251
|
Kokona D, Charalampopoulos I, Pediaditakis I, Gravanis A, Thermos K. The neurosteroid dehydroepiandrosterone (DHEA) protects the retina from AMPA-induced excitotoxicity: NGF TrkA receptor involvement. Neuropharmacology 2012; 62:2106-17. [PMID: 22269901 DOI: 10.1016/j.neuropharm.2012.01.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 12/23/2011] [Accepted: 01/10/2012] [Indexed: 12/22/2022]
Abstract
The aim of the present study was to investigate the neuroprotective properties of the endogenous neurosteroid dehydroepiandrosterone (DHEA) in an in vivo model of retinal excitotoxicity, and the involvement of Nerve Growth Factor (NGF) in its actions. Adult Sprague-Dawley rats (250-300 g) received intravitreally (RS)-alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid hydrobromide (AMPA; 42 nmol/eye) alone or in combination with DHEA (10(-8), 10(-7), 10(-6) M), or PBS (50 mM, control group). To examine the involvement of NGF and its TrkA receptor in the pharmacological effects of DHEA, animals received AMPA and NGF (60 pg/eye) in the absence or presence of a TrkA receptor inhibitor (Calbiochem 648450, 10(-6) M) or AMPA, DHEA (10(-6) M) and TrkA receptor inhibitor (10(-6), 10(-5) M). Immunohistochemistry studies [choline acetyltransferase (ChAT), brain nitric oxide synthetase (bNOS), calbindin, and TUNEL] and fluorescence-activated cell sorting (FACS) were used to examine retinal cell loss and protection. TrkA receptor immunoreactivity (-IR) and colocalization studies with relevant markers were also performed. AMPA (42 nmol) treatment resulted in a loss of bNOS, ChAT and calbindin immunoreactivities 24 h after its administration. DHEA, administered intravitreally, protected the retina from excitotoxicity in a dose-dependent manner. This effect was mimicked by NGF, and reversed by the NGF TrkA receptor inhibitor. The TrkA receptor is expressed in ganglion cells of rat retina. TUNEL staining and FACS analysis substantiated the neuroprotective actions of DHEA. These results demonstrate for the first time that the neurosteroid DHEA, administered intravitreally, protects the retina from AMPA excitotoxicity. An NGF TrkA receptor mechanism appears to be involved in this neuroprotection.
Collapse
Affiliation(s)
- Despina Kokona
- Laboratory of Pharmacology, Department of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion, Crete 71 003, Greece
| | | | | | | | | |
Collapse
|
252
|
Galdo M, Gregonis J, Fiore CS, Compagnone NA. Dehydroepiandrosterone biosynthesis, role, and mechanism of action in the developing neural tube. Front Endocrinol (Lausanne) 2012; 3:16. [PMID: 22649409 PMCID: PMC3355923 DOI: 10.3389/fendo.2012.00016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 01/19/2012] [Indexed: 12/19/2022] Open
Abstract
Dehydroepiandrosterone (DHEA) is synthesized from cholesterol by activity of P450scc and P450c17, enzymes that we previously characterized in the developing nervous system. We describe the localization of P450c17 in the differentiated field of the ventral spinal cord in different motor neuron subtypes. We show that, during organogenesis, P450c17 activity is regulated along the antero/posterior axis of the spinal cord concomitantly with the gradient of neurogenesis. To examine whether DHEA may modulate this process, we measured proliferation and differentiation of ventral neural precursors in primary and explant cultures. Our results showed that DHEA-induced the expression of class II protein Nkx6.1, motor neuron precursor Olig-2, and definitive motor neuron marker Isl-1/2. DHEA also promoted proliferation of ventrally committed precursors in isolated spinal cord precursor cultures and in whole spinal cord explants. Both the proliferative and inductive effects of DHEA were dependent on sonic hedgehog signaling. The possibilities that the effects observed with DHEA were due to its metabolism into androgens or to activation of NMDA receptors were excluded. These results support the hypothesis that the tight regulation of DHEA biosynthesis may be a biologic clock restricting the period of ventral neuronal-precursor proliferation, thus controlling the number of pre-committed neurons in the developing neural tube.
Collapse
Affiliation(s)
- Mark Galdo
- Laboratory for Spinal Cord Development and Regeneration, Department of Neurological Surgery, University of CaliforniaSan Francisco, CA, USA
| | - Jennifer Gregonis
- Laboratory for Spinal Cord Development and Regeneration, Department of Neurological Surgery, University of CaliforniaSan Francisco, CA, USA
| | - Christelle S. Fiore
- Laboratory for Spinal Cord Development and Regeneration, Department of Neurological Surgery, University of CaliforniaSan Francisco, CA, USA
| | - Nathalie A. Compagnone
- Laboratory for Spinal Cord Development and Regeneration, Department of Neurological Surgery, University of CaliforniaSan Francisco, CA, USA
- *Correspondence: Nathalie A. Compagnone, Innovative Concepts in Drug Development, Innovation Park Michel Caucik, BP2 100 rte des houilleres, 13590 Meyreuil, France. e-mail:
| |
Collapse
|
253
|
Abstract
The long-held dogma that the brain is a target of steroids produced by peripheral organs has delayed the widespread acceptance of the functional importance of neurosteroidogenesis. Comparative studies have been vital for establishing the key actions of gonadal and adrenal hormones on brain and behaviour. No doubt, studies across diverse phyla will continue to be crucial for revealing the true significance of neurosteroidogenesis to proper function of the vertebrate brain. Here, we review work carried out in our laboratory, as well as in others, highlighting advances to our understanding of brain steroid synthesis and action using songbirds as animal models. These studies show that steroidogenic transporters and enzymes are present in the songbird brain and that their expression and/or activities are subject to developmental, seasonal or short-term regulation. Our work in a songbird points to synaptic synthesis of neuroactive steroids and fast, perisynaptic membrane actions. Combined with evidence for rapid steroidal control of behaviour, these studies firmly establish a neuromodulatory role for avian neurosteroids. We hope this work will join with that of other species to embolden the acceptance of neurosteroidal signalling as a core property of vertebrate neurobiology.
Collapse
Affiliation(s)
- B A Schlinger
- Laboratory of Neuroendocrinology, Department of Integrative Biology and Physiology, Brain Research Institute, UCLA, Los Angeles, CA 90095, USA.
| | | |
Collapse
|
254
|
Pinna G, Rasmusson AM. Up-regulation of neurosteroid biosynthesis as a pharmacological strategy to improve behavioural deficits in a putative mouse model of post-traumatic stress disorder. J Neuroendocrinol 2012; 24:102-16. [PMID: 21981145 PMCID: PMC3245370 DOI: 10.1111/j.1365-2826.2011.02234.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Benzodiazepines remain the most frequently used psychotropic drugs for the treatment of anxiety spectrum disorders; however, their use is associated with the development of tolerance and dependence. Another major hindrance is represented by their lack of efficacy in many patients, including patients with post-traumatic stress disorder (PTSD). For these nonresponders, the use of selective serotonin reuptake inhibitors (SSRIs) has been the therapy of choice. In the past decade, clinical studies have suggested that the pharmacological action of SSRIs may include the ability of these drugs to normalise decreased brain levels of neurosteroids in patients with depression and PTSD; in particular, the progesterone derivative allopregnanolone, which potently, positively and allosterically modulates the action of GABA at GABA(A) receptors. Preclinical studies using the socially-isolated mouse as an animal model of PTSD have demonstrated that fluoxetine and congeners ameliorate anxiety-like behaviour, fear responses and aggressive behaviour expressed by such mice by increasing corticolimbic levels of allopregnanolone. This is a novel and more selective mechanism than serotonin reuptake inhibition, which, for half a century, has been considered to be the main molecular mechanism for the therapeutic action of SSRIs. Importantly, this finding may shed light on the high rates of SSRI resistance among patients with PTSD and depression, comprising disorders in which there appears to be a block in allopregnanolone synthesis. There are several different mechanisms by which such a block may occur, and SSRIs may only be corrective under some conditions. Thus, the up-regulation of allopregnanolone biosynthesis in corticolimbic neurones may offer a novel nontraditional pharmacological target for a new generation of potent nonsedating, anxiolytic medications for the treatment of anxiety, depression, and PTSD: selective brain steroidogenic stimulants.
Collapse
Affiliation(s)
- Graziano Pinna
- Department of Psychiatry, Psychiatric Institute, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | | |
Collapse
|
255
|
Pappa T, Vemmos K, Saltiki K, Mantzou E, Stamatelopoulos K, Alevizaki M. Severity and outcome of acute stroke in women: relation to adrenal sex steroid levels. Metabolism 2012; 61:84-91. [PMID: 21820139 DOI: 10.1016/j.metabol.2011.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2011] [Revised: 06/03/2011] [Accepted: 06/05/2011] [Indexed: 11/18/2022]
Abstract
Adrenal sex steroids exert diverse metabolic and neurobiological actions. Their levels have been associated with cardiovascular disease, but data concerning cerebrovascular disease are lacking. The objective of our study was to investigate the role of adrenal sex steroids in a female population suffering an acute stroke. We addressed the question of whether their levels are associated with disease severity and prognosis. A 2-year cohort study was performed in 2 tertiary hospitals, where we prospectively studied 302 consecutive postmenopausal female patients hospitalized for an acute stroke. Neurological severity on admission was assessed by the National Institutes of Health Stroke Scale; and handicap 1 month after stroke, with the modified Rankin Scale. Δ4-androstenedione levels were positively and dehydroepiandrosterone sulfate was inversely associated with stroke severity (r = 0.142, P = .014 and r = -0.153, P = .008, respectively), and both parameters remained as significant determinants even after entering other confounders in the multivariate model (r = 0.118, P = .039 and r = -0.150, P = .011, respectively). Levels of Δ4-androstenedione were significantly associated with 1-month mortality in the multivariate analysis (odds ratio with 95% confidence intervals: 1.540 [1.107-2.138)], P = .010). Δ4-androstenedione and dehydroepiandrosterone sulfate levels were associated with poor outcome in the univariate analysis, that is, combined severe handicap (modified Rankin Scale ≥4) and death, 1 month poststroke, although this was not significant in the multivariate analysis. Adrenal sex steroids, and especially Δ4-androstenedione, are significantly associated with stroke severity on admission and short-term prognosis among female stroke subjects. Well-designed prospective studies will further clarify their role in cerebrovascular disease.
Collapse
Affiliation(s)
- Theodora Pappa
- Endocrine Unit, Department of Clinical Therapeutics, Alexandra Hospital, Athens University School of Medicine, Greece.
| | | | | | | | | | | |
Collapse
|
256
|
Abstract
Dehydroepiandrosterone sulphate (DHEAS) is synthesised from dehydroepiandrosterone by the enzyme sulphotransferase. DHEAS is one of the most important neurosteroids in the brain. The concentration of DHEAS in the brain is sometimes higher than peripheral system. At the cellular level, DHEAS has been shown to modulate a variety of synaptic transmission, including cholinergic, GABAergic dopaminergic and glutamatergic synaptic transmission. In addition to the effect on the release of a number of neurotransmitters, DHEAS could also modulate the activity of postsynaptic receptors. DHEAS has been found to have multiple important effects on brain functions, such as memory enhancing, antidepressant and anxiolytic effects, and may have relationships with many brain diseases.
