251
|
Moritz KE, McCormack NM, Abera MB, Viollet C, Yauger YJ, Sukumar G, Dalgard CL, Burnett BG. The role of the immunoproteasome in interferon-γ-mediated microglial activation. Sci Rep 2017; 7:9365. [PMID: 28839214 PMCID: PMC5571106 DOI: 10.1038/s41598-017-09715-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/14/2017] [Indexed: 11/12/2022] Open
Abstract
Microglia regulate the brain microenvironment by sensing damage and neutralizing potentially harmful insults. Disruption of central nervous system (CNS) homeostasis results in transition of microglia to a reactive state characterized by morphological changes and production of cytokines to prevent further damage to CNS tissue. Immunoproteasome levels are elevated in activated microglia in models of stroke, infection and traumatic brain injury, though the exact role of the immunoproteasome in neuropathology remains poorly defined. Using gene expression analysis and native gel electrophoresis we characterize the expression and assembly of the immunoproteasome in microglia following interferon-gamma exposure. Transcriptome analysis suggests that the immunoproteasome regulates multiple features of microglial activation including nitric oxide production and phagocytosis. We show that inhibiting the immunoproteasome attenuates expression of pro-inflammatory cytokines and suppresses interferon-gamma-dependent priming of microglia. These results imply that targeting immunoproteasome function following CNS injury may attenuate select microglial activity to improve the pathophysiology of neurodegenerative conditions or the progress of inflammation-mediated secondary injury following neurotrauma.
Collapse
Affiliation(s)
- Kasey E Moritz
- Neuroscience Program, Uniformed Services University of the Health Sciences, F. Edward Hébert School of Medicine, Bethesda, MD, USA
| | - Nikki M McCormack
- Neuroscience Program, Uniformed Services University of the Health Sciences, F. Edward Hébert School of Medicine, Bethesda, MD, USA
| | - Mahlet B Abera
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Coralie Viollet
- Collaborative Health Initiative Research Program, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Young J Yauger
- Neuroscience Program, Uniformed Services University of the Health Sciences, F. Edward Hébert School of Medicine, Bethesda, MD, USA
| | - Gauthaman Sukumar
- Collaborative Health Initiative Research Program, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Clifton L Dalgard
- Neuroscience Program, Uniformed Services University of the Health Sciences, F. Edward Hébert School of Medicine, Bethesda, MD, USA.,Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Collaborative Health Initiative Research Program, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,The American Genome Center, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Barrington G Burnett
- Neuroscience Program, Uniformed Services University of the Health Sciences, F. Edward Hébert School of Medicine, Bethesda, MD, USA. .,Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| |
Collapse
|
252
|
Wang X, Wang J, Yu Y, Ma T, Chen P, Zhou B, Tao R. Decitabine inhibits T cell proliferation via a novel TET2-dependent mechanism and exerts potent protective effect in mouse auto- and allo-immunity models. Oncotarget 2017; 8:56802-56815. [PMID: 28915632 PMCID: PMC5593603 DOI: 10.18632/oncotarget.18063] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 04/25/2017] [Indexed: 12/17/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease characterized by the dysregulated immune response including innate and adaptive immune responses. Increasing evidence has proven the importance of epigenetic modification in the progression of MS. Recent studies revealed that low-dose decitabine (Dec, 5-Aza-2'-deoxycytidine), which incorporates into replicating DNA and inhibits DNA methylation, could prevent experimental autoimmune encephalomyelitis (EAE) development by increasing the number of regulatory T cells (Tregs). Here, we showed that higher-dose decitabine relative to previous studies could also distinctly protect mice from EAE and allogeneic cardiac transplantation. Mechanistic studies revealed decitabine suppressed innate responses in EAE mice through inhibiting the activation of microglia and monocyte-derived macrophages that contributed to reduce the severity of EAE. Furthermore, differentiation of naïve CD4+ T cells into Th1 and Th17 cells was significantly suppressed by decitabine in vivo and in vitro. Though in vitro studies showed decitabine could induce Treg differentiation, there was no obvious change in the percentage of Tregs in Dec-treated EAE mice. Most importantly, we found that T cell proliferation was potently inhibited in vivo and in vitro by higher-dose decitabine through increased gene expression of the DNA dioxygenase TET2 which facilitated the expression of several cell cycle inhibitors. Collectively, our study provides novel mechanistic insights of using the epigenetic modifying agents in the management of both allo- and auto-immune responses.
Collapse
Affiliation(s)
- Xue Wang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Jun Wang
- Department of Thoracic Surgery, Hangzhou Municipal Hospital of Traditional Chinese Medicine, Hangzhou, PR China
| | - Yong Yu
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Tonghui Ma
- Provincial Key Laboratory of Cardiac Transplantation, Zhejiang Provincial People's Hospital (ZJPPH), Hangzhou, PR China
| | - Ping Chen
- Provincial Key Laboratory of Cardiac Transplantation, Zhejiang Provincial People's Hospital (ZJPPH), Hangzhou, PR China
- Department of Obstetrics & Gynecology, Shaoxing Second Municipal Hospital, Shaoxing, PR China
| | - Bing Zhou
- Provincial Key Laboratory of Cardiac Transplantation, Zhejiang Provincial People's Hospital (ZJPPH), Hangzhou, PR China
- Department of Cardiothoracic Surgery, Zhejiang Provincial People's Hospital (ZJPPH), Hangzhou, PR China
| | - Ran Tao
- Provincial Key Laboratory of Cardiac Transplantation, Zhejiang Provincial People's Hospital (ZJPPH), Hangzhou, PR China
- Department of Hepatobiliary-Pancreatic & Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (ZJPPH), Hangzhou, PR China
| |
Collapse
|
253
|
Bolós M, Llorens-Martín M, Perea JR, Jurado-Arjona J, Rábano A, Hernández F, Avila J. Absence of CX3CR1 impairs the internalization of Tau by microglia. Mol Neurodegener 2017; 12:59. [PMID: 28810892 PMCID: PMC5558740 DOI: 10.1186/s13024-017-0200-1] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 08/07/2017] [Indexed: 12/22/2022] Open
Abstract
Background Extracellular Tau is toxic for neighboring cells, and it contributes to the progression of AD. The CX3CL1/CX3CR1 axis is an important neuron/microglia communication mechanism. Methods We studied Tau clearance by microglia both in vitro (microglia primary cultures treated with Cy5-Tau, affinity chromatography to study the binding of Tau to CX3CR1, and Tau-CX3CL1 competition assays) and in vivo (stereotaxic injection of Cy5-Tau into WT and CX3CR1−/− mice). The expression of CX3CR1, CX3CL1 and the microglial phagocytic phenotype were studied in brain tissue samples from AD patients. Results Tau binding to CX3CR1 triggers the internalization of the former by microglia, whereas S396 Tau phosphorylation decreases the binding affinity of this protein to CX3CR1. Of note, the progressive increase in the levels of phosho-Tau occurred in parallel with an increase in CX3CR1. In addition, our studies suggest that the phagocytic capacity of microglia in brain tissue samples from AD patients is decreased. Furthermore, the CX3CR1/CX3CL1 axis may be impaired in late stages of the disease. Conclusions Our data suggest that the CX3CR1/CX3CL1 axis plays a key role in the phagocytosis of Tau by microglia in vitro and in vivo and that it is affected as AD progresses. Taken together, our results reveal CX3CR1 as a novel target for the clearance of extracellular Tau. Electronic supplementary material The online version of this article (doi:10.1186/s13024-017-0200-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marta Bolós
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Valderrebollo 5, 28041, Madrid, Spain. .,Centro de Biología Molecular "Severo Ochoa" CSIC-UAM, Universidad Autónoma de Madrid, C/ Nicolás Cabrera 1, 28049, Madrid, Spain.
| | - María Llorens-Martín
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Valderrebollo 5, 28041, Madrid, Spain.,Centro de Biología Molecular "Severo Ochoa" CSIC-UAM, Universidad Autónoma de Madrid, C/ Nicolás Cabrera 1, 28049, Madrid, Spain.,Department for Molecular Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
| | - Juan Ramón Perea
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Valderrebollo 5, 28041, Madrid, Spain.,Centro de Biología Molecular "Severo Ochoa" CSIC-UAM, Universidad Autónoma de Madrid, C/ Nicolás Cabrera 1, 28049, Madrid, Spain
| | - Jerónimo Jurado-Arjona
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Valderrebollo 5, 28041, Madrid, Spain.,Centro de Biología Molecular "Severo Ochoa" CSIC-UAM, Universidad Autónoma de Madrid, C/ Nicolás Cabrera 1, 28049, Madrid, Spain
| | - Alberto Rábano
- Neuropathology Department, CIEN Foundation, Madrid, Spain
| | - Félix Hernández
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Valderrebollo 5, 28041, Madrid, Spain.,Centro de Biología Molecular "Severo Ochoa" CSIC-UAM, Universidad Autónoma de Madrid, C/ Nicolás Cabrera 1, 28049, Madrid, Spain
| | - Jesús Avila
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Valderrebollo 5, 28041, Madrid, Spain. .,Centro de Biología Molecular "Severo Ochoa" CSIC-UAM, Universidad Autónoma de Madrid, C/ Nicolás Cabrera 1, 28049, Madrid, Spain.
| |
Collapse
|
254
|
Díaz-Lucena D, Gutierrez-Mecinas M, Moreno B, Martínez-Sánchez JL, Pifarré P, García A. Mechanisms Involved in the Remyelinating Effect of Sildenafil. J Neuroimmune Pharmacol 2017; 13:6-23. [PMID: 28776122 DOI: 10.1007/s11481-017-9756-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/20/2017] [Indexed: 12/19/2022]
Abstract
Remyelination occurs in demyelinated lesions in multiple sclerosis (MS) and pharmacological treatments that enhance this process will critically impact the long term functional outcome in the disease. Sildenafil, a cyclic GMP (cGMP)-specific phosphodiesterase 5 inhibitor (PDE5-I), is an oral vasodilator drug extensively used in humans for treatment of erectile dysfunction and pulmonary arterial hypertension. PDE5 is expressed in central nervous system (CNS) neuronal and glial populations and in endothelial cells and numerous studies in rodent models of neurological disease have evidenced the neuroprotective potential of PDE5-Is. Using myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE) as a MS model, we previously showed that daily administration of sildenafil starting at peak disease rapidly ameliorates clinical symptoms while administration at symptoms onset prevents disease progression. These beneficial effects of the drug involved down-regulation of adaptive and innate immune responses, protection of axons and oligodendrocytes (OLs) and promotion of remyelination. In this work we have investigated mechanisms involved in the remyelinating effect of sildenafil. Using demyelinated organotypic cerebellar slice cultures we demonstrate that sildenafil stimulates remyelination by direct effects on CNS cells in a nitric oxide (NO)-cGMP-protein kinase G (PKG)-dependent manner. We also show that sildenafil treatment enhances OL maturation and induces expression of the promyelinating factor ciliary neurotrophic factor (CNTF) in spinal cord of EAE mice and in cerebellar slice cultures. Furthermore, we demonstrate that sildenafil promotes a M2 phenotype in bone marrow derived macrophages (BMDM) and increases myelin phagocytosis in these cells and in M2 microglia/macrophages in the spinal cord of EAE mice. Taken together these data indicate that promotion of OL maturation directly or through induction of growth factor expression, regulation of microglia/macrophage inflammatory phenotype and clearance of myelin debris may be relevant mechanisms involved in sildenafil enhancement of remyelination in demyelinated tissue and further support the contention that this well tolerated drug could be useful for ameliorating MS pathology.
Collapse
Affiliation(s)
- Daniela Díaz-Lucena
- Institute of Biotechnology and Biomedicine and Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain.,Institute of Neuropathology, IDIBELL-Hospital Universitari de Bellvitge, Hospitalet de Llobregat, 08097, Barcelona, Spain
| | - María Gutierrez-Mecinas
- Institute of Biotechnology and Biomedicine and Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain.,Institute of Neuroscience and Psychology, University of Glasgow, G12 8QQ, Glasgow, UK
| | - Beatriz Moreno
- Institute of Biotechnology and Biomedicine and Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain.,Basic Sciences Department, Universitat Internacional de Catalunya, Sant Cugat del Vallès, 08195, Barcelona, Spain
| | - José Lupicinio Martínez-Sánchez
- Institute of Biotechnology and Biomedicine and Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain.,Barts Cancer Institute, London, EC1M 6BQ, UK
| | - Paula Pifarré
- Institute of Biotechnology and Biomedicine and Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain. .,Centre for Genomic Regulation CRG, PRBB Building, 08003, Barcelona, Spain.
| | - Agustina García
- Institute of Biotechnology and Biomedicine and Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain.
| |
Collapse
|
255
|
Tian F, Yuan C, Hu L, Shan S. MicroRNA-93 inhibits inflammatory responses and cell apoptosis after cerebral ischemia reperfusion by targeting interleukin-1 receptor-associated kinase 4. Exp Ther Med 2017; 14:2903-2910. [PMID: 28912849 PMCID: PMC5585731 DOI: 10.3892/etm.2017.4874] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 05/31/2017] [Indexed: 11/16/2022] Open
Abstract
The present study aimed to investigate changes in the expression of interleukin (IL)-1 receptor-associated kinase 4 (IRAK4) and microRNA (miRNA or miR)-93 in mice with cerebral ischemia reperfusion (CIR) injury, as well as the association and regulatory mechanism between IRAK4 and miR-93. The CIR mouse model was constructed and mouse microglia BV2 cells were transfected with miR-93 mimic or miR-93 inhibitor. Quantitative polymerase chain reaction was used to measure the expression of mRNA and miR-93. Western blotting was performed to determine protein expression. Enzyme-linked immunosorbent assays were performed to measure the concentrations pro-inflammatory factors. The expression of miR-93 in CIR mice brains was significantly reduced, while Ago-miR-93 (a type of miRNA analog) increased its expression. Ago-miR-93 alleviated neurological deficits and reduced cerebral infarction volume in the mice. Furthermore, Ago-miR-93 inhibited inflammatory responses following CIR. Ago-miR-93 decreased the rate of cell apoptosis following CIR. In addition, miR-93 downregulated IRAK4 protein expression, but did not alter its mRNA expression levels in BV2 cells. miR-93 expression reduced the expression of pro-inflammatory factors in BV2 cells. Ago-miR-93 inhibited IRAK4 expression in the brain tissues of CIR mice. The present study demonstrated that miR-93 inhibits inflammatory responses and cell apoptosis following CIR by targeting the IRAK4 signaling pathway.
