201
|
The Discovery and Development of Natural-Based Biomaterials with Demonstrated Wound Healing Properties: A Reliable Approach in Clinical Trials. Biomedicines 2022; 10:biomedicines10092226. [PMID: 36140332 PMCID: PMC9496351 DOI: 10.3390/biomedicines10092226] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Current research across the globe still focuses strongly on naturally derived biomaterials in various fields, particularly wound care. There is a need for more effective therapies that will address the physiological deficiencies underlying chronic wound treatment. The use of moist bioactive scaffolds has significantly increased healing rates compared to local and traditional treatments. However, failure to heal or prolonging the wound healing process results in increased financial and social stress imposed on health institutions, caregivers, patients, and their families. The urgent need to identify practical, safe, and cost-effective wound healing scaffolding from natural-based biomaterials that can be introduced into clinical practice is unequivocal. Naturally derived products have long been used in wound healing; however, clinical trial evaluations of these therapies are still in their infancy. Additionally, further well-designed clinical trials are necessary to confirm the efficacy and safety of natural-based biomaterials in treating wounds. Thus, the focus of this review is to describe the current insight, the latest discoveries in selected natural-based wound healing implant products, the possible action mechanisms, and an approach to clinical studies. We explore several tested products undergoing clinical trials as a novel approach to counteract the debilitating effects of impaired wound healing.
Collapse
|
202
|
Liu H, Miyamoto N, Nguyen MT, Shirato H, Yonezawa T. Injectable Fiducial Marker for Image-Guided Radiation Therapy Based on Gold Nanoparticles and a Body Temperature-Activated Gel-Forming System. ACS APPLIED BIO MATERIALS 2022; 5:4838-4848. [PMID: 36074396 DOI: 10.1021/acsabm.2c00566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Injectable fiducial markers are crucial in image-guided radiation therapy (IGRT) due to their minimally invasive operations and improved patient compliance. This study presents the development of a ready-to-use injectable fiducial marker utilizing alginate stabilized-gold nanoparticles (alg-Au NPs) and a body temperature-activated in situ gel-forming system. Gram-scale alg-Au NPs were prepared in an hour by a green microwave-induced plasma-in-liquid process (MWPLP). Sodium alginate was introduced in this process to avoid aggregation between Au NPs, which ensured their stability and injectability. The gelation behavior of alginate with divalent cations and a temperature-dependent release of calcium source (glucono-delta-lactone (GDL) and CaCO3) served as the foundation of the body temperature-activated in situ gel-forming system. The injectable fiducial marker GDL/CaCO3/alg-Au NPs could maintain a liquid state at a low temperature for a higher injectability. After injection, on the other hand, Ca2+ would be released due to the body temperature-activated hydrolysis of GDL and the subsequent reaction with CaCO3, which would initiate the gelation of alginate. The injectable fiducial marker can be therefore delivered via injection and form gel at target site to avoid marker movement or Au NPs leakage after injection. Rheological measurements demonstrate the stability and gelation behavior of GDL/CaCO3/alg-Au NPs at different temperatures. Furthermore, the injectability and imaging ability of GDL/CaCO3/alg-Au NPs were also examined. In summary, ready-to-use injectable fiducial marker GDL/CaCO3/alg-Au NPs were developed via a green and facile method for IGRT.
Collapse
Affiliation(s)
- Haoran Liu
- Division of Materials Science and Engineering, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Naoki Miyamoto
- Division of Quantum Science and Engineering, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
- Department of Medical Physics, Hokkaido University Hospital, Kita 14 Nishi 5, Kita-ku, Sapporo, Hokkaido 060-8648, Japan
| | - Mai Thanh Nguyen
- Division of Materials Science and Engineering, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Hiroki Shirato
- Global Center for Biomedical Science and Engineering, Faculty of Medicine, Hokkaido University, Kita 15 Nishi 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Tetsu Yonezawa
- Division of Materials Science and Engineering, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| |
Collapse
|
203
|
The Fabrication of Alginate–Carboxymethyl Cellulose-Based Composites and Drug Release Profiles. Polymers (Basel) 2022; 14:polym14173604. [PMID: 36080679 PMCID: PMC9460729 DOI: 10.3390/polym14173604] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/17/2022] [Accepted: 08/30/2022] [Indexed: 12/15/2022] Open
Abstract
Recently, hydrogels based on natural water-soluble polysaccharides have attracted more and more attention due to their favorable characteristics. The high water-holding capacity, lack of toxicity, and biodegradability of such hydrogels make it possible to develop new materials on their basis for biotechnological, biomedical, pharmacological, and medical purposes. Sodium alginate is a non-toxic natural polysaccharide found in marine algae. It is capable of forming solid gels under the action of polyvalent cations that cross-link polysaccharide chains. Alginate-based products are popular in many industries, including food processing, pharmaceutical, and biomedical applications. Cellulose is the most abundant, renewable, and natural polymer on Earth, and it is used for various industrial and biomedical applications. Carboxymethyl cellulose (CMC) is useful in pharmaceutical, food, and non-food industries such as tablets, ice cream, drinks, toothpaste, and detergents. In this review, various methods for the preparation of the compositions based on sodium alginate and CMC using different crosslinking agents have been collected for the first time. Additionally, the drug release profile from such polymer matrixes was analyzed.
Collapse
|
204
|
Mndlovu H, Kumar P, du Toit LC, Choonara YE. In Situ Forming Chitosan-Alginate Interpolymer Complex Bioplatform for Wound Healing and Regeneration. AAPS PharmSciTech 2022; 23:247. [PMID: 36050512 DOI: 10.1208/s12249-022-02397-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/10/2022] [Indexed: 11/30/2022] Open
Abstract
Cytocompatibility, biocompatibility, and biodegradability are amongst the most desirable qualities of wound dressings and can be tuned during the bioplatform fabrication steps to enhance wound healing capabilities. A three-stepped approach (partial-crosslinking, freeze-drying, and pulverisation) was employed in fabricating a particulate, partially crosslinked (PC), and transferulic acid (TFA)-loaded chitosan-alginate (CS-Alg) interpolymer complex (IPC) with enhanced wound healing capabilities. The PC TFA-CS-Alg IPC bioplatform displayed fluid uptake of 3102% in 24 h and a stepwise degradation up to 53.5% in 14 days. The PC TFA-CS-Alg bioplatform was used as a bioactive delivery system with an encapsulation efficiency of 65.6%, bioactive loading of 9.4%, burst release of 58.27%, and a steady release of 1.91% per day. PC TFA-CS-Alg displayed a shift in cytocompatibility from slightly cytotoxic (60-90% cell viability) to nontoxic (> 90% cell viability) over a 72-h period in NIH-3T3 cells. The wound closure and histological evaluations of the lesions indicated better wound healing performance in lesions treated with PC TFA-CS-Alg and PC CS-Alg compared to those treated with the commercial product and the control. Application of the particulate bioplatform on the wound via sprinkles, the in situ hydrogel formation under fluid exposure, and the accelerated wound healing performances of the bioplatforms make it a good candidate for bioactive delivery system and skin tissue regeneration.
Collapse
Affiliation(s)
- Hillary Mndlovu
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa
| | - Lisa C du Toit
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa.
| |
Collapse
|
205
|
Alginate as a Promising Biopolymer in Drug Delivery and Wound Healing: A Review of the State-of-the-Art. Int J Mol Sci 2022; 23:ijms23169035. [PMID: 36012297 PMCID: PMC9409034 DOI: 10.3390/ijms23169035] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 12/20/2022] Open
Abstract
Biopolymeric nanoparticulate systems hold favorable carrier properties for active delivery. The enhancement in the research interest in alginate formulations in biomedical and pharmaceutical research, owing to its biodegradable, biocompatible, and bioadhesive characteristics, reiterates its future use as an efficient drug delivery matrix. Alginates, obtained from natural sources, are the colloidal polysaccharide group, which are water-soluble, non-toxic, and non-irritant. These are linear copolymeric blocks of α-(1→4)-linked l-guluronic acid (G) and β-(1→4)-linked d-mannuronic acid (M) residues. Owing to the monosaccharide sequencing and the enzymatically governed reactions, alginates are well-known as an essential bio-polymer group for multifarious biomedical implementations. Additionally, alginate’s bio-adhesive property makes it significant in the pharmaceutical industry. Alginate has shown immense potential in wound healing and drug delivery applications to date because its gel-forming ability maintains the structural resemblance to the extracellular matrices in tissues and can be altered to perform numerous crucial functions. The initial section of this review will deliver a perception of the extraction source and alginate’s remarkable properties. Furthermore, we have aspired to discuss the current literature on alginate utilization as a biopolymeric carrier for drug delivery through numerous administration routes. Finally, the latest investigations on alginate composite utilization in wound healing are addressed.
Collapse
|
206
|
Gardikiotis I, Cojocaru FD, Mihai CT, Balan V, Dodi G. Borrowing the Features of Biopolymers for Emerging Wound Healing Dressings: A Review. Int J Mol Sci 2022; 23:ijms23158778. [PMID: 35955912 PMCID: PMC9369430 DOI: 10.3390/ijms23158778] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 12/02/2022] Open
Abstract
Wound dressing design is a dynamic and rapidly growing field of the medical wound-care market worldwide. Advances in technology have resulted in the development of a wide range of wound dressings that treat different types of wounds by targeting the four phases of healing. The ideal wound dressing should perform rapid healing; preserve the body’s water content; be oxygen permeable, non-adherent on the wound and hypoallergenic; and provide a barrier against external contaminants—at a reasonable cost and with minimal inconvenience to the patient. Therefore, choosing the best dressing should be based on what the wound needs and what the dressing does to achieve complete regeneration and restoration of the skin’s structure and function. Biopolymers, such as alginate (ALG), chitosan (Cs), collagen (Col), hyaluronic acid (HA) and silk fibroin (SF), are extensively used in wound management due to their biocompatibility, biodegradability and similarity to macromolecules recognized by the human body. However, most of the formulations based on biopolymers still show various issues; thus, strategies to combine them with molecular biology approaches represent the future of wound healing. Therefore, this article provides an overview of biopolymers’ roles in wound physiology as a perspective on the development of a new generation of enhanced, naturally inspired, smart wound dressings based on blood products, stem cells and growth factors.