Collapse
Affiliation(s)
- Y Dong
- State Key Laboratory of Medical Neurobiology, Shanghai Medical College and Institutes of Brain Science, Fudan University, Shanghai, China
| | | |
Collapse
|
257
|
Do Rego JL, Seong JY, Burel D, Leprince J, Vaudry D, Luu-The V, Tonon MC, Tsutsui K, Pelletier G, Vaudry H. Regulation of neurosteroid biosynthesis by neurotransmitters and neuropeptides. Front Endocrinol (Lausanne) 2012; 3:4. [PMID: 22654849 PMCID: PMC3356045 DOI: 10.3389/fendo.2012.00004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 01/05/2012] [Indexed: 12/30/2022] Open
Abstract
The enzymatic pathways leading to the synthesis of bioactive steroids in the brain are now almost completely elucidated in various groups of vertebrates and, during the last decade, the neuronal mechanisms involved in the regulation of neurosteroid production have received increasing attention. This report reviews the current knowledge concerning the effects of neurotransmitters, peptide hormones, and neuropeptides on the biosynthesis of neurosteroids. Anatomical studies have been carried out to visualize the neurotransmitter- or neuropeptide-containing fibers contacting steroid-synthesizing neurons as well as the neurotransmitter, peptide hormones, or neuropeptide receptors expressed in these neurons. Biochemical experiments have been conducted to investigate the effects of neurotransmitters, peptide hormones, or neuropeptides on neurosteroid biosynthesis, and to characterize the type of receptors involved. Thus, it has been found that glutamate, acting through kainate and/or AMPA receptors, rapidly inactivates P450arom, and that melatonin produced by the pineal gland and eye inhibits the biosynthesis of 7α-hydroxypregnenolone (7α-OH-Δ(5)P), while prolactin produced by the adenohypophysis enhances the formation of 7α-OH-Δ(5)P. It has also been demonstrated that the biosynthesis of neurosteroids is inhibited by GABA, acting through GABA(A) receptors, and neuropeptide Y, acting through Y1 receptors. In contrast, it has been shown that the octadecaneuropetide ODN, acting through central-type benzodiazepine receptors, the triakontatetraneuropeptide TTN, acting though peripheral-type benzodiazepine receptors, and vasotocin, acting through V1a-like receptors, stimulate the production of neurosteroids. Since neurosteroids are implicated in the control of various neurophysiological and behavioral processes, these data suggest that some of the neurophysiological effects exerted by neurotransmitters and neuropeptides may be mediated via the regulation of neurosteroid production.
Collapse
Affiliation(s)
- Jean Luc Do Rego
- INSERMMont-Saint-Aignan France
- European Institute for Peptide Research, IFRMP 23, Regional Platform for Cell Imaging, PRIMACEN, University of RouenMont-Saint-Aignan, France
- International Associated Laboratory Samuel de ChamplainMont-Saint-Aignan, France
| | - Jae Young Seong
- Laboratory of G Protein-Coupled Receptors, Graduate School of Medicine, Korea University College of MedicineSeoul, Korea
| | - Delphine Burel
- INSERMMont-Saint-Aignan France
- European Institute for Peptide Research, IFRMP 23, Regional Platform for Cell Imaging, PRIMACEN, University of RouenMont-Saint-Aignan, France
- International Associated Laboratory Samuel de ChamplainMont-Saint-Aignan, France
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, INSERM U982, University of RouenMont-Saint-Aignan, France
| | - Jerôme Leprince
- INSERMMont-Saint-Aignan France
- European Institute for Peptide Research, IFRMP 23, Regional Platform for Cell Imaging, PRIMACEN, University of RouenMont-Saint-Aignan, France
- International Associated Laboratory Samuel de ChamplainMont-Saint-Aignan, France
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, INSERM U982, University of RouenMont-Saint-Aignan, France
| | - David Vaudry
- INSERMMont-Saint-Aignan France
- European Institute for Peptide Research, IFRMP 23, Regional Platform for Cell Imaging, PRIMACEN, University of RouenMont-Saint-Aignan, France
- International Associated Laboratory Samuel de ChamplainMont-Saint-Aignan, France
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, INSERM U982, University of RouenMont-Saint-Aignan, France
| | - Van Luu-The
- Research Center in Molecular Endocrinology, Oncology and Genetics, Laval University Hospital CenterQuébec, QC, Canada
| | - Marie-Christine Tonon
- INSERMMont-Saint-Aignan France
- European Institute for Peptide Research, IFRMP 23, Regional Platform for Cell Imaging, PRIMACEN, University of RouenMont-Saint-Aignan, France
- International Associated Laboratory Samuel de ChamplainMont-Saint-Aignan, France
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, INSERM U982, University of RouenMont-Saint-Aignan, France
| | - Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda UniversityTokyo, Japan
- Center for Medical Life Science of Waseda UniversityTokyo, Japan
| | - Georges Pelletier
- Research Center in Molecular Endocrinology, Oncology and Genetics, Laval University Hospital CenterQuébec, QC, Canada
| | - Hubert Vaudry
- INSERMMont-Saint-Aignan France
- European Institute for Peptide Research, IFRMP 23, Regional Platform for Cell Imaging, PRIMACEN, University of RouenMont-Saint-Aignan, France
- International Associated Laboratory Samuel de ChamplainMont-Saint-Aignan, France
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, INSERM U982, University of RouenMont-Saint-Aignan, France
- *Correspondence: Hubert Vaudry, INSERM U982, European Institute for Peptide Research, IFRMP 23, University of Rouen, 76821 Mont-Saint-Aignan, France. e-mail:
| |
Collapse
|
258
|
Panzica GC, Balthazart J, Frye CA, Garcia-Segura LM, Herbison AE, Mensah-Nyagan AG, McCarthy MM, Melcangi RC. Milestones on Steroids and the Nervous System: 10 years of basic and translational research. J Neuroendocrinol 2012; 24:1-15. [PMID: 22188420 DOI: 10.1111/j.1365-2826.2011.02265.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
During the last 10 years, the conference on 'Steroids and Nervous System' held in Torino (Italy) has been an important international point of discussion for scientists involved in this exciting and expanding research field. The present review aims to recapitulate the main topics that have been presented through the various meetings. Two broad areas have been explored: the impact of gonadal hormones on brain circuits and behaviour, as well as the mechanism of action of neuroactive steroids. Relationships among steroids, brain and behaviour, the sexual differentiation of the brain and the impact of gonadal hormones, the interactions of exogenous steroidal molecules (endocrine disrupters) with neural circuits and behaviour, and how gonadal steroids modulate the behaviour of gonadotrophin-releasing hormone neurones, have been the topics of several lectures and symposia during this series of meetings. At the same time, many contributions have been dedicated to the biosynthetic pathways, the physiopathological relevance of neurosteroids, the demonstration of the cellular localisation of different enzymes involved in neurosteroidogenesis, the mechanisms by which steroids may exert some of their effects, both the classical and nonclassical actions of different steroids, the role of neuroactive steroids on neurodegeneration, neuroprotection, and the response of the neural tissue to injury. In these 10 years, this field has significantly advanced and neuroactive steroids have emerged as new potential therapeutic tools to counteract neurodegenerative events.
Collapse
Affiliation(s)
- G C Panzica
- Laboratory of Neuroendocrinology, Department of Anatomy, Pharmacology and Forensic Medicine, Neuroscience Institute of Turin (NIT), University of Torino, Torino, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
259
|
Diotel N, Do Rego JL, Anglade I, Vaillant C, Pellegrini E, Vaudry H, Kah O. The brain of teleost fish, a source, and a target of sexual steroids. Front Neurosci 2011; 5:137. [PMID: 22194715 PMCID: PMC3242406 DOI: 10.3389/fnins.2011.00137] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 11/30/2011] [Indexed: 11/13/2022] Open
Abstract
Neurosteroids are defined as steroids de novo synthesized in the central nervous system. While the production of neurosteroids is well documented in mammals and amphibians, there is less information about teleosts, the largest group of fish. Teleosts have long been known for their high brain aromatase and 5α-reductase activities, but recent data now document the capacity of the fish brain to produce a large variety of sex steroids. This article aims at reviewing the available information regarding expression and/or activity of the main steroidogenic enzymes in the brain of fish. In addition, the distribution of estrogen, androgen, and progesterone nuclear receptors is documented in relation with the potential sites of production of neurosteroids. Interestingly, radial glial cells acting as neuronal progenitors, appear to be a potential source of neurosteroids, but also a target for centrally and/or peripherally produced steroids.
Collapse
Affiliation(s)
- Nicolas Diotel
- Neurogenesis and Œstrogens, UMR CNRS 6026, IFR 140, Université de Rennes 1 Rennes, France
| | | | | | | | | | | | | |
Collapse
|
260
|
Diotel N, Servili A, Gueguen MM, Mironov S, Pellegrini E, Vaillant C, Zhu Y, Kah O, Anglade I. Nuclear progesterone receptors are up-regulated by estrogens in neurons and radial glial progenitors in the brain of zebrafish. PLoS One 2011; 6:e28375. [PMID: 22140581 PMCID: PMC3227669 DOI: 10.1371/journal.pone.0028375] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 11/07/2011] [Indexed: 12/02/2022] Open
Abstract
In rodents, there is increasing evidence that nuclear progesterone receptors are transiently expressed in many regions of the developing brain, notably outside the hypothalamus. This suggests that progesterone and/or its metabolites could be involved in functions not related to reproduction, particularly in neurodevelopment. In this context, the adult fish brain is of particular interest, as it exhibits constant growth and high neurogenic activity that is supported by radial glia progenitors. However, although synthesis of neuroprogestagens has been documented recently in the brain of zebrafish, information on the presence of progesterone receptors is very limited. In zebrafish, a single nuclear progesterone receptor (pgr) has been cloned and characterized. Here, we demonstrate that this pgr is widely distributed in all regions of the zebrafish brain. Interestingly, we show that Pgr is strongly expressed in radial glial cells and more weakly in neurons. Finally, we present evidence, based on quantitative PCR and immunohistochemistry, that nuclear progesterone receptor mRNA and proteins are upregulated by estrogens in the brain of adult zebrafish. These data document for the first time the finding that radial glial cells are preferential targets for peripheral progestagens and/or neuroprogestagens. Given the crucial roles of radial glial cells in adult neurogenesis, the potential effects of progestagens on their activity and the fate of daughter cells require thorough investigation.
Collapse
Affiliation(s)
- Nicolas Diotel
- Neurogenesis and Oestrogens, UMR CNRS 6026, IFR140, Université de Rennes 1, Rennes, France
| | - Arianna Servili
- Neurogenesis and Oestrogens, UMR CNRS 6026, IFR140, Université de Rennes 1, Rennes, France
| | | | - Svetlana Mironov
- Neurogenesis and Oestrogens, UMR CNRS 6026, IFR140, Université de Rennes 1, Rennes, France
| | - Elisabeth Pellegrini
- Neurogenesis and Oestrogens, UMR CNRS 6026, IFR140, Université de Rennes 1, Rennes, France
| | - Colette Vaillant
- Neurogenesis and Oestrogens, UMR CNRS 6026, IFR140, Université de Rennes 1, Rennes, France
| | - Yong Zhu
- Department of Biology, East Carolina University, Greenville, North Carolina, United States of America
| | - Olivier Kah
- Neurogenesis and Oestrogens, UMR CNRS 6026, IFR140, Université de Rennes 1, Rennes, France
- * E-mail:
| | - Isabelle Anglade
- Neurogenesis and Oestrogens, UMR CNRS 6026, IFR140, Université de Rennes 1, Rennes, France
| |
Collapse
|
261
|
Abstract
Steroid hormones, such as progesterone, are typically considered to be primarily secreted by the gonads (albeit adrenals can also be a source) and to exert their actions through cognate intracellular progestin receptors (PRs). Through its actions in the midbrain ventral tegmental Area (VTA), progesterone mediates appetitive (exploratory, anxiety, social approach) and consummatory (social, sexual) aspects of rodents' mating behaviour. However, progesterone and its natural metabolites ('progestogens') are produced in the midbrain VTA independent of peripheral sources and midbrain VTA of adult rodents is devoid of intracellular PRs. One approach that we have used to understand the effects of progesterone and mechanisms in the VTA for mating is to manipulate the actions of progesterone in the VTA and to examine effects on lordosis (the posture female rodents assume for mating to occur). This review focuses on the effects and mechanisms of progestogens to influence reproduction and related processes. The actions of progesterone and its 5α-reduced metabolite and neurosteroid, 5α-pregnan-3α-ol-20-one (3α,5α-THP; allopregnanolone) in the midbrain VTA to facilitate mating are described. The findings that 3α,5α-THP biosynthesis in the midbrain occurs with mating are discussed. Evidence for the actions of 3α,5α-THP in the midbrain VTA via nontraditional steroid targets is summarised. The broader relevance of these actions of 3α,5α-THP for aspects of reproduction, beyond lordosis, is summarised. Finally, the potential role of the pregnane xenobiotic receptor in mediating 3α,5α-THP biosynthesis in the midbrain is introduced.
