201
|
Thomas S, Gunasangkaran G, Arumugam VA, Muthukrishnan S. Synthesis and Characterization of Zinc Oxide Nanoparticles of Solanum nigrum and Its Anticancer Activity via the Induction of Apoptosis in Cervical Cancer. Biol Trace Elem Res 2022; 200:2684-2697. [PMID: 34448982 DOI: 10.1007/s12011-021-02898-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/18/2021] [Indexed: 11/28/2022]
Abstract
Effective cancer therapy can be achieved by using nano-drug delivery systems which provide a targeted drug delivery strategy by overcoming the drawbacks of conventional treatments like chemotherapy and radiation. ZnO nanoparticles are a potent anticancer agent that causes tumor cell destruction with the targeted drug delivery. In this present study, green synthesis of ZnO nanoparticles has been done using the plant Solanum nigrum. The synthesized ZnO nanoparticles were studied by the characterization techniques like UV-visible spectroscopy, SEM, TEM, DLS, zeta potential, FTIR, and XRD. The synthesized ZnO nanoparticles of Solanum nigrum exhibited a significant anticancer activity against HeLa cell lines through the apoptotic pathway. The cytotoxicity of ZnO nanoparticles was assessed using MTT assay, wound healing assay, DAPI staining, and acridine orange and ethidium bromide double staining. The expression patterns of β-catenin, p53, caspase-3, and caspase-9 were analyzed using reverse transcriptase-PCR. The results obtained from the study indicate that the ZnO nanoparticles of Solanum nigrum possess a dose-dependent cytotoxic effect against HeLa cell lines through the inhibition of β-catenin and increasing the levels of p53, caspase-3, and caspase-9.
Collapse
Affiliation(s)
- Steffy Thomas
- Department of Biochemistry, Bharathiar University, Coimbatore, Tamil Nadu, India
| | | | - Vijaya Anand Arumugam
- Department of Human Genetics and Molecular Genetics, Bharathiar University, Coimbatore, Tamil Nadu, India
| | | |
Collapse
|
202
|
Belo do Nascimento I, Verfaillie M, Ates G, Beckers P, Joris V, Desmet N, Massie A, Hermans E. AMPK Modulates the Metabolic Adaptation of C6 Glioma Cells in Glucose-Deprived Conditions without Affecting Glutamate Transport. Cells 2022; 11:cells11111800. [PMID: 35681495 PMCID: PMC9180554 DOI: 10.3390/cells11111800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/26/2022] [Accepted: 05/26/2022] [Indexed: 02/04/2023] Open
Abstract
Energy homeostasis in the central nervous system largely depends on astrocytes, which provide metabolic support and protection to neurons. Astrocytes also ensure the clearance of extracellular glutamate through high-affinity transporters, which indirectly consume ATP. Considering the role of the AMP-activated protein kinase (AMPK) in the control of cell metabolism, we have examined its implication in the adaptation of astrocyte functions in response to a metabolic stress triggered by glucose deprivation. We genetically modified the astrocyte-like C6 cell line to silence AMPK activity by overexpressing a dominant negative mutant of its catalytic subunit. Upon glucose deprivation, we found that C6 cells maintain stable ATP levels and glutamate uptake capacity, highlighting their resilience during metabolic stress. In the same conditions, cells with silenced AMPK activity showed a reduction in motility, metabolic activity, and ATP levels, indicating that their adaptation to stress is compromised. The rate of ATP production remained, however, unchanged by AMPK silencing, suggesting that AMPK mostly influences energy consumption during stress conditions in these cells. Neither AMPK modulation nor prolonged glucose deprivation impaired glutamate uptake. Together, these results indicate that AMPK contributes to the adaptation of astrocyte metabolism triggered by metabolic stress, but not to the regulation of glutamate transport.
Collapse
Affiliation(s)
- Inês Belo do Nascimento
- Institute of Neuroscience, Université Catholique de Louvain, 1200 Brussels, Belgium; (I.B.d.N.); (M.V.); (P.B.); (N.D.)
| | - Marie Verfaillie
- Institute of Neuroscience, Université Catholique de Louvain, 1200 Brussels, Belgium; (I.B.d.N.); (M.V.); (P.B.); (N.D.)
| | - Gamze Ates
- Center for Neurosciences, Neuro-Aging & Viro-Immunotherapy, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium; (G.A.); (A.M.)
| | - Pauline Beckers
- Institute of Neuroscience, Université Catholique de Louvain, 1200 Brussels, Belgium; (I.B.d.N.); (M.V.); (P.B.); (N.D.)
| | - Virginie Joris
- Pole of Pharmacology and Therapeutics, Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium;
| | - Nathalie Desmet
- Institute of Neuroscience, Université Catholique de Louvain, 1200 Brussels, Belgium; (I.B.d.N.); (M.V.); (P.B.); (N.D.)
| | - Ann Massie
- Center for Neurosciences, Neuro-Aging & Viro-Immunotherapy, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium; (G.A.); (A.M.)
| | - Emmanuel Hermans
- Institute of Neuroscience, Université Catholique de Louvain, 1200 Brussels, Belgium; (I.B.d.N.); (M.V.); (P.B.); (N.D.)
- Correspondence: ; Tel.: +32-2764-9339
| |
Collapse
|
203
|
Zahel P, Beekmann U, Eberlein T, Schmitz M, Werz O, Kralisch D. Bacterial Cellulose-Adaptation of a Nature-Identical Material to the Needs of Advanced Chronic Wound Care. Pharmaceuticals (Basel) 2022; 15:683. [PMID: 35745602 PMCID: PMC9228795 DOI: 10.3390/ph15060683] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/19/2022] [Accepted: 05/21/2022] [Indexed: 12/10/2022] Open
Abstract
Modern wound treatment calls for hydroactive dressings. Among the variety of materials that have entered the field of wound care in recent years, the carbohydrate polymer bacterial cellulose (BC) represents one of the most promising candidates as the biomaterial features a high moisture-loading and donation capacity, mechanical stability, moldability, and breathability. Although BC has already gained increasing relevance in the treatment of burn wounds, its potential and clinical performance for "chronic wound" indications have not yet been sufficiently investigated. This article focuses on experimental and clinical data regarding the application of BC within the indications of chronic, non-healing wounds, especially venous and diabetic ulcers. A recent clinical observation study in a chronic wound setting clearly demonstrated its wound-cleansing properties and ability to induce healing in stalling wounds. Furthermore, the material parameters of BC dressings obtained through the static cultivation of Komagataeibacter xylinus were investigated for the first time in standardized tests and compared to various advanced wound-care products. Surprisingly, a free swell absorptive capacity of a BC dressing variant containing 97% moisture was found, which was higher than that of alginate or even hydrofiber dressings. We hypothesize that the fine-structured, open porous network and the resulting capillary forces are among the main reasons for this unexpected result.
Collapse
Affiliation(s)
- Paul Zahel
- JeNaCell GmbH—An Evonik Company, 07745 Jena, Germany; (P.Z.); (U.B.)
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, 07743 Jena, Germany;
| | - Uwe Beekmann
- JeNaCell GmbH—An Evonik Company, 07745 Jena, Germany; (P.Z.); (U.B.)
| | | | | | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, 07743 Jena, Germany;
| | - Dana Kralisch
- JeNaCell GmbH—An Evonik Company, 07745 Jena, Germany; (P.Z.); (U.B.)
- Evonik Operations GmbH, 45128 Essen, Germany
| |
Collapse
|
204
|
Brzóska K, Wojewódzka M, Szczygiel M, Drzał A, Sniegocka M, Michalczyk-Wetula D, Biela E, Elas M, Kucińska M, Piotrowska-Kempisty H, Kapka-Skrzypczak L, Murias M, Urbańska K, Kruszewski M. Silver Nanoparticles Inhibit Metastasis of 4T1 Tumor in Mice after Intragastric but Not Intravenous Administration. MATERIALS 2022; 15:ma15113837. [PMID: 35683135 PMCID: PMC9181667 DOI: 10.3390/ma15113837] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/17/2022] [Accepted: 05/24/2022] [Indexed: 12/10/2022]
Abstract
The potential anticancer activity of different silver nanoformulations is increasingly recognized. In the present work, we use the model of 4T1 tumor in BALB/ccmdb immunocompetent mice to analyze the impact of citrate- and PEG-coated silver nanoparticles (AgNPs) on the development and metastatic potential of breast cancer. One group of mice was intragastrically administered with 1 mg/kg body weight (b.w.) of AgNPs daily from day 1 to day 14 after cancer cells implantation (total dose 14 mg/kg b.w.). The second group was intravenously administered twice with 1 or 5 mg/kg b.w. of AgNPs. A tendency for lowering tumor volume on day 21 (mean volumes 491.31, 428.88, and 386.83 mm3 for control, AgNPs-PEG, and AgNPs-citrate, respectively) and day 26 (mean volumes 903.20, 764.27, and 672.62 mm3 for control, AgNPs-PEG, and AgNPs-citrate, respectively) has been observed in mice treated intragastrically, but the effect did not reach the level of statistical significance. Interestingly, in mice treated intragastrically with citrate-coated AgNPs, the number of lung metastases was significantly lower, as compared to control mice (the mean number of metastases 18.89, 14.90, and 8.03 for control, AgNPs-PEG, and AgNPs-citrate, respectively). No effect of AgNPs treatment on the number of lung metastases was observed after intravenous administration (the mean number of metastases 12.44, 9.86, 12.88, 11.05, and 10.5 for control, AgNPs-PEG 1 mg/kg, AgNPs-PEG 5 mg/kg, AgNPs-citrate 1 mg/kg, and AgNPs-citrate 5 mg/kg, respectively). Surprisingly, inhibition of metastasis was not accompanied by changes in the expression of genes associated with epithelial–mesenchymal transition. Instead, changes in the expression of inflammation-related genes were observed. The presented results support the antitumor activity of AgNPs in vivo, but the effect was limited to the inhibition of metastasis. Moreover, our results clearly point to the importance of AgNPs coating and route of administration for its anticancer activity. Finally, our study supports the previous findings that antitumor AgNPs activity may depend on the activation of the immune system and not on the direct action of AgNPs on cancer cells.
Collapse
Affiliation(s)
- Kamil Brzóska
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland; (M.W.); (M.K.)
- Correspondence: ; Tel.: +48-22-5041174
| | - Maria Wojewódzka
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland; (M.W.); (M.K.)
| | - Małgorzata Szczygiel
- Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (M.S.); (A.D.); (M.S.); (D.M.-W.); (E.B.); (M.E.); (K.U.)
| | - Agnieszka Drzał
- Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (M.S.); (A.D.); (M.S.); (D.M.-W.); (E.B.); (M.E.); (K.U.)
| | - Martyna Sniegocka
- Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (M.S.); (A.D.); (M.S.); (D.M.-W.); (E.B.); (M.E.); (K.U.)
| | - Dominika Michalczyk-Wetula
- Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (M.S.); (A.D.); (M.S.); (D.M.-W.); (E.B.); (M.E.); (K.U.)
| | - Eva Biela
- Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (M.S.); (A.D.); (M.S.); (D.M.-W.); (E.B.); (M.E.); (K.U.)
| | - Martyna Elas
- Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (M.S.); (A.D.); (M.S.); (D.M.-W.); (E.B.); (M.E.); (K.U.)
| | - Małgorzata Kucińska
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznań, Poland; (M.K.); (H.P.-K.); (M.M.)
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznań, Poland; (M.K.); (H.P.-K.); (M.M.)
| | - Lucyna Kapka-Skrzypczak
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland;
- World Institute for Family Health, Calisia University, 62-800 Kalisz, Poland
| | - Marek Murias
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznań, Poland; (M.K.); (H.P.-K.); (M.M.)
| | - Krystyna Urbańska
- Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (M.S.); (A.D.); (M.S.); (D.M.-W.); (E.B.); (M.E.); (K.U.)
| | - Marcin Kruszewski
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland; (M.W.); (M.K.)
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland;
| |
Collapse
|
205
|
Urciuolo F, Passariello R, Imparato G, Casale C, Netti PA. Bioengineered Wound Healing Skin Models: The Role of Immune Response and Endogenous ECM to Fully Replicate the Dynamic of Scar Tissue Formation In Vitro. Bioengineering (Basel) 2022; 9:233. [PMID: 35735476 PMCID: PMC9219817 DOI: 10.3390/bioengineering9060233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 12/27/2022] Open
Abstract
The healing of deep skin wounds is a complex phenomenon evolving according with a fine spatiotemporal regulation of different biological events (hemostasis, inflammation, proliferation, remodeling). Due to the spontaneous evolution of damaged human dermis toward a fibrotic scar, the treatment of deep wounds still represents a clinical concern. Bioengineered full-thickness skin models may play a crucial role in this direction by providing a deep understanding of the process that leads to the formation of fibrotic scars. This will allow (i) to identify new drugs and targets/biomarkers, (ii) to test new therapeutic approaches, and (iii) to develop more accurate in silico models, with the final aim to guide the closure process toward a scar-free closure and, in a more general sense, (iv) to understand the mechanisms involved in the intrinsic and extrinsic aging of the skin. In this work, the complex dynamic of events underlaying the closure of deep skin wound is presented and the engineered models that aim at replicating such complex phenomenon are reviewed. Despite the complexity of the cellular and extracellular events occurring during the skin wound healing the gold standard assay used to replicate such a process is still represented by planar in vitro models that have been largely used to identify the key factors regulating the involved cellular processes. However, the lack of the main constituents of the extracellular matrix (ECM) makes these over-simplistic 2D models unable to predict the complexity of the closure process. Three-dimensional bioengineered models, which aim at recreating the closure dynamics of the human dermis by using exogenous biomaterials, have been developed to fill such a gap. Although interesting mechanistic effects have been figured out, the effect of the inflammatory response on the ECM remodelling is not replicated yet. We discuss how more faithful wound healing models can be obtained by creating immunocompetent 3D dermis models featuring an endogenous ECM.
Collapse
Affiliation(s)
- Francesco Urciuolo
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, P.le Tecchio 80, 80125 Naples, Italy; (C.C.); (P.A.N.)
