201
|
Angelotti A, Snoke DB, Ormiston K, Cole RM, Borkowski K, Newman JW, Orchard TS, Belury MA. Potential Cardioprotective Effects and Lipid Mediator Differences in Long-Chain Omega-3 Polyunsaturated Fatty Acid Supplemented Mice Given Chemotherapy. Metabolites 2022; 12:metabo12090782. [PMID: 36144189 PMCID: PMC9505633 DOI: 10.3390/metabo12090782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/04/2022] [Accepted: 08/22/2022] [Indexed: 11/25/2022] Open
Abstract
Many commonly used chemotherapies induce mitochondrial dysfunction in cardiac muscle, which leads to cardiotoxicity and heart failure later in life. Dietary long-chain omega-3 polyunsaturated fatty acids (LC n-3 PUFA) have demonstrated cardioprotective function in non-chemotherapy models of heart failure, potentially through the formation of LC n-3 PUFA-derived bioactive lipid metabolites. However, it is unknown whether dietary supplementation with LC n-3 PUFA can protect against chemotherapy-induced cardiotoxicity. To test this, 36 female ovariectomized C57BL/6J mice were randomized in a two-by-two factorial design to either a low (0 g/kg EPA + DHA) or high (12.2 g/kg EPA + DHA) LC n-3 PUFA diet, and received either two vehicle or two chemotherapy (9 mg/kg anthracycline + 90 mg/kg cyclophosphamide) tail vein injections separated by two weeks. Body weight and food intake were measured as well as heart gene expression and fatty acid composition. Heart mitochondria were isolated using differential centrifugation. Mitochondrial isolate oxylipin and N-acylethanolamide levels were measured by mass spectrometry after alkaline hydrolysis. LC n-3 PUFA supplementation attenuated some chemotherapy-induced differences (Myh7, Col3a1) in heart gene expression, and significantly altered various lipid species in cardiac mitochondrial preparations including several epoxy fatty acids [17(18)-EpETE] and N-acylethanolamines (arachidonoylethanolamine, AEA), suggesting a possible functional link between heart lipids and cardiotoxicity.
Collapse
Affiliation(s)
- Austin Angelotti
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Deena B. Snoke
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA
- Department of Medicine, University of Vermont Larner College of Medicine, Burlington, VT 05405, USA
| | - Kate Ormiston
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Rachel M. Cole
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Kamil Borkowski
- West Coast Metabolomics Center, Genome Center, University of California Davis, Davis, CA 95616, USA
| | - John W. Newman
- West Coast Metabolomics Center, Genome Center, University of California Davis, Davis, CA 95616, USA
- Western Human Nutrition Research Center, United States Department of Agriculture-Agriculture Research Service, Davis, CA 95616, USA
- Department of Nutrition, University of California-Davis, Davis, CA 95616, USA
| | - Tonya S. Orchard
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Martha A. Belury
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA
- Correspondence:
| |
Collapse
|
202
|
Linoleate-Rich Safflower Oil Diet Increases Linoleate-Derived Bioactive Lipid Mediators in Plasma, and Brown and White Adipose Depots of Healthy Mice. Metabolites 2022; 12:metabo12080743. [PMID: 36005615 PMCID: PMC9412644 DOI: 10.3390/metabo12080743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022] Open
Abstract
Polyunsaturated fats are energy substrates and precursors to the biosynthesis of lipid mediators of cellular processes. Adipose tissue not only provides energy storage, but influences whole-body energy metabolism through endocrine functions. How diet influences adipose-lipid mediator balance may have broad impacts on energy metabolism. To determine how dietary lipid sources modulate brown and white adipose tissue and plasma lipid mediators, mice were fed low-fat (15% kcal fat) isocaloric diets, containing either palm oil (POLF) or linoleate-rich safflower oil (SOLF). Baseline and post body weight, adiposity, and 2-week and post fasting blood glucose were measured and lipid mediators were profiled in plasma, and inguinal white and interscapular brown adipose tissues. We identified over 30 species of altered lipid mediators between diets and found that these changes were unique to each tissue. We identified changes to lipid mediators with known functional roles in the regulation of adipose tissue expansion and function, and found that there was a relationship between the average fold difference in lipid mediators between brown adipose tissue and plasma in mice consuming the SOLF diet. Our findings emphasize that even with a low-fat diet, dietary fat quality has a profound effect on lipid mediator profiles in adipose tissues and plasma.
Collapse
|
203
|
Pflieger FJ, Wolf J, Feldotto M, Nockher A, Wenderoth T, Hernandez J, Roth J, Ott D, Rummel C. Norepinephrine Inhibits Lipopolysaccharide-Stimulated TNF-α but Not Oxylipin Induction in n-3/n-6 PUFA-Enriched Cultures of Circumventricular Organs. Int J Mol Sci 2022; 23:ijms23158745. [PMID: 35955879 PMCID: PMC9368774 DOI: 10.3390/ijms23158745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Sensory circumventricular organs (sCVOs) are pivotal brain structures involved in immune-to-brain communication with a leaky blood-brain barrier that detect circulating mediators such as lipopolysaccharide (LPS). Here, we aimed to investigate the potential of sCVOs to produce n-3 and n-6 oxylipins after LPS-stimulation. Moreover, we investigated if norepinephrine (NE) co-treatment can alter cytokine- and oxylipin-release. Thus, we stimulated rat primary neuroglial sCVO cultures under n-3- or n-6-enriched conditions with LPS or saline combined with NE or vehicle. Supernatants were assessed for cytokines by bioassays and oxylipins by HPLC-MS/MS. Expression of signaling pathways and enzymes were analyzed by RT-PCR. Tumor necrosis factor (TNF)α bioactivity and signaling, IL-10 expression, and cyclooxygenase (COX)2 were increased, epoxide hydroxylase (Ephx)2 was reduced, and lipoxygenase 15-(LOX) was not changed by LPS stimulation. Moreover, LPS induced increased levels of several n-6-derived oxylipins, including the COX-2 metabolite 15d-prostaglandin-J2 or the Ephx2 metabolite 14,15-DHET. For n-3-derived oxylipins, some were down- and some were upregulated, including 15-LOX-derived neuroprotectin D1 and 18-HEPE, known for their anti-inflammatory potential. While the LPS-induced increase in TNFα levels was significantly reduced by NE, oxylipins were not significantly altered by NE or changes in TNFα levels. In conclusion, LPS-induced oxylipins may play an important functional role in sCVOs for immune-to-brain communication.
Collapse
Affiliation(s)
- Fabian Johannes Pflieger
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Jacqueline Wolf
- Institute for Laboratory Medicine, Pathobiochemistry, and Molecular Diagnostics, University Hospital of Giessen and Marburg, 35043 Marburg, Germany
| | - Martin Feldotto
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Andreas Nockher
- Institute for Laboratory Medicine, Pathobiochemistry, and Molecular Diagnostics, University Hospital of Giessen and Marburg, 35043 Marburg, Germany
| | - Tatjana Wenderoth
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Jessica Hernandez
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Joachim Roth
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, 35032 Marburg, Germany
| | - Daniela Ott
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Christoph Rummel
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, 35032 Marburg, Germany
- Correspondence:
| |
Collapse
|
204
|
Wang K, Shi TQ, Lin L, Wei P, Ledesma-Amaro R, Ji XJ. Engineering Yarrowia lipolytica to Produce Tailored Chain-Length Fatty Acids and Their Derivatives. ACS Synth Biol 2022; 11:2564-2577. [DOI: 10.1021/acssynbio.2c00305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Kaifeng Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People’s Republic of China
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210046, People’s Republic of China
| | - Lu Lin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People’s Republic of China
| | - Ping Wei
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People’s Republic of China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, United Kindom
| | - Xiao-Jun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People’s Republic of China
| |
Collapse
|
205
|
Tans R, Dey S, Dey NS, Cao JH, Paul PS, Calder G, O’Toole P, Kaye PM, Heeren RMA. Mass spectrometry imaging identifies altered hepatic lipid signatures during experimental Leishmania donovani infection. Front Immunol 2022; 13:862104. [PMID: 36003389 PMCID: PMC9394181 DOI: 10.3389/fimmu.2022.862104] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction Spatial analysis of lipids in inflammatory microenvironments is key to understand the pathogenesis of infectious disease. Granulomatous inflammation is a hallmark of leishmaniasis and changes in host and parasite lipid metabolism have been observed at the bulk tissue level in various infection models. Here, mass spectrometry imaging (MSI) is applied to spatially map hepatic lipid composition following infection with Leishmania donovani, an experimental mouse model of visceral leishmaniasis. Methods Livers from naïve and L. donovani-infected C57BL/6 mice were harvested at 14- and 20-days post-infection (n=5 per time point). 12 µm transverse sections were cut and covered with norhamane, prior to lipid analysis using MALDI-MSI. MALDI-MSI was performed in negative mode on a Rapiflex (Bruker Daltonics) at 5 and 50 µm spatial resolution and data-dependent analysis (DDA) on an Orbitrap-Elite (Thermo-Scientific) at 50 µm spatial resolution for structural identification analysis of lipids. Results Aberrant lipid abundances were observed in a heterogeneous distribution across infected mouse livers compared to naïve mouse liver. Distinctive localized correlated lipid masses were found in granulomas and surrounding parenchymal tissue. Structural identification revealed 40 different lipids common to naïve and d14/d20 infected mouse livers, whereas 15 identified lipids were only detected in infected mouse livers. For pathology-guided MSI imaging, we deduced lipids from manually annotated granulomatous and parenchyma regions of interests (ROIs), identifying 34 lipids that showed significantly different intensities between parenchyma and granulomas across all infected livers. Discussion Our results identify specific lipids that spatially correlate to the major histopathological feature of Leishmania donovani infection in the liver, viz. hepatic granulomas. In addition, we identified a three-fold increase in the number of unique phosphatidylglycerols (PGs) in infected liver tissue and provide direct evidence that arachidonic acid-containing phospholipids are localized with hepatic granulomas. These phospholipids may serve as important precursors for downstream oxylipin generation with consequences for the regulation of the inflammatory cascade. This study provides the first description of the use of MSI to define spatial-temporal lipid changes at local sites of infection induced by Leishmania donovani in mice.
Collapse
Affiliation(s)
- Roel Tans
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, Netherlands
| | - Shoumit Dey
- York Biomedical Research Institute, Hull York Medical School, University of York, York, United Kingdom
| | - Nidhi Sharma Dey
- York Biomedical Research Institute, Hull York Medical School, University of York, York, United Kingdom
| | - Jian-Hua Cao
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, Netherlands
| | - Prasanjit S. Paul
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, Netherlands
| | - Grant Calder
- Department of Biology, University of York, York, United Kingdom
| | - Peter O’Toole
- Department of Biology, University of York, York, United Kingdom
| | - Paul M. Kaye
- York Biomedical Research Institute, Hull York Medical School, University of York, York, United Kingdom
- *Correspondence: Paul M. Kaye, ; Ron M. A. Heeren,
| | - Ron M. A. Heeren
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, Netherlands
- *Correspondence: Paul M. Kaye, ; Ron M. A. Heeren,
| |
Collapse
|
206
|
Huang N, Liu X, Pei X, Peng J, Wei H. The Quantitative Profiling of Oxylipins from Arachidonic Acid by LC-MS/MS in Feces at Birth 3 Days and 21 Days of Piglets. Metabolites 2022; 12:metabo12080702. [PMID: 36005575 PMCID: PMC9415436 DOI: 10.3390/metabo12080702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 12/10/2022] Open
Abstract
Oxylipins (also called eicosanoids) are enzymatically or nonenzymatically generated by oxidation of arachidonic acid (ARA) and are major mediators of ARA effects in the body. Previous studies demonstrated the importance of ARA in infant growth, brain development, immune response, and health. With the developments in lipidomic methodologies, it is important for exploring more ARA-deprived oxylipins to better understand the physiological functions of ARA. The concentrations of oxylipins in feces were determined from days 3 to 21 postnatally of suckling piglets in vivo. Feces were collected at two critical time points of the suckling piglets (3d and 21d after birth) and about 48 oxylipins were analyzed by using a target metabolomics approach based on Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS). Here, 21 oxylipins were derived from ARA, and 11 differential oxylipins (Log2|fold change| ≥ 1.0) at birth 3d and 21d were identified. Particularly, 12-HETE was more abundant in feces at birth 3 days rather than 21 days. Considering that 12-HETE was a racemic mixture of stereoisomers containing the S and R enantiomers, we further detected the concentrations of 12(S)-HETE and 12(R)-HETE between the two time points by chiral LC-MS/MS analysis. There was no significant difference in the concentrations of 12(S)-HETE and 12(R)-HETE. It was showed that ARA - derived oxylipins might be related to the physiological changes of piglets during growing. Our results provided new information for describing the physiological changes of the piglets over the suckling period.
Collapse
Affiliation(s)
- Ningning Huang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (N.H.); (X.L.); (X.P.); (J.P.)
| | - Xiangchen Liu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (N.H.); (X.L.); (X.P.); (J.P.)
| | - Xiaoqi Pei
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (N.H.); (X.L.); (X.P.); (J.P.)
| | - Jian Peng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (N.H.); (X.L.); (X.P.); (J.P.)
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Hongkui Wei
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (N.H.); (X.L.); (X.P.); (J.P.)
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Correspondence:
| |
Collapse
|
207
|
Shen Z, Wang D, Yu C, Peng Y, Cheng L, Zhang Y. Quantitative profiling of differentially expressed oxylipins in ADSCs under proinflammatory cytokines stimulation. Biomed Chromatogr 2022; 36:e5452. [PMID: 35853831 DOI: 10.1002/bmc.5452] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 11/08/2022]
Abstract
MSCs have been proven to have anti-inflammatory capabilities, but the mechanisms are still under investigation. Recently, oxylipins have been identified to be related to the immuno-regulation function of MSCs, but the MSCs derived oxylipins, especially under the stimulation of versatile pro-inflammatory cytokines, have never been comprehensively analyzed. In the present research, an UPLC-MS/MS method was employed to identify and quantify the oxylipin profiles of ADSCs under cytokines stimulation (IL-1β, TNF-α, IFN-𝛾and TNF-α + IFN-𝛾). The differentially produced oxylipins between experimental groups wereanalyzed and compared. The elevated level of lipoxygenase-15 (LOX-15) mRNA was further verified by qRT-PCR analysis. From the targeted 71 oxylipins, we detected and quantified 57 oxylipins, while 14 were not detected. Distinctive from other cytokines, ADSCs activated by the combination of IFN-𝛾 and TNF-α up-produced LOX-15 products, 7-HDHA and 15-HEPE, which were metabolized from DHA and EPA respectively and involved in the pro-resolution phase of inflammation. The results reported here make a first step towards a comprehensive characterization of MSCs derived oxylipins under different proinflammatory cytokines stimulation. And the findings may lay a fundamental foundation for MSCs based therapies and further determine the ways to optimize the therapeutic potential of MSCs.