Collapse
Affiliation(s)
- Cheryl Anne Frye
- Department of Psychology, University at Albany, Albany, NY 12222, USA.
| |
Collapse
|
262
|
Dvela M, Rosen H, Ben-Ami HC, Lichtstein D. Endogenous ouabain regulates cell viability. Am J Physiol Cell Physiol 2011; 302:C442-52. [PMID: 22031604 DOI: 10.1152/ajpcell.00336.2011] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The endogenous cardiac steroid-like compounds, endogenous ouabain (EO) in particular, are present in the human circulation and are considered putative ligands of the inhibitory binding site of the plasma membrane Na(+)-K(+)-ATPase. A vast amount of data shows that, when added to cell cultures, these steroids promote the growth of cardiac, vascular, and epithelial cells. However, the involvement of the endogenous compounds in the regulation of cell viability and proliferation has never been addressed experimentally. In this study, we show that EO is present in mammalian sera and cerebral spinal fluid, as well as in commercial bovine and horse sera. The lowering of serum EO concentration by the addition of specific anti-ouabain antibodies caused a decrease in the viability of several cultured cell lines. Among these, neuronal NT2 cells were mostly affected, whereas no reduction in viability was seen in rat neuroendocrine PC12 and monkey kidney COS-7 cells. The anti-ouabain antibody-induced reduction in NT2 cell viability was significantly attenuated by the addition of ouabain and was not observed in cells growing in serum-free media. Furthermore, the addition to the medium of low concentrations (nM) of the cardenolide ouabain, but not of the bufadienolide bufalin, increased NT2 and PC12 cell viability and proliferation. In addition, at these concentrations both ouabain and bufalin caused the activation of ERK1/2 in the NT2 cells. The specific ERK1/2 inhibitor U0126 inhibited both the ouabain-induced activation of the enzyme and the increase in cell viability. Furthermore, anti-ouabain antibodies attenuated serum-stimulated ERK1/2 activity in NT2 but not in PC12 cells. Cumulatively, our results suggest that EO plays a significant role in the regulation of cell viability. In addition, our findings support the notion that activation of the ERK1/2 signaling pathway is obligatory but not sufficient for the induction of cell viability by EO.
Collapse
Affiliation(s)
- Moran Dvela
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | | | |
Collapse
|
263
|
Hulin MW, Amato RJ, Winsauer PJ. GABA(A) receptor modulation during adolescence alters adult ethanol intake and preference in rats. Alcohol Clin Exp Res 2011; 36:223-33. [PMID: 21895721 DOI: 10.1111/j.1530-0277.2011.01622.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND To address the hypothesis that GABA(A) receptor modulation during adolescence may alter the abuse liability of ethanol during adulthood, the effects of adolescent administration of both a positive and negative GABA(A) receptor modulator on adult alcohol intake and preference were assessed. METHODS Three groups of adolescent male rats received 12 injections of lorazepam (3.2 mg/kg), dehydroepiandrosterone (DHEA, 56 mg/kg), or vehicle on alternate days starting on postnatal day (PD) 35. After this time, the doses were increased to 5.6 and 100 mg/kg, respectively, for 3 more injections on alternate days. Subjects had access to 25 to 30 g of food daily, during the period of the first 6 injections, and 18 to 20 g thereafter. Food intake of each group was measured 60 minutes after food presentation, which occurred immediately after drug administration on injection days or at the same time of day on noninjection days. When subjects reached adulthood (PD 88), ethanol preference was determined on 2 separate occasions, an initial 3-day period and a 12-day period, in which increasing concentrations of ethanol were presented. During each preference test, intake of water, saccharin, and an ethanol/saccharin solution was measured after each 23-hour access period. RESULTS During adolescence, lorazepam increased 60-minute food intake, and this effect was enhanced under the more restrictive feeding schedule. DHEA had the opposite effect on injection days, decreasing food intake compared with noninjection days. In adulthood, the lorazepam-treated group preferred the 2 lowest concentrations of ethanol/saccharin more than saccharin alone compared with vehicle-treated subjects, which showed no preference for any concentration of ethanol/saccharin over saccharin. DHEA-treated subjects showed no preference among the 3 solutions. CONCLUSIONS These data demonstrate that GABA(A) receptor modulation during adolescence can alter intake and preference for ethanol in adulthood and highlights the importance of drug history as an important variable in the liability for alcohol abuse.
Collapse
Affiliation(s)
- Mary W Hulin
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Science Center, New Orleans, Louisiana, USA
| | | | | |
Collapse
|
264
|
Chao A, Schlinger BA, Remage-Healey L. Combined liquid and solid-phase extraction improves quantification of brain estrogen content. Front Neuroanat 2011; 5:57. [PMID: 21909323 PMCID: PMC3164112 DOI: 10.3389/fnana.2011.00057] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2011] [Accepted: 08/16/2011] [Indexed: 11/13/2022] Open
Abstract
Accuracy in quantifying brain-derived steroid hormones ("neurosteroids") has become increasingly important for understanding the modulation of neuronal activity, development, and physiology. Relative to other neuroactive compounds and classical neurotransmitters, steroids pose particular challenges with regard to isolation and analysis, owing to their lipid solubility. Consequently, anatomical studies of the distribution of neurosteroids have relied primarily on the expression of neurosteroid synthesis enzymes. To evaluate the distribution of synthesis enzymes vis-à-vis the actual steroids themselves, traditional steroid quantification assays, including radioimmunoassays, have successfully employed liquid extraction methods (e.g., ether, dichloromethane, or methanol) to isolate steroids from microdissected brain tissue. Due to their sensitivity, safety, and reliability, the use of commercial enzyme-immunoassays (EIA) for laboratory quantification of steroids in plasma and brain has become increasingly widespread. However, EIAs rely on enzymatic reactions in vitro, making them sensitive to interfering substances in brain tissue and thus producing unreliable results. Here, we evaluate the effectiveness of a protocol for combined, two-stage liquid/solid-phase extraction (SPE) as compared to conventional liquid extraction alone for the isolation of estradiol (E(2)) from brain tissue. We employ the songbird model system, in which brain steroid production is pronounced and linked to neural mechanisms of learning and plasticity. This study outlines a combined liquid-SPE protocol that improves the performance of a commercial EIA for the quantification of brain E(2) content. We demonstrate the effectiveness of our optimized method for evaluating the region specificity of brain E(2) content, compare these results to established anatomy of the estrogen synthesis enzyme and estrogen receptor, and discuss the nature of potential EIA interfering substances.
Collapse
Affiliation(s)
- Andrew Chao
- Laboratory of Neuroendocrinology, Department of Integrative Biology and Physiology, Brain Research Institute, University of California Los Angeles Los Angeles, CA, USA
| | | | | |
Collapse
|
265
|
Ruta L, Ingudomnukul E, Taylor K, Chakrabarti B, Baron-Cohen S. Increased serum androstenedione in adults with autism spectrum conditions. Psychoneuroendocrinology 2011; 36:1154-63. [PMID: 21398041 DOI: 10.1016/j.psyneuen.2011.02.007] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2010] [Revised: 01/31/2011] [Accepted: 02/11/2011] [Indexed: 12/15/2022]
Abstract
Molecular and behavioural evidence points to an association between sex-steroid hormones and autism spectrum conditions (ASC) and/or autistic traits. Prenatal androgen levels are associated with autistic traits, and several genes involved in steroidogenesis are associated with autism, Asperger Syndrome and/or autistic traits. Furthermore, higher rates of androgen-related conditions (such as Polycystic Ovary Syndrome, hirsutism, acne and hormone-related cancers) are reported in women with autism spectrum conditions. A key question therefore is if serum levels of gonadal and adrenal sex-steroids (particularly testosterone, estradiol, dehydroepiandrosterone sulfate and androstenedione) are elevated in individuals with ASC. This was tested in a total sample of n=166 participants. The final eligible sample for hormone analysis comprised n=128 participants, n=58 of whom had a diagnosis of Asperger Syndrome or high functioning autism (33 males and 25 females) and n=70 of whom were age- and IQ-matched typical controls (39 males and 31 females). ASC diagnosis (without any interaction with sex) strongly predicted androstenedione levels (p<0.01), and serum androstenedione levels were significantly elevated in the ASC group (Mann-Whitney W=2677, p=0.002), a result confirmed by permutation testing in females (permutation-corrected p=0.02). This result is discussed in terms of androstenedione being the immediate precursor of, and being converted into, testosterone, dihydrotestosterone, or estrogens in hormone-sensitive tissues and organs.
Collapse
Affiliation(s)
- Liliana Ruta
- Autism Research Centre, Department of Psychiatry, Cambridge University, Cambridge, UK.
| | | | | | | | | |
Collapse
|
266
|
Colson N, Fernandez F, Griffiths L. Genetics of menstrual migraine: the molecular evidence. Curr Pain Headache Rep 2011; 14:389-95. [PMID: 20625856 DOI: 10.1007/s11916-010-0129-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Migraine is considered to be a multifactorial disorder in which genetic, environmental, and, in the case of menstrual and menstrually related migraine, hormonal events influence the phenotype. Certainly, the role of female sex hormones in migraine has been well established, yet the mechanism behind this well-known relationship remains unclear. This review focuses on the potential role of hormonally related genes in migraine, summarizes results of candidate gene studies to date, and discusses challenges and issues involved in interpreting hormone-related gene results. In light of the molecular evidence presented, we discuss future approaches for analysis with the view to elucidate the complex genetic architecture that underlies the disorder.
Collapse
Affiliation(s)
- Natalie Colson
- Genomics Research Centre, Griffith Health Institute, School of Medical Science, Griffith University, Gold Coast, Queensland, 4222, Australia
| | | | | |
Collapse
|
267
|
Krakowski M, Czobor P. Cholesterol and cognition in schizophrenia: a double-blind study of patients randomized to clozapine, olanzapine and haloperidol. Schizophr Res 2011; 130:27-33. [PMID: 21549568 DOI: 10.1016/j.schres.2011.04.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 03/30/2011] [Accepted: 04/05/2011] [Indexed: 11/25/2022]
Abstract
OBJECTIVE A positive relationship between cholesterol levels and cognition has been reported in various human and animal studies, but has never been investigated in schizophrenia. The goal of this study was to examine this relationship in schizophrenic patients randomized to clozapine, olanzapine or haloperidol. METHOD This was a double-blind randomized prospective 12-week study. Participants received a baseline evaluation including a cognitive battery consisting of an evaluation of psychomotor function, general executive function, visual and verbal memory, and visuospatial ability. Their fasting serum cholesterol level was also assessed. The participants were then randomized to clozapine, olanzapine, or haloperidol. They were evaluated at the end of 12 weeks. A general cognitive index (GCI) derived from the cognitive battery was the primary variable. RESULTS 82 patients had both baseline and endpoint neurocognitive assessments and cholesterol levels. There was a statistically and clinically significant positive association between change in cholesterol levels and change in GCI. This association was especially pronounced for verbal memory. There was no interaction between medication grouping and cholesterol level; the positive association was observable separately in each medication group. It was very robust and remained significant after we controlled for glucose and triglyceride levels, anticholinergic side effects, medication serum levels, cholesterol lowering medications, and pre-study antipsychotic medications. CONCLUSIONS Cholesterol levels show a strong association with cognition in schizophrenia in all medication groups. Further research on the role of lipid metabolism in cognition may suggest new treatments for this core deficit of schizophrenia.