- Department of Chemical, Materials and Industrial Production Engineering (DICMAPI), University of Naples Federico II, P.le Tecchio 80, 80125 Naples, Italy;
| | - Roberta Passariello
- Department of Chemical, Materials and Industrial Production Engineering (DICMAPI), University of Naples Federico II, P.le Tecchio 80, 80125 Naples, Italy;
- Center for Advanced Biomaterials for HealthCare@CRIB Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125 Naples, Italy;
| | - Giorgia Imparato
- Center for Advanced Biomaterials for HealthCare@CRIB Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125 Naples, Italy;
| | - Costantino Casale
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, P.le Tecchio 80, 80125 Naples, Italy; (C.C.); (P.A.N.)
| | - Paolo Antonio Netti
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, P.le Tecchio 80, 80125 Naples, Italy; (C.C.); (P.A.N.)
- Department of Chemical, Materials and Industrial Production Engineering (DICMAPI), University of Naples Federico II, P.le Tecchio 80, 80125 Naples, Italy;
- Center for Advanced Biomaterials for HealthCare@CRIB Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125 Naples, Italy;
| |
Collapse
|
206
|
Meltzer M, Eliash N, Azoulay Z, Hadad U, Papo N. In vitro inhibition of cancer angiogenesis and migration by a nanobody that targets the orphan receptor Tie1. Cell Mol Life Sci 2022; 79:312. [PMID: 35604495 PMCID: PMC11072481 DOI: 10.1007/s00018-022-04336-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 11/28/2022]
Abstract
The human signaling molecules Tie1 and Tie2 receptor tyrosine kinases (RTKs) play important pathophysiological roles in many diseases, including different cancers. The activity of Tie1 is mediated mainly through the downstream angiopoietin-1 (Ang1)-dependent activation of Tie2, rendering both Tie 1 and the Tie1/Tie2/Ang1 axis attractive putative targets for therapeutic intervention. However, the development of inhibitors that target Tie1 and an understanding of their effect on Tie2 and on the Tie1/Tie2/Ang1 axis remain unfulfilled tasks, due, largely, to the facts that Tie1 is an orphan receptor and is difficult to produce and use in the quantities required for immune antibody library screens. In a search for a selective inhibitor of this orphan receptor, we sought to exploit the advantages (e.g., small size that allows binding to hidden epitopes) of non-immune nanobodies and to simultaneously overcome their limitations (i.e., low expression and stability). We thus performed expression, stability, and affinity screens of yeast-surface-displayed naïve and predesigned synthetic (non-immune) nanobody libraries against the Tie1 extracellular domain. The screens yielded a nanobody with high expression and good affinity and specificity for Tie1, thereby yielding preferential binding for Tie1 over Tie2. The stability, selectivity, potency, and therapeutic potential of this synthetic nanobody were profiled using in vitro and cell-based assays. The nanobody triggered Tie1-dependent inhibition of RTK (Tie2, Akt, and Fak) phosphorylation and angiogenesis in endothelial cells, as well as suppression of human glioblastoma cell viability and migration. This study opens the way to developing nanobodies as therapeutics for different cancers associated with Tie1 activation.
Collapse
Affiliation(s)
- May Meltzer
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, 1 Ben-Gurion Avenue, 8410501, Beer-Sheva, Israel
| | - Noam Eliash
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, 1 Ben-Gurion Avenue, 8410501, Beer-Sheva, Israel
| | - Ziv Azoulay
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, 1 Ben-Gurion Avenue, 8410501, Beer-Sheva, Israel
| | - Uzi Hadad
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Niv Papo
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, 1 Ben-Gurion Avenue, 8410501, Beer-Sheva, Israel.
| |
Collapse
|
207
|
Disruption of Toxoplasma gondii-Induced Host Cell DNA Replication Is Dependent on Contact Inhibition and Host Cell Type. mSphere 2022; 7:e0016022. [PMID: 35587658 PMCID: PMC9241542 DOI: 10.1128/msphere.00160-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The protozoan Toxoplasma gondii is a highly successful obligate intracellular parasite that, upon invasion of its host cell, releases an array of host-modulating protein effectors to counter host defenses and further its own replication and dissemination. Early studies investigating the impact of T. gondii infection on host cell function revealed that this parasite can force normally quiescent cells to activate their cell cycle program. Prior reports by two independent groups identified the dense granule protein effector HCE1/TEEGR as being solely responsible for driving host cell transcriptional changes through its direct interaction with the cyclin E regulatory complex DP1 and associated transcription factors. Our group independently identified HCE1/TEEGR through the presence of distinct repeated regions found in a number of host nuclear targeted parasite effectors and verified its central role in initiating host cell cycle changes. Additionally, we report here the time-resolved kinetics of host cell cycle transition in response to HCE1/TEEGR, using the fluorescence ubiquitination cell cycle indicator reporter line (FUCCI), and reveal the existence of a block in S-phase progression and host DNA synthesis in several cell lines commonly used in the study of T. gondii. Importantly, we have observed that this S-phase block is not due to additional dense granule effectors but rather is dependent on the host cell line background and contact inhibition status of the host monolayer in vitro. This work highlights intriguing differences in the host response to reprogramming by the parasite and raises interesting questions regarding how parasite effectors differentially manipulate the host cell depending on the in vitro or in vivo context. IMPORTANCEToxoplasma gondii chronically infects approximately one-third of the global population and can produce severe pathology in immunologically immature or compromised individuals. During infection, this parasite releases numerous host-targeted effector proteins that can dramatically alter the expression of a variety of host genes. A better understanding of parasite effectors and their host targets has the potential to not only provide ways to control infection but also inform us about our own basic biology. One host pathway that has been known to be altered by T. gondii infection is the cell cycle, and prior reports have identified a parasite effector, known as HCE1/TEEGR, as being responsible. In this report, we further our understanding of the kinetics of cell cycle transition induced by this effector and show that the capacity of HCE1/TEEGR to induce host cell DNA synthesis is dependent on both the cell type and the status of contact inhibition.
Collapse
|
208
|
Bonturi CR, Salu BR, Bonazza CN, Sinigaglia RDC, Rodrigues T, Alvarez-Flores MP, Chudzinski-Tavassi AM, Oliva MLV. Proliferation and Invasion of Melanoma Are Suppressed by a Plant Protease Inhibitor, Leading to Downregulation of Survival/Death-Related Proteins. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092956. [PMID: 35566311 PMCID: PMC9104945 DOI: 10.3390/molecules27092956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/22/2022] [Accepted: 04/27/2022] [Indexed: 11/30/2022]
Abstract
Cell adhesion and migration are crucial for cancer progression and malignancy. Drugs available for the treatment of metastatic melanoma are expensive and unfit for certain patients. Therefore, there is still a need to identify new drugs that block tumor cell development. We investigated the effects of Enterolobium contortisiliquum trypsin inhibitor (EcTI), a protease inhibitor, on cell viability, cell migration, invasion, cell adhesion, and cell death (hallmarks of cancer) in vitro using human melanoma cells (SK-MEL-28 and CHL-1). Although EcTI did not affect non-tumor cells, it significantly inhibited the proliferation, migration, invasion, and adhesion of melanoma cells. Investigation of the underlying mechanisms revealed that EcTI triggered apoptosis and nuclear shrinkage, increased PI uptake, activated effector caspases-3/7, and produced reactive oxygen species (ROS). Furthermore, EcTI disrupted the mitochondrial membrane potential, altered calcium homeostasis, and modified proteins associated with survival and apoptosis/autophagy regulation. Acridine orange staining indicated acidic vesicular organelle formation upon EcTI treatment, demonstrating a cell death display. Electronic microscopy corroborated the apoptotic pattern by allowing the visualization of apoptotic bodies, mitochondrial cristae disorganization, and autophagic vesicles. Taken together, these results provide new insights into the anti-cancer properties of the natural EcTI protein, establishing it as a promising new therapeutic drug for use in melanoma treatment.
Collapse
Affiliation(s)
- Camila Ramalho Bonturi
- Departamento de Bioquímica, Universidade Federal de São Paulo (UNIFESP), São Paulo 04044-020, Brazil
| | - Bruno Ramos Salu
- Departamento de Bioquímica, Universidade Federal de São Paulo (UNIFESP), São Paulo 04044-020, Brazil
| | - Camila Nimri Bonazza
- Departamento de Bioquímica, Universidade Federal de São Paulo (UNIFESP), São Paulo 04044-020, Brazil
| | - Rita de Cassia Sinigaglia
- Electron Microscopy Center, Universidade Federal de São Paulo (UNIFESP), São Paulo 04044-020, Brazil
| | - Tiago Rodrigues
- Centre for Natural and Human Sciences, Universidade Federal do ABC (UFABC), Santo André 09210-580, Brazil
| | | | | | - Maria Luiza Vilela Oliva
- Departamento de Bioquímica, Universidade Federal de São Paulo (UNIFESP), São Paulo 04044-020, Brazil
| |
Collapse
|
209
|
Ghirardello M, Shyam R, Galan MC. Reengineering of cancer cell surface charges can modulate cell migration. Chem Commun (Camb) 2022; 58:5522-5525. [PMID: 35420600 PMCID: PMC9063860 DOI: 10.1039/d2cc00402j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The ability to modulate the cell surface structure provides a powerful tool to understand fundamental processes and also to elicit desired cellular responses. Here we report the development of a new class of ‘clickable labels’ to reengineer the cell surface charges of live cells. The method relies on the use of metabolic oligosaccharide engineering (MOE) combined with chemo selective labeling of cell surface azido-containing sialic acids with dibenzocyclooctyne (DBCO) ionic-probes. Using this strategy, we demonstrate that reducing the negative charge induced by the overexpression of cell surface sialic acids in cancer cells leads to a reduction in cell migration without affecting drug supceptibility. Reducing the negative charges induced by the overexpression of cell surface sialic acids using cationic clickable labels leads to a reduction in cancer cell migration without affecting drug supceptibility.![]()
Collapse
Affiliation(s)
- Mattia Ghirardello
- School of Chemistry, University of Bristol, Cantock's Close, BS8 1TS Bristol, UK.
| | - Radhe Shyam
- School of Chemistry, University of Bristol, Cantock's Close, BS8 1TS Bristol, UK.
| | - M Carmen Galan
- School of Chemistry, University of Bristol, Cantock's Close, BS8 1TS Bristol, UK.
| |
Collapse
|
210
|
Adamson AL, Jeffus D, Davis A, Greengrove E. Epstein-Barr virus lytic replication activates and is dependent upon MAPK-interacting kinase 1/2 in a cell-type dependent manner. Virology 2022; 572:72-85. [DOI: 10.1016/j.virol.2022.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/17/2022] [Accepted: 05/19/2022] [Indexed: 12/12/2022]
|
211
|
Mechanical and Cell-Adhesive Properties of Gelatin/Polyvinyl Alcohol Hydrogels and Their Application in Wound Dressing. Macromol Res 2022. [DOI: 10.1007/s13233-022-0027-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
212
|
Elyasigorji Z, Mobasheri H, Dini L. Static magnetic field modulates olfactory ensheathing cell's morphology, division, and migration activities, a biophysical approach to regeneration. J Tissue Eng Regen Med 2022; 16:665-679. [PMID: 35470546 DOI: 10.1002/term.3307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/30/2022] [Accepted: 04/11/2022] [Indexed: 11/08/2022]
Abstract
The moderate static magnetic fields (SMFs) have been used here as a non-invasive tool to study their manipulative effects on the olfactory ensheathing cells (OECs) activity, growth, morphology, and migration in culture. The OECs are involved in the regeneration of primary olfactory sensory neurons and migration into the central nervous system to repair axons damaged by infection, injury, etc., that play a pivotal role in complementary regenerative medicine. Here, OECs were isolated from the olfactory bulb and cultured to confluence. An in vitro wound healing model was formed and exposed to either parallel (PaSMF) or perpendicular (PeSMF) SMF at intensities of 30, 50, and 70 mT, and cells' morphology, podia formation, proliferation, and migration were studied by time-lapse recording. The SMFs were not cytotoxic at the intensity and exposure time applied here. The exposure of cells to 70 mT PaSMF and PeSMF increased the formation of lamellipodia and filopodia, cell migration speed, and direction of the scratch forefront cells, significantly. Treatment of cells with 70 mT PaSMF and PeSMF increased cell divisions, while 30 mT PaSMF decreased it. SMF effects on OECs division, motility, migratory direction, and velocity indicate its effect on various aspects of cell physiology and signaling at atomic and molecular levels, and have a role in tissue regeneration that involves microtubules and actin filaments formation and rearrangements. Thus, the exposure of OECs with moderate SMF might be considered a promising noninvasive approach to remotely manipulate normal and stem cell activities for therapeutic regenerative purposes in various tissues including the central nervous system.