Collapse
Affiliation(s)
- Zhengze Shen
- Department ofPharmacy, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Dan Wang
- Gastroenterology Department, Jiulongpo People's Hospital, Chongqing, China
| | - Chaoqun Yu
- College ofPharmacy, Chongqing Medical University, Chongqing, China
| | - Yongbo Peng
- College ofPharmacy, Chongqing Medical University, Chongqing, China
| | - Lifang Cheng
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuan Zhang
- Department ofPharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory ofMolecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
208
|
Caligiuri SPB, Pierce GN, Ravandi A, Aukema HM. The Plasma Oxylipidome Links Smoking Status to Peripheral Artery Disease. Metabolites 2022; 12:metabo12070627. [PMID: 35888750 PMCID: PMC9317423 DOI: 10.3390/metabo12070627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 06/28/2022] [Accepted: 07/04/2022] [Indexed: 12/31/2022] Open
Abstract
Peripheral artery disease (PAD) is prevalent among individuals with a history of tobacco smoking. Although oxidation of lipids may contribute to atherogenesis in vascular disease, enzymatically and nonenzymatically produced oxidized lipids can have varying and contrasting physiological effects. The underlying mechanisms of atherogenic vulnerability can be better elucidated with the recent advances in oxylipidome quantification using HPLC-MS/MS technology. In a randomized, controlled clinical trial, the plasma oxylipidome was analyzed in participants living with PAD by smoking status (n = 98) and in nonsmoking comparators without chronic disease (n = 20). Individuals with PAD had approximately a four-fold higher level of total plasma oxylipins versus the comparator. Cessation of smoking in individuals with PAD was associated with significantly lower levels of linoleic acid-derived TriHOMEs, greater levels of omega-3 fatty acid-derived oxylipins, and greater levels of nonfragmented oxidized phosphatidylcholines (OxPCs). Individuals living with PAD but without a history of smoking, exhibited higher levels of the putative atherogenic fragmented OxPCs versus individuals who currently or previously smoked. These data implicate the plasma oxylipidome in PAD and that smoking cessation is associated with a less inflammatory profile. Furthermore, fragmented OxPCs may play a more significant role in the pathophysiology of PAD in individuals without a history of smoking.
Collapse
Affiliation(s)
- Stephanie P. B. Caligiuri
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Correspondence:
| | - Grant N. Pierce
- Canadian Centre for Agri-Food Research in Health and Medicine, Albrechtsen Research Centre, St. Boniface Hospital, Winnipeg, MB R2H 2A6, Canada; (G.N.P.); (H.M.A.)
- Institute of Cardiovascular Sciences, Albrechtsen Research Centre, St. Boniface Hospital, Winnipeg, MB R2H 2A6, Canada;
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Amir Ravandi
- Institute of Cardiovascular Sciences, Albrechtsen Research Centre, St. Boniface Hospital, Winnipeg, MB R2H 2A6, Canada;
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Department of Internal Medicine, University of Manitoba, Winnipeg, MB R3E 0Z2, Canada
| | - Harold M. Aukema
- Canadian Centre for Agri-Food Research in Health and Medicine, Albrechtsen Research Centre, St. Boniface Hospital, Winnipeg, MB R2H 2A6, Canada; (G.N.P.); (H.M.A.)
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 6C5, Canada
| |
Collapse
|
209
|
Bah TM, Allen EM, Garcia-Jaramillo M, Perez R, Zarnegarnia Y, Davis CM, Bloom MB, Magana AA, Choi J, Bobe G, Pike MM, Raber J, Maier CS, Alkayed NJ. GPR39 Deficiency Impairs Memory and Alters Oxylipins and Inflammatory Cytokines Without Affecting Cerebral Blood Flow in a High-Fat Diet Mouse Model of Cognitive Impairment. Front Cell Neurosci 2022; 16:893030. [PMID: 35875352 PMCID: PMC9298837 DOI: 10.3389/fncel.2022.893030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/20/2022] [Indexed: 12/30/2022] Open
Abstract
Vascular cognitive impairment (VCI) is the second most common cause of dementia. There is no treatment for VCI, in part due to a lack of understanding of the underlying mechanisms. The G-protein coupled receptor 39 (GPR39) is regulated by arachidonic acid (AA)-derived oxylipins that have been implicated in VCI. Furthermore, GPR39 is increased in microglia of post mortem human brains with VCI. Carriers of homozygous GPR39 SNPs have a higher burden of white matter hyperintensity, an MRI marker of VCI. We tested the hypothesis that GPR39 plays a protective role against high-fat diet (HFD)-induced cognitive impairment, in part mediated via oxylipins actions on cerebral blood flow (CBF) and neuroinflammation. Homozygous (KO) and heterozygous (Het) GPR39 knockout mice and wild-type (WT) littermates with and without HFD for 8 months were tested for cognitive performance using the novel object recognition (NOR) and the Morris water maze (MWM) tests, followed by CBF measurements using MRI. Brain tissue and plasma oxylipins were quantified with high-performance liquid chromatography coupled to mass spectrometry. Cytokines and chemokines were measured using a multiplex assay. KO mice, regardless of diet, swam further away from platform location in the MWM compared to WT and Het mice. In the NOR test, there were no effects of genotype or diet. Brain and plasma AA-derived oxylipins formed by 11- and 15-lipoxygenase (LOX), cyclooxygenase (COX) and non-enzymatically were increased by HFD and GPR39 deletion. Interleukin-10 (IL-10) was lower in KO mice on HFD than standard diet (STD), whereas IL-4, interferon γ-induced protein-10 (IP-10) and monocyte chemotactic protein-3 (MCP-3) were altered by diet in both WT and KO, but were not affected by genotype. Resting CBF was reduced in WT and KO mice on HFD, with no change in vasoreactivity. The deletion of GPR39 did not change CBF compared to WT mice on either STD or HFD. We conclude that GPR39 plays a role in spatial memory retention and protects against HFD-induced cognitive impairment in part by modulating inflammation and AA-derived oxylipins. The results indicate that GPR39 and oxylipin pathways play a role and may serve as therapeutic targets in VCI.
Collapse
Affiliation(s)
- Thierno M. Bah
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Elyse M. Allen
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Manuel Garcia-Jaramillo
- Department of Chemistry, Oregon State University, Corvallis, OR, United States
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, United States
| | - Ruby Perez
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Yalda Zarnegarnia
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Catherine M. Davis
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Madeline B. Bloom
- Department of Chemistry, Oregon State University, Corvallis, OR, United States
| | - Armando A. Magana
- Department of Chemistry, Oregon State University, Corvallis, OR, United States
| | - Jaewoo Choi
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States
| | - Gerd Bobe
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States
| | - Martin M. Pike
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
- Departments of Neurology, Radiation Medicine, and Psychiatry, Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, United States
- College of Pharmacy, Oregon State University, Corvallis, OR, United States
| | - Claudia S. Maier
- Department of Chemistry, Oregon State University, Corvallis, OR, United States
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States
| | - Nabil J. Alkayed
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, United States
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
210
|
Sherratt SCR, Libby P, Bhatt DL, Mason RP. A biological rationale for the disparate effects of omega-3 fatty acids on cardiovascular disease outcomes. Prostaglandins Leukot Essent Fatty Acids 2022; 182:102450. [PMID: 35690002 DOI: 10.1016/j.plefa.2022.102450] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/09/2022] [Accepted: 05/19/2022] [Indexed: 12/29/2022]
Abstract
The omega-3 fatty acids (n3-FAs) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) rapidly incorporate into cell membranes where they modulate signal transduction pathways, lipid raft formation, and cholesterol distribution. Membrane n3-FAs also form specialized pro-resolving mediators and other intracellular oxylipins that modulate inflammatory pathways, including T-cell differentiation and gene expression. Cardiovascular (CV) trials have shown that EPA, administered as icosapent ethyl (IPE), reduces composite CV events, along with plaque volume, in statin-treated, high-risk patients. Mixed EPA/DHA regimens have not shown these benefits, perhaps as the result of differences in formulation, dosage, or potential counter-regulatory actions of DHA. Indeed, EPA and DHA have distinct, tissue-specific effects on membrane structural organization and cell function. This review summarizes: (1) results of clinical outcome and imaging trials using n3-FA formulations; (2) membrane interactions of n3-FAs; (3) effects of n3-FAs on membrane oxidative stress and cholesterol crystalline domain formation during hyperglycemia; (4) n3-FA effects on endothelial function; (5) role of n3-FA-generated metabolites in inflammation; and (6) ongoing and future clinical investigations exploring treatment targets for n3-FAs, including COVID-19.
Collapse
Affiliation(s)
- Samuel C R Sherratt
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH 03823, USA; Elucida Research LLC, Beverly, MA 01915-0091, USA
| | - Peter Libby
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115-6110, USA
| | - Deepak L Bhatt
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115-6110, USA
| | - R Preston Mason
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115-6110, USA; Elucida Research LLC, Beverly, MA 01915-0091, USA.
| |
Collapse
|
211
|
Zhang H, Xu Y, Zhao C, Xue Y, Tan D, Wang S, Jia M, Wu H, Ma A, Chen G. Milk lipids characterization in relation to different heat treatments using lipidomics. Food Res Int 2022; 157:111345. [DOI: 10.1016/j.foodres.2022.111345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/07/2022] [Accepted: 05/03/2022] [Indexed: 11/28/2022]
|
212
|
Jiang Y, Tang X, Wang Y, Chen W, Xue Y, Cao H, Zhang B, Pan J, Zhou Q, Wang D, Fan F. Serum Oxylipin Profiles Identify Potential Biomarkers in Patients with Acute Aortic Dissection. Metabolites 2022; 12:metabo12070587. [PMID: 35888709 PMCID: PMC9324768 DOI: 10.3390/metabo12070587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/13/2022] [Accepted: 06/20/2022] [Indexed: 12/08/2022] Open
Abstract
Aortic dissection (AD) is a life-threatening cardiovascular disease with a dismal prognosis. Inflammation plays an important role in AD. Oxylipins are bioactive lipids involved in the modulation of inflammation and may be involved in the pathogenesis and progression of AD. This study aims to identify possible metabolites related to AD. A total of 10 type A Aortic dissection (TAAD) patients, 10 type B Aortic dissection (TBAD) patients and 10 healthy controls were included in this study. Over 100 oxylipin species were identified and quantified by liquid chromatography with tandem mass spectrometry (LC-MS/MS) analysis. Our investigation demonstrated substantial alterations in 91 oxylipins between AD and healthy individuals. Patients with TAAD had 89 entries accessible compared to healthy controls. According to orthogonal partial least squares discriminant analysis (OPLS-DA), fitness (R2X = 0.362 and R2Y = 0.807, p = 0.03) and predictability (Q2 = 0.517, p = 0.005) are the validation parameters between the two groups. Using multivariate logistic regression, 13-HOTrE and 16(17)-EpDPE were the risk factors in the aortic patients group compared to healthy people (OR = 2.467, 95%CI:1.256–7.245, p = 0.035; OR = 0.015, 95%CI:0.0002–0.3240, p = 0.016, respectively). In KEGG enrichment of differential metabolites, the arachidonic acid metabolism pathway has the most metabolites involved. We established a diagnostic model in distinguishing between AD and healthy people. The AUC was 0.905. Oxylipins were significantly altered in AD patients, suggesting oxylipin profile is expected to exploit a novel, non-invasive, objective diagnosis for AD.
Collapse
Affiliation(s)
- Yi Jiang
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing 210008, China
- Department of Thoracic and Cardiovascular Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
- Institute of Cardiothoracic Vascular Disease, Nanjing University, Nanjing 210008, China
| | - Xinlong Tang
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing 210008, China
- Department of Thoracic and Cardiovascular Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
- Institute of Cardiothoracic Vascular Disease, Nanjing University, Nanjing 210008, China
| | - Yali Wang
- Department of Thoracic and Cardiovascular Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
- Institute of Cardiothoracic Vascular Disease, Nanjing University, Nanjing 210008, China
| | - Wei Chen
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing 210008, China
- Department of Thoracic and Cardiovascular Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
- Institute of Cardiothoracic Vascular Disease, Nanjing University, Nanjing 210008, China
| | - Yunxing Xue
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing 210008, China
- Department of Thoracic and Cardiovascular Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
- Institute of Cardiothoracic Vascular Disease, Nanjing University, Nanjing 210008, China
| | - Hailong Cao
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing 210008, China
- Department of Thoracic and Cardiovascular Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
- Institute of Cardiothoracic Vascular Disease, Nanjing University, Nanjing 210008, China
| | - Bomin Zhang
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing 210008, China
- Department of Thoracic and Cardiovascular Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
- Institute of Cardiothoracic Vascular Disease, Nanjing University, Nanjing 210008, China
| | - Jun Pan
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing 210008, China
- Department of Thoracic and Cardiovascular Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
- Institute of Cardiothoracic Vascular Disease, Nanjing University, Nanjing 210008, China
| | - Qing Zhou
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing 210008, China
- Department of Thoracic and Cardiovascular Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
- Institute of Cardiothoracic Vascular Disease, Nanjing University, Nanjing 210008, China
| | - Dongjin Wang
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing 210008, China
- Department of Thoracic and Cardiovascular Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
- Institute of Cardiothoracic Vascular Disease, Nanjing University, Nanjing 210008, China
- Correspondence: (D.W.); (F.F.)
| | - Fudong Fan
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing 210008, China
- Department of Thoracic and Cardiovascular Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
- Institute of Cardiothoracic Vascular Disease, Nanjing University, Nanjing 210008, China
- Correspondence: (D.W.); (F.F.)
| |
Collapse
|
213
|
del Caño-Ochoa S, Ruiz-Aracama A, Guillén MD. Individual and Joint Effect of Alpha-Tocopherol and Hydroxytyrosol Acetate on the Oxidation of Sunflower Oil Submitted to Oxidative Conditions: A Study by Proton Nuclear Magnetic Resonance. Antioxidants (Basel) 2022; 11:1156. [PMID: 35740054 PMCID: PMC9220198 DOI: 10.3390/antiox11061156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 12/10/2022] Open
Abstract
This study tackles the individual and joint effect of alpha-tocopherol and hydroxytyrosol acetate on the oxidation of sunflower oil submitted to accelerated storage conditions at intermediate temperature, in order to deepen the understanding of antioxidant-prooxidant behaviour. This was accomplished by 1H Nuclear Magnetic Resonance. For this purpose, the evolution of the degradation of both the main components of the oil and the aforementioned added compounds was monitored by this technique throughout the storage time. Furthermore, the formation of a very large number of oxylipins and the evolution of their concentration up to a very advanced stage of oil oxidation, as well as the occurrence of lipolysis, were also simultaneously studied. The results obtained show very clearly and thoroughly that in the oxidation process of the oil enriched in binary mixtures, interactions occur between alpha-tocopherol and hydroxytyrosol acetate that notably reduce the antioxidant effect of the latter compound with the corresponding negative consequences that this entails. The methodology used here has proved to be very efficient to evaluate the antioxidant power of mixtures of compounds.