Collapse
Affiliation(s)
- Ioannis Gardikiotis
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy of Iasi, 9-13 Kogalniceanu Street, 700454 Iasi, Romania
| | - Florina-Daniela Cojocaru
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy of Iasi, 9-13 Kogalniceanu Street, 700454 Iasi, Romania
- Biomedical Sciences Department, Faculty of Medical Bioengineering, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 9-13 Kogalniceanu Street, 700454 Iasi, Romania
- Correspondence: (F.-D.C.); (G.D.)
| | - Cosmin-Teodor Mihai
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy of Iasi, 9-13 Kogalniceanu Street, 700454 Iasi, Romania
| | - Vera Balan
- Biomedical Sciences Department, Faculty of Medical Bioengineering, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 9-13 Kogalniceanu Street, 700454 Iasi, Romania
| | - Gianina Dodi
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy of Iasi, 9-13 Kogalniceanu Street, 700454 Iasi, Romania
- Correspondence: (F.-D.C.); (G.D.)
| |
Collapse
|
207
|
Dissolvable wound dressing loaded with silver nanoparticles together with ampicillin and ciprofloxacin. Ther Deliv 2022; 13:295-311. [PMID: 35924677 DOI: 10.4155/tde-2021-0087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Aim: The current study is focused on the development of water-soluble wound dressings, which are potential dressings for the treatment of burn wounds. Materials & methods: Sodium alginate-based dissolvable wound dressings were prepared and loaded with silver nanoparticles and various antibiotics (ampicillin and ciprofloxacin) followed by characterization and in vitro antibacterial studies. Results & conclusions: The prepared sodium alginate-based dissolvable wound dressing exhibited good porosity, water uptake and moisture content, promising antibacterial activity, high absorption capacity of simulated wound exudates, excellent water vapor transmission rate in the range of 2000 to 5000 g/m2 day-1, sustained drug-release profiles and water solubility. The wound dressings were active against Proteus mirabilis, Staphylococcus aureus, Proteus vulgaris, Escherichia coli and Klebsiella aeruginosa strains of bacteria. The results obtained revealed the wound dressing as potential wound dressings for burn wounds and sensitive skin.
Collapse
|
208
|
|
209
|
Luneva O, Olekhnovich R, Uspenskaya M. Bilayer Hydrogels for Wound Dressing and Tissue Engineering. Polymers (Basel) 2022; 14:polym14153135. [PMID: 35956650 PMCID: PMC9371176 DOI: 10.3390/polym14153135] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/30/2022] Open
Abstract
A large number of different skin diseases such as hits, acute, and chronic wounds dictate the search for alternative and effective treatment options. The wound healing process requires a complex approach, the key step of which is the choice of a dressing with controlled properties. Hydrogel-based scaffolds can serve as a unique class of wound dressings. Presented on the commercial market, hydrogel wound dressings are not found among proposals for specific cases and have a number of disadvantages—toxicity, allergenicity, and mechanical instability. Bilayer dressings are attracting great attention, which can be combined with multifunctional properties, high criteria for an ideal wound dressing (antimicrobial properties, adhesion and hemostasis, anti-inflammatory and antioxidant effects), drug delivery, self-healing, stimulus manifestation, and conductivity, depending on the preparation and purpose. In addition, advances in stem cell biology and biomaterials have enabled the design of hydrogel materials for skin tissue engineering. To improve the heterogeneity of the cell environment, it is possible to use two-layer functional gradient hydrogels. This review summarizes the methods and application advantages of bilayer dressings in wound treatment and skin tissue regeneration. Bilayered hydrogels based on natural as well as synthetic polymers are presented. The results of the in vitro and in vivo experiments and drug release are also discussed.
Collapse
|
210
|
Microbial biopolymers in articular cartilage tissue engineering. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03178-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
211
|
Man E, Oluwasanmi A, Lamprou DA, Goudie K, Liggat J, Hoskins C. Effect of preparation method on alginate wafer properties. J Appl Polym Sci 2022. [DOI: 10.1002/app.52941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ernest Man
- Department of Pure and Applied Chemistry University of Strathclyde Glasgow UK
| | - Adeolu Oluwasanmi
- Department of Pure and Applied Chemistry University of Strathclyde Glasgow UK
| | | | - Kirsty Goudie
- Department of Pure and Applied Chemistry University of Strathclyde Glasgow UK
| | - John Liggat
- Department of Pure and Applied Chemistry University of Strathclyde Glasgow UK
| | - Clare Hoskins
- Department of Pure and Applied Chemistry University of Strathclyde Glasgow UK
| |
Collapse
|
212
|
Wang H, Wang X, Wu D. Recent Advances of Natural Polysaccharide-based Double-network Hydrogels for Tissue Repair. Chem Asian J 2022; 17:e202200659. [PMID: 35837995 DOI: 10.1002/asia.202200659] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/08/2022] [Indexed: 11/08/2022]
Abstract
Natural polysaccharide hydrogels have been extensively explored for many years due to their outstanding biocompatibility and biodegradability, which are very promising candidates as artificial soft materials for biomedical applications. However, their inferior mechanical performances greatly limited their applications. Introduction of double-network (DN) structure has been well documented to be an efficient strategy for significant improvement of the mechanical property of hydrogels. Here, recent progress of natural polysaccharide-based DN hydrogels is reviewed from the perspective of fundamental concepts on both design rationale and preparation strategies to biomedical application in tissue repair. Retrospect of the DN-strengthened polysaccharide hydrogels can give a deep insight into the fundamental relationship of such bio-based hydrogels among structural design, mechanical properties and practical demands, thereby prompting their translation to clinical application prospects.
Collapse
Affiliation(s)
- Hufei Wang
- Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, CHINA
| | - Xing Wang
- Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, CHINA
| | - Decheng Wu
- Southern University of Science and Technology, Department of Biomedical Engineering, No. 1088 Xueyuan Avenue, 518055, Shenzhen, CHINA
| |
Collapse
|
213
|
Tahami SR, Nemati NH, Keshvari H, Khorasani MT. In vitro and in vivo evaluation of nanofibre mats containing Calendula officinalis extract as a wound dressing. J Wound Care 2022; 31:598-611. [PMID: 35797256 DOI: 10.12968/jowc.2022.31.7.598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE The present study aims to create Calendula officinalis-loaded nanofibre-based wound dressing materials to enhance the wound healing process. Calendula officinalis is an annual herb native to the Mediterranean region. It is antipyretic, antifungal, antioedema, antidiabetic, anti-inflammatory (wound, oral and pharyngeal mucosa), antispasmodic, treats chronic ocular surface diseases, acts as a stimulant and a diaphoretic. It is also used in the prevention of acute dermatitis, and in the treatment of gastrointestinal ulcers, wounds and burns. METHOD Electrospinning is an effective method for creating nano- and microfibres for biomedical applications. Calendula officinalis (CA) of various concentrations 5%, 10% and 15%)-loaded polyvinyl alcohol (PVA)/sodium alginate (SAlg) nanofibre mats were successfully produced via blend electrospinning. Nanofibre mats were evaluated using: scanning electron microscopy (SEM); Fourier transform infrared spectroscopy (FTIR) analysis; gel content; water vapour transmission rate (WVTR); swelling ratio; in vitro drug release studies; viability evaluation (cell culture and MTT assay); and an in vivo study using male Wistar rats. Rats were divided into three groups (n=3). In each group, rats were inflicted with five full-thickness wounds on the back and were treated with sterile gauze (control), PVA/SAlg nanofibre dressing (CA-free control), PVA/SAlg/CA5%, PVA/SAlg/CA10%, and PVA/SAlg/CA15% nanofibre dressing. RESULTS Results showed that the obtained fibres were smooth with no surface aggregates, indicating complete incorporation of Calendula officinalis. The release of Calendula officinalis from loaded PVA/SAlg fibre mats in the first four hours was burst released and then was constant. PVA/SAlg and PVA/SAlg/CA nanofibres were not toxic to L929 mouse fibroblasts and supported cell attachment and proliferation. The results of the in vivo study showed that the PVA/SAlg/CA10% nanofibre dressing had a higher full-thickness wound healing closure rate compared with the control group on days seven, 14 and 21 after treatment. CONCLUSION The results of this evaluation showed that PVA/SAlg/CA nanofibrous mats could be a candidate as an effective wound dressing; however, the percentage of CA in this compound needs further investigation.
Collapse
Affiliation(s)
- Seyed Rasoul Tahami
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Nahid Hassanzadeh Nemati
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hamid Keshvari
- Department of Biomedical Engineering Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Mohammad Taghi Khorasani
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.,Department of Biomaterial, Iran Polymer and Petrochemical Institute, Tehran, Iran
| |
Collapse
|
214
|
Anionic exopolysaccharide from Cryptococcus laurentii 70766 as an alternative for alginate for biomedical hydrogels. Int J Biol Macromol 2022; 212:370-380. [PMID: 35613678 DOI: 10.1016/j.ijbiomac.2022.05.133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/11/2022] [Accepted: 05/18/2022] [Indexed: 12/12/2022]
Abstract
Alginates are widely used polysaccharides for biomaterials engineering, which functional properties depend on guluronic and mannuronic acid as the building blocks. In this study, enzymatically crosslinked hydrogels based on sodium alginate (Na-Alg) and the exopolysaccharide (EPS) derived from Cryptococcus laurentii 70766 with glucuronic acid residues were synthesized and characterized as a new potential source of polysaccharide for biomaterials engineering. The EPS was extracted (1.05 ± 0.57 g/L) through ethanol precipitation. Then the EPS and Na-Alg were functionalized with tyramine hydrochloride to produce enzymatically crosslinked hydrogels in the presence of horseradish peroxidase (HRP) and H2O2. Major characteristics of the hydrogels such as gelling time, swelling ratio, rheology, cell viability, and biodegradability were studied. The swelling ratio and degradation profile of both hydrogels showed negative values, indicating an increased crosslinking degree and a lower water uptake percentage. The EPS hydrogel showed similar gelation kinetics compared to the Alg hydrogel. The EPS and its hydrogel were found cytocompatible. The results indicate the potential of EPS from C. laurentii 70766 for biomedical engineering due to its biocompatibility and degradability. Further studies are needed to confirm this EPS as an alternative for Alg in tissue engineering applications, particularly in the development of wound dressing products.
