino
- a Department of Chemical Science and Engineering, Graduate School of Engineering , Kobe University , Nada-ku , Kobe , Japan
| | - Akihiko Kondo
- a Department of Chemical Science and Engineering, Graduate School of Engineering , Kobe University , Nada-ku , Kobe , Japan.,e Organization of Advanced Science and Technology, Kobe University , Nada-ku , Kobe , Japan
| |
Collapse
|
244
|
Teveroni E, Lucà R, Pellegrino M, Ciolli G, Pontecorvi A, Moretti F. Peptides and peptidomimetics in the p53/MDM2/MDM4 circuitry - a patent review. Expert Opin Ther Pat 2016; 26:1417-1429. [DOI: 10.1080/13543776.2017.1233179] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Emanuela Teveroni
- Institute of Cell Biology and Neurobiology, CNR, Roma, Italy
- Institute of Medical Pathology, Catholic University of Roma, Roma, Italy
| | - Rossella Lucà
- Institute of Cell Biology and Neurobiology, CNR, Roma, Italy
| | | | - Germana Ciolli
- Institute of Cell Biology and Neurobiology, CNR, Roma, Italy
- Institute of Medical Pathology, Catholic University of Roma, Roma, Italy
| | - Alfredo Pontecorvi
- Institute of Medical Pathology, Catholic University of Roma, Roma, Italy
| | - Fabiola Moretti
- Institute of Cell Biology and Neurobiology, CNR, Roma, Italy
| |
Collapse
|
245
|
Garufi A, Pistritto G, Cirone M, D'Orazi G. Reactivation of mutant p53 by capsaicin, the major constituent of peppers. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:136. [PMID: 27599722 PMCID: PMC5012067 DOI: 10.1186/s13046-016-0417-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 09/02/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND Mutations in the p53 oncosuppressor gene are highly frequent in human cancers. These alterations are mainly point mutations in the DNA binding domain of p53 and disable p53 from transactivating target genes devoted to anticancer activity. Mutant p53 proteins are usually more stable than wild-type p53 and may not only impair wild-type p53 activity but also acquire pro-oncogenic functions. Therefore, targeting mutant p53 to clear the hyperstable proteins or change p53 conformation to reactivate wild-type p53 protein functions is a powerful anticancer strategy. Several small molecules have been tested for p53 reactivation in mutant p53-carrying cells while studies exploiting the effect of natural compounds are limited. Capsaicin (CPS) is the major constituent of peppers and show antitumor activity by targeting several molecular pathway, however, its effect on mutant p53 reactivation has not been assessed yet. In this study we aimed at investigating whether mutant p53 could be a new target of capsaicin-induced cell death and the underlying mechanisms. METHODS p53 levels were analysed by western blot upon capsaicin treatment in the presence of the autophagy inhibitor chloroquine. The mutant p53 reactivation was evaluated by chromatin-immunoprecipitation (ChIP) assay and semi-quantitative RT-PCR analyses of wild-type p53 target genes. The specific wild-type p53 activation was determined by using the inhibitor of p53 transactivation function, pifithrin-α and siRNA for p53. RESULTS Here, we show that capsaicin induced autophagy that was, at least in part, responsible of mutant p53 protein degradation. Abrogation of mutant p53 by capsaicin restored wild-type p53 activities over mutant p53 functions, contributing to cancer cell death. Similar effects were confirmed in cancer cells bearing tumor-associated p53 mutations and in H1299 (p53 null) with overexpressed p53R175H and p53R273H mutant proteins. CONCLUSION These findings demonstrate for the first time that capsaicin may reduce mutant p53 levels and reactivate wild-type p53 protein in mutant p53-carrying cells and the p53 reactivation contributes to capsaicin-induced cell death.
