201
|
Xie W, Guo Z, Gao F, Gao Q, Wang D, Liaw BS, Cai Q, Sun X, Wang X, Zhao L. Shape-, size- and structure-controlled synthesis and biocompatibility of iron oxide nanoparticles for magnetic theranostics. Theranostics 2018; 8:3284-3307. [PMID: 29930730 PMCID: PMC6010979 DOI: 10.7150/thno.25220] [Citation(s) in RCA: 191] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 03/29/2018] [Indexed: 12/23/2022] Open
Abstract
In the past decade, iron oxide nanoparticles (IONPs) have attracted more and more attention for their excellent physicochemical properties and promising biomedical applications. In this review, we summarize and highlight recent progress in the design, synthesis, biocompatibility evaluation and magnetic theranostic applications of IONPs, with a special focus on cancer treatment. Firstly, we provide an overview of the controlling synthesis strategies for fabricating zero-, one- and three-dimensional IONPs with different shapes, sizes and structures. Then, the in vitro and in vivo biocompatibility evaluation and biotranslocation of IONPs are discussed in relation to their chemo-physical properties including particle size, surface properties, shape and structure. Finally, we also highlight significant achievements in magnetic theranostic applications including magnetic resonance imaging (MRI), magnetic hyperthermia and targeted drug delivery. This review provides a background on the controlled synthesis, biocompatibility evaluation and applications of IONPs as cancer theranostic agents and an overview of the most up-to-date developments in this area.
Collapse
Affiliation(s)
- Wensheng Xie
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science & Engineering, Tsinghua University, Beijing, 100084, China
- Advanced Materials of Ministry of Education of China, School of Materials Science & Engineering, Tsinghua University, Beijing, 100084, China
| | - Zhenhu Guo
- School of Earth Sciences and Resources, China University of Geosciences, Beijing, 10083, China
| | - Fei Gao
- College of Chemistry and Materials Science, Northwest University, Xi'an, Shanxi 710069, China
| | - Qin Gao
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science & Engineering, Tsinghua University, Beijing, 100084, China
- Advanced Materials of Ministry of Education of China, School of Materials Science & Engineering, Tsinghua University, Beijing, 100084, China
| | - Dan Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science & Engineering, Tsinghua University, Beijing, 100084, China
- Advanced Materials of Ministry of Education of China, School of Materials Science & Engineering, Tsinghua University, Beijing, 100084, China
| | - Bor-shuang Liaw
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science & Engineering, Tsinghua University, Beijing, 100084, China
- Advanced Materials of Ministry of Education of China, School of Materials Science & Engineering, Tsinghua University, Beijing, 100084, China
| | - Qiang Cai
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science & Engineering, Tsinghua University, Beijing, 100084, China
- Advanced Materials of Ministry of Education of China, School of Materials Science & Engineering, Tsinghua University, Beijing, 100084, China
| | - Xiaodan Sun
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science & Engineering, Tsinghua University, Beijing, 100084, China
- Advanced Materials of Ministry of Education of China, School of Materials Science & Engineering, Tsinghua University, Beijing, 100084, China
| | - Xiumei Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science & Engineering, Tsinghua University, Beijing, 100084, China
- Advanced Materials of Ministry of Education of China, School of Materials Science & Engineering, Tsinghua University, Beijing, 100084, China
| | - Lingyun Zhao
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science & Engineering, Tsinghua University, Beijing, 100084, China
- Advanced Materials of Ministry of Education of China, School of Materials Science & Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
202
|
Perera AS, Zhang S, Homer-Vanniasinkam S, Coppens MO, Edirisinghe M. Polymer-Magnetic Composite Fibers for Remote-Controlled Drug Release. ACS APPLIED MATERIALS & INTERFACES 2018; 10:15524-15531. [PMID: 29648781 DOI: 10.1021/acsami.8b04774] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
An efficient method is reported, for the fabrication of composite microfibers that can be magnetically actuated and are biocompatible, targeting controlled drug release. Aqueous solutions of polyvinyl alcohol, incorporated with citric acid-coated Fe3O4 magnetic nanoparticles (MNPs), are subject to infusion gyration to generate 100-300 nm diameter composite fibers, with controllable MNP loading. The fibers are stable in polar solvents, such as ethanol, and do not show any leaching of MNPs for over 4 weeks. Using acetaminophen as an example, we demonstrate that this material is effective in immobilization and triggered release of drugs, which is achieved by a moving external magnetic field. The remote actuation ability, coupled with biocompatibility and lightweight property, renders enormous potential for these fibers to be used as a smart drug release agent.
Collapse
|
203
|
Spirou SV, Costa Lima SA, Bouziotis P, Vranješ-Djurić S, Efthimiadou EΚ, Laurenzana A, Barbosa AI, Garcia-Alonso I, Jones C, Jankovic D, Gobbo OL. Recommendations for In Vitro and In Vivo Testing of Magnetic Nanoparticle Hyperthermia Combined with Radiation Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E306. [PMID: 29734795 PMCID: PMC5977320 DOI: 10.3390/nano8050306] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/22/2018] [Accepted: 04/29/2018] [Indexed: 12/23/2022]
Abstract
Magnetic nanoparticle (MNP)-mediated hyperthermia (MH) coupled with radiation therapy (RT) is a novel approach that has the potential to overcome various practical difficulties encountered in cancer treatment. In this work, we present recommendations for the in vitro and in vivo testing and application of the two treatment techniques. These recommendations were developed by the members of Working Group 3 of COST Action TD 1402: Multifunctional Nanoparticles for Magnetic Hyperthermia and Indirect Radiation Therapy ("Radiomag"). The purpose of the recommendations is not to provide definitive answers and directions but, rather, to outline those tests and considerations that a researcher must address in order to perform in vitro and in vivo studies. The recommendations are divided into 5 parts: (a) in vitro evaluation of MNPs; (b) in vitro evaluation of MNP-cell interactions; (c) in vivo evaluation of the MNPs; (d) MH combined with RT; and (e) pharmacokinetic studies of MNPs. Synthesis and characterization of the MNPs, as well as RT protocols, are beyond the scope of this work.
Collapse
Affiliation(s)
- Spiridon V Spirou
- Department of Radiology, Sismanoglio General Hospital of Attica, Sismanogliou 1, Marousi 15126, Athens, Greece.
| | - Sofia A Costa Lima
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto 4050-313, Portugal.
| | - Penelope Bouziotis
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research "Demokritos", Aghia Paraskevi, Athens 15310, Greece.
| | - Sanja Vranješ-Djurić
- "Vinča" Institute of Nuclear Sciences, University of Belgrade, Belgrade 11351, Serbia.
| | - Eleni Κ Efthimiadou
- Inorganic Chemistry Laboratory, Chemistry Department, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou 15784, Greece.
- Institute of Nanoscience and Nanotechnology, NCSR Demokritos, Agia Paraskevi Attikis, Athens 15310, Greece.
| | - Anna Laurenzana
- Department of Biomedical and Clinical Science "Mario Serio", University of Florence, 50134 Firenze, Italy.
| | - Ana Isabel Barbosa
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto 4050-313, Portugal.
| | - Ignacio Garcia-Alonso
- Department of Surgery, Radiology & Ph.M. University of the Basque Country, Bilbao E48940, Spain.
| | - Carlton Jones
- NanoTherics Ltd., Studio 3, Unit 3, Silverdale Enterprise Centre Kents Lane, Newcastle under Lyme ST5 6SR, UK.
| | - Drina Jankovic
- "Vinča" Institute of Nuclear Sciences, University of Belgrade, Belgrade 11351, Serbia.
| | - Oliviero L Gobbo
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College Dublin, D02PN40 Dublin, Ireland.
| |
Collapse
|
204
|
Hameed S, Bhattarai P, Dai Z. Cerasomes and Bicelles: Hybrid Bilayered Nanostructures With Silica-Like Surface in Cancer Theranostics. Front Chem 2018; 6:127. [PMID: 29721494 PMCID: PMC5915561 DOI: 10.3389/fchem.2018.00127] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/03/2018] [Indexed: 01/10/2023] Open
Abstract
Over years, theranostic nanoplatforms have provided a new avenue for the diagnosis and treatment of various cancer types. To this end, a myriad of nanocarriers such as polymeric micelles, liposomes, and inorganic nanoparticles (NPs) with distinct physiochemical and biological properties are routinely investigated for preclinical and clinical studies. So far, liposomes have received great attention for various biomedical applications, however, it still suffers from insufficient morphological stability. On the other hand, inorganic NPs depicting excellent therapeutic ability have failed to address biocompatibility issues. This has raised a serious concern about the clinical approval of multifunctional organic or inorganic-based theranostic agents. Recently, partially silica coated nanohybrids such as cerasomes and bicelles demonstrating both diagnostic and therapeutic ability in a single system, have drawn profound attention as a fascinating novel drug delivery system. Compared with traditional liposomal or inorganic-based nanoformulations, this new and highly stable nanocarriers integrates the functional attributes of biomimetic liposomes and silica NPs, therefore, synergize strengths and functions, or even surpass weaknesses of individual components. This review at its best enlightens the emerging concept of such partially silica coated nanohybrids, fabrication strategies, and theranostic opportunities to combat cancer and related diseases.
Collapse
Affiliation(s)
- Sadaf Hameed
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Pravin Bhattarai
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Zhifei Dai
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| |
Collapse
|
205
|
Zhang W, Liu L, Chen H, Hu K, Delahunty I, Gao S, Xie J. Surface impact on nanoparticle-based magnetic resonance imaging contrast agents. Theranostics 2018; 8:2521-2548. [PMID: 29721097 PMCID: PMC5928907 DOI: 10.7150/thno.23789] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 02/09/2018] [Indexed: 12/23/2022] Open
Abstract
Magnetic resonance imaging (MRI) is one of the most widely used diagnostic tools in the clinic. To improve imaging quality, MRI contrast agents, which can modulate local T1 and T2 relaxation times, are often injected prior to or during MRI scans. However, clinically used contrast agents, including Gd3+-based chelates and iron oxide nanoparticles (IONPs), afford mediocre contrast abilities. To address this issue, there has been extensive research on developing alternative MRI contrast agents with superior r1 and r2 relaxivities. These efforts are facilitated by the fast progress in nanotechnology, which allows for preparation of magnetic nanoparticles (NPs) with varied size, shape, crystallinity, and composition. Studies suggest that surface coatings can also largely affect T1 and T2 relaxations and can be tailored in favor of a high r1 or r2. However, the surface impact of NPs has been less emphasized. Herein, we review recent progress on developing NP-based T1 and T2 contrast agents, with a focus on the surface impact.
Collapse
Affiliation(s)
- Weizhong Zhang
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - Lin Liu
- Department of Nuclear Medicine, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, ErDao District, Changchun 13033, China
| | - Hongmin Chen
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Kai Hu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Ian Delahunty
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - Shi Gao
- Department of Nuclear Medicine, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, ErDao District, Changchun 13033, China
| | - Jin Xie
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
- Bio-Imaging Research Center, University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
206
|
Lu L, Wang Y, Zhang F, Chen M, Lin B, Duan X, Cao M, Zheng C, Mao J, Shuai X, Shen J. MRI‐Visible siRNA Nanomedicine Directing Neuronal Differentiation of Neural Stem Cells in Stroke. ADVANCED FUNCTIONAL MATERIALS 2018; 28. [DOI: 10.1002/adfm.201706769] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
AbstractA major challenge in stroke treatment is the restoration of neural circuit in which neuron function plays a central role. Although transplantation of exogenous neural stem cells (NSCs) is admittedly a promising therapeutical means, the treatment outcome is greatly affected due to the poor NSCs differentiation into neurons caused by myelin associated inhibitory factors binding to Nogo‐66 receptor (NgR). Herein, a nanoscale polymersome is developed to codeliver superparamagnetic iron oxide nanoparticles and siRNA targeting NgR gene (siNgR) into NSCs. This multifunctional nanomedicine directs neuronal differentiation of NSCs through silencing the NgR gene and meanwhile allows a noninvasive monitoring of NSC migration with magnetic resonance imaging. An improved recovery of neural function is achieved in rat ischemic stroke model. The results demonstrate the great potential of the multifunctional siRNA nanomedicine in stroke treatment based on stem cell transplantation.