Collapse
Affiliation(s)
- Zahra Elyasigorji
- Laboratory of Membrane Biophysics and Macromolecules, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.,Iranian Biological Resource Center (IBRC), ACECR, Human and Animal Cell Bank, Tehran, Iran
| | - Hamid Mobasheri
- Laboratory of Membrane Biophysics and Macromolecules, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.,Institute of Biomaterials of University of Tehran and Tehran University of Medical Science (IBUTUM), Tehran, Iran
| | - Luciana Dini
- Department of Biology and Biotechnology C. Darwin, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
213
|
Taowen P, Shuyuan F, Xiaoli S, Annan W, Feng Q, Yizhong Z, Jing L, Bin L, Kun L, Yunpeng D. Study on the action mechanism of the peptide compounds of Wuguchong on diabetic ulcers, based on UHPLC-Q-TOF-MS, network pharmacology and experimental validation. JOURNAL OF ETHNOPHARMACOLOGY 2022; 288:114974. [PMID: 35033625 DOI: 10.1016/j.jep.2022.114974] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/02/2022] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Diabetic foot ulcers mainly refer to people who are initially diabetic and do not have peripheral neuropathy or peripheral vascular disease, but have developed foot infection, septicemia, and ulceration. Diabetic trauma disease is characterized by high sugar and very slow wound healing, which is the reason why some patients with severe diabetic trauma require amputation. Prolonged hyperglycemia can lead to changes in bodily functions and endocrine changes, which can lead to permeability damage of epidermal tissue structure, microvascular damage and, in more severe cases, nerve damage, which are also the main causes of diabetic trauma. Small molecule peptides have various biological activities, such as: lowering blood pressure, antibacterial and wound healing activities, etc. It is a drug recorded in classical Chinese medicine, it is safer to use natural active peptides to treat wounds compared to the listed drugs, and there are no side effects in its use.The wound healing effect of Wuguchong dry product has been confirmed but the mechanism is still unclear, whether it is related to the small molecule active peptides contained in it remains to be studied. AIM OF STUDY Objective To investigate the potential mechanism of the peptide compounds of Wuguchong (PCW) on diabetic wound healing and the relevant targets in the pathway associated with the treatment of diabetic ulcers using a systematic pharmacological and pharmacological experimental validation approach. METHODS 1) PCW was prepared by enzymatic digestion of TCMW and analyzed by UHPLC-Q-TOF-MS. 2) Further screening of the active chemical components of PCW using PubChem, Swiss Target Prediction data. 3) Prediction of its targets using Drug Bank, CTD, and Genecards databases. 4) Construct protein/gene interactions network diagrams for PCWs acting by using Cytoscape 3.7.0 software. 5) GO and KEGG analysis of PCW targets were performed by David database. 6) Validated by AO/EB staining, scratching and in vitro tube formation methods. 7) Explored the mechanism of PCW to promote diabetic wound healing by protein blotting and immunohistochemical detection of relevant protein expression. RESULTS and finally: 1) After the above screening, 81 active ingredients of PCW and 94 targets acting on diabetic ulcers were obtained. 2) 30 biological processes, 30 cellular compositions and 30 molecular functions were obtained by GO analysis; 28 signaling pathways were obtained by KEGG analysis. 3) The results of AO/EB staining assay, scratch assay and in vitro tube-forming assay showed that PCW has significant pro-vascular endothelial cell proliferation and pro-angiogenic effects in vitro. CONCLUSIONS The results of this study confirmed the effect of the PCW in treating diabetic ulcers to a certain extent, and further revealed its mechanism of action in depth, which provides a new reference for the next step of Chinese medicine in treating diabetic ulcers.
Collapse
Affiliation(s)
- Pan Taowen
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China Dalian Medical University, Dalian, 116044, China; Dalian Anti-infective Traditional Chinese Medicine Development Engineering Technology Research Center, China
| | - Fan Shuyuan
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, China.
| | - Shi Xiaoli
- Pharmacy Department of Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China
| | - Wang Annan
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, China
| | - Qiu Feng
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Zhang Yizhong
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Liu Jing
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Li Bin
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Li Kun
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, China.
| | - Diao Yunpeng
- Dalian Anti-infective Traditional Chinese Medicine Development Engineering Technology Research Center, China; College of Pharmacy, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
214
|
Petry SF, Kandula ND, Günther S, Helker C, Schagdarsurengin U, Linn T. Valproic Acid Initiates Transdifferentiation of the Human Ductal Adenocarcinoma Cell-line Panc-1 Into α-Like Cells. Exp Clin Endocrinol Diabetes 2022; 130:638-651. [PMID: 35451037 DOI: 10.1055/a-1750-9190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Non-mesenchymal pancreatic cells are a potential source for cell replacement. Their transdifferentiation can be achieved by triggering epigenetic remodeling through e. g. post-translational modification of histones. Valproic acid, a branched-chain saturated fatty acid with histone deacetylase inhibitor activity, was linked to the expression of key transcription factors of pancreatic lineage in epithelial cells and insulin transcription. However, the potential of valproic acid to cause cellular reprogramming is not fully understood. To shed further light on it we employed next-generation RNA sequencing, real-time PCR, and protein analyses by ELISA and western blot, to assess the impact of valproic acid on transcriptome and function of Panc-1-cells. Our results indicate that valproic acid has a significant impact on the cell cycle, cell adhesion, histone H3 acetylation, and metabolic pathways as well as the initiation of epithelial-mesenchymal transition through acetylation of histone H3 resulting in α-cell-like characteristics. We conclude that human epithelial pancreatic cells can be transdifferentiated into cells with endocrine properties through epigenetic regulation by valproic acid favoring an α-cell-like phenotype.
Collapse
Affiliation(s)
- Sebastian Friedrich Petry
- Clinical Research Unit, Center of Internal Medicine, Medical Clinic and Polyclinic III, Justus Liebig University, Giessen, Germany
| | - Naga Deepa Kandula
- Clinical Research Unit, Center of Internal Medicine, Medical Clinic and Polyclinic III, Justus Liebig University, Giessen, Germany
| | - Stefan Günther
- Bioinformatics and deep sequencing platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Christian Helker
- Cell Signaling and Dynamics, Department of Biology, Philipps University, Marburg, Germany
| | - Undraga Schagdarsurengin
- Epigenetics of Urogenital System, Clinic and Polyclinic of Urology, Pediatric Urology and Andrology, Justus Liebig University, Giessen, Germany
| | - Thomas Linn
- Clinical Research Unit, Center of Internal Medicine, Medical Clinic and Polyclinic III, Justus Liebig University, Giessen, Germany
| |
Collapse
|
215
|
Cysteine-Rich LIM-Only Protein 4 (CRP4) Promotes Atherogenesis in the ApoE -/- Mouse Model. Cells 2022; 11:cells11081364. [PMID: 35456043 PMCID: PMC9032522 DOI: 10.3390/cells11081364] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/31/2022] [Accepted: 04/09/2022] [Indexed: 01/27/2023] Open
Abstract
Vascular smooth muscle cells (VSMCs) can switch from their contractile state to a synthetic phenotype resulting in high migratory and proliferative capacity and driving atherosclerotic lesion formation. The cysteine-rich LIM-only protein 4 (CRP4) reportedly modulates VSM-like transcriptional signatures, which are perturbed in VSMCs undergoing phenotypic switching. Thus, we hypothesized that CRP4 contributes to adverse VSMC behaviours and thereby to atherogenesis in vivo. The atherogenic properties of CRP4 were investigated in plaque-prone apolipoprotein E (ApoE) and CRP4 double-knockout (dKO) as well as ApoE-deficient CRP4 wildtype mice. dKO mice exhibited lower plaque numbers and lesion areas as well as a reduced content of α-smooth muscle actin positive cells in the lesion area, while lesion-associated cell proliferation was elevated in vessels lacking CRP4. Reduced plaque volumes in dKO correlated with significantly less intra-plaque oxidized low-density lipoprotein (oxLDL), presumably due to upregulation of the antioxidant factor peroxiredoxin-4 (PRDX4). This study identifies CRP4 as a novel pro-atherogenic factor that facilitates plaque oxLDL deposition and identifies the invasion of atherosclerotic lesions by VSMCs as important determinants of plaque vulnerability. Thus, targeting of VSMC CRP4 should be considered in plaque-stabilizing pharmacological strategies.
Collapse
|
216
|
Wu CY, Melaku AZ, Ilhami FB, Chiu CW, Cheng CC. Conductive Supramolecular Polymer Nanocomposites with Tunable Properties to Manipulate Cell Growth and Functions. Int J Mol Sci 2022; 23:ijms23084332. [PMID: 35457150 PMCID: PMC9032009 DOI: 10.3390/ijms23084332] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 02/01/2023] Open
Abstract
Synthetic bioactive nanocomposites show great promise in biomedicine for use in tissue growth, wound healing and the potential for bioengineered skin substitutes. Hydrogen-bonded supramolecular polymers (3A-PCL) can be combined with graphite crystals to form graphite/3A-PCL composites with tunable physical properties. When used as a bioactive substrate for cell culture, graphite/3A-PCL composites have an extremely low cytotoxic activity on normal cells and a high structural stability in a medium with red blood cells. A series of in vitro studies demonstrated that the resulting composite substrates can efficiently interact with cell surfaces to promote the adhesion, migration, and proliferation of adherent cells, as well as rapid wound healing ability at the damaged cellular surface. Importantly, placing these substrates under an indirect current electric field at only 0.1 V leads to a marked acceleration in cell growth, a significant increase in total cell numbers, and a remarkable alteration in cell morphology. These results reveal a newly created system with great potential to provide an efficient route for the development of multifunctional bioactive substrates with unique electro-responsiveness to manipulate cell growth and functions.
Collapse
Affiliation(s)
- Cheng-You Wu
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; (C.-Y.W.); (A.Z.M.); (F.B.I.)
| | - Ashenafi Zeleke Melaku
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; (C.-Y.W.); (A.Z.M.); (F.B.I.)
| | - Fasih Bintang Ilhami
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; (C.-Y.W.); (A.Z.M.); (F.B.I.)
| | - Chih-Wei Chiu
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan;
| | - Chih-Chia Cheng
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; (C.-Y.W.); (A.Z.M.); (F.B.I.)
- Advanced Membrane Materials Research Center, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
- Correspondence:
| |
Collapse
|
217
|
Kopenhagen A, Ramming I, Camp B, Hammerschmidt S, Fulde M, Müsken M, Steinert M, Bergmann S. Streptococcus pneumoniae Affects Endothelial Cell Migration in Microfluidic Circulation. Front Microbiol 2022; 13:852036. [PMID: 35401456 PMCID: PMC8990767 DOI: 10.3389/fmicb.2022.852036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/04/2022] [Indexed: 01/12/2023] Open
Abstract
Bloodstream infections caused by Streptococcus pneumoniae induce strong inflammatory and procoagulant cellular responses and affect the endothelial barrier of the vascular system. Bacterial virulence determinants, such as the cytotoxic pore-forming pneumolysin, increase the endothelial barrier permeability by inducing cell apoptosis and cell damage. As life-threatening consequences, disseminated intravascular coagulation followed by consumption coagulopathy and low blood pressure is described. With the aim to decipher the role of pneumolysin in endothelial damage and leakage of the vascular barrier in more detail, we established a chamber-separation cell migration assay (CSMA) used to illustrate endothelial wound healing upon bacterial infections. We used chambered inlets for cell cultivation, which, after removal, provide a cell-free area of 500 μm in diameter as a defined gap in primary endothelial cell layers. During the process of wound healing, the size of the cell-free area is decreasing due to cell migration and proliferation, which we quantitatively determined by microscopic live cell monitoring. In addition, differential immunofluorescence staining combined with confocal microscopy was used to morphologically characterize the effect of bacterial attachment on cell migration and the velocity of gap closure. In all assays, the presence of wild-type pneumococci significantly inhibited endothelial gap closure. Remarkably, even in the presence of pneumolysin-deficient pneumococci, cell migration was significantly retarded. Moreover, the inhibitory effect of pneumococci on the proportion of cell proliferation versus cell migration within the process of endothelial gap closure was assessed by implementation of a fluorescence-conjugated nucleoside analogon. We further combined the endothelial CSMA with a microfluidic pump system, which for the first time enabled the microscopic visualization and monitoring of endothelial gap closure in the presence of circulating bacteria at defined vascular shear stress values for up to 48 h. In accordance with our CSMA results under static conditions, the gap remained cell free in the presence of circulating pneumococci in flow. Hence, our combined endothelial cultivation technique represents a complex in vitro system, which mimics the vascular physiology as close as possible by providing essential parameters of the blood flow to gain new insights into the effect of pneumococcal infection on endothelial barrier integrity in flow.
Collapse
Affiliation(s)
- Anna Kopenhagen
- Institut für Mikrobiologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Isabell Ramming
- Institut für Mikrobiologie, Technische Universität Braunschweig, Braunschweig, Germany.,Department of Infectious Diseases, Robert Koch Institute, Wernigerode, Germany
| | - Belinda Camp
- Institut für Mikrobiologie, Technische Universität Braunschweig, Braunschweig, Germany.,Department of Pneumology, University Hospital Magdeburg, Magdeburg, Germany
| | - Sven Hammerschmidt
- Institute for Genetics and Functional Genomics, Department of Molecular Genetics and Infection Biology, Universität Greifswald, Greifswald, Germany
| | - Marcus Fulde
- Institute of Microbiology and Epizootics, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Mathias Müsken
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Michael Steinert
- Institut für Mikrobiologie, Technische Universität Braunschweig, Braunschweig, Germany.,Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Simone Bergmann
- Institut für Mikrobiologie, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
218
|
Fan C, Shi X, Zhao K, Wang L, Shi K, Liu YJ, Li H, Ji B, Jiu Y. Cell migration orchestrates migrasome formation by shaping retraction fibers. J Cell Biol 2022; 221:213015. [PMID: 35179563 PMCID: PMC9195050 DOI: 10.1083/jcb.202109168] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/05/2022] [Accepted: 01/23/2022] [Indexed: 02/07/2023] Open
Abstract
Migrasomes are recently discovered vesicle-like structures on retraction fibers of migrating cells that have been linked with transfer of cellular contents, shedding of unwanted materials, and information integration. However, whether and how the cell migration paradigm regulates migrasome formation is not clear. Here, we report that there are significantly fewer migrasomes in turning cells compared with straight persistently migrating cells. The major insight underlying this observation is that as the cells elongate, their rear ends become narrower, subsequently resulting in fewer retraction fibers during impersistent migration. In addition to migration persistence, we reveal that migration speed positively corelates with migrasome formation, owing to the derived length of retraction fibers. Substantiating our hypothesis, genetically removing vimentin compromises cell migration speed and persistence and leads to fewer migrasomes. Together, our data explicate the critical roles of two cell migration patterns, persistence and speed, in the control of migrasome formation by regulating retraction fibers.
