251
|
Shen Y, Zhang Y, Ma T, Bao X, Du F, Zhuang G, Qu Y. Simultaneous saccharification and fermentation of acid-pretreated corncobs with a recombinant Saccharomyces cerevisiae expressing beta-glucosidase. BIORESOURCE TECHNOLOGY 2008; 99:5099-103. [PMID: 17976983 DOI: 10.1016/j.biortech.2007.09.046] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Revised: 09/20/2007] [Accepted: 09/20/2007] [Indexed: 05/18/2023]
Abstract
To reduce the cellobiose inhibition of exoglucanase and endogulcanase and enhance cellulose hydrolysis during simultaneous saccharification and fermentation (SSF), a beta-glucosidase encoding gene named BGL1 was cloned from Saccharomycopsis fibuligera and integrated into the chromosomal rDNA region of the Saccharomyces cerevisiae industrial strain NAN-27 producing NAN-227. Compared with the parental strain, which had no detectable activity, the beta-glucosidase specific activity in NAN-227 was 1.02 IU/mg of protein. When cellobiose was used as the sole carbon source in a shake-flask, NAN-227 consumed 6.2g/L of cellobiose and produced 3.3g/L of ethanol in 48 h. The yield was 0.532 g/g. The parent strain only consumed 1.92 g/L of cellobiose and no ethanol was detected. During the SSF of acid-pretreated corncobs NAN-227 produced 20 g/L of ethanol at 72 h, which was similar to the parent strain when 20IU of beta-glucosidase/g of substrate was added.
Collapse
Affiliation(s)
- Yu Shen
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, PR China
| | | | | | | | | | | | | |
Collapse
|
252
|
Pirkov I, Albers E, Norbeck J, Larsson C. Ethylene production by metabolic engineering of the yeast Saccharomyces cerevisiae. Metab Eng 2008; 10:276-80. [PMID: 18640286 DOI: 10.1016/j.ymben.2008.06.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Revised: 06/04/2008] [Accepted: 06/25/2008] [Indexed: 11/18/2022]
Abstract
The non-ethylene producing yeast, Saccharomyces cerevisiae, was transformed into an ethylene producer by introducing the ethylene forming enzyme from the plant pathogenic bacterium Pseudomonas syringae. Cultivation of the metabolically engineered strain was performed in well-controlled bioreactors as aerobic batch cultures with an on-line monitoring of ethylene production. The highest productivity was obtained during the respiro-fermentative growth on glucose but there was also a significant rate of formation during the subsequent phase of ethanol respiration. Furthermore, investigations were performed whether substitution of the original nitrogen source, NH(4)(+), for glutamate could improve productivity and yield of ethylene even more. The rationale being that one of the substrates for the enzyme is 2-oxoglutarate and this compound can be formed from glutamate in a single reaction. Indeed, there was a substantial improvement in the rate of production and the final yield of ethylene was almost three times higher when NH(4)(+) was replaced by glutamate.
Collapse
Affiliation(s)
- I Pirkov
- Department of Chemical and Biological Engineering-Molecular Biotechnology, Chalmers University of Technology, Kemivägen 10, 412 96 Göteborg, Sweden
| | | | | | | |
Collapse
|
253
|
Salusjärvi L, Kankainen M, Soliymani R, Pitkänen JP, Penttilä M, Ruohonen L. Regulation of xylose metabolism in recombinant Saccharomyces cerevisiae. Microb Cell Fact 2008; 7:18. [PMID: 18533012 PMCID: PMC2435516 DOI: 10.1186/1475-2859-7-18] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Accepted: 06/04/2008] [Indexed: 11/23/2022] Open
Abstract
Background Considerable interest in the bioconversion of lignocellulosic biomass into ethanol has led to metabolic engineering of Saccharomyces cerevisiae for fermentation of xylose. In the present study, the transcriptome and proteome of recombinant, xylose-utilising S. cerevisiae grown in aerobic batch cultures on xylose were compared with those of glucose-grown cells both in glucose repressed and derepressed states. The aim was to study at the genome-wide level how signalling and carbon catabolite repression differ in cells grown on either glucose or xylose. The more detailed knowledge whether xylose is sensed as a fermentable carbon source, capable of catabolite repression like glucose, or is rather recognised as a non-fermentable carbon source is important for further engineering this yeast for more efficient anaerobic fermentation of xylose. Results Genes encoding respiratory proteins, proteins of the tricarboxylic acid and glyoxylate cycles, and gluconeogenesis were only partially repressed by xylose, similar to the genes encoding their transcriptional regulators HAP4, CAT8 and SIP1-2 and 4. Several genes that are repressed via the Snf1p/Mig1p-pathway during growth on glucose had higher expression in the cells grown on xylose than in the glucose repressed cells but lower than in the glucose derepressed cells. The observed expression profiles of the transcription repressor RGT1 and its target genes HXT2-3, encoding hexose transporters suggested that extracellular xylose was sensed by the glucose sensors Rgt2p and Snf3p. Proteome analyses revealed distinct patterns in phosphorylation of hexokinase 2, glucokinase and enolase isoenzymes in the xylose- and glucose-grown cells. Conclusion The results indicate that the metabolism of yeast growing on xylose corresponds neither to that of fully glucose repressed cells nor that of derepressed cells. This may be one of the major reasons for the suboptimal fermentation of xylose by recombinant S. cerevisiae strains. Phosphorylation of different isoforms of glycolytic enzymes suggests that regulation of glycolysis also occurred at a post-translational level, supporting prior findings.