Collapse
Affiliation(s)
- Liejing Lu
- Department of Radiology Sun Yat‐Sen Memorial Hospital Sun Yat‐Sen University Guangzhou 510120 Guangdong China
| | - Yong Wang
- PCFM Lab of Ministry of Education School of Materials Science and Engineering Sun Yat‐Sen University Guangzhou 510275 China
| | - Fang Zhang
- Department of Radiology Sun Yat‐Sen Memorial Hospital Sun Yat‐Sen University Guangzhou 510120 Guangdong China
| | - Meiwei Chen
- Department of Radiology Sun Yat‐Sen Memorial Hospital Sun Yat‐Sen University Guangzhou 510120 Guangdong China
| | - Bingling Lin
- Department of Radiology Sun Yat‐Sen Memorial Hospital Sun Yat‐Sen University Guangzhou 510120 Guangdong China
| | - Xiaohui Duan
- Department of Radiology Sun Yat‐Sen Memorial Hospital Sun Yat‐Sen University Guangzhou 510120 Guangdong China
| | - Minghui Cao
- Department of Radiology Sun Yat‐Sen Memorial Hospital Sun Yat‐Sen University Guangzhou 510120 Guangdong China
| | - Chushan Zheng
- Department of Radiology Sun Yat‐Sen Memorial Hospital Sun Yat‐Sen University Guangzhou 510120 Guangdong China
| | - Jiaji Mao
- Department of Radiology Sun Yat‐Sen Memorial Hospital Sun Yat‐Sen University Guangzhou 510120 Guangdong China
| | - Xintao Shuai
- BME Center Zhongshan School of Medicine Sun Yat‐Sen University Guangzhou 510080 China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation Sun Yat‐Sen Memorial Hospital Sun Yat‐Sen University Guangzhou 510120 Guangdong China
| | - Jun Shen
- Department of Radiology Sun Yat‐Sen Memorial Hospital Sun Yat‐Sen University Guangzhou 510120 Guangdong China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation Sun Yat‐Sen Memorial Hospital Sun Yat‐Sen University Guangzhou 510120 Guangdong China
- Guangdong Province Key Laboratory of Brain Function and Disease Zhongshan School of Medicine Sun Yat‐Sen University 74 Zhongshan 2nd Road, Guangzhou 510080 Guangdong China
| |
Collapse
|
207
|
Sharma A, Cornejo C, Mihalic J, Geyh A, Bordelon DE, Korangath P, Westphal F, Gruettner C, Ivkov R. Physical characterization and in vivo organ distribution of coated iron oxide nanoparticles. Sci Rep 2018; 8:4916. [PMID: 29559734 PMCID: PMC5861066 DOI: 10.1038/s41598-018-23317-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 03/09/2018] [Indexed: 01/29/2023] Open
Abstract
Citrate-stabilized iron oxide magnetic nanoparticles (MNPs) were coated with one of carboxymethyl dextran (CM-dextran), polyethylene glycol-polyethylene imine (PEG-PEI), methoxy-PEG-phosphate+rutin, or dextran. They were characterized for size, zeta potential, hysteresis heating in an alternating magnetic field, dynamic magnetic susceptibility, and examined for their distribution in mouse organs following intravenous delivery. Except for PEG-PEI-coated nanoparticles, all coated nanoparticles had a negative zeta potential at physiological pH. Nanoparticle sizing by dynamic light scattering revealed an increased nanoparticle hydrodynamic diameter upon coating. Magnetic hysteresis heating changed little with coating; however, the larger particles demonstrated significant shifts of the peak of complex magnetic susceptibility to lower frequency. 48 hours following intravenous injection of nanoparticles, mice were sacrificed and tissues were collected to measure iron concentration. Iron deposition from nanoparticles possessing a negative surface potential was observed to have highest accumulation in livers and spleens. In contrast, iron deposition from positively charged PEG-PEI-coated nanoparticles was observed to have highest concentration in lungs. These preliminary results suggest a complex interplay between nanoparticle size and charge determines organ distribution of systemically-delivered iron oxide magnetic nanoparticles.
Collapse
Affiliation(s)
- Anirudh Sharma
- Johns Hopkins University School of Medicine, Department of Radiation Oncology and Molecular Radiation Sciences, 1550 Orleans Street, CRB II, Baltimore, MD, 21231, USA
| | - Christine Cornejo
- Johns Hopkins University School of Medicine, Department of Radiation Oncology and Molecular Radiation Sciences, 1550 Orleans Street, CRB II, Baltimore, MD, 21231, USA
| | - Jana Mihalic
- Johns Hopkins Bloomberg School of Public Health, Department of Environmental Health Sciences, Baltimore, MD, 21205, USA
| | - Alison Geyh
- Johns Hopkins Bloomberg School of Public Health, Department of Environmental Health Sciences, Baltimore, MD, 21205, USA
| | - David E Bordelon
- Johns Hopkins University School of Medicine, Department of Radiation Oncology and Molecular Radiation Sciences, 1550 Orleans Street, CRB II, Baltimore, MD, 21231, USA
| | - Preethi Korangath
- Johns Hopkins University School of Medicine, Department of Radiation Oncology and Molecular Radiation Sciences, 1550 Orleans Street, CRB II, Baltimore, MD, 21231, USA
| | - Fritz Westphal
- Micromod Partikeltechnologie GmbH, Friedrich-Barnewitz-St 4, D-18119, Rostock, Germany
| | - Cordula Gruettner
- Micromod Partikeltechnologie GmbH, Friedrich-Barnewitz-St 4, D-18119, Rostock, Germany
| | - Robert Ivkov
- Johns Hopkins University School of Medicine, Department of Radiation Oncology and Molecular Radiation Sciences, 1550 Orleans Street, CRB II, Baltimore, MD, 21231, USA.
- Department of Mechanical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, 21218 USA, USA.
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Centre, School of Medicine, Johns Hopkins University, Baltimore, MD, 21231, USA.
- Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, 21218, USA.
- Institute for NanoBioTechnology, Whiting School of Engineering, Johns Hopkins University, Baltimore, 21218, USA.
| |
Collapse
|
208
|
Cyclodextrin-Based Magnetic Nanoparticles for Cancer Therapy. NANOMATERIALS 2018; 8:nano8030170. [PMID: 29547559 PMCID: PMC5869661 DOI: 10.3390/nano8030170] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/07/2018] [Accepted: 03/10/2018] [Indexed: 12/20/2022]
Abstract
Polydopamine (PDA)-coated magnetic nanoparticles functionalized with mono-6-thio-β-cyclodextrin (SH-βCD) were obtained and characterized by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), Nuclear and Magnetic Resonance Imaging (NMR and MRI), and doxorubicin (DOXO)-loading experiments. The liver cancer cellular internalization of DOXO-loaded nanoparticles was investigated by confocal imaging microscopy. Synthesized nanomaterials bearing a chemotherapeutic drug and a layer of polydopamine capable of absorbing near-infrared light show high performance in the combined chemo- and photothermal therapy (CT-PTT) of liver cancer due to the synergistic effect of both modalities as demonstrated in vitro. Moreover, our material exhibits improved T2 contrast properties, which have been verified using Carr-Purcell-Meiboom-Gill pulse sequence and MRI Spin-Echo imaging of the nanoparticles dispersed in the agarose gel phantoms. Therefore, the presented results cast new light on the preparation of polydopamine-based magnetic theranostic nanomaterials, as well as on the proper methodology for investigation of magnetic nanoparticles in high field MRI experiments. The prepared material is a robust theranostic nanoasystem with great potential in nanomedicine.
Collapse
|
209
|
Zheng XC, Ren W, Zhang S, Zhong T, Duan XC, Yin YF, Xu MQ, Hao YL, Li ZT, Li H, Liu M, Li ZY, Zhang X. The theranostic efficiency of tumor-specific, pH-responsive, peptide-modified, liposome-containing paclitaxel and superparamagnetic iron oxide nanoparticles. Int J Nanomedicine 2018; 13:1495-1504. [PMID: 29559778 PMCID: PMC5856286 DOI: 10.2147/ijn.s157082] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Background In the present study, the tumor-specific, pH-responsive peptide H7K(R2)2-modified, theranostic liposome-containing paclitaxel (PTX) and superparamagnetic iron oxide nanoparticles (SPIO NPs), PTX/SPIO-SSL-H7K(R2)2, was prepared by using H7K(R2)2 as the targeting ligand, SPIO NPs as the magnetic resonance imaging (MRI) agent, PTX as antitumor drug. Methods The PTX/SPIO-SSL-H7K(R2)2 was prepared by a thin film hydration method. The characteristics of PTX/SPIO-SSL-H7K(R2)2 were evaluated. The targeting effect, MRI, and antitumor activity of PTX/SPIO-SSL-H7K(R2)2 were investigated detail in vitro and in vivo in human breast carcinoma MDA-MB-231 cell models. Results Our results of in vitro flow cytometry, in vivo imaging, and in vivo MR imaging confirmed the pH-responsive characteristic of H7K(R2)2 in MDA-MB-231 cell line in vitro and in vivo. The results of in vivo MRI and in vivo antitumor activity confirmed the theranostic effect of PTX/SPIO-SSL-H7K(R2)2 in MDA-MB-231 tumor-bearing model. Conclusion Considering all our in vitro and in vivo results, we conclude that we developed targeting modified theranostic liposome which could achieve both role of antitumor and MRI.
Collapse
Affiliation(s)
- Xiu-Chai Zheng
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China.,Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| | - Wei Ren
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China.,Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| | - Shuang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China.,Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| | - Ting Zhong
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China.,Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| | - Xiao-Chuan Duan
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China.,Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| | - Yi-Fan Yin
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China.,Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| | - Mei-Qi Xu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China.,Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| | - Yan-Li Hao
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China.,Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| | - Zhan-Tao Li
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China.,Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| | - Hui Li
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China.,Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| | - Man Liu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China.,Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| | - Zhuo-Yue Li
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China.,Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| | - Xuan Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China.,Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| |
Collapse
|
210
|
Mrówczyński R. Polydopamine-Based Multifunctional (Nano)materials for Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2018; 10:7541-7561. [PMID: 28786657 DOI: 10.1021/acsami.7b08392] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Since Lee published a pioneering paper about polydopamine (PDA), application of that polymer in a number of areas has grown enormously in the last 10 years and is still growing. PDA's spectacular success can be attributed to its unique features, i.e., simple preparation protocol, strong adhesive properties, easy and straightforward functionalization, and biocompatibility. Therefore, this polymer has attracted the attention of a vast group of scientists, including those working in the field of nanomedicine. In consequence, polydopamine has been merged with various nanostructures that differ in size and nature, which has resulted in novel types of multifunctional nanomaterials that have recently been extensively exploited in nanomedicine and particularly in cancer therapy. The aim of this article is to offer insight into the latest achievements (up until the end of 2016) in the field of synthesis and application of nanomaterials based on polydopamine and their application in cancer therapy. The conclusions regarding the application of polydopamine-based nanoplatforms in this area and future prospects are given at the end.