Collapse
Affiliation(s)
| | | | - María D. Guillén
- Food Technology, Faculty of Pharmacy, Lascaray Research Center, University of the Basque Country (UPV-EHU), Paseo de la Universidad n 7, 01006 Vitoria-Gasteiz, Spain; (S.d.C.-O.); (A.R.-A.)
| |
Collapse
|
214
|
Park Y, Watkins BA. Dietary PUFAs and Exercise Dynamic Actions on Endocannabinoids in Brain: Consequences for Neural Plasticity and Neuroinflammation. Adv Nutr 2022; 13:1989-2001. [PMID: 35675221 PMCID: PMC9526838 DOI: 10.1093/advances/nmac064] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 10/15/2021] [Accepted: 06/02/2022] [Indexed: 01/28/2023] Open
Abstract
The brain and peripheral nervous system provide oversight to muscle physiology and metabolism. Muscle is the largest organ in the body and critical for glucose sensitivity, prevention of diabetes, and control of obesity. The central nervous system produces endocannabinoids (eCBs) that play a role in brain neurobiology, such as inflammation and pain. Interestingly, studies in humans and rodents show that a moderate duration of exercise increases eCBs in the brain and blood and influences cannabinoid receptors. Cannabinoid actions in the nervous system have advanced our understanding of pain, well-being, and disease. Nutrition is an important aspect of brain and eCB physiology because eCBs are biosynthesized from PUFAs. The primary eCB metabolites are derived from arachidonic acid, a 20:4n-6 (ω-6) PUFA, and the n-3 (ω-3) PUFAs, EPA and DHA. The eCBs bind to cannabinoid receptors CB1 and CB2 to exert a wide range of activities, such as stimulating appetite, influencing energy metabolism, supporting the immune system, and facilitating neuroplasticity. A diet containing different essential n-6 and n-3 PUFAs will dominate the formation of specific eCBs, and subsequently their actions as ligands for CB1 and CB2. The eCBs also function as substrates for cyclooxygenase enzymes, including potential substrates for the oxylipins (OxLs), which can be proinflammatory. Together, the eCBs and OxLs act as modulators of neuroinflammation. Thus, dietary PUFAs have implications for exercise responses via synthesis of eCBs and their effects on neuroinflammation. Neurotrophins also participate in interactions between diet and the eCBs, specifically brain-derived neurotrophic factor (BDNF). BDNF supports neuroplasticity in cooperation with the endocannabinoid system (ECS). This review will describe the role of PUFAs in eCB biosynthesis, discuss the ECS and OxLs in neuroinflammation, highlight the evidence for exercise effects on eCBs, and describe eCB and BDNF actions on neuroplasticity.
Collapse
|
215
|
Ciampi F, Gandy J, Ciliberti MG, Sevi A, Albenzio M, Santillo A. Pomegranate (Punica granatum) By-Product Extract Influences the Oxylipids Profile in Primary Bovine Aortic Endothelial Cells in a Model of Oxidative Stress. FRONTIERS IN ANIMAL SCIENCE 2022. [DOI: 10.3389/fanim.2022.837279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Aerobic metabolism produces reactive oxygen species (ROS) as a natural by-product that can play a significant role in cell signaling and homeostasis. Excessive and uncontrolled production of ROS, however, can lead to oxidative stress that causes damage to immune cells and is related to several diseases in dairy cattle. Endothelial cells are essential for optimal immune and inflammatory responses but are especially sensitive to the damaging effects of ROS. Accordingly, investigating antioxidant strategies that can mitigate the detrimental impact of ROS on endothelial functions could impact compromised host defenses that lead to increased disease susceptibility. The objective of this study was to test the antioxidant effect of different concentrations (20, 40, 60, 80 μg/ml) of pomegranate by-product extract (PBE) on bovine aortic endothelial cells (BAECs). A model of oxidative stress was developed using in vitro exposure of BAEC to 2,2′-azobis (2-amidinopropane) dihydrochloride (AAPH) to induce the formation of ROS. The BAEC were then analyzed for cell viability, ROS production, fatty acids profile, and oxylipids formation. The BAECs viability did not change after different concentrations of PBE and remained up to 80% over control; whereas, intracellular ROS showed a reduction passing from 20 to 50% with increasing PBE concentration from 20 to 80 μg/ml, respectively. The PBE extract clearly demonstrated efficacy in reducing the concentrations of pro-inflammatory oxylipids with a concomitant enhancement of anti-inflammatory oxylipids. In particular, the pro-inflammatory 13-hydroxyoctadecadienoic acid and its derived anti-inflammatory 13-hydroperoxoctadecaienoic acid were found lower and higher, respectively, in PBE+AAPH treated cells than AAPH treatment. Data from the present study support in vivo future experimental use of pomegranate by-product extract to study its potential beneficial effect against oxidative stress conditions in dairy cattle.
Collapse
|
216
|
Anita NZ, Swardfager W. Soluble Epoxide Hydrolase and Diabetes Complications. Int J Mol Sci 2022; 23:6232. [PMID: 35682911 PMCID: PMC9180978 DOI: 10.3390/ijms23116232] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 02/04/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) can result in microvascular complications such as neuropathy, retinopathy, nephropathy, and cerebral small vessel disease, and contribute to macrovascular complications, such as heart failure, peripheral arterial disease, and large vessel stroke. T2DM also increases the risks of depression and dementia for reasons that remain largely unclear. Perturbations in the cytochrome P450-soluble epoxide hydrolase (CYP-sEH) pathway have been implicated in each of these diabetes complications. Here we review evidence from the clinical and animal literature suggesting the involvement of the CYP-sEH pathway in T2DM complications across organ systems, and highlight possible mechanisms (e.g., inflammation, fibrosis, mitochondrial function, endoplasmic reticulum stress, the unfolded protein response and autophagy) that may be relevant to the therapeutic potential of the pathway. These mechanisms may be broadly relevant to understanding, preventing and treating microvascular complications affecting the brain and other organ systems in T2DM.
Collapse
Affiliation(s)
- Natasha Z. Anita
- Department of Pharmacology and Toxicology, University of Toronto, Medical Sciences Building, 1 King’s College Circle Room 4207, Toronto, ON M5S 1A8, Canada;
- Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada
- Rumsey Centre Cardiac Rehabilitation, University Health Network Toronto Rehabilitation Institute, 347 Rumsey Rd, East York, ON M4G 2V6, Canada
| | - Walter Swardfager
- Department of Pharmacology and Toxicology, University of Toronto, Medical Sciences Building, 1 King’s College Circle Room 4207, Toronto, ON M5S 1A8, Canada;
- Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada
- Rumsey Centre Cardiac Rehabilitation, University Health Network Toronto Rehabilitation Institute, 347 Rumsey Rd, East York, ON M4G 2V6, Canada
| |
Collapse
|
217
|
Liu T, Dogan I, Rothe M, Kunz JV, Knauf F, Gollasch M, Luft FC, Gollasch B. Hemodialysis and biotransformation of erythrocyte epoxy fatty acids in peripheral tissue. Prostaglandins Leukot Essent Fatty Acids 2022; 181:102453. [PMID: 35633593 DOI: 10.1016/j.plefa.2022.102453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 05/05/2022] [Accepted: 05/19/2022] [Indexed: 11/28/2022]
Abstract
Cardiovascular disease is the leading cause of mortality in patients with renal failure. Red blood cells (RBCs) are potential reservoirs for epoxy fatty acids (oxylipins) that regulate cardiovascular function. Hemoglobin exhibits pseudo-lipoxygenase activity in vitro. We previously assessed the impact of single hemodialysis (HD) treatment on RBC epoxy fatty acids status in circulating arterial blood and found that eicosanoids in oxygenated RBCs could be particularly vulnerable in chronic kidney disease and hemodialysis. The purpose of the present study was to evaluate the differences of RBC epoxy fatty acids profiles in arterial and venous blood in vivo (AV differences) from patients treated by HD treatment. We collected arterial and venous blood samples in upper limbs from 12 end-stage renal disease (ESRD) patients (age 72±12 years) before and after HD treatment. We measured oxylipins derived from cytochrome P450 (CYP) monooxygenase and lipoxygenase (LOX)/CYP ω/(ω-1)-hydroxylase pathways in RBCs by LC-MS/MS tandem mass spectrometry. Our data demonstrate arteriovenous differences in LOX pathway metabolites in RBCs after dialysis, including numerous hydroxyeicosatetraenoic acids (HETEs), hydroxydocosahexaenoic acids (HDHAs) and hydroxyeicosapentaenoic acids (HEPEs). We detected more pronounced changes in free metabolites in RBCs after HD, as compared with the total RBC compartment. Hemodialysis treatment did not affect the majority of CYP and CYP ω/(ω-1)-hydroxylase products in RBCs. Our data indicate that erythro-metabolites of the LOX pathway are influenced by renal-replacement therapies, which could have deleterious effects in the circulation.
Collapse
Affiliation(s)
- Tong Liu
- Experimental and Clinical Research Center (ECRC), a joint institution of the Charité Medical Faculty and Max Delbrück Center (MDC) for Molecular Medicine, Berlin 13125, Germany
| | - Inci Dogan
- LIPIDOMIX GmbH, Robert-Rössle-Str. 10, Berlin 13125, Germany
| | - Michael Rothe
- LIPIDOMIX GmbH, Robert-Rössle-Str. 10, Berlin 13125, Germany
| | - Julius V Kunz
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, Berlin 13353
| | - Felix Knauf
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, Berlin 13353
| | - Maik Gollasch
- Department of Internal Medicine and Geriatrics, University Medicine Greifswald, Greifswald 17475, Germany
| | - Friedrich C Luft
- Experimental and Clinical Research Center (ECRC), a joint institution of the Charité Medical Faculty and Max Delbrück Center (MDC) for Molecular Medicine, Berlin 13125, Germany
| | - Benjamin Gollasch
- Experimental and Clinical Research Center (ECRC), a joint institution of the Charité Medical Faculty and Max Delbrück Center (MDC) for Molecular Medicine, Berlin 13125, Germany; Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, Berlin 13353; HELIOS Klinikum Berlin-Buch, Schwanebecker Chaussee 50, Berlin 13125, Germany.
| |
Collapse
|
218
|
Montecillo-Aguado M, Tirado-Rodriguez B, Antonio-Andres G, Morales-Martinez M, Tong Z, Yang J, Hammock BD, Hernandez-Pando R, Huerta-Yepez S. Omega-6 Polyunsaturated Fatty Acids Enhance Tumor Aggressiveness in Experimental Lung Cancer Model: Important Role of Oxylipins. Int J Mol Sci 2022; 23:6179. [PMID: 35682855 PMCID: PMC9181584 DOI: 10.3390/ijms23116179] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 01/27/2023] Open
Abstract
Lung cancer is currently the leading cause of cancer death worldwide; it is often diagnosed at an advanced stage and bears poor prognosis. It has been shown that diet is an important environmental factor that contributes to the risk and mortality of several types of cancers. Intake of ω-3 and ω-6 PUFAs plays an important role in cancer risk and progression. Current Western populations have high consumption of ω-6 PUFAs with a ratio of ω-6/ω-3 PUFAs at 15:1 to 16.7:1 This high consumption of ω-6 PUFAs is related to increased cancer risk and progression. However, whether a diet rich in ω-6 PUFAs can contribute to tumor aggressiveness has not been well investigated. We used a murine model of pulmonary squamous cell carcinoma to study the aggressiveness of tumors in mice fed with a diet rich in ω-6 PUFAs and its relationship with oxylipins. Our results shown that the mice fed a diet rich in ω-6 showed a marked increase in proliferation, angiogenesis and pro-inflammatory markers and decreased expression of pro-apoptotic proteins in their tumors. Oxylipin profiling revealed an upregulation of various pro-tumoral oxylipins including PGs, HETEs, DiHETrEs and HODEs. These results demonstrate for the first time that high intake of ω-6 PUFAs in the diet enhances the malignancy of tumor cells by histological changes on tumor dedifferentiation and increases cell proliferation, angiogenesis, pro-inflammatory oxylipins and molecular aggressiveness targets such as NF-κB p65, YY1, COX-2 and TGF-β.
Collapse
Affiliation(s)
- Mayra Montecillo-Aguado
- Programa de Doctorado en Ciencias Biomédicas, Facultad de Medicina, Universidad Nacional Autonoma de Mexico (UNAM), Mexico City 04510, Mexico;
- Unidad de Investigacion en Enfermedades Oncologicas, Hospital Infantil de Mexico, Federico Gomez, Mexico City 06720, Mexico; (B.T.-R.); (G.A.-A.); (M.M.-M.)
| | - Belen Tirado-Rodriguez
- Unidad de Investigacion en Enfermedades Oncologicas, Hospital Infantil de Mexico, Federico Gomez, Mexico City 06720, Mexico; (B.T.-R.); (G.A.-A.); (M.M.-M.)
| | - Gabriela Antonio-Andres
- Unidad de Investigacion en Enfermedades Oncologicas, Hospital Infantil de Mexico, Federico Gomez, Mexico City 06720, Mexico; (B.T.-R.); (G.A.-A.); (M.M.-M.)
| | - Mario Morales-Martinez
- Unidad de Investigacion en Enfermedades Oncologicas, Hospital Infantil de Mexico, Federico Gomez, Mexico City 06720, Mexico; (B.T.-R.); (G.A.-A.); (M.M.-M.)
| | - Zhen Tong
- Molecular Toxicology Interdepartmental Program and Environmental Health Sciences, University of California, Los Angeles, CA 90095, USA;
- Department of Pathology & Laboratory Medicine, University of California, Los Angeles, CA 90095, USA
| | - Jun Yang
- Comprehensive Cancer Center, Department of Entomology and Nematology, University of California, Davis, CA 95616, USA; (J.Y.); (B.D.H.)
| | - Bruce D. Hammock
- Comprehensive Cancer Center, Department of Entomology and Nematology, University of California, Davis, CA 95616, USA; (J.Y.); (B.D.H.)
| | - Rogelio Hernandez-Pando
- Experimental Pathology Section, Department of Pathology, National Institute of Medical Science and Nutrition, Salvador Zubiran (INCNSZ), Mexico City 14080, Mexico;
| | - Sara Huerta-Yepez
- Unidad de Investigacion en Enfermedades Oncologicas, Hospital Infantil de Mexico, Federico Gomez, Mexico City 06720, Mexico; (B.T.-R.); (G.A.-A.); (M.M.-M.)
