201
|
Demartis S, Rassu G, Murgia S, Casula L, Giunchedi P, Gavini E. Improving Dermal Delivery of Rose Bengal by Deformable Lipid Nanovesicles for Topical Treatment of Melanoma. Mol Pharm 2021; 18:4046-4057. [PMID: 34554752 PMCID: PMC8564756 DOI: 10.1021/acs.molpharmaceut.1c00468] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Cutaneous melanoma
is one of the most aggressive and metastatic
forms of skin cancer. However, current therapeutic options present
several limitations, and the annual death rate due to melanoma increases
every year. Dermal delivery of nanomedicines can effectively eradicate
primary melanoma lesions, avoid the metastatic process, and improve
survival. Rose Bengal (RB) is a sono-photosensitizer drug with intrinsic
cytotoxicity toward melanoma without external stimuli but the biopharmaceutical
profile limits its clinical use. Here, we propose deformable lipid
nanovesicles, also known as transfersomes (TF), for the targeted dermal
delivery of RB to melanoma lesions to eradicate them in the absence
of external stimuli. Considering RB’s poor ability to cross
the stratum corneum and its photosensitizer nature, transfersomal
carriers were selected simultaneously to enhance RB penetration to
the deepest skin layers and protect RB from undesired photodegradation.
RB-loaded TF dispersion (RB-TF), prepared by a modified reverse-phase
evaporation method, were nanosized with a ζ-potential value
below −30 mV. The spectrophotometric and fluorimetric analysis
revealed that RB efficiently interacted with the lipid phase. The
morphological investigations (transmission electron microscopy and
small-angle X-ray scattering) proved that RB intercalated within the
phospholipid bilayer of TF originating unilamellar and deformable
vesicles, in contrast to the rigid multilamellar unloaded ones. Such
outcomes agree with the results of the in vitro permeation study,
where the lack of a burst RB permeation peak for RB-TF, observed instead
for the free drug, suggests that a significant amount of RB interacted
with lipid nanovesicles. Also, RB-TF proved to protect RB from undesired
photodegradation over 24 h of direct light exposure. The ex vivo epidermis
permeation study proved that RB-TF significantly increased RB’s
amount permeating the epidermis compared to the free drug (78.31 vs
38.31%). Finally, the antiproliferative assays on melanoma cells suggested
that RB-TF effectively reduced cell growth compared to free RB at
the concentrations tested (25 and 50 μM). RB-TF could potentially
increase selectivity toward cancer cells. Considering the outcomes
of the characterization and cytotoxicity studies performed on RB-TF,
we conclude that RB-TF represents a valid potential alternative tool
to fight against primary melanoma lesions via dermal delivery in the
absence of light.
Collapse
Affiliation(s)
- Sara Demartis
- Department of Chemistry and Pharmacy, University of Sassari, 07100 Sassari, Italy
| | - Giovanna Rassu
- Department of Chemistry and Pharmacy, University of Sassari, 07100 Sassari, Italy
| | - Sergio Murgia
- Department of Life and Environmental Sciences, University of Cagliari, 09042 Monserrato, Cagliari, Italy.,CSGI, Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, 50019 Sesto Fiorentino, Florence, Italy
| | - Luca Casula
- Department of Life and Environmental Sciences, University of Cagliari, 09042 Monserrato, Cagliari, Italy
| | - Paolo Giunchedi
- Department of Chemistry and Pharmacy, University of Sassari, 07100 Sassari, Italy
| | - Elisabetta Gavini
- Department of Chemistry and Pharmacy, University of Sassari, 07100 Sassari, Italy
| |
Collapse
|
202
|
Oyarzún P, Gallardo-Toledo E, Morales J, Arriagada F. Transfersomes as alternative topical nanodosage forms for the treatment of skin disorders. Nanomedicine (Lond) 2021; 16:2465-2489. [PMID: 34706575 DOI: 10.2217/nnm-2021-0335] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Topical drug delivery is a promising approach to treat different skin disorders. However, it remains a challenge mainly due to the nature and rigidity of the nanosystems, which limit deep skin penetration, and the unsuccessful demonstration of clinical benefits; greater penetration by itself, does not ensure pharmacological success. In this context, transfersomes have appeared as promising nanosystems; deformability, their unique characteristic, allows them to pass through the epidermal microenvironment, improving the skin drug delivery. This review focuses on the comparison of transfersomes with other nanosystems (e.g., liposomes), discusses recent therapeutic applications for the topical treatment of different skin disorders and highlights the need for further studies to demonstrate significant clinical benefits of transfersomes compared with conventional therapies.