Collapse
Affiliation(s)
- Laura Salusjärvi
- VTT, Technical Research Centre of Finland, P,O, Box 1000, FI-02044 VTT, Finland.
| | | | | | | | | | | |
Collapse
|
254
|
Leandro MJ, Spencer-Martins I, Gonçalves P. The expression in Saccharomyces cerevisiae of a glucose/xylose symporter from Candida intermedia is affected by the presence of a glucose/xylose facilitator. Microbiology (Reading) 2008; 154:1646-1655. [DOI: 10.1099/mic.0.2007/015511-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Maria José Leandro
- Centro de Recursos Microbiológicos (CREM), Department of Life Sciences, Faculty of Sciences and Technology, New University of Lisbon, 2829-516 Caparica, Portugal
| | - Isabel Spencer-Martins
- Centro de Recursos Microbiológicos (CREM), Department of Life Sciences, Faculty of Sciences and Technology, New University of Lisbon, 2829-516 Caparica, Portugal
| | - Paula Gonçalves
- Centro de Recursos Microbiológicos (CREM), Department of Life Sciences, Faculty of Sciences and Technology, New University of Lisbon, 2829-516 Caparica, Portugal
| |
Collapse
|
255
|
Orencio-Trejo M, Flores N, Escalante A, Hernández-Chávez G, Bolívar F, Gosset G, Martinez A. Metabolic regulation analysis of an ethanologenic Escherichia coli strain based on RT-PCR and enzymatic activities. BIOTECHNOLOGY FOR BIOFUELS 2008; 1:8. [PMID: 18471274 PMCID: PMC2396614 DOI: 10.1186/1754-6834-1-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Accepted: 05/01/2008] [Indexed: 05/07/2023]
Abstract
BACKGROUND A metabolic regulation study was performed, based upon measurements of enzymatic activities, fermentation performance, and RT-PCR analysis of pathways related to central carbon metabolism, in an ethanologenic Escherichia coli strain (CCE14) derived from lineage C. In comparison with previous engineered strains, this E coli derivative has a higher ethanol production rate in mineral medium, as a result of the elevated heterologous expression of the chromosomally integrated genes encoding PDCZm and ADHZm (pyruvate decarboxylase and alcohol dehydrogenase from Zymomonas mobilis). It is suggested that this behavior might be due to lineage differences between E. coli W and C. RESULTS This study demonstrated that the glycolytic flux is controlled, in this case, by reactions outside glycolysis, i.e., the fermentative pathways. Changes in ethanol production rate in this ethanologenic strain result in low organic acid production rates, and high glycolytic and ethanologenic fluxes, that correlate with enhanced transcription and enzymatic activity levels of PDCZm and ADHZm. Furthermore, a higher ethanol yield (90% of the theoretical) in glucose-mineral media was obtained with CCE14 in comparison with previous engineered E. coli strains, such as KO11, that produces a 70% yield under the same conditions. CONCLUSION Results suggest that a higher ethanol formation rate, caused by ahigher PDCZm and ADHZm activities induces a metabolic state that cells compensate through enhanced glucose transport, ATP synthesis, and NAD-NADH+H turnover rates. These results show that glycolytic enzymatic activities, present in E. coli W and C under fermentative conditions, are sufficient to contend with increases in glucose consumption and product formation rates.