Collapse
Affiliation(s)
- Alessia Garufi
- Regina Elena National Cancer Institute, Department of Research, Advanced Diagnostics, and Technological Innovation, Unit of Cellular Networks and Molecular Therapeutic Targets, Rome, 00144, Italy.,Department of Medical Sciences, Tumor Biology Unit, University "G. d'Annunzio", Chieti, 66013, Italy
| | - Giuseppa Pistritto
- Department of Systems Medicine, University "Tor Vergata", Rome, 00133, Italy
| | - Mara Cirone
- Department of Experimental Medicine, Istituto Pasteur Fondazione Cenci Bolognetti, University "Sapienza", Rome, 00161, Italy
| | - Gabriella D'Orazi
- Regina Elena National Cancer Institute, Department of Research, Advanced Diagnostics, and Technological Innovation, Unit of Cellular Networks and Molecular Therapeutic Targets, Rome, 00144, Italy. .,Department of Medical Sciences, Tumor Biology Unit, University "G. d'Annunzio", Chieti, 66013, Italy.
| |
Collapse
|
246
|
Lea WA, O'Neil PT, Machen AJ, Naik S, Chaudhri T, McGinn-Straub W, Tischer A, Auton MT, Burns JR, Baldwin MR, Khar KR, Karanicolas J, Fisher MT. Chaperonin-Based Biolayer Interferometry To Assess the Kinetic Stability of Metastable, Aggregation-Prone Proteins. Biochemistry 2016; 55:4885-908. [PMID: 27505032 DOI: 10.1021/acs.biochem.6b00293] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Stabilizing the folded state of metastable and/or aggregation-prone proteins through exogenous ligand binding is an appealing strategy for decreasing disease pathologies caused by protein folding defects or deleterious kinetic transitions. Current methods of examining binding of a ligand to these marginally stable native states are limited because protein aggregation typically interferes with analysis. Here, we describe a rapid method for assessing the kinetic stability of folded proteins and monitoring the effects of ligand stabilization for both intrinsically stable proteins (monomers, oligomers, and multidomain proteins) and metastable proteins (e.g., low Tm) that uses a new GroEL chaperonin-based biolayer interferometry (BLI) denaturant pulse platform. A kinetically controlled denaturation isotherm is generated by exposing a target protein, immobilized on a BLI biosensor, to increasing denaturant concentrations (urea or GuHCl) in a pulsatile manner to induce partial or complete unfolding of the attached protein population. Following the rapid removal of the denaturant, the extent of hydrophobic unfolded/partially folded species that remains is detected by an increased level of GroEL binding. Because this kinetic denaturant pulse is brief, the amplitude of binding of GroEL to the immobilized protein depends on the duration of the exposure to the denaturant, the concentration of the denaturant, wash times, and the underlying protein unfolding-refolding kinetics; fixing all other parameters and plotting the GroEL binding amplitude versus denaturant pulse concentration result in a kinetically controlled denaturation isotherm. When folding osmolytes or stabilizing ligands are added to the immobilized target proteins before and during the denaturant pulse, the diminished population of unfolded/partially folded protein manifests as a decreased level of GroEL binding and/or a marked shift in these kinetically controlled denaturation profiles to higher denaturant concentrations. This particular platform approach can be used to identify small molecules and/or solution conditions that can stabilize or destabilize thermally stable proteins, multidomain proteins, oligomeric proteins, and, most importantly, aggregation-prone metastable proteins.