Collapse
Affiliation(s)
- Pablo Oyarzún
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, 5090000, Chile
| | - Eduardo Gallardo-Toledo
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, 8380494, Chile
| | - Javier Morales
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, 8380494, Chile
| | - Francisco Arriagada
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, 5090000, Chile
| |
Collapse
|
203
|
Stefanov SR, Andonova VY. Lipid Nanoparticulate Drug Delivery Systems: Recent Advances in the Treatment of Skin Disorders. Pharmaceuticals (Basel) 2021; 14:1083. [PMID: 34832865 PMCID: PMC8619682 DOI: 10.3390/ph14111083] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/12/2022] Open
Abstract
The multifunctional role of the human skin is well known. It acts as a sensory and immune organ that protects the human body from harmful environmental impacts such as chemical, mechanical, and physical threats, reduces UV radiation effects, prevents moisture loss, and helps thermoregulation. In this regard, skin disorders related to skin integrity require adequate treatment. Lipid nanoparticles (LN) are recognized as promising drug delivery systems (DDS) in treating skin disorders. Solid lipid nanoparticles (SLN) together with nanostructured lipid carriers (NLC) exhibit excellent tolerability as these are produced from physiological and biodegradable lipids. Moreover, LN applied to the skin can improve stability, drug targeting, occlusion, penetration enhancement, and increased skin hydration compared with other drug nanocarriers. Furthermore, the features of LN can be enhanced by inclusion in suitable bases such as creams, ointments, gels (i.e., hydrogel, emulgel, bigel), lotions, etc. This review focuses on recent developments in lipid nanoparticle systems and their application to treating skin diseases. We point out and consider the reasons for their creation, pay attention to their advantages and disadvantages, list the main production techniques for obtaining them, and examine the place assigned to them in solving the problems caused by skin disorders.
Collapse
Affiliation(s)
- Stefan R. Stefanov
- Department of Pharmaceutical Technologies, Faculty of Pharmacy, Medical University of Varna, 9002 Varna, Bulgaria;
| | | |
Collapse
|
204
|
Sudhakar K, Fuloria S, Subramaniyan V, Sathasivam KV, Azad AK, Swain SS, Sekar M, Karupiah S, Porwal O, Sahoo A, Meenakshi DU, Sharma VK, Jain S, Charyulu RN, Fuloria NK. Ultraflexible Liposome Nanocargo as a Dermal and Transdermal Drug Delivery System. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2557. [PMID: 34685005 PMCID: PMC8537378 DOI: 10.3390/nano11102557] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/17/2021] [Accepted: 09/25/2021] [Indexed: 12/11/2022]
Abstract
A selected active pharmaceutical ingredient must be incorporated into a cargo carrier in a particular manner so that it achieves its goal. An amalgamation of active pharmaceutical ingredients (APIs) should be conducted in such a manner that it is simple, professional, and more beneficial. Lipids/polymers that are known to be used in nanocarriers for APIs can be transformed into a vesicular formulation, which offers elegant solutions to many problems. Phospholipids with other ingredients, such as ethanol and water, form suitable vesicular carriers for many drugs, overcoming many problems related to poor bioavailability, poor solubility, etc. Ultraflexible liposomes are novel carriers and new frontiers of drug delivery for transdermal systems. Auxiliary advances in vesicular carrier research have been made, enabling polymer-coated ethanolic liposomes to avoid detection by the body's immune system-specifically, the cells of the reticuloendothelial system. Ultraflexible liposomes act as a cargo system and a nanotherapeutic approach for the transport of therapeutic drugs and bioactive agents. Various applications of liposome derivatives in different diseases are emphasized in this review.
Collapse
Affiliation(s)
- Kalvatala Sudhakar
- School of Pharmaceutical Sciences (LIT-Pharmacy), Lovely Professional University, Jalandhar 144411, India;
| | - Shivkanya Fuloria
- Faculty of Pharmacy, AIMST University, Bedong 08100, Kedah, Malaysia;
- Centre of Excellence for Biomaterials Engineering, AIMST University, Bedong 08100, Kedah, Malaysia;
| | - Vetriselvan Subramaniyan
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jalan SP 2, Bandar Saujana Putra, Jenjarom 42610, Selangor, Malaysia;
| | - Kathiresan V. Sathasivam
- Centre of Excellence for Biomaterials Engineering, AIMST University, Bedong 08100, Kedah, Malaysia;
- Faculty of Applied Science, AIMST University, Bedong 08100, Kedah, Malaysia
| | - Abul Kalam Azad
- Advanced Drug Delivery Laboratory, Faculty of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang Darul Makmur, Malaysia;
| | - Shasank S. Swain
- Division of Microbiology and NCDs, ICMR-Regional Medical Research Centre, Bhubaneswar 751023, India;
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh 30450, Perak, Malaysia;
| | - Sundram Karupiah
- Faculty of Pharmacy, AIMST University, Bedong 08100, Kedah, Malaysia;
| | - Omji Porwal
- Department of Pharmacognosy, Tishk International University, Erbil 44001, KRG, Iraq;
| | - Alaka Sahoo
- Department of Skin & VD, Institute of Medical Sciences and SUM Hospital, Siksha ‘O’ Anusandhan Deemed to be University, Bhubaneswar 751003, India;
| | | | - Vipin Kumar Sharma
- Department of Pharmaceutical Sciences, Gurukul Kangri (Deemed to Be University), Haridwar 249404, Uttarakhand, India;
| | - Sanjay Jain
- Faculty of Pharmacy, Medicaps University, Indore 453331, MP, India;
| | - R. Narayana Charyulu
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, NITTE Deemed to be University, Mangalore 575018, India;
| | - Neeraj Kumar Fuloria
- Faculty of Pharmacy, AIMST University, Bedong 08100, Kedah, Malaysia;
- Centre of Excellence for Biomaterials Engineering, AIMST University, Bedong 08100, Kedah, Malaysia;
| |
Collapse
|
205
|
Mohd Nordin UU, Ahmad N, Salim N, Mohd Yusof NS. Lipid-based nanoparticles for psoriasis treatment: a review on conventional treatments, recent works, and future prospects. RSC Adv 2021; 11:29080-29101. [PMID: 35478537 PMCID: PMC9038133 DOI: 10.1039/d1ra06087b] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 08/19/2021] [Indexed: 12/19/2022] Open
Abstract
Psoriasis is a lingering inflammatory skin disease that attacks the immune system. The abnormal interactions between T cells, immune cells, and inflammatory cytokines causing the epidermal thickening. International guidelines have recommended topical treatments for mild to moderate psoriasis whilst systemic and phototherapy treatments for moderate to severe psoriasis. However, current therapeutic approaches have a wider extent to treat moderate to severe type of psoriasis especially since the emergence of diverse biologic agents. In the meantime, topical delivery of conventional treatments has prompted many unsatisfactory effects to penetrate through the skin (stratum corneum). By understanding the physiology of stratum corneum barrier functions, scientists have developed different types of lipid-based nanoparticles like solid lipid nanoparticles, nanostructured lipid carriers, nanovesicles, and nanoemulsions. These novel drug delivery systems help the poorly solubilised active pharmaceutical ingredient reaches the targeted site seamlessly because of the bioavailability feature of the nanosized molecules. Lipid-based nanoparticles for psoriasis treatments create a paradigm for topical drug delivery due to their lipids' amphiphilic feature to efficiently encapsulate both lipophilic and hydrophilic drugs. This review highlights different types of lipid-based nanoparticles and their recent works of nano formulated psoriasis treatments. The encapsulation of psoriasis drugs through lipid nanocarriers unfold numerous research opportunities in pharmaceutical applications but also draw challenges for the future development of nano drugs.