Collapse
|
215
|
Pajor K, Michalicha A, Belcarz A, Pajchel L, Zgadzaj A, Wojas F, Kolmas J. Antibacterial and Cytotoxicity Evaluation of New Hydroxyapatite-Based Granules Containing Silver or Gallium Ions with Potential Use as Bone Substitutes. Int J Mol Sci 2022; 23:ijms23137102. [PMID: 35806116 PMCID: PMC9266790 DOI: 10.3390/ijms23137102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/14/2022] [Accepted: 06/22/2022] [Indexed: 02/05/2023] Open
Abstract
The aim of the current work was to study the physicochemical properties and biological activity of different types of porous granules containing silver or gallium ions. Firstly, hydroxyapatites powders doped with Ga3+ or Ag+ were synthesized by the standard wet method. Then, the obtained powders were used to fabricate ceramic microgranules (AgM and GaM) and alginate/hydroxyapatite composite granules (AgT and GaT). The ceramic microgranules were also used to prepare a third type of granules (AgMT and GaMT) containing silver or gallium, respectively. All the granules turned out to be porous, except that the AgT and GaT granules were characterized by higher porosity and a better developed specific surface, whereas the microgranules had very fine, numerous micropores. The granules revealed a slow release of the substituted ions. All the granules except AgT were classified as non-cytotoxic according to the neutral red uptake (NRU) test and the MTT assay. The obtained powders and granules were subjected to various antibacterial test towards the following four different bacterial strains: Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa and Escherichia coli. The Ag-containing materials revealed high antibacterial activity.
Collapse
Affiliation(s)
- Kamil Pajor
- Department of Analytical Chemistry, Chair of Analytical Chemistry and Biomaterials, Medical University of Warsaw, Faculty of Pharmacy, 02-097 Warsaw, Poland; (K.P.); (L.P.)
| | - Anna Michalicha
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, 20-093 Lublin, Poland; (A.M.); (A.B.)
| | - Anna Belcarz
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, 20-093 Lublin, Poland; (A.M.); (A.B.)
| | - Lukasz Pajchel
- Department of Analytical Chemistry, Chair of Analytical Chemistry and Biomaterials, Medical University of Warsaw, Faculty of Pharmacy, 02-097 Warsaw, Poland; (K.P.); (L.P.)
| | - Anna Zgadzaj
- Department of Environmental Health Sciences, Medical University of Warsaw, Faculty of Pharmacy, 02-097 Warsaw, Poland; (A.Z.); (F.W.)
| | - Filip Wojas
- Department of Environmental Health Sciences, Medical University of Warsaw, Faculty of Pharmacy, 02-097 Warsaw, Poland; (A.Z.); (F.W.)
| | - Joanna Kolmas
- Department of Analytical Chemistry, Chair of Analytical Chemistry and Biomaterials, Medical University of Warsaw, Faculty of Pharmacy, 02-097 Warsaw, Poland; (K.P.); (L.P.)
- Correspondence:
| |
Collapse
|
216
|
Plant and Herbal Extracts as Ingredients of Topical Agents in the Prevention and Treatment Radiodermatitis: A Systematic Literature Review. COSMETICS 2022. [DOI: 10.3390/cosmetics9030063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Background: The use of herbal extracts as the source of antioxidant substances capable of neutralizing free radicals and providing protection from ionizing radiation appears to be an alternative therapy for radiodermatitis. As concerns the prevention and treatment of side effects, a lot of recommendations are based on proper experience of radiotherapy centers. We summarize recent research aiming at reducing radiation-induced skin injuries by use of proper skin care, using topical preparations with herbal extracts including onco-cosmetics. Methods: This article is limited to a critical analysis of scientific and professional literature. It concerns preparations in different physicochemical forms, e.g., gels, emulsions, ointments. We stress the connection between the type of applied skin care (type of preparation, its composition, the dose), the properties of the herbal extract and the evaluation of its efficiency in preventing and treating radiation reaction on skin. Conclusions: Herbal extracts can be added to recipes because they are part of a category of cosmeceutical supplements and can be introduced into preparations without prescription. The effectiveness evaluation for herbal extracts in radiotherapy is not an easy task since there are no strict guidelines. Studies should be preceded by the analysis of herbal extracts and recipe in terms of physicochemical, dermatological and performance characteristics.
Collapse
|
217
|
Sommer K, Zollfrank C. Block Copolysaccharides from Methylated and Acetylated Cellulose and Starch. Biomacromolecules 2022; 23:2280-2289. [DOI: 10.1021/acs.biomac.1c01673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Korbinian Sommer
- Chair for Biogenic Polymers, TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Schulgasse 16, Straubing 94315, Germany
| | - Cordt Zollfrank
- Chair for Biogenic Polymers, TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Schulgasse 16, Straubing 94315, Germany
| |
Collapse
|
218
|
Hu H, Luo F, Zhang Q, Xu M, Chen X, Liu Z, Xu H, Wang L, Ye F, Zhang K, Chen B, Zheng S, Jin J. Berberine coated biocomposite hemostatic film based alginate as absorbable biomaterial for wound healing. Int J Biol Macromol 2022; 209:1731-1744. [PMID: 35487376 DOI: 10.1016/j.ijbiomac.2022.04.132] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/13/2022] [Accepted: 04/17/2022] [Indexed: 01/08/2023]
Abstract
In wound treatment, severe bleeding and infection are always primary challenges. Therefore, it is highly desired to develop novel dressing with both hemostatic and antibacterial capability. Herein, a series of biocomposite hemostatic films (BHFs) based alginate/chitosan/collagen-berberine have been prepared and well characterized for further biofunctional study. We have demonstrated that the hemostatic and antibacterial activities were significantly enhanced by calcium/berberine dual-crosslinking system in the film. Through the synergistic effects, BHF-6B exhibited a shorter in vivo clotting and wound healing time than that of commercial dressing in rat tail amputation and full-thickness skin defect models. Additionally, BHF-6B showed excellent bacteriostatic activity with long-term effects. Moreover, hemolysis and cytotoxicity tests in vitro illustrated the prominent biocompatibility of the composite films. Notably, BHF-6B could be degraded quickly and completely in vivo. Overall, the present work indicated that the functionalized BHF-6B has great potential as an absorbable biomaterial for wound treatment.
Collapse
Affiliation(s)
- Haofeng Hu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Fulin Luo
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Qian Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Ming Xu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xin Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhihao Liu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Haodong Xu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Lei Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Fei Ye
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Kui Zhang
- International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Bin Chen
- Department of Orthopedics, The Second Affiliated Hospital of Jiaxing University, Jiaxing 314000, China
| | - Song Zheng
- Department of Orthopedics, The Second Affiliated Hospital of Jiaxing University, Jiaxing 314000, China
| | - Jia Jin
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
219
|
Pan F, Giovannini G, Zhang S, Altenried S, Zuber F, Chen Q, Boesel LF, Ren Q. pH-responsive silica nanoparticles for the treatment of skin wound infections. Acta Biomater 2022; 145:172-184. [PMID: 35417797 DOI: 10.1016/j.actbio.2022.04.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/15/2022] [Accepted: 04/06/2022] [Indexed: 12/20/2022]
Abstract
Chronic wounds are not only a burden for patients but also challenging for clinic treatment due to biofilm formation. Here, we utilized the phenomenon that chronic wounds possess an elevated local pH of 8.9 and developed pH-sensitive silica nanoparticles (SiNPs) to achieve a targeted drug release on alkaline wounds and optimized drug utility. Chlorhexidine (CHX), a disinfectant and antiseptic, was loaded into SiNPs as the model drug. The loaded CHX displayed a release 4 - 5 fold higher at pH 8.0 and 8.5 than at pH 6.5, 7.0 and 7.4. CHX-SiNPs furthermore exhibited a distinctive antibacterial activity at pH 8.0 and 8.5 against both Gram-negative and -positive bacterial pathogens, while no cytotoxicity was found according to cell viability analysis. The CHX-SiNPs were further formulated into alginate hydrogels to allow ease of use. The antibacterial efficacy of CHX-SiNPs was then studied with artificial wounds on ex vivo human skin. Treatment with CHX-SiNPs enabled nearly a 4-lg reduction of the viable bacterial cells, and the alginate formulated CHX-SiNPs led to almost a 3-lg reduction compared to the negative controls. The obtained results demonstrated that CHX-SiNPs are capable of efficient pH-triggered drug release, leading to high antibacterial efficacy. Moreover, CHX-SiNPs enlighten clinic potential towards the treatment of chronic wound infections. STATEMENT OF SIGNIFICANCE: A platform for controlled drug release at a relatively high pH value i.e., over 8, was established by tuning the physical structures of silica nanoparticles (SiNPs). Incorporation of chlorhexidine, an antimicrobial agent, into the fabricated SiNPs allowed a distinctive inhibition of bacterial growth at alkaline pHs, but not at acidic pHs. The efficacy of the SiNPs loaded with chlorhexidine in treating wound infections was further validated by utilizing ex vivo human skin samples. The presented work demonstrates clinic potential of employing alkaline pH as a non-invasive stimulus to achieve on-demand delivery of antimicrobials through SiNPs, showcasing a valuable approach to treating bacterial infections on chronic wounds.