Collapse
Affiliation(s)
- Montserrat Orencio-Trejo
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México. Cuernavaca, Mor., México
| | - Noemí Flores
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México. Cuernavaca, Mor., México
| | - Adelfo Escalante
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México. Cuernavaca, Mor., México
| | - Georgina Hernández-Chávez
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México. Cuernavaca, Mor., México
| | - Francisco Bolívar
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México. Cuernavaca, Mor., México
| | - Guillermo Gosset
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México. Cuernavaca, Mor., México
| | - Alfredo Martinez
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México. Cuernavaca, Mor., México
| |
Collapse
|
256
|
Petschacher B, Nidetzky B. Altering the coenzyme preference of xylose reductase to favor utilization of NADH enhances ethanol yield from xylose in a metabolically engineered strain of Saccharomyces cerevisiae. Microb Cell Fact 2008; 7:9. [PMID: 18346277 PMCID: PMC2315639 DOI: 10.1186/1475-2859-7-9] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Accepted: 03/17/2008] [Indexed: 11/23/2022] Open
Abstract
Background Metabolic engineering of Saccharomyces cerevisiae for xylose fermentation into fuel ethanol has oftentimes relied on insertion of a heterologous pathway that consists of xylose reductase (XR) and xylitol dehydrogenase (XDH) and brings about isomerization of xylose into xylulose via xylitol. Incomplete recycling of redox cosubstrates in the catalytic steps of the NADPH-preferring XR and the NAD+-dependent XDH results in formation of xylitol by-product and hence in lowering of the overall yield of ethanol on xylose. Structure-guided site-directed mutagenesis was previously employed to change the coenzyme preference of Candida tenuis XR about 170-fold from NADPH in the wild-type to NADH in a Lys274→Arg Asn276→Asp double mutant which in spite of the structural modifications introduced had retained the original catalytic efficiency for reduction of xylose by NADH. This work was carried out to assess physiological consequences in xylose-fermenting S. cerevisiae resulting from a well defined alteration of XR cosubstrate specificity. Results An isogenic pair of yeast strains was derived from S. cerevisiae Cen.PK 113-7D through chromosomal integration of a three-gene cassette that carried a single copy for C. tenuis XR in wild-type or double mutant form, XDH from Galactocandida mastotermitis, and the endogenous xylulose kinase (XK). Overexpression of each gene was under control of the constitutive TDH3 promoter. Measurement of intracellular levels of XR, XDH, and XK activities confirmed the expected phenotypes. The strain harboring the XR double mutant showed 42% enhanced ethanol yield (0.34 g/g) compared to the reference strain harboring wild-type XR during anaerobic bioreactor conversions of xylose (20 g/L). Likewise, the yields of xylitol (0.19 g/g) and glycerol (0.02 g/g) were decreased 52% and 57% respectively in the XR mutant strain. The xylose uptake rate per gram of cell dry weight was identical (0.07 ± 0.02 h-1) in both strains. Conclusion Integration of enzyme and strain engineering to enhance utilization of NADH in the XR-catalyzed conversion of xylose results in notably improved fermentation capabilities of recombinant S. cerevisiae.
Collapse
Affiliation(s)
- Barbara Petschacher
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 12/I, A-8010 Graz, Austria.
| | | |
Collapse
|
257
|
Rao K, Chelikani S, Relue P, Varanasi S. A novel technique that enables efficient conduct of simultaneous isomerization and fermentation (SIF) of xylose. Appl Biochem Biotechnol 2008; 146:101-17. [PMID: 18421591 DOI: 10.1007/s12010-007-8122-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Accepted: 12/11/2007] [Indexed: 11/26/2022]
Abstract
Of the sugars recovered from lignocellulose, D-glucose can be readily converted into ethanol by baker's or brewer's yeast (Saccharomyces cerevisiae). However, xylose that is obtained by the hydrolysis of the hemicellulosic portion is not fermentable by the same species of yeasts. Xylose fermentation by native yeasts can be achieved via isomerization of xylose to its ketose isomer, xylulose. Isomerization with exogenous xylose isomerase (XI) occurs optimally at a pH of 7-8, whereas subsequent fermentation of xylulose to ethanol occurs at a pH of 4-5. We present a novel scheme for efficient isomerization of xylose to xylulose at conditions suitable for the fermentation by using an immobilized enzyme system capable of sustaining two different pH microenvironments in a single vessel. The proof-of-concept of the two-enzyme pellet is presented, showing conversion of xylose to xylulose even when the immobilized enzyme pellets are suspended in a bulk solution whose pH is sub-optimal for XI activity. The co-immobilized enzyme pellets may prove extremely valuable in effectively conducting "simultaneous isomerization and fermentation" (SIF) of xylose. To help further shift the equilibrium in favor of xylulose formation, sodium tetraborate (borax) was added to the isomerization solution. Binding of tetrahydroxyborate ions to xylulose effectively reduces the concentration of xylulose and leads to increased xylose isomerization. The formation of tetrahydroxyborate ions and the enhancement in xylulose production resulting from the complexation was studied at two different bulk pH values. The addition of 0.05 M borax to the isomerization solution containing our co-immobilized enzyme pellets resulted in xylose to xylulose conversion as high as 86% under pH conditions that are suboptimal for XI activity. These initial findings, which can be optimized for industrial conditions, have significant potential for increasing the yield of ethanol from xylose in an SIF approach.