Collapse
Affiliation(s)
- Radosław Mrówczyński
- NanoBioMedical Centre , Adam Mickiewicz University in Poznan , Umultowska 85 , 61-614 Poznan , Poland
| |
Collapse
|
211
|
Martinkova P, Brtnicky M, Kynicky J, Pohanka M. Iron Oxide Nanoparticles: Innovative Tool in Cancer Diagnosis and Therapy. Adv Healthc Mater 2018; 7. [PMID: 29205944 DOI: 10.1002/adhm.201700932] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/16/2017] [Indexed: 12/18/2022]
Abstract
Although cancer is one of the most dangerous and the second most lethal disease in the world, current therapy including surgery, chemotherapy, radiotherapy, etc., is highly insufficient not in the view of therapy success rate or the amount of side effects. Accordingly, procedures with better outcomes are highly desirable. Iron oxide nanoparticles (IONPs) present an innovative tool-ideal for innovation and implementation into practice. This review is focused on summarizing some well-known facts about pharmacokinetics, toxicity, and the types of IONPs, and furthermore, provides a survey of their use in cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Pavla Martinkova
- Faculty of Military Health Science; University of Defense; Trebesska 1575 50011 Hradec Kralove Czech Republic
- Central European Institute of Technology; Brno University of Technology; Purkynova 656/123 612 00 Brno Czech Republic
| | - Martin Brtnicky
- Central European Institute of Technology; Brno University of Technology; Purkynova 656/123 612 00 Brno Czech Republic
- Department of Geology and Pedology; Mendel University; Zemedelska 1 613 00 Brno Czech Republic
| | - Jindrich Kynicky
- Central European Institute of Technology; Brno University of Technology; Purkynova 656/123 612 00 Brno Czech Republic
- Department of Geology and Pedology; Mendel University; Zemedelska 1 613 00 Brno Czech Republic
| | - Miroslav Pohanka
- Faculty of Military Health Science; University of Defense; Trebesska 1575 50011 Hradec Kralove Czech Republic
- Department of Geology and Pedology; Mendel University; Zemedelska 1 613 00 Brno Czech Republic
| |
Collapse
|
212
|
Cardoso VF, Francesko A, Ribeiro C, Bañobre-López M, Martins P, Lanceros-Mendez S. Advances in Magnetic Nanoparticles for Biomedical Applications. Adv Healthc Mater 2018; 7. [PMID: 29280314 DOI: 10.1002/adhm.201700845] [Citation(s) in RCA: 298] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/28/2017] [Indexed: 12/17/2022]
Abstract
Magnetic nanoparticles (NPs) are emerging as an important class of biomedical functional nanomaterials in areas such as hyperthermia, drug release, tissue engineering, theranostic, and lab-on-a-chip, due to their exclusive chemical and physical properties. Although some works can be found reviewing the main application of magnetic NPs in the area of biomedical engineering, recent and intense progress on magnetic nanoparticle research, from synthesis to surface functionalization strategies, demands for a work that includes, summarizes, and debates current directions and ongoing advancements in this research field. Thus, the present work addresses the structure, synthesis, properties, and the incorporation of magnetic NPs in nanocomposites, highlighting the most relevant effects of the synthesis on the magnetic and structural properties of the magnetic NPs and how these effects limit their utilization in the biomedical area. Furthermore, this review next focuses on the application of magnetic NPs on the biomedical field. Finally, a discussion of the main challenges and an outlook of the future developments in the use of magnetic NPs for advanced biomedical applications are critically provided.
Collapse
Affiliation(s)
- Vanessa Fernandes Cardoso
- Centro de Física; Universidade do Minho; 4710-057 Braga Portugal
- MEMS-Microelectromechanical Systems Research Unit; Universidade do Minho; 4800-058 Guimarães Portugal
| | | | - Clarisse Ribeiro
- Centro de Física; Universidade do Minho; 4710-057 Braga Portugal
- CEB-Centre of Biological Engineering; University of Minho; Campus de Gualtar 4710-057 Braga Portugal
| | | | - Pedro Martins
- Centro de Física; Universidade do Minho; 4710-057 Braga Portugal
| | - Senentxu Lanceros-Mendez
- BCMaterials; Parque Científico y Tecnológico de Bizkaia; 48160 Derio Spain
- IKERBASQUE; Basque Foundation for Science; 48013 Bilbao Spain
| |
Collapse
|
213
|
Miki H, Nakamura S, Oda A, Tenshin H, Teramachi J, Hiasa M, Bat-Erdene A, Maeda Y, Oura M, Takahashi M, Iwasa M, Harada T, Fujii S, Kurahashi K, Yoshida S, Kagawa K, Endo I, Aihara K, Ikuo M, Itoh K, Hayashi K, Nakamura M, Abe M. Effective impairment of myeloma cells and their progenitors by hyperthermia. Oncotarget 2018. [PMID: 29535808 PMCID: PMC5828190 DOI: 10.18632/oncotarget.23121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Multiple myeloma (MM) remains incurable, and MM-initiating cells or MM progenitors are considered to contribute to disease relapse through their drug-resistant nature. In order to improve the therapeutic efficacy for MM, we recently developed novel superparamagnetic nanoparticles which selectively accumulate in MM tumors and extirpate them by heat generated with magnetic resonance. We here aimed to clarify the therapeutic effects on MM cells and their progenitors by hyperthermia. Heat treatment at 43°C time-dependently induced MM cell death. The treatment upregulated endoplasmic reticulum (ER) stress mediators, ATF4 and CHOP, while reducing the protein levels of Pim-2, IRF4, c-Myc and Mcl-1. Combination with the proteasome inhibitor bortezomib further enhanced ER stress to potentiate MM cell death. The Pim inhibitor SMI-16a also enhanced the reduction of the Pim-2-driven survival factors, IRF4 and c-Myc, in combination with the heat treatment. The heat treatment almost completely eradicated "side population" fractions in RPMI8226 and KMS-11 cells and suppressed their clonogenic capacity as determined by in vitro colony formation and tumorigenic capacity in SCID mice. These results collectively demonstrated that hyperthermia is able to impair clonogenic drug-resistant fractions of MM cells and enhance their susceptibility to chemotherapeutic drugs.
Collapse
Affiliation(s)
- Hirokazu Miki
- Division of Transfusion Medicine and Cell Therapy, Tokushima University Hospital, Tokushima, Japan
| | - Shingen Nakamura
- Department of Hematology, Endocrinology and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Asuka Oda
- Department of Hematology, Endocrinology and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Hirofumi Tenshin
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Jumpei Teramachi
- Department of Histology and Oral Histology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Masahiro Hiasa
- Department of Biomaterials and Bioengineering, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Ariunzaya Bat-Erdene
- Department of Hematology, Endocrinology and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yusaku Maeda
- Department of Hematology, Endocrinology and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Masahiro Oura
- Department of Hematology, Endocrinology and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Mamiko Takahashi
- Department of Hematology, Endocrinology and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Masami Iwasa
- Department of Hematology, Endocrinology and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Takeshi Harada
- Department of Hematology, Endocrinology and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Shiro Fujii
- Department of Hematology, Endocrinology and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Kiyoe Kurahashi
- Department of Hematology, Endocrinology and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Sumiko Yoshida
- Department of Hematology, Endocrinology and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Kumiko Kagawa
- Department of Hematology, Endocrinology and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Itsuro Endo
- Department of Hematology, Endocrinology and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Kenichi Aihara
- Department of Hematology, Endocrinology and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Mariko Ikuo
- Department of Medicinal Biotechnology, Institute for Medicinal Research, Graduate School of Pharmaceutical Science, Tokushima University, Tokushima, Japan
| | - Kohji Itoh
- Department of Medicinal Biotechnology, Institute for Medicinal Research, Graduate School of Pharmaceutical Science, Tokushima University, Tokushima, Japan
| | - Koichiro Hayashi
- Division of Materials Research, Institute of Materials and Systems for Sustainability, Nagoya University, Aichi, Japan
| | - Michihiro Nakamura
- Department of Organ Anatomy, Yamaguchi University Graduate School of Medicine and Nanomedicine, Yamaguchi, Japan
| | - Masahiro Abe
- Department of Hematology, Endocrinology and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
214
|
Hemalatha T, Prabu P, Gunadharini DN, Gowthaman MK. Fabrication and characterization of dual acting oleyl chitosan functionalised iron oxide/gold hybrid nanoparticles for MRI and CT imaging. Int J Biol Macromol 2018; 112:250-257. [PMID: 29378272 DOI: 10.1016/j.ijbiomac.2018.01.159] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/10/2018] [Accepted: 01/23/2018] [Indexed: 12/20/2022]
Abstract
Bionanocomposites fabricated using metal nanoparticles serve a wide range of biomedical applications viz., site targeted drug delivery, imaging etc. Theranostics emerge as an important field of science, which focuses on the use of single entity for both disease diagnosis and treatment. The present work aimed at designing a multifunctional nanocomposite comprising of iron/gold hybrid nanoparticles, coated with oleyl chitosan and conjugated with methotrexate. The HR-TEM images revealed the spherical nature of the composite, while it's nontoxic and biocompatible property was proved by the MTT assay in NIH 3T3 cells and hemolysis assay. Though the VSM results exhibited the magnetic property, the MRI phantom images and X-ray contrast images demonstrated the potential of the composite to be used as contrast agent. Thus the prepared nanocomposite possess good cytocompatibility, magnetic property and also high X-ray attenuation, wherein it could serve as a novel platform for both MRI and CT diagnosis, as well as drug conjugation could aid in targeted drug delivery.
Collapse
Affiliation(s)
- Thiagarajan Hemalatha
- Department of Biological Materials, CSIR - Central Leather Research Institute, Adyar, Chennai 600020, India
| | | | | | | |
Collapse
|
215
|
Tao S, Guo S, Zhang C. Modularized Extracellular Vesicles: The Dawn of Prospective Personalized and Precision Medicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1700449. [PMID: 29619297 PMCID: PMC5827100 DOI: 10.1002/advs.201700449] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/18/2017] [Indexed: 05/20/2023]
Abstract
Extracellular vesicles (EVs) are ubiquitous nanosized membrane vesicles consisting of a lipid bilayer enclosing proteins and nucleic acids, which are active in intercellular communications. EVs are increasingly seen as a vital component of many biological functions that were once considered to require the direct participation of stem cells. Consequently, transplantation of EVs is gradually becoming considered an alternative to stem cell transplantation due to their significant advantages, including their relatively low probability of neoplastic transformation and abnormal differentiation. However, as research has progressed, it is realized that EVs derived from native-source cells may have various shortcomings, which can be corrected by modification and optimization. To date, attempts are made to modify or improve almost all the components of EVs, including the lipid bilayer, proteins, and nucleic acids, launching a new era of modularized EV therapy through the "modular design" of EV components. One high-yield technique, generating EV mimetic nanovesicles, will help to make industrial production of modularized EVs a reality. These modularized EVs have highly customized "modular design" components related to biological function and targeted delivery and are proposed as a promising approach to achieve personalized and precision medicine.