Collapse
Affiliation(s)
- Changyuan Fan
- Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xuemeng Shi
- The Joint Program in Infection and Immunity, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,The Joint Program in Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Kaikai Zhao
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China.,Biomechanics and Mechanomedicine Laboratory, Department of Engineering Mechanics, Zhejiang University, Hangzhou, China
| | - Linbo Wang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Kun Shi
- The Joint Program in Infection and Immunity, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,The Joint Program in Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Yan-Jun Liu
- Shanghai Institute of Cardiovascular Diseases, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Department of Systems Biology for Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hui Li
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Baohua Ji
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China.,Biomechanics and Mechanomedicine Laboratory, Department of Engineering Mechanics, Zhejiang University, Hangzhou, China
| | - Yaming Jiu
- Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China.,The Joint Program in Infection and Immunity, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,The Joint Program in Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
219
|
Pal P, Jana S, Biswas I, Mandal DP, Bhattacharjee S. Biphasic effect of the dietary phytochemical linalool on angiogenesis and metastasis. Mol Cell Biochem 2022; 477:1041-1052. [PMID: 34994923 DOI: 10.1007/s11010-021-04341-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 12/21/2021] [Indexed: 10/19/2022]
Abstract
Cytotoxic chemotherapy dominates the field of cancer treatment. Consequently, anticancer phytochemicals are largely screened on the basis of their cytotoxicity towards cancer cells which are achieved at higher doses, leading to various toxic side effects. Some phytochemicals also showed pro-carcinogenic effects at certain doses. The concept of hormesis has taught us to look into biphasic responses of phytochemicals in a more systematic way. Interestingly, the monoterpenoid alcohol, linalool, also has been reported to display both anti-oxidant and pro-oxidant properties, which prompted us to explore a probable biphasic effect on cancer cells. Cytotoxicity of various concentrations of linalool (0.1-4 mM) was tested on B16F10 murine melanoma cell line, and two sub-lethal concentrations (0.4 and 0.8 mM) were selected for further experiments. 0.4 mM linalool inhibited angiogenesis and metastasis, while 0.8 mM increased them. Similarly, B16F10 cell migration, invasion, and epithelial-mesenchymal transition markers also showed inhibition and induction with lower and higher linalool concentrations, respectively. Chorioallantoic membrane assay, scratch wound assay, and Boyden's chamber were used to analyze angiogenesis and metastasis. Expression of molecular markers such as vascular endothelial growth factor (VEGF) and its receptor phosphorylated VEGF receptor II (p-VEGFRII or p-Flk-1), Hypoxia-inducible factor-1 α (HIF-1α), E-cadherin, and vimentin were detected using Western blot, ELISA, PCR, qPCR, and immunofluorescence. Finally, ChIP assay was performed to evaluate HIF-1α association with VEGF promoter. Interestingly, measurement of intracellular reactive oxygen species at the selected concentrations of linalool using DCFDA in a flow cytometer showed that the phytochemical induced significant amount of ROS at 0.8 mM. This work sheds light on bimodal dose-response relationship exhibited by dietary phytochemicals like linalool, and it should be taken into consideration to elicit a desirable therapeutic effect.
Collapse
Affiliation(s)
- Priyanka Pal
- Department of Zoology, West Bengal State University, Berunanpukuria, Malikapur, North-24 Parganas, Barasat, Kolkata, West Bengal, 700126, India
| | - Samarjit Jana
- Department of Zoology, West Bengal State University, Berunanpukuria, Malikapur, North-24 Parganas, Barasat, Kolkata, West Bengal, 700126, India
| | - Ipsita Biswas
- Department of Zoology, West Bengal State University, Berunanpukuria, Malikapur, North-24 Parganas, Barasat, Kolkata, West Bengal, 700126, India
| | - Deba Prasad Mandal
- Department of Zoology, West Bengal State University, Berunanpukuria, Malikapur, North-24 Parganas, Barasat, Kolkata, West Bengal, 700126, India.
| | - Shamee Bhattacharjee
- Department of Zoology, West Bengal State University, Berunanpukuria, Malikapur, North-24 Parganas, Barasat, Kolkata, West Bengal, 700126, India.
| |
Collapse
|
220
|
Sufian N, Behfar M, Tehrani AA, Malekinejad H. Improved Healing of Colonic Anastomosis with Allotransplantation of Axillary Skin Fibroblasts in Rats. CELL JOURNAL 2022; 24:188-195. [PMID: 35674021 PMCID: PMC9124447 DOI: 10.22074/cellj.2022.7861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 04/13/2021] [Indexed: 11/21/2022]
Abstract
Objective Colonic anastomosis is associated with serious complications leading to significant morbidity and mortality. Fibroblasts have recently been introduced as a practical alternative to stem cells because of their differentiation capacity, anti-inflammatory, and regenerative properties. The aim of this study was to evaluate the effects of intramural injection of fibroblasts on the healing of colonic anastomosis in rats. Materials and Methods Inbred mature male Wistar rats were used in this experimental study (n=36). Fibroblasts were isolated from the axillary skin of a donor rat. In the sham group, manipulation on descending colon was done during laparotomy. A 5 mm segment of the colon was resected, and end-to-end anastomosis was performed. In the control group, 0.5 ml of phosphate buffer saline (PBS) was injected into the colonic wall and in the treatment group, 1×106 fibroblasts were transplanted. Following euthanasia on day 7, intra-abdominal adhesion, leakage and peritonitis were evaluated by necropsy. Mechanical properties were assessed using bursting pressure and tensile tests. Inflammation, angiogenesis, and collagen deposition were examined histopathologically. Results The mean scores for adhesion and leakage were decreased in the treatment group versus control samples. Lower infiltration of inflammatory cells was observed in the treatment group (P=0.03). Angiogenesis and collagen deposition scores were significantly increased in the fibroblast transplanted group (P=0.03). Tensile mechanical properties of the colon were significantly increased in the treatment group compared to the control sample (P=0.01). There was no significant difference between the control and treatment groups in terms of bursting pressure (P=0.10). Positive weight changes were found in sham and treatment groups, but the control rats lost weight after 7 days. Conclusion The results suggested that allotransplantation of dermal fibroblasts could improve the necroscopic, histopathological, and biomechanical indices of colonic anastomosis repair in rats.
Collapse
Affiliation(s)
- Narges Sufian
- Department of Surgery and Diagnostic Imaging, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Mehdi Behfar
- Department of Surgery and Diagnostic Imaging, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
| | - Ali-Asghar Tehrani
- Department of Pathobiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Hassan Malekinejad
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
- Experimental and Applied Pharmaceutical Sciences Research Center, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
221
|
Effects of biogenic synthesis of chitosan entrapped silver nanoparticle from Aegle marmelos on human cervical cancer cells (HeLa). J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
222
|
Geng J, Jensen G, Jackson K, Pontsler J, Rengarajan V, Sun Y, Britt D, Huang Y. Versatile activity and morphological effects of zinc oxide submicron particles as anticancer agents. Nanomedicine (Lond) 2022; 17:627-644. [PMID: 35350869 PMCID: PMC9118057 DOI: 10.2217/nnm-2021-0420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/15/2022] [Indexed: 11/21/2022] Open
Abstract
Background: Submicron particles (SMPs), as novel bionanomaterials, offer complementary benefits to their conventional nano-counterparts. Aim: To explore zinc oxide (ZnO) SMPs' bioimaging and anticancer potentials. Materials & methods: ZnO SMPs were synthesized into two shapes. Fluorescent spectrum and microscopy were studied for the bioimaging property. Wound healing and Live/Dead assays of glioblastoma cells were characterized for anticancer activities. Results: ZnO SMPs exhibited a high quantum yield (49%) with stable orange fluorescence emission. Both morphologies (most significant in the rod shape) showed tumor-selective properties in cytotoxicity, inhibition to cell migration and attenuating the cancer-upregulated genes. The tumor selectivity was attributed to particle degradation and surface properties on pH dependency. Conclusion: The authors propose that ZnO SMPs could be a promising anticancer drug with tunable, morphology-dependent properties for bioimaging and controlled release.
Collapse
Affiliation(s)
- Junnan Geng
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, ENGR 402, Logan, UT 84322, USA
| | - Gregory Jensen
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, ENGR 402, Logan, UT 84322, USA
- Department of Chemical Engineering, Arizona State University, 501 E. Tyler Mall, Tempe, AZ 85287, USA
| | - Kyle Jackson
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, ENGR 402, Logan, UT 84322, USA
| | - Jefferson Pontsler
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, ENGR 402, Logan, UT 84322, USA
| | - Venkatakrishnan Rengarajan
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, ENGR 402, Logan, UT 84322, USA
| | - Yan Sun
- Department of Mathematics & Statistics, Utah State University, 3900 Old Main Hill, Logan, UT 84322, USA
| | - David Britt
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, ENGR 402, Logan, UT 84322, USA
| | - Yu Huang
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, ENGR 402, Logan, UT 84322, USA
| |
Collapse
|
223
|
Wang S, Umrath F, Cen W, Salgado AJ, Reinert S, Alexander D. Pre-Conditioning with IFN-γ and Hypoxia Enhances the Angiogenic Potential of iPSC-Derived MSC Secretome. Cells 2022; 11:cells11060988. [PMID: 35326438 PMCID: PMC8946902 DOI: 10.3390/cells11060988] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/03/2022] [Accepted: 03/10/2022] [Indexed: 12/23/2022] Open
Abstract
Induced pluripotent stem cell (iPSC) derived mesenchymal stem cells (iMSCs) represent a promising source of progenitor cells for approaches in the field of bone regeneration. Bone formation is a multi-step process in which osteogenesis and angiogenesis are both involved. Many reports show that the secretome of mesenchymal stromal stem cells (MSCs) influences the microenvironment upon injury, promoting cytoprotection, angiogenesis, and tissue repair of the damaged area. However, the effects of iPSC-derived MSCs secretome on angiogenesis have seldom been investigated. In the present study, the angiogenic properties of IFN-γ pre-conditioned iMSC secretomes were analyzed. We detected a higher expression of the pro-angiogenic genes and proteins of iMSCs and their secretome under IFN-γ and hypoxic stimulation (IFN-H). Tube formation and wound healing assays revealed a higher angiogenic potential of HUVECs in the presence of IFN-γ conditioned iMSC secretome. Sprouting assays demonstrated that within Coll/HA scaffolds, HUVECs spheroids formed significantly more and longer sprouts in the presence of IFN-γ conditioned iMSC secretome. Through gene expression analyses, pro-angiogenic genes (FLT-1, KDR, MET, TIMP-1, HIF-1α, IL-8, and VCAM-1) in HUVECs showed a significant up-regulation and down-regulation of two anti-angiogenic genes (TIMP-4 and IGFBP-1) compared to the data obtained in the other groups. Our results demonstrate that the iMSC secretome, pre-conditioned under inflammatory and hypoxic conditions, induced the highest angiogenic properties of HUVECs. We conclude that pre-activated iMSCs enhance their efficacy and represent a suitable cell source for collagen/hydroxyapatite with angiogenic properties.
Collapse
Affiliation(s)
- Suya Wang
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, 72076 Tübingen, Germany; (S.W.); (F.U.); (W.C.); (S.R.)
| | - Felix Umrath
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, 72076 Tübingen, Germany; (S.W.); (F.U.); (W.C.); (S.R.)
| | - Wanjing Cen
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, 72076 Tübingen, Germany; (S.W.); (F.U.); (W.C.); (S.R.)
| | - António José Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal;
- ICVS/3B’s–PT Government Associate Laboratory, University of Minho, 4710-057 Braga, Portugal
| | - Siegmar Reinert
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, 72076 Tübingen, Germany; (S.W.); (F.U.); (W.C.); (S.R.)
| | - Dorothea Alexander
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, 72076 Tübingen, Germany; (S.W.); (F.U.); (W.C.); (S.R.)
- Correspondence:
| |
Collapse
|
224
|
Long Non-Coding RNAs Might Regulate Phenotypic Switch of Vascular Smooth Muscle Cells Acting as ceRNA: Implications for In-Stent Restenosis. Int J Mol Sci 2022; 23:ijms23063074. [PMID: 35328496 PMCID: PMC8952224 DOI: 10.3390/ijms23063074] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 02/01/2023] Open
Abstract
Coronary in-stent restenosis is a late complication of angioplasty. It is a multifactorial process that involves vascular smooth muscle cells (VSMCs), endothelial cells, and inflammatory and genetic factors. In this study, the transcriptomic landscape of VSMCs’ phenotypic switch process was assessed under stimuli resembling stent injury. Co-cultured contractile VSMCs and endothelial cells were exposed to a bare metal stent and platelet-derived growth factor (PDGF-BB) 20 ng/mL. Migratory capacity (wound healing assay), proliferative capacity, and cell cycle analysis of the VSMCs were performed. RNAseq analysis of contractile vs. proliferative VSMCs was performed. Gene differential expression (DE), identification of new long non-coding RNA candidates (lncRNAs), gene ontology (GO), and pathway enrichment (KEGG) were analyzed. A competing endogenous RNA network was constructed, and significant lncRNA–miRNA–mRNA axes were selected. VSMCs exposed to “stent injury” conditions showed morphologic changes, with proliferative and migratory capacities progressing from G0-G1 cell cycle phase to S and G2-M. RNAseq analysis showed DE of 1099, 509 and 64 differentially expressed mRNAs, lncRNAs, and miRNAs, respectively. GO analysis of DE genes showed significant enrichment in collagen and extracellular matrix organization, regulation of smooth muscle cell proliferation, and collagen biosynthetic process. The main upregulated nodes in the lncRNA-mediated ceRNA network were PVT1 and HIF1-AS2, with downregulation of ACTA2-AS1 and MIR663AHG. The PVT1 ceRNA axis appears to be an attractive target for in-stent restenosis diagnosis and treatment.
Collapse
|
225
|
Papadopoulou A, Chalmpes N, Gournis D, Kostopoulou N, Efthimiadou EK. Synthesis, characterization and evaluation of aqueous Zn-based quantum dots for bioapplications. Dalton Trans 2022; 51:3452-3461. [PMID: 35037008 DOI: 10.1039/d1dt04021a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Semiconducting nanoparticles called quantum dots (Qds) present unique optoelectronic properties based on their extremely small size, composition, and spherical shape, which make them suitable for use as diagnostic and theranostic agents in biological samples. The main scope of the fabrication of Qds is real-time diagnosis, therapy, drug delivery, and in vitro and in vivo tracking, presenting strong resistance to photobleaching. In this work, quantum dots such as ZnO, ZnSe, ZnS, and doped ZnS : Mn and ZnS : Cd were developed via a simple sol-gel synthesis in an aqueous solution. Morphological, structural, and optical characterizations were investigated. Moreover, an in vitro biological evaluation of Qds was performed. The results indicate that the photoluminescence is enhanced after doping ZnS Qds with Mn2+ and Cd2+. Qds have been synthesized for use as fluorescent agents for real-time monitoring in bio-applications.
Collapse
Affiliation(s)
- Athina Papadopoulou
- Inorganic Chemistry Laboratory, Chemistry Department, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou 157 71, Greece.
- NCSR "Demokritos", Sol-Gel Laboratory, Institute of Nanoscience and Nanotechnology, 153 10 Aghia Paraskevi Attikis, Greece
| | - Nikolaos Chalmpes
- Department of Materials Science & Engineering, University of Ioannina, 45110 Ioannina, Greece
| | - Dimitrios Gournis
- Department of Materials Science & Engineering, University of Ioannina, 45110 Ioannina, Greece
| | - Nikoleta Kostopoulou
- Inorganic Chemistry Laboratory, Chemistry Department, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou 157 71, Greece.
| | - Eleni K Efthimiadou
- Inorganic Chemistry Laboratory, Chemistry Department, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou 157 71, Greece.