- Department of Pathology & Laboratory Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
219
|
Mori K, Kuroha S, Hou J, Jeong H, Ogawa M, Ikeda SI, Kang JX, Negishi K, Torii H, Arita M, Kurihara T, Tsubota K. Lipidomic analysis revealed n-3 polyunsaturated fatty acids suppressed choroidal thinning and myopia progression in mice. FASEB J 2022; 36:e22312. [PMID: 35532744 DOI: 10.1096/fj.202101947r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/23/2022] [Accepted: 03/31/2022] [Indexed: 11/11/2022]
Abstract
Myopia is increasing worldwide and its preventable measure should urgently be pursued. N-3 polyunsaturated fatty acids (PUFAs) have been reported to have various effects such as vasodilative and anti-inflammatory, which myopia may be involved in. This study is to investigate the inhibitory effect of PUFAs on myopia progression. A lens-induced myopia (LIM) model was prepared using C57B L6/J 3-week-old mice, which were equipped with a -30 diopter lens to the right eye. Chows containing two different ratios of n-3/n-6 PUFA were administered to the mice, and myopic shifts were confirmed in choroidal thickness, refraction, and axial length in the n-3 PUFA-enriched chow group after 5 weeks. To exclude the possibility that the other ingredients in the chow may have taken the suppressive effect, fat-1 transgenic mice, which can produce n-3 PUFAs endogenously, demonstrated significant suppression of myopia. To identify what elements in n-3 PUFAs took effects on myopia suppression, enucleated eyes were used for targeted lipidomic analysis, and eicosapentaenoic acid (EPA) were characteristically distributed. Administration of EPA to the LIM model confirmed the inhibitory effect on choroidal thinning and myopia progression. Subsequently, to identify the elements and the metabolites of fatty acids effective on myopia suppression, targeted lipidomic analysis was performed and it demonstrated that metabolites of EPA were involved in myopia suppression, whereas prostaglandin E2 and 14,15-dihydrotestosterone were associated with progression of myopia. In conclusion, EPA and its metabolites are related to myopia suppression and inhibition of choroidal thinning.
Collapse
Affiliation(s)
- Kiwako Mori
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan.,Laboratory of Photobiology, Keio University School of Medicine, Tokyo, Japan
| | - Sayoko Kuroha
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo, Japan.,Division of Physiological Chemistry and Metabolism, Keio University Faculty of Pharmacy, Tokyo, Japan.,Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Jing Hou
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan.,Laboratory of Photobiology, Keio University School of Medicine, Tokyo, Japan
| | - Heonuk Jeong
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan.,Laboratory of Photobiology, Keio University School of Medicine, Tokyo, Japan
| | - Mamoru Ogawa
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan.,Division of Physiological Chemistry and Metabolism, Keio University Faculty of Pharmacy, Tokyo, Japan
| | - Shin-Ichi Ikeda
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan.,Laboratory of Photobiology, Keio University School of Medicine, Tokyo, Japan
| | - Jing X Kang
- Laboratory for Lipid Medicine and Technology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kazuno Negishi
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Hidemasa Torii
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan.,Laboratory of Photobiology, Keio University School of Medicine, Tokyo, Japan
| | - Makoto Arita
- Division of Physiological Chemistry and Metabolism, Keio University Faculty of Pharmacy, Tokyo, Japan.,Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Molecular Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Toshihide Kurihara
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan.,Laboratory of Photobiology, Keio University School of Medicine, Tokyo, Japan
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan.,Tsubota Laboratory, Inc., Tokyo, Japan
| |
Collapse
|
220
|
Tsuji T, Bussberg V, MacDonald AM, Narain NR, Kiebish MA, Tseng YH. Transplantation of Brown Adipose Tissue with the Ability of Converting Omega-6 to Omega-3 Polyunsaturated Fatty Acids Counteracts High-Fat-Induced Metabolic Abnormalities in Mice. Int J Mol Sci 2022; 23:ijms23105321. [PMID: 35628137 PMCID: PMC9142126 DOI: 10.3390/ijms23105321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 02/04/2023] Open
Abstract
A balanced omega (ω)-6/ω-3 polyunsaturated fatty acids (PUFAs) ratio has been linked to metabolic health and the prevention of chronic diseases. Brown adipose tissue (BAT) specializes in energy expenditure and secretes signaling molecules that regulate metabolism via inter-organ crosstalk. Recent studies have uncovered that BAT produces different PUFA species and circulating oxylipin levels are correlated with BAT-mediated energy expenditure in mice and humans. However, the impact of BAT ω-6/ω-3 PUFAs on metabolic phenotype has not been fully elucidated. The Fat-1 transgenic mice can convert ω-6 to ω-3 PUFAs. Here, we demonstrated that mice receiving Fat-1 BAT transplants displayed better glucose tolerance and higher energy expenditure. Expression of genes involved in thermogenesis and nutrient utilization was increased in the endogenous BAT of mice receiving Fat-1 BAT, suggesting that the transplants may activate recipients' BAT. Using targeted lipidomic analysis, we found that the levels of several ω-6 oxylipins were significantly reduced in the circulation of mice receiving Fat-1 BAT transplants than in mice with wild-type BAT transplants. The major altered oxylipins between the WT and Fat-1 BAT transplantation were ω-6 arachidonic acid-derived oxylipins via the lipoxygenase pathway. Taken together, these findings suggest an important role of BAT-derived oxylipins in combating obesity-related metabolic disorders.
Collapse
Affiliation(s)
- Tadataka Tsuji
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA;
| | - Valerie Bussberg
- BERG, Framingham, MA 01701, USA; (V.B.); (A.M.M.); (N.R.N.); (M.A.K.)
| | | | - Niven R. Narain
- BERG, Framingham, MA 01701, USA; (V.B.); (A.M.M.); (N.R.N.); (M.A.K.)
| | | | - Yu-Hua Tseng
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA;
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
- Correspondence: ; Tel.: +1-617-309-1967
| |
Collapse
|
221
|
Intestinal Microbiota-Derived Short Chain Fatty Acids in Host Health and Disease. Nutrients 2022; 14:nu14091977. [PMID: 35565943 PMCID: PMC9105144 DOI: 10.3390/nu14091977] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/01/2022] [Accepted: 05/06/2022] [Indexed: 01/27/2023] Open
Abstract
Intestinal microbiota has its role as an important component of human physiology. It produces metabolites that module key functions to establish a symbiotic crosstalk with their host. Among them, short chain fatty acids (SCFAs), produced by intestinal bacteria during the fermentation of partially and non-digestible polysaccharides, play key roles in regulating colon physiology and changing intestinal environment. Recent research has found that SCFAs not only influence the signal transduction pathway in the gut, but they also reach tissues and organs outside of the gut, through their circulation in the blood. Growing evidence highlights the importance of SCFAs level in influencing health maintenance and disease development. SCFAs are probably involved in the management of host health in a complicated (positive or negative) way. Here, we review the current understanding of SCFAs effects on host physiology and discuss the potential prevention and therapeutics of SCFAs in a variety of disorders. It provides a systematic theoretical basis for the study of mechanisms and precise intake level of SCFAs to promote human health.
Collapse
|
222
|
Johnson CM, Rosario R, Brito A, Agrawal K, Fanter R, Lietz G, Haskell M, Engle-Stone R, Newman JW, La Frano MR. Multi-assay nutritional metabolomics profiling of low vitamin A status versus adequacy is characterized by reduced plasma lipid mediators among lactating women in the Philippines: A pilot study. Nutr Res 2022; 104:118-127. [DOI: 10.1016/j.nutres.2022.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 01/08/2023]
|
223
|
Dyall SC, Balas L, Bazan NG, Brenna JT, Chiang N, da Costa Souza F, Dalli J, Durand T, Galano JM, Lein PJ, Serhan CN, Taha AY. Polyunsaturated fatty acids and fatty acid-derived lipid mediators: Recent advances in the understanding of their biosynthesis, structures, and functions. Prog Lipid Res 2022; 86:101165. [PMID: 35508275 PMCID: PMC9346631 DOI: 10.1016/j.plipres.2022.101165] [Citation(s) in RCA: 271] [Impact Index Per Article: 90.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/26/2022] [Accepted: 04/27/2022] [Indexed: 12/21/2022]
Abstract
Polyunsaturated fatty acids (PUFAs) are structural components of membrane phospholipids, and influence cellular function via effects on membrane properties, and also by acting as a precursor pool for lipid mediators. These lipid mediators are formed via activation of pathways involving at least one step of dioxygen-dependent oxidation, and are consequently called oxylipins. Their biosynthesis can be either enzymatically-dependent, utilising the promiscuous cyclooxygenase, lipoxygenase, or cytochrome P450 mixed function oxidase pathways, or nonenzymatic via free radical-catalyzed pathways. The oxylipins include the classical eicosanoids, comprising prostaglandins, thromboxanes, and leukotrienes, and also more recently identified lipid mediators. With the advent of new technologies there is growing interest in identifying these different lipid mediators and characterising their roles in health and disease. This review brings together contributions from some of those at the forefront of research into lipid mediators, who provide brief introductions and summaries of current understanding of the structure and functions of the main classes of nonclassical oxylipins. The topics covered include omega-3 and omega-6 PUFA biosynthesis pathways, focusing on the roles of the different fatty acid desaturase enzymes, oxidized linoleic acid metabolites, omega-3 PUFA-derived specialized pro-resolving mediators, elovanoids, nonenzymatically oxidized PUFAs, and fatty acid esters of hydroxy fatty acids.
Collapse
|
224
|
Scala V, Salustri M, Loreti S, Pucci N, Cacciotti A, Tatulli G, Scortichini M, Reverberi M. Mass Spectrometry-Based Targeted Lipidomics and Supervised Machine Learning Algorithms in Detecting Disease, Cultivar, and Treatment Biomarkers in Xylella fastidiosa subsp. pauca-Infected Olive Trees. FRONTIERS IN PLANT SCIENCE 2022; 13:833245. [PMID: 35528940 PMCID: PMC9072861 DOI: 10.3389/fpls.2022.833245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
In 2013, Xylella fastidiosa (Xf) was detected for the first time in Apulia and, subsequently, recognized as the causal agent of the olive quick decline syndrome (OQDS). To contain the disease, the olive germplasm was evaluated for resistance to Xf, identifying cultivars with different susceptibility to the pathogen. Regarding this, the resistant cultivar Leccino has generally a lower bacterial titer compared with the susceptible cultivar Ogliarola salentina. Among biomolecules, lipids could have a pivotal role in the interaction of Xf with its host. In the grapevine Pierce's disease, fatty acid molecules, the diffusible signaling factors (DSFs), act as regulators of Xf lifestyle and are crucial for its virulence. Other lipid compounds derived from fatty acid oxidation, namely, oxylipins, can affect, in vitro, biofilm formation in Xf subsp. pauca (Xfp) strain De Donno, that is, the strain causing OQDS. In this study, we combined high-performance liquid chromatography-mass spectrometry-MS-based targeted lipidomics with supervised learning algorithms (random forest, support vector machine, and neural networks) to classify olive tree samples from Salento. The dataset included samples from either OQDS-positive or OQDS-negative olive trees belonging either to cultivar Ogliarola salentina or Leccino treated or not with the zinc-copper-citric acid biocomplex Dentamet®. We built classifiers using the relative differences in lipid species able to discriminate olive tree samples, namely, (1) infected and non-infected, (2) belonging to different cultivars, and (3) treated or untreated with Dentamet®. Lipid entities emerging as predictors of the thesis are free fatty acids (C16:1, C18:1, C18:2, C18:3); the LOX-derived oxylipins 9- and 13-HPOD/TrE; the DOX-derived oxylipin 10-HPOME; and diacylglyceride DAG36:4(18:1/18:3).
Collapse
Affiliation(s)
- Valeria Scala
- Council for Agricultural Research and Economics (CREA), Research Centre for Plant Protection and Certification, Rome, Italy
| | - Manuel Salustri
- Department of Environmental Biology, Sapienza University, Rome, Italy
| | - Stefania Loreti
- Council for Agricultural Research and Economics (CREA), Research Centre for Plant Protection and Certification, Rome, Italy
| | - Nicoletta Pucci
- Council for Agricultural Research and Economics (CREA), Research Centre for Plant Protection and Certification, Rome, Italy
| | - Andrea Cacciotti
- Department of Environmental Biology, Sapienza University, Rome, Italy
| | - Giuseppe Tatulli
- Council for Agricultural Research and Economics (CREA), Research Centre for Plant Protection and Certification, Rome, Italy
| | - Marco Scortichini
- Council for Agricultural Research and Economics (CREA), Research Centre for Olive, Fruit and Citrus Crops, Rome, Italy
| | - Massimo Reverberi
- Department of Environmental Biology, Sapienza University, Rome, Italy
| |
Collapse
|
225
|
Eekhoudt CR, Bortoluzzi T, Varghese SS, Cheung DYC, Christie S, Eastman S, Mittal I, Austria JA, Aukema HM, Ravandi A, Thliveris J, Singal PK, Jassal DS. Comparing Flaxseed and Perindopril in the Prevention of Doxorubicin and Trastuzumab-Induced Cardiotoxicity in C57Bl/6 Mice. Curr Oncol 2022; 29:2941-2953. [PMID: 35621631 PMCID: PMC9139942 DOI: 10.3390/curroncol29050241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/15/2022] [Accepted: 04/17/2022] [Indexed: 11/28/2022] Open
Abstract
Background: Two anti-cancer agents, doxorubicin (DOX) and trastuzumab (TRZ), are commonly used in the management of breast cancer in women. Despite their efficacy in reducing the morbidity and mortality of individuals with breast cancer, the use of these agents is limited by adverse cardiotoxic side effects. Both the nutraceutical agent flaxseed (FLX) and the pharmaceutical drug perindopril (PER) have been studied individually in the prevention of chemotherapy-mediated cardiac dysfunction. The objective of this study was to determine whether the prophylactic administration of FLX is comparable and/or synergistic with PER in preventing DOX + TRZ-induced cardiotoxicity. Methods: Over a six-week period, 81 wild-type C57Bl/6 female mice (8–12 weeks old) were randomized to receive regular chow (RC) or 10% FLX-supplemented diets with or without PER (3 mg/kg/week; oral gavage). Starting at week 4, mice were randomized to receive a weekly injection of saline or DOX (8 mg/kg) + TRZ (3 mg/kg). Serial echocardiography was conducted weekly and histological and biochemical analyses were performed at the end of the study. Results: In mice treated with RC + DOX + TRZ, left ventricular ejection (LVEF) decreased from 75 ± 2% at baseline to 37 ± 3% at week 6. However, prophylactic treatment with either FLX, PER, or FLX + PER partially preserved left ventricular systolic function with LVEF values of 61 ± 2%, 62 ± 2%, and 64 ± 2%, respectively. The administration of FLX, PER, or FLX + PER was also partially cardioprotective in preserving cardiomyocyte integrity and attenuating the expression of the inflammatory biomarker NF-κB due to DOX + TRZ administration. Conclusion: FLX was equivalent to PER at preventing DOX + TRZ-induced cardiotoxicity in a chronic in vivo murine model.