Collapse
Affiliation(s)
- Wendy A Lea
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center , Kansas City, Kansas 66160, United States
| | - Pierce T O'Neil
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center , Kansas City, Kansas 66160, United States
| | - Alexandra J Machen
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center , Kansas City, Kansas 66160, United States
| | - Subhashchandra Naik
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center , Kansas City, Kansas 66160, United States
| | | | - Wesley McGinn-Straub
- fortéBIO (a division of Pall Life Sciences) , Menlo Park, California 94025, United States
| | - Alexander Tischer
- Division of Hematology, Department of Internal Medicine, Mayo Clinic , Rochester, Minnesota 55902, United States
| | - Matthew T Auton
- Division of Hematology, Department of Internal Medicine, Mayo Clinic , Rochester, Minnesota 55902, United States
| | - Joshua R Burns
- Department of Molecular Microbiology and Immunology, University of Missouri , Columbia, Missouri 65212, United States
| | - Michael R Baldwin
- Department of Molecular Microbiology and Immunology, University of Missouri , Columbia, Missouri 65212, United States
| | - Karen R Khar
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas , Lawrence, Kansas 66045, United States
| | - John Karanicolas
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas , Lawrence, Kansas 66045, United States
| | - Mark T Fisher
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center , Kansas City, Kansas 66160, United States
| |
Collapse
|
247
|
Knocking down of p53 triggers apoptosis and autophagy, concomitantly with inhibition of migration on SSC-4 oral squamous carcinoma cells. Mol Cell Biochem 2016; 419:75-82. [PMID: 27370646 DOI: 10.1007/s11010-016-2751-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 06/18/2016] [Indexed: 02/08/2023]
Abstract
Oral squamous cell carcinoma (OSCC) is a malignancy with elevated prevalence and somber prognosis due to the fact that most of the patients are diagnosed at an advanced stage. p53 has a crucial role in proliferation and apoptosis during the occurrence and development of numerous malignant tumors. The impact of mutated p53 on the development and progression of OSCC is unclear and might have therapeutic implications. Using an in vitro RNA interference experiment, we have evaluated the impact of p53 knockdown on cell viability, apoptosis, migration, and gene expression for key genes involved in apoptosis and angiogenesis. We observed that inhibiting the expression of p53 decreased the proliferation ability and induced apoptosis/autophagy in SSC-4 cells. Moreover, we observed that this has decreased migration and has blocked the expression of VEGF. In conclusion, our research provides a proof that a direct connection between p53 knockdown and OSCC cell death can be established, therefore opening new potential directions in OSCC molecular therapeutics and management.
Collapse
|
248
|
Cordani M, Pacchiana R, Butera G, D'Orazi G, Scarpa A, Donadelli M. Mutant p53 proteins alter cancer cell secretome and tumour microenvironment: Involvement in cancer invasion and metastasis. Cancer Lett 2016; 376:303-9. [PMID: 27045472 DOI: 10.1016/j.canlet.2016.03.046] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 03/29/2016] [Accepted: 03/30/2016] [Indexed: 01/06/2023]
Abstract
An ever-increasing number of studies highlight the role of mutant p53 proteins in the alteration of cancer cell secretome and in the modification of tumour microenvironment, sustaining an invasive phenotype of cancer cell. The knowledge of the molecular mechanisms underlying the interplay between mutant p53 proteins and the microenvironment is becoming fundamental for the identification of both efficient anticancer therapeutic strategies and novel serum biomarkers. In this review, we summarize the novel findings concerning the regulation of secreted molecules by cancer cells bearing mutant TP53 gene. In particular, we highlight data from available literature, suggesting that mutant p53 proteins are able to (i) alter the secretion of enzymes involved in the modulation of extracellular matrix components; (ii) alter the secretion of inflammatory cytokines; (iii) increase the extracellular acidification; and (iv) regulate the crosstalk between cancer and stromal cells.
Collapse
Affiliation(s)
- Marco Cordani
- Department of Neuroscience, Biomedicine and Movement, Biochemistry Section, University of Verona, Verona, Italy
| | - Raffaella Pacchiana
- Department of Neuroscience, Biomedicine and Movement, Biochemistry Section, University of Verona, Verona, Italy
| | - Giovanna Butera
- Department of Neuroscience, Biomedicine and Movement, Biochemistry Section, University of Verona, Verona, Italy
| | - Gabriella D'Orazi
- Unit of Cellular Networks and Therapeutic Targets, Department of Research, Advanced Diagnostic, and Technological Innovation, Regina Elena National Cancer Institute - IRCCS, Rome, Italy
| | - Aldo Scarpa
- Applied Research on Cancer Centre (ARC-Net) and Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Massimo Donadelli
- Department of Neuroscience, Biomedicine and Movement, Biochemistry Section, University of Verona, Verona, Italy.
| |
Collapse
|