Collapse
Affiliation(s)
- Menahem Krakowski
- Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY 10962, United States.
| | | |
Collapse
|
268
|
Choudhary MI, Zafar S, Khan NT, Ahmad S, Noreen S, Marasini BP, Al-Khedhairy AA, Atta-ur-Rahman. Biotransformation of dehydroepiandrosterone with Macrophomina phaseolina and β-glucuronidase inhibitory activity of transformed products. J Enzyme Inhib Med Chem 2011; 27:348-55. [DOI: 10.3109/14756366.2011.590804] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- M. Iqbal Choudhary
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi,
Karachi, Pakistan
- Department of Chemistry, College of Science, King Saud University,
Riyadh, Saudi Arabia
| | - Salman Zafar
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi,
Karachi, Pakistan
| | - Naik Tameen Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi,
Karachi, Pakistan
| | - Saeed Ahmad
- Department of Pharmacy, Islamia University,
Bahawalpur, Pakistan
| | - Shagufta Noreen
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi,
Karachi, Pakistan
| | - Bishnu P. Marasini
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi,
Karachi, Pakistan
| | | | - Atta-ur-Rahman
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi,
Karachi, Pakistan
| |
Collapse
|
269
|
Majeed Y, Amer MS, Agarwal AK, McKeown L, Porter KE, O'Regan DJ, Naylor J, Fishwick CWG, Muraki K, Beech DJ. Stereo-selective inhibition of transient receptor potential TRPC5 cation channels by neuroactive steroids. Br J Pharmacol 2011; 162:1509-20. [PMID: 21108630 PMCID: PMC3057289 DOI: 10.1111/j.1476-5381.2010.01136.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND AND PURPOSE Transient receptor potential canonical 5 (TRPC5) channels are widely expressed, including in the CNS, where they potentiate fear responses. They also contribute to other non-selective cation channels that are stimulated by G-protein-coupled receptor agonists and lipid and redox factors. Steroids are known to modulate fear and anxiety states, and we therefore investigated whether TRPC5 exhibited sensitivity to steroids. EXPERIMENTAL APPROACH Human TRPC5 channels were conditionally expressed in HEK293 cells and studied using intracellular Ca2+ measurement, whole-cell voltage-clamp and excised patch techniques. For comparison, control experiments were performed with cells lacking TRPC5 channels or expressing another TRP channel, TRPM2. Native TRPC channel activity was recorded from vascular smooth muscle cells. KEY RESULTS Extracellular application of pregnenolone sulphate, pregnanolone sulphate, pregnanolone, progesterone or dihydrotestosterone inhibited TRPC5 activity within 1–2 min. Dehydroepiandrosterone sulphate or 17β-oestradiol had weak inhibitory effects. Pregnenolone, and allopregnanolone, a progesterone metabolite and stereo-isomer of pregnanolone, all had no effects. Progesterone was the most potent of the steroids, especially against TRPC5 channel activity evoked by sphingosine-1-phosphate. In outside-out patch recordings, bath-applied progesterone and dihydrotestosterone had strong and reversible effects, suggesting relatively direct mechanisms of action. Progesterone inhibited native TRPC5-containing channel activity, evoked by oxidized phospholipid. CONCLUSIONS AND IMPLICATIONS Our data suggest that TRPC5 channels are susceptible to relatively direct and rapid stereo-selective steroid modulation, leading to channel inhibition. The study adds to growing appreciation of TRP channels as non-genomic steroid sensors.
Collapse
Affiliation(s)
- Y Majeed
- Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
270
|
Frye CA, Paris JJ. Progesterone turnover to its 5α-reduced metabolites in the ventral tegmental area of the midbrain is essential for initiating social and affective behavior and progesterone metabolism in female rats. J Endocrinol Invest 2011; 34:e188-99. [PMID: 21060252 PMCID: PMC3376830 DOI: 10.3275/7334] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND Among women and female rodents, progesterone (P) influences social affiliation and affect. These effects may be partly due to formation of its 5α-reduced, 3α- hydroxylated metabolite, 5α-pregnan-3α-ol-20-one (3α,5α- THP). AIM To elucidate whether actions of 3α,5α-THP in the midbrain ventral tegmental area (VTA) are both necessary and sufficient to enhance non-sexual and sexual social behaviors, affect, and central 3α,5α-THP metabolism. MATERIALS AND METHODS P and 3α,5α-THP formation were unperturbed or blocked in VTA via infusions of vehicle, PK11195 (400 ng), and/or indomethacin (10 μg). Rats then received subsequent infusions of vehicle or 3α,5α-THP (100 ng) and were assessed in a battery of tasks that included open field (exploration), elevated plus maze (anxiety behavior), social interaction (social affiliation), and paced mating (sexual behavior) or were not tested. Metabolic turnover of P to its 5α-reduced metabolites was assessed in plasma, midbrain, hippocampus, frontal cortex, diencephalon, and remaining subcortical tissues (control interbrain). RESULTS Infusions of any combination of inhibitors significantly reduced social and affective behavior in all tasks compared to vehicle, concomitant with reduced turnover of P to its 5α-reduced metabolites, in midbrain only. Subsequent infusions of 3α,5α-THP significantly reinstated/enhanced anti- anxiety behavior, lordosis, and P turnover to its 5α-reduced metabolites in midbrain, as well as hippocampus, cortex, and diencephalon (but not plasma or interbrain). CONCLUSIONS These data are the first to provide direct evidence that actions of 3α,5α-THP in the VTA are both necessary and sufficient for social and affective behavior, as well as initiation of central 5α-reduction.
Collapse
Affiliation(s)
- C A Frye
- Department of Psychology, The University at Albany-SUNY, Albany, USA.
| | | |
Collapse
|
271
|
Taves MD, Gomez-Sanchez CE, Soma KK. Extra-adrenal glucocorticoids and mineralocorticoids: evidence for local synthesis, regulation, and function. Am J Physiol Endocrinol Metab 2011; 301:E11-24. [PMID: 21540450 PMCID: PMC3275156 DOI: 10.1152/ajpendo.00100.2011] [Citation(s) in RCA: 189] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Glucocorticoids and mineralocorticoids are steroid hormones classically thought to be secreted exclusively by the adrenal glands. However, recent evidence has shown that corticosteroids can also be locally synthesized in various other tissues, including primary lymphoid organs, intestine, skin, brain, and possibly heart. Evidence for local synthesis includes detection of steroidogenic enzymes and high local corticosteroid levels, even after adrenalectomy. Local synthesis creates high corticosteroid concentrations in extra-adrenal organs, sometimes much higher than circulating concentrations. Interestingly, local corticosteroid synthesis can be regulated via locally expressed mediators of the hypothalamic-pituitary-adrenal (HPA) axis or renin-angiotensin system (RAS). In some tissues (e.g., skin), these local control pathways might form miniature analogs of the pathways that regulate adrenal corticosteroid production. Locally synthesized glucocorticoids regulate activation of immune cells, while locally synthesized mineralocorticoids regulate blood volume and pressure. The physiological importance of extra-adrenal glucocorticoids and mineralocorticoids has been shown, because inhibition of local synthesis has major effects even in adrenal-intact subjects. In sum, while adrenal secretion of glucocorticoids and mineralocorticoids into the blood coordinates multiple organ systems, local synthesis of corticosteroids results in high spatial specificity of steroid action. Taken together, studies of these five major organ systems challenge the conventional understanding of corticosteroid biosynthesis and function.
Collapse
Affiliation(s)
- Matthew D Taves
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada.
| | | | | |
Collapse
|
272
|
Akk G, Covey DF, Evers AS, Mennerick S, Zorumski CF, Steinbach JH. Kinetic and structural determinants for GABA-A receptor potentiation by neuroactive steroids. Curr Neuropharmacol 2011; 8:18-25. [PMID: 20808543 PMCID: PMC2866458 DOI: 10.2174/157015910790909458] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 11/16/2009] [Accepted: 11/20/2009] [Indexed: 12/03/2022] Open
Abstract
Endogenous neurosteroids and synthetic neuroactive steroid analogs are among the most potent and efficacious potentiators of the mammalian GABA-A receptor. The compounds interact with one or more sites on the receptor leading to an increase in the channel open probability through a set of changes in the open and closed time distributions. The endogenous neurosteroid allopregnanolone potentiates the α1β2γ2L GABA-A receptor by enhancing the mean duration and prevalence of the longest-lived open time component and by reducing the prevalence of the longest-lived intracluster closed time component. Thus the channel mean open time is increased and the mean closed time duration is decreased, resulting in potentiation of channel function. Some of the other previously characterized neurosteroids and steroid analogs act through similar mechanisms while others affect a subset of these parameters. The steroids modulate the GABA-A receptor through interactions with the membrane-spanning region of the receptor. However, the number of binding sites that mediate the actions of steroids is unclear. We discuss data supporting the notions of a single site vs. multiple sites mediating the potentiating actions of steroids.
Collapse
Affiliation(s)
- Gustav Akk
- Departments of Anesthesiology (GA, ASE, JHS), Washington University School of Medicine, St. Louis, MO, USA.
| | | | | | | | | | | |
Collapse
|
273
|
Differential modulation of the glutamate-nitric oxide-cyclic GMP pathway by distinct neurosteroids in cerebellum in vivo. Neuroscience 2011; 190:27-36. [PMID: 21703332 DOI: 10.1016/j.neuroscience.2011.06.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 05/28/2011] [Accepted: 06/01/2011] [Indexed: 11/20/2022]
Abstract
The glutamate-nitric oxide (NO)-cGMP pathway mediates many responses to activation of N-methyl-d-aspartate (NMDA) receptors, including modulation of some types of learning and memory. The glutamate-NO-cGMP pathway is modulated by GABAergic neurotransmission. Activation of GABA(A) receptors reduces the function of the pathway. Several neurosteroids modulate the activity of GABA(A) and/or NMDA receptors, suggesting that they could modulate the function of the glutamate-NO-cGMP pathway. The aim of this work was to assess, by in vivo microdialysis, the effects of several neurosteroids with different effects on GABA(A) and NMDA receptors on the function of the glutamate-NO-cGMP pathway in cerebellum in vivo. To assess the effects of the neurosteroids on the glutamate-NO-cGMP pathway, they were administered through the microdialysis probe before administration of NMDA and the effects on NMDA-induced increase in extracellular cGMP were analyzed. We also assessed the effects of the neurosteroids on basal levels of extracellular cGMP. To assess the effects of neurosteroids on nitric oxide synthase (NOS) activity and on NMDA-induced activation of NOS, we also measured the effects of the neurosteroids on extracellular citrulline. Pregnanolone and tetrahydrodeoxy-corticosterone (THDOC) behave as agonists of GABA(A) receptors and completely block NMDA-induced increase in cGMP. Pregnanolone but not THDOC also reduced basal levels of extracellular cGMP. Pregnenolone did not affect extracellular cGMP or its increase by NMDA administration. Pregnenolone sulfate increased basal extracellular cGMP and potentiated NMDA-induced increase in cGMP, behaving as an enhancer of NMDA receptors activation. Allopregnanolone and dehydroepiandrosterone sulphate behave as antagonists of NMDA receptors, increasing basal cGMP and blocking completely NMDA-induced increase in cGMP. Dehydroepiandrosterone sulphate seems to do this by activating sigma receptors. These data support the concept that, at physiological concentrations, different neurosteroids may rapidly modulate, in different ways and by different mechanisms, the function of the glutamate-NO-cGMP pathway and, likely, some forms of learning and memory modulated by this pathway.
Collapse
|
274
|
Lee RWY, Tierney E. Hypothesis: the role of sterols in autism spectrum disorder. AUTISM RESEARCH AND TREATMENT 2011; 2011:653570. [PMID: 22937253 PMCID: PMC3420784 DOI: 10.1155/2011/653570] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 02/07/2011] [Accepted: 02/21/2011] [Indexed: 11/17/2022]
Abstract
A possible role for sterols in the development of autism spectrum disorder (ASD) has not been proven, but studies in disorders of sterol biosynthesis, chiefly Smith-Lemli-Opitz syndrome (SLOS), enable hypotheses on a causal relationship to be discussed. Advances in genetic technology coupled with discoveries in membrane physiology have led to renewed interest for lipids in the nervous system. This paper hypothesizes on the role of sterol dysfunction in ASD through the framework of SLOS. Impaired sonic hedgehog patterning, alterations in membrane lipid rafts leading to abnormal synaptic plasticity, and impaired neurosteroid synthesis are discussed. Potential therapeutic agents include the development of neuroactive steroid-based agents and enzyme-specific drugs. Future investigations should reveal the specific mechanisms underlying sterol dysfunction in neurodevelopmental disorders by utilizing advanced imaging and molecular techniques.