Collapse
Affiliation(s)
- Ummu Umaimah Mohd Nordin
- Department of Chemistry, Faculty of Science, University of Malaya 50603 Kuala Lumpur Malaysia +603-79674193 +603-79674008
| | - Noraini Ahmad
- Department of Chemistry, Faculty of Science, University of Malaya 50603 Kuala Lumpur Malaysia +603-79674193 +603-79674008
| | - Norazlinaliza Salim
- Integrated Chemical Biophysics Research, Faculty of Science, Universiti Putra Malaysia 43400 UPM Serdang Selangor Malaysia
| | - Nor Saadah Mohd Yusof
- Department of Chemistry, Faculty of Science, University of Malaya 50603 Kuala Lumpur Malaysia +603-79674193 +603-79674008
| |
Collapse
|
206
|
Improved Bioavailability of Ebastine through Development of Transfersomal Oral Films. Pharmaceutics 2021; 13:pharmaceutics13081315. [PMID: 34452276 PMCID: PMC8401636 DOI: 10.3390/pharmaceutics13081315] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/05/2021] [Accepted: 08/07/2021] [Indexed: 12/18/2022] Open
Abstract
The main objective of this research work was the development and evaluation of transfersomes integrated oral films for the bioavailability enhancement of Ebastine (EBT) to treat allergic rhinitis. The flexible transfersomes, consisting of drug (EBT), lipid (Phosphatidylcholine) and edge activator (EA) Polyoxyethylene sorbitan monooleate or Sorbitan monolaurate, were prepared with the conventional thin film hydration method. The developed transfersomes were further integrated into oral films using the solvent casting method. Transfersomes were evaluated for their size distribution, surface charge, entrapment efficiency (EE%) and relative deformability, whereas the formulated oral films were characterized for weight, thickness, pH, folding endurance, tensile strength, % of elongation, degree of crystallinity, water content, content uniformity, in vitro drug release and ex vivo permeation, as well as in vivo pharmacokinetic and pharmacodynamics profile. The mean hydrodynamic diameter of transfersomes was detected to be 75.87 ± 0.55 nm with an average PDI and zeta potential of 0.089 ± 0.01 and 33.5 ± 0.39 mV, respectively. The highest deformability of transfersomes of 18.52 mg/s was observed in the VS-3 formulation. The average entrapment efficiency of the transfersomes was about 95.15 ± 1.4%. Transfersomal oral films were found smooth with an average weight, thickness and tensile strength of 174.72 ± 2.3 mg, 0.313 ± 0.03 mm and 36.4 ± 1.1 MPa, respectively. The folding endurance, pH and elongation were found 132 ± 1, 6.8 ± 0.2 and 10.03 ± 0.4%, respectively. The ex vivo permeability of EBT from formulation ETF-5 was found to be approximately 2.86 folds higher than the pure drug and 1.81 folds higher than plain film (i.e., without loaded transfersomes). The relative oral bioavailability of ETF-5 was 2.95- and 1.7-fold higher than that of EBT-suspension and plain film, respectively. In addition, ETF-5 suppressed the wheal and flare completely within 24 h. Based on the physicochemical considerations, as well as in vitro and in vivo characterizations, it is concluded that the highly flexible transfersomal oral films (TOFs) effectively improved the bioavailability and antihistamine activity of EBT.