Collapse
Affiliation(s)
- Kripa Rao
- Department of Chemical and Environmental Engineering, The University of Toledo, Toledo, OH 43606, USA
| | | | | | | |
Collapse
|
258
|
Velagapudi VR, Wittmann C, Schneider K, Heinzle E. Metabolic flux screening of Saccharomyces cerevisiae single knockout strains on glucose and galactose supports elucidation of gene function. J Biotechnol 2007; 132:395-404. [DOI: 10.1016/j.jbiotec.2007.08.043] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2007] [Revised: 08/22/2007] [Accepted: 08/24/2007] [Indexed: 11/15/2022]
|
259
|
Villadsen J. Innovative technology to meet the demands of the white biotechnology revolution of chemical production. Chem Eng Sci 2007. [DOI: 10.1016/j.ces.2007.08.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
260
|
Fu N, Peiris P. Co-fermentation of a mixture of glucose and xylose to ethanol by Zymomonas mobilis and Pachysolen tannophilus. World J Microbiol Biotechnol 2007. [DOI: 10.1007/s11274-007-9613-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
261
|
Zhou S, Iverson AG, Grayburn WS. Engineering a native homoethanol pathway in Escherichia coli B for ethanol production. Biotechnol Lett 2007; 30:335-42. [DOI: 10.1007/s10529-007-9544-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 09/07/2007] [Accepted: 09/10/2007] [Indexed: 11/24/2022]
|
262
|
Chu BCH, Lee H. Genetic improvement of Saccharomyces cerevisiae for xylose fermentation. Biotechnol Adv 2007; 25:425-41. [PMID: 17524590 DOI: 10.1016/j.biotechadv.2007.04.001] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Revised: 04/01/2007] [Accepted: 04/15/2007] [Indexed: 11/23/2022]
Abstract
There is considerable interest in recent years in the bioconversion of forestry and agricultural residues into ethanol and value-added chemicals. High ethanol yields from lignocellulosic residues are dependent on efficient use of all the available sugars including glucose and xylose. The well-known fermentative yeast Saccharomyces cerevisiae is the preferred microorganism for ethanol production, but unfortunately, this yeast is unable to ferment xylose. Over the last 15 years, this yeast has been the subject of various research efforts aimed at improving its ability to utilize xylose and ferment it to ethanol. This review examines the research on S. cerevisiae strains that have been genetically modified or adapted to ferment xylose to ethanol. The current state of these efforts and areas where further research is required are identified and discussed.
Collapse
Affiliation(s)
- Byron C H Chu
- University of Guelph, Department of Environmental Biology, Guelph, Ontario, Canada N1G 2W1
| | | |
Collapse
|
263
|
Cho BK, Charusanti P, Herrgård MJ, Palsson BO. Microbial regulatory and metabolic networks. Curr Opin Biotechnol 2007; 18:360-4. [PMID: 17719767 DOI: 10.1016/j.copbio.2007.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Accepted: 07/12/2007] [Indexed: 11/18/2022]
Abstract
Reconstruction of transcriptional regulatory and metabolic networks is the foundation of large-scale microbial systems and synthetic biology. An enormous amount of information including the annotated genomic sequences and the genomic locations of DNA-binding regulatory proteins can be used to define metabolic and regulatory networks in cells. In particular, advances in experimental methods to map regulatory networks in microbial cells have allowed reliable data-driven reconstruction of these networks. Recent work on metabolic engineering and experimental evolution of microbes highlights the key role of global regulatory networks in controlling specific metabolic processes and the need to consider the integrated function of multiple types of networks for both scientific and engineering purposes.