Collapse
Affiliation(s)
- Shi‐Cong Tao
- Department of Orthopaedic SurgeryShanghai Jiao Tong University Affiliated Sixth People's Hospital600 Yishan RoadShanghai200233China
| | - Shang‐Chun Guo
- Institute of Microsurgery on ExtremitiesShanghai Jiao Tong University Affiliated Sixth People's Hospital600 Yishan RoadShanghai200233China
| | - Chang‐Qing Zhang
- Department of Orthopaedic SurgeryShanghai Jiao Tong University Affiliated Sixth People's Hospital600 Yishan RoadShanghai200233China
- Institute of Microsurgery on ExtremitiesShanghai Jiao Tong University Affiliated Sixth People's Hospital600 Yishan RoadShanghai200233China
| |
Collapse
|
216
|
Chatterjee B, Raza A, Ghosh SS. Developing single-entity theranostic: drug-based fluorescent nanoclusters with augmented cytotoxicity. Nanomedicine (Lond) 2018; 13:283-295. [PMID: 29345211 DOI: 10.2217/nnm-2017-0275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM To develop methotrexate (MTX) templated luminescent gold nanoclusters (NCs) as a single unit nanotheranostic for cancer therapy and to assess its potential as an alternative to the parent drug, for drug delivery vehicles (DDVs). METHODS Theranostics were synthesized and extensively characterized. The stability of the theranostic and its bioimaging aptitude were evaluated. The antiproliferative propensity of the theranostic was gauged with cell viability assays and was supplemented with cytometry-based assays. Feasibility of delivering the MTX NCs instead of parent drug on a DDV was also checked. RESULTS MTX NCs displayed remarkable physical characteristics and augmented cytotoxicity with a robust stability in phosphate-buffered saline and serum. MTX NCs also demonstrated their amenability to being loaded on a DDV (chitosan folic acid nanoparticles) while retaining their physical and cytotoxic profile. CONCLUSION Generation of next level drug-based theranostics with the potential of replacing the free drug in drug delivery platforms.
Collapse
Affiliation(s)
- Bandhan Chatterjee
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Asif Raza
- Department of Biosciences & Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Siddhartha Sankar Ghosh
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.,Department of Biosciences & Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| |
Collapse
|
217
|
Combined Effects of Fe3O4 Nanoparticles and Chemotherapeutic Agents on Prostate Cancer Cells In Vitro. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8010134] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
218
|
Bencsik A, Lestaevel P, Guseva Canu I. Nano- and neurotoxicology: An emerging discipline. Prog Neurobiol 2018; 160:45-63. [DOI: 10.1016/j.pneurobio.2017.10.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 09/10/2017] [Accepted: 10/20/2017] [Indexed: 12/12/2022]
|
219
|
Hollow-fiber flow field-flow fractionation and multi-angle light scattering as a new analytical solution for quality control in pharmaceutical nanotechnology. Microchem J 2018. [DOI: 10.1016/j.microc.2016.12.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
220
|
Lombardi VRM, Carrera I, Cacabelos R. In vitro and in vivo cytotoxic effect of AntiGan against tumor cells. Exp Ther Med 2017; 15:2547-2556. [PMID: 29467852 PMCID: PMC5792761 DOI: 10.3892/etm.2017.5681] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 08/23/2017] [Indexed: 12/14/2022] Open
Abstract
Novel effective chemopreventive agents against cancer are required to improve current therapeutic rates. The aim of the present study was to investigate the anti-carcinogenesis effect of AntiGan, an extract obtained from the European conger eel, Conger conger, in vitro (human tumor cell lines) and in vivo (murine model of colitis) models. The potential apoptogenic activity after 24 h of incubation with 10, 25 and 50 µl/ml AntiGan was reported using growth inhibition and apoptosis activity assays. In vivo studies were performed in mice by inducing colitis with oral administration of 2% dextran sulphate sodium (DSS) for 5 weeks. Apoptosis was observed in HL-60, Hs 313.T, SW-480, Caco-2 and HT-29 cell lines. The highest level of growth inhibition was observed in Caco-2 (66, 75.8 and 88.1%), HT-29 (56, 73 and 87.6%) and SW-480 (38.5, 61.6, 78.6%) for AntiGan doses of 10, 25 and 50 µl/ml, respectively, compared to untreated cells, while the results of the expression of genes associated with apoptosis indicated a downregulation of B-cell lymphoma 2 (Bcl-2) in all cell lines studied. In vivo, morphopathological alterations in the colon were analyzed by immunohistochemical and staining methods. Tumoral markers, including β-catenin, cyclooxygenase 2 and Bcl-2 were expressed in cryptal cells of the dysplastic colonic mucosa, whereas the levels of interferon-γ expression were also increased when no treatment was applied. In the experimental murine model, the optimal concentration of AntiGan for an effective dose-response was 10% in diet. These results suggested that AntiGan displays a powerful anti-inflammatory effect in DSS-induced colitis, acting as a chemopreventive agent against colon carcinogenesis, most likely due to its apoptogenic peptides that contribute to the induction of apoptosis.
Collapse
Affiliation(s)
- Valter R M Lombardi
- Department of Health Biotechnology, EuroEspes Biotechnology, 15165 Corunna, Spain
| | - Iván Carrera
- Department of Health Biotechnology, EuroEspes Biotechnology, 15165 Corunna, Spain
| | - Ramón Cacabelos
- EuroEspes Biomedical Research Center, Institute for CNS Disorders and Genomic Medicine, 15165 Corunna, Spain
| |
Collapse
|
221
|
Vinhas R, Mendes R, Fernandes AR, Baptista PV. Nanoparticles-Emerging Potential for Managing Leukemia and Lymphoma. Front Bioeng Biotechnol 2017; 5:79. [PMID: 29326927 PMCID: PMC5741836 DOI: 10.3389/fbioe.2017.00079] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 12/05/2017] [Indexed: 12/31/2022] Open
Abstract
Nanotechnology has become a powerful approach to improve the way we diagnose and treat cancer. In particular, nanoparticles (NPs) possess unique features for enhanced sensitivity and selectivity for earlier detection of circulating cancer biomarkers. In vivo, NPs enhance the therapeutic efficacy of anticancer agents when compared with conventional chemotherapy, improving vectorization and delivery, and helping to overcome drug resistance. Nanomedicine has been mostly focused on solid cancers due to take advantage from the enhanced permeability and retention (EPR) effect experienced by tissues in the close vicinity of tumors, which enhance nanomedicine's accumulation and, consequently, improve efficacy. Nanomedicines for leukemia and lymphoma, where EPR effect is not a factor, are addressed differently from solid tumors. Nevertheless, NPs have provided innovative approaches to simple and non-invasive methodologies for diagnosis and treatment in liquid tumors. In this review, we consider the state of the art on different types of nanoconstructs for the management of liquid tumors, from preclinical studies to clinical trials. We also discuss the advantages of nanoplatforms for theranostics and the central role played by NPs in this combined strategy.
Collapse
Affiliation(s)
- Raquel Vinhas
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Rita Mendes
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Alexandra R Fernandes
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Pedro V Baptista
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| |
Collapse
|
222
|
Review of recent developments in determining volatile organic compounds in exhaled breath as biomarkers for lung cancer diagnosis. Anal Chim Acta 2017; 996:1-9. [DOI: 10.1016/j.aca.2017.09.021] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 09/08/2017] [Accepted: 09/09/2017] [Indexed: 12/20/2022]
|
223
|
Martin-Loeches I, Forster R, Prina-Mello A. Intensive care medicine in 2050: nanotechnology. Emerging technologies and approaches and their impact on critical care. Intensive Care Med 2017; 44:1299-1301. [PMID: 29178043 DOI: 10.1007/s00134-017-5002-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 11/16/2017] [Indexed: 01/26/2023]
Affiliation(s)
- Ignacio Martin-Loeches
- Department of Clinical Medicine, Trinity Centre for Health Sciences, Multidisciplinary Intensive Care Research Organization (MICRO), Wellcome Trust, HRB Clinical Research, St James's University Hospital Dublin, Dublin, Ireland. .,CIBER Enfermedades Respiratorias (CIBERES), Barcelona, Spain. .,Irish Centre for Vascular Biology (ICVB), Dublin, Ireland. .,Department of Intensive Care Medicine, St James's University Hospital, James's St, Ushers, P.O. Box 580, Dublin 8, Ireland.
| | - Robert Forster
- National Centre for Sensor Research, School of Chemical Sciences, Dublin City University, Dublin, Ireland
| | - Adriele Prina-Mello
- Laboratory for Biological Characterisation of Advanced Materials, Trinity Translational Medicine Institute (TTMI), Dublin, Ireland
| |
Collapse
|
224
|
Wu H, Song L, Chen L, Huang Y, Wu Y, Zang F, An Y, Lyu H, Ma M, Chen J, Gu N, Zhang Y. Injectable thermosensitive magnetic nanoemulsion hydrogel for multimodal-imaging-guided accurate thermoablative cancer therapy. NANOSCALE 2017; 9:16175-16182. [PMID: 28770920 DOI: 10.1039/c7nr02858j] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Ferrofluid-based magnetic hyperthermia of cancers has gained significant attention in recent years due to its excellent efficacy, few deleterious side effects and unlimited tissue penetration capacity. However, the high tumor osmotic pressure causes injection leakage and thus position imprecision because of the fluidity of the ferrofluid and the absence of multimodal imaging guidance, which create tremendous challenges for clinical application. Here, a body temperature-induced gelation strategy is constructed for accurate localized magnetic tumor regression based on the unique behaviors of a magnetic nanoemulsion hydrogel (MNH) within tumors. The rapid intra-tumor gelation can securely restrict the MNH in tumor tissue without diffusion and leakage. The magnetically induced nanoparticle assembly-enhanced heating in the hydrogel and the heat accumulation caused by crosslinking among the nanoemulsion droplets further increased the heating efficiency. Meanwhile, US/MR/NIR multimodal imaging can guide the whole therapeutic process, achieving excellent magnetic hyperthermia therapeutic efficiency. This work highlights the great promise for improving the magnetic hyperthermia efficiency and the precision of the injection site for localized tumor therapy.
Collapse
Affiliation(s)
- Haoan Wu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing 210096, P. R. China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
225
|
Oh Y, Je JY, Moorthy MS, Seo H, Cho WH. pH and NIR-light-responsive magnetic iron oxide nanoparticles for mitochondria-mediated apoptotic cell death induced by chemo-photothermal therapy. Int J Pharm 2017; 531:1-13. [DOI: 10.1016/j.ijpharm.2017.07.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/26/2017] [Accepted: 07/05/2017] [Indexed: 12/25/2022]
|
226
|
Studies on the adsorption and desorption of mitoxantrone to lauric acid/albumin coated iron oxide nanoparticles. Colloids Surf B Biointerfaces 2017; 161:18-26. [PMID: 29035747 DOI: 10.1016/j.colsurfb.2017.09.057] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 09/21/2017] [Accepted: 09/27/2017] [Indexed: 12/13/2022]
Abstract
A rational use of superparamagnetic iron oxide nanoparticles (SPIONs) in drug delivery, diagnostics, and other biomedical applications requires deep understanding of the molecular drug adsorption/desorption mechanisms for proper design of new pharmaceutical formulations. The adsorption and desorption of the cytostatic Mitoxantrone (MTO) to lauric acid-albumin hybrid coated particles SPIONs (SEONLA-HSA) was studied by Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), surface titration, release experiments and small-angle neutron and X-ray scattering. Such MTO-loaded nanoparticles have shown very promising results in in vivo animal models before, while the exact binding mechanism of the drug was unknown. SEONLA-HSA formulations have shown better stability under drug loading in comparison with uncoated nanoparticle and sustainable drug release to compare with protein solution. Adsorption of MTO to SEONLA-HSA leads to decreasing of absolute value of zeta potential and repulsive interaction among particles, which points to the location of separate molecules of MTO on the outer surface of LA-HSA shell.