Collapse
|
207
|
Maji R, Omolo CA, Jaglal Y, Singh S, Devnarain N, Mocktar C, Govender T. A transferosome-loaded bigel for enhanced transdermal delivery and antibacterial activity of vancomycin hydrochloride. Int J Pharm 2021; 607:120990. [PMID: 34389419 DOI: 10.1016/j.ijpharm.2021.120990] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/16/2021] [Accepted: 08/06/2021] [Indexed: 12/16/2022]
Abstract
Transdermal drug delivery is an attractive route of administration relative to other routes as it offers enhanced therapeutic efficacy. However, due to poor skin permeability of certain drugs, their application in transdermal delivery is limited. The ultra-deformable nature of transferosomes makes them suitable vehicles for transdermal delivery of drugs that have high molecular weights and hydrophilicity. However, their low viscosity, which leads to low contact time on the surface of the skin, has restricted their application in transdermal delivery. Therefore, this study aimed to deliver transferosomes loaded with a highly water-soluble and high molecular weight vancomycin hydrochloride (VCM-HCl) via a bigel for systemic delivery and treatment of microbial infections. VCM-HCl-loaded transferosomal formulations (TNFs) were prepared using a reverse-phase evaporation method and then loaded into a bigel. Both the TNFs and TNFs-loaded bigel (TNF-L-B) were characterized by a range of in vitro and ex vivo techniques. TNFs and TNF-L-B were tested for biosafety via the MTT assay and found to be biosafe. Prepared TNFs had sizes, zeta potential and entrapment efficiency of 63.02 ± 5.34 nm, -20.93 ± 6.13 mV and 84.48 ± 1.22% respectively. VCM-HCl release from TNF-L-B showed a prolonged release profile with 39.76 ± 1.6% after 24hrs when compared to bare VCM-HCl loaded in the bigel (74.81 ± 8.84%). Ex-vivo permeation of prepared TNF-L-B showed a higher permeation flux of 0.56 µg/cm2/h compared to the bare VCM-HCl-loaded bigel of 0.23 µg/cm2/h, indicating superior permeation and bioavailability of the drug. Additionally, the prepared TNF-L-B demonstrated improved antimicrobial activity. The TNF-L-B showed minimum inhibitory concentrations (MIC) of 0.97 μg/ml against Staphylococcus aureus (SA) and 1.95 μg/ml against methicillin-resistant SA (MRSA), which were 2-fold lower MIC values than the bare drug. The time-kill assay showed that both TNFs and TNF-L-B systems caused a 5.6-log reduction (100%) in MRSA compared to bare VCM-HCl after 24 hrs of incubation. Furthermore, as opposed to the bare VCM-HCl solution, the degree of biofilm reduction caused by TNFs (55.72%) and TNF-L-B (34.58%) suggests their dominance in eradicating MRSA biofilm. These findings indicate that TNF-L-B is a promising system for transdermal delivery of hydrophilic and high molecular weight drugs.
Collapse
Affiliation(s)
- Ruma Maji
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa.
| | - Calvin A Omolo
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa; United States International University-Africa, School of Pharmacy and Health Sciences, Department of Pharmaceutics, P.O. Box 14634-00800, Nairobi, Kenya.
| | - Yajna Jaglal
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Sanil Singh
- Biomedical Research Unit, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Nikita Devnarain
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Chunderika Mocktar
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa.
| |
Collapse
|
208
|
Lipid-Based Vesicles: a Non-invasive Tool for Transdermal Drug Delivery. J Pharm Innov 2021. [DOI: 10.1007/s12247-021-09572-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
209
|
The Optimization of a Dimenhydrinate Transdermal Patch Formulation Based on the Quantitative Analysis of In Vitro Release Data by DDSolver through Skin Penetration Studies. Sci Pharm 2021. [DOI: 10.3390/scipharm89030033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Dimenhydrinate is an over-the-counter medication that is used to relieve nausea, vomiting, and vertigo caused by motion sickness. It has a short elimination half-life, possibly due to its first-pass metabolism. The current study aimed to prepare and evaluate new transdermal formulations of dimenhydrinate to prolong the drug’s release and improve its cutaneous permeation. First, the patches were fabricated and evaluated to determine their properties. The results were statistically investigated and considered significant at the p < 0.05 level. Additionally, the quantitative analysis of the drug-release data and kinetic modeling was performed by using the DDSolver software to decide the candidate formula dependably. The effect of the penetration enhancers on the permeability of dimenhydrinate from the selected patch was then studied ex vivo compared to the control sample, and the patch’s safety was evaluated in rabbits, using the skin-irritation test.
Collapse
|
210
|
El-Zaafarany GM, Abdel-Aziz RTA, Montaser MHA, Nasr M. Coenzyme Q10 phospholipidic vesicular formulations for treatment of androgenic alopecia: ex vivo permeation and clinical appraisal. Expert Opin Drug Deliv 2021; 18:1513-1522. [PMID: 34047661 DOI: 10.1080/17425247.2021.1936497] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Coenzyme Q10 (CoQ10) is an antioxidant molecule with anti-aging activity on human hair, and because of its pharmaceutical limitations such as large molecular weight, high lipophilicity and poor water solubility, its therapeutic effectiveness has been hampered. Therefore, different vesicular nanocarriers were developed in the current work, for enhancement of the skin penetration of CoQ10 for treatment of androgenic alopecia. AREAS COVERED In order to overcome the poor skin penetration of CoQ10, it was formulated in liposomes, transfersomes, ethosomes, cerosomes and transethosomes using the thin-film hydration method. Results revealed that transethosomes were the carrier of choice for CoQ10, in which it displayed a particle size of 146 nm, zeta potential -55 mV and entrapment efficiency of 97.63%. Transethosomes also achieved the highest deposition percentage for CoQ10, exceeding 95% in the different skin layers. Upon clinical examination in patients suffering from androgenic alopecia, CoQ10 transethosomes displayed better clinical response than the administration of CoQ10 solution, which was further confirmed by dermoscopic examination. EXPERT OPINION Findings of this study further prove that loading antioxidants such as CoQ10 in nanocarriers maximizes their therapeutic efficiency, and opens many opportunities for their application in treatment of several other topical diseases.