Collapse
Affiliation(s)
- Cameron R. Eekhoudt
- Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 432 Basic Medical Sciences Building, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada; (C.R.E.); (T.B.); (S.S.V.); (D.Y.C.C.); (S.E.); (I.M.); (J.A.A.); (A.R.); (P.K.S.)
| | - Tessa Bortoluzzi
- Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 432 Basic Medical Sciences Building, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada; (C.R.E.); (T.B.); (S.S.V.); (D.Y.C.C.); (S.E.); (I.M.); (J.A.A.); (A.R.); (P.K.S.)
| | - Sonu S. Varghese
- Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 432 Basic Medical Sciences Building, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada; (C.R.E.); (T.B.); (S.S.V.); (D.Y.C.C.); (S.E.); (I.M.); (J.A.A.); (A.R.); (P.K.S.)
| | - David Y. C. Cheung
- Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 432 Basic Medical Sciences Building, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada; (C.R.E.); (T.B.); (S.S.V.); (D.Y.C.C.); (S.E.); (I.M.); (J.A.A.); (A.R.); (P.K.S.)
| | - Simon Christie
- Section of Cardiology, Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Room GC430, Health Sciences Centre 820 Sherbrook Street, Winnipeg, MB R3A 1R9, Canada;
| | - Skyler Eastman
- Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 432 Basic Medical Sciences Building, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada; (C.R.E.); (T.B.); (S.S.V.); (D.Y.C.C.); (S.E.); (I.M.); (J.A.A.); (A.R.); (P.K.S.)
| | - Ishika Mittal
- Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 432 Basic Medical Sciences Building, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada; (C.R.E.); (T.B.); (S.S.V.); (D.Y.C.C.); (S.E.); (I.M.); (J.A.A.); (A.R.); (P.K.S.)
| | - J. Alejandro Austria
- Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 432 Basic Medical Sciences Building, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada; (C.R.E.); (T.B.); (S.S.V.); (D.Y.C.C.); (S.E.); (I.M.); (J.A.A.); (A.R.); (P.K.S.)
| | - Harold M. Aukema
- Canadian Centre for Agri-Food Research in Health and Medicine, Department of Food and Human Nutritional Sciences, University of Manitoba, Room W573 Duff Roblin Building, Winnipeg, MB R3T 2N2, Canada;
| | - Amir Ravandi
- Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 432 Basic Medical Sciences Building, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada; (C.R.E.); (T.B.); (S.S.V.); (D.Y.C.C.); (S.E.); (I.M.); (J.A.A.); (A.R.); (P.K.S.)
- Section of Cardiology, Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Room GC430, Health Sciences Centre 820 Sherbrook Street, Winnipeg, MB R3A 1R9, Canada;
| | - James Thliveris
- Department of Human Anatomy and Cell Sciences, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 130 Basic Medical Science Building, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada;
| | - Pawan K. Singal
- Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 432 Basic Medical Sciences Building, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada; (C.R.E.); (T.B.); (S.S.V.); (D.Y.C.C.); (S.E.); (I.M.); (J.A.A.); (A.R.); (P.K.S.)
| | - Davinder S. Jassal
- Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 432 Basic Medical Sciences Building, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada; (C.R.E.); (T.B.); (S.S.V.); (D.Y.C.C.); (S.E.); (I.M.); (J.A.A.); (A.R.); (P.K.S.)
- Section of Cardiology, Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Room GC430, Health Sciences Centre 820 Sherbrook Street, Winnipeg, MB R3A 1R9, Canada;
- Department of Radiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Room GA216, 820 Sherbrook Street, Winnipeg, MB R3T 2N2, Canada
- Correspondence: ; Tel.: +1-(204)-258-1290; Fax: +1-(204)-233-2157
| |
Collapse
|
226
|
Banga R, Banga V, Eltalla A, Shahin L, Parag S, Naim M, Iyer E, Kumrah N, Zacharias B, Nathanson L, Beljanski V. Effects of autophagy modulators tamoxifen and chloroquine on the expression profiles of long non-coding RNAs in MIAMI cells exposed to IFNγ. PLoS One 2022; 17:e0266179. [PMID: 35446871 PMCID: PMC9022845 DOI: 10.1371/journal.pone.0266179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 03/15/2022] [Indexed: 11/18/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) can be utilized clinically for treatment of conditions that result from excessive inflammation. In a pro-inflammatory environment, MSCs adopt an anti-inflammatory phenotype resulting in immunomodulation. A sub-type of MSCs referred to as “marrow-isolated adult multilineage inducible” (MIAMI) cells, which were isolated from bone marrow, were utilized to show that the addition of autophagy modulators, tamoxifen (TX) or chloroquine (CQ), can alter how MIAMI cells respond to IFNγ exposure in vitro resulting in an increased immunoregulatory capacity of the MIAMI cells. Molecularly, it was also shown that TX and CQ each alter both the levels of immunomodulatory genes and microRNAs which target such genes. However, the role of other non-coding RNAs (ncRNAs) such as long non-coding RNAs (lncRNAs) in regulating the response of MSCs to inflammation has been poorly studied. Here, we utilized transcriptomics and data mining to analyze the putative roles of various differentially regulated lncRNAs in MIAMI cells exposed to IFNγ with (or without) TX or CQ. The aim of this study was to investigate how the addition of TX and CQ alters lncRNA levels and evaluate how such changes could alter previously observed TX- and CQ-driven changes to the immunomodulatory properties of MIAMI cells. Data analysis revealed 693 long intergenic non-coding RNAS (lincRNAs), 480 pseudogenes, and 642 antisense RNAs that were differentially regulated with IFNγ, IFNγ+TX and IFNγ+CQ treatments. Further analysis of these RNA species based on the existing literature data revealed 6 antisense RNAs, 2 pseudogenes, and 5 lincRNAs that have the potential to modulate MIAMI cell’s response to IFNγ treatment. Functional analysis of these genomic species based on current literature linking inflammatory response and ncRNAs indicated their potential for regulation of several key pro- and anti-inflammatory responses, including NFκB signaling, cytokine secretion and auto-immune responses. Overall, this work found potential involvement of multiple pro-and anti-inflammatory pathways and molecules in modulating MIAMI cells’ response to inflammation.
Collapse
Affiliation(s)
- Rajkaran Banga
- Dr Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Davie, Florida
| | - Veerkaran Banga
- Dr Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Davie, Florida
| | - Amr Eltalla
- Dr Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Davie, Florida
| | - Lauren Shahin
- Dr Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Davie, Florida
| | - Sonam Parag
- Dr Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Davie, Florida
| | - Maha Naim
- Department of Biological Sciences, Halmos College of Arts and Sciences, Nova Southeastern University, Fort Lauderdale, Davie, Florida
| | - Easha Iyer
- Department of Biological Sciences, Halmos College of Arts and Sciences, Nova Southeastern University, Fort Lauderdale, Davie, Florida
| | - Neha Kumrah
- Department of Biological Sciences, Halmos College of Arts and Sciences, Nova Southeastern University, Fort Lauderdale, Davie, Florida
| | - Brian Zacharias
- Department of Biological Sciences, Halmos College of Arts and Sciences, Nova Southeastern University, Fort Lauderdale, Davie, Florida
| | - Lubov Nathanson
- Dr Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Davie, Florida
- Institute for Neuroimmune Medicine, Dr Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Davie, Florida
| | - Vladimir Beljanski
- Dr Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Davie, Florida
- Cell Therapy Institute, Dr Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Davie, Florida
- * E-mail:
| |
Collapse
|
227
|
Du Y, Li DX, Lu DY, Zhang R, Zhao YL, Zhong QQ, Ji S, Wang L, Tang DQ. Lipid metabolism disorders and lipid mediator changes of mice in response to long-term exposure to high-fat and high sucrose diets and ameliorative effects of mulberry leaves. Food Funct 2022; 13:4576-4591. [PMID: 35355025 DOI: 10.1039/d1fo04146k] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mulberry leaves exhibit anti-lipogenic and lipid-lowering effects. However, the lipid biomarkers and underlying mechanisms for the improvement of the action of mulberry leaves on obesity and lipid metabolism disorders have not been sufficiently investigated yet. Herein, biochemical analysis combined with metabolomics targeting serum lipid mediators (oxylipins) were used to explore the efficacy and underlying mechanisms of mulberry leaf water extract (MLWE) in high-fat and high-sucrose diet (HFHSD)-fed mice. Our results showed that MLWE supplementation not only decreased body weight gain, serum total triglycerides, low-density lipoprotein cholesterol, alanine transaminase and aspartate transaminase levels, but also increased the serum level of high-density lipoprotein cholesterol. In addition, MLWE supplementation also ameliorated hepatic steatosis and lipid accumulation. These beneficial effects were associated with down-regulating genes involved in oxidative stress, inflammation, and lipogenesis such as acetyl-CoA carboxylase and fatty acid synthase, and up-regulating genes related to lipolysis that encoded peroxisome proliferator-activated receptor α, adiponectin (ADPN), adiponectin receptor (AdipoR) 1, AdipoR2, adenosine monophosphate-activated protein kinase (AMPK) and hormone-sensitive lipase. Moreover, a total of 54 serum lipid mediators were differentially changed in HFHSD-fed mice, among which 11 lipid mediators from n-3 polyunsaturated fatty acids (PUFAs) were apparently reversed by MLWE. These findings indicated that the ADPN/AMPK pathway, anti-inflammation, anti-oxidation, and n-3 PUFA metabolism played important roles in anti-obesity and improvement of lipid metabolism disorders modulated by MLWE supplementation.
Collapse
Affiliation(s)
- Yan Du
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Ding-Xiang Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Dong-Yu Lu
- Department of Pharmacy, Suining People's Hospital Affiliated to Xuzhou Medical University, Suining 221202, China
| | - Ran Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Yan-Lin Zhao
- Department of Pharmacy, Suining People's Hospital Affiliated to Xuzhou Medical University, Suining 221202, China
| | - Qiao-Qiao Zhong
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Shuai Ji
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China. .,Department of Pharmaceutical Analysis, Xuzhou Medical University, Xuzhou 221204, China
| | - Liang Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China. .,Department of Bioinformatics, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou 221204, China
| | - Dao-Quan Tang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China. .,Department of Pharmacy, Suining People's Hospital Affiliated to Xuzhou Medical University, Suining 221202, China.,Department of Pharmaceutical Analysis, Xuzhou Medical University, Xuzhou 221204, China
| |
Collapse
|
228
|
Walnut Oil Reduces Aβ Levels and Increases Neurite Length in a Cellular Model of Early Alzheimer Disease. Nutrients 2022; 14:nu14091694. [PMID: 35565661 PMCID: PMC9099939 DOI: 10.3390/nu14091694] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/11/2022] [Accepted: 04/16/2022] [Indexed: 02/04/2023] Open
Abstract
(1) Background: Mitochondria are the cells' main source of energy. Mitochondrial dysfunction represents a key hallmark of aging and is linked to the development of Alzheimer's disease (AD). Maintaining mitochondrial function might contribute to healthy aging and the prevention of AD. The Mediterranean diet, including walnuts, seems to prevent age-related neurodegeneration. Walnuts are a rich source of α-linolenic acid (ALA), an essential n3-fatty acid and the precursor for n3-long-chain polyunsaturated fatty acids (n3-PUFA), which might potentially improve mitochondrial function. (2) Methods: We tested whether a lipophilic walnut extract (WE) affects mitochondrial function and other parameters in human SH-SY5Y cells transfected with the neuronal amyloid precursor protein (APP695). Walnut lipids were extracted using a Soxhlet Extraction System and analyzed using GC/MS and HPLC/FD. Adenosine triphosphate (ATP) concentrations were quantified under basal conditions in cell culture, as well as after rotenone-induced stress. Neurite outgrowth was investigated, as well as membrane integrity, cellular reactive oxygen species, cellular peroxidase activity, and citrate synthase activity. Beta-amyloid (Aβ) was quantified using homogenous time-resolved fluorescence. (3) Results: The main constituents of WE are linoleic acid, oleic acid, α-linolenic acid, and γ- and δ-tocopherol. Basal ATP levels following rotenone treatment, as well as citrate synthase activity, were increased after WE treatment. WE significantly increased cellular reactive oxygen species but lowered peroxidase activity. Membrane integrity was not affected. Furthermore, WE treatment reduced Aβ1-40 and stimulated neurite growth. (4) Conclusions: WE might increase ATP production after induction of mitochondrial biogenesis. Decreased Aβ1-40 formation and enhanced ATP levels might enhance neurite growth, making WE a potential agent to enhance neuronal function and to prevent the development of AD. In this sense, WE could be a promising agent for the prevention of AD.
Collapse
|
229
|
Jachimowicz K, Winiarska-Mieczan A, Tomaszewska E. The Impact of Herbal Additives for Poultry Feed on the Fatty Acid Profile of Meat. Animals (Basel) 2022; 12:ani12091054. [PMID: 35565481 PMCID: PMC9101922 DOI: 10.3390/ani12091054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/12/2022] [Accepted: 04/18/2022] [Indexed: 02/04/2023] Open
Abstract
Researchers often found that herbal additives to chicken feed can favorably alter the fatty acid profile of the meat. The most desirable effects of diet modification comprise an increased content of polyunsaturated fatty acids (PUFA) and monounsaturated fatty acids (MUFA) and a reduced content of saturated fatty acids (SFA) in the breast and thigh muscles. A modified fatty acid profile contributes to improvement in the quality of poultry meat, which is reflected in its increased consumption. However, it may be problematic that PUFAs are oxidized easier than other lipids, which can have a negative impact on the sensory traits of meat. By contrast, herbs and herbal products contain antioxidants that can prevent the oxidation of unsaturated fatty acids and cholesterol present in animal-origin products and increase the antioxidant potential of the consumer’s body. This paper aims to review the influence of herbal additives for broiler chicken diets on the fatty acid profile of poultry meat. Special attention was paid to changes in the content of SFAs, MUFAs, and PUFAs, but also alterations in the omega-6:omega-3 ratio. The presented reference literature supports the statement that herbs and bioactive components of herbs added to chicken diets can improve the quality of broiler chicken meat by altering the content of fatty acids.