- NCSR "Demokritos", Sol-Gel Laboratory, Institute of Nanoscience and Nanotechnology, 153 10 Aghia Paraskevi Attikis, Greece
| |
Collapse
|
226
|
Lallo S, Hardianti B, Sartini S, Ismail I, Laela D, Hayakawa Y. Ethyl P-Methoxycinnamate: An Active Anti-Metastasis Agent and Chemosensitizer Targeting NFκB from Kaempferia galanga for Melanoma Cells. Life (Basel) 2022; 12:life12030337. [PMID: 35330088 PMCID: PMC8950268 DOI: 10.3390/life12030337] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 11/17/2022] Open
Abstract
The most common type of skin cancer is melanoma. While significant advances in chemotherapy have occurred in a few instances, only marginal progress has been made in treating metastatic melanoma. Natural medicine has traditionally been used to treat various illnesses, including cancer. The purpose of this study was to identify the active compound in Kaempferia galanga, which could be used to treat melanoma as an anti-metastasis and chemosensitizer agent. The active compound in K. galanga was isolated and identified using chromatography and spectroscopy techniques, and given six compounds. Inhibitory activity on NFκB activation and cell viability was determined using reporter assay methods. Among the isolated compounds, ethyl p-methoxycinnamate (EPMC) demonstrated potent NFκB inhibitory activity against melanoma cell B16F10- NFκB Luc2 with an IC50 of 88.7 μM. Further investigation was conducted by evaluating the anti-metastasis effect of EPMC in vitro by using wound-healing assays, invasion tests, and molecular mechanism assays using Western blotting. NFκB has been implicated in tumorigenesis through the PI3K/Akt/NFκB pathway. The results of this study indicated that EPMCs act as inhibitors of p38 and thereby Akt phosphorylation inhibitors at serine 473, inhibiting NFκB-dependent transcription. Further analysis with paclitaxel demonstrated that the combinations could sensitize to apoptosis in response to well-known chemotherapy agents. Additional studies were conducted using the human melanoma cancer cell line SK-Mel 28. Along with the induction of apoptosis, we observed an increase in p-γH2AX expression (a molecular marker for double strand breaks in DNA damage) in response to treatment with paclitaxel and EPMC. The result showed EPMC to be a potential, viable adjuvant for improving the clinical efficacy of anti-metastatic and cancer chemotherapy.
Collapse
Affiliation(s)
- Subehan Lallo
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Besse Hardianti
- Sekolah Tinggi Ilmu Farmasi Makassar, Makassar 90242, Indonesia
- Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Sartini Sartini
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Ismail Ismail
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Dewi Laela
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Yoshihiro Hayakawa
- Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| |
Collapse
|
227
|
Goels T, Eichenauer E, Tahir A, Prochaska P, Hoeller F, Heiß EH, Glasl S. Exudates of Picea abies, Pinus nigra, and Larix decidua: Chromatographic Comparison and Pro-Migratory Effects on Keratinocytes In Vitro. PLANTS (BASEL, SWITZERLAND) 2022; 11:599. [PMID: 35270069 PMCID: PMC8912572 DOI: 10.3390/plants11050599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/07/2022] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
Balms and resins of Picea abies, Larix decidua, and Pinus nigra are traditionally used to treat wounds. Three chromatographic techniques differing in separation capacity and technical demands were employed to distinguish among these plant exudates. A TLC method was established for fingerprint comparison, providing a quick overview of a large number of samples at low cost. HPLC-DAD (RP18) and UHPSFC-DAD (Torus 2-Picolylamin), hyphenated to ESI-MS, represented orthogonal chromatographic systems with high separation performance. The developed methods allow for the separation and detection of major and minor constituents belonging to different compound classes (phenyl carboxylic acids, lignans, diterpene resin acids). The qualitative compositions of the diterpene resin acids, the main compounds in the exudates, were comparable in all three genera. Differences were detected in the distribution of hydroxylated diterpene resin acids, pinoresinol, and hydroxycinnamic acids. The three tested chromatographic systems with varying demands on lab equipment offer appropriate tools for the quality assessment of Picea abies, Larix decidua, and Pinus nigra. The extracts were furthermore tested at three different concentrations (10 µg/mL, 3 µg/mL, and 1 µg/mL) for boosted re-epithelialization, a crucial step in the wound-healing process, in an in vitro HaCaT keratinocyte-based scratch assay. Lysophosphatidic acid (LPA, 10 µM) and extracts of several medicinal plants well known for their wound-healing properties (birch, marigold, St. John's wort, manuka honey) were used as positive controls. Picea abies and Pinus nigra showed concentration dependency; significant activity was measured for Larix decidua at 3 µg/mL.
Collapse
|
228
|
Liu J, Smith S, Wang C. Reversing the Epithelial-Mesenchymal Transition in Metastatic Cancer Cells Using CD146-Targeted Black Phosphorus Nanosheets and a Mild Photothermal Treatment. ACS NANO 2022; 16:3208-3220. [PMID: 35089691 DOI: 10.1021/acsnano.1c11070] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cancer metastasis leads to most deaths in cancer patients, and the epithelial-mesenchymal transition (EMT) is the key mechanism that endows the cancer cells with strong migratory and invasive abilities. Here, we present a nanomaterial-based approach to reverse the EMT in cancer cells by targeting an EMT inducer, CD146, using engineered black phosphorus nanosheets (BPNSs) and a mild photothermal treatment. We demonstrate this approach can convert highly metastatic, mesenchymal-type breast cancer cells to an epithelial phenotype (i.e., reversing EMT), leading to a complete stoppage of cancer cell migration. By using advanced nanomechanical and super-resolution imaging, complemented by immunoblotting, we validate the phenotypic switch in the cancer cells, as evidenced by the altered actin organization and cell morphology, downregulation of mesenchymal protein markers, and upregulation of epithelial protein markers. We also elucidate the molecular mechanism behind the reversal of EMT. Our results reveal that CD146-targeted BPNSs and a mild photothermal treatment synergistically contribute to EMT reversal by downregulating membrane CD146 and perturbing its downstream EMT-related signaling pathways. Considering CD146 overexpression has been confirmed on the surface of a variety of metastatic, mesenchymal-like cancer cells, this approach could be applicable for treating various cancer metastasis via modulating the phenotype switch in cancer cells.
Collapse
Affiliation(s)
- Jinyuan Liu
- Nanoscience and Nanoengineering, South Dakota School of Mines and Technology, 501 East St Joseph Street, Rapid City, South Dakota 57701, United States
- BioSystems Networks & Translational Research (BioSNTR), 501 East St Joseph Street, Rapid City, South Dakota 57701, United States
| | - Steve Smith
- Nanoscience and Nanoengineering, South Dakota School of Mines and Technology, 501 East St Joseph Street, Rapid City, South Dakota 57701, United States
- BioSystems Networks & Translational Research (BioSNTR), 501 East St Joseph Street, Rapid City, South Dakota 57701, United States
| | - Congzhou Wang
- Nanoscience and Nanoengineering, South Dakota School of Mines and Technology, 501 East St Joseph Street, Rapid City, South Dakota 57701, United States
- BioSystems Networks & Translational Research (BioSNTR), 501 East St Joseph Street, Rapid City, South Dakota 57701, United States
| |
Collapse
|
229
|
Poon S, Ailles LE. Modeling the Role of Cancer-Associated Fibroblasts in Tumor Cell Invasion. Cancers (Basel) 2022; 14:962. [PMID: 35205707 PMCID: PMC8870277 DOI: 10.3390/cancers14040962] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 02/06/2023] Open
Abstract
The major cause of cancer-related deaths can be attributed to the metastatic spread of tumor cells-a dynamic and complex multi-step process beginning with tumor cells acquiring an invasive phenotype to allow them to travel through the blood and lymphatic vessels to ultimately seed at a secondary site. Over the years, various in vitro models have been used to characterize specific steps in the cascade to collectively begin providing a clearer picture of the puzzle of metastasis. With the discovery of the TME's supporting role in activating tumor cell invasion and metastasis, these models have evolved in parallel to accommodate features of the TME and to observe its interactions with tumor cells. In particular, CAFs that reside in reactive tumor stroma have been shown to play a substantial pro-invasive role through their matrix-modifying functions; accordingly, this warranted further investigation with the development and use of invasion assays that could include these stromal cells. This review explores the growing toolbox of assays used to study tumor cell invasion, from the simple beginnings of a tumor cell and extracellular matrix set-up to the advent of models that aim to more closely recapitulate the interplay between tumor cells, CAFs and the extracellular matrix. These models will prove to be invaluable tools to help tease out the intricacies of tumor cell invasion.
Collapse
Affiliation(s)
- Stephanie Poon
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada;
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Laurie E. Ailles
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada;
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| |
Collapse
|
230
|
Veres-Székely A, Pap D, Szebeni B, Őrfi L, Szász C, Pajtók C, Lévai E, Szabó AJ, Vannay Á. Transient Agarose Spot (TAS) Assay: A New Method to Investigate Cell Migration. Int J Mol Sci 2022; 23:ijms23042119. [PMID: 35216230 PMCID: PMC8880674 DOI: 10.3390/ijms23042119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/09/2022] [Accepted: 02/12/2022] [Indexed: 11/24/2022] Open
Abstract
Fibroblasts play a central role in diseases associated with excessive deposition of extracellular matrix (ECM), including idiopathic pulmonary fibrosis. Investigation of different properties of fibroblasts, such as migration, proliferation, and collagen-rich ECM production is unavoidable both in basic research and in the development of antifibrotic drugs. In the present study we developed a cost-effective, 96-well plate-based method to examine the migration of fibroblasts, as an alternative approach to the gold standard scratch assay, which has numerous limitations. This article presents a detailed description of our transient agarose spot (TAS) assay, with instructions for its routine application. Advantages of combined use of different functional assays for fibroblast activation in drug development are also discussed by examining the effect of nintedanib—an FDA approved drug against IPF—on lung fibroblasts.
Collapse
Affiliation(s)
- Apor Veres-Székely
- 1st Department of Pediatrics, Semmelweis University, 1083 Budapest, Hungary; (D.P.); (B.S.); (C.S.); (C.P.); (E.L.); (A.J.S.); (Á.V.)
- ELKH-SE Pediatrics and Nephrology Research Group, 1052 Budapest, Hungary
- Correspondence:
| | - Domonkos Pap
- 1st Department of Pediatrics, Semmelweis University, 1083 Budapest, Hungary; (D.P.); (B.S.); (C.S.); (C.P.); (E.L.); (A.J.S.); (Á.V.)
- ELKH-SE Pediatrics and Nephrology Research Group, 1052 Budapest, Hungary
| | - Beáta Szebeni
- 1st Department of Pediatrics, Semmelweis University, 1083 Budapest, Hungary; (D.P.); (B.S.); (C.S.); (C.P.); (E.L.); (A.J.S.); (Á.V.)
- ELKH-SE Pediatrics and Nephrology Research Group, 1052 Budapest, Hungary
| | - László Őrfi
- Department of Pharmaceutical Chemistry, Semmelweis University, 1092 Budapest, Hungary;
- Vichem Chemie Research Ltd., 1022 Budapest, Hungary
| | - Csenge Szász
- 1st Department of Pediatrics, Semmelweis University, 1083 Budapest, Hungary; (D.P.); (B.S.); (C.S.); (C.P.); (E.L.); (A.J.S.); (Á.V.)
| | - Csenge Pajtók
- 1st Department of Pediatrics, Semmelweis University, 1083 Budapest, Hungary; (D.P.); (B.S.); (C.S.); (C.P.); (E.L.); (A.J.S.); (Á.V.)
| | - Eszter Lévai
- 1st Department of Pediatrics, Semmelweis University, 1083 Budapest, Hungary; (D.P.); (B.S.); (C.S.); (C.P.); (E.L.); (A.J.S.); (Á.V.)
| | - Attila J. Szabó
- 1st Department of Pediatrics, Semmelweis University, 1083 Budapest, Hungary; (D.P.); (B.S.); (C.S.); (C.P.); (E.L.); (A.J.S.); (Á.V.)
- ELKH-SE Pediatrics and Nephrology Research Group, 1052 Budapest, Hungary
| | - Ádám Vannay
- 1st Department of Pediatrics, Semmelweis University, 1083 Budapest, Hungary; (D.P.); (B.S.); (C.S.); (C.P.); (E.L.); (A.J.S.); (Á.V.)
- ELKH-SE Pediatrics and Nephrology Research Group, 1052 Budapest, Hungary
| |
Collapse
|
231
|
Acosta S, Canclini L, Galarraga C, Justet C, Alem D. Lab-made 3D printed stoppers as high-throughput cell migration screening tool. SLAS Technol 2022; 27:39-43. [DOI: 10.1016/j.slast.2021.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
232
|
Endothelial Cell Fibrin Gel Angiogenesis Bead Assay. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2441:321-327. [PMID: 35099748 DOI: 10.1007/978-1-0716-2059-5_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The fibrin gel angiogenesis bead assay provides a controlled in vitro setting for observing endothelial angiogenic sprouting in response to modified variables. Endothelial cells are coated onto microcarriers and embedded into a fibrin clot containing necessary growth factors. Following a 24-h incubation, endothelial sprouts are imaged using a light microscope. This method is useful for rapidly and affordably investigating the effects of genetic or chemical manipulation to endothelial function.