Collapse
Affiliation(s)
- Ryan W. Y. Lee
- Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, 716 North Broadway Street, Baltimore, MD 21205, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287, USA
| | - Elaine Tierney
- Department of Psychiatry, Kennedy Krieger Institute, 716 North Broadway Street, Baltimore, MD 21205, USA
- Department of Psychiatry, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MS 21287, USA
- Center for Genetic Disorders of Cognition and Behavior, Kennedy Krieger Institute, 716 North Broadway Street, Baltimore, MD 21205, USA
| |
Collapse
|
275
|
Neurosteroid dehydroepiandrosterone interacts with nerve growth factor (NGF) receptors, preventing neuronal apoptosis. PLoS Biol 2011; 9:e1001051. [PMID: 21541365 PMCID: PMC3082517 DOI: 10.1371/journal.pbio.1001051] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Accepted: 03/15/2011] [Indexed: 12/02/2022] Open
Abstract
The neurosteroid dehydroepiandrosterone (DHEA), produced by neurons and glia, affects multiple processes in the brain, including neuronal survival and neurogenesis during development and in aging. We provide evidence that DHEA interacts with pro-survival TrkA and pro-death p75NTR membrane receptors of neurotrophin nerve growth factor (NGF), acting as a neurotrophic factor: (1) the anti-apoptotic effects of DHEA were reversed by siRNA against TrkA or by a specific TrkA inhibitor; (2) [3H]-DHEA binding assays showed that it bound to membranes isolated from HEK293 cells transfected with the cDNAs of TrkA and p75NTR receptors (KD: 7.4±1.75 nM and 5.6±0.55 nM, respectively); (3) immobilized DHEA pulled down recombinant and naturally expressed TrkA and p75NTR receptors; (4) DHEA induced TrkA phosphorylation and NGF receptor-mediated signaling; Shc, Akt, and ERK1/2 kinases down-stream to TrkA receptors and TRAF6, RIP2, and RhoGDI interactors of p75NTR receptors; and (5) DHEA rescued from apoptosis TrkA receptor positive sensory neurons of dorsal root ganglia in NGF null embryos and compensated NGF in rescuing from apoptosis NGF receptor positive sympathetic neurons of embryonic superior cervical ganglia. Phylogenetic findings on the evolution of neurotrophins, their receptors, and CYP17, the enzyme responsible for DHEA biosynthesis, combined with our data support the hypothesis that DHEA served as a phylogenetically ancient neurotrophic factor. Dehydroepiandrosterone (DHEA) and its sulphate ester are the most abundant steroid hormones in humans, and DHEA was described as the first neurosteroid produced in the brain. DHEA is known to participate in multiple events in the brain, including neuronal survival and neurogenesis. However, to date no specific cellular receptor has been described for this important neurosteroid. In this study, we provide evidence that DHEA exerts its neurotrophic effects by directly interacting with the TrkA and p75NTR membrane receptors of nerve growth factor (NGF), and efficiently activates their downstream signaling pathways. This activation prevents the apoptotic loss of NGF receptor positive sensory and sympathetic neurons. The interaction of DHEA with NGF receptors may also offer a mechanistic explanation for the multiple actions of DHEA in other peripheral biological systems expressing NGF receptors, such as the immune, reproductive, and cardiovascular systems.
Collapse
|
276
|
Chiang YF, Lin HT, Hu JW, Tai YC, Lin YC, Hu MC. Differential regulation of the human CYP11A1 promoter in mouse brain and adrenals. J Cell Physiol 2011; 226:1998-2005. [DOI: 10.1002/jcp.22534] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
277
|
Xu Y, Tanaka M, Chen L, Sokabe M. DHEAS induces short-term potentiation via the activation of a metabotropic glutamate receptor in the rat hippocampus. Hippocampus 2011; 22:707-22. [DOI: 10.1002/hipo.20932] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2011] [Indexed: 12/25/2022]
|
278
|
Abstract
Increasing evidence points to an association between major depressive disorders (MDDs) and diverse types of GABAergic deficits. In this review, we summarize clinical and preclinical evidence supporting a central and causal role of GABAergic deficits in the etiology of depressive disorders. Studies of depressed patients indicate that MDDs are accompanied by reduced brain concentration of the inhibitory neurotransmitter γ-aminobutyric acid (GABA) and by alterations in the subunit composition of the principal receptors (GABA(A) receptors) mediating GABAergic inhibition. In addition, there is abundant evidence that suggests that GABA has a prominent role in the brain control of stress, the most important vulnerability factor in mood disorders. Furthermore, preclinical evidence suggests that currently used antidepressant drugs (ADs) designed to alter monoaminergic transmission and nonpharmacological therapies may ultimately act to counteract GABAergic deficits. In particular, GABAergic transmission has an important role in the control of hippocampal neurogenesis and neural maturation, which are now established as cellular substrates of most if not all antidepressant therapies. Finally, comparatively modest deficits in GABAergic transmission in GABA(A) receptor-deficient mice are sufficient to cause behavioral, cognitive, neuroanatomical and neuroendocrine phenotypes, as well as AD response characteristics expected of an animal model of MDD. The GABAergic hypothesis of MDD suggests that alterations in GABAergic transmission represent fundamentally important aspects of the etiological sequelae of MDDs that are reversed by monoaminergic AD action.
Collapse
|
279
|
Goncharova ND, Marenin VY, Oganyan TE. Aging of the hypothalamic-pituitary-adrenal axis in nonhuman primates with depression-like and aggressive behavior. Aging (Albany NY) 2011; 2:854-66. [PMID: 21098884 PMCID: PMC3006027 DOI: 10.18632/aging.100227] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We have investigated aging of the hypothalamic-pituitary-adrenal (HPA) axis in female rhesus monkeys that differ in adaptive behavior. Plasma cortisol (F) and dehydroepiandrosterone sulfate (DHEA-S) concentrations under basal conditions and under acute psycho-emotional stress were evaluated in blood plasma of young (6-8 years) and old (20-27 years) female rhesus monkeys with various types of adaptive behavior (aggressive, depression-like, and average). We have found that the age-related changes in the HPA axis of monkeys with depression-like behavior were accompanied by the maximal absolute and relative hypercortisolemia under both basal conditions and stress. Moreover, young aggressive monkeys, in comparison with young monkeys of other behavior groups, demonstrated the highest plasma levels of DHEA-S and the lowest molar ratios between F and DHEA-S. Thus, age-related dysfunctions of the HPA axis are associated with adaptive behavior of animals.
Collapse
Affiliation(s)
- Nadezhda D Goncharova
- Laboratory of Endocrinology, Research Institute of Medical Primatology of the Russian Academy of Medical Sciences, Sochi, Adler, Veseloye 1, 354376, Russian Federation.
| | | | | |
Collapse
|
280
|
Abstract
Seven mammalian purinergic receptor subunits, denoted P2X1-P2X7, and several spliced forms of these subunits have been cloned. When heterologously expressed, these cDNAs encode ATP-gated non-selective cation channels organized as trimers. All activated receptors produce cell depolarization and promote Ca(2+) influx through their pores and indirectly by activating voltage-gated calcium channels. However, the biophysical and pharmacological properties of these receptors differ considerably, and the majority of these subunits are also capable of forming heterotrimers with other members of the P2X receptor family, which confers further different properties. These channels have three ATP binding domains, presumably located between neighboring subunits, and occupancy of at least two binding sites is needed for their activation. In addition to the orthosteric binding sites for ATP, these receptors have additional allosteric sites that modulate the agonist action at receptors, including sites for trace metals, protons, neurosteroids, reactive oxygen species and phosphoinositides. The allosteric regulation of P2X receptors is frequently receptor-specific and could be a useful tool to identify P2X members in native tissues and their roles in signaling. The focus of this review is on common and receptor-specific allosteric modulation of P2X receptors and the molecular base accounting for allosteric binding sites.
Collapse
Affiliation(s)
- Claudio Coddou
- Section on Cellular Signaling, Program in Developmental Neuroscience, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-4510, USA.
| | | | | |
Collapse
|
281
|
Frye CA. Progesterone reduces depressive behavior of young ovariectomized, aged progestin receptor knockout, and aged wild type mice in the tail suspension test. J Psychopharmacol 2011; 25:421-8. [PMID: 19965943 PMCID: PMC3608207 DOI: 10.1177/0269881109349836] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Progestins may have effects to reduce depressive behavior, in part through actions of its metabolite, 5α-pregnan-3α-ol-20-one (3α,5α-THP) at GABA(A) receptors, rather than through intracellular progestin receptors. In this study, we examined the effects of progesterone (10 mg/kg, subcutaneous injection) versus vehicle control (propylene glycol) on the depressive behavior of young and aged mice in the tail suspension test. In Experiment 1, we first characterized progesterone's anti-depressant effects by utilizing young (4-6-month-old) intact or ovariectomized female, and intact or gonadectomized male, C57BL/6 mice. Young female mice showed more depressive behavior than the young male mice. Compared with vehicle administration, progesterone reduced depressive behavior of ovariectomized female, but not male or intact female mice. In Experiment 2, mice were aged (20-24-month-old) intact wild type or progestin receptor knockout mice. Progestin receptor knockout mice showed less depressive behavior than wild type mice. Administration of progesterone to wild type and progestin receptor knockout mice reduced depressive behavior. Together, these data suggest that progesterone can decrease depressive behavior of young adult ovariectomized female, aged wild type and progestin receptor knockout mice. Thus, progesterone's effect to reduce depressive behavior of aged mice may not require actions at the intracellular progestin receptors.
Collapse
Affiliation(s)
- Cheryl A Frye
- Department of Psychology and Biological Sciences, and Centers for Life Sciences and Neuroscience Research, University at Albany, SUNY, Albany, NY 12222, USA.
| |
Collapse
|
282
|
Munetsuna E, Hattori M, Sakimoto Y, Ishida A, Sakata S, Hojo Y, Kawato S, Yamazaki T. Environmental enrichment alters gene expression of steroidogenic enzymes in the rat hippocampus. Gen Comp Endocrinol 2011; 171:28-32. [PMID: 21172348 DOI: 10.1016/j.ygcen.2010.12.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 11/06/2010] [Accepted: 12/12/2010] [Indexed: 11/27/2022]
Abstract
Neuroactive steroids are synthesized in the central and peripheral nervous systems. The purpose of this study was to analyze the effects of environmental enrichment on neuroactive steroidogenesis in the rat hippocampus. Environmental enrichment rats were housed in a group of nine in a large cage and three groups of pair-housed rats were housed in a standard cage for 8 weeks. The levels of mRNAs for steroidogenic enzymes and proteins in hippocampus were quantified by real-time RT-PCR. Environmental enrichment increased the mRNA expression levels of 5α-reductase-1 and 3α-hydroxysteroid dehydrogenase, which catalyze synthesis of allopregnanolone from progesterone. Hence, environmental enrichment appears to affect allopregnanolone synthesis.