Collapse
Affiliation(s)
- Feng Tian
- Department of Neurology, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Chao Yuan
- Department of Neurology, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Lixun Hu
- Department of Pathophysiology, College of Basic Medicine, Jining Medical University, Jining, Shandong 272013, P.R. China
| | - Shihai Shan
- Department of Neurology, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| |
Collapse
|
256
|
Hendriksen E, van Bergeijk D, Oosting RS, Redegeld FA. Mast cells in neuroinflammation and brain disorders. Neurosci Biobehav Rev 2017; 79:119-133. [DOI: 10.1016/j.neubiorev.2017.05.001] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 05/01/2017] [Accepted: 05/01/2017] [Indexed: 12/13/2022]
|
257
|
Wang X, Li M, Cao Y, Wang J, Zhang H, Zhou X, Li Q, Wang L. Tenuigenin inhibits LPS-induced inflammatory responses in microglia via activating the Nrf2-mediated HO-1 signaling pathway. Eur J Pharmacol 2017; 809:196-202. [DOI: 10.1016/j.ejphar.2017.05.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 05/02/2017] [Accepted: 05/02/2017] [Indexed: 02/06/2023]
|
258
|
Zhang Y, Liang Y, Levran O, Randesi M, Yuferov V, Zhao C, Kreek MJ. Alterations of expression of inflammation/immune-related genes in the dorsal and ventral striatum of adult C57BL/6J mice following chronic oxycodone self-administration: a RNA sequencing study. Psychopharmacology (Berl) 2017; 234:2259-2275. [PMID: 28653080 PMCID: PMC5826641 DOI: 10.1007/s00213-017-4657-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 05/25/2017] [Indexed: 01/03/2023]
Abstract
INTRODUCTION Non-medical use of prescription opioids such as the mu opioid receptor (MOP-r) agonist oxycodone is a growing problem in the USA and elsewhere. There is limited information about oxycodone's impact on diverse gene systems in the brain. OBJECTIVES The current study was designed to examine how chronic oxycodone self-administration (SA) affects gene expression in the terminal areas of the nigrostriatal and mesolimbic dopaminergic pathways in mice. METHOD Adult male C57BL/6J mice underwent a 14-day oxycodone self-administration procedure (4 h/day, 0.25 mg/kg/infusion, FR1) and were euthanized 1 h after the last session. The dorsal and ventral striata were dissected, and total RNAs were extracted. Gene expressions were examined using RNA sequencing. RESULT We found that oxycodone self-administration exposure led to alterations of expression in numerous genes related to inflammation/immune functions in the dorsal striatum (54 upregulated genes and 1 downregulated gene) and ventral striatum (126 upregulated genes and 15 downregulated genes), with 38 upregulated genes identified in both brain regions. CONCLUSION This study reveals novel neurobiological mechanisms underlying some of the effects of a commonly abused prescription opioid. We propose that inflammation/immune gene systems may undergo a major change during chronic self-administration of oxycodone.
Collapse
Affiliation(s)
- Yong Zhang
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, Box 171, New York, NY, 10065, USA.
| | - Yupu Liang
- Research Bioinformatics, CCTS, The Rockefeller University, New York, NY 10065
| | - Orna Levran
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY 10065
| | - Matthew Randesi
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY 10065
| | - Vadim Yuferov
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY 10065
| | - Connie Zhao
- Genomics Resource Center, The Rockefeller University, New York, NY, 10065
| | - Mary Jeanne Kreek
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY 10065
| |
Collapse
|
259
|
Vujosevic S, Torresin T, Bini S, Convento E, Pilotto E, Parrozzani R, Midena E. Imaging retinal inflammatory biomarkers after intravitreal steroid and anti-VEGF treatment in diabetic macular oedema. Acta Ophthalmol 2017; 95:464-471. [PMID: 27775223 DOI: 10.1111/aos.13294] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 09/16/2016] [Indexed: 01/05/2023]
Abstract
PURPOSE To evaluate changes of specific retinal imaging biomarkers [intraretinal hyper-reflective retinal spots: HRS ; subfoveal neuroretinal detachment: SND; and increased foveal autofluorescence: IFAF after intravitreal steroid or anti-vascular endothelial growth factor treatment in diabetic macular oedema (DME)] as possible indicators of retinal inflammatory condition. METHODS Retrospective analysis of images and clinical charts of 49 eyes (49 patients) with DME treated with intravitreal dexamethasone (dexamethasone, 23 eyes) or intravitreal ranibizumab (ranibizumab, 26 eyes). All patients had fundus colour photograph, spectral domain optical coherence tomography (SD OCT) and fundus autofluorescence (FAF), best-corrected visual acuity (BCVA) and microperimetry recorded before and 1 month after the end of treatment. Central macular thickness (CMT), number of HRS and presence of SND were evaluated by SD OCT. Fundus autofluorescence images were evaluated for area of (IFAF). Retinal sensitivity within 4° and 12° from fovea was quantified by microperimetry. Changes in morphologic and functional parameters were assessed, and correlation was performed by Pearson's correlation. RESULTS Best-corrected visual acuity and CMT improved in all patients, (p < 0.05, for both groups). Mean number of HRS decreased after both treatments (p < 0.0001). Subfoveal neuroretinal detachment resolved in 85.7% dexamethasone-treated eyes (p = 0.014) and in 50% ranibizumab-treated eyes (p = 0.025). Mean IFAF area decreased in both groups, (p < 0.0001, for both). A significantly higher decrease in CMT was observed in dexamethasone- versus ranibizumab-treated eyes, (p = 0.032). In dexamethasone group, higher number of HRS at baseline and larger IFAF were correlated with higher increase in retinal sensitivity; eyes with SND at baseline had major decrease in CMT versus those without SND, (p = 0.003). CONCLUSION Higher number of HRS, larger area of IFAF and presence of SND may indicate a prevalent inflammatory condition in DME with specific response to targeted treatment.
Collapse
Affiliation(s)
- Stela Vujosevic
- Department of Ophthalmology; University of Padova; Padova Italy
| | | | - Silvia Bini
- Department of Ophthalmology; University of Padova; Padova Italy
| | - Enrica Convento
- Department of Ophthalmology; University of Padova; Padova Italy
| | | | | | - Edoardo Midena
- Department of Ophthalmology; University of Padova; Padova Italy
- Fondazione G. B. Bietti; IRCCS; Roma Italy
| |
Collapse
|
260
|
Wang J, Yang C, Zhao Q, Zhu Z, Li Y, Yang P. Microglia activation induced by serum of SLE patients. J Neuroimmunol 2017; 310:135-142. [PMID: 28778438 DOI: 10.1016/j.jneuroim.2017.07.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 06/30/2017] [Accepted: 07/17/2017] [Indexed: 01/10/2023]
Abstract
To investigate the potential involvement of microglia in the neuropathology of systemic lupus erythematosus (SLE), we examined whether SLE patient sera could activate BV2 microglia in vitro. Exposure to SLE patient sera resulted in morphological changes in the microglia, an increase in MHC II and CD86 protein expression, and an obvious release of nitric oxide and proinflammatory cytokines. However, the SLE sera did not induce a specific change in the production of immunoregulatory cytokines. Inactivating complements or neutralizing proinflammatory cytokines in the SLE sera did not suppress microglial activation. Our results highlight the potential role of microglia in neuroinflammation in SLE patients.
Collapse
Affiliation(s)
- Jianing Wang
- Department of Rheumatology and Immunology, First Affiliated Hospital, China Medical University, Shenyang 110001, People's Republic of China
| | - Chunshu Yang
- Department of 1st Cancer Institute, First Affiliated Hospital, China Medical University, Shenyang 110001, People's Republic of China
| | - Qi Zhao
- Department of Rheumatology and Immunology, First Affiliated Hospital, China Medical University, Shenyang 110001, People's Republic of China
| | - Ziwei Zhu
- Department of Rheumatology and Immunology, First Affiliated Hospital, China Medical University, Shenyang 110001, People's Republic of China
| | - Yujia Li
- Department of Rheumatology and Immunology, First Affiliated Hospital, China Medical University, Shenyang 110001, People's Republic of China
| | - Pingting Yang
- Department of Rheumatology and Immunology, First Affiliated Hospital, China Medical University, Shenyang 110001, People's Republic of China.
| |
Collapse
|
261
|
Yenkoyan K, Grigoryan A, Fereshetyan K, Yepremyan D. Advances in understanding the pathophysiology of autism spectrum disorders. Behav Brain Res 2017; 331:92-101. [DOI: 10.1016/j.bbr.2017.04.038] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 04/16/2017] [Accepted: 04/18/2017] [Indexed: 10/19/2022]
|
262
|
Elbay A, Ozdemir H, Koytak A, Melikov A. Intravitreal Dexamethasone Implant for Treatment of Serous Macular Detachment in Central Retinal Vein Occlusion. J Ocul Pharmacol Ther 2017; 33:473-479. [DOI: 10.1089/jop.2016.0187] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ahmet Elbay
- Department of Ophthalmology, Bezmialem Vakif University School of Medicine, Istanbul, Turkey
| | - Hakan Ozdemir
- Department of Ophthalmology, Bezmialem Vakif University School of Medicine, Istanbul, Turkey
| | - Arif Koytak
- Department of Ophthalmology, Bezmialem Vakif University School of Medicine, Istanbul, Turkey
| | - Arif Melikov
- Department of Ophthalmology, Bezmialem Vakif University School of Medicine, Istanbul, Turkey
| |
Collapse
|
263
|
Rodríguez AM, Delpino MV, Miraglia MC, Costa Franco MM, Barrionuevo P, Dennis VA, Oliveira SC, Giambartolomei GH. Brucella abortus-activated microglia induce neuronal death through primary phagocytosis. Glia 2017; 65:1137-1151. [PMID: 28398652 DOI: 10.1002/glia.23149] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 02/13/2017] [Accepted: 03/22/2017] [Indexed: 01/18/2023]
Abstract
Inflammation has long been implicated as a contributor to pathogenesis in neurobrucellosis. Many of the associated neurocognitive symptoms of neurobrucellosis may be the result of neuronal dysfunction resulting from the inflammatory response induced by Brucella abortus infection in the central nervous system. In this manuscript, we describe an immune mechanism for inflammatory activation of microglia that leads to neuronal death upon B. abortus infection. B. abortus was unable to infect or harm primary cultures of mouse neurons. However, when neurons were co-cultured with microglia and infected with B. abortus significant neuronal loss occurred. This phenomenon was dependent on TLR2 activation by Brucella lipoproteins. Neuronal death was not due to apoptosis, but it was dependent on the microglial release of nitric oxide (NO). B. abortus infection stimulated microglial proliferation, phagocytic activity and engulfment of neurons. NO secreted by B. abortus-activated microglia induced neuronal exposure of the "eat-me" signal phosphatidylserine (PS). Blocking of PS-binding to protein milk fat globule epidermal growth factor-8 (MFG-E8) or microglial vitronectin receptor-MFG-E8 interaction was sufficient to prevent neuronal loss by inhibiting microglial phagocytosis without affecting their activation. Taken together, our results indicate that B. abortus is not directly toxic to neurons; rather, these cells become distressed and are killed by phagocytosis in the inflammatory surroundings generated by infected microglia. Neuronal loss induced by B. abortus-activated microglia may explain, in part, the neurological deficits observed during neurobrucellosis.