Collapse
Affiliation(s)
- Karolina Jachimowicz
- Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, Akademicka St. 13, 20-950 Lublin, Poland;
- Correspondence:
| | - Anna Winiarska-Mieczan
- Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, Akademicka St. 13, 20-950 Lublin, Poland;
| | - Ewa Tomaszewska
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka St. 12, 20-950 Lublin, Poland;
| |
Collapse
|
230
|
Gong Y, Ni X, Jin C, Li X, Wang Y, Wang O, Li M, Xing X, Wu Z, Jiang Y, Xia W. Serum Metabolomics Reveals Dysregulation and Diagnostic Potential of Oxylipins in Tumor-induced Osteomalacia. J Clin Endocrinol Metab 2022; 107:1383-1391. [PMID: 34904633 DOI: 10.1210/clinem/dgab885] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Excessive production of fibroblast growth factor 23 (FGF23) by a tumor is considered the main pathogenesis in tumor-induced osteomalacia (TIO). Despite its importance to comprehensive understanding of pathogenesis and diagnosis, the regulation of systemic metabolism in TIO remains unclear. OBJECTIVE We aimed to systematically characterize the metabolome alteration associated with TIO. METHODS By means of liquid chromatography-tandem mass spectrometry-based metabolomics, we analyzed the metabolic profile from 96 serum samples (32 from TIO patients at initial diagnosis, pairwise samples after tumor resection, and 32 matched healthy control (HC) subjects). In order to screen and evaluate potential biomarkers, statistical analyses, pathway enrichment and receiver operating characteristic (ROC) were performed. RESULTS Metabolomic profiling revealed distinct alterations between TIO and HC cohorts. Differential metabolites were screened and conducted to functional clustering and annotation. A significantly enriched pathway was found involving arachidonic acid metabolism. A combination of 5 oxylipins, 4-HDoHE, leukotriene B4, 5-HETE, 17-HETE, and 9,10,13-TriHOME, demonstrated a high sensitivity and specificity panel for TIO prediction screened by random forest algorithm (AUC = 0.951; 95% CI, 0.827-1). Supported vector machine modeling and partial least squares modeling were conducted to validate the predictive capabilities of the diagnostic panel. CONCLUSION Metabolite profiling of TIO showed significant alterations compared with HC. A high-sensitivity and high-specificity panel with 5 oxylipins was tested as diagnostic predictor. For the first time, we provide the global profile of metabolomes and identify potential diagnostic biomarkers of TIO. The present work may offer novel insights into the pathogenesis of TIO.
Collapse
Affiliation(s)
- Yiyi Gong
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
- Medical Research Center, National Commission of Health, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xiaolin Ni
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Chenxi Jin
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xiang Li
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yujie Wang
- Medical Research Center, National Commission of Health, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Ou Wang
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Mei Li
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xiaoping Xing
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Zhihong Wu
- Medical Research Center, National Commission of Health, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yan Jiang
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Weibo Xia
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
231
|
Multi-Omics Approach Points to the Importance of Oxylipins Metabolism in Early-Stage Breast Cancer. Cancers (Basel) 2022; 14:cancers14082041. [PMID: 35454947 PMCID: PMC9032865 DOI: 10.3390/cancers14082041] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/10/2022] [Accepted: 04/14/2022] [Indexed: 02/05/2023] Open
Abstract
The involvement of oxylipins, metabolites of polyunsaturated fatty acids, in cancer pathogenesis was known long ago, but only the development of the high-throughput methods get the opportunity to study oxylipins on a system level. The study aimed to elucidate alterations in oxylipin metabolism as characteristics of breast cancer patients. We compared the ultra-high-performance liquid chromatography-mass spectrometry (UPLC-MS/MS) oxylipin profile signatures in the blood plasma of 152 healthy volunteers (HC) and 169 patients with different stages of breast cancer (BC). To integrate lipidomics, transcriptomics, and genomics data, we analyzed a transcriptome of 10 open database datasets obtained from tissues and blood cells of BC patients and SNP data for 33 genes related to oxylipin metabolism. We identified 18 oxylipins, metabolites of omega-3 or omega-6 polyunsaturated fatty acids, that were differentially expressed between BCvsHC patients, including anandamide, prostaglandins and hydroxydocosahexaenoic acids. DEGs analysis of tissue and blood samples from BC patients revealed that 19 genes for oxylipin biosynthesis change their expression level, with CYP2C19, PTGS2, HPGD, and FAAH included in the list of DEGs in the analysis of transcriptomes and the list of SNPs associated with BC. Results allow us to suppose that oxylipin signatures reflect the organism's level of response to the disease. Our data regarding changes in oxylipins at the system level show that oxylipin profiles can be used to evaluate the early stages of breast cancer.
Collapse
|
232
|
Koch E, Kampschulte N, Schebb NH. Comprehensive Analysis of Fatty Acid and Oxylipin Patterns in n3-PUFA Supplements. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3979-3988. [PMID: 35324176 DOI: 10.1021/acs.jafc.1c07743] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Supplementing long-chain omega-3 polyunsaturated fatty acids (n3-PUFA) improves health. We characterized the pattern of total and non-esterified oxylipins and fatty acids in n3 supplements made of fish, krill, or micro-algae oil by LC-MS. All supplements contained the declared amount of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA); however, their content per capsule and the concentration of other fatty acids varied strongly. Krill oil contained the highest total n3 oxylipin concentration (6000 nmol/g) and the highest degree of oxidation (EPA 0.7%; DHA 1.3%), while micro-algae oil (Schizochytrium sp.) showed the lowest oxidation (<0.09%). These oils contain specifically high amounts of the terminal hydroxylation product of EPA (20-HEPE, 300 nmol/g) and DHA (22-HDHA, 200 nmol/g), which can serve as an authenticity marker for micro-algae oil. Refined micro-algae and fish oil were characterized by NEFA levels of ≤0.1%. Overall, the oxylipin and fatty acid pattern allows gaining new insights into the origin and quality of n3-PUFA oils in supplements.
Collapse
Affiliation(s)
- Elisabeth Koch
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaussstrasse 20, 42119 Wuppertal, Germany
| | - Nadja Kampschulte
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaussstrasse 20, 42119 Wuppertal, Germany
| | - Nils Helge Schebb
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaussstrasse 20, 42119 Wuppertal, Germany
| |
Collapse
|
233
|
Effect of Different Exercise Training Modalities on Fasting Levels of Oxylipins and Endocannabinoids in Middle-Aged Sedentary Adults: A Randomized Controlled Trial. Int J Sport Nutr Exerc Metab 2022; 32:275-284. [PMID: 35339112 DOI: 10.1123/ijsnem.2021-0332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/26/2022] [Accepted: 02/14/2022] [Indexed: 11/18/2022]
Abstract
This study aimed to investigate the effects of different exercise training programs on fasting plasma levels of oxylipins, endocannabinoids (eCBs), and eCBs-like molecules in middle-aged sedentary adults. A 12-week randomized controlled trial was conducted using a parallel group design. Sixty-five middle-aged adults (40-65 years old) were randomly assigned to: (a) no exercise (control group), (b) concurrent training based on international physical activity recommendations (PAR group), (c) high-intensity interval training (HIIT group), and (d) HIIT together with whole-body electromyostimulation (HIIT + EMS group). Plasma levels of oxylipins, eCBs, and eCBs-like molecules were determined in plasma samples before and after the intervention using targeted lipidomics. Body composition was assessed through dual-energy X-ray absorptiometry, and dietary intake through a food frequency questionnaire and three nonconsecutive 24-hr recalls. The physical activity recommendations, HIIT, and HIIT-EMS groups showed decreased plasma levels of omega-6 and omega-3-derived oxylipins, and eCBs and eCBs-like molecules after 12 weeks (all Δ ≤ -0.12; all p < .05). Importantly, after Bonferroni post hoc corrections, the differences in plasma levels of omega-6 and omega-3 oxylipins were not statistically significant compared with the control group (all p > .05). However, after post hoc corrections, plasma levels of anandamide and oleoylethanolamide were increased in the physical activity recommendations group compared with the control group (anandamide: Δ = 0.05 vs. -0.09; oleoylethanolamide: Δ = -0.12 vs. 0.013, all p ≤ .049). In conclusion, this study reports that a 12-week exercise training intervention, independent of the modality applied, does not modify fasting plasma levels of omega-6 and omega-3 oxylipins, eCBs, and eCBs-like molecules in middle-aged sedentary adults.
Collapse
|
234
|
del Caño-Ochoa S, Ruiz-Aracama A, Guillén MD. Alpha-Tocopherol, a Powerful Molecule, Leads to the Formation of Oxylipins in Polyunsaturated Oils Differently to the Temperature Increase: A Detailed Study by Proton Nuclear Magnetic Resonance of Walnut Oil Oxidation. Antioxidants (Basel) 2022; 11:604. [PMID: 35453290 PMCID: PMC9031923 DOI: 10.3390/antiox11040604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 01/07/2023] Open
Abstract
Lipid oxidation causes food degradation and the formation of toxic compounds. Therefore, the addition to foods of compounds able to avoid, delay or minimize this degradative process is a commonly used strategy. Nevertheless, neither the identity of most of the formed compounds in this complex process nor the way in which their formation is affected by the strategy used are well known. In this context, the effect the temperature increase and the enrichment level in alpha-tocopherol on the evolution of the walnut oil oxidation, as a model of an oil rich in polyunsaturated omega-6 acyl groups, submitted to storage conditions, are tackled by 1H NMR. The study has allowed knowing the degradation kinetic of both the oil acyl groups and alpha-tocopherol, the identification of a very high number of oxylipins and the kinetic of their formation. The temperature increase accelerates the formation of all oxylipins, favouring the formation of hydroperoxy conjugated E,E-dienes and related derivatives versus that of the Z,E-isomers. The enrichment in alpha-tocopherol accelerates the formation of hydroperoxy conjugated Z,E-dienes and related derivatives, and delays in relation to the formation of the former that of the E,E-isomers and related derivatives, hindering, to a certain extent, the formation of the latter in line with the enrichment level.
Collapse
Affiliation(s)
| | | | - María D. Guillén
- Food Technology, Faculty of Pharmacy, Lascaray Research Center, University of the Basque Country (UPV-EHU), Paseo de la Universidad n 7, 01006 Vitoria-Gasteiz, Spain; (S.d.C.-O.); (A.R.-A.)
| |
Collapse
|
235
|
Massimino L, Bulbarelli A, Corsetto PA, Milani C, Botto L, Farina F, Lamparelli LA, Lonati E, Ungaro F, Maddipati KR, Palestini P, Rizzo AM. LSEA Evaluation of Lipid Mediators of Inflammation in Lung and Cortex of Mice Exposed to Diesel Air Pollution. Biomedicines 2022; 10:712. [PMID: 35327517 PMCID: PMC8945792 DOI: 10.3390/biomedicines10030712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/15/2022] [Accepted: 03/15/2022] [Indexed: 12/10/2022] Open
Abstract
Airborne ultrafine particle (UFP) exposure is a great concern as they have been correlated to increased cardiovascular mortality, neurodegenerative diseases and morbidity in occupational and environmental settings. The ultrafine components of diesel exhaust particles (DEPs) represent about 25% of the emission mass; these particles have a great surface area and consequently high capacity to adsorb toxic molecules, then transported throughout the body. Previous in-vivo studies indicated that DEP exposure increases pro- and antioxidant protein levels and activates inflammatory response both in respiratory and cardiovascular systems. In cells, DEPs can cause additional reactive oxygen species (ROS) production, which attacks surrounding molecules, such as lipids. The cell membrane provides lipid mediators (LMs) that modulate cell-cell communication, inflammation, and resolution processes, suggesting the importance of understanding lipid modifications induced by DEPs. In this study, with a lipidomic approach, we evaluated in the mouse lung and cortex how DEP acute and subacute treatments impact polyunsaturated fatty acid-derived LMs. To analyze the data, we designed an ad hoc bioinformatic pipeline to evaluate the functional enrichment of lipid sets belonging to the specific biological processes (Lipid Set Enrichment Analysis-LSEA). Moreover, the data obtained correlate tissue LMs and proteins associated with inflammatory process (COX-2, MPO), oxidative stress (HO-1, iNOS, and Hsp70), involved in the activation of many xenobiotics as well as PAH metabolism (Cyp1B1), suggesting a crucial role of lipids in the process of DEP-induced tissue damage.
Collapse
Affiliation(s)
- Luca Massimino
- Department of Gastroenterology and Digestive Endoscopy, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (L.M.); (F.U.)
- Molecular Medicine-Neuroscience, Università Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Alessandra Bulbarelli
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Monza, Italy; (A.B.); (C.M.); (L.B.); (F.F.); (E.L.)
- Polaris Research Centre, University of Milano-Bicocca, 20126 Monza, Italy
| | - Paola Antonia Corsetto
- Department of Pharmacological and Biomolecular Sciences, University of Milano, 20133 Milano, Italy;
| | - Chiara Milani
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Monza, Italy; (A.B.); (C.M.); (L.B.); (F.F.); (E.L.)
| | - Laura Botto
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Monza, Italy; (A.B.); (C.M.); (L.B.); (F.F.); (E.L.)
| | - Francesca Farina
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Monza, Italy; (A.B.); (C.M.); (L.B.); (F.F.); (E.L.)
| | | | - Elena Lonati
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Monza, Italy; (A.B.); (C.M.); (L.B.); (F.F.); (E.L.)
| | - Federica Ungaro
- Department of Gastroenterology and Digestive Endoscopy, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (L.M.); (F.U.)
- Molecular Medicine-Neuroscience, Università Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Krishna Rao Maddipati
- Department of Pathology, Lipidomics Core Facility, Wayne State University, Detroit, MI 48202, USA;
| | - Paola Palestini
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Monza, Italy; (A.B.); (C.M.); (L.B.); (F.F.); (E.L.)