Collapse
Affiliation(s)
- Eiji Munetsuna
- Laboratory of Molecular Brain Science, Graduate School of Integrated Arts and Sciences, Hiroshima University, 1-7-1, Kagamiyama, Higashi-Hiroshima 739-8521, Japan
| | | | | | | | | | | | | | | |
Collapse
|
283
|
Rapkin AJ, Berman SM, Mandelkern MA, Silverman DHS, Morgan M, London ED. Neuroimaging evidence of cerebellar involvement in premenstrual dysphoric disorder. Biol Psychiatry 2011; 69:374-80. [PMID: 21092938 PMCID: PMC3053132 DOI: 10.1016/j.biopsych.2010.09.029] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 09/17/2010] [Accepted: 09/24/2010] [Indexed: 11/17/2022]
Abstract
BACKGROUND Premenstrual dysphoric disorder (PMDD) is a debilitating cyclic disorder that is characterized by affective symptoms, including irritability, depression, and anxiety, which arise in the luteal phase of the menstrual cycle and resolve soon after the onset of menses. Despite a prevalence of up to 8% in women of reproductive age, few studies have investigated the brain mechanisms that underlie this disorder. METHODS We used positron emission tomography with [(18)F] fluorodeoxyglucose and self-report questionnaires to assess cerebral glucose metabolism and mood in 12 women with PMDD and 12 healthy comparison subjects in the follicular and late luteal phases of the menstrual cycle. The primary biological end point was incorporated regional cerebral radioactivity (scaled to the global mean) as an index of glucose metabolism. Relationships between regional brain activity and mood ratings were assessed. Blood samples were taken before each session for assay of plasma estradiol and progesterone concentrations. RESULTS There were no group differences in hormone levels in either the follicular or late luteal phase, but the groups differed in the effect of menstrual phase on cerebellar activity. Women with PMDD but not comparison subjects showed an increase in cerebellar activity (particularly in the right cerebellar vermis) from the follicular phase to the late luteal phase (p = .003). In the PMDD group, this increase in cerebellar activity was correlated with worsening of mood (p = .018). CONCLUSIONS These findings suggest that the midline cerebellar nuclei, which have been implicated in other mood disorders, also contribute to negative mood in PMDD.
Collapse
Affiliation(s)
- Andrea J Rapkin
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, California 90095-1740, USA.
| | | | | | | | | | | |
Collapse
|
284
|
Takase M, Haraguchi S, Hasunuma I, Kikuyama S, Tsutsui K. Expression of cytochrome P450 side-chain cleavage enzyme mRNA and production of pregnenolone in the brain of the red-bellied newt Cynops pyrrhogaster. Gen Comp Endocrinol 2011; 170:468-74. [PMID: 21050853 DOI: 10.1016/j.ygcen.2010.10.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 10/19/2010] [Accepted: 10/26/2010] [Indexed: 10/18/2022]
Abstract
It is becoming clear that the vertebrate brain has the capability of forming steroids de novo, the so-called "neurosteroids". To understand neurosteroidogenesis in the brain, it is essential to demonstrate the formation of pregnenolone, a main precursor of neurosteroids. In amphibians, the pregnenolone formation from cholesterol is still unclear, although the brain accumulates pregnenolone, pregnenolone sulfate and 7α-hydroxypregnenolone. This study was addressed to obtain basic information about pregnenolone formation in the newt brain. Firstly, we demonstrated that the newt brain produces pregnenolone from cholesterol. Subsequently, cDNA encoding cytochrome P450 side-chain cleavage enzyme (P450scc), a key steroidogenic enzyme catalyzing pregnenolone formation, was isolated from the newt. The sequence analysis showed that the isolated P450scc cDNA contained a putative coding region consisting of 1569 bp, which encoded 523 amino acids. The steroid- and heme-binding domains of P450scc were highly shared in amino acids among vertebrates. RT-PCR analysis amplified the authentic fragment corresponding to newt P450scc showed its transcription in the brain. However, the transcription level in the brain was lower than those of the gonad and the kidney including adrenals. The restricted cells in the four major regions of the newt brain, such as the telencephalon, diencephalon, mesencephalon, and rhombencephalon, were demonstrated to express P450scc transcripts by RT-PCR and in situ hybridization. Taken together, these results indicate that the newt brain expresses P450scc mRNA and produces pregnenolone from cholesterol.
Collapse
Affiliation(s)
- Minoru Takase
- Institute for Amphibian Biology, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Japan
| | | | | | | | | |
Collapse
|
285
|
Miller WL, Auchus RJ. The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr Rev 2011; 32:81-151. [PMID: 21051590 PMCID: PMC3365799 DOI: 10.1210/er.2010-0013] [Citation(s) in RCA: 1531] [Impact Index Per Article: 109.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 08/20/2010] [Indexed: 02/08/2023]
Abstract
Steroidogenesis entails processes by which cholesterol is converted to biologically active steroid hormones. Whereas most endocrine texts discuss adrenal, ovarian, testicular, placental, and other steroidogenic processes in a gland-specific fashion, steroidogenesis is better understood as a single process that is repeated in each gland with cell-type-specific variations on a single theme. Thus, understanding steroidogenesis is rooted in an understanding of the biochemistry of the various steroidogenic enzymes and cofactors and the genes that encode them. The first and rate-limiting step in steroidogenesis is the conversion of cholesterol to pregnenolone by a single enzyme, P450scc (CYP11A1), but this enzymatically complex step is subject to multiple regulatory mechanisms, yielding finely tuned quantitative regulation. Qualitative regulation determining the type of steroid to be produced is mediated by many enzymes and cofactors. Steroidogenic enzymes fall into two groups: cytochrome P450 enzymes and hydroxysteroid dehydrogenases. A cytochrome P450 may be either type 1 (in mitochondria) or type 2 (in endoplasmic reticulum), and a hydroxysteroid dehydrogenase may belong to either the aldo-keto reductase or short-chain dehydrogenase/reductase families. The activities of these enzymes are modulated by posttranslational modifications and by cofactors, especially electron-donating redox partners. The elucidation of the precise roles of these various enzymes and cofactors has been greatly facilitated by identifying the genetic bases of rare disorders of steroidogenesis. Some enzymes not principally involved in steroidogenesis may also catalyze extraglandular steroidogenesis, modulating the phenotype expected to result from some mutations. Understanding steroidogenesis is of fundamental importance to understanding disorders of sexual differentiation, reproduction, fertility, hypertension, obesity, and physiological homeostasis.
Collapse
Affiliation(s)
- Walter L Miller
- Distinguished Professor of Pediatrics, University of California San Francisco, San Francisco, California 94143-0978, USA.
| | | |
Collapse
|
286
|
Mayer SI, Müller I, Mannebach S, Endo T, Thiel G. Signal transduction of pregnenolone sulfate in insulinoma cells: activation of Egr-1 expression involving TRPM3, voltage-gated calcium channels, ERK, and ternary complex factors. J Biol Chem 2011; 286:10084-96. [PMID: 21257751 DOI: 10.1074/jbc.m110.202697] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The neurosteroid pregnenolone sulfate acts on the nervous system by modifying neurotransmission and receptor functions, thus influencing synaptic strength, neuronal survival, and neurogenesis. Here we show that pregnenolone sulfate induces a signaling cascade in insulinoma cells leading to enhanced expression of the zinc finger transcription factor Egr-1 and Egr-1-responsive target genes. Pharmacological and genetic experiments revealed that influx of Ca(2+) ions via transient receptor potential M3 and voltage-gated Ca(2+) channels, elevation of the cytosolic Ca(2+) level, and activation of ERK are essential for connecting pregnenolone sulfate stimulation with enhanced Egr-1 biosynthesis. Expression of a dominant-negative mutant of Elk-1, a key regulator of gene transcription driven by a serum response element, attenuated Egr-1 expression following stimulation, indicating that Elk-1 or related ternary complex factors connect the transcription of the Egr-1 gene with the pregnenolone sulfate-induced intracellular signaling cascade elicited by the initial influx of Ca(2+). The newly synthesized Egr-1 was biologically active and bound under physiological conditions to the regulatory regions of the Pdx-1, Synapsin I, and Chromogranin B genes. Pdx-1 is a major regulator of insulin gene transcription. Accordingly, elevated insulin promoter activity and increased mRNA levels of insulin could be detected in pregnenolone sulfate-stimulated insulinoma cells. Likewise, the biosynthesis of synapsin I, a synaptic vesicle protein that is found at secretory granules in insulinoma cells, was stimulated in pregnenolone sulfate-treated INS-1 cells. Together, these data show that pregnenolone sulfate induces a signaling cascade in insulinoma cells that is very similar to the signaling cascade induced by glucose in β-cells.
Collapse
Affiliation(s)
- Sabine I Mayer
- Department of Medical Biochemistry and Molecular Biology, University of Saarland Medical Center, D-66421 Homburg, Germany
| | | | | | | | | |
Collapse
|
287
|
Wirth MM. Beyond the HPA Axis: Progesterone-Derived Neuroactive Steroids in Human Stress and Emotion. Front Endocrinol (Lausanne) 2011; 2:19. [PMID: 22649366 PMCID: PMC3355912 DOI: 10.3389/fendo.2011.00019] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 07/28/2011] [Indexed: 12/13/2022] Open
Abstract
Stress and social isolation are well-known risk factors for psychopathology. However, more research is needed as to the physiological mechanisms by which social support buffers the impacts of stress. Research in animal models suggests important roles for progesterone (P) and its product, the neuroactive steroid allopregnanolone (ALLO), in stress and psychopathology. These hormones are produced in brain and periphery during stress in rodents, and down-regulate anxiety behavior and hypothalamic-pituitary-adrenal axis activity. Human clinical populations, including depressed patients, have alterations in ALLO levels, but it is unclear whether these basal hormone level differences have clinical import. To begin to address this question, this review examines the role of P and ALLO in stress physiology, and the impact of these hormones on mood, in healthy humans. Evidence largely supports that P and ALLO increase during stress in humans. However, P/ALLO administration appears to cause only mild effects on mood and subjective anxiety, while exerting effects consistent with gamma-aminobutyric acid receptor modulation. Additionally, P is linked to motivation for affiliation/social contact; P (and ALLO) release may be especially responsive to social rejection. These observations lead to the novel hypothesis that stress-related P/ALLO production functions not only to down-regulate stress and anxiety, but also to promote social contact as a long-term coping strategy. Malfunctioning of the P/ALLO system could therefore underlie depression partly by decreasing propensity to affiliate with others.
Collapse
Affiliation(s)
- Michelle M. Wirth
- Department of Psychology, University of Notre DameNotre Dame, IN, USA
- *Correspondence: Michelle M. Wirth, Department of Psychology, University of Notre Dame, 123B Haggar Hall, Notre Dame, IN 46556, USA. e-mail:
| |
Collapse
|
288
|
Longone P, di Michele F, D’Agati E, Romeo E, Pasini A, Rupprecht R. Neurosteroids as neuromodulators in the treatment of anxiety disorders. Front Endocrinol (Lausanne) 2011; 2:55. [PMID: 22654814 PMCID: PMC3356011 DOI: 10.3389/fendo.2011.00055] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 10/03/2011] [Indexed: 11/22/2022] Open
Abstract
Anxiety disorders are the most common psychiatric disorders. They are frequently treated with benzodiazepines, which are fast acting highly effective anxiolytic agents. However, their long-term use is impaired by tolerance development and abuse liability. In contrast, antidepressants such as selective serotonin reuptake inhibitors (SSRIs) are considered as first-line treatment but have a slow onset of action. Neurosteroids are powerful allosteric modulators of GABA(A) and glutamate receptors. However, they also modulate sigma receptors and they are modulated themselves by SSRIs. Both pre-clinical and clinical studies have shown that neurosteroid homeostasis is altered in depression and anxiety disorders and antidepressants may act in part through restoring neurosteroid disbalance. Moreover, novel drugs interfering with neurosteroidogenesis such as ligands of the translocator protein (18 kDa) may represent an attractive pharmacological option for novel anxiolytics which lack the unwarranted side effects of benzodiazepines. Thus, neurosteroids are important endogenous neuromodulators for the physiology and pathophysiology of anxiety and they may constitute a novel therapeutic approach in the treatment of these disorders.