Collapse
|
220
|
Wang X, Gao S, Yun S, Zhang M, Peng L, Li Y, Zhou Y. Microencapsulating Alginate-Based Polymers for Probiotics Delivery Systems and Their Application. Pharmaceuticals (Basel) 2022; 15:644. [PMID: 35631470 PMCID: PMC9144165 DOI: 10.3390/ph15050644] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/02/2022] [Accepted: 05/17/2022] [Indexed: 12/15/2022] Open
Abstract
Probiotics exhibit many health benefits and a great potential for broad applications in pharmaceutical fields, such as prevention and treatment of gastrointestinal tract diseases (irritable bowel syndrome), prevention and therapy of allergies, certain anticancer effects, and immunomodulation. However, their applications are limited by the low viability and metabolic activity of the probiotics during processing, storage, and delivery in the digestive tract. To overcome the mentioned limitations, probiotic delivery systems have attracted much attention. This review focuses on alginate as a preferred polymer and presents recent advances in alginate-based polymers for probiotic delivery systems. We highlight several alginate-based delivery systems containing various types of probiotics and the physical and chemical modifications with chitosan, cellulose, starch, protein, fish gel, and many other materials to enhance their performance, of which the viability and protective mechanisms are discussed. Withal, various challenges in alginate-based polymers for probiotics delivery systems are traced out, and future directions, specifically on the use of nanomaterials as well as prebiotics, are delineated to further facilitate subsequent researchers in selecting more favorable materials and technology for probiotic delivery.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yanxia Zhou
- Marine College, Shandong University, Weihai 264209, China; (X.W.); (S.G.); (S.Y.); (M.Z.); (L.P.); (Y.L.)
| |
Collapse
|
221
|
Wang F, Zhang W, Li H, Chen X, Feng S, Mei Z. How Effective are Nano-Based Dressings in Diabetic Wound Healing? A Comprehensive Review of Literature. Int J Nanomedicine 2022; 17:2097-2119. [PMID: 35592100 PMCID: PMC9113038 DOI: 10.2147/ijn.s361282] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 05/04/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic wound caused by diabetes is an important cause of disability and seriously affects the quality of life of patients. Therefore, it is of great clinical significance to develop a wound dressing that can accelerate the healing of diabetic wounds. Nanoparticles have great advantages in promoting diabetic wound healing due to their antibacterial properties, low cytotoxicity, good biocompatibility and drug delivery ability. Adding nanoparticles to the dressing matrix and using nanoparticles to deliver drugs and cytokines to promote wound healing has proven to be effective. This review will focus on the effects of diabetes on wound healing, introduce the properties, preparation methods and action mechanism of nanoparticles in wound healing, and describe the effects and application status of various nanoparticle-loaded dressings in diabetes-related chronic wound healing.
Collapse
Affiliation(s)
- Feng Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, People’s Republic of China
| | - Wenyao Zhang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, People’s Republic of China
| | - Hao Li
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, People’s Republic of China
| | - Xiaonan Chen
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, People’s Republic of China
| | - Sining Feng
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, People’s Republic of China
| | - Ziqing Mei
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, People’s Republic of China
| |
Collapse
|
222
|
A Review on Recent Progress of Stingless Bee Honey and Its Hydrogel-Based Compound for Wound Care Management. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103080. [PMID: 35630557 PMCID: PMC9145090 DOI: 10.3390/molecules27103080] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 11/28/2022]
Abstract
Stingless bee honey has a distinctive flavor and sour taste compared to Apis mellifera honey. Currently, interest in farming stingless bees is growing among rural residents to meet the high demand for raw honey and honey-based products. Several studies on stingless bee honey have revealed various therapeutic properties for wound healing applications. These include antioxidant, antibacterial, anti-inflammatory, and moisturizing properties related to wound healing. The development of stingless bee honey for wound healing applications, such as incorporation into hydrogels, has attracted researchers worldwide. As a result, the effectiveness of stingless bee honey against wound infections can be improved in the future to optimize healing rates. This paper reviewed the physicochemical and therapeutic properties of stingless bee honey and its efficacy in treating wound infection, as well as the incorporation of stingless bee honey into hydrogels for optimized wound dressing.
Collapse
|
223
|
Iliou K, Kikionis S, Ioannou E, Roussis V. Marine Biopolymers as Bioactive Functional Ingredients of Electrospun Nanofibrous Scaffolds for Biomedical Applications. Mar Drugs 2022; 20:md20050314. [PMID: 35621965 PMCID: PMC9143254 DOI: 10.3390/md20050314] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 04/30/2022] [Accepted: 05/01/2022] [Indexed: 02/01/2023] Open
Abstract
Marine biopolymers, abundantly present in seaweeds and marine animals, feature diverse structures and functionalities, and possess a wide range of beneficial biological activities. Characterized by high biocompatibility and biodegradability, as well as unique physicochemical properties, marine biopolymers are attracting a constantly increasing interest for the development of advanced systems for applications in the biomedical field. The development of electrospinning offers an innovative technological platform for the production of nonwoven nanofibrous scaffolds with increased surface area, high encapsulation efficacy, intrinsic interconnectivity, and structural analogy to the natural extracellular matrix. Marine biopolymer-based electrospun nanofibrous scaffolds with multifunctional characteristics and tunable mechanical properties now attract significant attention for biomedical applications, such as tissue engineering, drug delivery, and wound healing. The present review, covering the literature up to the end of 2021, highlights the advancements in the development of marine biopolymer-based electrospun nanofibers for their utilization as cell proliferation scaffolds, bioadhesives, release modifiers, and wound dressings.
Collapse
|
224
|
AL-MOALEMI HAFEDHAHMED, IZWAN ABD RAZAK SAIFUL, BOHARI SITIPAULIENAMOHD. ELECTROSPUN SODIUM ALGINATE/POLY(ETHYLENE OXIDE) NANOFIBERS FOR WOUND HEALING APPLICATIONS: CHALLENGES AND FUTURE DIRECTIONS. CELLULOSE CHEMISTRY AND TECHNOLOGY 2022; 56:251-270. [DOI: 10.35812/cellulosechemtechnol.2022.56.23] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Alginate is an interesting natural biopolymer to be considered for biomedical applications due to its advantages and good biological properties. These biological properties make electrospun alginate nanofibers suitable for various uses in the biomedical field, such as wound healing dressings, drug delivery systems, or both. Unfortunately, the fabrication of alginate nanofibers by electrospinning is very challenging because of the high viscosity of the solution, high surface tension and rigidity in water due to hydrogen bonding, and also their diaxial linkages. This review presents an overview of the factors affecting the electrospinning process of sodium alginate/poly(ethylene oxide) (SA/PEO), the application of SA/PEO in drug delivery systems for wound healing applications, and the degradation and swelling properties of SA/PEO. The challenges and future directions of SA/PEO in the medical field are also discussed.
Collapse
|
225
|
Eldeeb AE, Salah S, Amer MS, Elkasabgy NA. 3D nanocomposite alginate hydrogel loaded with pitavastatin nanovesicles as a functional wound dressing with controlled drug release; preparation, in-vitro and in-vivo evaluation. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103292] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
226
|
Niu C, Wang L, Ji D, Ren M, Ke D, Fu Q, Zhang K, Yang X. Fabrication of SA/Gel/C scaffold with 3D bioprinting to generate micro-nano porosity structure for skin wound healing: a detailed animal in vivo study. CELL REGENERATION (LONDON, ENGLAND) 2022; 11:10. [PMID: 35490207 PMCID: PMC9056587 DOI: 10.1186/s13619-022-00113-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/22/2022] [Indexed: 12/15/2022]
Abstract
Bioprinting has exhibited remarkable promises for the fabrication of functional skin substitutes. However, there are some significant challenges for the treatment of full-thickness skin defects in clinical practice. It is necessary to determine bioinks with suitable mechanical properties and desirable biocompatibilities. Additionally, the key for printing skin is to design the skin structure optimally, enabling the function of the skin. In this study, the full-thickness skin scaffolds were prepared with a gradient pore structure constructing the dense layer, epidermis, and dermis by different ratios of bioinks. We hypothesized that the dense layer protects the wound surface and maintains a moist environment on the wound surface. By developing a suitable hydrogel bioink formulation (sodium alginate/gelatin/collagen), to simulate the physiological structure of the skin via 3D printing, the proportion of hydrogels was optimized corresponding to each layer. These results reveal that the scaffold has interconnected macroscopic channels, and sodium alginate/gelatin/collagen scaffolds accelerated wound healing, reduced skin wound contraction, and re-epithelialization in vivo. It is expected to provide a rapid and economical production method of skin scaffolds for future clinical applications.
Collapse
Affiliation(s)
- Changmei Niu
- Novaprint Therapeutics Suzhou Co., Ltd, Suzhou, 215000, China
| | - Liyang Wang
- Novaprint Therapeutics Suzhou Co., Ltd, Suzhou, 215000, China.,Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Dongdong Ji
- Department of Burns and Plastic Surgery Affiliated Suzhou Hospital Of Nanjing Medical University, Suzhou, 215000, China
| | - Mingjun Ren
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Dongxu Ke
- Novaprint Therapeutics Suzhou Co., Ltd, Suzhou, 215000, China
| | - Qiang Fu
- The Department of Urology, Affiliated Sixth People's Hospital, Shanghai JiaoTong University, Shanghai, 200235, China.,Shanghai Eastern Institute of Urologic Reconstruction, Shanghai, 200000, China
| | - Kaile Zhang
- The Department of Urology, Affiliated Sixth People's Hospital, Shanghai JiaoTong University, Shanghai, 200235, China.,Shanghai Eastern Institute of Urologic Reconstruction, Shanghai, 200000, China
| | - Xi Yang
- Novaprint Therapeutics Suzhou Co., Ltd, Suzhou, 215000, China.
| |
Collapse
|
227
|
Lin J, Jiao G, Kermanshahi-pour A. Algal Polysaccharides-Based Hydrogels: Extraction, Synthesis, Characterization, and Applications. Mar Drugs 2022; 20:306. [PMID: 35621958 PMCID: PMC9146341 DOI: 10.3390/md20050306] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 02/04/2023] Open
Abstract
Hydrogels are three-dimensional crosslinked hydrophilic polymer networks with great potential in drug delivery, tissue engineering, wound dressing, agrochemicals application, food packaging, and cosmetics. However, conventional synthetic polymer hydrogels may be hazardous and have poor biocompatibility and biodegradability. Algal polysaccharides are abundant natural products with biocompatible and biodegradable properties. Polysaccharides and their derivatives also possess unique features such as physicochemical properties, hydrophilicity, mechanical strength, and tunable functionality. As such, algal polysaccharides have been widely exploited as building blocks in the fabrication of polysaccharide-based hydrogels through physical and/or chemical crosslinking. In this review, we discuss the extraction and characterization of polysaccharides derived from algae. This review focuses on recent advances in synthesis and applications of algal polysaccharides-based hydrogels. Additionally, we discuss the techno-economic analyses of chitosan and acrylic acid-based hydrogels, drawing attention to the importance of such analyses for hydrogels. Finally, the future prospects of algal polysaccharides-based hydrogels are outlined.