Collapse
Affiliation(s)
- Ghada M El-Zaafarany
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Rasha T A Abdel-Aziz
- Department of Dermatology, STD's and Andrology, Faculty of Medicine, Minia University, Al Minya, Egypt
| | | | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
211
|
Han SB, Won B, Yang SC, Kim DH. Asterias pectinifera derived collagen peptide-encapsulating elastic nanoliposomes for the cosmetic application. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.03.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
212
|
Applications of Nanosized-Lipid-Based Drug Delivery Systems in Wound Care. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11114915] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Impaired wound healing is an encumbering public health issue that increases the demand for developing new therapies in order to minimize health costs and enhance treatment efficacy. Available conventional therapies are still unable to maximize their potential in penetrating the skin at the target site and accelerating the healing process. Nanotechnology exhibits an excellent opportunity to enrich currently available medical treatments, enhance standard care and manage wounds. It is a promising approach, able to address issues such as the permeability and bioavailability of drugs with reduced stability or low water solubility. This paper focuses on nanosized-lipid-based drug delivery systems, describing their numerous applications in managing skin wounds. We also highlight the relationship between the physicochemical characteristics of nanosized, lipid-based drug delivery systems and their impact on the wound-healing process. Different types of nanosized-lipid-based drug delivery systems, such as vesicular systems and lipid nanoparticles, demonstrated better applicability and enhanced skin penetration in wound healing therapy compared with conventional treatments. Moreover, an improved chemically and physically stable drug delivery system, with increased drug loading capacity and enhanced bioavailability, has been shown in drugs encapsulated in lipid nanoparticles. Their applications in wound care show potential for overcoming impediments, such as the inadequate bioavailability of active agents with low solubility. Future research in nanosized-lipid-based drug delivery systems will allow the achievement of increased bioavailability and better control of drug release, providing the clinician with more effective therapies for wound care.
Collapse
|
213
|
Yu Z, Meng X, Zhang S, Chen Y, Zhang Z, Zhang Y. Recent Progress in Transdermal Nanocarriers and Their Surface Modifications. Molecules 2021; 26:molecules26113093. [PMID: 34064297 PMCID: PMC8196818 DOI: 10.3390/molecules26113093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 02/07/2023] Open
Abstract
Transdermal drug delivery system (TDDS) is an attractive method for drug delivery with convenient application, less first-pass effect, and fewer systemic side effects. Among all generations of TDDS, transdermal nanocarriers show the greatest clinical potential because of their non-invasive properties and high drug delivery efficiency. However, it is still difficult to design optimal transdermal nanocarriers to overcome the skin barrier, control drug release, and achieve targeting. Hence, surface modification becomes a promising strategy to optimize and functionalize the transdermal nanocarriers with enhanced penetration efficiency, controlled drug release profile, and targeting drug delivery. Therefore, this review summarizes the developed transdermal nanocarriers with their transdermal mechanism, and focuses on the surface modification strategies via their different functions.
Collapse
Affiliation(s)
- Zhixi Yu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhizaoju Rd, Shanghai 200011, China; (Z.Y.); (X.M.); (S.Z.)
| | - Xinxian Meng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhizaoju Rd, Shanghai 200011, China; (Z.Y.); (X.M.); (S.Z.)
| | - Shunuo Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhizaoju Rd, Shanghai 200011, China; (Z.Y.); (X.M.); (S.Z.)
| | - Yunsheng Chen
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhizaoju Rd, Shanghai 200011, China; (Z.Y.); (X.M.); (S.Z.)
- Correspondence: (Y.C.); (Z.Z.); (Y.Z.)
| | - Zheng Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhizaoju Rd, Shanghai 200011, China; (Z.Y.); (X.M.); (S.Z.)
- Correspondence: (Y.C.); (Z.Z.); (Y.Z.)
| | - Yixin Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhizaoju Rd, Shanghai 200011, China; (Z.Y.); (X.M.); (S.Z.)
- Shanghai National Engineering Research Center for Nanotechnology, 245 Jiachuan Road, Shanghai 200237, China
- Correspondence: (Y.C.); (Z.Z.); (Y.Z.)
| |
Collapse
|
214
|
Thi TTH, Suys EJA, Lee JS, Nguyen DH, Park KD, Truong NP. Lipid-Based Nanoparticles in the Clinic and Clinical Trials: From Cancer Nanomedicine to COVID-19 Vaccines. Vaccines (Basel) 2021; 9:359. [PMID: 33918072 PMCID: PMC8069344 DOI: 10.3390/vaccines9040359] [Citation(s) in RCA: 267] [Impact Index Per Article: 66.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/04/2021] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
COVID-19 vaccines have been developed with unprecedented speed which would not have been possible without decades of fundamental research on delivery nanotechnology. Lipid-based nanoparticles have played a pivotal role in the successes of COVID-19 vaccines and many other nanomedicines, such as Doxil® and Onpattro®, and have therefore been considered as the frontrunner in nanoscale drug delivery systems. In this review, we aim to highlight the progress in the development of these lipid nanoparticles for various applications, ranging from cancer nanomedicines to COVID-19 vaccines. The lipid-based nanoparticles discussed in this review are liposomes, niosomes, transfersomes, solid lipid nanoparticles, and nanostructured lipid carriers. We particularly focus on the innovations that have obtained regulatory approval or that are in clinical trials. We also discuss the physicochemical properties required for specific applications, highlight the differences in requirements for the delivery of different cargos, and introduce current challenges that need further development. This review serves as a useful guideline for designing new lipid nanoparticles for both preventative and therapeutic vaccines including immunotherapies.