Collapse
Affiliation(s)
- Ana M Rodríguez
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - M Victoria Delpino
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - M Cruz Miraglia
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Miriam M Costa Franco
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte-Minas Gerais, Brazil
| | - Paula Barrionuevo
- Instituto de Medicina Experimental (CONICET-Academia Nacional de Medicina), Buenos Aires, Argentina
| | - Vida A Dennis
- Center for Nano Biotechnology Research and Department of Biological Sciences, Alabama State University, Montgomery, AL
| | - Sergio C Oliveira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte-Minas Gerais, Brazil
| | - Guillermo H Giambartolomei
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
264
|
Natural Docosahexaenoic Acid in the Triglyceride Form Attenuates In Vitro Microglial Activation and Ameliorates Autoimmune Encephalomyelitis in Mice. Nutrients 2017; 9:nu9070681. [PMID: 28665331 PMCID: PMC5537796 DOI: 10.3390/nu9070681] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 06/15/2017] [Accepted: 06/26/2017] [Indexed: 12/25/2022] Open
Abstract
Many neurodegenerative diseases are associated, at least in part, to an inflammatory process in which microglia plays a major role. The effect of the triglyceride form of the omega-3 polyunsaturated fatty acid docosahexaenoic acid (TG-DHA) was assayed in vitro and in vivo to assess the protective and anti-inflammatory activity of this compound. In the in vitro study, BV-2 microglia cells were previously treated with TG-DHA and then activated with Lipopolysaccharide (LPS) and Interferon-gamma (IFN-γ). TG-DHA treatment protected BV-2 microglia cells from oxidative stress toxicity attenuating NO production and suppressing the induction of inflammatory cytokines. When compared with DHA in the ethyl-ester form, a significant difference in the ability to inhibit NO production in favor of TG-DHA was observed. TG-DHA inhibited significantly splenocyte proliferation but isolated CD4+ lymphocyte proliferation was unaffected. In a mice model of autoimmune encephalomyelitis (EAE), 250 mg/kg/day oral TG-DHA treatment was associated with a significant amelioration of the course and severity of the disease as compared to untreated animals. TG-DHA-treated EAE mice showed a better weight profile, which is a symptom related to a better course of encephalomyelitis. TG-DHA may be a promising therapeutic agent in neuroinflammatory processes and merit to be more extensively studied in human neurodegenerative disorders.
Collapse
|
265
|
Lee KY, Kang JY, Yun JI, Chung JY, Hwang IK, Won MH, Choi JH. Age-related change of Iba-1 immunoreactivity in the adult and aged gerbil spinal cord. Anat Cell Biol 2017; 50:135-142. [PMID: 28713617 PMCID: PMC5509897 DOI: 10.5115/acb.2017.50.2.135] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/14/2017] [Accepted: 03/28/2017] [Indexed: 11/27/2022] Open
Abstract
In the present study, we examined change of ionized calcium-binding adapter molecule 1 (Iba-1) in the adult and aged gerbil spinal cords. Significant change of morphological feature and neuronal cell loss were not observed in both adult and aged spinal cords of gerbil after NeuN immunohistochemistry and Fluoro-Jade B histofluoresce staining. Iba-1-immunoreactive microglia broadly distributed in the spinal cord. Most of Iba-1-immunoreactive microglia showed ramified forms in the adult gerbil cervical and lumbar spinal cords. However, morphological changes of Iba-1-immunoreactive microglia were observed in the cervical and lumbar regions of the aged gerbil spinal cord. These microglia were showed a hypertrophied body with shortened swollen processes which was characteristic of activated microglia. In addition, Iba-1 protein level significantly higher in aged cervical and lumbar spinal cords than those in the adult gerbil. The present study showed an increase of activated forms of Iba-1-immunoreactive microglia and its protein level without marked changes in morphological features and neuronal loss in the aged spinal cord compared to those in the adult gerbil spinal cord. This result suggests that the increase of Iba-1 expression in the aged spinal cord may be closely associated with age-related changes in aged gerbil spinal cord.
Collapse
Affiliation(s)
- Kwon Young Lee
- Department of Anatomy, College of Veterinary Medicine, Kangwon National University, Chuncheon, Korea
| | - Joo Yeon Kang
- Department of Anatomy, College of Veterinary Medicine, Kangwon National University, Chuncheon, Korea
| | - Jung Im Yun
- Department of Anatomy, College of Veterinary Medicine, Kangwon National University, Chuncheon, Korea
| | - Jin Young Chung
- Department of Veterinary Internal Medicine and Geriatrics, College of Veterinary Medicine, Kangwon National University, Chuncheon, Korea
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - Moo Ho Won
- Department of Neurobiology, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Jung Hoon Choi
- Department of Anatomy, College of Veterinary Medicine, Kangwon National University, Chuncheon, Korea
| |
Collapse
|
266
|
Deguchi T, Kim DG, Kamioka H. CO 2 low-level laser therapy has an early but not delayed pain effect during experimental tooth movement. Orthod Craniofac Res 2017. [PMID: 28643927 DOI: 10.1111/ocr.12158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVES To test the hypothesis that the use of low-level laser therapy (LLLT) reduces elevated pain by controlling the release of neurochemicals during orthodontic tooth movement. SETTING AND SAMPLE POPULATION Department of Orthodontics and Dentofacial Orthopedics, Okayama University. Sixty-five Sprague Dawley rats were subjected to tooth movement and LLLT. MATERIALS AND METHODS Adult Sprague Dawley rats were used in this study. Groups included day 0 controls, irradiation only controls and with or without irradiation sacrificed at 1, 3, 5, 7 and 14 days after tooth movement (n=5 each, total n=65). Tooth movement was achieved by insertion of an elastic module between molar teeth. Immunohistochemistry for CD-11b, GFAP and c-fos in the brain stem was performed. Stains were quantified by constructing a three-dimensional image using IMARIS, and counted using NEURON TRACER and WinROOF software. Two-way ANOVA followed by a Tukey's post hoc test (P<.05) was used for statistical comparison between groups. RESULTS C-fos expression was significantly increased at one and three days after tooth movement. LLLT significantly diminished this increase in c-fos expression only at one day after tooth movement CD-b11 and GFAP expression also significantly increased after tooth movement. No significant change was observed for CD-11b and GFAP expression in the central nervous system upon LLLT. CONCLUSION Low-level laser therapy may reduce early neurochemical markers but have no effect on delayed pain neurochemical markers after tooth movement.
Collapse
Affiliation(s)
- T Deguchi
- Division of Orthodontics, The Ohio State University College of Dentistry, Columbus, OH, USA
| | - D G Kim
- Division of Orthodontics, The Ohio State University College of Dentistry, Columbus, OH, USA
| | - H Kamioka
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
267
|
He W, Zhao Z, Anees A, Li Y, Ashraf U, Chen Z, Song Y, Chen H, Cao S, Ye J. p21-Activated Kinase 4 Signaling Promotes Japanese Encephalitis Virus-Mediated Inflammation in Astrocytes. Front Cell Infect Microbiol 2017; 7:271. [PMID: 28680855 PMCID: PMC5478680 DOI: 10.3389/fcimb.2017.00271] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 06/06/2017] [Indexed: 01/11/2023] Open
Abstract
Japanese encephalitis virus (JEV) targets central nervous system, resulting in neuroinflammation with typical features of neuronal death along with hyper activation of glial cells. Exploring the mechanisms responsible for the JEV-caused inflammatory response remains a pivotal area of research. In the present study, we have explored the function of p21-activated kinase 4 (PAK4) in JEV-mediated inflammatory response in human astrocytes. The results showed that JEV infection enhances the phosphorylation of PAK4 in U251 cells and mouse brain. Knockdown of PAK4 resulted in decreased expression of inflammatory cytokines that include tumor necrosis factor alpha, interleukin-6, interleukin-1β, and chemokine (C-C motif) ligand 5 and interferon β upon JEV infection, suggesting that PAK4 signaling promotes JEV-mediated inflammation. In addition, we found that knockdown of PAK4 led to the inhibition of MAPK signaling including ERK, p38 MAPK and JNK, and also resulted in the reduced nuclear translocation of NF-κB and phosphorylation of AP-1. These results demonstrate that PAK4 signaling actively promotes JEV-mediated inflammation in human astrocytes via MAPK-NF-κB/AP-1 pathway, which will provide a new insight into the molecular mechanism of the JEV-induced inflammatory response.
Collapse
Affiliation(s)
- Wen He
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural UniversityWuhan, China
| | - Zikai Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural UniversityWuhan, China
| | - Awais Anees
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural UniversityWuhan, China
| | - Yunchuan Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural UniversityWuhan, China
| | - Usama Ashraf
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural UniversityWuhan, China
| | - Zheng Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural UniversityWuhan, China
| | - Yunfeng Song
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural UniversityWuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural UniversityWuhan, China
| | - Shengbo Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural UniversityWuhan, China
| | - Jing Ye
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural UniversityWuhan, China.,College of Life Science and Technology, Huazhong Agricultural UniversityWuhan, China
| |
Collapse
|
268
|
Yao X, Liu S, Ding W, Yue P, Jiang Q, Zhao M, Hu F, Zhang H. TLR4 signal ablation attenuated neurological deficits by regulating microglial M1/M2 phenotype after traumatic brain injury in mice. J Neuroimmunol 2017; 310:38-45. [PMID: 28778443 DOI: 10.1016/j.jneuroim.2017.06.006] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 05/29/2017] [Accepted: 06/19/2017] [Indexed: 11/30/2022]
Abstract
Traumatic brain injury (TBI) initiates inflammatory responses that result in an enduring cascade of secondary neuronal loss and behavioural impairment. Toll-like receptor 4 (TLR4), predominantly expressed by microglia, recognizes damage-associated molecular patterns (DAMPs) and regulates inflammatory processes. Interestingly, the switch of microglial M1/M2 phenotypes after TBI is highly important regarding damage and restoration of neurological function. Therefore, we investigated the role and mechanisms of the TLR4 signalling pathway in regulating microglial M1/M2 phenotypes. Using a controlled cortical impact (CCI) model, we found that TLR4 knockout (KO) mice exhibited decreased infarct volumes and improved outcomes in behavioural tests. In addition, mice lacking TLR4 had higher expression of M2 phenotype biomarkers but lower expression of M1 phenotype biomarkers. Compared with microglia derived from wild-type (WT) mice, increased expression of M2 phenotype biomarkers and decreased expression of M1 phenotype biomarkers were also noted in primary cultures of microglia from TLR4 KO mice. In TLR4 KO mice, the expression levels of downstream signalling molecules of TLR4, such as active Rac-1 and phospho-AKT, were higher, while MyD88 and phospho-NF-κB p65 expression levels were lower than in WT mice. Our results demonstrate that the absence of TLR4 induces microglial polarization toward the M2 phenotype and promotes microglial migration and, in turn, alleviates the development of neuroinflammation, which indicates potential neuroprotective effects in the TBI mouse model. Furthermore, up-regulation of IL-4 expression in TLR4 KO mice could contribute to anti-inflammatory functions and promote microglial polarization toward the M2 phenotype, which might be mediated by active Rac-1 expression. Taken together, TLR4 deficiency contributes to regulating microglia to switch to the M2 phenotype, which ameliorates neurological impairment after TBI.
Collapse
Affiliation(s)
- Xiaolong Yao
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan, 430030, PR China
| | - Shengwen Liu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan, 430030, PR China
| | - Wei Ding
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan, 430030, PR China
| | - Pengjie Yue
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan, 430030, PR China
| | - Qian Jiang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan, 430030, PR China
| | - Min Zhao
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan, 430030, PR China
| | - Feng Hu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan, 430030, PR China
| | - Huaqiu Zhang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan, 430030, PR China.
| |
Collapse
|
269
|
Gonçalves J, Leitão RA, Higuera-Matas A, Assis MA, Coria SM, Fontes-Ribeiro C, Ambrosio E, Silva AP. Extended-access methamphetamine self-administration elicits neuroinflammatory response along with blood-brain barrier breakdown. Brain Behav Immun 2017; 62:306-317. [PMID: 28237710 DOI: 10.1016/j.bbi.2017.02.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 02/14/2017] [Accepted: 02/19/2017] [Indexed: 12/18/2022] Open
Abstract
Methamphetamine (METH) is a highly addictive psychostimulant drug that can lead to neurological and psychiatric abnormalities. Several studies have explored the central impact of METH use, but the mechanism(s) underlying blood-brain barrier (BBB) dysfunction and associated neuroinflammatory processes after chronic METH consumption are still unclear. Important findings in the field are mainly based on in vitro approaches and animal studies using an acute METH paradigm, and not much is known about the neurovascular alterations under a chronic drug use. Thus, the present study aimed to fill this crucial gap by exploring the effect of METH-self administration on BBB function and neuroinflammatory responses. Herein, we observed an increase of BBB permeability characterized by Evans blue and albumin extravasation in the rat hippocampus and striatum triggered by extended-access METH self-administration followed by forced abstinence. Also, there was a clear structural alteration of blood vessels showed by the down-regulation of collagen IV staining, which is an important protein of the endothelial basement membrane, together with a decrease of intercellular junction protein levels, namely claudin-5, occludin and vascular endothelial-cadherin. Additionally, we observed an up-regulation of vascular cell and intercellular adhesion molecule, concomitant with the presence of T cell antigen CD4 and tissue macrophage marker CD169 in the brain parenchyma. Rats trained to self-administer METH also presented a neuroinflammatory profile characterized by microglial activation, astrogliosis and increased pro-inflammatory mediators, namely tumor necrosis factor-alpha, interleukine-1 beta, and matrix metalloproteinase-9. Overall, our data provide new insights into METH abuse consequences, with a special focus on neurovascular dysfunction and neuroinflammatory response, which may help to find novel approaches to prevent or diminish brain dysfunction triggered by this overwhelming illicit drug.