- Polaris Research Centre, University of Milano-Bicocca, 20126 Monza, Italy
| | - Angela Maria Rizzo
- Department of Pharmacological and Biomolecular Sciences, University of Milano, 20133 Milano, Italy;
| |
Collapse
|
236
|
Circulating linoleic acid at the time of myocardial infarction and risk of primary ventricular fibrillation. Sci Rep 2022; 12:4377. [PMID: 35288655 PMCID: PMC8921268 DOI: 10.1038/s41598-022-08453-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 02/21/2022] [Indexed: 12/02/2022] Open
Abstract
Primary ventricular fibrillation (PVF) is a major driver of cardiac arrest in the acute phase of ST-segment elevation myocardial infarction (STEMI). Enrichment of cardiomyocyte plasma membranes with dietary polyunsaturated fatty acids (PUFA) reduces vulnerability to PVF experimentally, but clinical data are scarce. PUFA status in serum phospholipids is a valid surrogate biomarker of PUFA status in cardiomyocytes within a wide range of dietary PUFA. In this nested case–control study (n = 58 cases of STEMI-driven PVF, n = 116 control non-PVF STEMI patients matched for age, sex, smoking status, dyslipidemia, diabetes mellitus and hypertension) we determined fatty acids in serum phospholipids by gas-chromatography, and assessed differences between cases and controls, applying the Benjamini–Hochberg procedure on nominal P-values to control the false discovery rate (FDR). Significant differences between cases and controls were restricted to linoleic acid (LA), with PVF patients showing a lower level (nominal P = 0.002; FDR-corrected P = 0.027). In a conditional logistic regression model, each one standard deviation increase in the proportion of LA was related to a 42% lower prevalence of PVF (odds ratio = 0.58; 95% confidence interval, 0.37, 0.90; P = 0.02). The association lasted after the inclusion of confounders. Thus, regular consumption of LA-rich foods (nuts, oils from seeds) may protect against ischemia-driven malignant arrhythmias.
Collapse
|
237
|
Madsen PA, Curtasu MV, Canibe N, Hedemann MS, Pedersen MLM, Lauridsen C. Non-targeted metabolomics of saliva to explore potential biomarkers for gastric ulceration in pigs fed hemp. Animal 2022; 16:100477. [PMID: 35247704 DOI: 10.1016/j.animal.2022.100477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 11/17/2022] Open
Abstract
Gastric ulceration is a common disease in pig production worldwide and is associated with economic losses as well as animal health and welfare issues. The aim of this study was to explore potential salivary biomarkers for gastric ulceration in pigs. In addition, the aim was to study the effect of hemp on the incidence of gastric ulcers. Approximately 440 growing-finishing pigs in the period from 30 to 110 kg BW were allocated to four different diets: meal feed (Meal); pelleted feed (Pellets); pelleted feed added 4% hempseed cake (Hemp Cake); pelleted feed added 4% hempseed hulls (Hemp Hulls). The day before slaughter, saliva samples from each pig were collected. After slaughter, the stomachs were emptied to assess the consistency of the stomach content and examined for gastric ulceration using an index scale (0-10). Noticeable changes of the gastric mucosa (total index score ≥ 6) were observed in 291 pigs. The odds of having index scores 0-5 relative to index scores 6-8 and 9-10, respectively, were higher (P < 0.001) for pigs fed Meal compared to pigs fed Pellets. The odds of suffering from severe gastric ulcers tended (P = 0.08) to be lower in pigs fed Hemp Hulls compared to pigs fed Pellets. A non-targeted liquid chromatography mass spectrometry based metabolomics analysis was performed on saliva samples to determine any separation between pigs with healthy stomachs and those with gastric ulcers and to examine a possible correlation between gastric ulcer index and potential biomarkers. Partial least-squares discriminant analysis showed a separation between pigs with ulcers and those with healthy stomachs/hyperkeratosis (HK). Metabolites contributing to the separation between groups were identified. Levels of oxylipins deriving from linoleic acid were lower (P < 0.001) in pigs with ulcers compared to healthy/HK pigs. This may indicate a shift in the metabolic pathways towards more pro-inflammatory arachidonic acid-derived eicosanoids, which might reflect an increased inflammatory response. Thus, reduced levels of oxylipins derived from linoleic acid seemed to be associated with active gastric ulcers, and thereby they might function as biomarkers for gastric ulceration in pigs. In addition, supplementation of hempseed hulls had a beneficial effect on severe gastric ulcers, as hempseed hulls changed the consistency of the gastric content by conferring more solidness. However, it was not possible to observe any reliable separation between pigs fed pellets supplemented with hemp products and pigs fed non-supplemented pellets according to the identified salivary metabolites.
Collapse
Affiliation(s)
- P A Madsen
- Department of Animal Science, Aarhus University, AU Foulum, Blichers Allé 20, 8830 Tjele, Denmark
| | - M V Curtasu
- Laval University, Faculty of Agriculture and Food Sciences, Department of Animal Sciences, 2425 rue de l'Agriculture, Québec G1V 0A6, Canada
| | - N Canibe
- Department of Animal Science, Aarhus University, AU Foulum, Blichers Allé 20, 8830 Tjele, Denmark
| | - M S Hedemann
- Department of Animal Science, Aarhus University, AU Foulum, Blichers Allé 20, 8830 Tjele, Denmark
| | - M L M Pedersen
- SEGES Pig Research Centre, Axeltorv 3, 1609 Copenhagen, Denmark
| | - C Lauridsen
- Department of Animal Science, Aarhus University, AU Foulum, Blichers Allé 20, 8830 Tjele, Denmark.
| |
Collapse
|
238
|
de Branco FMS, Rossato LT, Rinaldi AEM, Azeredo CM, de Oliveira EP. Plasma omega-3 is not associated with appendicular muscle mass index in young and middle-aged individuals: Results from NHANES 2011-2012. Prostaglandins Leukot Essent Fatty Acids 2022; 178:102412. [PMID: 35290916 DOI: 10.1016/j.plefa.2022.102412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/13/2022] [Accepted: 02/28/2022] [Indexed: 12/01/2022]
Abstract
The aim of this study was to evaluate the association between plasma omega-3 (ω-3) and appendicular muscle mass index (AMMI) in young and middle-aged individuals; and also to evaluate whether these associations are sex-specific. A cross-sectional study was performed evaluating 1037 individuals aged 20 to 59 years from a sub-sample of the National Health and Nutrition Examination Survey (NHANES) 2011-2012. Plasma ω-3 was evaluated by gas chromatography-mass spectrometry and lean mass was assessed by dual-energy x-ray absorptiometry (DXA). Total plasma ω-3, docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA) and alpha-linolenic acid (ALA) were not associated with AMMI in total sample, men and women after adjustments for confounders. Plasma ω-3 and its subtypes were not associated with AMMI in a subanalysis evaluating young (20 to 44 y) and middle-aged (45 to 59 y) individuals separately. In conclusion, plasma ω-3 fatty acids are not associated with AMMI in young and middle-aged individuals regardless of sex.
Collapse
Affiliation(s)
- Flávia M S de Branco
- Laboratory of Nutrition, Exercise and Health (LaNES), School of Medicine, Federal University of Uberlandia (UFU), Uberlandia, Minas Gerais, Brazil
| | - Luana T Rossato
- Laboratory of Nutrition, Exercise and Health (LaNES), School of Medicine, Federal University of Uberlandia (UFU), Uberlandia, Minas Gerais, Brazil
| | - Ana Elisa M Rinaldi
- School of Medicine, Federal University of Uberlandia (UFU), Uberlandia, Minas Gerais, Brazil
| | - Catarina M Azeredo
- School of Medicine, Federal University of Uberlandia (UFU), Uberlandia, Minas Gerais, Brazil
| | - Erick P de Oliveira
- Laboratory of Nutrition, Exercise and Health (LaNES), School of Medicine, Federal University of Uberlandia (UFU), Uberlandia, Minas Gerais, Brazil.
| |
Collapse
|
239
|
Hausburg MA, Bocker JM, Madayag RM, Mains CW, Banton KL, Liniewicz TE, Tanner A, Sercy E, Bar-Or R, Williams JS, Ryznar RJ, Bar-Or D. Characterization of Peritoneal Reactive Ascites Collected from Acute Appendicitis and Small Bowel Obstruction Patients. Clin Chim Acta 2022; 531:126-136. [PMID: 35346646 DOI: 10.1016/j.cca.2022.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 11/03/2022]
|
240
|
Abstract
PURPOSE OF REVIEW This review highlights aspects of brown adipose tissue (BAT) communication with other organ systems and how BAT-to-tissue cross-talk could help elucidate future obesity treatments. RECENT FINDINGS Until recently, research on BAT has focused mainly on its thermogenic activity. New research has identified an endocrine/paracrine function of BAT and determined that many BAT-derived molecules, termed "batokines," affect the physiology of a variety of organ systems and cell types. Batokines encompass a variety of signaling molecules including peptides, metabolites, lipids, or microRNAs. Recent studies have noted significant effects of batokines on physiology as it relates whole-body metabolism and cardiac function. This review will discuss batokines and other BAT processes that affect the liver, cardiovascular system, skeletal muscle, immune cells, and brown and white adipose tissue. Brown adipose tissue has a crucial secretory function that plays a key role in systemic physiology.
Collapse
Affiliation(s)
- Felix T Yang
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, 460 W. 12th Ave, Columbus, OH, 43210, USA
- Diabetes and Metabolism Research Center, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Kristin I Stanford
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, 460 W. 12th Ave, Columbus, OH, 43210, USA.
- Diabetes and Metabolism Research Center, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
241
|
Reitsma SE, Lakshmanan HHS, Johnson J, Pang J, Parra-Izquierdo I, Melrose AR, Choi J, Anderson DEJ, Hinds MT, Stevens JF, Aslan JE, McCarty OJT, Lo JO. Chronic edible dosing of Δ9-tetrahydrocannabinol (THC) in nonhuman primates reduces systemic platelet activity and function. Am J Physiol Cell Physiol 2022; 322:C370-C381. [PMID: 35080922 PMCID: PMC8858671 DOI: 10.1152/ajpcell.00373.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cannabis usage has steadily increased as acceptance is growing for both medical and recreational reasons. Medical cannabis is administered for treatment of chronic pain based on the premise that the endocannabinoid system signals desensitize pain sensor neurons and produce anti-inflammatory effects. The major psychoactive ingredient of cannabis is Δ9-tetrahydrocannabinol (THC) that signals mainly through cannabinoid receptor-1 (CBr), which is also present on nonneuron cells including blood platelets of the circulatory system. In vitro, CBr-mediated signaling has been shown to acutely inhibit platelet activation downstream of the platelet collagen receptor glycoprotein (GP)VI. The systemic effects of chronic THC administration on platelet activity and function remain unclear. This study investigates the effects of chronic THC administration on platelet function using a nonhuman primate (NHP) model. Our results show that female and male NHPs consuming a daily THC edible had reduced platelet adhesion, aggregation, and granule secretion in response to select platelet agonists. Furthermore, a change in bioactive lipids (oxylipins) was observed in the female cohort after THC administration. These results indicate that chronic THC edible administration desensitized platelet activity and function in response to GPVI- and G-protein coupled receptor-based activation by interfering with primary and secondary feedback signaling pathways. These observations may have important clinical implications for patients who use medical marijuana and for providers caring for these patients.
Collapse
Affiliation(s)
- Stéphanie E. Reitsma
- 1Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon
| | | | - Jennifer Johnson
- 1Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Jiaqing Pang
- 1Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Iván Parra-Izquierdo
- 1Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon,2Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - Alex R. Melrose
- 1Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon,2Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - Jaewoo Choi
- 3Linus Pauling Institute, Oregon State University, Corvallis, Oregon
| | - Deirdre E. J. Anderson
- 1Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Monica T. Hinds
- 1Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Jan Frederik Stevens
- 3Linus Pauling Institute, Oregon State University, Corvallis, Oregon,4College of Pharmacy, Oregon State university, Corvallis, Oregon
| | - Joseph E. Aslan
- 1Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon,2Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - Owen J. T. McCarty
- 1Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Jamie O. Lo
- 5Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
242
|
Du Y, Taylor CG, Aukema HM, Zahradka P. PD146176 affects human EA.hy926 endothelial cell function by differentially modulating oxylipin production of LOX, COX and CYP epoxygenase. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159156. [DOI: 10.1016/j.bbalip.2022.159156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 01/08/2023]
|
243
|
Belury MA, Ros E, Kris-Etherton PM. Weighing Evidence of the Role of Saturated and Unsaturated Fats and Human Health. Adv Nutr 2022; 13:686-688. [PMID: 37270207 PMCID: PMC8970838 DOI: 10.1093/advances/nmab160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023] Open
Affiliation(s)
- Martha A Belury
- From the Carol S Kennedy Professor of Nutrition, Program of Nutrition, Department of Human Sciences, The Ohio State University, Columbus, OH, USA.
| | - Emilio Ros
- Lipid Clinic, Endocrinology and Nutrition Service, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Barcelona, Spain, and CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | | |
Collapse
|
244
|
Simard M, Tremblay A, Morin S, Martin C, Julien P, Fradette J, Flamand N, Pouliot R. α-Linolenic acid and linoleic acid modulate the lipidome and the skin barrier of a tissue-engineered skin model. Acta Biomater 2022; 140:261-274. [PMID: 34808417 DOI: 10.1016/j.actbio.2021.11.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/18/2022]
Abstract
Polyunsaturated fatty acids (PUFAs) play an important role in the establishment and the maintenance of the skin barrier function. However, the impact of their derived lipid mediators remains unclear. Skin substitutes were engineered according to the self-assembly method with a culture medium supplemented with 10 μM of both α-linolenic acid (ALA) and linoleic acid (LA). The supplementation with ALA and LA decreased testosterone absorption through a tissue-engineered reconstructed skin model, thus indicating an improved skin barrier function following supplementation. The exogenously provided fatty acids were incorporated into the phospholipid and triglyceride fractions of the skin substitutes. Indeed, the dual supplementation increased the levels of eicosapentaenoic acid (EPA) (15-fold), docosapentaenoic acid (DPA) (3-fold), and LA (1.5-fold) in the epidermal phospholipids while it increased the levels of ALA (>20-fold), DPA (3-fold) and LA (1.5-fold) in the epidermal triglycerides. The bioactive lipid mediator profile of the skin substitutes, including prostaglandins, hydroxy-fatty acids, N-acylethanolamines and monoacylglycerols, was next analyzed using liquid chromatography-tandem mass spectrometry. The lipid supplementation further modulated bioactive lipid mediator levels of the reconstructed skin substitutes, leading to a lipid mediator profile more representative of the one found in normal human skin. These findings show that an optimized supply of PUFAs via culture media is essential for the establishment of improved barrier function in vitro. STATEMENT OF SIGNIFICANCE: Supplementation of the culture medium with 10 μM of both α-linolenic acid (ALA) and linoleic acid (LA) improved the skin barrier function of a tissue-engineered skin model. The exogenously provided fatty acids were incorporated into the phospholipid and triglyceride fractions of the skin substitutes and further modulated bioactive lipid mediator levels, including prostaglandins, hydroxy-fatty acids, N-acylethanolamines and monoacylglycerols. These findings highlight the important role of ALA and LA in skin homeostasis and show that an optimized supply of polyunsaturated fatty acids via culture media is essential for the establishment of improved barrier function in vitro.