Collapse
Affiliation(s)
- Patrizia Longone
- Molecular Neurobiology Unit, Experimental NeurologyFondazione Santa Lucia, Rome, Italy
- *Correspondence: Patrizia Longone, Molecular Neurobiology Unit, Room 201, Fondazione Santa Lucia, Via del Fosso di Fiorano 64, 00143 Rome, Italy. e-mail: ; Rainer Rupprecht, Department of Psychiatry and Psychotherapy, University Regensburg, Universitätsstrasse 84, 93053 Regensburg, Germany. e-mail:
| | | | - Elisa D’Agati
- Unit of Child Neurology and Psychiatry, Department of Neuroscience, University of Rome “Tor Vergata,”Rome, Italy
| | - Elena Romeo
- Department of Neuroscience, University of Rome “Tor Vergata,”Rome, Italy
| | - Augusto Pasini
- Unit of Child Neurology and Psychiatry, Department of Neuroscience, University of Rome “Tor Vergata,”Rome, Italy
| | - Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, University RegensburgRegensburg, Germany
- *Correspondence: Patrizia Longone, Molecular Neurobiology Unit, Room 201, Fondazione Santa Lucia, Via del Fosso di Fiorano 64, 00143 Rome, Italy. e-mail: ; Rainer Rupprecht, Department of Psychiatry and Psychotherapy, University Regensburg, Universitätsstrasse 84, 93053 Regensburg, Germany. e-mail:
| |
Collapse
|
289
|
Tsutsui K, Ukena K, Sakamoto H, Okuyama SI, Haraguchi S. Biosynthesis, mode of action, and functional significance of neurosteroids in the purkinje cell. Front Endocrinol (Lausanne) 2011; 2:61. [PMID: 22654818 PMCID: PMC3356128 DOI: 10.3389/fendo.2011.00061] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Accepted: 10/08/2011] [Indexed: 01/30/2023] Open
Abstract
The brain has traditionally been considered to be a target site of peripheral steroid hormones. In addition to this classical concept, we now know that the brain has the capacity to synthesize steroids de novo from cholesterol, the so-called "neurosteroids." In the middle 1990s, the Purkinje cell, an important cerebellar neuron, was identified as a major site for neurosteroid formation in the brain of mammals and other vertebrates. This discovery has provided the opportunity to understand neuronal neurosteroidogenesis in the brain. In addition, biological actions of neurosteroids are becoming clear by the studies using the Purkinje cell, an excellent cellular model, which is known to play an important role in memory and learning processes. Based on the studies on mammals over the past decade, it is considered that the Purkinje cell actively synthesizes progesterone and estradiol from cholesterol during neonatal life, when cerebellar neuronal circuit formation occurs. Both progesterone and estradiol promote dendritic growth, spinogenesis, and synaptogenesis via each cognate nuclear receptor in the developing Purkinje cell. Such neurosteroid actions mediated by neurotrophic factors may contribute to the formation of cerebellar neuronal circuit during neonatal life. 3α,5α-Tetrahydroprogesterone (allopregnanolone), a progesterone metabolite, is also synthesized in the cerebellum and considered to act as a survival factor of Purkinje cells in the neonate. This review summarizes the current knowledge regarding the biosynthesis, mode of action, and functional significance of neurosteroids in the Purkinje cell during development in terms of synaptic formation of cerebellar neuronal networks.
Collapse
Affiliation(s)
- Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, and Center for Medical Life Science of Waseda UniversityShinjuku-ku, Tokyo, Japan
- *Correspondence: Kazuyoshi Tsutsui, Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, and Center for Medical Life Science of Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan. e-mail:
| | - Kazuyoshi Ukena
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, and Center for Medical Life Science of Waseda UniversityShinjuku-ku, Tokyo, Japan
| | - Hirotaka Sakamoto
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, and Center for Medical Life Science of Waseda UniversityShinjuku-ku, Tokyo, Japan
| | - Shin-Ichiro Okuyama
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, and Center for Medical Life Science of Waseda UniversityShinjuku-ku, Tokyo, Japan
| | - Shogo Haraguchi
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, and Center for Medical Life Science of Waseda UniversityShinjuku-ku, Tokyo, Japan
| |
Collapse
|
290
|
Haraguchi S, Matsunaga M, Vaudry H, Tsutsui K. Mode of action and functional significance of 7α-hydroxypregnenolone stimulating locomotor activity. Front Endocrinol (Lausanne) 2011; 2:23. [PMID: 22645507 PMCID: PMC3355833 DOI: 10.3389/fendo.2011.00023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Accepted: 08/04/2011] [Indexed: 11/13/2022] Open
Abstract
Previous studies over the past two decades have demonstrated that the brain and other nervous systems possess key steroidogenic enzymes and produces pregnenolone and other various neurosteroids in vertebrates in general. Recently, 7α-hydroxypregnenolone, a novel bioactive neurosteroid, was identified in the brain of newts and quail. Importantly, this novel neurosteroid is produced from pregnenolone through the enzymatic activity of cytochrome P450(7α) and acts on brain tissue as a neuronal modulator to stimulate locomotor activity in these vertebrates. Subsequently, the mode of action of 7α-hydroxypregnenolone was demonstrated. 7α-Hydroxypregnenolone stimulates locomotor activity through activation of the dopaminergic system. To understand the functional significance of 7α-hydroxypregnenolone in the regulation of locomotor activity, diurnal, and seasonal changes in 7α-hydroxypregnenolone synthesis were further characterized. Melatonin derived from the pineal gland and eyes regulates 7α-hydroxypregnenolone synthesis in the brain, thus inducing diurnal locomotor changes. Prolactin, an adenohypophyseal hormone, regulates 7α-hydroxypregnenolone synthesis in the brain, and also induces seasonal locomotor changes. In addition, 7α-hydroxypregnenolone mediates corticosterone action to modulate locomotor activity under stress. This review summarizes the current knowledge regarding the mode of action and functional significance of 7α-hydroxypregnenolone, a newly identified bioactive neurosteroid stimulating locomotor activity.
Collapse
Affiliation(s)
- Shogo Haraguchi
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, and Center for Medical Life Science of Waseda UniversityTokyo, Japan
| | - Masahiro Matsunaga
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, and Center for Medical Life Science of Waseda UniversityTokyo, Japan
| | - Hubert Vaudry
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication (INSERM U982), European Institute for Peptide Research, University of RouenMont-Saint-Aignan, France
| | - Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, and Center for Medical Life Science of Waseda UniversityTokyo, Japan
- *Correspondence: Kazuyoshi Tsutsui, Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, and Center for Medical Life Science of Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan. e-mail:
| |
Collapse
|
291
|
Taves MD, Ma C, Heimovics SA, Saldanha CJ, Soma KK. Measurement of steroid concentrations in brain tissue: methodological considerations. Front Endocrinol (Lausanne) 2011; 2:39. [PMID: 22654806 PMCID: PMC3356067 DOI: 10.3389/fendo.2011.00039] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2011] [Accepted: 09/06/2011] [Indexed: 12/17/2022] Open
Abstract
It is well recognized that steroids are synthesized de novo in the brain (neurosteroids). In addition, steroids circulating in the blood enter the brain. Steroids play numerous roles in the brain, such as influencing neural development, adult neuroplasticity, behavior, neuroinflammation, and neurodegenerative diseases such as Alzheimer's disease. In order to understand the regulation and functions of steroids in the brain, it is important to directly measure steroid concentrations in brain tissue. In this brief review, we discuss methods for the detection and quantification of steroids in the brain. We concisely present the major advantages and disadvantages of different technical approaches at various experimental stages: euthanasia, tissue collection, steroid extraction, steroid separation, and steroid measurement. We discuss, among other topics, the potential effects of anesthesia and saline perfusion prior to tissue collection; microdissection via Palkovits punch; solid phase extraction; chromatographic separation of steroids; and immunoassays and mass spectrometry for steroid quantification, particularly the use of mass spectrometry for "steroid profiling." Finally, we discuss the interpretation of local steroid concentrations, such as comparing steroid levels in brain tissue with those in the circulation (plasma vs. whole blood samples; total vs. free steroid levels). We also present reference values for a variety of steroids in different brain regions of adult rats. This brief review highlights some of the major methodological considerations at multiple experimental stages and provides a broad framework for designing studies that examine local steroid levels in the brain as well as other steroidogenic tissues, such as thymus, breast, and prostate.
Collapse
Affiliation(s)
- Matthew D. Taves
- Department of Psychology, University of British ColumbiaVancouver, BC, Canada
- Department of Zoology, University of British ColumbiaVancouver, BC, Canada
- *Correspondence: Matthew D. Taves, Department of Psychology, University of British Columbia, 2136 West Mall, Vancouver, BC, Canada V6T 1Z4. e-mail:
| | - Chunqi Ma
- Department of Psychology, University of British ColumbiaVancouver, BC, Canada
| | - Sarah A. Heimovics
- Department of Psychology, University of British ColumbiaVancouver, BC, Canada
| | - Colin J. Saldanha
- Department of Biological Sciences, Lehigh UniversityBethlehem, PA, USA
- Program in Cognitive Science, Lehigh UniversityBethlehem, PA, USA
| | - Kiran K. Soma
- Department of Psychology, University of British ColumbiaVancouver, BC, Canada
- Department of Zoology, University of British ColumbiaVancouver, BC, Canada
- Graduate Program in Neuroscience, University of British ColumbiaVancouver, BC, Canada
| |
Collapse
|
292
|
Vaudry H, Do Rego JL, Burel D, Luu-The V, Pelletier G, Vaudry D, Tsutsui K. Neurosteroid biosynthesis in the brain of amphibians. Front Endocrinol (Lausanne) 2011; 2:79. [PMID: 22649387 PMCID: PMC3355965 DOI: 10.3389/fendo.2011.00079] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 11/08/2011] [Indexed: 01/29/2023] Open
Abstract
Amphibians have been widely used to investigate the synthesis of biologically active steroids in the brain and the regulation of neurosteroid production by neurotransmitters and neuropeptides. The aim of the present review is to summarize the current knowledge regarding the neuroanatomical distribution and biochemical activity of steroidogenic enzymes in the brain of anurans and urodeles. The data accumulated over the past two decades demonstrate that discrete populations of neurons and/or glial cells in the frog and newt brains express the major steroidogenic enzymes and are able to synthesize de novo a number of neurosteroids from cholesterol/pregnenolone. Since neurosteroidogenesis has been conserved during evolution from amphibians to mammals, it appears that neurosteroids must play important physiological functions in the central nervous system of vertebrates.
Collapse
Affiliation(s)
- Hubert Vaudry
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, INSERM U982, European Institute for Peptide Research, IFRMP23, Regional Platform for Cell Imaging, PRIMACEN, University of RouenMont-Saint-Aignan, France
- *Correspondence: Hubert Vaudry, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication (INSERM U982), European Institute for Peptide Research (IFRMP23), International Associated Laboratory Samuel de Champlain, Regional Platform for Cell Imaging (PRIMACEN), University of Rouen, 76821 Mont-Saint-Aignan, France. e-mail:
| | - Jean-Luc Do Rego
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, INSERM U982, European Institute for Peptide Research, IFRMP23, Regional Platform for Cell Imaging, PRIMACEN, University of RouenMont-Saint-Aignan, France
| | - Delphine Burel
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, INSERM U982, European Institute for Peptide Research, IFRMP23, Regional Platform for Cell Imaging, PRIMACEN, University of RouenMont-Saint-Aignan, France
| | - Van Luu-The
- Research Center in Molecular Endocrinology, Oncology and Genetics, Laval University Hospital CenterQuébec, QC, Canada
| | - Georges Pelletier
- Research Center in Molecular Endocrinology, Oncology and Genetics, Laval University Hospital CenterQuébec, QC, Canada
| | - David Vaudry
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, INSERM U982, European Institute for Peptide Research, IFRMP23, Regional Platform for Cell Imaging, PRIMACEN, University of RouenMont-Saint-Aignan, France
| | - Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Science, Department of Biology, Center for Medical Life Science of Waseda University, Waseda UniversityTokyo, Japan
| |
Collapse
|
293
|
Abstract
Neurosteroids represent a class of endogenous steroids that are synthesized in the brain, the adrenals, and the gonads and have potent and selective effects on the GABAA-receptor. 3α-hydroxy A-ring reduced metabolites of progesterone, deoxycorticosterone, and testosterone are positive modulators of GABA(A)-receptor in a non-genomic manner. Allopregnanolone (3α-OH-5α-pregnan-20-one), 5α-androstane-3α, 17α-diol (Adiol), and 3α5α-tetrahydrodeoxycorticosterone (3α5α-THDOC) enhance the GABA-mediated Cl(-) currents acting on a site (or sites) distinct from the GABA, benzodiazepine, barbiturate, and picrotoxin binding sites. 3α5α-P and 3α5α-THDOC potentiate synaptic GABA(A)-receptor function and activate δ-subunit containing extrasynaptic receptors that mediate tonic currents. On the contrary, 3β-OH pregnane steroids and pregnenolone sulfate (PS) are GABA(A)-receptor antagonists and induce activation-dependent inhibition of the receptor. The activities of neurosteroid are dependent on brain regions and types of neurons. In addition to the slow genomic action of the parent steroids, the non-genomic, and rapid actions of neurosteroids play a significant role in the GABA(A)-receptor function and shift in mood and memory function. This review describes molecular mechanisms underlying neurosteroid action on the GABA(A)-receptor, mood changes, and cognitive functions.