Collapse
Affiliation(s)
- Joana Gonçalves
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal; CNC.IBILI, University of Coimbra, Coimbra, Portugal.
| | - Ricardo A Leitão
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal; CNC.IBILI, University of Coimbra, Coimbra, Portugal
| | | | | | - Santiago M Coria
- Department of Psychobiology, School of Psychology, UNED, Madrid, Spain
| | - Carlos Fontes-Ribeiro
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal; CNC.IBILI, University of Coimbra, Coimbra, Portugal
| | - Emilio Ambrosio
- Department of Psychobiology, School of Psychology, UNED, Madrid, Spain
| | - Ana Paula Silva
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal; CNC.IBILI, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
270
|
Integrated Stress Response as a Therapeutic Target for CNS Injuries. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6953156. [PMID: 28536699 PMCID: PMC5425910 DOI: 10.1155/2017/6953156] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 02/24/2017] [Accepted: 04/05/2017] [Indexed: 11/25/2022]
Abstract
Central nervous system (CNS) injuries, caused by cerebrovascular pathologies or mechanical contusions (e.g., traumatic brain injury, TBI) comprise a diverse group of disorders that share the activation of the integrated stress response (ISR). This pathway is an innate protective mechanism, with encouraging potential as therapeutic target for CNS injury repair. In this review, we will focus on the progress in understanding the role of the ISR and we will discuss the effects of various small molecules that target the ISR on different animal models of CNS injury.
Collapse
|
271
|
Yu AC, Neil SE, Quandt JA. High yield primary microglial cultures using granulocyte macrophage-colony stimulating factor from embryonic murine cerebral cortical tissue. J Neuroimmunol 2017; 307:53-62. [PMID: 28495139 DOI: 10.1016/j.jneuroim.2017.03.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/29/2017] [Accepted: 03/30/2017] [Indexed: 01/15/2023]
Abstract
BACKGROUND Microglia play vital roles in neurotrophic support and modulating immune or inflammatory responses to pathogens or damage/stressors during disease. This study describes the ability to establish large numbers of microglia from embryonic tissues with the addition of granulocyte-macrophage stimulating factor (GM-CSF) and characterizes their similarities to adult microglia examined ex vivo as well as their responses to inflammatory mediators. METHOD Microglia were seeded from a primary embryonic mixed cortical suspension with the addition of GM-CSF. Microglial expression of CD45, CD11b, CD11c, MHC class I and II, CD40, CD80, and CD86 was analyzed by flow cytometry and compared to those isolated using different culture methods and to the BV-2 cell line. GM-CSF microglia immunoreactivity and cytokine production was examined in response to lipopolysaccharide (LPS) and interferon-γ (IFN-γ). RESULTS Our results demonstrate GM-CSF addition during microglial culture yields higher cell numbers with greater purity than conventionally cultured primary microglia. We found that the expression of immune markers by GM-CSF microglia more closely resemble adult microglia than other methods or an immortalized BV-2 cell line. Primary differences amongst the different groups were reflected in their levels of CD39, CD86 and MHC class I expression. GM-CSF microglia produce CCL2, tumor necrosis factor-α, IL-6 and IL-10 following exposure to LPS and alter costimulatory marker expression in response to LPS or IFN-γ. Notably, GM-CSF microglia were often more responsive than the commonly used BV-2 cell line which produced negligible IL-10. CONCLUSION GM-CSF cultured microglia closely model the phenotype of adult microglia examined ex vivo. GM-CSF microglia are robust in their responses to inflammatory stimuli, altering immune markers including Iba-1 and expressing an array of cytokines characteristic of both pro-inflammatory and reparative processes. Consequently, the addition of GM-CSF for the culturing of primary microglia serves as a valuable method to increase the potential for studying microglial function ex vivo.
Collapse
Affiliation(s)
- Adam C Yu
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.
| | - Sarah E Neil
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jacqueline A Quandt
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
272
|
Zhang J, Liu H, Wei B. Immune response of T cells during herpes simplex virus type 1 (HSV-1) infection. J Zhejiang Univ Sci B 2017; 18:277-288. [PMID: 28378566 PMCID: PMC5394093 DOI: 10.1631/jzus.b1600460] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 01/07/2017] [Indexed: 12/14/2022]
Abstract
Herpes simplex virus type 1 (HSV-1), a neurotropic member of the alphaherpes virus family, is among the most prevalent and successful human pathogens. HSV-1 can cause serious diseases at every stage of life including fatal disseminated disease in newborns, cold sores, eye disease, and fatal encephalitis in adults. HSV-1 infection can trigger rapid immune responses, and efficient inhibition and clearance of HSV-1 infection rely on both the innate and adaptive immune responses of the host. Multiple strategies have been used to restrict host innate immune responses by HSV-1 to facilitate its infection in host cells. The adaptive immunity of the host plays an important role in inhibiting HSV-1 infections. The activation and regulation of T cells are the important aspects of the adaptive immunity. They play a crucial role in host-mediated immunity and are important for clearing HSV-1. In this review, we examine the findings on T cell immune responses during HSV-1 infection, which hold promise in the design of new vaccine candidates for HSV-1.
Collapse
|
273
|
Freire-Regatillo A, Argente-Arizón P, Argente J, García-Segura LM, Chowen JA. Non-Neuronal Cells in the Hypothalamic Adaptation to Metabolic Signals. Front Endocrinol (Lausanne) 2017; 8:51. [PMID: 28377744 PMCID: PMC5359311 DOI: 10.3389/fendo.2017.00051] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/03/2017] [Indexed: 12/19/2022] Open
Abstract
Although the brain is composed of numerous cell types, neurons have received the vast majority of attention in the attempt to understand how this organ functions. Neurons are indeed fundamental but, in order for them to function correctly, they rely on the surrounding "non-neuronal" cells. These different cell types, which include glia, epithelial cells, pericytes, and endothelia, supply essential substances to neurons, in addition to protecting them from dangerous substances and situations. Moreover, it is now clear that non-neuronal cells can also actively participate in determining neuronal signaling outcomes. Due to the increasing problem of obesity in industrialized countries, investigation of the central control of energy balance has greatly increased in attempts to identify new therapeutic targets. This has led to interesting advances in our understanding of how appetite and systemic metabolism are modulated by non-neuronal cells. For example, not only are nutrients and hormones transported into the brain by non-neuronal cells, but these cells can also metabolize these metabolic factors, thus modifying the signals reaching the neurons. The hypothalamus is the main integrating center of incoming metabolic and hormonal signals and interprets this information in order to control appetite and systemic metabolism. Hence, the factors transported and released from surrounding non-neuronal cells will undoubtedly influence metabolic homeostasis. This review focuses on what is known to date regarding the involvement of different cell types in the transport and metabolism of nutrients and hormones in the hypothalamus. The possible involvement of non-neuronal cells, in particular glial cells, in physiopathological outcomes of poor dietary habits and excess weight gain are also discussed.
Collapse
Affiliation(s)
- Alejandra Freire-Regatillo
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, Madrid, Spain
- Department of Pediatrics, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red: Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | - Pilar Argente-Arizón
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, Madrid, Spain
- Department of Pediatrics, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red: Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | - Jesús Argente
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, Madrid, Spain
- Department of Pediatrics, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red: Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
- IMDEA Food Institute, Campus of International Excellence (CEI) UAM + CSIC, Madrid, Spain
| | - Luis Miguel García-Segura
- Laboratory of Neuroactive Steroids, Department of Functional and Systems Neurobiology, Instituto Cajal, CSIC (Consejo Superior de Investigaciones Científicas), Madrid, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Julie A. Chowen
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, Madrid, Spain
- Centro de Investigación Biomédica en Red: Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| |
Collapse
|
274
|
Bombeiro AL, Hell RCR, Simões GF, Castro MVD, Oliveira ALRD. Importance of major histocompatibility complex of class I (MHC-I) expression for astroglial reactivity and stability of neural circuits in vitro. Neurosci Lett 2017; 647:97-103. [PMID: 28341478 DOI: 10.1016/j.neulet.2017.03.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 03/15/2017] [Accepted: 03/20/2017] [Indexed: 01/23/2023]
Abstract
MHC-I molecules are involved in the antigenic presentation of cytosol-derived peptides to CD8T lymphocytes. In the nervous system, MHC-I expression is low to absent, occurring only during certain phases of development and aging or after injuries. The involvement of MHC-I in synaptic plasticity has been reported and, following lesion, astrocytes become reactive, limiting tissue damage. Such cells also attempt to restore homeostasis by secreting cytokines and neurotrophic factors. Moreover, astrocytes modulate synapse function, by taking up and releasing neurotransmitters and by limiting the synaptic cleft. Thus, the aim of the present study was to evaluate if astrocyte activation and reactivity are related to MHC I expression and if astrogliosis can be downregulated by silencing MHC-I mRNA synthesis. Given that, we evaluated astrocyte reactivity and synaptogenesis in co-cultures of astrocytes and spinal neurons under MHC-I RNA interference. For that, the MHC-I β2-microglobulin subunit (β2m) was knocked-down by siRNA in co-cultures (β2m expression <60%, p<0.001). As measured by qRT-PCR, silencing of β2m decreased expression of the astrocytic marker GFAP (<60%, p<0.001), as well as neurotrophic factors (BDNF and GDNF) and pro-inflammatory cytokines (TNF-α, IL-1, IL-6, IL-12 and IL-17). No significant changes in synaptic stability indicate that neuron-neuron interaction was preserved after β2m silencing. Overall, the present data reinforce the importance of MHC-I expression for generation of astrogliosis, what may, in turn, become a target for future CNS/PNS therapies following injury.
Collapse
Affiliation(s)
- André Luis Bombeiro
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas - UNICAMP, Rua Monteiro Lobato, 255, CEP: 13083-865, Campinas, SP, Brazil
| | - Rafaela Chitarra Rodrigues Hell
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas - UNICAMP, Rua Monteiro Lobato, 255, CEP: 13083-865, Campinas, SP, Brazil
| | - Gustavo Ferreira Simões
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas - UNICAMP, Rua Monteiro Lobato, 255, CEP: 13083-865, Campinas, SP, Brazil
| | - Mateus Vidigal de Castro
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas - UNICAMP, Rua Monteiro Lobato, 255, CEP: 13083-865, Campinas, SP, Brazil
| | - Alexandre Leite Rodrigues de Oliveira
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas - UNICAMP, Rua Monteiro Lobato, 255, CEP: 13083-865, Campinas, SP, Brazil.
| |
Collapse
|
275
|
Yanguas-Casás N, Barreda-Manso MA, Nieto-Sampedro M, Romero-Ramírez L. TUDCA: An Agonist of the Bile Acid Receptor GPBAR1/TGR5 With Anti-Inflammatory Effects in Microglial Cells. J Cell Physiol 2017; 232:2231-2245. [DOI: 10.1002/jcp.25742] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 12/14/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Natalia Yanguas-Casás
- Departamento de Neurobiología Funcional y de Sistemas Instituto Cajal (CSIC); Madrid Spain
| | - M. Asunción Barreda-Manso
- Departamento de Neurobiología Funcional y de Sistemas Instituto Cajal (CSIC); Madrid Spain
- Unidad de Neurología Experimental; Hospital Nacional de Parapléjicos (SESCAM); Toledo Spain
| | - Manuel Nieto-Sampedro
- Departamento de Neurobiología Funcional y de Sistemas Instituto Cajal (CSIC); Madrid Spain
- Unidad de Neurología Experimental; Hospital Nacional de Parapléjicos (SESCAM); Toledo Spain
| | - Lorenzo Romero-Ramírez
- Unidad de Neurología Experimental; Hospital Nacional de Parapléjicos (SESCAM); Toledo Spain
| |
Collapse
|
276
|
Michels M, Sonai B, Dal-Pizzol F. Polarization of microglia and its role in bacterial sepsis. J Neuroimmunol 2017; 303:90-98. [PMID: 28087076 DOI: 10.1016/j.jneuroim.2016.12.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/04/2016] [Accepted: 12/28/2016] [Indexed: 12/14/2022]
Abstract
Microglial polarization in response to brain inflammatory conditions is a crescent field in neuroscience. However, the effect of systemic inflammation, and specifically sepsis, is a relatively unexplored field that has great interest and relevance. Sepsis has been associated with both early and late harmful events of the central nervous system, suggesting that there is a close link between sepsis and neuroinflammation. During sepsis evolution it is supposed that microglial could exert both neurotoxic and repairing effects depending on the specific microglial phenotype assumed. In this context, here it was reviewed the role of microglial polarization during sepsis-associated brain dysfunction.