Collapse
|
233
|
Guo Y, Mi J, Ye C, Ao Y, Shi M, Shan Z, Li B, Chen Z, Chen Z, Vasilev K, Xiao Y. A practical guide to promote informatics-driven efficient biotopographic material development. Bioact Mater 2022; 8:515-528. [PMID: 34541417 PMCID: PMC8433058 DOI: 10.1016/j.bioactmat.2021.06.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/31/2021] [Accepted: 06/10/2021] [Indexed: 01/14/2023] Open
Abstract
Micro/nano topographic structures have shown great utility in many biomedical areas including cell therapies, tissue engineering, and implantable devices. Computer-assisted informatics methods hold great promise for the design of topographic structures with targeted properties for a specific medical application. To benefit from these methods, researchers and engineers require a highly reusable "one structural parameter - one set of cell responses" database. However, existing confounding factors in topographic cell culture devices seriously impede the acquisition of this kind of data. Through carefully dissecting the confounding factors and their possible reasons for emergence, we developed corresponding guideline requirements for topographic cell culture device development to remove or control the influence of such factors. Based on these requirements, we then suggested potential strategies to meet them. In this work, we also experimentally demonstrated a topographic cell culture device with controlled confounding factors based on these guideline requirements and corresponding strategies. A "guideline for the development of topographic cell culture devices" was summarized to instruct researchers to develop topographic cell culture devices with the confounding factors removed or well controlled. This guideline aims to promote the establishment of a highly reusable "one structural parameter - one set of cell responses" database that could facilitate the application of informatics methods, such as artificial intelligence, in the rational design of future biotopographic structures with high efficacy.
Collapse
Affiliation(s)
- Yuanlong Guo
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Jiaomei Mi
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Chen Ye
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Yong Ao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Mengru Shi
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Zhengjie Shan
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Bingzhi Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Zetao Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Zhuofan Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Krasimir Vasilev
- Academic Unit of Science, Technology, Engineering and Mathematics (STEM), University of South Australia, Mawson Lakes, SA, 5095, Australia
| | - Yin Xiao
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, 4059, Australia
| |
Collapse
|
234
|
Merve AO, Sobiecka P, Remeškevičius V, Taylor L, Saskoy L, Lawton S, Jones BP, Elwakeel A, Mackenzie FE, Polycarpou E, Bennett J, Rooney B. Metabolites of Cannabis Induce Cardiac Toxicity and Morphological Alterations in Cardiac Myocytes. Int J Mol Sci 2022; 23:ijms23031401. [PMID: 35163321 PMCID: PMC8835806 DOI: 10.3390/ijms23031401] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 01/12/2022] [Accepted: 01/19/2022] [Indexed: 12/18/2022] Open
Abstract
Cannabis is one of the most commonly used recreational drugs worldwide. Rrecent epidemiology studies have linked increased cardiac complications to cannabis use. However, this literature is predominantly based on case incidents and post-mortem investigations. This study elucidates the molecular mechanism of Δ9-tetrahydrocannabinol (THC), and its primary metabolites 11-Hydroxy-Δ9-THC (THC-OH) and 11-nor-9-carboxy-Δ⁹-tetrahydrocannabinol (THC-COOH). Treatment of cardiac myocytes with THC-OH and THC-COOH increased cell migration and proliferation (p < 0.05), with no effect on cell adhesion, with higher doses (250–100 ng/mL) resulting in increased cell death and significant deterioration in cellular architecture. Conversely, no changes in cell morphology or viability were observed in response to THC. Expression of key ECM proteins α-SMA and collagen were up-regulated in response to THC-OH and THC-COOH treatments with concomitant modulation of PI3K and MAPK signalling. Investigations in the planarian animal model Polycelis nigra demonstrated that treatments with cannabinoid metabolites resulted in increased protein deposition at transection sites while higher doses resulted in significant lethality and decline in regeneration. These results highlight that the key metabolites of cannabis elicit toxic effects independent of the parent and psychoactive compound, with implications for cardiotoxicity relating to hypertrophy and fibrogenesis.
Collapse
Affiliation(s)
- Ayse Orme Merve
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, London KT1 2EE, UK; (A.O.M.); (P.S.); (V.R.); (L.T.); (L.S.); (S.L.); (B.P.J.); (F.E.M.); (E.P.)
| | - Pola Sobiecka
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, London KT1 2EE, UK; (A.O.M.); (P.S.); (V.R.); (L.T.); (L.S.); (S.L.); (B.P.J.); (F.E.M.); (E.P.)
| | - Vytautas Remeškevičius
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, London KT1 2EE, UK; (A.O.M.); (P.S.); (V.R.); (L.T.); (L.S.); (S.L.); (B.P.J.); (F.E.M.); (E.P.)
| | - Luke Taylor
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, London KT1 2EE, UK; (A.O.M.); (P.S.); (V.R.); (L.T.); (L.S.); (S.L.); (B.P.J.); (F.E.M.); (E.P.)
| | - Lili Saskoy
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, London KT1 2EE, UK; (A.O.M.); (P.S.); (V.R.); (L.T.); (L.S.); (S.L.); (B.P.J.); (F.E.M.); (E.P.)
| | - Scott Lawton
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, London KT1 2EE, UK; (A.O.M.); (P.S.); (V.R.); (L.T.); (L.S.); (S.L.); (B.P.J.); (F.E.M.); (E.P.)
| | - Ben P. Jones
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, London KT1 2EE, UK; (A.O.M.); (P.S.); (V.R.); (L.T.); (L.S.); (S.L.); (B.P.J.); (F.E.M.); (E.P.)
| | - Ahmed Elwakeel
- Centre for Sport, Exercise and Life Sciences (CSELS), Coventry University, Pharmacology and Therapeutics, Alison Gingell Building, Whitefriars Street, Coventry CV1 2DS, UK; (A.E.); (J.B.)
| | - Francesca E. Mackenzie
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, London KT1 2EE, UK; (A.O.M.); (P.S.); (V.R.); (L.T.); (L.S.); (S.L.); (B.P.J.); (F.E.M.); (E.P.)
| | - Elena Polycarpou
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, London KT1 2EE, UK; (A.O.M.); (P.S.); (V.R.); (L.T.); (L.S.); (S.L.); (B.P.J.); (F.E.M.); (E.P.)
| | - Jason Bennett
- Centre for Sport, Exercise and Life Sciences (CSELS), Coventry University, Pharmacology and Therapeutics, Alison Gingell Building, Whitefriars Street, Coventry CV1 2DS, UK; (A.E.); (J.B.)
| | - Brian Rooney
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, London KT1 2EE, UK; (A.O.M.); (P.S.); (V.R.); (L.T.); (L.S.); (S.L.); (B.P.J.); (F.E.M.); (E.P.)
- Correspondence:
| |
Collapse
|
235
|
Identification of 20(S)-Ginsenoside Rh2 as a Potential EGFR Tyrosine Kinase Inhibitor. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6119737. [PMID: 35111279 PMCID: PMC8803441 DOI: 10.1155/2022/6119737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/29/2021] [Accepted: 12/21/2021] [Indexed: 12/18/2022]
Abstract
As the main active ingredients of Panax ginseng, ginsenosides possess numerous bioactivities. Epidermal growth factor receptor (EGFR) was widely used as a valid target in anticancer therapy. Herein, the EGFR targeting activities of 20(S)-ginsenoside Rh2 (20(S)-Rh2) and the relationship of their structure-activity were investigated. Homogeneous time-resolved fluorescence assay showed that 20(S)-Rh2 significantly inhibited the activity against EGFR kinase. 20(S)-Rh2 was confirmed to effectively inhibited cell proliferation in a dose-dependent manner by MTT assay. Furthermore, quantitative real-time PCR and western blotting analysis revealed that 20(S)-Rh2 inhibited A549 cells growth via the EGFR-MAPK pathway. Meanwhile, 20(S)-Rh2 could promote cell apoptosis, block cell cycle, and reduce cell migration of A549 cells, respectively. In silico, the result suggested that both hydrophobic interactions and hydrogen-bonding interactions could contribute to stabilize their binding. Molecular dynamics simulation showed that the side chain sugar moiety of 20(S)-Rh2 was too flexible to be fixed at the active site of EGFR. Collectively, these findings suggested that 20(S)-Rh2 might serve as a potential EGFR tyrosine kinase inhibitor.
Collapse
|
236
|
Chang J, Guo C, Li J, Liang Z, Wang Y, Yu A, Liu R, Guo Y, Chen J, Huang S. EN1 Regulates Cell Growth and Proliferation in Human Glioma Cells via Hedgehog Signaling. Int J Mol Sci 2022; 23:ijms23031123. [PMID: 35163043 PMCID: PMC8834903 DOI: 10.3390/ijms23031123] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/09/2022] [Accepted: 01/17/2022] [Indexed: 02/04/2023] Open
Abstract
Glioblastoma is an aggressive cancer of the nervous system that accounts for the majority of brain cancer-related deaths. Through cross-species transcriptome studies, we found that Engrailed 1 (EN1) is highly expressed in serum-free cultured glioma cells as well as glioma tissues, and increased expression level predicts a worse prognosis. EN1 controls glioma cell proliferation, colony formation, migration, and tumorigenic capacity in vivo. It also influences sensitivity of glioma cells to γ-ray irradiation by regulating intracellular ROS levels. Mechanistically, EN1 influences Hedgehog signaling by regulating the level of Gli1 as well as primary cilia length and the primary cilia transport-related protein TULP3. In conclusion, we demonstrate that EN1 acts as an oncogenic regulator that contributes to glioblastoma pathogenesis and could serve as a diagnostic/prognostic marker and therapeutic target for glioblastoma.
Collapse
Affiliation(s)
- Jinchun Chang
- College of Life Sciences, Beijing Normal University, Beijing 100875, China;
- National Institute of Biological Sciences, Beijing 102206, China; (Y.W.); (A.Y.); (R.L.); (Y.G.)
| | - Chenjia Guo
- Chinese Institute for Brain Research, Beijing 102206, China; (C.G.); (J.L.); (Z.L.)
| | - Jianyu Li
- Chinese Institute for Brain Research, Beijing 102206, China; (C.G.); (J.L.); (Z.L.)
| | - Zhangqian Liang
- Chinese Institute for Brain Research, Beijing 102206, China; (C.G.); (J.L.); (Z.L.)
| | - Yankai Wang
- National Institute of Biological Sciences, Beijing 102206, China; (Y.W.); (A.Y.); (R.L.); (Y.G.)
| | - Anliang Yu
- National Institute of Biological Sciences, Beijing 102206, China; (Y.W.); (A.Y.); (R.L.); (Y.G.)
| | - Runze Liu
- National Institute of Biological Sciences, Beijing 102206, China; (Y.W.); (A.Y.); (R.L.); (Y.G.)
| | - Yuting Guo
- National Institute of Biological Sciences, Beijing 102206, China; (Y.W.); (A.Y.); (R.L.); (Y.G.)
| | - Jian Chen
- Chinese Institute for Brain Research, Beijing 102206, China; (C.G.); (J.L.); (Z.L.)
- Institute of Functional Nano and Soft Materials (FUNSOM) & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
- Correspondence: (J.C.); (S.H.)
| | - Song Huang
- National Institute of Biological Sciences, Beijing 102206, China; (Y.W.); (A.Y.); (R.L.); (Y.G.)
- Correspondence: (J.C.); (S.H.)
| |
Collapse
|
237
|
Chibh S, Kaur K, Gautam UK, Panda JJ. Dimension switchable auto-fluorescent peptide-based 1D and 2D nano-assemblies and their self-influence on intracellular fate and drug delivery. NANOSCALE 2022; 14:715-735. [PMID: 34937079 DOI: 10.1039/d1nr06768k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The production of dynamic, environment-responsive shape-tunable biomaterials marks a significant step forward in the construction of synthetic materials that can easily rival their natural counterparts. Significant progress has been made in the self-assembly of bio-materials. However, the self-assembly of a peptide into morphologically distinct auto-fluorescent nanostructures, without the incorporation of any external moiety is still in its infancy. Hence, in this study, we have developed peptide-based self-assembled auto-fluorescent nanostructures that can shuttle between 1D and 2D morphologies. Different morphological nanostructures are well known to have varied cellular internalization efficiencies. Taking advantage of our morphologically different particles emanating from the same peptide monomer, we further explored the intracellular fate of our nanostructures. We observed that the nanostructures' cellular internalization is a complex process that gets influenced by particle morphology and this might further affect their intracellular drug delivery potential. Overall, this study provides initial cues for the preparation of environment-responsive shape-shifting peptide-nano assemblies. Efforts have also been made to understand their shape driven cellular uptake behaviour, along with establishing them as nanocarriers for the cellular delivery of therapeutic molecules.
Collapse
Affiliation(s)
- Sonika Chibh
- Institute of Nano Science and Technology, Sector 81, Mohali, Punjab, 140306, India.
| | - Komalpreet Kaur
- Indian Institute of Science Education and Research, Sector 81, Mohali, Punjab, 140306, India
| | - Ujjal K Gautam
- Indian Institute of Science Education and Research, Sector 81, Mohali, Punjab, 140306, India
| | - Jiban Jyoti Panda
- Institute of Nano Science and Technology, Sector 81, Mohali, Punjab, 140306, India.
| |
Collapse
|
238
|
Xia X, Toh DWK, Ng SL, Zharkova O, Poh KK, Foo RSY, Wang JW, Kim JE. Impact of following a healthy dietary pattern with co-consuming wolfberry on number and function of blood outgrowth endothelial cells from middle-aged and older adults. Food Funct 2022; 13:76-90. [PMID: 34882161 DOI: 10.1039/d1fo02369a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Blood outgrowth endothelial cells (BOECs) have received growing attention in relation to cardiovascular disease (CVD). However, the effect of diet intervention, a primary strategy for CVD prevention, on BOECs is not reported. This study aims to investigate the effect of following a healthy dietary pattern (HDP) with or without wolfberry consumption, healthy food with potential cardiovascular benefits, on the number and function of BOECs in middle-aged and older adults. Twenty-four subjects consumed either an HDP only (n = 9) or an HDP supplemented with 15 g day-1 wolfberries (n = 15) for 16 weeks. At pre- and post-intervention, vascular health biomarkers and composite CVD risk indicators were assessed. BOECs were derived from peripheral blood mononuclear cells and their angiogenic and migration activities were measured. Isolated BOECs have typical endothelial cobblestone morphology, express von Willebrand factor and KDR. Consuming an HDP improved the BOEC colony's growth rate, which was demonstrated by significant time effects in the colony's culture time between passages 1 and 2 (P = 0.038). Both interventions increased BOECs' tube formation capacity. Moreover, HDP intervention contributed to a time effect on BOEC migration activity (P = 0.040 for t1/2gap). Correlation analysis revealed that BOEC colony number was positively associated with blood pressure, atherogenic index, vascular age, and Framingham risk score. In conclusion, adherence to an HDP improved BOECs' function in middle-aged and older populations, while additional wolfberry consumption did not provide an enhanced effect. Our results provide mechanistic dissection on the beneficial effects on BOECs of dietary pattern modification.