Collapse
Affiliation(s)
- Byung-Kwan Cho
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093-0412, USA
| | | | | | | |
Collapse
|
264
|
Albers E, Larsson C, Andlid T, Walsh MC, Gustafsson L. Effect of nutrient starvation on the cellular composition and metabolic capacity of Saccharomyces cerevisiae. Appl Environ Microbiol 2007; 73:4839-48. [PMID: 17545328 PMCID: PMC1951042 DOI: 10.1128/aem.00425-07] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Accepted: 05/24/2007] [Indexed: 11/20/2022] Open
Abstract
This investigation addresses the following question: what are the important factors for maintenance of a high catabolic capacity under various starvation conditions? Saccharomyces cerevisiae was cultured in aerobic batch cultures, and during the diauxic shift cells were transferred and subjected to 24 h of starvation. The following conditions were used: carbon starvation, nitrogen starvation in the presence of glucose or ethanol, and both carbon starvation and nitrogen starvation. During the starvation period changes in biomass composition (including protein, carbohydrate, lipid, and nucleic acid contents), metabolic activity, sugar transport kinetics, and the levels of selected enzymes were recorded. Subsequent to the starvation period the remaining catabolic capacity was measured by addition of 50 mM glucose. The results showed that the glucose transport capacity is a key factor for maintenance of high metabolic capacity in many, but not all, cases. The results for cells starved of carbon, carbon and nitrogen, or nitrogen in the presence of glucose all indicated that the metabolic capacity was indeed controlled by the glucose transport ability, perhaps with some influence of hexokinase, phosphofructokinase, aldolase, and enolase levels. However, it was also demonstrated that there was no such correlation when nitrogen starvation occurred in the presence of ethanol instead of glucose.
Collapse
Affiliation(s)
- Eva Albers
- Department of Chemical and Biological Engineering-Molecular Biotechnology, Chalmers University of Technology, Box 462, SE-405 30 Göteborg, Sweden
| | | | | | | | | |
Collapse
|
265
|
Wisselink HW, Toirkens MJ, del Rosario Franco Berriel M, Winkler AA, van Dijken JP, Pronk JT, van Maris AJA. Engineering of Saccharomyces cerevisiae for efficient anaerobic alcoholic fermentation of L-arabinose. Appl Environ Microbiol 2007; 73:4881-91. [PMID: 17545317 PMCID: PMC1951023 DOI: 10.1128/aem.00177-07] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
For cost-effective and efficient ethanol production from lignocellulosic fractions of plant biomass, the conversion of not only major constituents, such as glucose and xylose, but also less predominant sugars, such as l-arabinose, is required. Wild-type strains of Saccharomyces cerevisiae, the organism used in industrial ethanol production, cannot ferment xylose and arabinose. Although metabolic and evolutionary engineering has enabled the efficient alcoholic fermentation of xylose under anaerobic conditions, the conversion of l-arabinose into ethanol by engineered S. cerevisiae strains has previously been demonstrated only under oxygen-limited conditions. This study reports the first case of fast and efficient anaerobic alcoholic fermentation of l-arabinose by an engineered S. cerevisiae strain. This fermentation was achieved by combining the expression of the structural genes for the l-arabinose utilization pathway of Lactobacillus plantarum, the overexpression of the S. cerevisiae genes encoding the enzymes of the nonoxidative pentose phosphate pathway, and extensive evolutionary engineering. The resulting S. cerevisiae strain exhibited high rates of arabinose consumption (0.70 g h(-1) g [dry weight](-1)) and ethanol production (0.29 g h(-1) g [dry weight](-1)) and a high ethanol yield (0.43 g g(-1)) during anaerobic growth on l-arabinose as the sole carbon source. In addition, efficient ethanol production from sugar mixtures containing glucose and arabinose, which is crucial for application in industrial ethanol production, was achieved.