Collapse
Affiliation(s)
- Monique Michels
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Av Universitária, 1105, Criciúma 88806000, SC, Brazil.
| | - Beatriz Sonai
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Av Universitária, 1105, Criciúma 88806000, SC, Brazil.
| | - Felipe Dal-Pizzol
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Av Universitária, 1105, Criciúma 88806000, SC, Brazil; Center of Excellence in Applied Neurosciences of Santa Catarina (NENASC), Graduate Program in Medical Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil.
| |
Collapse
|
277
|
Madeira MH, Boia R, Ambrósio AF, Santiago AR. Having a Coffee Break: The Impact of Caffeine Consumption on Microglia-Mediated Inflammation in Neurodegenerative Diseases. Mediators Inflamm 2017; 2017:4761081. [PMID: 28250576 PMCID: PMC5307009 DOI: 10.1155/2017/4761081] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 01/12/2017] [Indexed: 12/20/2022] Open
Abstract
Caffeine is the major component of coffee and the most consumed psychostimulant in the world and at nontoxic doses acts as a nonselective adenosine receptor antagonist. Epidemiological evidence suggests that caffeine consumption reduces the risk of several neurological and neurodegenerative diseases. However, despite the beneficial effects of caffeine consumption in human health and behaviour, the mechanisms by which it impacts the pathophysiology of neurodegenerative diseases still remain to be clarified. A promising hypothesis is that caffeine controls microglia-mediated neuroinflammatory response associated with the majority of neurodegenerative conditions. Accordingly, it has been already described that the modulation of adenosine receptors, namely, the A2A receptor, affords neuroprotection through the control of microglia reactivity and neuroinflammation. In this review, we will summarize the main effects of caffeine in the modulation of neuroinflammation in neurodegenerative diseases.
Collapse
Affiliation(s)
- Maria H. Madeira
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- CNC.IBILI Consortium, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Raquel Boia
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- CNC.IBILI Consortium, University of Coimbra, 3004-504 Coimbra, Portugal
| | - António F. Ambrósio
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- CNC.IBILI Consortium, University of Coimbra, 3004-504 Coimbra, Portugal
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), 3000-548 Coimbra, Portugal
| | - Ana R. Santiago
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- CNC.IBILI Consortium, University of Coimbra, 3004-504 Coimbra, Portugal
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), 3000-548 Coimbra, Portugal
| |
Collapse
|
278
|
Reis C, Akyol O, Araujo C, Huang L, Enkhjargal B, Malaguit J, Gospodarev V, Zhang JH. Pathophysiology and the Monitoring Methods for Cardiac Arrest Associated Brain Injury. Int J Mol Sci 2017; 18:ijms18010129. [PMID: 28085069 PMCID: PMC5297763 DOI: 10.3390/ijms18010129] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 12/31/2016] [Accepted: 01/04/2017] [Indexed: 12/23/2022] Open
Abstract
Cardiac arrest (CA) is a well-known cause of global brain ischemia. After CA and subsequent loss of consciousness, oxygen tension starts to decline and leads to a series of cellular changes that will lead to cellular death, if not reversed immediately, with brain edema as a result. The electroencephalographic activity starts to change as well. Although increased intracranial pressure (ICP) is not a direct result of cardiac arrest, it can still occur due to hypoxic-ischemic encephalopathy induced changes in brain tissue, and is a measure of brain edema after CA and ischemic brain injury. In this review, we will discuss the pathophysiology of brain edema after CA, some available techniques, and methods to monitor brain oxygen, electroencephalography (EEG), ICP (intracranial pressure), and microdialysis on its measurement of cerebral metabolism and its usefulness both in clinical practice and possible basic science research in development. With this review, we hope to gain knowledge of the more personalized information about patient status and specifics of their brain injury, and thus facilitating the physicians’ decision making in terms of which treatments to pursue.
Collapse
Affiliation(s)
- Cesar Reis
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, 11041 Campus Street, Risley Hall, Room 219, Loma Linda, CA 92354, USA.
| | - Onat Akyol
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, 11041 Campus Street, Risley Hall, Room 219, Loma Linda, CA 92354, USA.
| | - Camila Araujo
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, 11041 Campus Street, Risley Hall, Room 219, Loma Linda, CA 92354, USA.
| | - Lei Huang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, 11041 Campus Street, Risley Hall, Room 219, Loma Linda, CA 92354, USA.
- Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA 92354, USA.
| | - Budbazar Enkhjargal
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, 11041 Campus Street, Risley Hall, Room 219, Loma Linda, CA 92354, USA.
| | - Jay Malaguit
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, 11041 Campus Street, Risley Hall, Room 219, Loma Linda, CA 92354, USA.
| | - Vadim Gospodarev
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, 11041 Campus Street, Risley Hall, Room 219, Loma Linda, CA 92354, USA.
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, 11041 Campus Street, Risley Hall, Room 219, Loma Linda, CA 92354, USA.
- Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA 92354, USA.
- Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.
| |
Collapse
|
279
|
Blaško J, Szekiova E, Slovinska L, Kafka J, Cizkova D. Axonal outgrowth stimulation after alginate/mesenchymal stem cell therapy in injured rat spinal cord. Acta Neurobiol Exp (Wars) 2017. [DOI: 10.21307/ane-2017-066] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
280
|
Sun GD, Chen Y, Zhou ZG, Yang SX, Zhong C, Li ZZ. A progressive compression model of thoracic spinal cord injury in mice: function assessment and pathological changes in spinal cord. Neural Regen Res 2017; 12:1365-1374. [PMID: 28966654 PMCID: PMC5607834 DOI: 10.4103/1673-5374.213693] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Non-traumatic injury accounts for approximately half of clinical spinal cord injury, including chronic spinal cord compression. However, previous rodent spinal cord compression models are mainly designed for rats, few are available for mice. Our aim is to develop a thoracic progressive compression mice model of spinal cord injury. In this study, adult wild-type C57BL/6 mice were divided into two groups: in the surgery group, a screw was inserted at T9 lamina to compress the spinal cord, and the compression was increased by turning it further into the canal (0.2 mm) post-surgery every 2 weeks up to 8 weeks. In the control group, a hole was drilled into the lamina without inserting a screw. The results showed that Basso Mouse Scale scores were lower and gait worsened. In addition, the degree of hindlimb dysfunction in mice was consistent with the degree of spinal cord compression. The number of motor neurons in the anterior horn of the spinal cord was reduced in all groups of mice, whereas astrocytes and microglia were gradually activated and proliferated. In conclusion, this progressive compression of thoracic spinal cord injury in mice is a preferable model for chronic progressive spinal cord compression injury.
Collapse
Affiliation(s)
- Guo-Dong Sun
- Department of Orthopedics, First Affiliated Hospital, Jinan University, Guangzhou, Guangdong Province, China
| | - Yan Chen
- Department of Orthopedics, First Affiliated Hospital, Jinan University, Guangzhou, Guangdong Province, China
| | - Zhi-Gang Zhou
- Department of Orthopedics, First Affiliated Hospital, Jinan University, Guangzhou, Guangdong Province, China
| | - Shu-Xian Yang
- Biomedical Translational Research Institute and Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou, Guangdong Province, China
| | - Cheng Zhong
- Department of Traumatology and Plastic Surgery, The Affiliated Jiangmen Traditional Chinese Medicine Hospital of Jinan University, Jiangmen, Guangdong Province, China
| | - Zhi-Zhong Li
- Department of Orthopedics, First Affiliated Hospital, Jinan University, Guangzhou, Guangdong Province, China.,Department of Orthopedics, Heyuan People's Hospital (Heyuan Affiliated Hospital of Jinan University), Heyuan, Guangdong Province, China
| |
Collapse
|
281
|
Isolation of Microglia and Immune Infiltrates from Mouse and Primate Central Nervous System. Methods Mol Biol 2017; 1559:333-342. [PMID: 28063055 DOI: 10.1007/978-1-4939-6786-5_23] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Microglia are the innate immune cells of the central nervous system (CNS) and play an important role in the maintenance of tissue homeostasis, providing neural support and neuroprotection. Microglia constantly survey their environment and quickly respond to homeostatic perturbations. Microglia are increasingly implicated in neuropathological and neurodegenerative conditions, such as Alzheimer's disease, Parkinson's disease, and glioma progression. Here, we describe a detailed isolation protocol for microglia and immune infiltrates, optimized for large amounts of post mortem tissue from human and rhesus macaque, as well as smaller tissue amounts from mouse brain and spinal cord, that yield a highly purified microglia population (up to 98 % purity). This acute isolation protocol is based on mechanical dissociation and a two-step density gradient purification, followed by fluorescence-activated cell sorting (FACS) to obtain pure microglia and immune infiltrate populations.
Collapse
|
282
|
Weber MD, Godbout JP, Sheridan JF. Repeated Social Defeat, Neuroinflammation, and Behavior: Monocytes Carry the Signal. Neuropsychopharmacology 2017; 42:46-61. [PMID: 27319971 PMCID: PMC5143478 DOI: 10.1038/npp.2016.102] [Citation(s) in RCA: 209] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/28/2016] [Accepted: 05/27/2016] [Indexed: 02/06/2023]
Abstract
Mounting evidence indicates that proinflammatory signaling in the brain affects mood, cognition, and behavior and is linked with the etiology of psychiatric disorders, including anxiety and depression. The purpose of this review is to focus on stress-induced bidirectional communication pathways between the central nervous system (CNS) and peripheral immune system that converge to promote a heightened neuroinflammatory environment. These communication pathways involve sympathetic outflow from the brain to the peripheral immune system that biases hematopoietic stem cells to differentiate into a glucocorticoid-resistant and primed myeloid lineage immune cell. In conjunction, microglia-dependent neuroinflammatory events promote myeloid cell trafficking to the brain that reinforces stress-related behavior, and is argued to play a role in stress-related psychiatric disorders. We will discuss evidence implicating a key role for endothelial cells that comprise the blood-brain barrier in propagating peripheral-to-central immune communication. We will also discuss novel neuron-to-glia communication pathways involving endogenous danger signals that have recently been argued to facilitate neuroinflammation under various conditions, including stress. These findings help elucidate the complex communication that occurs in response to stress and highlight novel therapeutic targets against the development of stress-related psychiatric disorders.
Collapse
Affiliation(s)
- Michael D Weber
- Division of Biosciences, The Ohio State University, Columbus, OH, USA,Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH, USA,Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA,Division of Biosciences, The Ohio State University, 223 IBMR Building, 305 W 12th Avenue, 460 Medical Center Drive, Columbus, OH 43210, USA, Tel: 614-293-3392, Fax: 614-292-6087, E-mail:
| | - Jonathan P Godbout
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH, USA,Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA,Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | - John F Sheridan
- Division of Biosciences, The Ohio State University, Columbus, OH, USA,Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH, USA,Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
283
|
Argente-Arizón P, Guerra-Cantera S, Garcia-Segura LM, Argente J, Chowen JA. Glial cells and energy balance. J Mol Endocrinol 2017; 58:R59-R71. [PMID: 27864453 DOI: 10.1530/jme-16-0182] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 11/18/2016] [Indexed: 12/31/2022]
Abstract
The search for new strategies and drugs to abate the current obesity epidemic has led to the intensification of research aimed at understanding the neuroendocrine control of appetite and energy expenditure. This intensified investigation of metabolic control has also included the study of how glial cells participate in this process. Glia, the most abundant cell type in the central nervous system, perform a wide spectrum of functions and are vital for the correct functioning of neurons and neuronal circuits. Current evidence indicates that hypothalamic glia, in particular astrocytes, tanycytes and microglia, are involved in both physiological and pathophysiological mechanisms of appetite and metabolic control, at least in part by regulating the signals reaching metabolic neuronal circuits. Glia transport nutrients, hormones and neurotransmitters; they secrete growth factors, hormones, cytokines and gliotransmitters and are a source of neuroprogenitor cells. These functions are regulated, as glia also respond to numerous hormones and nutrients, with the lack of specific hormonal signaling in hypothalamic astrocytes disrupting metabolic homeostasis. Here, we review some of the more recent advances in the role of glial cells in metabolic control, with a special emphasis on the differences between glial cell responses in males and females.