Collapse
|
227
|
Kania G, Sternak M, Jasztal A, Chlopicki S, Błażejczyk A, Nasulewicz-Goldeman A, Wietrzyk J, Jasiński K, Skórka T, Zapotoczny S, Nowakowska M. Uptake and bioreactivity of charged chitosan-coated superparamagnetic nanoparticles as promising contrast agents for magnetic resonance imaging. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 14:131-140. [PMID: 28939490 DOI: 10.1016/j.nano.2017.09.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/17/2017] [Accepted: 09/11/2017] [Indexed: 02/07/2023]
Abstract
Bioreactivity of superparamagnetic iron oxide nanoparticles (SPION) coated with thin layers of either cationic or anionic chitosan derivatives and serving as contrast agents in magnetic resonance imaging (MRI) was studied in vivo using BALB/c mouse model. Synthesized dual-modal fluorescing SPION were tracked in time using both fluorescent imaging and MRI. Although SPION started to be excreted by kidneys relatively shortly after administration they were uptaken by liver enhancing MRI contrast even up to 7 days. Importantly, chitosan-coated SPION caused only mild activation of acute phase response not affecting biochemical parameters of blood. Liver histology indicated the presence of SPION and modest increase in the number of Kupffer cells. The overall results indicated that SPION coated with ultrathin layers of chitosan ionic derivatives can serve as T2 contrast agents for diagnosis of liver diseases or imaging of other organs assuming the dose is optimized according to the need.
Collapse
Affiliation(s)
- Gabriela Kania
- Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| | - Magdalena Sternak
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Agnieszka Jasztal
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland; Chair of Pharmacology, Jagiellonian University Medical College, Krakow, Poland.
| | - Agnieszka Błażejczyk
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Anna Nasulewicz-Goldeman
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Joanna Wietrzyk
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Krzysztof Jasiński
- Department of Magnetic Resonance Imaging, Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
| | - Tomasz Skórka
- Department of Magnetic Resonance Imaging, Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
| | | | | |
Collapse
|
228
|
Borroni E, Miola M, Ferraris S, Ricci G, Žužek Rožman K, Kostevšek N, Catizone A, Rimondini L, Prat M, Verné E, Follenzi A. Tumor targeting by lentiviral vectors combined with magnetic nanoparticles in mice. Acta Biomater 2017; 59:303-316. [PMID: 28688987 DOI: 10.1016/j.actbio.2017.07.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/30/2017] [Accepted: 07/04/2017] [Indexed: 01/07/2023]
Abstract
Nanomaterials conjugated or complexed with biological moieties such as antibodies, polymers or peptides appear to be suitable not only for drug delivery but also for specific cancer treatment. Here, biocompatible iron oxide magnetic nanoparticles (MNPs) with or without a silica shell coupled with lentiviral vectors (LVs) are proposed as a combined therapeutic approach to specifically target gene expression in a cancer mouse model. Initially, four different MNPs were synthesized and their physical properties were characterized to establish and discriminate their behaviors. MNPs and LVs strictly interacted and transduced cells in vitro as well as in vivo, with no toxicity or inflammatory responses. By injecting LV-MNPs complexes intravenously, green fluorescent protein (GFP) resulted in a sustained long-term expression. Furthermore, by applying a magnetic field on the abdomen of intravenous injected mice, GFP positive cells increased in livers and spleens. In liver, LV-MNPs were able to target both hepatocytes and non-parenchymal cells, while in a mouse model with a grafted tumor, intra-tumor LV-MNPs injection and magnetic plaque application next to the tumor demonstrated the efficient uptake of LV-MNPs complexes with high number of transduced cells and iron accumulation in the tumor site. More important, LV-MNPs with the application of the magnetic plaque spread in all the tumor parenchyma and dissemination through the body was prevented confirming the efficient uptake of LV-MNPs complexes in the tumor. Thus, these LV-MNPs complexes could be used as multifunctional and efficient tools to selectively induce transgene expression in solid tumor for therapeutic purposes. STATEMENT OF SIGNIFICANCE Our study describes a novel approach of combining magnetic properties of nanomaterials with gene therapy. Magnetic nanoparticles (MNPs) coated with or without a silica shell coupled with lentiviral vectors (LVs) were used as vehicle to target biological active molecules in a mouse cancer model. After in situ injection, the presence of MNP under the magnetic field improve the vector distribution in the tumor mass and after systemic administration, the application of the magnetic field favor targeting of specific organs for LV transduction and specifically can direct LV in specific cells (or avoiding them). Thus, our findings suggest that LV-MNPs complexes could be used as multifunctional and efficient tools to selectively induce transgene expression in solid tumor for therapeutic purposes.
Collapse
|
229
|
Sulaiman GM, Tawfeeq AT, Naji AS. Biosynthesis, characterization of magnetic iron oxide nanoparticles and evaluations of the cytotoxicity and DNA damage of human breast carcinoma cell lines. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:1215-1229. [DOI: 10.1080/21691401.2017.1366335] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ghassan M. Sulaiman
- Biotechnology Division, Applied Science Department, University of Technology, Baghdad, Iraq
| | - Amer T. Tawfeeq
- Molecular Biology Department, Iraqi Center for Cancer and Medical Genetics Research, University of Al-Mustansiriyah, Baghdad, Iraq
| | - Amal S. Naji
- Biotechnology Division, Applied Science Department, University of Technology, Baghdad, Iraq
| |
Collapse
|
230
|
Magro M, Martinello T, Bonaiuto E, Gomiero C, Baratella D, Zoppellaro G, Cozza G, Patruno M, Zboril R, Vianello F. Covalently bound DNA on naked iron oxide nanoparticles: Intelligent colloidal nano-vector for cell transfection. Biochim Biophys Acta Gen Subj 2017; 1861:2802-2810. [PMID: 28778487 DOI: 10.1016/j.bbagen.2017.07.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 06/28/2017] [Accepted: 07/30/2017] [Indexed: 11/29/2022]
Abstract
BACKGROUND Conversely to common coated iron oxide nanoparticles, novel naked surface active maghemite nanoparticles (SAMNs) can covalently bind DNA. Plasmid (pDNA) harboring the coding gene for GFP was directly chemisorbed onto SAMNs, leading to a novel DNA nanovector (SAMN@pDNA). The spontaneous internalization of SAMN@pDNA into cells was compared with an extensively studied fluorescent SAMN derivative (SAMN@RITC). Moreover, the transfection efficiency of SAMN@pDNA was evaluated and explained by computational model. METHODS SAMN@pDNA was prepared and characterized by spectroscopic and computational methods, and molecular dynamic simulation. The size and hydrodynamic properties of SAMN@pDNA and SAMN@RITC were studied by electron transmission microscopy, light scattering and zeta-potential. The two nanomaterials were tested by confocal scanning microscopy on equine peripheral blood-derived mesenchymal stem cells (ePB-MSCs) and GFP expression by SAMN@pDNA was determined. RESULTS Nanomaterials characterized by similar hydrodynamic properties were successfully internalized and stored into mesenchymal stem cells. Transfection by SAMN@pDNA occurred and GFP expression was higher than lipofectamine procedure, even in the absence of an external magnetic field. A computational model clarified that transfection efficiency can be ascribed to DNA availability inside cells. CONCLUSIONS Direct covalent binding of DNA on naked magnetic nanoparticles led to an extremely robust gene delivery tool. Hydrodynamic and chemical-physical properties of SAMN@pDNA were responsible of the successful uptake by cells and of the efficiency of GFP gene transfection. GENERAL SIGNIFICANCE SAMNs are characterized by colloidal stability, excellent cell uptake, persistence in the host cells, low toxicity and are proposed as novel intelligent DNA nanovectors for efficient cell transfection.
Collapse
Affiliation(s)
- Massimiliano Magro
- Department of Comparative Biomedicine and Food Science, University of Padua, viale dell'Università 16, 35020 Legnaro, Italy; Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Palacky University in Olomouc, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Tiziana Martinello
- Department of Comparative Biomedicine and Food Science, University of Padua, viale dell'Università 16, 35020 Legnaro, Italy
| | - Emanuela Bonaiuto
- Department of Comparative Biomedicine and Food Science, University of Padua, viale dell'Università 16, 35020 Legnaro, Italy
| | - Chiara Gomiero
- Department of Comparative Biomedicine and Food Science, University of Padua, viale dell'Università 16, 35020 Legnaro, Italy
| | - Davide Baratella
- Department of Comparative Biomedicine and Food Science, University of Padua, viale dell'Università 16, 35020 Legnaro, Italy
| | - Giorgio Zoppellaro
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Palacky University in Olomouc, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Giorgio Cozza
- Department of Molecular Medicine, University of Padua, via Gabelli 63, 35121 Padova, Italy
| | - Marco Patruno
- Department of Comparative Biomedicine and Food Science, University of Padua, viale dell'Università 16, 35020 Legnaro, Italy
| | - Radek Zboril
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Palacky University in Olomouc, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Fabio Vianello
- Department of Comparative Biomedicine and Food Science, University of Padua, viale dell'Università 16, 35020 Legnaro, Italy; Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Palacky University in Olomouc, Slechtitelu 27, 783 71 Olomouc, Czech Republic.
| |
Collapse
|
231
|
Soetaert F, Kandala SK, Bakuzis A, Ivkov R. Experimental estimation and analysis of variance of the measured loss power of magnetic nanoparticles. Sci Rep 2017; 7:6661. [PMID: 28751720 PMCID: PMC5532265 DOI: 10.1038/s41598-017-07088-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 06/22/2017] [Indexed: 11/09/2022] Open
Abstract
Magnetic nanoparticles dissipate heat when exposed to alternating magnetic fields (AMFs), making them suitable for cancer hyperthermia. Therapeutic heating applications demand accurate characterization of the heating power dissipated by the particles. Specific loss power (SLP) generated by magnetic nanoparticles is estimated from calorimetric heating measurements. Such measurements require adiabatic conditions, yet they are typically performed in an AMF device with non-adiabatic conditions. We have measured heating from four magnetic nanoparticle constructs using a range of frequencies (150–375 kHz) and magnetic fields (4–44 kA/m). We have extended a method developed to estimate SLP from the inherently non-adiabatic measurements, where we identify data ranges that conform to (quasi)-adiabatic conditions. Each time interval of measurement that met a predetermined criterion was used to generate a value of SLP, and the mean from all estimates was selected as the estimated SLP. Despite the application of rigorous selection criteria, measured temperature data displayed variability at specific heating loads resulting in larger variance of calculated mean SLP values. Overall, the results show a linear dependence of the SLP with AMF frequency, as anticipated by current models. Conversely, measured amplitude-dependent SLP profiles of all studied constructs conform to no predictions of current models.
Collapse
Affiliation(s)
- Frederik Soetaert
- Department of Electrical Energy, Systems and Automation, Ghent University, Technology park 913, B-9052, Zwijnaarde, Belgium.,Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Sri Kamal Kandala
- Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA.,Department of Mechanical Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Andris Bakuzis
- Instituto de Física, Universidade Federal de Goiás, 74690-900, Goiânia-GO, Brazil
| | - Robert Ivkov
- Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA. .,Department of Mechanical Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD, 21218, USA. .,Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA. .,Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, 21218, USA. .,Department of Materials Science and Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD, 21218, USA.
| |
Collapse
|
232
|
Orza A, Wu H, Xu Y, Lu Q, Mao H. One-Step Facile Synthesis of Highly Magnetic and Surface Functionalized Iron Oxide Nanorods for Biomarker-Targeted Applications. ACS APPLIED MATERIALS & INTERFACES 2017; 9:20719-20727. [PMID: 28513139 PMCID: PMC8898331 DOI: 10.1021/acsami.7b02575] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We report a one-step method for facile and sustainable synthesis of magnetic iron oxide nanorods (or IONRs) with mean lengths ranging from 25 to 50 nm and mean diameters ranging from 5 to 8 nm. The prepared IONRs are highly stable in aqueous media and can be surface functionalized for biomarker-targeted applications. This synthetic strategy involves the reaction of iron(III) acetylacetonate with polyethyleneimine in the presence of oleylamine and phenyl ether, followed by thermal decomposition. Importantly, the length and diameter as well as the aspect ratio of the prepared IONRs can be controlled by modulating the reaction parameters. We show that the resultant IONRs exhibit stronger magnetic properties compared to those of the widely used spherical iron oxide nanoparticles (IONPs) at the same iron content. The increased magnetic properties are dependent on the aspect ratio, with the magnetic saturation gradually increasing from 10 to 75 emu g-1 when increasing length of the IONRs, 5 nm in diameter, from 25 to 50 nm. The magnetic resonance imaging (MRI) contrast-enhancing effect, as measured in terms of the transverse relaxivity, r2, increased from 670.6 to 905.5 mM-1 s-1, when increasing the length from 25 to 50 nm. When applied to the immunomagnetic cell separation of the transferrin receptor (TfR)-overexpressed medulloblastoma cells using transferrin (Tf) as the targeting ligand, Tf-conjugated IONRs can capture 92 ± 3% of the targeted cells under a given condition (2.0 × 104 cells/mL, 0.2 mg Fe/mL concentration of magnetic materials, and 2.5 min of incubation time) compared to only 37 ± 2% when using the spherical IONPs, and 14 ± 2% when using commercially available magnetic beads, significantly improving the efficiency of separating the targeted cells.