Collapse
Affiliation(s)
- Jianan Lin
- Biorefining and Remediation Laboratory, Department of Process Engineering and Applied Science, Dalhousie University, 1360 Barrington St., Halifax, NS B3J 1Z1, Canada;
| | - Guangling Jiao
- AKSO Marine Biotech Inc., Suite 3, 1697 Brunswick St., Halifax, NS B3J 2G3, Canada;
| | - Azadeh Kermanshahi-pour
- Biorefining and Remediation Laboratory, Department of Process Engineering and Applied Science, Dalhousie University, 1360 Barrington St., Halifax, NS B3J 1Z1, Canada;
| |
Collapse
|
228
|
Afzali M, Boateng JS. Composite Fish Collagen-Hyaluronate Based Lyophilized Scaffolds Modified with Sodium Alginate for Potential Treatment of Chronic Wounds. Polymers (Basel) 2022; 14:1550. [PMID: 35458297 PMCID: PMC9031246 DOI: 10.3390/polym14081550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/02/2022] [Accepted: 04/07/2022] [Indexed: 01/13/2023] Open
Abstract
Chronic wounds are characterized by both decreased collagen deposition and increased collagen breakdown. It is reasonable to hypothesize that exogenous collagen can potentially promote wound healing by reducing degradation enzymes in the wound environment and disrupting the cycle of chronicity. Therefore, this study aimed to develop an optimal combination of fish collagen (FCOL), sodium alginate (SA), and hyaluronic acid (HA) loaded with bovine serum albumin (BSA) as a model protein fabricated as lyophilized scaffolds. The effects of sodium alginate (SA#) with higher mannuronic acid (M) were compared to sodium alginate (SA*) with higher guluronic acid (G). The SA* with higher G resulted in elegant scaffolds with hardness ranging from 3.74 N−4.29 N that were able to withstand the external force due to the glycosidic bonds in guluronic acid. Furthermore, the high G content also had a significant effect on the pore size, pore shape, and porosity. The water absorption (WA) ranged from 380−1382 (%) and equilibrium water content (EWC) 79−94 (%) after 24 h incubation at 37 °C. The SA* did not affect the water vapor transmission rate (WVTR) but incorporating BSA significantly increased the WVTR making these wound dressing scaffolds capable of absorbing about 50% exudate from a heavily exuding chronic wound. The protein released from the composite systems was best explained by the Korsmeyer−Peppas model with regression R2 values ranging from 0.896 to 0.971 and slope or n < 0.5 indicating that the BSA release mechanism was governed by quasi-Fickian diffusion. Cell viability assay showed that the scaffolds did not inhibit the proliferation of human dermal fibroblasts and human epidermal keratinocytes, and are therefore biocompatible. In vitro blood analysis using human whole blood confirmed that the BSA-loaded SA*:FCOL:HA scaffolds reduced the blood clotting index (BCI) by up to 20% compared to a commercially available sponge for chronic wounds. These features confirm that SA*:FCOL:HA scaffolds could be applied as a multifunctional wound dressing.
Collapse
Affiliation(s)
| | - Joshua Siaw Boateng
- School of Science, Faculty of Engineering and Science, University of Greenwich, Kent ME4 4TB, UK;
| |
Collapse
|
229
|
Al-Hatamleh MAI, Alshaer W, Hatmal MM, Lambuk L, Ahmed N, Mustafa MZ, Low SC, Jaafar J, Ferji K, Six JL, Uskoković V, Mohamud R. Applications of Alginate-Based Nanomaterials in Enhancing the Therapeutic Effects of Bee Products. Front Mol Biosci 2022; 9:865833. [PMID: 35480890 PMCID: PMC9035631 DOI: 10.3389/fmolb.2022.865833] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/21/2022] [Indexed: 12/17/2022] Open
Abstract
Since the ancient times, bee products (i.e., honey, propolis, pollen, bee venom, bee bread, and royal jelly) have been considered as natural remedies with therapeutic effects against a number of diseases. The therapeutic pleiotropy of bee products is due to their diverse composition and chemical properties, which is independent on the bee species. This has encouraged researchers to extensively study the therapeutic potentials of these products, especially honey. On the other hand, amid the unprecedented growth in nanotechnology research and applications, nanomaterials with various characteristics have been utilized to improve the therapeutic efficiency of these products. Towards keeping the bee products as natural and non-toxic therapeutics, the green synthesis of nanocarriers loaded with these products or their extracts has received a special attention. Alginate is a naturally produced biopolymer derived from brown algae, the desirable properties of which include biodegradability, biocompatibility, non-toxicity and non-immunogenicity. This review presents an overview of alginates, including their properties, nanoformulations, and pharmaceutical applications, placing a particular emphasis on their applications for the enhancement of the therapeutic effects of bee products. Despite the paucity of studies on fabrication of alginate-based nanomaterials loaded with bee products or their extracts, recent advances in the area of utilizing alginate-based nanomaterials and other types of materials to enhance the therapeutic potentials of bee products are summarized in this work. As the most widespread and well-studied bee products, honey and propolis have garnered a special interest; combining them with alginate-based nanomaterials has led to promising findings, especially for wound healing and skin tissue engineering. Furthermore, future directions are proposed and discussed to encourage researchers to develop alginate-based stingless bee product nanomedicines, and to help in selecting suitable methods for devising nanoformulations based on multi-criteria decision making models. Also, the commercialization prospects of nanocomposites based on alginates and bee products are discussed. In conclusion, preserving original characteristics of the bee products is a critical challenge in developing nano-carrier systems. Alginate-based nanomaterials are well suited for this task because they can be fabricated without the use of harsh conditions, such as shear force and freeze-drying, which are often used for other nano-carriers. Further, conjunction of alginates with natural polymers such as honey does not only combine the medicinal properties of alginates and honey, but it could also enhance the mechanical properties and cell adhesion capacity of alginates.
Collapse
Affiliation(s)
| | - Walhan Alshaer
- Cell Therapy Center (CTC), The University of Jordan, Amman, Jordan
| | - Ma’mon M. Hatmal
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, Jordan
| | - Lidawani Lambuk
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Naveed Ahmed
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Mohd Zulkifli Mustafa
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Siew Chun Low
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Malaysia
| | - Juhana Jaafar
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Malaysia
| | - Khalid Ferji
- LCPM, CNRS, Université de Lorraine, Nancy, France
| | - Jean-Luc Six
- LCPM, CNRS, Université de Lorraine, Nancy, France
| | | | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- *Correspondence: Rohimah Mohamud,
| |
Collapse
|
230
|
Guo N, Xia Y, Zeng W, Chen J, Wu Q, Shi Y, Li G, Huang Z, Wang G, Liu Y. Alginate-based aerogels as wound dressings for efficient bacterial capture and enhanced antibacterial photodynamic therapy. Drug Deliv 2022; 29:1086-1099. [PMID: 35373683 PMCID: PMC9048949 DOI: 10.1080/10717544.2022.2058650] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The development of novel wound dressings, such as aerogels, with rapid hemostasis and bactericidal capacities for pre-hospital care is necessary. To prevent the occurrence of bacterial resistance, antibacterial photodynamic therapy (aPDT) with broad-spectrum antibacterial ability and negligible bacterial resistance has been intensively studied. However, photosensitizers often suffer from poor water solubility, short singlet oxygen (1O2) half-life and restricted 1O2 diffusion distance. Herein, sodium alginate was covalently modified by photosensitizers and phenylboronic acid, and cross-linked by Ca(II) ions to generate SA@TPAPP@PBA aerogel after lyophilization as an antibacterial photodynamic wound dressing. Afterwards, its photodynamic and bacterial capture activities were intensively evaluated. Furthermore, its hemostasis and bactericidal efficiency against Staphylococcus aureus were assessed via in vitro and in vivo assays. First, chemical immobilization of photosensitizers led to an enhancement of its solubility. Moreover, it showed an excellent hemostasis capacity. Due to the formation of reversible covalent bonds between phenylboronic acid and diol groups on bacterial cell surface, the aerogel could capture S. aureus tightly and dramatically enhance aPDT. To sum up, the prepared aerogel illustrated excellent hemostasis capacity and antibacterial ability against S. aureus. Therefore, they have great potential to be utilized as wound dressing in clinical trials.
Collapse
Affiliation(s)
- Ning Guo
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, China
| | - Yu Xia
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, China
| | - Weishen Zeng
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, China
| | - Jia Chen
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, China
| | - Quanxin Wu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, China
| | - Yaxin Shi
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, China
| | - Guoying Li
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, China
| | - Zhuoyi Huang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, China
| | - Guanhai Wang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, China
| | - Yun Liu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, China.,The Marine Biomedical Research Institute of Guangdong, Zhanjiang, China
| |
Collapse
|
231
|
Droplet-based bioprinting enables the fabrication of cell–hydrogel–microfibre composite tissue precursors. Biodes Manuf 2022. [DOI: 10.1007/s42242-022-00192-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
AbstractComposites offer the option of coupling the individual benefits of their constituents to achieve unique material properties, which can be of extra value in many tissue engineering applications. Strategies combining hydrogels with fibre-based scaffolds can create tissue constructs with enhanced biological and structural functionality. However, developing efficient and scalable approaches to manufacture such composites is challenging. Here, we use a droplet-based bioprinting system called reactive jet impingement (ReJI) to integrate a cell-laden hydrogel with a microfibrous mesh. This system uses microvalves connected to different bioink reservoirs and directed to continuously jet bioink droplets at one another in mid-air, where the droplets react and form a hydrogel that lands on a microfibrous mesh. Cell–hydrogel–fibre composites are produced by embedding human dermal fibroblasts at two different concentrations (5 × 106 and 30 × 106 cells/mL) in a collagen–alginate–fibrin hydrogel matrix and bioprinted onto a fibre-based substrate. Our results show that both types of cell–hydrogel–microfibre composite maintain high cell viability and promote cell–cell and cell–biomaterial interactions. The lower fibroblast density triggers cell proliferation, whereas the higher fibroblast density facilitates faster cellular organisation and infiltration into the microfibres. Additionally, the fibrous component of the composite is characterised by high swelling properties and the quick release of calcium ions. The data indicate that the created composite constructs offer an efficient way to create highly functional tissue precursors for laminar tissue engineering, particularly for wound healing and skin tissue engineering applications.