Collapse
Affiliation(s)
- Pilar Argente-Arizón
- Departments of Pediatrics & Pediatric EndocrinologyHospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Department of Pediatrics, Universidad Autónoma de Madrid, CIBEROBN, Instituto de Salud Carlos III, Madrid, Spain
| | - Santiago Guerra-Cantera
- Departments of Pediatrics & Pediatric EndocrinologyHospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Department of Pediatrics, Universidad Autónoma de Madrid, CIBEROBN, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Jesús Argente
- Departments of Pediatrics & Pediatric EndocrinologyHospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Department of Pediatrics, Universidad Autónoma de Madrid, CIBEROBN, Instituto de Salud Carlos III, Madrid, Spain
| | - Julie A Chowen
- Departments of Pediatrics & Pediatric EndocrinologyHospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Department of Pediatrics, Universidad Autónoma de Madrid, CIBEROBN, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
284
|
Bertolino B, Crupi R, Impellizzeri D, Bruschetta G, Cordaro M, Siracusa R, Esposito E, Cuzzocrea S. Beneficial Effects of Co-Ultramicronized Palmitoylethanolamide/Luteolin in a Mouse Model of Autism and in a Case Report of Autism. CNS Neurosci Ther 2017; 23:87-98. [PMID: 27701827 PMCID: PMC6492645 DOI: 10.1111/cns.12648] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/05/2016] [Accepted: 09/05/2016] [Indexed: 11/29/2022] Open
Abstract
AIMS Autism spectrum disorder (ASD) is a condition defined by social communication deficits and repetitive restrictive behaviors. Association of the fatty acid amide palmitoylethanolamide (PEA) with the flavonoid luteolin displays neuroprotective and antiinflammatory actions in different models of central nervous system pathologies. We hypothesized that association of PEA with luteolin might have therapeutic utility in ASD, and we employed a well-recognized autism animal model, namely sodium valproate administration, to evaluate cognitive and motor deficits. METHODS Two sets of experiments were conducted. In the first, we investigated the effect of association of ultramicronized PEA with luteolin, co-ultramicronized PEA-LUT® (co-ultraPEA-LUT®) in a murine model of autistic behaviors, while in the second, the effect of co-ultraPEA-LUT® in a patient affected by ASD was examined. RESULTS Co-ultraPEA-LUT® treatment ameliorated social and nonsocial behaviors in valproic acid-induced autistic mice and improved clinical picture with reduction in stereotypes in a 10-year-old male child. CONCLUSION These data suggest that ASD symptomatology may be improved by agents documented to control activation of mast cells and microglia. Co-ultraPEA-LUT® might be a valid and safe therapy for the symptoms of ASD alone or in combination with other used drugs.
Collapse
Affiliation(s)
| | - Rosalia Crupi
- Department of Chemical, Biological, Pharmacological and Environmental SciencesUniversity of MessinaMessinaItaly
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmacological and Environmental SciencesUniversity of MessinaMessinaItaly
| | - Giuseppe Bruschetta
- Department of Chemical, Biological, Pharmacological and Environmental SciencesUniversity of MessinaMessinaItaly
| | - Marika Cordaro
- Department of Chemical, Biological, Pharmacological and Environmental SciencesUniversity of MessinaMessinaItaly
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmacological and Environmental SciencesUniversity of MessinaMessinaItaly
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmacological and Environmental SciencesUniversity of MessinaMessinaItaly
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmacological and Environmental SciencesUniversity of MessinaMessinaItaly
- Department of Pharmacological and Physiological ScienceSaint Louis UniversitySaint LouisMOUSA
| |
Collapse
|
285
|
Th1 cells downregulate connexin 43 gap junctions in astrocytes via microglial activation. Sci Rep 2016; 6:38387. [PMID: 27929069 PMCID: PMC5143974 DOI: 10.1038/srep38387] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 11/08/2016] [Indexed: 11/28/2022] Open
Abstract
We previously reported early and extensive loss of astrocytic connexin 43 (Cx43) in acute demyelinating lesions of multiple sclerosis (MS) patients. Because it is widely accepted that autoimmune T cells initiate MS lesions, we hypothesized that infiltrating T cells affect Cx43 expression in astrocytes, which contributes to MS lesion formation. Primary mixed glial cell cultures were prepared from newborn mouse brains, and microglia were isolated by anti-CD11b antibody-conjugated magnetic beads. Next, we prepared astrocyte-rich cultures and astrocyte/microglia-mixed cultures. Treatment of primary mixed glial cell cultures with interferon (IFN) γ, interleukin (IL)-4, or IL-17 showed that only IFNγ or IL-17 at high concentrations reduced Cx43 protein levels. Upon treatment of astrocyte-rich cultures and astrocyte/microglia-mixed cultures with IFNγ, Cx43 mRNA/protein levels and the function of gap junctions were reduced only in astrocyte/microglia-mixed cultures. IFNγ-treated microglia-conditioned media and IL-1β, which was markedly increased in IFNγ-treated microglia-conditioned media, reduced Cx43 protein levels in astrocyte-rich cultures. Finally, we confirmed that Th1 cell-conditioned medium decreased Cx43 protein levels in mixed glial cell cultures. These findings suggest that Th1 cell-derived IFNγ activates microglia to release IL-1β that reduces Cx43 gap junctions in astrocytes. Thus, Th1-dominant inflammatory states disrupt astrocytic intercellular communication and may exacerbate MS.
Collapse
|
286
|
Chen NC, Partridge AT, Sell C, Torres C, Martín-García J. Fate of microglia during HIV-1 infection: From activation to senescence? Glia 2016; 65:431-446. [PMID: 27888531 DOI: 10.1002/glia.23081] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 09/12/2016] [Accepted: 09/20/2016] [Indexed: 12/14/2022]
Abstract
Microglia support productive human immunodeficiency virus type 1 (HIV-1) infection and disturbed microglial function could contribute to the development of HIV-associated neurocognitive disorders (HAND). Better understanding of how HIV-1 infection and viral protein exposure modulate microglial function during the course of infection could lead to the identification of novel therapeutic targets for both the eradication of HIV-1 reservoir and treatment of neurocognitive deficits. This review first describes microglial origins and function in the normal central nervous system (CNS), and the changes that occur during aging. We then critically discuss how HIV-1 infection and exposure to viral proteins such as Tat and gp120 affect various aspects of microglial homeostasis including activation, cellular metabolism and cell cycle regulation, through pathways implicated in cellular stress responses including p38 mitogen-activated protein kinase (MAPK) and nuclear factor κB (NF-κB). We thus propose that the functions of human microglia evolve during both healthy and pathological aging. Aging-associated dysfunction of microglia comprises phenotypes resembling cellular senescence, which could contribute to cognitive impairments observed in various neurodegenerative diseases. In addition, microglia seems to develop characteristics that could be related to cellular senescence post-HIV-1 infection and after exposure to HIV-1 viral proteins. However, despite its potential role as a component of HAND and likely other neurocognitive disorders, microglia senescence has not been well characterized and should be the focus of future studies, which could have high translational relevance. GLIA 2017;65:431-446.
Collapse
Affiliation(s)
- Natalie C Chen
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania.,MD/PhD Program, Drexel University College of Medicine, Philadelphia, Pennsylvania.,Molecular and Cell Biology and Genetics Graduate Program, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Andrea T Partridge
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania.,Microbiology and Immunology Graduate Program, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Christian Sell
- Department of Pathology and Laboratory Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Claudio Torres
- Department of Pathology and Laboratory Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Julio Martín-García
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania.,Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
287
|
Garcia-Mesa Y, Jay TR, Checkley MA, Luttge B, Dobrowolski C, Valadkhan S, Landreth GE, Karn J, Alvarez-Carbonell D. Immortalization of primary microglia: a new platform to study HIV regulation in the central nervous system. J Neurovirol 2016; 23:47-66. [PMID: 27873219 PMCID: PMC5329090 DOI: 10.1007/s13365-016-0499-3] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 11/03/2016] [Accepted: 11/09/2016] [Indexed: 12/17/2022]
Abstract
The major reservoirs for HIV in the CNS are in the microglia, perivascular macrophages, and to a lesser extent, astrocytes. To study the molecular events controlling HIV expression in the microglia, we developed a reliable and robust method to immortalize microglial cells from primary glia from fresh CNS tissues and commercially available frozen glial cells. Primary human cells, including cells obtained from adult brain tissue, were transformed with lentiviral vectors expressing SV40 T antigen or a combination of SVR40 T antigen and hTERT. The immortalized cells have microglia-like morphology and express key microglial surface markers including CD11b, TGFβR, and P2RY12. Importantly, these cells were confirmed to be of human origin by sequencing. The RNA expression profiles identified by RNA-seq are also characteristic of microglial cells. Furthermore, the cells demonstrate the expected migratory and phagocytic activity, and the capacity to mount an inflammatory response characteristic of primary microglia. The immortalization method has also been successfully applied to a wide range of microglia from other species (macaque, rat, and mouse). To investigate different aspects of HIV molecular regulation in CNS, the cells have been superinfected with HIV reporter viruses and latently infected clones have been selected that reactive HIV in response to inflammatory signals. The cell lines we have developed and rigorously characterized will provide an invaluable resource for the study of HIV infection in microglial cells as well as studies of microglial cell function.
Collapse
Affiliation(s)
- Yoelvis Garcia-Mesa
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106 USA
| | - Taylor R. Jay
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH 44106 USA
| | - Mary Ann Checkley
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106 USA
| | - Benjamin Luttge
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106 USA
| | - Curtis Dobrowolski
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106 USA
| | - Saba Valadkhan
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106 USA
| | - Gary E. Landreth
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH 44106 USA
| | - Jonathan Karn
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106 USA
| | - David Alvarez-Carbonell
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106 USA
| |
Collapse
|
288
|
Sznejder-Pachołek A, Joniec-Maciejak I, Wawer A, Ciesielska A, Mirowska-Guzel D. The effect of α-synuclein on gliosis and IL-1α, TNFα, IFNγ, TGFβ expression in murine brain. Pharmacol Rep 2016; 69:242-251. [PMID: 28126640 DOI: 10.1016/j.pharep.2016.11.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 11/06/2016] [Accepted: 11/07/2016] [Indexed: 02/09/2023]
Abstract
BACKGROUND Alpha - synuclein (ASN) is the principal component of Lewy pathology and strongly influences on the pathogenesis of Parkinson's disease (PD). The increased level of ASN protein causes microglial response. The reactive microglial cells may actively participate in the damaging of dopaminergic neurons. The data suggests that ASN accumulation in astrocytes might damage these cells in the substantia nigra pars compacta (SN) and promotes degeneration of dopaminergic neurons in SN. We examined the potential role of recombinant ASN monomers as a major pathogenic factor causing the inflammatory response in the central nervous system. METHODS Mice were bilaterally infused by human ASN monomers into the striatum (ST) or SN (single treatment was 4μg/structure, 8μg per brain) and decapitated after 1, 4 or 12 weeks post injection. The changes in the level of inflammatory factors in ST were evaluated using Real-Time PCR and Western Blot method. The analysis of morphological changes of glial cells was performed by immunohistochemical staining. RESULTS We observed a strong activation of microglia cells in ST and increased expression of striatal interleukin 1α, tumor necrosis factor alpha and interferon gamma after ASN injection into the ST. We noticed an increase in striatal glial fibrillary acidic protein mRNA level 4 weeks after ASN injection into the ST. Injection of ASN into the SN led to an increase of striatal transforming growth factor beta mRNA level and has no influence on striatal glial fibrillary acidic protein mRNA level. CONCLUSION Our results suggest that both the microglia activation and supressing astrocytes play a crucial role in ASN-related dopaminergic neurotoxicity.
Collapse
Affiliation(s)
- Anna Sznejder-Pachołek
- Department of Experimental and Clinical Pharmacology, Medical University of Warszawa, Centre for Preclinical Research and Technology CePT, Warszawa, Poland.
| | - Ilona Joniec-Maciejak
- Department of Experimental and Clinical Pharmacology, Medical University of Warszawa, Centre for Preclinical Research and Technology CePT, Warszawa, Poland.
| | - Adriana Wawer
- Department of Experimental and Clinical Pharmacology, Medical University of Warszawa, Centre for Preclinical Research and Technology CePT, Warszawa, Poland.
| | - Agnieszka Ciesielska
- Department of Neurosurgery, University of California at San Francisco, San Francisco, CA, USA.
| | - Dagmara Mirowska-Guzel
- Department of Experimental and Clinical Pharmacology, Medical University of Warszawa, Centre for Preclinical Research and Technology CePT, Warszawa, Poland; 2nd Department of Neurology, Institute of Psychiatry and Neurology, Warszawa, Poland.
| |
Collapse
|
289
|
Eßlinger M, Wachholz S, Manitz MP, Plümper J, Sommer R, Juckel G, Friebe A. Schizophrenia associated sensory gating deficits develop after adolescent microglia activation. Brain Behav Immun 2016; 58:99-106. [PMID: 27235930 DOI: 10.1016/j.bbi.2016.05.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 05/05/2016] [Accepted: 05/24/2016] [Indexed: 10/21/2022] Open
Abstract
Maternal infection during pregnancy is a well-established risk factor for schizophrenia in the adult offspring. Consistently, prenatal Poly(I:C) treatment in mice has been validated to model behavioral and neurodevelopmental abnormalities associated with schizophrenia. By using the Poly(I:C) BALB/c mouse model, we investigated the functional profile of microglia by flow cytometry in relation to progressive behavioral changes from adolescence to adulthood. Prenatal Poly(I:C) treatment induced the expected sensory gating deficits (pre-pulse inhibition (PPI) of the acoustic startle response) in 100day-old adult offspring, but only in female not in male descendants. No PPI-deficits were present in 30day-old adolescent mice. Sensory gating deficits in adult females were preceded by a strong M1-type microglia polarization pattern during puberty as determined by flow cytometric analysis of multiple pro- and anti-inflammatory surface markers. Microglia activation in females did not persist until adulthood and was absent in behaviorally unaffected male descendants. Further, the specific activation pattern of microglia was not mirrored by a similar activation of peripheral immune cells. We conclude that prenatal Poly(I:C) treatment induces post pubertal deficits in sensory gating which are specifically preceded by a pro-inflammatory activation pattern of microglia during puberty.