Collapse
Affiliation(s)
- Thai Thanh Hoang Thi
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam;
| | - Estelle J. A. Suys
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia;
| | - Jung Seok Lee
- Biomedical Engineering, Malone Engineering Center 402A, Yale University, 55 Prospect St., New Haven, CT 06511, USA;
| | - Dai Hai Nguyen
- Vietnam Academy of Science and Technology, Graduate University of Science and Technology, Hanoi 100000, Vietnam;
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, 01 TL29 District 12, Ho Chi Minh City 700000, Vietnam
| | - Ki Dong Park
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea;
| | - Nghia P. Truong
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia;
| |
Collapse
|
215
|
Novel rhein integrate transphytosomes as non-invasive local therapy for osteoarthritis to ameliorate cartilage deterioration in MIA-arthritic rats. Colloids Surf B Biointerfaces 2021; 202:111713. [PMID: 33780905 DOI: 10.1016/j.colsurfb.2021.111713] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/21/2021] [Accepted: 03/15/2021] [Indexed: 11/21/2022]
Abstract
Rhein (RH), a natural chondroprotective agent, suffers from poor systemic availability (20-25%) after oral administration concomitant to side effects on the gastrointestinal tract and liver. We present a new approach for non-invasive local targeted delivery of rhein to ameliorate cartilage deterioration employing cartilage-homing phospholipids nanocarriers. This is the first work to elaborate RH loaded transphytosome (RH-T-PHY) as novel nanovesicular systems for transdermal drug delivery based on an advantageous hybrid between phytosomes and transfersomes or bilosomes. Here, we developed transphytosomes through incorporating various edge activators (EAs) such as Tween 80, Span 80 and sodium deoxycholate into the lipid bilayer of RH phytosomes to affix the flexibility. RH-T-PHY with high flexibility and entrapment efficacy showed the highest significant skin permeation compared to conventional phytosomes. Additionally, RH-T-PHY have a magnificent potential in maintaining high chondroprotective activity as demonstrated by enhanced repair, regeneration of chondrocytes and GAG formation in MIA-induced osteoarthritis (OA) rat model. Besides, histological examination of vital organs revealed the formulation safety. Confocal laser microscopy images revealed the highest drug availability in the articular cartilage of RH-T-PHY treated group. Conclusively, novel RH-T-PHY can serve as a promising alternative means for delivery of chondroprotective drugs for effective non-invasive local therapy of OA.
Collapse
|
216
|
Investigation on drug entrapment location in liposomes and transfersomes based on molecular dynamics simulation. J Mol Model 2021; 27:111. [PMID: 33745026 DOI: 10.1007/s00894-021-04722-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 03/01/2021] [Indexed: 01/11/2023]
Abstract
In this study, liposome and transfersome were successfully constructed using molecular dynamics simulation. Three drugs with different polarity, including 5-fluorouracil, ligustrazine, and osthole, were selected as model drugs to study the distribution of drugs in lipid vesicles by calculating the radial distribution function and the potential of mean force. The solubility parameters between drugs and different regions in lipid vesicles were calculated to characterize the compatibility of drugs in different regions in lipid vesicles, which provided the basis for the conclusion of this paper. It showed that the radial distribution function and the potential of mean force were consistent in the characterization of drug distribution in vesicles, and the drug distribution in vesicles was closely related to the compatibility between drugs and vesicles. Therefore, the radial distribution function and the potential of mean force can be used to characterize the distribution of drugs in vesicles, and molecular simulation technology has a great potential in studying the characteristics of vesicles. Graphical abstract.
Collapse
|
217
|
Guillot AJ, Jornet-Mollá E, Landsberg N, Milián-Guimerá C, Montesinos MC, Garrigues TM, Melero A. Cyanocobalamin Ultraflexible Lipid Vesicles: Characterization and In Vitro Evaluation of Drug-Skin Depth Profiles. Pharmaceutics 2021; 13:pharmaceutics13030418. [PMID: 33804652 PMCID: PMC8003749 DOI: 10.3390/pharmaceutics13030418] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/03/2021] [Accepted: 03/16/2021] [Indexed: 12/17/2022] Open
Abstract
Atopic dermatitis (AD) and psoriasis are the most common chronic inflammatory skin disorders, which importantly affect the quality of life of patients who suffer them. Among other causes, nitric oxide has been reported as part of the triggering factors in the pathogenesis of both conditions. Cyanocobalamin (vitamin B12) has shown efficacy as a nitric oxide scavenger and some clinical trials have given positive outcomes in its use for treating skin pathologies. Passive skin diffusion is possible only for drugs with low molecular weights and intermediate lipophilicity. Unfortunately, the molecular weight and hydrophilicity of vitamin B12 do not predict its effective diffusion through the skin. The aim of this work was to design new lipid vesicles to encapsulate the vitamin B12 to enhance its skin penetration. Nine prototypes of vesicles were generated and characterized in terms of size, polydispersity, surface charge, drug encapsulation, flexibility, and stability with positive results. Additionally, their ability to release the drug content in a controlled manner was demonstrated. Finally, we found that these lipid vesicle formulations facilitated the penetration of cyanocobalamin to the deeper layers of the skin. The present work shows a promising system to effectively administer vitamin B12 topically, which could be of interest in the treatment of skin diseases such as AD and psoriasis.