Collapse
Affiliation(s)
- Mélissa Simard
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Axe médecine régénératrice, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, G1J 1Z4, Canada; Faculté de pharmacie de l'Université Laval, Québec, QC, G1J 1A4, Canada
| | - Andréa Tremblay
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Axe médecine régénératrice, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, G1J 1Z4, Canada; Faculté de pharmacie de l'Université Laval, Québec, QC, G1J 1A4, Canada
| | - Sophie Morin
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Axe médecine régénératrice, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, G1J 1Z4, Canada; Faculté de pharmacie de l'Université Laval, Québec, QC, G1J 1A4, Canada
| | - Cyril Martin
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, QC, G1V 4G5, Canada; Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec, QC, Canada
| | - Pierre Julien
- Département de médecine, Faculté de médecine de l'Université Laval, Québec, QC, G1V 0A6, Canada; Axe Endocrinologie et Néphrologie, Centre de recherche du CHU de Québec, Université Laval, Québec, QC, G1J 1A4, Canada
| | - Julie Fradette
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Axe médecine régénératrice, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, G1J 1Z4, Canada; Département de chirurgie, Faculté de médecine de l'Université Laval, Québec, QC, G1V 0A6, Canada
| | - Nicolas Flamand
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, QC, G1V 4G5, Canada; Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec, QC, Canada
| | - Roxane Pouliot
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Axe médecine régénératrice, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, G1J 1Z4, Canada; Faculté de pharmacie de l'Université Laval, Québec, QC, G1J 1A4, Canada.
| |
Collapse
|
245
|
Xu M, Legradi J, Leonards P. Using comprehensive lipid profiling to study effects of PFHxS during different stages of early zebrafish development. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:151739. [PMID: 34848268 DOI: 10.1016/j.scitotenv.2021.151739] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 11/05/2021] [Accepted: 11/13/2021] [Indexed: 05/26/2023]
Abstract
PFHxS (Perfluorohexane sulfonic acid) is one of the short-chain perfluoroalkyl substances (PFASs) which are widely used in many industrial and consumer applications. However, limited information is available on the molecular mechanism of PFHxS toxicity (e.g. lipid metabolism). This study provides in-depth information on the lipid regulation of zebrafish embryos with and without PFHxS exposure. Lipid changes throughout zebrafish development (4 to 120 h post fertilization (hpf)) were closely associated with lipid species and lipid composition (fatty acyl chains). A comprehensive lipid analysis of four different PFHxS exposures (0, 0.3, 1, 3, and 10 μM) at different zebrafish developmental stages (24, 48, 72, and 120 hpf) was performed. Data on exposure concentration, lipids, and developmental stage showed that all PFHxS concentrations dysregulated the lipid metabolism and these were developmental-dependent. The pattern of significantly changed lipids revealed that PFHxS caused effects related to oxidative stress, inflammation, and impaired fatty acid β-oxidation. Oxidative stress and inflammation caused the remodeling of glycerophospholipid (phosphatidylcholine (PC) and phosphatidylethanolamine (PE)), with increased incorporation of omega-3 PUFA and a decreased incorporation of omega-6 PUFA.
Collapse
Affiliation(s)
- Mengmeng Xu
- Department of Environment and Health, Vrije Universiteit, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands.
| | - Jessica Legradi
- Department of Environment and Health, Vrije Universiteit, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| | - Pim Leonards
- Department of Environment and Health, Vrije Universiteit, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| |
Collapse
|
246
|
Plasma Oxylipin Profile Discriminates Ethnicities in Subjects with Non-Alcoholic Steatohepatitis: An Exploratory Analysis. Metabolites 2022; 12:metabo12020192. [PMID: 35208265 PMCID: PMC8875408 DOI: 10.3390/metabo12020192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 02/04/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a common liver pathology that includes steatosis, or non-alcoholic fatty liver (NAFL), and non-alcoholic steatohepatitis (NASH). Without a clear pathophysiological mechanism, it affects Hispanics disproportionately compared to other ethnicities. Polyunsaturated fatty acids (PUFAs) and inflammatory lipid mediators including oxylipin (OXL) and endocannabinoid (eCB) are altered in NAFLD and thought to contribute to its pathogenesis. However, the existence of ethnicity-related differences is not clear. We employed targeted lipidomic profiling for plasma PUFAs, non-esterified OXLs and eCBs in White Hispanics (HIS, n = 10) and Caucasians (CAU, n = 8) with biopsy-confirmed NAFL, compared with healthy control subjects (HC; n = 14 HIS; n = 8 CAU). NAFLD was associated with diminished long chain PUFA in HIS, independent of histological severity. Differences in plasma OXLs and eCBs characterized ethnicities in NASH, with lower arachidonic acid derived OXLs observed in HIS. The secondary analysis comparing ethnicities within NASH (n = 12 HIS; n = 17 CAU), confirms these ethnicity-related differences and suggests lower lipoxygenase(s) and higher soluble epoxide hydrolase(s) activities in HIS compared to CAU. While causes are not clear, these lipidomic differences might be with implications for NAFLD severity and are worth further investigation. We provide preliminary data indicating ethnicity-specific lipidomic signature characterizes NASH which requires further validation.
Collapse
|
247
|
Śledziński M, Hliwa A, Gołębiewska J, Mika A. The Impact of Kidney Transplantation on the Serum Fatty Acid Profile in Patients with End-Stage Kidney Disease. Nutrients 2022; 14:nu14040772. [PMID: 35215422 PMCID: PMC8876092 DOI: 10.3390/nu14040772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/28/2022] [Accepted: 02/08/2022] [Indexed: 02/01/2023] Open
Abstract
Epidemiological data indicate that metabolic disturbances and increased cardiovascular risk in renal transplant patients are a significant and common problem. Therefore, it is important to search for new solutions and, at the same time, counteract the negative effects of currently used therapies. In this study, we examined the effect of kidney transplantation on the serum levels of fatty acids (FAs) in order to assess the role of these compounds in the health of transplant patients. The FA profile was analyzed by gas chromatography-mass spectrometry in the serum of 35 kidney transplant recipients, just before transplantation and 3 months later. The content of total n-3 polyunsaturated FAs (PUFAs) decreased after transplantation (3.06 ± 0.13% vs. 2.66 ± 0.14%; p < 0.05). The total amount of ultra-long-chain FAs containing 26 and more carbon atoms was significantly reduced (0.08 ± 0.009% vs. 0.05 ± 0.007%; p < 0.05). The desaturation index (18:1/18:0) increased after transplantation (3.92 ± 0.11% vs. 4.36 ± 0.18%; p < 0.05). The study showed a significant reduction in n-3 PUFAs in renal transplant recipients 3 months after transplantation, which may contribute to increased cardiovascular risk in this patient population.
Collapse
Affiliation(s)
- Maciej Śledziński
- Department of General, Endocrine and Transplant Surgery, Faculty of Medicine, Medical University of Gdansk, 80-214 Gdansk, Poland;
| | - Aleksandra Hliwa
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, 80-211 Gdansk, Poland;
| | - Justyna Gołębiewska
- Department of Nephrology, Transplantology and Internal Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland;
| | - Adriana Mika
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, 80-211 Gdansk, Poland;
- Correspondence:
| |
Collapse
|
248
|
Sharma M, Singh V, Sharma R, Koul A, McCarthy ET, Savin VJ, Joshi T, Srivastava T. Glomerular Biomechanical Stress and Lipid Mediators during Cellular Changes Leading to Chronic Kidney Disease. Biomedicines 2022; 10:407. [PMID: 35203616 PMCID: PMC8962328 DOI: 10.3390/biomedicines10020407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 01/31/2022] [Accepted: 02/04/2022] [Indexed: 02/04/2023] Open
Abstract
Hyperfiltration is an important underlying cause of glomerular dysfunction associated with several systemic and intrinsic glomerular conditions leading to chronic kidney disease (CKD). These include obesity, diabetes, hypertension, focal segmental glomerulosclerosis (FSGS), congenital abnormalities and reduced renal mass (low nephron number). Hyperfiltration-associated biomechanical forces directly impact the cell membrane, generating tensile and fluid flow shear stresses in multiple segments of the nephron. Ongoing research suggests these biomechanical forces as the initial mediators of hyperfiltration-induced deterioration of podocyte structure and function leading to their detachment and irreplaceable loss from the glomerular filtration barrier. Membrane lipid-derived polyunsaturated fatty acids (PUFA) and their metabolites are potent transducers of biomechanical stress from the cell surface to intracellular compartments. Omega-6 and ω-3 long-chain PUFA from membrane phospholipids generate many versatile and autacoid oxylipins that modulate pro-inflammatory as well as anti-inflammatory autocrine and paracrine signaling. We advance the idea that lipid signaling molecules, related enzymes, metabolites and receptors are not just mediators of cellular stress but also potential targets for developing novel interventions. With the growing emphasis on lifestyle changes for wellness, dietary fatty acids are potential adjunct-therapeutics to minimize/treat hyperfiltration-induced progressive glomerular damage and CKD.
Collapse
Affiliation(s)
- Mukut Sharma
- Research and Development Service, Kansas City VA Medical Center, Kansas City, MO 64128, USA;
- Midwest Veterans’ Biomedical Research Foundation, Kansas City, MO 64128, USA; (A.K.); (V.J.S.); (T.S.)
- Department of Internal Medicine, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, MO 66160, USA;
| | - Vikas Singh
- Neurology, Kansas City VA Medical Center, Kansas City, MO 64128, USA;
| | - Ram Sharma
- Research and Development Service, Kansas City VA Medical Center, Kansas City, MO 64128, USA;
| | - Arnav Koul
- Midwest Veterans’ Biomedical Research Foundation, Kansas City, MO 64128, USA; (A.K.); (V.J.S.); (T.S.)
| | - Ellen T. McCarthy
- Department of Internal Medicine, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, MO 66160, USA;
| | - Virginia J. Savin
- Midwest Veterans’ Biomedical Research Foundation, Kansas City, MO 64128, USA; (A.K.); (V.J.S.); (T.S.)
| | - Trupti Joshi
- Department of Health Management and Informatics, University of Missouri, Columbia, MO 65201, USA;
| | - Tarak Srivastava
- Midwest Veterans’ Biomedical Research Foundation, Kansas City, MO 64128, USA; (A.K.); (V.J.S.); (T.S.)
- Section of Nephrology, Children’s Mercy Hospital and University of Missouri, Kansas City, MO 64108, USA
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, MO 64108, USA
| |
Collapse
|
249
|
Yang X, Yi X, Zhang F, Li F, Lang L, Ling M, Lai X, Chen L, Quan L, Fu Y, Feng S, Shu G, Wang L, Zhu X, Gao P, Jiang Q, Wang S. Cytochrome P450 epoxygenase-derived EPA and DHA oxylipins 17,18-epoxyeicosatetraenoic acid and 19,20-epoxydocosapentaenoic acid promote BAT thermogenesis and WAT browning through the GPR120-AMPKα signaling pathway. Food Funct 2022; 13:1232-1245. [PMID: 35019933 DOI: 10.1039/d1fo02608a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The mechanisms whereby fish oil rich in EPA and DHA promotes BAT thermogenesis and WAT browning are not fully understood. Thus, this study aimed to investigate the effects of cytochrome P450 (CYP) epoxygenase-derived EPA and DHA oxylipins 17,18-EpETE and 19,20-EpDPE on BAT thermogenesis and WAT browning and explore the underlying mechanism. Stromal vascular cells (SVCs) were subjected to 17,18-EpETE or 19,20-EpDPE treatment and mice were treated with the CYP epoxygenase inhibitor, the thermogenic marker genes were detected and the involvement of GPR120 and AMPKα were assessed. The in vitro results indicated that 17,18-EpETE and 19,20-EpDPE induced brown and beige adipocyte thermogenesis, with increased expression of thermogenic marker gene UCP1 in differentiated SVCs. Meanwhile, the expression of GPR120 and phosphorylation of AMPKα were increased in response to these two oxylipins. However, the inhibition of GPR120 and AMPKα inhibited the promotion of adipocyte thermogenesis. In addition, in the presence of CYP epoxygenase inhibitor MS-PPOH, EPA and DHA had no effect on increasing UCP1 expression in differentiated SVCs. Consistent with the in vitro results, the in vivo findings demonstrated that fish oil had no body fat-lowering effects and no effects on enhancing energy metabolism, iBAT thermogenesis and iWAT browning in mice fed HFD after intraperitoneal injection of CYP epoxygenase inhibitor SKF-525A. Moreover, fish oil had no effect on the elevation of GPR120 expression and activation of AMPKα in iBAT and iWAT in mice fed HFD after intraperitoneal injection of SKF-525A. In summary, our results showed that CYP epoxygenase-derived EPA and DHA oxylipins 17,18-EpETE and 19,20-EpDPE promoted BAT thermogenesis and WAT browning through the GPR120-AMPKα signaling pathway, which might contribute to the thermogenic and anti-obesity effects of fish oil.
Collapse
Affiliation(s)
- Xiaohua Yang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. .,National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Xin Yi
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. .,National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Fenglin Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. .,National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Fan Li
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. .,National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Limin Lang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. .,National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Mingfa Ling
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. .,National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Xumin Lai
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. .,National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Lin Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. .,National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Lulu Quan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. .,National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Yiming Fu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. .,National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Shengchun Feng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. .,National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Gang Shu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. .,National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Lina Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. .,National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Xiaotong Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. .,National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Ping Gao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. .,National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Qingyan Jiang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. .,National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Songbo Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. .,National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| |
Collapse
|
250
|
Chang MT, Tsai LC, Nakagawa-Goto K, Lee KH, Shyur LF. Phyto-sesquiterpene lactones DET and DETD-35 induce ferroptosis in vemurafenib sensitive and resistant melanoma via GPX4 inhibition and metabolic reprogramming. Pharmacol Res 2022; 178:106148. [DOI: 10.1016/j.phrs.2022.106148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 12/17/2022]
|