Collapse
Affiliation(s)
- Anamaria Orza
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia 30329, United States
- Center for Systems Imaging, Emory University School of Medicine, Atlanta, Georgia 30329, United States
| | - Hui Wu
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia 30329, United States
- Center for Systems Imaging, Emory University School of Medicine, Atlanta, Georgia 30329, United States
| | - Yaolin Xu
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia 30329, United States
- Center for Systems Imaging, Emory University School of Medicine, Atlanta, Georgia 30329, United States
| | - Qiong Lu
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia 30329, United States
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P. R. China
| | - Hui Mao
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia 30329, United States
- Center for Systems Imaging, Emory University School of Medicine, Atlanta, Georgia 30329, United States
| |
Collapse
|
233
|
Truffi M, Colombo M, Peñaranda-Avila J, Sorrentino L, Colombo F, Monieri M, Collico V, Zerbi P, Longhi E, Allevi R, Prosperi D, Corsi F. Nano-targeting of mucosal addressin cell adhesion molecule-1 identifies bowel inflammation foci in murine model. Nanomedicine (Lond) 2017. [PMID: 28621606 DOI: 10.2217/nnm-2017-0004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
AIM We investigate MAdCAM-1 as a reliable target to detect active bowel inflammation for selective noninvasive nanodiagnostics. MATERIALS & METHODS We coupled anti-MAdCAM-1 antibodies to manganese oxide nanoparticles, and analyzed nanoconjugate biodistribution and safety in murine model of inflammatory bowel disease by imaging and histology. RESULTS Nanoparticles were stable and nontoxic. Upon administration in colitic mice, anti-MAdCAM-1 functionalized nanoparticles preferentially localized in the inflamed bowel, whereas untargeted nanoparticles were more rapidly washed out. Nanoparticles did not induce lesions in nontarget organs. CONCLUSION Anti-MAdCAM-1 functionalized nanoparticles detected active bowel inflammation foci, accurately following MAdCAM-1 expression pattern. These nanoconjugates could be a promising noninvasive imaging system for an early and accurate follow-up in patients affected by acute colitis.
Collapse
Affiliation(s)
- Marta Truffi
- Department of Biomedical & Clinical Sciences 'L. Sacco', University of Milan, via G. B. Grassi 74, 20157 Milan, Italy
| | - Miriam Colombo
- Department of Biotechnologies & Biosciences, NanoBioLab, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Jesus Peñaranda-Avila
- Department of Biotechnologies & Biosciences, NanoBioLab, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Luca Sorrentino
- Department of Biomedical & Clinical Sciences 'L. Sacco', University of Milan, via G. B. Grassi 74, 20157 Milan, Italy
| | - Francesco Colombo
- Surgery Department, IBD Unit, ASST Fatebenefratelli Sacco-Luigi Sacco University Hospital, via G. B. Grassi 74, 20157 Milan, Italy
| | - Matteo Monieri
- Department of Biomedical & Clinical Sciences 'L. Sacco', University of Milan, via G. B. Grassi 74, 20157 Milan, Italy
| | - Veronica Collico
- Department of Biotechnologies & Biosciences, NanoBioLab, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Pietro Zerbi
- Department of Biomedical & Clinical Sciences 'L. Sacco', University of Milan, via G. B. Grassi 74, 20157 Milan, Italy.,Pathology Department, ASST Fatebenefratelli Sacco-Luigi Sacco Hospital, via G. B. Grassi 74, 20157 Milan, Italy
| | - Erika Longhi
- Department of Biomedical & Clinical Sciences 'L. Sacco', University of Milan, via G. B. Grassi 74, 20157 Milan, Italy
| | - Raffaele Allevi
- Department of Biomedical & Clinical Sciences 'L. Sacco', University of Milan, via G. B. Grassi 74, 20157 Milan, Italy
| | - Davide Prosperi
- Department of Biotechnologies & Biosciences, NanoBioLab, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Fabio Corsi
- Department of Biomedical & Clinical Sciences 'L. Sacco', University of Milan, via G. B. Grassi 74, 20157 Milan, Italy.,Surgery Department, Breast Unit, ICS Maugeri S.p.A. SB, via S. Maugeri 10, 27100 Pavia, Italy
| |
Collapse
|
234
|
Belyanina I, Kolovskaya O, Zamay S, Gargaun A, Zamay T, Kichkailo A. Targeted Magnetic Nanotheranostics of Cancer. Molecules 2017; 22:E975. [PMID: 28604617 PMCID: PMC6152710 DOI: 10.3390/molecules22060975] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/02/2017] [Accepted: 06/06/2017] [Indexed: 12/31/2022] Open
Abstract
Current advances in targeted magnetic nanotheranostics are summarized in this review. Unique structural, optical, electronic and thermal properties of magnetic materials in nanometer scale are attractive in the field of biomedicine. Magnetic nanoparticles functionalized with therapeutic molecules, ligands for targeted delivery, fluorescent and other chemical agents can be used for cancer diagnostic and therapeutic purposes. High selectivity, small size, and low immunogenicity of synthetic nucleic acid aptamers make them attractive delivery agents for therapeutic purposes. Properties, production and functionalization of magnetic nanoparticles and aptamers as ligands for targeted delivery are discussed herein. In recent years, magnetic nanoparticles have been widely used in diagnostic methods, such as scintigraphy, single photon emission computed tomography (SPECT), positron emission tomography (PET), magnetic resonance imaging (MRI), and Raman spectroscopy. Therapeutic purposes of magnetic nanoconstructions are also promising. They are used for effective drug delivery, magnetic mediated hypertermia, and megnetodynamic triggering of apoptosis. Thus, magnetic nanotheranostics opens a new venue for complex differential diagnostics, and therapy of metastatic cancer.
Collapse
Affiliation(s)
- Irina Belyanina
- Krasnoyarsk State Medical University named after prof. V.F. Voino-Yaseneckii, 660022 Krasnoyarsk, Russia.
| | - Olga Kolovskaya
- Krasnoyarsk State Medical University named after prof. V.F. Voino-Yaseneckii, 660022 Krasnoyarsk, Russia.
- Federal Research Center, KSC Siberian Branch of Russian Academy of Science, 660022 Krasnoyarsk, Russia.
| | - Sergey Zamay
- Federal Research Center, KSC Siberian Branch of Russian Academy of Science, 660022 Krasnoyarsk, Russia.
| | - Ana Gargaun
- Independent Researcher Vancouver, Vancouver, BC V6K 1C4, Canada.
| | - Tatiana Zamay
- Krasnoyarsk State Medical University named after prof. V.F. Voino-Yaseneckii, 660022 Krasnoyarsk, Russia.
- Federal Research Center, KSC Siberian Branch of Russian Academy of Science, 660022 Krasnoyarsk, Russia.
| | - Anna Kichkailo
- Krasnoyarsk State Medical University named after prof. V.F. Voino-Yaseneckii, 660022 Krasnoyarsk, Russia.
- Federal Research Center, KSC Siberian Branch of Russian Academy of Science, 660022 Krasnoyarsk, Russia.
| |
Collapse
|
235
|
Sikkandhar MG, Nedumaran AM, Ravichandar R, Singh S, Santhakumar I, Goh ZC, Mishra S, Archunan G, Gulyás B, Padmanabhan P. Theranostic Probes for Targeting Tumor Microenvironment: An Overview. Int J Mol Sci 2017; 18:E1036. [PMID: 28492519 PMCID: PMC5454948 DOI: 10.3390/ijms18051036] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 05/06/2017] [Accepted: 05/08/2017] [Indexed: 01/07/2023] Open
Abstract
Long gone is the time when tumors were thought to be insular masses of cells, residing independently at specific sites in an organ. Now, researchers gradually realize that tumors interact with the extracellular matrix (ECM), blood vessels, connective tissues, and immune cells in their environment, which is now known as the tumor microenvironment (TME). It has been found that the interactions between tumors and their surrounds promote tumor growth, invasion, and metastasis. The dynamics and diversity of TME cause the tumors to be heterogeneous and thus pose a challenge for cancer diagnosis, drug design, and therapy. As TME is significant in enhancing tumor progression, it is vital to identify the different components in the TME such as tumor vasculature, ECM, stromal cells, and the lymphatic system. This review explores how these significant factors in the TME, supply tumors with the required growth factors and signaling molecules to proliferate, invade, and metastasize. We also examine the development of TME-targeted nanotheranostics over the recent years for cancer therapy, diagnosis, and anticancer drug delivery systems. This review further discusses the limitations and future perspective of nanoparticle based theranostics when used in combination with current imaging modalities like Optical Imaging, Magnetic Resonance Imaging (MRI) and Nuclear Imaging (Positron Emission Tomography (PET) and Single Photon Emission Computer Tomography (SPECT)).
Collapse
Affiliation(s)
- Musafar Gani Sikkandhar
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore.
| | - Anu Maashaa Nedumaran
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore.
| | - Roopa Ravichandar
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore.
| | - Satnam Singh
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore.
| | - Induja Santhakumar
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore.
| | - Zheng Cong Goh
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore.
| | - Sachin Mishra
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore.
| | - Govindaraju Archunan
- Centre for Pheromone Technology, Department of Animal Science, Bharathidasan University, Tiruchirappalli 620024, India.
| | - Balázs Gulyás
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore.
| | - Parasuraman Padmanabhan
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore.
| |
Collapse
|
236
|
Semkina AS, Abakumov MA, Grinenko NF, Lipengolts AA, Nukolova NV, Chekhonin VP. Magnetic Resonance Imaging of Tumors with the Use of Iron Oxide Magnetic Nanoparticles as a Contrast Agent. Bull Exp Biol Med 2017; 162:808-811. [DOI: 10.1007/s10517-017-3718-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Indexed: 10/19/2022]
|
237
|
Poller JM, Zaloga J, Schreiber E, Unterweger H, Janko C, Radon P, Eberbeck D, Trahms L, Alexiou C, Friedrich RP. Selection of potential iron oxide nanoparticles for breast cancer treatment based on in vitro cytotoxicity and cellular uptake. Int J Nanomedicine 2017; 12:3207-3220. [PMID: 28458541 PMCID: PMC5402883 DOI: 10.2147/ijn.s132369] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) are promising tools for the treatment of different diseases. Their magnetic properties enable therapies involving magnetic drug targeting (MDT), hyperthermia or imaging. Depending on the intended treatment, specific characteristics of SPIONs are required. While particles used for imaging should circulate for extended periods of time in the vascular system, SPIONs intended for MDT or hyperthermia should be accumulated in the target area to come into close proximity of, or to be incorporated into, specific tumor cells. In this study, we determined the impact of several accurately characterized SPION types varying in size, zeta potential and surface coating on various human breast cancer cell lines and endothelial cells to identify the most suitable particle for future breast cancer therapy. We analyzed cellular SPION uptake, magnetic properties, cell proliferation and toxicity using atomic emission spectroscopy, magnetic susceptometry, flow cytometry and microscopy. The results demonstrated that treatment with dextran-coated SPIONs (SPIONDex) and lauric acid-coated SPIONs (SPIONLA) with an additional protein corona formed by human serum albumin (SPIONLA-HSA) resulted in very moderate particle uptake and low cytotoxicity, whereas SPIONLA had in part much stronger effects on cellular uptake and cellular toxicity. In summary, our data show significant dose-dependent and particle type-related response differences between various breast cancer and endothelial cells, indicating the utility of these particle types for distinct medical applications.