Graphic abstract
Collapse
|
232
|
A Mild Method for Encapsulation of Citral in Monodispersed Alginate Microcapsules. Polymers (Basel) 2022; 14:polym14061165. [PMID: 35335496 PMCID: PMC8954088 DOI: 10.3390/polym14061165] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 02/04/2023] Open
Abstract
Citral is a typical UV-irritation and acid-sensitive active and here we develop a mild method for the encapsulation of citral in calcium alginate microcapsules, in which UV irritation or acetic acid is avoided. Monodispersed oil-in-water-in-oil (O/W/O) emulsions are generated in a capillary microfluidic device as precursors. The middle aqueous phase of O/W/O emulsions contains sodium alginate, calcium-ethylenediaminetetraacetic acid (EDTA-Ca) complex as the calcium source, and D-(+)-Gluconic acid δ-lactone (GDL) as the acidifier. Hydrolysis of GDL will decrease the pH value of the middle aqueous solution, which will trigger the calcium ions released from the EDTA-Ca complex to cross-link with alginate molecules. After the gelling process, the O/W/O emulsions will convert to alginate microcapsules with a uniform structure and monodispersed size. The preparation conditions for alginate microcapsules are optimized, including the constituent concentration in the middle aqueous phase of O/W/O emulsions and the mixing manner of GDL with the alginate-contained aqueous solution. Citral-containing alginate microcapsules are successfully prepared by this mild method and the sustained-release characteristic of citral from alginate microcapsules is analyzed. Furthermore, a typical application of citral-containing alginate microcapsules to delay the oxidation of oil is also demonstrated. The mild gelling method provides us a chance to encapsulate sensitive hydrophobic actives with alginate, which takes many potential applications in pharmaceutical, food, and cosmetic areas.
Collapse
|
233
|
Recent progress of collagen, chitosan, alginate and other hydrogels in skin repair and wound dressing applications. Int J Biol Macromol 2022; 208:400-408. [PMID: 35248609 DOI: 10.1016/j.ijbiomac.2022.03.002] [Citation(s) in RCA: 171] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/01/2022] [Accepted: 03/01/2022] [Indexed: 02/05/2023]
Abstract
Human understanding of skin is constantly ongoing. Great progress has been made in skin repair, wound dressing regeneration biomaterials research in recent years. This review introduced the clinical research and guiding principles of skin repair, wound dressing biomaterials at home and abroad, introduced the classification of various skin repair and wound dressing, listed the composition and performance of different dressing biomaterials, including traditional, natural, synthetic, tissue-engineered dressing materials were extensively reviewed. The biological molecular structures and biological function characteristics of different dressing biomaterials are comprehensively reviewed. Collagen, chitosan, alginate hydrogels et al. as the most popular biological macromolecules in skin repair and wound dressing applications were reviewed. The future development direction is also prospected. This paper reviews the research progress of advanced functional skin repair and wound dressing, which provides a reference for the modifications and applications of wound dressings.
Collapse
|
234
|
Enhancing clinical applications of PVA hydrogel by blending with collagen hydrolysate and silk sericin. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-02965-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
235
|
Vidovic S, Stojkovska J, Stevanovic M, Balanc B, Vukasinovic-Sekulic M, Marinkovic A, Obradovic B. Effects of poly(vinyl alcohol) blending with Ag/alginate solutions to form nanocomposite fibres for potential use as antibacterial wound dressings. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211517. [PMID: 35360353 PMCID: PMC8965402 DOI: 10.1098/rsos.211517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/01/2022] [Indexed: 05/03/2023]
Abstract
In this work, nanocomposite fibres and microfibres based on alginate and poly(vinyl alcohol) (PVA) with silver nanoparticles (AgNPs) were produced and characterized for potential application as antibacterial wound dressings. PVA/Ag/Na-alginate colloid solution was used for the preparation of the fibres by a simple extrusion technique followed by freezing-thawing cycles. UV-Visible spectroscopy confirmed successful preservation of AgNPs in fibres while Fourier transform infrared spectroscopy has shown a balanced combined effect on the Ca-alginate spatial arrangement with the addition of both AgNPs and PVA. The presence of PVA in fibres induced an increase in the swelling degree as compared with that of Ag/Ca-alginate fibres (approx. 28 versus approx. 14). Still, the initially produced PVA/Ca-alginate fibres were mechanically weaker than Ca-alginate fibres, but after drying and rehydration exhibited better mechanical properties. Also, the obtained fibres released AgNPs and/or silver ions at the concentration of approximately 2.6 µg cm-3 leading to bacteriostatic effects against Staphylococcus aureus and Escherichia coli. These results are relevant for practical utilization of the fibres, which could be stored and applied in the dry form with preserved mechanical stability, sorption capacity and antibacterial activity.
Collapse
Affiliation(s)
- Srdjan Vidovic
- Faculty of Technology and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia
| | - Jasmina Stojkovska
- Faculty of Technology and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia
- Innovation Center of the Faculty of Technology and Metallurgy, 11000 Belgrade, Serbia
| | - Milan Stevanovic
- Faculty of Technology and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia
| | - Bojana Balanc
- Faculty of Technology and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia
- Innovation Center of the Faculty of Technology and Metallurgy, 11000 Belgrade, Serbia
| | | | - Aleksandar Marinkovic
- Faculty of Technology and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia
| | - Bojana Obradovic
- Faculty of Technology and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
236
|
Abdel-Mageed HM, Abd El Aziz AE, Abdel Raouf BM, Mohamed SA, Nada D. Antioxidant-biocompatible and stable catalase-based gelatin-alginate hydrogel scaffold with thermal wound healing capability: immobilization and delivery approach. 3 Biotech 2022; 12:73. [PMID: 35211369 PMCID: PMC8859020 DOI: 10.1007/s13205-022-03131-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/24/2022] [Indexed: 12/19/2022] Open
Abstract
Hydrogel-based matrix prepared using biopolymers is a new frontier of emerging platforms for enzyme immobilization for biomedical applications. Catalase (CAT) delivery can be effective in inhibiting reactive oxygen species (ROS)-mediated prolongation of the wound healing process. In this study, to improve CAT stability for effective application, gelatin(Gel)–alginate (Alg) biocompatible hydrogel (Gel–Alg), as immobilization support, was prepared using calcium chloride as an ionic cross-linker. High entrapment efficiency of 92% was obtained with 2% Gel and 1.5% Alg. Hydrogel immobilized CAT (CAT–Gel–Alg) showed a wide range of pH from 4 to 9 and temperature stability between 20 to 60 °C, compared to free CAT. CAT–Gel–Alg kinetic parameters revealed an increased Km (24.15 mM) and a decreased Vmax (1.39 µmol H2O2/mg protein min) × 104. CAT–Gel–Alg retained 52% of its original activity after 20 consecutive catalytic runs and displayed improved thermal stability with a higher t1/2 value (half-life of 100.43 vs. 46 min). In addition, 85% of the initial activity was maintained after 8 weeks’ storage at 4 °C. At 24 h after thermal injury, a statistically significant difference in lesion sizes between the treated group and the control group was reported. Finally, our findings suggest that the superior CAT–Gel–Alg stability and reusability are resonant features for efficient biomedical applications, and ROS scavenging by CAT in the post-burn phase offers protection for local treatment of burned tissues with encouraging wound healing kinetics.
Collapse
Affiliation(s)
| | - Amira Emad Abd El Aziz
- Centre of Excellence, Arab Academy for Science and Technology and Maritime Transport, Alexandria, Egypt
| | | | - Saleh Ahmed Mohamed
- Molecular Biology Department, National Research Centre, El Behoth St, Dokki, Cairo, Egypt
| | - Dina Nada
- Pharmacology and Biochemistry Department, Faculty of Pharmacy, The British University in Egypt (BUE), Cairo, Egypt
| |
Collapse
|
237
|
Pan X, Yuan S, Xun X, Fan Z, Xue X, Zhang C, Wang J, Deng J. Long-Term Recruitment of Endogenous M2 Macrophages by Platelet Lysate-Rich Plasma Macroporous Hydrogel Scaffold for Articular Cartilage Defect Repair. Adv Healthc Mater 2022; 11:e2101661. [PMID: 34969180 DOI: 10.1002/adhm.202101661] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/21/2021] [Indexed: 01/08/2023]
Abstract
After cartilage damage, a large number of monocytes/macrophages infiltrate into adjacent synovium and the resident macrophages in synovial tissue transform to activated macrophages (M1), which secrete pro-inflammatory cytokines to induce sustained inflammation and chondrocyte apoptotic. However, current clinical therapies for cartilage repair can rarely achieve long-term anti-inflammatory regulation and satisfactory outcomes. Herein, a platelet lysate-rich plasma macroporous hydrogel (PLPMH) scaffold with around 100 µm pore size and 1.25 MPa Young's modulus is developed to sustainedly recruit and polarize endogenous anti-inflammatory macrophages (M2) for improving cartilage defect repair. PLPMH scaffold can steadily release sphingosine1-phosphate and proteins via gradual degradation, thus inducing M2 macrophages migration or resting (M0) macrophages migration and then polarization to M2 phenotype, and improving the secretion of anti-inflammatory cytokines. Furthermore, PLPMH scaffold exhibits negligible inflammatory responses in vivo and promotes endogenous M2 macrophage infiltration in large numbers and long-time duration to provide a local anti-inflammatory microenvironment, which even lasts for 42 d. In a rabbit model of cartilage defect, PLPMH scaffold increases the ratio of M2 macrophages and improves cartilage tissue regeneration. These studies support that PLPMH scaffold may have a great potential in articular cartilage tissue engineering by providing an anti-inflammatory and pro-regenerative microenvironment.