Collapse
Affiliation(s)
- Antonio José Guillot
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Avda. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain; (A.J.G.); (E.J.-M.); (N.L.); (C.M.-G.); (A.M.)
| | - Enrique Jornet-Mollá
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Avda. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain; (A.J.G.); (E.J.-M.); (N.L.); (C.M.-G.); (A.M.)
| | - Natalia Landsberg
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Avda. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain; (A.J.G.); (E.J.-M.); (N.L.); (C.M.-G.); (A.M.)
| | - Carmen Milián-Guimerá
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Avda. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain; (A.J.G.); (E.J.-M.); (N.L.); (C.M.-G.); (A.M.)
| | - M. Carmen Montesinos
- Department of Pharmacology, Faculty of Pharmacy, University of Valencia, Avda. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain
- Center of Molecular Recognition and Technological Development (IDM), Polytechnic University of Valencia and University of Valencia, Avda. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain
- Correspondence: (M.C.M.); (T.M.G.)
| | - Teresa M. Garrigues
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Avda. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain; (A.J.G.); (E.J.-M.); (N.L.); (C.M.-G.); (A.M.)
- Correspondence: (M.C.M.); (T.M.G.)
| | - Ana Melero
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Avda. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain; (A.J.G.); (E.J.-M.); (N.L.); (C.M.-G.); (A.M.)
| |
Collapse
|
218
|
Recent Advances in Nanomaterials for Dermal and Transdermal Applications. COLLOIDS AND INTERFACES 2021. [DOI: 10.3390/colloids5010018] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The stratum corneum, the most superficial layer of the skin, protects the body against environmental hazards and presents a highly selective barrier for the passage of drugs and cosmetic products deeper into the skin and across the skin. Nanomaterials can effectively increase the permeation of active molecules across the stratum corneum and enable their penetration into deeper skin layers, often by interacting with the skin and creating the distinct sites with elevated local concentration, acting as reservoirs. The flux of the molecules from these reservoirs can be either limited to the underlying skin layers (for topical drug and cosmeceutical delivery) or extended across all the sublayers of the epidermis to the blood vessels of the dermis (for transdermal delivery). The type of the nanocarrier and the physicochemical nature of the active substance are among the factors that determine the final skin permeation pattern and the stability of the penetrant in the cutaneous environment. The most widely employed types of nanomaterials for dermal and transdermal applications include solid lipid nanoparticles, nanovesicular carriers, microemulsions, nanoemulsions, and polymeric nanoparticles. The recent advances in the area of nanomaterial-assisted dermal and transdermal delivery are highlighted in this review.
Collapse
|
219
|
Abstract
The topical and transdermal routes of drug administration are long known to the field of pharmaceutics. These routes have been explored for the delivery of a wide range of therapeutic agents over centuries. However, the anatomy of the skin and the physicochemical properties of molecules limit their transport via these routes. To overcome these challenges, a nano-phospholipid carrier called liposome was developed in the 1960s. Liposomal delivery of drugs was reported to be limited to the upper layers of skin. This led to the development of self-regulating and self-adaptable vesicles known as transfersomes. This review critically evaluates the barriers in delivery across the skin, recent advancements in liposomes, transfersomes and their impact in the pharmaceutical field.
Collapse
|
220
|
Ahad A, Raish M, Bin Jardan YA, Al-Mohizea AM, Al-Jenoobi FI. Delivery of Insulin via Skin Route for the Management of Diabetes Mellitus: Approaches for Breaching the Obstacles. Pharmaceutics 2021; 13:pharmaceutics13010100. [PMID: 33466845 PMCID: PMC7830404 DOI: 10.3390/pharmaceutics13010100] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/22/2020] [Accepted: 12/27/2020] [Indexed: 12/14/2022] Open
Abstract
Insulin is used for the treatment of diabetes mellitus, which is characterized by hyperglycemia. Subcutaneous injections are the standard mode of delivery for insulin therapy; however, this procedure is very often invasive, which hinders patient compliance, particularly for individuals requiring insulin doses four times a day. Furthermore, cases have been reported of sudden hypoglycemia occurrences following multidose insulin injections. Such an invasive and intensive approach motivates the quest for alternative, more user-friendly insulin administration approaches. For example, transdermal delivery has numerous advantages, such as prolonged drug release, low variability in the drug plasma level, and improved patient compliance. In this paper, the authors summarize different approaches used in transdermal insulin delivery, including microneedles, chemical permeation enhancers, sonophoresis, patches, electroporation, iontophoresis, vesicular formulations, microemulsions, nanoparticles, and microdermabrasion. Transdermal systems for insulin delivery are still being widely researched. The conclusions presented in this paper are extracted from the literature, notably, that the transdermal route could effectively and reliably deliver insulin into the circulatory system. Consistent progress in this area will ensure that some of the aforementioned transdermal insulin delivery systems will be introduced in clinical practice and commercially available in the near future.