Collapse
Affiliation(s)
- Johanna M Poller
- Department of Otorhinolaryngology, Head and Neck Surgery, Section for Experimental Oncology & Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen.,Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)
| | - Jan Zaloga
- Department of Otorhinolaryngology, Head and Neck Surgery, Section for Experimental Oncology & Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen
| | - Eveline Schreiber
- Department of Otorhinolaryngology, Head and Neck Surgery, Section for Experimental Oncology & Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen
| | - Harald Unterweger
- Department of Otorhinolaryngology, Head and Neck Surgery, Section for Experimental Oncology & Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen
| | - Christina Janko
- Department of Otorhinolaryngology, Head and Neck Surgery, Section for Experimental Oncology & Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen
| | - Patricia Radon
- Physikalisch-Technische Bundesanstalt Braunschweig und Berlin, Berlin, Germany
| | - Dietmar Eberbeck
- Physikalisch-Technische Bundesanstalt Braunschweig und Berlin, Berlin, Germany
| | - Lutz Trahms
- Physikalisch-Technische Bundesanstalt Braunschweig und Berlin, Berlin, Germany
| | - Christoph Alexiou
- Department of Otorhinolaryngology, Head and Neck Surgery, Section for Experimental Oncology & Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen
| | - Ralf P Friedrich
- Department of Otorhinolaryngology, Head and Neck Surgery, Section for Experimental Oncology & Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen
| |
Collapse
|
238
|
Edge D, Shortt CM, Johns E, Gobbo OL, Markos F, Abdulla MH, Barry EF. Assessment of renal function in the anaesthetised rat following injection of superparamagnetic iron oxide nanoparticles. Can J Physiol Pharmacol 2017; 95:443-446. [PMID: 28177696 DOI: 10.1139/cjpp-2016-0405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A recent study showed that a significant fall in mean arterial pressure (MAP) occurred following intravenous injection of two novel superparamagnetic iron oxide nanoparticles (SPIONs), MF66 and OD15. To assess if this was caused by excessive glomerular clearance, the effect of both particles on renal function was studied. Experiments were performed on sodium pentobarbital anaesthetised male Wistar rats (250–350 g). Twenty-minute urine clearances were taken followed by an i.v. bolus of MF66, OD15 (2 mg·kg–1), or dH2O (0.4 mL·kg–1). MF6 or OD15 injection resulted in a significant transient drop in MAP and renal blood flow by approximately 33% and 50% (P < 0.05). The absolute excretion of sodium was significantly increased (P < 0.05) by almost 80% and 70% following OD15 and MF66, respectively. Similarly, fractional excretion of sodium was increased by almost 80% and 60% following OD15 and MF66, respectively. The glomerular filtration rate was not significantly affected, but urine flow increased nonsignificantly by approximately 50% and 66% following i.v. injection of OD15 and MF66, respectively. SPIONs produce a decrease in blood pressure and a natriuresis; however, the rate of fluid filtration in the kidney was not significantly affected.
Collapse
Affiliation(s)
- Deirdre Edge
- Department of Physiology, University College Cork, Cork, Ireland
- Department of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Dublin, Ireland
| | | | - E.J. Johns
- Department of Physiology, University College Cork, Cork, Ireland
| | - Oliviero L. Gobbo
- School of Pharmacy and Pharmaceutical Sciences and Trinity Biomedical Sciences Institute, Dublin, Ireland
| | - Farouk Markos
- Department of Physiology, University College Cork, Cork, Ireland
| | | | - Elaine F. Barry
- Department of Physiology, University College Cork, Cork, Ireland
| |
Collapse
|
239
|
Ljubimova JY, Sun T, Mashouf L, Ljubimov AV, Israel LL, Ljubimov VA, Falahatian V, Holler E. Covalent nano delivery systems for selective imaging and treatment of brain tumors. Adv Drug Deliv Rev 2017; 113:177-200. [PMID: 28606739 PMCID: PMC5578712 DOI: 10.1016/j.addr.2017.06.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 06/07/2017] [Indexed: 02/06/2023]
Abstract
Nanomedicine is a rapidly evolving form of therapy that holds a great promise for superior drug delivery efficiency and therapeutic efficacy than conventional cancer treatment. In this review, we attempt to cover the benefits and the limitations of current nanomedicines with special attention to covalent nano conjugates for imaging and drug delivery in the brain. The improvement in brain tumor treatment remains dismal despite decades of efforts in drug development and patient care. One of the major obstacles in brain cancer treatment is the poor drug delivery efficiency owing to the unique blood-brain barrier (BBB) in the CNS. Although various anti-cancer agents are available to treat tumors outside of the CNS, the majority fails to cross the BBB. In this regard, nanomedicines have increasingly drawn attention due to their multi-functionality and versatility. Nano drugs can penetrate BBB and other biological barriers, and selectively accumulate in tumor cells, while concurrently decreasing systemic toxicity.
Collapse
Affiliation(s)
- Julia Y Ljubimova
- Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd., AHSP, Los Angeles, CA 90048, USA.
| | - Tao Sun
- Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd., AHSP, Los Angeles, CA 90048, USA
| | - Leila Mashouf
- Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Alexander V Ljubimov
- Department of Biomedical Sciences, Board of Governors Regenerative Medicine Institute, Los Angeles, CA 90048, USA
| | - Liron L Israel
- Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd., AHSP, Los Angeles, CA 90048, USA
| | - Vladimir A Ljubimov
- Department of Neurosurgery and Brain Repair, University of South Florida, 2 Tampa General Circle, Tampa, FL 33606, USA
| | - Vida Falahatian
- Duke University School of Medicine, Department of Biostatistics and Bioinformatics, Clinical Research Training Program (CRTP), 2424 Erwin Road, Suite 1102, Hock Plaza Box 2721, Durham, NC 27710, USA
| | - Eggehard Holler
- Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd., AHSP, Los Angeles, CA 90048, USA; Institut für Biophysik und Physikalische Biochemie, Universität Regensburg, D-93040 Regensburg, Germany
| |
Collapse
|
240
|
A novel starch-based stimuli-responsive nanosystem for theranostic applications. Int J Biol Macromol 2017; 97:654-661. [DOI: 10.1016/j.ijbiomac.2017.01.063] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 11/21/2016] [Accepted: 01/12/2017] [Indexed: 12/22/2022]
|
241
|
Coricovac DE, Moacă EA, Pinzaru I, Cîtu C, Soica C, Mihali CV, Păcurariu C, Tutelyan VA, Tsatsakis A, Dehelean CA. Biocompatible Colloidal Suspensions Based on Magnetic Iron Oxide Nanoparticles: Synthesis, Characterization and Toxicological Profile. Front Pharmacol 2017; 8:154. [PMID: 28400730 PMCID: PMC5368253 DOI: 10.3389/fphar.2017.00154] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 03/10/2017] [Indexed: 12/18/2022] Open
Abstract
The use of magnetic iron oxide nanoparticles in biomedicine has evolved intensely in the recent years due to the multiple applications of these nanomaterials, mainly in domains like cancer. The aim of the present study was: (i) to develop biocompatible colloidal suspensions based on magnetic iron oxide nanoparticles as future theranostic tools for skin pathology and (ii) to test their effects in vitro on human keratinocytes (HaCat cells) and in vivo by employing an animal model of acute dermal toxicity. Biocompatible colloidal suspensions were obtained by coating the magnetic iron oxide nanoparticles resulted during the solution combustion synthesis with a double layer of oleic acid, as innovative procedure in increasing bioavailability. The colloidal suspensions were characterized in terms of dynamic light scattering (DLS) and transmission electron microscopy (TEM). The in vitro effects of these suspensions were tested by means of Alamar blue assay and the noxious effects at skin level were measured using non-invasive methods. The in vitro results indicated a lack of toxicity on normal human cells induced by the iron oxide nanoparticles colloidal suspensions after an exposure of 24 h to different concentrations (5, 10, and 25 μg·mL−1). The dermal acute toxicity test showed that the topical applications of the colloidal suspensions on female and male SKH-1 hairless mice were not associated with significant changes in the quality of barrier skin function.
Collapse
Affiliation(s)
- Dorina-Elena Coricovac
- Faculty of Pharmacy, "Victor Babecs" University of Medicine and Pharmacy Timişoara, Romania
| | - Elena-Alina Moacă
- Faculty of Pharmacy, "Victor Babecs" University of Medicine and Pharmacy Timişoara, Romania
| | - Iulia Pinzaru
- Faculty of Pharmacy, "Victor Babecs" University of Medicine and Pharmacy Timişoara, Romania
| | - Cosmin Cîtu
- Faculty of Medicine, "Victor Babeş" University of Medicine and Pharmacy Timişoara, Romania
| | - Codruta Soica
- Faculty of Pharmacy, "Victor Babecs" University of Medicine and Pharmacy Timişoara, Romania
| | - Ciprian-Valentin Mihali
- "George Emil Palade" Electron Microscopy Center, Institute of Life Sciences, "Vasile Goldiş" Western University of Arad Arad, Romania
| | - Cornelia Păcurariu
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University of Timişoara Timişoara, Romania
| | - Victor A Tutelyan
- Federal Research Centre of Nutrition, Biotechnology and Food Safety Moscow, Russia
| | - Aristidis Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete Crete, Greece
| | | |
Collapse
|
242
|
Fiandra L, Capetti A, Sorrentino L, Corsi F. Nanoformulated Antiretrovirals for Penetration of the Central Nervous System: State of the Art. J Neuroimmune Pharmacol 2017; 12:17-30. [PMID: 27832401 DOI: 10.1007/s11481-016-9716-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 10/28/2016] [Indexed: 12/25/2022]
Abstract
The central nervous system is a very challenging HIV-1 sanctuary. But, despite complete suppression of plasmatic viral replication with current antiretroviral therapy, signs of HIV-1 replication can still be found in the cerebrospinal fluid in some patients. The main limitation to achieving HIV-1 eradication from the brain is related to the suboptimal concentrations of antiretrovirals within this site, due to their low permeation across the blood-brain barrier. In recent years, a number of reliable nanotechnological strategies have been developed with the aim of enhancing antiretroviral drug penetration across the blood-brain barrier. The aim of this review is to provide an overview of the different nanoformulated antiretrovirals, used in both clinical and preclinical studies, that are designed to improve their delivery into the brain by active or passive permeation mechanisms through the barrier. Different nanotechnological approaches have proven successful for optimizing antiretrovirals delivery to the central nervous system, with a likely benefit for HIV-associated neurocognitive disorders and a more debated contribution to the complete eradication of the HIV-1 infection.
Collapse
Affiliation(s)
- Luisa Fiandra
- Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, via G. B. Grassi 74, 20157, Milan, Italy
| | - Amedeo Capetti
- Division of Infectious Diseases, ASST Fatebenefratelli Sacco - "Luigi Sacco" University Hospital, via G. B. Grassi 74, 20157, Milan, Italy
| | - Luca Sorrentino
- Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, via G. B. Grassi 74, 20157, Milan, Italy
| | - Fabio Corsi
- Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, via G. B. Grassi 74, 20157, Milan, Italy.