Collapse
Affiliation(s)
- H Wouter Wisselink
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
266
|
Kleerebezem R, van Loosdrecht MCM. Mixed culture biotechnology for bioenergy production. Curr Opin Biotechnol 2007; 18:207-12. [PMID: 17509864 DOI: 10.1016/j.copbio.2007.05.001] [Citation(s) in RCA: 309] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Revised: 03/18/2007] [Accepted: 05/08/2007] [Indexed: 11/19/2022]
Abstract
Mixed culture biotechnology (MCB) could become an attractive addition or alternative to traditional pure culture based biotechnology for the production of chemicals and/or bioenergy. On the basis of ecological selection principles, MCB-based processes can be established that generate a narrow product spectrum from a mixed substrate. Three example processes are briefly discussed in this paper: anaerobic digestion aimed at the production of methane-containing biogas, mixed culture fermentation for the production of solvents or biohydrogen, and a two-step process for the production of polyhydroxyalkanoates. These examples give an idea of the potential contribution of mixed culture biotechnology to sustainable production of bioenergy from waste.
Collapse
Affiliation(s)
- Robbert Kleerebezem
- Delft University of Technology, Department of Biotechnology, Julianalaan 67, 2628 BC Delft, The Netherlands.
| | | |
Collapse
|
267
|
John Wiley & Sons, Ltd.. Current awareness on yeast. Yeast 2007. [DOI: 10.1002/yea.1327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
268
|
van Maris AJA, Winkler AA, Kuyper M, de Laat WTAM, van Dijken JP, Pronk JT. Development of efficient xylose fermentation in Saccharomyces cerevisiae: xylose isomerase as a key component. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2007; 108:179-204. [PMID: 17846724 DOI: 10.1007/10_2007_057] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Metabolic engineering of Saccharomyces cerevisiae for ethanol production from D-xylose, an abundant sugar in plant biomass hydrolysates, has been pursued vigorously for the past 15 years. Whereas wild-type S. cerevisiae cannot ferment D-xylose, the keto-isomer D-xylulose can be metabolised slowly. Conversion of D-xylose into D-xylulose is therefore crucial in metabolic engineering of xylose fermentation by S. cerevisiae. Expression of heterologous xylose reductase and xylitol dehydrogenase does enable D-xylose utilisation, but intrinsic redox constraints of this pathway result in undesirable byproduct formation in the absence of oxygen. In contrast, expression of xylose isomerase (XI, EC 5.3.1.5), which directly interconverts D-xylose and D-xylulose, does not have these constraints. However, several problems with the functional expression of various bacterial and Archaeal XI genes have precluded successful use of XI in yeast metabolic engineering. This changed with the discovery of a fungal XI gene in Piromyces sp. E2, expression of which led to high XI activities in S. cerevisiae. When combined with over-expression of the genes of the non-oxidative pentose phosphate pathway of S. cerevisiae, the resulting strain grew anaerobically on D-xylose with a doubling time of ca. 8 h, with the same ethanol yield as on glucose. Additional evolutionary engineering was used to improve the fermentation kinetics of mixed-substrate utilisation, resulting in efficient D-xylose utilisation in synthetic media. Although industrial pilot experiments have already demonstrated high ethanol yields from the D-xylose present in plant biomass hydrolysates, strain robustness, especially with respect to tolerance to inhibitors present in hydrolysates, can still be further improved.
Collapse
Affiliation(s)
- Antonius J A van Maris
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC, Delft, The Netherlands
| | | | | | | | | | | |
Collapse
|
269
|
van Zyl WH, Lynd LR, den Haan R, McBride JE. Consolidated bioprocessing for bioethanol production using Saccharomyces cerevisiae. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2007; 108:205-35. [PMID: 17846725 DOI: 10.1007/10_2007_061] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Consolidated bioprocessing (CBP) of lignocellulose to bioethanol refers to the combining of the four biological events required for this conversion process (production of saccharolytic enzymes, hydrolysis of the polysaccharides present in pretreated biomass, fermentation of hexose sugars, and fermentation of pentose sugars) in one reactor. CBP is gaining increasing recognition as a potential breakthrough for low-cost biomass processing. Although no natural microorganism exhibits all the features desired for CBP, a number of microorganisms, both bacteria and fungi, possess some of the desirable properties. This review focuses on progress made toward the development of baker's yeast (Saccharomyces cerevisiae) for CBP. The current status of saccharolytic enzyme (cellulases and hemicellulases) expression in S. cerevisiae to complement its natural fermentative ability is highlighted. Attention is also devoted to the challenges ahead to integrate all required enzymatic activities in an industrial S. cerevisiae strain(s) and the need for molecular and selection strategies pursuant to developing a yeast capable of CBP.
Collapse
Affiliation(s)
- Willem H van Zyl
- Department of Microbiology, Stellenbosch University, Private Bag X1, 7602, Matieland, South Africa.
| | | | | | | |
Collapse
|