Collapse
Affiliation(s)
- Manuela Eßlinger
- Laboratory of Psychoneuroimmunology, Department of Psychiatry, Center of Clinical Research 1 (ZKF1 2/052), Universitätsstraße 150, Ruhr University Bochum, D-44801 Bochum, Germany; Department of Psychiatry, LWL University Hospital, Ruhr-University Bochum, Alexandrinenstr. 1, D-44791 Bochum, Germany.
| | - Simone Wachholz
- Laboratory of Psychoneuroimmunology, Department of Psychiatry, Center of Clinical Research 1 (ZKF1 2/052), Universitätsstraße 150, Ruhr University Bochum, D-44801 Bochum, Germany; Department of Psychiatry, LWL University Hospital, Ruhr-University Bochum, Alexandrinenstr. 1, D-44791 Bochum, Germany.
| | - Marie-Pierre Manitz
- Laboratory of Psychoneuroimmunology, Department of Psychiatry, Center of Clinical Research 1 (ZKF1 2/052), Universitätsstraße 150, Ruhr University Bochum, D-44801 Bochum, Germany; Department of Psychiatry, LWL University Hospital, Ruhr-University Bochum, Alexandrinenstr. 1, D-44791 Bochum, Germany.
| | - Jennifer Plümper
- Laboratory of Psychoneuroimmunology, Department of Psychiatry, Center of Clinical Research 1 (ZKF1 2/052), Universitätsstraße 150, Ruhr University Bochum, D-44801 Bochum, Germany; Department of Psychiatry, LWL University Hospital, Ruhr-University Bochum, Alexandrinenstr. 1, D-44791 Bochum, Germany.
| | - Rainer Sommer
- Laboratory of Psychoneuroimmunology, Department of Psychiatry, Center of Clinical Research 1 (ZKF1 2/052), Universitätsstraße 150, Ruhr University Bochum, D-44801 Bochum, Germany.
| | - Georg Juckel
- Laboratory of Psychoneuroimmunology, Department of Psychiatry, Center of Clinical Research 1 (ZKF1 2/052), Universitätsstraße 150, Ruhr University Bochum, D-44801 Bochum, Germany; Department of Psychiatry, LWL University Hospital, Ruhr-University Bochum, Alexandrinenstr. 1, D-44791 Bochum, Germany.
| | - Astrid Friebe
- Laboratory of Psychoneuroimmunology, Department of Psychiatry, Center of Clinical Research 1 (ZKF1 2/052), Universitätsstraße 150, Ruhr University Bochum, D-44801 Bochum, Germany; Department of Psychiatry, LWL University Hospital, Ruhr-University Bochum, Alexandrinenstr. 1, D-44791 Bochum, Germany.
| |
Collapse
|
290
|
Yanguas-Casás N, Barreda-Manso MA, Pérez-Rial S, Nieto-Sampedro M, Romero-Ramírez L. TGFβ Contributes to the Anti-inflammatory Effects of Tauroursodeoxycholic Acid on an Animal Model of Acute Neuroinflammation. Mol Neurobiol 2016; 54:6737-6749. [PMID: 27744574 DOI: 10.1007/s12035-016-0142-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 09/19/2016] [Indexed: 12/14/2022]
Abstract
The bile acid conjugate tauroursodeoxycholic acid (TUDCA) is a neuroprotective agent in various animal models of neuropathologies. We have previously shown the anti-inflammatory properties of TUDCA in an animal model of acute neuroinflammation. Here, we present a new anti-inflammatory mechanism of TUDCA through the regulation of transforming growth factor β (TGFβ) pathway. The bacterial lipopolysaccharide (LPS) was injected intravenously (iv) on TGFβ reporter mice (Smad-binding element (SBE)/Tk-Luc) to study in their brains the real-time activation profile of the TGFβ pathway in a non-invasive way. The activation of the TGFβ pathway in the brain of SBE/Tk-Luc mice increased 24 h after LPS injection, compared to control animals. This activation peak increased further in mice treated with both LPS and TUDCA than in mice treated with LPS only. The enhanced TGFβ activation in mice treated with LPS and TUDCA correlated with both an increase in TGFβ3 transcript in mouse brain and an increase in TGFβ3 immunoreactivity in microglia/macrophages, endothelial cells, and neurons. Inhibition of the TGFβ receptor with SB431542 drug reverted the effect of TUDCA on microglia/macrophages activation and on TGFβ3 immunoreactivity. Under inflammatory conditions, treatment with TUDCA enhanced further the activation of TGFβ pathway in mouse brain and increased the expression of TGFβ3. Therefore, the induction of TGFβ3 by TUDCA might act as a positive feedback, increasing the initial activation of the TGFβ pathway by the inflammatory stimulus. Our findings provide proof-of-concept that TGFβ contributes to the anti-inflammatory effect of TUDCA under neuroinflammatory conditions.
Collapse
Affiliation(s)
- Natalia Yanguas-Casás
- Laboratorio de Plasticidad Neural. Unidad de Neurología Experimental, Hospital Nacional de Parapléjicos (SESCAM), Finca la Peraleda s/n, 45071, Toledo, Spain.,Laboratorio de Plasticidad Neural, Instituto Cajal (CSIC), Avenida Doctor Arce 37, 28002, Madrid, Spain
| | - M Asunción Barreda-Manso
- Laboratorio de Plasticidad Neural. Unidad de Neurología Experimental, Hospital Nacional de Parapléjicos (SESCAM), Finca la Peraleda s/n, 45071, Toledo, Spain.,Laboratorio de Plasticidad Neural, Instituto Cajal (CSIC), Avenida Doctor Arce 37, 28002, Madrid, Spain
| | - Sandra Pérez-Rial
- Laboratorio de Neumología, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-CIBERES, Avenida Reyes Católicos 2, 28040, Madrid, Spain
| | - Manuel Nieto-Sampedro
- Laboratorio de Plasticidad Neural. Unidad de Neurología Experimental, Hospital Nacional de Parapléjicos (SESCAM), Finca la Peraleda s/n, 45071, Toledo, Spain.,Laboratorio de Plasticidad Neural, Instituto Cajal (CSIC), Avenida Doctor Arce 37, 28002, Madrid, Spain
| | - Lorenzo Romero-Ramírez
- Laboratorio de Plasticidad Neural. Unidad de Neurología Experimental, Hospital Nacional de Parapléjicos (SESCAM), Finca la Peraleda s/n, 45071, Toledo, Spain.
| |
Collapse
|
291
|
Gutierrez-Murgas YM, Skar G, Ramirez D, Beaver M, Snowden JN. IL-10 plays an important role in the control of inflammation but not in the bacterial burden in S. epidermidis CNS catheter infection. J Neuroinflammation 2016; 13:271. [PMID: 27737696 PMCID: PMC5064787 DOI: 10.1186/s12974-016-0741-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 10/04/2016] [Indexed: 12/15/2022] Open
Abstract
Background Shunt infection is a frequent and serious complication in the surgical treatment in hydrocephalus. Previous studies have shown an attenuated immune response to these biofilm-mediated infections. We proposed that IL-10 reduces the inflammatory response to Staphylococcus epidermidis (S. epidermidis) CNS catheter infection. Methods In this study, a murine model of catheter-associated S. epidermidis biofilm infection in the CNS was generated based on a well-established similar model for S. aureus. The catheters were pre-coated with a clinically derived biofilm-forming strain of S. epidermidis (strain 1457) which were then stereotactically implanted into the lateral left ventricle of 8-week-old C57BL/6 and IL-10 knockout (IL-10 knockout) mice. Bacterial titers as well as cytokine and chemokine levels were measured at days 3, 5, 7, and 10 in mice implanted with sterile and S. epidermidis-coated catheters. Results Cultures demonstrated a catheter-associated and parenchymal infection that persisted through 10 days following infection. Cytokine analysis of the tissue surrounding the catheters revealed greater levels of IL-10, an anti-inflammatory cytokine, in the infected group compared to the sterile. In IL-10 KO mice, we noted no change in bacterial burdens, showing that IL-10 is not needed to control the infection in a CNS catheter infection model. However, IL-10 KO mice had increased levels of pro-inflammatory mediators in the tissues immediately adjacent to the infected catheter, as well as an increase in weight loss. Conclusions Together our results indicate that IL-10 plays a key role in regulating the inflammatory response to CNS catheter infection but not in control of bacterial burdens. Therefore, IL-10 may be a useful therapeutic target for immune modulation in CNS catheter infection but this should be used in conjunction with antibiotic therapy for bacterial eradication.
Collapse
Affiliation(s)
| | - Gwenn Skar
- Department of Pediatrics, 985900 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-5900, USA
| | - Danielle Ramirez
- Pediatric Residency Program, Baylor College of Medicine, San Antonio, TX, 78207, USA
| | - Matthew Beaver
- Department of Pediatrics, 985900 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-5900, USA
| | - Jessica N Snowden
- Department of Pediatrics, 985900 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-5900, USA. .,Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
292
|
Bermudez S, Khayrullina G, Zhao Y, Byrnes KR. NADPH oxidase isoform expression is temporally regulated and may contribute to microglial/macrophage polarization after spinal cord injury. Mol Cell Neurosci 2016; 77:53-64. [PMID: 27729244 DOI: 10.1016/j.mcn.2016.10.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 08/29/2016] [Accepted: 10/05/2016] [Indexed: 12/30/2022] Open
Abstract
Spinal cord injury (SCI) results in both acute and chronic inflammation, as a result of activation of microglia, invasion of macrophages and activation of the NADPH oxidase (NOX) enzyme. The NOX enzyme is a primary source of reactive oxygen species (ROS) and is expressed by microglia and macrophages after SCI. These cells can assume either a pro- (M1) or anti-inflammatory (M2) polarization phenotype and contribute to tissue response to SCI. However, the contribution of NOX expression and ROS production to this polarization and vice versa is currently undefined. We therefore investigated the impact of SCI on NOX expression and microglial/macrophage polarization over time in a mouse model of contusion injury. Adult C57Bl/6 mice were exposed to a moderate T9 contusion SCI and tissue was assessed at acute, sub-acute and chronic time points for NOX isoform expression and co-expression with M1 and M2 microglia/macrophage polarization markers. Two NOX isoforms were increased after injury and were associated with both M1 and M2 markers, with an M1 preference for NOX2 acutely and NOX4 chronically. M2 cells were primarily found at acute time points only; the peak of NOX2 expression was associated with the decline in M2 polarization. In vitro, NOX2 inhibition shifted microglial polarization toward the M2 phenotype. These results now show that microglial/macrophage expression of NOX isoforms is independent of polarization state, but that NOX activity can influence subsequent polarization. These data can contribute to the therapeutic targeting of NOX as a therapy for SCI.
Collapse
Affiliation(s)
- Sara Bermudez
- Anatomy, Physiology and Genetics Department, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| | - Guzal Khayrullina
- Anatomy, Physiology and Genetics Department, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| | - Yujia Zhao
- Anatomy, Physiology and Genetics Department, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| | - Kimberly R Byrnes
- Anatomy, Physiology and Genetics Department, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| |
Collapse
|
293
|
Hossain MM, Liu J, Richardson JR. Pyrethroid Insecticides Directly Activate Microglia Through Interaction With Voltage-Gated Sodium Channels. Toxicol Sci 2016; 155:112-123. [PMID: 27655349 DOI: 10.1093/toxsci/kfw187] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Microglia are considered to be the resident immune cells of the central nervous system and contribute significantly to ongoing neuroinflammation in a variety of neurodegenerative diseases. Recently, we and others identified that voltage-gated sodium channels (VGSC) are present on microglia cells and contribute to excessive accumulation of intracellular Na+ and release of major pro-inflammatory cytokine tumor necrosis factor alpha (TNF-α). Based on this finding and the fact that pyrethroid pesticides act on VGSC, we hypothesized that exposure of microglia to the pyrethroid pesticides, permethrin and deltamethrin, would activate microglia and increase the release of TNF-α. BV2 cells or primary microglia were treated with 0-5 µM deltamethrin or permethrin in the presence or absence of tetrodotoxin (TTX), a VGSC blocker for 24-48 h. Both pyrethroids caused a rapid Na+ influx and increased accumulation of intracellular sodium [(Na+)i] in the microglia in a dose- and time-dependent manner, which was significantly reduced by TTX. Furthermore, deltamethrin and permethrin increased the release of TNF-α in a dose- and time-dependent manner, which was significantly reduced by pre-treatment of cells with TTX. These results demonstrate that pyrethroid pesticides may directly activate microglial cells through their interaction with microglial VGSC. Because neuroinflammation plays a key role in many neurodegenerative diseases, these data provide an additional mechanism by which exposure to pyrethroid insecticides may contribute to neurodegeneration.