Collapse
Affiliation(s)
- Mingde Wang
- Section of Obstetrics and Gynecology, Department of Clinical Science, Umeå Neurosteroid Research Center, Umeå UniversityUmeå, Sweden
- *Correspondence: Mingde Wang, Section of Obstetrics and Gynecology, Department of Clinical Science, Umeå Neurosteroid Research Center, Umeå University, 901 85 Umeå, Sweden. e-mail:
| |
Collapse
|
294
|
Borowicz KK, Piskorska B, Banach M, Czuczwar SJ. Neuroprotective actions of neurosteroids. Front Endocrinol (Lausanne) 2011; 2:50. [PMID: 22649375 PMCID: PMC3355955 DOI: 10.3389/fendo.2011.00050] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 09/22/2011] [Indexed: 12/24/2022] Open
Abstract
Neurosteroids were initially defined as steroid hormones locally synthesized within the nervous tissue. Subsequently, they were described as steroid hormone derivatives that devoid hormonal action but still affect neuronal excitability through modulation of ionotropic receptors. Neurosteroids are further subdivided into natural (produced in the brain) and synthetic. Some authors distinguish between hormonal and regular neurosteroids in the group of natural ones. The latter group, including hormone metabolites like allopregnanolone or tetrahydrodeoxycorticosterone, is devoid of hormonal activity. Both hormones and their derivatives share, however, most of the physiological functions. It is usually very difficult to distinguish the effects of hormones and their metabolites. All these substances may influence seizure phenomena and exhibit neuroprotective effects. Neuroprotection offered by steroid hormones may be realized in both genomic and non-genomic mechanisms and involve regulation of the pro- and anti-apoptotic factors expression, intracellular signaling pathways, neurotransmission, oxidative, and inflammatory processes. Since regular neurosteroids show no affinity for steroid receptors, they may act only in a non-genomic mode. Multiple studies have been conducted so far to show efficacy of neurosteroids in the treatment of the central and peripheral nervous system injury, ischemia, neurodegenerative diseases, or seizures. In this review we focused primarily on neurosteroid mechanisms of action and their role in the process of neurodegeneration. Most of the data refers to results obtained in experimental studies. However, it should be realized that knowledge about neuroactive steroids remains still incomplete and requires confirmation in clinical conditions.
Collapse
Affiliation(s)
- Kinga K. Borowicz
- Experimental Neuropathophysiology Unit, Department of Pathophysiology, Medical UniversityLublin, Poland
| | - Barbara Piskorska
- Experimental Neuropathophysiology Unit, Department of Pathophysiology, Medical UniversityLublin, Poland
| | - Monika Banach
- Experimental Neuropathophysiology Unit, Department of Pathophysiology, Medical UniversityLublin, Poland
| | - Stanislaw J. Czuczwar
- Department of Pathophysiology, Medical UniversityLublin, Poland
- Department of Physiopathology, Institute of Agricultural MedicineLublin, Poland
- *Correspondence: Stanislaw J. Czuczwar, Department of Pathophysiology, Medical University, Jaczewskiego 8, PL-20-090 Lublin, Poland. e-mail:
| |
Collapse
|
295
|
King SR, Stocco DM. Steroidogenic acute regulatory protein expression in the central nervous system. Front Endocrinol (Lausanne) 2011; 2:72. [PMID: 22649383 PMCID: PMC3355896 DOI: 10.3389/fendo.2011.00072] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 10/24/2011] [Indexed: 11/13/2022] Open
Abstract
Locally produced neurosteroids are proposed to have many functions in the central nervous system. The identification of the steroidogenic acute regulatory protein in steroid-producing neural cells provides a new tool to understand the sites, regulation, and importance of their synthesis.
Collapse
Affiliation(s)
- Steven R. King
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences CenterLubbock, TX, USA
| | - Douglas M. Stocco
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences CenterLubbock, TX, USA
- *Correspondence: Douglas M. Stocco, Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, USA. e-mail:
| |
Collapse
|
296
|
Abstract
Steroid hormones play a critical role in the initiation and maintenance of pregnancy. In particular, the important role that the progesterone metabolite, and neurosteroid, allopregnanolone, may play in fetal and adolescent development is becoming increasingly evident. Unlike steroid hormones, neurosteroids act at nontraditional targets in the central and peripheral nervous systems, including GABA(A) receptor complexes. This commentary discusses the three works in this issue that elucidate the important role of allopregnanolone in the mechanisms that regulate stress hypo-sensitivity of rodents in late pregnancy, neuroprotective effects in fetal sheep exposed to a hypoxic insult, and the continuing role that prefrontal cortex formation of allopregnanolone may play on the cognitive development of gestationally stressed rat offspring, grown to adolescence. The narrative that these works comprise was facilitated by the 5(th) International Meeting on Steroids and the Nervous System (Torino, Italy), which is organized to update our knowledge on the relationships between steroid hormones synthesized in different organs and the nervous system. Topics covered in this most recent meeting included sex differences in, and hormonal influences on, cannabinoid-regulated biology; steroids and pain; the importance of co-regulatory factors for steroid receptor action in the brain; mechanism and role of estrogen-induced nonclassical signaling in the brain; vitamin D as the forgotten neurosteroid; neurosteroids and GABA(A) receptors; and pathogenic mechanisms mediated by glucocorticoid receptors in psychiatric disorders. The 6(th) International Meeting on Steroids and the Nervous System will be held in Torino, Italy in February 2011.
Collapse
Affiliation(s)
- Cheryl A Frye
- Department of Psychology, and Biological Sciences, Centers for Life Science and Neuroscience Research, The University at Albany-SUNY, Albany, NY 12222, USA.
| | | | | | | |
Collapse
|
297
|
Tsutsui K. Neurosteroid biosynthesis and function in the brain of domestic birds. Front Endocrinol (Lausanne) 2011; 2:37. [PMID: 22645509 PMCID: PMC3355851 DOI: 10.3389/fendo.2011.00037] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Accepted: 09/05/2011] [Indexed: 11/17/2022] Open
Abstract
It is now established that the brain and other nervous systems have the capability of forming steroids de novo, the so-called "neurosteroids." The pioneering discovery of Baulieu and his colleagues, using rodents, has opened the door to a new research field of "neurosteroids." In contrast to mammalian vertebrates, little has been known regarding de novo neurosteroidogenesis in the brain of birds. We therefore investigated neurosteroid formation and metabolism in the brain of quail, a domestic bird. Our studies over the past two decades demonstrated that the quail brain possesses cytochrome P450 side-chain cleavage enzyme (P450scc), 3β-hydroxysteroid dehydrogenase/Δ(5)-Δ(4)-isomerase (3β-HSD), 5β-reductase, cytochrome P450 17α-hydroxylase/c17,20-lyase (P450(17α,lyase)), 17β-HSD, etc., and produces pregnenolone, progesterone, 5β-dihydroprogesterone (5β-DHP), 3β, 5β-tetrahydroprogesterone (3β, 5β-THP), androstenedione, testosterone, and estradiol from cholesterol. Independently, Schlinger's laboratory demonstrated that the brain of zebra finch, a songbird, also produces various neurosteroids. Thus, the formation and metabolism of neurosteroids from cholesterol is now known to occur in the brain of birds. In addition, we recently found that the quail brain expresses cytochrome P450(7α) and produces 7α- and 7β-hydroxypregnenolone, previously undescribed avian neurosteroids, from pregnenolone. This paper summarizes the advances made in our understanding of neurosteroid formation and metabolism in the brain of domestic birds. This paper also describes what are currently known about physiological changes in neurosteroid formation and biological functions of neurosteroids in the brain of domestic and other birds.
Collapse
Affiliation(s)
- Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, and Center for Medical Life Science of Waseda UniversityShinjuku-ku, Tokyo, Japan
- *Correspondence: Kazuyoshi Tsutsui, Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, and Center for Medical Life Science of Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan. e-mail:
| |
Collapse
|
298
|
Increase in formalin-induced tonic pain by 5alpha-reductase and aromatase inhibition in female rats. Pharmacol Biochem Behav 2010; 98:62-6. [PMID: 21184774 DOI: 10.1016/j.pbb.2010.12.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 12/10/2010] [Accepted: 12/14/2010] [Indexed: 11/20/2022]
Abstract
Little is known about the role of steroidogenic enzymes in pain modulation. This study examined the effects of 5α-reductase and aromatase inhibition on formalin-induced tonic pain (FITP) in adult female rats. The animals received subcutaneous injection (5 mg/kg) of finasteride (an inhibitor of 5α-reductase) and letrozole (an inhibitor of aromatase), either separately or in combination, 15 min before formalin injection at a low (0.25%) and high (2.5%) concentration. Pretreatment with inhibitors increased FITP evoked by injection of 0.25% formalin, but they were not effective on 2.5% formalin pain. The enhancing effects of finasteride and letrozole on FITP induced by 2.5% formalin was demonstrated by inhibitory actions of these drugs on morphine (7 and 10 mg/kg, intraperitoneal) induced antinociception. The nervous system could be considered as the main target of the enzymes inhibition, since the pronociceptive effect was also observed after administration of inhibitors to ovariectomized rats. Altogether, these findings suggest that the biological activity of the enzymes 5α-reductase and aromatase modulates FITP and may help to develop effective therapeutic strategies to counteract pain.
Collapse
|
299
|
Smuga DA, Smuga M, Swizdor A, Panek A, Wawrzeńczyk C. Synthesis of dehydroepiandrosterone analogues modified with phosphatidic acid moiety. Steroids 2010; 75:1146-52. [PMID: 20727366 DOI: 10.1016/j.steroids.2010.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 07/30/2010] [Accepted: 08/01/2010] [Indexed: 11/30/2022]
Abstract
Dehydroepiandrosterone (DHEA) and its metabolite 7α-OH DHEA have many diverse physiological, biological and biochemical effects encompassing various cell types, tissues and organs. In in vitro studies, DHEA analogues have myriad biological actions, but in vivo, especially in oral administration, DHEA produces far more limited clinical effects. One of the possible solutions of this problem is conversion of DHEA to active analogues and/or its transformation into prodrug form. In this article, the studies on the conversion of DHEA and 7α-OH DHEA into their phosphatides by the phosphodiester approach are described. In this esterification, N,N-dicyclohexylcarbodiimide (DCC) was the most efficient coupling agent as well as p-toluenesulphonyl chloride (TsCl).
Collapse
Affiliation(s)
- Damian A Smuga
- Department of Chemistry, Wrocław University of Environmental and Life Sciences,Wrocław, Poland
| | | | | | | | | |
Collapse
|
300
|
Endocrine induced changes in brain function during pregnancy. Brain Res 2010; 1364:198-215. [DOI: 10.1016/j.brainres.2010.09.062] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 09/10/2010] [Accepted: 09/16/2010] [Indexed: 02/05/2023]
|