- Surgery Department, Breast Unit, ICS Maugeri S.p.A. SB, via S. Maugeri 10, 27100, Pavia, Italy.
| |
Collapse
|
243
|
Tosi U, Marnell CS, Chang R, Cho WC, Ting R, Maachani UB, Souweidane MM. Advances in Molecular Imaging of Locally Delivered Targeted Therapeutics for Central Nervous System Tumors. Int J Mol Sci 2017; 18:ijms18020351. [PMID: 28208698 PMCID: PMC5343886 DOI: 10.3390/ijms18020351] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/19/2016] [Accepted: 01/26/2017] [Indexed: 12/24/2022] Open
Abstract
Thanks to the recent advances in the development of chemotherapeutics, the morbidity and mortality of many cancers has decreased significantly. However, compared to oncology in general, the field of neuro-oncology has lagged behind. While new molecularly targeted chemotherapeutics have emerged, the impermeability of the blood–brain barrier (BBB) renders systemic delivery of these clinical agents suboptimal. To circumvent the BBB, novel routes of administration are being applied in the clinic, ranging from intra-arterial infusion and direct infusion into the target tissue (convection enhanced delivery (CED)) to the use of focused ultrasound to temporarily disrupt the BBB. However, the current system depends on a “wait-and-see” approach, whereby drug delivery is deemed successful only when a specific clinical outcome is observed. The shortcomings of this approach are evident, as a failed delivery that needs immediate refinement cannot be observed and corrected. In response to this problem, new theranostic agents, compounds with both imaging and therapeutic potential, are being developed, paving the way for improved and monitored delivery to central nervous system (CNS) malignancies. In this review, we focus on the advances and the challenges to improve early cancer detection, selection of targeted therapy, and evaluation of therapeutic efficacy, brought forth by the development of these new agents.
Collapse
Affiliation(s)
- Umberto Tosi
- Department of Neurological Surgery, Weill Cornell Medical College, New York, NY 10065, USA.
| | - Christopher S Marnell
- Department of Neurological Surgery, Weill Cornell Medical College, New York, NY 10065, USA.
| | - Raymond Chang
- Department of Neurological Surgery, Weill Cornell Medical College, New York, NY 10065, USA.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong, China.
| | - Richard Ting
- Department of Radiology, Molecular Imaging Innovations Institute, Weill Cornell Medicine, New York, NY 10065, USA.
| | - Uday B Maachani
- Department of Neurological Surgery, Weill Cornell Medical College, New York, NY 10065, USA.
| | - Mark M Souweidane
- Department of Neurological Surgery, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
244
|
Wang S, Lin Q, Chen J, Gao H, Fu D, Shen S. Biocompatible polydopamine-encapsulated gadolinium-loaded carbon nanotubes for MRI and color mapping guided photothermal dissection of tumor metastasis. CARBON 2017; 112:53-62. [DOI: 10.1016/j.carbon.2016.10.096] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
|
245
|
Zhang JQ, Zhou W, Zhu SS, Lin J, Wei PF, Li FF, Jin PP, Yao H, Zhang YJ, Hu Y, Liu YM, Chen M, Li ZQ, Liu XS, Bai L, Wen LP. Persistency of Enlarged Autolysosomes Underscores Nanoparticle-Induced Autophagy in Hepatocytes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1602876. [PMID: 27925395 DOI: 10.1002/smll.201602876] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 11/09/2016] [Indexed: 06/06/2023]
Abstract
The diverse biological effects of nanomaterials form the basis for their applications in biomedicine but also cause safety issues. Induction of autophagy is a cellular response after nanoparticles exposure. It may be beneficial in some circumstances, yet autophagy-mediated toxicity raises an alarming concern. Previously, it has been reported that upconversion nanoparticles (UCNs) elicit liver damage, with autophagy contributing most of this toxicity. However, the detailed mechanism is unclear. This study reveals persistent presence of enlarged autolysosomes in hepatocytes after exposure to UCNs and SiO2 nanoparticles both in vitro and in vivo. This phenomenon is due to anomaly in the autophagy termination process named autophagic lysosome reformation (ALR). Phosphatidylinositol 4-phosphate (PI(4)P) relocates onto autolysosome membrane, which is a key event of ALR. PI(4)P is then converted into phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2 ) by phosphatidylinositol-4-phosphate 5-kinase. Clathrin is subsequently recruited by PI(4,5)P2 and leads to tubule budding of ALR. Yet it is observed that PI(4)P cannot be converted in nanoparticle-treated hepatocytes cells. Exogenous supplement of PI(4,5)P2 suppresses the enlarged autolysosomes in vitro. Abolishment of these enlarged autolysosomes by autophagy inhibitor relieves the hepatotoxicity of UCNs in vivo. The results provide evidence for disrupted ALR in nanoparticle-treated hepatocytes, suggesting that the termination of nanoparticle-induced autophagy is of equal importance as the initiation.
Collapse
Affiliation(s)
- Ji-Qian Zhang
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230027, P. R. China
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, 230022, P. R. China
| | - Wei Zhou
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230027, P. R. China
- School of Biological and Medical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
| | - Sha-Sha Zhu
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230027, P. R. China
| | - Jun Lin
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230027, P. R. China
| | - Peng-Fei Wei
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230027, P. R. China
| | - Fen-Fen Li
- Center for Biomedical Engineering, Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230027, P. R. China
| | - Pei-Pei Jin
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230027, P. R. China
| | - Han Yao
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230027, P. R. China
| | - Yun-Jiao Zhang
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230027, P. R. China
| | - Yi Hu
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230027, P. R. China
| | - Yi-Ming Liu
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230027, P. R. China
| | - Ming Chen
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230027, P. R. China
- Department of Pharmacology, Anhui University of Chinese Medicine, Hefei, Anhui, 230038, P.R. China
- Anhui Anke Biotechnology (Group) Co., Ltd, Hefei, Anhui, 230088, P. R. China
| | - Zheng-Quan Li
- Department of Materials Physics, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Xue-Sheng Liu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, 230022, P. R. China
| | - Li Bai
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230027, P. R. China
| | - Long-Ping Wen
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230027, P. R. China
| |
Collapse
|
246
|
Augustine S, Singh J, Srivastava M, Sharma M, Das A, Malhotra BD. Recent advances in carbon based nanosystems for cancer theranostics. Biomater Sci 2017; 5:901-952. [DOI: 10.1039/c7bm00008a] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review deals with four different types of carbon allotrope based nanosystems and summarizes the results of recent studies that are likely to have applications in cancer theranostics. We discuss the applications of these nanosystems for cancer imaging, drug delivery, hyperthermia, and PDT/TA/PA.
Collapse
Affiliation(s)
- Shine Augustine
- NanoBioelectronics Laboratory
- Department of Biotechnology
- Delhi Technological University
- Delhi 110042
- India
| | - Jay Singh
- Department of Applied Chemistry & Polymer Technology
- Delhi Technological University
- Delhi 110042
- India
| | - Manish Srivastava
- Department of Physics & Astrophysics
- University of Delhi
- Delhi 110007
- India
| | - Monica Sharma
- NanoBioelectronics Laboratory
- Department of Biotechnology
- Delhi Technological University
- Delhi 110042
- India
| | - Asmita Das
- NanoBioelectronics Laboratory
- Department of Biotechnology
- Delhi Technological University
- Delhi 110042
- India
| | - Bansi D. Malhotra
- NanoBioelectronics Laboratory
- Department of Biotechnology
- Delhi Technological University
- Delhi 110042
- India
| |
Collapse
|
247
|
Zeineldin R, Syoufjy J. Cancer Nanotechnology: Opportunities for Prevention, Diagnosis, and Therapy. Methods Mol Biol 2017; 1530:3-12. [PMID: 28150193 DOI: 10.1007/978-1-4939-6646-2_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nanotechnological innovations over the last 16 years have brought about the potential to revolutionize specific therapeutic drug delivery to cancer tissue without affecting normal tissues. In addition, there are new nanotechnology-based platforms for diagnosis of cancers and for theranostics, i.e., integrating diagnosis with therapy and follow-up of effectiveness of therapy. This chapter presents an overview of these nanotechnology-based advancements in the areas of prevention, diagnosis, therapy, and theranostics for cancer. In addition, we stress the need to educate bio- and medical students in the field of nanotechnology.
Collapse
Affiliation(s)
- Reema Zeineldin
- School of Applied Sciences, Mount Ida College, 777 Dedham Street, Newton, MA, 02459, USA.
| | | |
Collapse
|
248
|
Finetti F, Terzuoli E, Donnini S, Uva M, Ziche M, Morbidelli L. Monitoring Endothelial and Tissue Responses to Cobalt Ferrite Nanoparticles and Hybrid Hydrogels. PLoS One 2016; 11:e0168727. [PMID: 28036325 PMCID: PMC5201301 DOI: 10.1371/journal.pone.0168727] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 12/05/2016] [Indexed: 11/19/2022] Open
Abstract
Iron oxide nanoparticles (NPs) have been proposed for many biomedical applications as in vivo imaging and drug delivery in cancer treatment, but their toxicity is an ongoing concern. When NPs are intravenously administered, the endothelium represents the first barrier to tissue diffusion/penetration. However, there is little information about the biological effects of NPs on endothelial cells. In this work we showed that cobalt-ferrite (CoFe2O4) NPs affect endothelial cell integrity by increasing permeability, oxidative stress, inflammatory profile and by inducing cytoskeletal modifications. To overcome these problems, NPs have be loaded into biocompatible gels to form nanocomposite hybrid material (polysaccharide hydrogels containing magnetic NPs) that can be further conjugated with anticancer drugs to allow their release close to the target. The organic part of hybrid biomaterials is a carboxymethylcellulose (CMC) polymer, while the inorganic part consists of CoFe2O4 NPs coated with (3-aminopropyl)trimethoxysilane. The biological activity of these hybrid hydrogels was evaluated in vitro and in vivo. Our findings showed that hybrid hydrogels, instead of NPs alone, were not toxic on endothelial, stromal and epithelial cells, safe and biodegradable in vivo. In conclusion, biohydrogels with paramagnetic NPs as cross-linkers can be further exploited for antitumor drug loading and delivery systems.
Collapse
Affiliation(s)
| | | | | | - Marianna Uva
- Dept. Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Marina Ziche
- Dept. Life Sciences, University of Siena, Siena, Italy
| | | |
Collapse
|
249
|
Preparation of the Sm3+-Doped Magnetic Nanoparticles via Microwave-Assisted Polyol Synthesis. BIONANOSCIENCE 2016. [DOI: 10.1007/s12668-016-0385-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
250
|
Yüksel Y, Akıncı Ü. Influence of time dependent longitudinal magnetic fields on the cooling process, exchange bias and magnetization reversal mechanism in FM core/AFM shell nanoparticles: a Monte Carlo study. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:486003. [PMID: 27689447 DOI: 10.1088/0953-8984/28/48/486003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Using Monte Carlo simulations, we have investigated the dynamic phase transition properties of magnetic nanoparticles with ferromagnetic core coated by an antiferromagnetic shell structure. Effects of field amplitude and frequency on the thermal dependence of magnetizations, magnetization reversal mechanisms during hysteresis cycles, as well as on the exchange bias and coercive fields have been examined, and the feasibility of applying dynamic magnetic fields on the particle have been discussed for technological and biomedical purposes.
Collapse
Affiliation(s)
- Yusuf Yüksel
- Department of Physics, Dokuz Eylül University, Tinaztepe Campus, TR-35160 Izmir, Turkey
| | | |
Collapse
|