Collapse
Affiliation(s)
- Xiaoyun Pan
- Department of Orthopaedics The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou Zhejiang 325000 China
- Key Laboratory of Orthopaedics of Zhejiang Province Wenzhou Medical University Wenzhou Zhejiang 325000 China
| | - Shanshan Yuan
- Wenzhou Institute University of Chinese Academy Sciences Wenzhou Zhejiang 325000 China
| | - Xiaojie Xun
- Wenzhou Institute University of Chinese Academy Sciences Wenzhou Zhejiang 325000 China
| | | | - Xinghe Xue
- Department of Orthopaedics The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou Zhejiang 325000 China
- Key Laboratory of Orthopaedics of Zhejiang Province Wenzhou Medical University Wenzhou Zhejiang 325000 China
| | - Changhuan Zhang
- Wenzhou Institute University of Chinese Academy Sciences Wenzhou Zhejiang 325000 China
| | - Jilong Wang
- Wenzhou Institute University of Chinese Academy Sciences Wenzhou Zhejiang 325000 China
| | - Junjie Deng
- Department of Orthopaedics The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou Zhejiang 325000 China
- Key Laboratory of Orthopaedics of Zhejiang Province Wenzhou Medical University Wenzhou Zhejiang 325000 China
- Wenzhou Institute University of Chinese Academy Sciences Wenzhou Zhejiang 325000 China
| |
Collapse
|
238
|
Zhao Y, Jalili S. Dextran, as a biological macromolecule for the development of bioactive wound dressing materials: A review of recent progress and future perspectives. Int J Biol Macromol 2022; 207:666-682. [PMID: 35218804 DOI: 10.1016/j.ijbiomac.2022.02.114] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 02/06/2022] [Accepted: 02/18/2022] [Indexed: 12/14/2022]
Abstract
Skin is the largest organ in the body which plays different roles in maintaining hemostasis. Although this tissue has a high healing potential, severe skin wounds cannot heal without external interventions. Among various treatment strategies, tissue-engineered wound dressings have gained significant attention. In this regard, tremendous progress has been made in the field of tissue engineering to develop constructs with higher healing activities. Material selection and optimization are key factors in development of such dressings. Among different candidates, dextran-based wound dressings have been extensively studied. Dextran is a branched biological macromolecule which is composed of anhydroglucose monomers. Due to its excellent biocompatibility, biodegradability, non-toxicity, modifiable functional groups, and proven clinical safety, dextran has found application in wound healing research. In the current review, applications, challenges, and future perspectives of dextran-based wound dressings will be discussed.
Collapse
Affiliation(s)
- Yunfeng Zhao
- Analysis and Testing Center, Yancheng Institute of Technology, Yancheng 224051, Jiangsu, China.
| | - Saman Jalili
- Department of Biomaterials Science and Technology, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
239
|
Shalaby MA, Anwar MM, Saeed H. Nanomaterials for application in wound Healing: current state-of-the-art and future perspectives. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-021-02870-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
AbstractNanoparticles are the gateway to the new era in drug delivery of biocompatible agents. Several products have emerged from nanomaterials in quest of developing practical wound healing dressings that are nonantigenic, antishear stress, and gas-exchange permeable. Numerous studies have isolated and characterised various wound healing nanomaterials and nanoproducts. The electrospinning of natural and synthetic materials produces fine products that can be mixed with other wound healing medications and herbs. Various produced nanomaterials are highly influential in wound healing experimental models and can be used commercially as well. This article reviewed the current state-of-the-art and briefly specified the future concerns regarding the different systems of nanomaterials in wound healing (i.e., inorganic nanomaterials, organic and hybrid nanomaterials, and nanofibers). This review may be a comprehensive guidance to help health care professionals identify the proper wound healing materials to avoid the usual wound complications.
Collapse
|
240
|
Meléndez-Ortiz HI, Betancourt-Galindo R, Puente-Urbina B, Sánchez-Orozco JL, Ledezma A. Antimicrobial cotton gauzes modified with poly(acrylic acid-co-maltodextrin) hydrogel using chitosan as crosslinker. Int J Biol Macromol 2022; 198:119-127. [PMID: 34963627 DOI: 10.1016/j.ijbiomac.2021.12.083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 11/05/2022]
Abstract
Cotton gauzes were grafted with a hydrogel of maltodextrin (MD) and poly(acrylic acid) (PAAc) using N-maleyl chitosan as crosslinker to obtain materials with antimicrobial properties. Reaction parameters including monomer, crosslinker, and initiator concentrations were studied. The modification with the copolymer poly(acrylic acid)-co-maltodextrin (PAAc-co-MD) was corroborated by Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). The grafted gauzes (gauze-g-(PAAc-co-MD)) were able to load vancomycin and inhibit the growth of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) bacteria. In addition, the incorporation of chitosan as crosslinker showed a synergistic effect against these bacteria. The prepared gauze-g-(PAAc-co-MD) materials could be used in the biomedical area particularly as antimicrobial wound dressings.
Collapse
Affiliation(s)
- H Iván Meléndez-Ortiz
- CONACyT-Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna Hermosillo # 140, 25294 Saltillo, Mexico.
| | - Rebeca Betancourt-Galindo
- Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna Hermosillo # 140, 25294 Saltillo, Mexico
| | - Bertha Puente-Urbina
- Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna Hermosillo # 140, 25294 Saltillo, Mexico
| | - Jorge L Sánchez-Orozco
- Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna Hermosillo # 140, 25294 Saltillo, Mexico
| | - Antonio Ledezma
- Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna Hermosillo # 140, 25294 Saltillo, Mexico
| |
Collapse
|
241
|
Polymer-Based Wound Dressing Materials Loaded with Bioactive Agents: Potential Materials for the Treatment of Diabetic Wounds. Polymers (Basel) 2022; 14:polym14040724. [PMID: 35215637 PMCID: PMC8874614 DOI: 10.3390/polym14040724] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 12/11/2022] Open
Abstract
Diabetic wounds are severe injuries that are common in patients that suffer from diabetes. Most of the presently employed wound dressing scaffolds are inappropriate for treating diabetic wounds. Improper treatment of diabetic wounds usually results in amputations. The shortcomings that are related to the currently used wound dressings include poor antimicrobial properties, inability to provide moisture, weak mechanical features, poor biodegradability, and biocompatibility, etc. To overcome the poor mechanical properties, polymer-based wound dressings have been designed from the combination of biopolymers (natural polymers) (e.g., chitosan, alginate, cellulose, chitin, gelatin, etc.) and synthetic polymers (e.g., poly (vinyl alcohol), poly (lactic-co-glycolic acid), polylactide, poly-glycolic acid, polyurethanes, etc.) to produce effective hybrid scaffolds for wound management. The loading of bioactive agents or drugs into polymer-based wound dressings can result in improved therapeutic outcomes such as good antibacterial or antioxidant activity when used in the treatment of diabetic wounds. Based on the outstanding performance of polymer-based wound dressings on diabetic wounds in the pre-clinical experiments, the in vivo and in vitro therapeutic results of the wound dressing materials on the diabetic wound are hereby reviewed.
Collapse
|
242
|
Koksharov SA, Aleeva SV, Lepilova OV, Krichevskii GE, Fidorovskaya YS. The Properties of Sodium Alginate Hydrocolloids upon Sorption Binding of Papain. COLLOID JOURNAL 2022. [DOI: 10.1134/s1061933x21060077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
243
|
Xie Y, Gao P, He F, Zhang C. Application of Alginate-Based Hydrogels in Hemostasis. Gels 2022; 8:109. [PMID: 35200490 PMCID: PMC8871293 DOI: 10.3390/gels8020109] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/31/2022] [Accepted: 02/03/2022] [Indexed: 12/24/2022] Open
Abstract
Hemorrhage, as a common trauma injury and clinical postoperative complication, may cause serious damage to the body, especially for patients with huge blood loss and coagulation dysfunction. Timely and effective hemostasis and avoidance of bleeding are of great significance for reducing body damage and improving the survival rate and quality of life of patients. Alginate is considered to be an excellent hemostatic polymer-based biomaterial due to its excellent biocompatibility, biodegradability, non-toxicity, non-immunogenicity, easy gelation and easy availability. In recent years, alginate hydrogels have been more and more widely used in the medical field, and a series of hemostatic related products have been developed such as medical dressings, hemostatic needles, transcatheter interventional embolization preparations, microneedles, injectable hydrogels, and hemostatic powders. The development and application prospects are extremely broad. This manuscript reviews the structure, properties and history of alginate, as well as the research progress of alginate hydrogels in clinical applications related to hemostasis. This review also discusses the current limitations and possible future development prospects of alginate hydrogels in hemostatic applications.
Collapse
Affiliation(s)
| | | | | | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Y.X.); (P.G.); (F.H.)
| |
Collapse
|
244
|
Recent Advancements in Plant-Derived Nanomaterials Research for Biomedical Applications. Processes (Basel) 2022. [DOI: 10.3390/pr10020338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Engineering, physics, chemistry, and biology are all involved in nanotechnology, which comprises a wide variety of multidisciplinary scientific field devices. The holistic utilization of metallic nanoparticles in the disciplines of bio-engineering and bio-medicine has attracted a great deal of attention. Medical nanotechnology research can offer immense health benefits for humans. While the advantages of developing nanomaterials have been well documented, it is precisely apparent that there are still some major issues that remain unattended to those need to be resolved immediately so as to ensure that they do not adversely affect living organisms in any manner. The existence of nanoparticles gives them particular value in biology and materials science, as an emerging scientific field, with multiple applications in science and technology, especially with numerous frontiers in the development of new materials. Presented here is a review of recent noteworthy developments regarding plant-derived nanomaterials and their use in the development of medicine and biomedical applications around the world.