Collapse
|
221
|
Alkhalidi HM, Hosny KM, Rizg WY. Oral Gel Loaded by Fluconazole‒Sesame Oil Nanotransfersomes: Development, Optimization, and Assessment of Antifungal Activity. Pharmaceutics 2020; 13:E27. [PMID: 33375740 PMCID: PMC7823766 DOI: 10.3390/pharmaceutics13010027] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 12/29/2022] Open
Abstract
Candidiasis is one of the frequently encountered opportunistic infections in the oral cavity and can be found in acute and chronic presentations. The study aimed to develop fluconazole-loaded sesame oil containing nanotransfersomes (FS-NTF) by the thin-layer evaporation technique to improve the local treatment of oral candidiasis. Optimization of the formulation was performed using the Box‒Behnken statistical design to determine the variable parameters that influence the vesicle size, entrapment efficiency, zone of inhibition, and ulcer index. Finally, the formulated FS-NTF was embedded within the hyaluronic acid‒based hydrogel (HA-FS-NTF). The rheological behavior of the optimized HA-FS-NTF was assessed and the thixotropic behavior with the pseudoplastic flow was recorded; this is desirable for an oral application. An in vitro release study revealed the rapid release of fluconazole from the HA-FS-NTF. This was significantly higher when compared with the fluconazole suspension and hyaluronic acid hydrogel containing fluconazole. Correspondingly, the ex vivo permeation was also found to be higher in HA-FS-NTF in sheep buccal mucosa (400 μg/cm2) when compared with the fluconazole suspension (122 μg/cm2) and hyaluronic acid hydrogel (294 μg/cm2). The optimized formulation had an inhibition zone of 14.33 ± 0.76 mm and enhanced antifungal efficacy for the ulcer index (0.67 ± 0.29) in immunocompromised animals with Candida infection; these findings were superior to those of other tested formulations. Hence, it can be summarized that fluconazole can effectively be delivered for the treatment of oral candidiasis when it is entrapped in a nanotransfersome carrier and embedded into cross-linked hyaluronic acid hydrogel.
Collapse
Affiliation(s)
- Hala M. Alkhalidi
- Department of Clinical Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Khaled M. Hosny
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Waleed Y. Rizg
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
222
|
Rahbari R, Ichim I, Bamsey R, Burridge J, Guy OJ, Bolodeoku J, Graz M. Characterisation of Drug Delivery Efficacy Using Microstructure-Assisted Application of a Range of APIs. Pharmaceutics 2020; 12:E1213. [PMID: 33333795 PMCID: PMC7765163 DOI: 10.3390/pharmaceutics12121213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 11/16/2022] Open
Abstract
Polymer-based solid microstructures (MSts) have the potential to significantly increase the quantity and range of drugs that can be administered across the skin. MSt arrays are used to demonstrate their capacity to bypass the skin barrier and enhance permeability by creating microchannels through the stratum corneum, in a minimally invasive manner. This study is designed to demonstrate the ability of MSts to exceed the current boundaries for transdermal delivery of compounds with different molecular weights, partition coefficients, acid dissociation constants, melting points, and water solubilities. In vitro permeation of a range of selected molecules, including acetyl salicylic acid (aspirin), galantamine, selegiline hydrochloride (Sel-HCl), insulin, caffeine, hydrocortisone (HC), hydrocortisone 21-hemisuccinate sodium salt (HC-HS) and bovine serum albumin (BSA) has been studied across excised porcine skin with and without poke and patch application of MSts. Permeation of the molecules was monitored using Franz diffusion cells over 24 h. MSts significantly increased the permeation of all selected molecules up to 40 times, compared to topical applications of the molecules without MSts. The greatest increase in permeation was observed for caffeine with 70 ± 8% permeation and the lowest enhancement was observed for HC with a 2.4 ± 1.3% increase in permeation. The highest obtained flux was BSA (8133 ± 1365 μg/cm2/h) and the lowest flux observed for HC (11 ± 4 μg/cm2/h). BSA and HC also showed the highest (16,275 ± 3078 μg) and the lowest (73 ± 47 μg) permeation amount after 24 h respectively. MSt-treated skin exhibits greatly increased permeation. The molecule parameters (size, acid dissociation constant, partition coefficient and solubility)-traditional hurdles associated with passive diffusion through intact skin-are overcome using MSt skin treatment.
Collapse
Affiliation(s)
- Raha Rahbari
- Singleton Campus, Institute of Life Science 2, Swansea University, Innoture Ltd., Swansea SA2 8PP, UK; (I.I.); (R.B.); (J.B.); (J.B.); (M.G.)
| | - Ionut Ichim
- Singleton Campus, Institute of Life Science 2, Swansea University, Innoture Ltd., Swansea SA2 8PP, UK; (I.I.); (R.B.); (J.B.); (J.B.); (M.G.)
| | - Ryan Bamsey
- Singleton Campus, Institute of Life Science 2, Swansea University, Innoture Ltd., Swansea SA2 8PP, UK; (I.I.); (R.B.); (J.B.); (J.B.); (M.G.)
| | - Jemma Burridge
- Singleton Campus, Institute of Life Science 2, Swansea University, Innoture Ltd., Swansea SA2 8PP, UK; (I.I.); (R.B.); (J.B.); (J.B.); (M.G.)
| | - Owen J. Guy
- Chemistry Department, Swansea University, Swansea SA2 8PP, UK;
| | - John Bolodeoku
- Singleton Campus, Institute of Life Science 2, Swansea University, Innoture Ltd., Swansea SA2 8PP, UK; (I.I.); (R.B.); (J.B.); (J.B.); (M.G.)
| | - Michael Graz
- Singleton Campus, Institute of Life Science 2, Swansea University, Innoture Ltd., Swansea SA2 8PP, UK; (I.I.); (R.B.); (J.B.); (J.B.); (M.G.)
| |
Collapse
|