Collapse
Affiliation(s)
- Xuejuan Xia
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore.
| | - Darel Wee Kiat Toh
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore.
| | - Shi Ling Ng
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Olga Zharkova
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Kian Keong Poh
- Department of Cardiology, National University Heart Centre, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Roger S Y Foo
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Genome Institute of Singapore, Agency of Science Research and Technology, Singapore
| | - Jiong-Wei Wang
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jung Eun Kim
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore.
| |
Collapse
|
239
|
Salatino A, Mirabelli M, Chiefari E, Greco M, Di Vito A, Bonapace G, Brunetti FS, Crocerossa F, Epstein AL, Foti DP, Brunetti A. The anticancer effects of Metformin in the male germ tumor SEM-1 cell line are mediated by HMGA1. Front Endocrinol (Lausanne) 2022; 13:1051988. [PMID: 36506071 PMCID: PMC9727077 DOI: 10.3389/fendo.2022.1051988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/09/2022] [Indexed: 11/24/2022] Open
Abstract
INTRODUCTION Germ cell tumors (GCTs) are the most common type of cancer in young men. These tumors usually originate from the testis, but they can occasionally develop from extragonadal sites probably due to primordial germ cells (PGCs) migration errors. Cisplatin-based chemotherapy is usually effective for male GCTs, but the risk of toxicity is high and new therapeutic strategies are needed. Although Metformin (Met) has been widely studied as a potential cancer treatment over the past decades, there is limited evidence to support its use in treating male GCTs. Additionally, the mechanism by which it acts on tumor cells is still not entirely understood. METHODS SEM-1 cells, a newly established human cell line of extragonadal origin, were treated with Met. Cell viability was studied by MTT assay, while cell migration and invasion were studied by the wound healing assay and the transwell assay, respectively. The effect of Met on 3D spheroid formation was determined by seeding SEM-1 cells in appropriate cell suspension culture conditions, and cell cycle was characterized by flow cytometry. Factors involved in PGCs migration and GCT invasion, such as IGFBP1, IGF1R, MMP-11 and c-Kit, together with cyclin D1 (a key regulator of cell cycle progression), and the upstream factor, HMGA1, were determined by immunoblots. RESULTS Treatment of SEM-1 cells with Met resulted in a potent and dose-dependent reduction of cell proliferation, as evidenced by decreased nuclear abundance of cyclin D1 and cell cycle arrest in G1 phase. Also, Met prevented the formation of 3D spheroids, and blocked cell migration and invasion by reducing the expression of IGFBP1, IGF1R and MMP-11. Both, IGFBP1 and MMP-11 are under control of HMGA1, a chromatin-associated protein that is involved in the regulation of important oncogenic, metabolic and embryological processes. Intriguingly, an early reduction in the nuclear abundance of HMGA1 occurred in SEM-1 cells treated with Met. CONCLUSIONS Our results document the antiproliferative and antimigratory effects of Met in SEM-1 cells, providing new insights into the potential treatments for male GCTs. The anticancer properties of Met in SEM-1 cells are likely related to its ability to interfere with HMGA1 and downstream targets, including cyclin D1, the IGFs system, and MMP-11.
Collapse
Affiliation(s)
- Alessandro Salatino
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Maria Mirabelli
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Eusebio Chiefari
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Marta Greco
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Anna Di Vito
- Department of Experimental and Clinical Medicine, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Giuseppe Bonapace
- Department of Medical and Surgical Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Francesco S. Brunetti
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Fabio Crocerossa
- Department of Experimental and Clinical Medicine, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Alan L. Epstein
- Department of Pathology, USC Keck School of Medicine, Los Angeles, CA, United States
| | - Daniela P. Foti
- Department of Experimental and Clinical Medicine, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Antonio Brunetti
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
- *Correspondence: Antonio Brunetti,
| |
Collapse
|
240
|
Doğan M, Şahbaz S, Uğurlu T, Sezer AD. Synthesis and characterization of chitosan-PVA hydrogel containing PEGylated recombinant epidermal growth factor on cell culture for wound healing substitute. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e191120s] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
241
|
Moraes de Lima Perini M, Valuch CR, Dadwal UC, Awosanya OD, Mostardo SL, Blosser RJ, Knox AM, McGuire AC, Battina HL, Nazzal M, Kacena MA, Li J. Characterization and assessment of lung and bone marrow derived endothelial cells and their bone regenerative potential. Front Endocrinol (Lausanne) 2022; 13:935391. [PMID: 36120459 PMCID: PMC9470942 DOI: 10.3389/fendo.2022.935391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Angiogenesis is important for successful fracture repair. Aging negatively affects the number and activity of endothelial cells (ECs) and subsequently leads to impaired bone healing. We previously showed that implantation of lung-derived endothelial cells (LECs) improved fracture healing in rats. In this study, we characterized and compared neonatal lung and bone marrow-derived endothelial cells (neonatal LECs and neonatal BMECs) and further asses3sed if implantation of neonatal BMECs could enhance bone healing in both young and aged mice. We assessed neonatal EC tube formation, proliferation, and wound migration ability in vitro in ECs isolated from the bone marrow and lungs of neonatal mice. The in vitro studies demonstrated that both neonatal LECs and neonatal BMECs exhibited EC traits. To test the function of neonatal ECs in vivo, we created a femoral fracture in young and aged mice and implanted a collagen sponge to deliver neonatal BMECs at the fracture site. In the mouse fracture model, endochondral ossification was delayed in aged control mice compared to young controls. Neonatal BMECs significantly improved endochondral bone formation only in aged mice. These data suggest BMECs have potential to enhance aged bone healing. Compared to LECs, BMECs are more feasible for translational cell therapy and clinical applications in bone repair. Future studies are needed to examine the fate and function of BMECs implanted into the fracture sites.
Collapse
Affiliation(s)
| | - Conner R. Valuch
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, United States
| | - Ushashi C. Dadwal
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Olatundun D. Awosanya
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Sarah L. Mostardo
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Rachel J. Blosser
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Adam M. Knox
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Anthony C. McGuire
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Hanisha L. Battina
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Murad Nazzal
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Melissa A. Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
- Richard L. Roudebush Veterans Affairs (VA) Medical Center, Indianapolis, IN, United States
| | - Jiliang Li
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, United States
- *Correspondence: Jiliang Li,
| |
Collapse
|
242
|
Wadey KS, Somos A, Cross SJ, Reolizo LM, Johnson JL, George SJ. Monitoring Cellular Proliferation, Migration, and Apoptosis Associated with Atherosclerosis Plaques In Vitro. Methods Mol Biol 2022; 2419:133-167. [PMID: 35237963 DOI: 10.1007/978-1-0716-1924-7_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bromodeoxyuridine/5-bromo-2'-deoxyuridine (BrdU) is a nucleoside analog of thymidine and its incorporation into DNA during replication within S-phase of the cell cycle is used to quantify cell proliferation. Quantification of incorporated BrdU is considered the most direct measure of cell proliferation, and here we describe BrdU incorporation into cultured vascular smooth muscle cells (VSMCs) and endothelial cells in vitro. Incorporation of fluorescent-labeled ethynyldeoxyuridine/5-ethynyl-2'-deoxyuridine (EdU) is a novel alternative to BrdU assays and presents significant advantages. This method of detection of EdU based on a simple "click" chemical reaction, which covalently bonds EdU to a fluorescent dye is also outlined in this chapter with a protocol for quantitative analysis of EdU incorporation using a Fiji-based macro. We also describe how proliferation can be assessed by quantification of classical proliferative markers such as phopsho-Ser807/811 retinoblastoma (Rb), proliferating cell nuclear antigen (PCNA) and cyclin D1 by Western blotting. As these markers are involved in different aspects of the cell cycle regulation, examining their expression levels can not only reveal the relative population of proliferating cells but can also improve our understanding of the mechanism of action of a given treatment or intervention. The scratch wound assay is a simple and cost-effective technique to quantify cell migration. A protocol which involves creating a wound in a cell cultured monolayer and measuring the distance migrated by the cells after a predefined time period is also described. Gap creation can also be achieved via physical cell exclusion where cells are seeded in distinct reservoirs of a cell culture insert which reveal a gap upon removal. Cell migration may then be quantified by monitoring the rate of gap closure. The presence of cleaved caspase-3 is a marker of programmed cell death (apoptosis). To detect cleaved caspase-3 in vitro, immunocytochemistry and fluorescence can be performed as outlined in this chapter.
Collapse
Affiliation(s)
- Kerry S Wadey
- Department of Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Alexandros Somos
- Department of Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Stephen J Cross
- Department of Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Lien M Reolizo
- Department of Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Jason L Johnson
- Department of Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Sarah J George
- Department of Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.
| |
Collapse
|
243
|
Rosa A, Giese W, Meier K, Alt S, Klaus-Bergmann A, Edgar LT, Bartels E, Collins R, Szymborska A, Coxam B, Bernabeu MO, Gerhardt H. Wasp controls oriented migration of endothelial cells to achieve functional vascular patterning. Development 2021; 149:273808. [PMID: 34931661 PMCID: PMC8918813 DOI: 10.1242/dev.200195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/10/2021] [Indexed: 11/21/2022]
Abstract
Endothelial cell migration and proliferation are essential for the establishment of a hierarchical organization of blood vessels and optimal distribution of blood. However, how these cellular processes are quantitatively coordinated to drive vascular network morphogenesis remains unknown. Here, using the zebrafish vasculature as a model system, we demonstrate that the balanced distribution of endothelial cells, as well as the resulting regularity of vessel calibre, is a result of cell migration from veins towards arteries and cell proliferation in veins. We identify the Wiskott-Aldrich Syndrome protein (WASp) as an important molecular regulator of this process and show that loss of coordinated migration from veins to arteries upon wasb depletion results in aberrant vessel morphology and the formation of persistent arteriovenous shunts. We demonstrate that WASp achieves its function through the coordination of junctional actin assembly and PECAM1 recruitment and provide evidence that this is conserved in humans. Overall, we demonstrate that functional vascular patterning in the zebrafish trunk is established through differential cell migration regulated by junctional actin, and that interruption of differential migration may represent a pathomechanism in vascular malformations. Summary: Regular diameter of developing veins and arteries in the zebrafish trunk is controlled by differential endothelial cell proliferation and WASp-driven directed cell migration.
Collapse
Affiliation(s)
- André Rosa
- Integrative Vascular Biology Laboratory, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Germany.,DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany
| | - Wolfgang Giese
- Integrative Vascular Biology Laboratory, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Germany.,DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany
| | - Katja Meier
- Integrative Vascular Biology Laboratory, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Germany.,DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany
| | - Silvanus Alt
- Integrative Vascular Biology Laboratory, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Germany.,DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany
| | - Alexandra Klaus-Bergmann
- Integrative Vascular Biology Laboratory, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Germany.,DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany
| | - Lowell T Edgar
- Usher Institute, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, UK
| | - Eireen Bartels
- Integrative Vascular Biology Laboratory, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Germany.,DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany
| | - Russell Collins
- Integrative Vascular Biology Laboratory, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Germany.,DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany
| | - Anna Szymborska
- Integrative Vascular Biology Laboratory, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Germany.,DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany
| | - Baptiste Coxam
- Integrative Vascular Biology Laboratory, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Germany.,DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany
| | - Miguel O Bernabeu
- Usher Institute, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, UK.,The Bayes Centre, The University of Edinburgh, Edinburgh, United Kingdom. 5 Berlin Institute of Health (BIH), Berlin, Germany
| | - Holger Gerhardt
- Integrative Vascular Biology Laboratory, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Germany.,DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany
| |
Collapse
|
244
|
Collin A, Kohan R, de Talamoni NT, Picotto G. Melatonin Enhances Anti-tumoral Effects of Menadione on Colon Cancer Cells. Anticancer Agents Med Chem 2021; 22:2411-2418. [PMID: 34875993 DOI: 10.2174/1871520621666211207141729] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/11/2021] [Accepted: 10/07/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Colon cancer is one of the most important causes of death in the entire world. New pharmacological strategies are always needed, especially in resistant variants of this pathology. We have previously reported that drugs such as menadione (MEN), D, L-buthionine-S,R-sulfoximine or calcitriol, used in combination, enhanced cell sensibility of breast and colon tumour models, due to their ability to modify the oxidative status of the cells. Melatonin (MEL), a hormone regulating circadian rhythms, has anti-oxidant and anti-apoptotic properties at low concentrations, while at high doses, it has been shown to inhibit cancer cell growth. OBJECTIVE The objective of this study is to determine the antitumoral action of the combination MEN and MEL on colon cancer cells. METHODS Caco-2 cells were employed to evaluate the effects of both compounds, used alone or combined, on cellular growth/morphology, oxidative and nitrosative stress, and cell migration. RESULTS MEN plus MEL dramatically reduced cell proliferation in a time and dose-dependent manner. The antiproliferative effects began at 48 h. At the same time, the combination modified the content of superoxide anion, induced the formation of reactive nitrogen species and enhanced catalase activity. Cell migration process was delayed. Also, changes in nuclear morphology consistent with cell death were observed. CONCLUSION The enhanced effect of simultaneous use of MEN and MEL on Caco-2 cells suggests that this combined action may have therapeutic potential as an adjuvant on intestinal cancer acting in different oncogenic pathways.
Collapse
Affiliation(s)
- Alejandro Collin
- Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba (UNC); Instituto de Investigaciones en Ciencias de la Salud (INICSA), CONICET-UNC. Córdoba. Argentina
| | - Romina Kohan
- Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba (UNC); Instituto de Investigaciones en Ciencias de la Salud (INICSA), CONICET-UNC. Córdoba. Argentina
| | - Nori Tolosa de Talamoni
- Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba (UNC); Instituto de Investigaciones en Ciencias de la Salud (INICSA), CONICET-UNC. Córdoba. Argentina
| | - Gabriela Picotto
- Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba (UNC); Instituto de Investigaciones en Ciencias de la Salud (INICSA), CONICET-UNC. Córdoba. Argentina
| |
Collapse
|
245
|
Ibrahim AM, Hamid MA, Althiab RA, Shariff AHM, Zulkifli RM. In vitro fibroblasts viability and migration stimulation of Acalypha indica: an insight on wound healing activity. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00333-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The current study investigates the antioxidant activity of Acalypha indica aerial parts and root ethanolic extracts and explore whether these extracts will stimulate fibroblasts viability and ability to migrate.