Collapse
|
245
|
Winarni D, Husna FN, Syadzha MF, Susilo RJK, Hayaza S, Ansori ANM, Alamsjah MA, Amin MNG, Wulandari PAC, Pudjiastuti P, Awang K. Topical Administration Effect of Sargassum duplicatum and Garcinia mangostana Extracts Combination on Open Wound Healing Process in Diabetic Mice. SCIENTIFICA 2022; 2022:9700794. [PMID: 35186344 PMCID: PMC8850046 DOI: 10.1155/2022/9700794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 12/20/2021] [Accepted: 01/13/2022] [Indexed: 05/14/2023]
Abstract
This research aimed to determine the topical administration effect of the combination of Sargassum duplicatum and Garcinia mangostana extracts to ameliorate diabetic open wound healing. The study used 24 adult males of Mus musculus (BALB/c strain, 3-4 months, 30-40 g). They were divided into normal control groups (KN) and diabetic groups. The diabetic group was streptozotocin-induced and divided further into three treatment groups: the diabetic control group (KD), the S. duplicatum treatment group (PA), and the combination of S. duplicatum and G. mangostana treatment group (PAM). The dose of treatment was 50 mg/kg of body weight. Each group was divided into three treatment durations, which were 3 days, 7 days, and 14 days. The wound healing process was determined by wound width, the number of neutrophils, macrophages, fibroblasts, fibrocytes, and collagen density. Histological observation showed that the topical administration of combination extracts increased the re-epithelialization of the wounded area, fibroblasts, fibrocytes, and collagen synthesis. The topical administration of combination extracts also decreased the number of neutrophils and macrophages. This study concluded that the topical administration of the combination of S. duplicatum and G. mangostana extracts improved the open wound healing process in diabetic mice.
Collapse
Affiliation(s)
- Dwi Winarni
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Fitria Nikmatul Husna
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Muhammad Farraz Syadzha
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia
| | | | - Suhailah Hayaza
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Arif Nur Muhammad Ansori
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia
- Doctoral Program in Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Mochammad Amin Alamsjah
- Department of Marine, Faculty of Fisheries and Marine, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Muhamad Nur Ghoyatul Amin
- Department of Marine, Faculty of Fisheries and Marine, Universitas Airlangga, Surabaya 60115, Indonesia
| | | | - Pratiwi Pudjiastuti
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Khalijah Awang
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
246
|
Zhang H, He R, Niu Y, Han F, Li J, Zhang X, Xu F. Graphene-enabled wearable sensors for healthcare monitoring. Biosens Bioelectron 2022; 197:113777. [PMID: 34781177 DOI: 10.1016/j.bios.2021.113777] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 01/19/2023]
Abstract
Wearable sensors in healthcare monitoring have recently found widespread applications in biomedical fields for their non- or minimal-invasive, user-friendly and easy-accessible features. Sensing materials is one of the major challenges to achieve these superiorities of wearable sensors for healthcare monitoring, while graphene-based materials with many favorable properties have shown great efficiency in sensing various biochemical and biophysical signals. In this paper, we review state-of-the-art advances in the development and modification of graphene-based materials (i.e., graphene, graphene oxide and reduced graphene oxide) for fabricating advanced wearable sensors with 1D (fibers), 2D (films) and 3D (foams/aerogels/hydrogels) macroscopic structures. We summarize the structural design guidelines, sensing mechanisms, applications and evolution of the graphene-based materials as wearable sensors for healthcare monitoring of biophysical signals (e.g., mechanical, thermal and electrophysiological signals) and biochemical signals from various body fluids and exhaled gases. Finally, existing challenges and future prospects are presented in this area.
Collapse
Affiliation(s)
- Huiqing Zhang
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, School of Energy & Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China; The Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, China
| | - Rongyan He
- The Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yan Niu
- The Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, China
| | - Fei Han
- The Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jing Li
- Department of Plastic and Burn Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710038, China
| | - Xiongwen Zhang
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, School of Energy & Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
247
|
Niculescu AG, Grumezescu AM. An Up-to-Date Review of Biomaterials Application in Wound Management. Polymers (Basel) 2022; 14:421. [PMID: 35160411 PMCID: PMC8839538 DOI: 10.3390/polym14030421] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 12/18/2022] Open
Abstract
Whether they are caused by trauma, illness, or surgery, wounds may occur throughout anyone's life. Some injuries' complexity and healing difficulty pose important challenges in the medical field, demanding novel approaches in wound management. A highly researched possibility is applying biomaterials in various forms, ranging from thin protective films, foams, and hydrogels to scaffolds and textiles enriched with drugs and nanoparticles. The synergy of biocompatibility and cell proliferative effects of these materials is reflected in a more rapid wound healing rate and improved structural and functional properties of the newly grown tissue. This paper aims to present the biomaterial dressings and scaffolds suitable for wound management application, reviewing the most recent studies in the field.
Collapse
Affiliation(s)
- Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania;
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania;
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 050044 Bucharest, Romania
| |
Collapse
|
248
|
Multifunctional Membranes Based on β-Glucans and Chitosan Are Useful in Wound Treatment. MEMBRANES 2022; 12:membranes12020121. [PMID: 35207043 PMCID: PMC8880073 DOI: 10.3390/membranes12020121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 11/16/2022]
Abstract
In this work, bio-based membranes prepared using a crosslinked β-glucans–chitosan dispersed in the chitosan matrix useful in promoting wound healing were studied for the first-time. Wound healing is a process that includes sequential steps designed to restore the structure and function of damaged cells and tissue. To minimize damage and the risk of infection during the healing process and to promote restoration of the integrity of damaged tissue, the wound should be dressed. Generally, according to their function in the wound, dressings are classified on the basis of type of material and physical form. The substances used to make a dressing are generally natural polymers such as hydrocolloids, alginates, polyurethane, collagen, chitosan, pectin and hyaluronic acid. The combination of polymeric substances, with antibacterial and antioxidant properties, could be exploited in the biomedical field for the development of biocompatible materials able to act as a barrier between the wound and the external environment, protecting the site from bacterial contamination and promoting healing. To this aim, bio-based membranes were prepared by the phase inversion induced by solvent evaporation, using the crosslinked β-glucans–chitosan obtained by esterification reactions as a functional additive in the chitosan membrane. The reaction intermediates and the final products were characterized by Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) while the morphological properties of membranes were analyzed using electronic scanning microscopy (SEM). The chemical bonding between chitosan and β-glucans allowed for the obtainment of a better dispersion of the combined new material into the membrane’s matrix and as a consequence, an enhanced antibacterial property evaluated through in vitro tests, with respect to the starting materials.
Collapse
|
249
|
Yu Z, Sun J, Deng H, Kan H, Xu C, Dong K. Skin-permissible NIR-actuated hyperthermia using a photothermally responsive hydrogel membrane for the effective treatment of antibiotic-resistant bacterial infection. Biomater Sci 2022; 10:960-969. [PMID: 35014629 DOI: 10.1039/d1bm01819a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
With the long-term widespread overuse of antibiotics, a large number of antibiotic-resistant bacteria have emerged and become a serious threat to healthcare systems. As an alternative strategy, near-infrared light (NIR)-actuated photothermal treatment has been developed for killing antibiotic-resistant bacteria. Although promising, the widespread applications of photothermal antibacterial platforms face great challenges due to the skin-harmful high laser irradiation. In this work, a novel NIR-responsive hydrogel membrane for effective photothermal sterilization upon light irradiation at skin-permissible intensity has been successfully prepared using a sodium alginate-based hydrogel membrane containing tannic acid-Fe(III) compounds (STF). The as-prepared STF displayed excellent mechanical capacity and fabricability. More importantly, the as-prepared STF revealed superior photothermal efficiency under a low-intensity NIR irradiation (0.3 W cm-2), which was below the maximum permissible exposure of skin (0.33 W cm-2). In addition, the STF showed the excellent performance of photothermal sterilization for MRSA both in vitro and in vivo. Furthermore, the STF showed good biocompatibility. Based on the simple synthesis method, outstanding mechanical properties, excellent photothermal sterilization performance and good biocompatibility, the STF could be a promising wound dressing for antibiotic-resistant bacterial infections.
Collapse
Affiliation(s)
- Zhongpeng Yu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, PR China. .,School of Chemical Engineering, Changchun University of Technology, Changchun Jilin 130012, PR China
| | - Jie Sun
- School of Chemical Engineering, Changchun University of Technology, Changchun Jilin 130012, PR China
| | - Hongling Deng
- School of Chemical Engineering, Changchun University of Technology, Changchun Jilin 130012, PR China
| | - Hong Kan
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, PR China. .,National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun 130118, PR China
| | - Chen Xu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, PR China. .,School of Chemical Engineering, Changchun University of Technology, Changchun Jilin 130012, PR China.,National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun 130118, PR China
| | - Kai Dong
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, PR China. .,National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun 130118, PR China
| |
Collapse
|
250
|
Lynch RI, Lavelle EC. Immuno-modulatory biomaterials as anti-inflammatory therapeutics. Biochem Pharmacol 2022; 197:114890. [PMID: 34990595 DOI: 10.1016/j.bcp.2021.114890] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 12/16/2022]
Abstract
Biocompatible and biodegradable biomaterials are used extensively in regenerative medicine and serve as a tool for tissue replacement, as a platform for regeneration of injured tissue, and as a vehicle for delivery of drugs. One of the key factors that must be addressed in developing successful biomaterial-based therapeutics is inflammation. Whilst inflammation is initially essential for wound healing; bringing about clearance of debris and infection, prolonged inflammation can result in delayed wound healing, rejection of the biomaterial, further tissue damage and increased scarring and fibrosis. In this context, the choice of biomaterial must be considered carefully to minimise further induction of inflammation. Here we address the ability of the biomaterials themselves to modulate inflammatory responses and outline how the physico-chemical properties of the materials impact on their pro and anti-inflammatory properties (Fig. 1).
Collapse
Affiliation(s)
- Roisin I Lynch
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02R590, Dublin 2, Ireland
| | - Ed C Lavelle
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02R590, Dublin 2, Ireland.
| |
Collapse
|