Collapse
Affiliation(s)
- Muhammad M Hossain
- Department of Environmental and Occupational Medicine and Environmental and Occupational Health Sciences Institute, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey.,Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio
| | - Jason Liu
- Department of Environmental and Occupational Medicine and Environmental and Occupational Health Sciences Institute, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey
| | - Jason R Richardson
- Department of Environmental and Occupational Medicine and Environmental and Occupational Health Sciences Institute, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey .,Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio
| |
Collapse
|
294
|
Changes in brain oxysterols at different stages of Alzheimer's disease: Their involvement in neuroinflammation. Redox Biol 2016; 10:24-33. [PMID: 27687218 PMCID: PMC5040635 DOI: 10.1016/j.redox.2016.09.001] [Citation(s) in RCA: 202] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/07/2016] [Accepted: 09/09/2016] [Indexed: 12/29/2022] Open
Abstract
Alzheimer's disease (AD) is a gradually debilitating disease that leads to dementia. The molecular mechanisms underlying AD are still not clear, and at present no reliable biomarkers are available for the early diagnosis. In the last several years, together with oxidative stress and neuroinflammation, altered cholesterol metabolism in the brain has become increasingly implicated in AD progression. A significant body of evidence indicates that oxidized cholesterol, in the form of oxysterols, is one of the main triggers of AD. The oxysterols potentially most closely involved in the pathogenesis of AD are 24-hydroxycholesterol and 27-hydroxycholesterol, respectively deriving from cholesterol oxidation by the enzymes CYP46A1 and CYP27A1. However, the possible involvement of oxysterols resulting from cholesterol autooxidation, including 7-ketocholesterol and 7β-hydroxycholesterol, is now emerging. In a systematic analysis of oxysterols in post-mortem human AD brains, classified by the Braak staging system of neurofibrillary pathology, alongside the two oxysterols of enzymatic origin, a variety of oxysterols deriving from cholesterol autoxidation were identified; these included 7-ketocholesterol, 7α-hydroxycholesterol, 4β-hydroxycholesterol, 5α,6α-epoxycholesterol, and 5β,6β-epoxycholesterol. Their levels were quantified and compared across the disease stages. Some inflammatory mediators, and the proteolytic enzyme matrix metalloprotease-9, were also found to be enhanced in the brains, depending on disease progression. This highlights the pathogenic association between the trends of inflammatory molecules and oxysterol levels during the evolution of AD. Conversely, sirtuin 1, an enzyme that regulates several pathways involved in the anti-inflammatory response, was reduced markedly with the progression of AD, supporting the hypothesis that the loss of sirtuin 1 might play a key role in AD. Taken together, these results strongly support the association between changes in oxysterol levels and AD progression.
Collapse
|
295
|
Jia H, Xu S, Liu Q, Liu J, Xu J, Li W, Jin Y, Ji Q. Effect of pioglitazone on neuropathic pain and spinal expression of TLR-4 and cytokines. Exp Ther Med 2016; 12:2644-2650. [PMID: 27698768 DOI: 10.3892/etm.2016.3643] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 01/08/2015] [Indexed: 12/30/2022] Open
Abstract
The molecular mechanisms underlying neuropathic pain have yet to be elucidated. The present study aimed to examine the modulation of neuroimmune activation in the spinal cord by the synthetic peroxisome proliferator-activated receptor gamma (PPAR-γ) agonist, pioglitazone (Pio), in a rat model of neuropathic pain induced by chronic constriction injury (CCI). Rats were randomly assigned into four groups: Sham surgery with vehicle, chronic constriction injury with vehicle or Pio (10 mg/kg), and chronic constriction injury with Pio and a PPAR-γ antagonist GW9662 (2 mg/kg). Pio or vehicle was administered 1 h prior to the surgery and continued daily until day 7 post-surgery. Paw pressure threshold was measured prior to surgery and on days 0, 1, 3 and 7 post-surgery. Microglia activation markers macrophage antigen complex-1, the mRNA expression levels of tumor necrosis factor α and interleukin-1β, and the mRNA expression levels of toll like receptor (TLR-4) in the lumbar spinal cord were determined. Administration of Pio resulted in the prominent attenuation of mechanical hyperalgesia. In addition, Pio was able to significantly inhibit neuroimmune activation characterized by glial activation, the production of cytokines and expression levels of TLR-4. Concurrent administration of a PPAR-γ antagonist, GW9662, reversed the effects of Pio. The antihyperalgesic effect of administration of Pio in rats receiving CCI may, in part, be attributed to the inhibition of neuroimmune activation associated with the sustaining of neuropathic pain.
Collapse
Affiliation(s)
- Hongbin Jia
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Shuangshuang Xu
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Qingzhen Liu
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Jian Liu
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Jianguo Xu
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Weiyan Li
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Yi Jin
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Qing Ji
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| |
Collapse
|
296
|
Cho HS, Kim TW, Ji ES, Park HS, Shin MS, Baek SS. Treadmill exercise ameliorates motor dysfunction through inhibition of Purkinje cell loss in cerebellum of valproic acid-induced autistic rats. J Exerc Rehabil 2016; 12:293-8. [PMID: 27656625 PMCID: PMC5031390 DOI: 10.12965/jer.1632696.348] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 07/27/2016] [Indexed: 11/22/2022] Open
Abstract
Autism is a complex developmental disorder with impairments in social interaction, communication, repetitive behavior and motor skills. Exercise enhances cognitive function, ameliorates motor dysfunction, and provides protective profits against neurodegeneration. In the present study, we evaluated the effect of treadmill exercise on the motor coordination and Purkinje cell loss in relation with reactive astrocytes and microglial activation in the cerebellum using valproic acid (VPA)-induced autism rat model. On the 12th day of pregnancy, the pregnant rats in the VPA-exposed group received intraperitoneal injections of 600-mg/kg VPA. After birth, the rat pups were divided into four groups: the control group, the exercise group, the VPA-treated group, the VPA-treated and exercise group. The rat pups in the exercise groups were forced to run on a treadmill for 30 min once a day, 5 times a week for 4 weeks. In the present results, motor balance and coordination was disturbed by induction of autism, in contrast, treadmill exercise alleviated motor dysfunction in the autistic rats. Purkinje cell loss, reactive astrocytes, and microglial activation were occurred by induction of autism, in contrast, treadmill exercise enhanced survival rate of Purkinje neurons through inhibition of reactive astrocytes and microglia in the autistic rats. The present study showed that exercise may provide a potential therapeutic strategy for the alleviation of motor dysfunction in autistic patients.
Collapse
Affiliation(s)
- Han-Sam Cho
- Department of Sport & Health Science, College of Natural Science, Sangmyung University, Seoul, Korea
| | - Tae-Woon Kim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Eun-Sang Ji
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Hye-Sang Park
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Mal-Soon Shin
- School of Sports and Leisure Studies, Korea University, Sejong, Korea
| | - Seung-Soo Baek
- Department of Sport & Health Science, College of Natural Science, Sangmyung University, Seoul, Korea
| |
Collapse
|
297
|
Cheng H, Wu Z, He X, Liu Q, Jia H, Di Y, Ji Q. siRNA-mediated silencing of phosphodiesterase 4B expression affects the production of cytokines in endotoxin-stimulated primary cultured microglia. Exp Ther Med 2016; 12:2257-2264. [PMID: 27698721 DOI: 10.3892/etm.2016.3575] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 05/19/2016] [Indexed: 11/06/2022] Open
Abstract
Phosphodiesterase 4 (PDE4) has four subtypes: PDE4A, PDE4B, PDE4C and PDE4D. The expression of PDE4 subtypes in microglial cells and the specific contribution of each subtype to inflammation remain unclear. In this study, the expression of PDE4 subtypes in primary microglial cells was assayed. Primary microglial cells were then transfected with specific small interfering RNA (siRNA) against each PDE4 subtype. PDE4 subtype A-D knockdown was confirmed by quantitative polymerase chain reaction. Secreted cytokines in the supernatant and intracellular cyclic adenosine monophosphate (cAMP) levels of transfected cells were measured. The effect of PDE4B siRNA on the activation of extracellular regulated protein kinase (ERK) induced by lipopolysaccharide (LPS) in microglia was further tested by western blotting. Results showed that the primary microglial cells expressed all four types of PDE4s at the protein level. Transfection with the four siRNAs inhibited PDE4 subtype A-D mRNA expression, respectively. In primary microglial cells, treatment with PDE4B siRNA significantly inhibited the expression of tumor necrosis factor-α and interleukin (IL)-1β, and enhanced the expression of cAMP, while siRNAs to other subtypes had no significant effects. However, none of the four siRNAs had any significant effect on the expression of IL-10. Furthermore, in the PDE4B group, the level of phosphorylated ERK was reduced. Among the four PDE4 subtypes, PDE4B plays an important role in regulating inflammatory responses in microglia, potentially through initially regulating the intracellular cAMP concentration.
Collapse
Affiliation(s)
- Hao Cheng
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Zhifang Wu
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Xiaoyun He
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Qingzhen Liu
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Hongbin Jia
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Yan Di
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Qing Ji
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| |
Collapse
|
298
|
Serum- and glucocorticoid-inducible kinases in microglia. Biochem Biophys Res Commun 2016; 478:53-59. [PMID: 27457803 DOI: 10.1016/j.bbrc.2016.07.094] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 07/21/2016] [Indexed: 01/05/2023]
Abstract
Microglia are derived from myelogenous cells and contribute to immunological and inflammatory responses in central nervous system. They play important roles not only in infectious diseases and inflammation after stroke, but also in psychiatric diseases such as schizophrenia. While recent studies suggest the significances of serum- and glucocorticoid-inducible kinases (SGKs) in other immune cells such as macrophages, T cells and dendritic cells, their role in microglia remains unknown. Here we, for the first time, report that SGK1 and SGK3 are expressed in multiple microglial cell lines. An SGK inhibitor, gsk650394, inhibits cell viability. In addition, lipopolysaccharide-induced expression of inflammatory regulators iNOS and TNFα was enhanced by gsk650394. Furthermore, translocation of NF-κB was enhanced by gsk650394. Taken together, these findings suggest that SGKs may play an important role in regulating microglial viability and inflammatory responses.
Collapse
|
299
|
The role of NLRP3 and AIM2 in inflammasome activation during Brucella abortus infection. Semin Immunopathol 2016; 39:215-223. [PMID: 27405866 DOI: 10.1007/s00281-016-0581-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 07/04/2016] [Indexed: 01/18/2023]
Abstract
The innate immune system is essential for the detection and elimination of bacterial pathogens. Upon inflammasome activation, caspase-1 cleaves pro-IL-1β and pro-IL-18 to their mature forms IL-1β and IL-18, respectively, and the cell undergoes inflammatory death termed pyroptosis. Here, we reviewed recent findings demonstrating that Brucella abortus ligands activate NLRP3 and AIM2 inflammasomes which lead to control of infection. This protective effect is due to the inflammatory response caused by IL-1β and IL-18 rather than cell death. Brucella DNA is sensed by AIM2 and bacteria-induced mitochondrial reactive oxygen species is detected by NLRP3. However, deregulation of pro-inflammatory cytokine production can lead to immunopathology. Nervous system invasion by bacteria of the genus Brucella results in an inflammatory disorder termed neurobrucellosis. Herein, we discuss the mechanism of caspase-1 activation and IL-1β secretion in glial cells infected with B. abortus. Our results demonstrate that the ASC inflammasome is indispensable for inducing the activation of caspase-1 and secretion of IL-1β upon infection of astrocytes and microglia with Brucella. Moreover, our results demonstrate that secretion of IL-1β by Brucella-infected glial cells depends on NLRP3 and AIM2 and leads to neurobrucellosis. Further, the inhibition of the host cell inflammasome as an immune evasion strategy has been described for bacterial pathogens. We discuss here that the bacterial type IV secretion system VirB is required for inflammasome activation in host cells during infection. Taken together, our results indicate that Brucella is sensed by ASC inflammasomes mainly NLRP3 and AIM2 that collectively orchestrate a robust caspase-1 activation and pro-inflammatory response.
Collapse
|
300
|
Su F, Bai F, Zhou H, Zhang Z. Reprint of: Microglial toll-like receptors and Alzheimer's disease. Brain Behav Immun 2016; 55:166-178. [PMID: 27255539 DOI: 10.1016/j.bbi.2016.05.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 10/09/2015] [Accepted: 10/15/2015] [Indexed: 01/04/2023] Open
Abstract
Microglial activation represents an important pathological hallmark of Alzheimer's disease (AD), and emerging data highlight the involvement of microglial toll-like receptors (TLRs) in the course of AD. TLRs have been observed to exert both beneficial and detrimental effects on AD-related pathologies, and transgenic animal models have provided direct and credible evidence for an association between TLRs and AD. Moreover, analyses of genetic polymorphisms have suggested interactions between genetic polymorphisms in TLRs and AD risk, further supporting the hypothesis that TLRs are involved in AD. In this review, we summarize the key evidence in this field. Future studies should focus on exploring the mechanisms underlying the potential roles of TLRs in AD.
Collapse
Affiliation(s)
- Fan Su
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Feng Bai
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China.
| | - Hong Zhou
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Zhijun Zhang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| |
Collapse
|