Results
Aerial parts extract exhibited higher DPPH scavenging activity compared to root extract with IC50 of 62 µg/mL and 206 µg/mL, respectively. Both aerial parts and root extracts showed low cytotoxicity towards fibroblasts with 753 µg/mL LD50 for aerial parts and undetected LD50 for root extract. Additionally, aerial parts extract significantly induces fibroblasts proliferation up to 134%. Wound closure investigation showed a significant closure percentage for aerial parts compared to untreated control with 75% at 1 µg/mL and high closure percentage with 70% at 0.1 µg/mL for root extract compared to only 59% closure percentage for untreated control after 48 h of the study.
Conclusions
This study provided evidence for A. indica to have great wound healing potential. The finding builds the scientific background in future to utilise the high antioxidant activity of A. indica and its ability to stimulate fibroblasts migration and proliferation for further applications.
Collapse
|
246
|
Mathur T, Tronolone JJ, Jain A. Comparative Analysis of Blood-Derived Endothelial Cells for Designing Next-Generation Personalized Organ-on-Chips. J Am Heart Assoc 2021; 10:e022795. [PMID: 34743553 PMCID: PMC8751908 DOI: 10.1161/jaha.121.022795] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background Organ‐on‐chip technology has accelerated in vitro preclinical research of the vascular system, and a key strength of this platform is its promise to impact personalized medicine by providing a primary human cell–culture environment where endothelial cells are directly biopsied from individual tissue or differentiated through stem cell biotechniques. However, these methods are difficult to adopt in laboratories, and often result in impurity and heterogeneity of cells. This limits the power of organ‐chips in making accurate physiological predictions. In this study, we report the use of blood‐derived endothelial cells as alternatives to primary and induced pluripotent stem cell–derived endothelial cells. Methods and Results Here, the genotype, phenotype, and organ‐chip functional characteristics of blood‐derived outgrowth endothelial cells were compared against commercially available and most used primary endothelial cells and induced pluripotent stem cell–derived endothelial cells. The methods include RNA‐sequencing, as well as criterion standard assays of cell marker expression, growth kinetics, migration potential, and vasculogenesis. Finally, thromboinflammatory responses under shear using vessel‐chips engineered with blood‐derived endothelial cells were assessed. Blood‐derived endothelial cells exhibit the criterion standard hallmarks of typical endothelial cells. There are differences in gene expression profiles between different sources of endothelial cells, but blood‐derived cells are relatively closer to primary cells than induced pluripotent stem cell–derived. Furthermore, blood‐derived endothelial cells are much easier to obtain from individuals and yet, they serve as an equally effective cell source for functional studies and organ‐chips compared with primary cells or induced pluripotent stem cell–derived cells. Conclusions Blood‐derived endothelial cells may be used in preclinical research for developing more robust and personalized next‐generation disease models using organ‐on‐chips.
Collapse
Affiliation(s)
- Tanmay Mathur
- Department of Biomedical Engineering, College of Engineering Texas A&M University College Station TX
| | - James J Tronolone
- Department of Biomedical Engineering, College of Engineering Texas A&M University College Station TX
| | - Abhishek Jain
- Department of Biomedical Engineering, College of Engineering Texas A&M University College Station TX.,Department of Medical Physiology College of MedicineTexas A&M Health Science Center Bryan TX.,Department of Cardiovascular Sciences Houston Methodist Research Institute Houston TX
| |
Collapse
|
247
|
Maru V, Madkaikar M, Shabrish S, Kambli P, Dalvi A, Setia P. Evaluation and comparison of cytotoxicity and bioactivity of chemomechanical caries removal agents on stem cells from human exfoliated deciduous teeth. Eur Arch Paediatr Dent 2021; 23:787-796. [PMID: 34766278 DOI: 10.1007/s40368-021-00684-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 10/29/2021] [Indexed: 11/24/2022]
Abstract
AIM To investigate and compare the cytotoxicity and bioactivity of CMCR agents on stem cells derived from exfoliated deciduous teeth. METHODOLOGY MTT assay, flow cytometry, Alizarin Red staining and scratch assay were used to assess the cellular viability, apoptosis, calcium matrix deposits and cell migration, respectively. The gene expression of ALP and BMP-2 was measured with RT-PCR. One-way ANOVA and Bonferroni post-test was used for statistical analysis. RESULTS 0.5% Carisolv showed highest cell proliferation and calcium matrix formation, whereas 0.5% Papacarie reported the highest% live cells and cell migration. The highest mRNA expression of ALP and BMP-2 was reported in SHEDs cultured in 0.5% Papacarie (after 72 h incubation) and 0.5% Carisolv (after 24 h incubation), respectively. CONCLUSION CMCR agents are biocompatible and bioactive when cultured in stem cells derived from exfoliated primary teeth.
Collapse
Affiliation(s)
- V Maru
- Department of Pediatric Dentistry, Government Dental College and Hospital, Mumbai, Maharashtra, India.
| | - M Madkaikar
- ICMR -National Institute of Immunohematology, Parel, Mumbai, India
| | - S Shabrish
- ICMR -National Institute of Immunohematology, Parel, Mumbai, India
| | - P Kambli
- ICMR -National Institute of Immunohematology, Parel, Mumbai, India
| | - A Dalvi
- ICMR -National Institute of Immunohematology, Parel, Mumbai, India
| | - P Setia
- ICMR -National Institute of Immunohematology, Parel, Mumbai, India
| |
Collapse
|
248
|
Pietras P, Leśniczak-Staszak M, Kasprzak A, Andrzejewska M, Jopek K, Sowiński M, Rucinski M, Lyons SM, Ivanov P, Szaflarski W. MVP Expression Facilitates Tumor Cell Proliferation and Migration Supporting the Metastasis of Colorectal Cancer Cells. Int J Mol Sci 2021; 22:ijms222212121. [PMID: 34829999 PMCID: PMC8623820 DOI: 10.3390/ijms222212121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 01/22/2023] Open
Abstract
Cancer cells show significant dysregulation of genes expression, which may favor their survival in the tumor environment. In this study, the cellular vault's components MVP (major vault protein), TEP1 (telomerase-associated protein 1) and vPARP (vault poly(ADP-ribose) polymerase) were transiently or completely inhibited in U2OS cells (human bone osteosarcoma epithelial cells) to evaluate their impact on the cell proliferative and migratory capacity as well as on the development of their resistance to the drug vinorelbine. Comparative analysis of MVP protein expression level in normal colon tissue, primary colorectal tumor, and metastasis showed that the expression of this protein does not increase significantly in the primary tumor, but its expression increases in metastatic cells. Further comparative molecular analysis using the whole transcriptome microarrays for MVP-positive and MVP-negative cells showed that MVP is involved in regulating proliferation and migration of cancer cells. MVP may facilitate metastasis of colon cancer due to its impact on cell migration. Moreover, two vault proteins, MVP and TEP1, contribute the resistance to vinorelbine, while vPARP does not.
Collapse
Affiliation(s)
- Paulina Pietras
- Department of Histology and Embryology, Poznan University of Medical Sciences, 61-701 Poznań, Poland; (P.P.); (M.L.-S.); (A.K.); (M.A.); (K.J.); (M.S.); (M.R.)
| | - Marta Leśniczak-Staszak
- Department of Histology and Embryology, Poznan University of Medical Sciences, 61-701 Poznań, Poland; (P.P.); (M.L.-S.); (A.K.); (M.A.); (K.J.); (M.S.); (M.R.)
| | - Aldona Kasprzak
- Department of Histology and Embryology, Poznan University of Medical Sciences, 61-701 Poznań, Poland; (P.P.); (M.L.-S.); (A.K.); (M.A.); (K.J.); (M.S.); (M.R.)
| | - Małgorzata Andrzejewska
- Department of Histology and Embryology, Poznan University of Medical Sciences, 61-701 Poznań, Poland; (P.P.); (M.L.-S.); (A.K.); (M.A.); (K.J.); (M.S.); (M.R.)
| | - Karol Jopek
- Department of Histology and Embryology, Poznan University of Medical Sciences, 61-701 Poznań, Poland; (P.P.); (M.L.-S.); (A.K.); (M.A.); (K.J.); (M.S.); (M.R.)
| | - Mateusz Sowiński
- Department of Histology and Embryology, Poznan University of Medical Sciences, 61-701 Poznań, Poland; (P.P.); (M.L.-S.); (A.K.); (M.A.); (K.J.); (M.S.); (M.R.)
| | - Marcin Rucinski
- Department of Histology and Embryology, Poznan University of Medical Sciences, 61-701 Poznań, Poland; (P.P.); (M.L.-S.); (A.K.); (M.A.); (K.J.); (M.S.); (M.R.)
| | - Shawn M. Lyons
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA;
- The Genome Science Institute, Boston University School of Medicine, Boston, MA 02118, USA
| | - Pavel Ivanov
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
- The Broad Institute of Harvard and M.I.T., Cambridge, MA 02142, USA
- Correspondence: (P.I.); (W.S.)
| | - Witold Szaflarski
- Department of Histology and Embryology, Poznan University of Medical Sciences, 61-701 Poznań, Poland; (P.P.); (M.L.-S.); (A.K.); (M.A.); (K.J.); (M.S.); (M.R.)
- Correspondence: (P.I.); (W.S.)
| |
Collapse
|
249
|
Mikami R, Arisaka Y, Hakariya M, Iwata T, Yui N. Improved epithelial cell-cell adhesion using molecular mobility of supramolecular surfaces. Biomater Sci 2021; 9:7151-7158. [PMID: 34605503 DOI: 10.1039/d1bm01356d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cells can sense the surrounding microenvironmental properties including contact with biomaterials. Although in vitro cell fates in response to the physical properties of cell-adhesive materials have been widely reported, their influence on cell-cell adhesion is unclear. Here, we investigated the role of molecular mobility on polyrotaxane surfaces in epithelial cell-cell adhesion. Polyrotaxane surfaces with high mobility induced cytoplasmic yes-associated protein (YAP) localization in epithelial cells, whereas those with low mobility induced nuclear YAP localization, suggesting that YAP localization is switched by the mobility of the polyrotaxane surface. The cytoplasmic YAP localization increased the expression of tight junction-associated genes. A scratch assay revealed that although the epithelial cells on the low mobile surface rapidly initiated their migration, the cells on the highly mobile surface delayed their migration. Thus, this finding suggests that polyrotaxane surfaces with higher mobility induce cytoplasmic YAP localization, leading to stronger cell-cell adhesion. The polyrotaxane biointerface is promising as a powerful tool to improve the physical immune system and repair biological tissues.
Collapse
Affiliation(s)
- Ryo Mikami
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo, Tokyo 113-8549, Japan
| | - Yoshinori Arisaka
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan.
| | - Masahiro Hakariya
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo, Tokyo 113-8549, Japan
| | - Takanori Iwata
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo, Tokyo 113-8549, Japan
| | - Nobuhiko Yui
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan.
| |
Collapse
|
250
|
Denizci Öncü M, Balcıoğlu BK, Özgür B, Öztürk HÜ, Serhatlı M, Işık Ş, Erdağ B, Dinler Doğanay G, Özdemir Bahadır A. Structure-based engineering of an antiangiogenic scFv antibody for soluble production in E. coli without loss of activity. Biotechnol Appl Biochem 2021; 69:2122-2137. [PMID: 34694021 DOI: 10.1002/bab.2273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/18/2021] [Indexed: 11/09/2022]
Abstract
Development of monoclonal antibody therapeutics against vascular endothelial growth factor receptor 2 (VEGFR-2) protein, which is the main regulator in angiogenesis, has been a major challenge for years. In the current study, we engineer an inclusion body forming single-chain variable fragment (scFv) against VEGFR-2 by using complementarity determining regions (CDR) grafting technique to improve its solubility and investigate the activity of the engineered molecule. CDR sequences of the target scFv were grafted into the framework of another intrinsically soluble scFv molecule. Based on the computational results, CDR grafting has increased the solubility of the grafted scFv molecule. Results confirmed that the grafting approach increased in vivo folding properties of the target scFv molecule compared with the original scFv molecule. Similar binding affinities to the VEGFR-2 were observed for the original and the grafted scFv by surface plasmon resonance assays. Biological activity assays, including human umbilical vein endothelial cells proliferation and wound healing assays, showed that grafted scFv molecule has an antiangiogenic property. This study suggests that an antiangiogenic scFv fully expressed as an inclusion body can be rescued by grafting its CDR regions to a scFv expressed in a soluble form without any loss in its binding property and its activity.
Collapse
Affiliation(s)
- Melis Denizci Öncü
- Genetic Engineering and Biotechnology Institute, Marmara Research Center, The Scientific and Technological Research Council of Turkey, Kocaeli, Turkey.,Molecular Biology and Genetics Department, İstanbul Technical University, Istanbul, Turkey
| | - Bertan Koray Balcıoğlu
- Genetic Engineering and Biotechnology Institute, Marmara Research Center, The Scientific and Technological Research Council of Turkey, Kocaeli, Turkey
| | - Beytullah Özgür
- Genetic Engineering and Biotechnology Institute, Marmara Research Center, The Scientific and Technological Research Council of Turkey, Kocaeli, Turkey
| | - Hasan Ümit Öztürk
- Genetic Engineering and Biotechnology Institute, Marmara Research Center, The Scientific and Technological Research Council of Turkey, Kocaeli, Turkey
| | - Müge Serhatlı
- Genetic Engineering and Biotechnology Institute, Marmara Research Center, The Scientific and Technological Research Council of Turkey, Kocaeli, Turkey
| | - Şeyma Işık
- Medical Biotechnology Department, Acıbadem University, Istanbul, Turkey
| | - Berrin Erdağ
- Health Sciences Department, İstanbul Aydın University, Istanbul, Turkey
| | - Gizem Dinler Doğanay
- Molecular Biology and Genetics Department, İstanbul Technical University, Istanbul, Turkey
| | - Aylin Özdemir Bahadır
- Genetic Engineering and Biotechnology Institute, Marmara Research Center, The Scientific and Technological Research Council of Turkey, Kocaeli, Turkey
| |
Collapse
|