251
|
Willis DE, Wang M, Brown E, Fones L, Cave JW. Selective repression of gene expression in neuropathic pain by the neuron-restrictive silencing factor/repressor element-1 silencing transcription (NRSF/REST). Neurosci Lett 2015; 625:20-5. [PMID: 26679228 DOI: 10.1016/j.neulet.2015.12.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 11/18/2015] [Accepted: 12/01/2015] [Indexed: 02/07/2023]
Abstract
Neuropathic pain often develops following nerve injury as a result of maladaptive changes that occur in the injured nerve and along the nociceptive pathways of the peripheral and central nervous systems. Multiple cellular and molecular mechanisms likely account for these changes; however, the exact nature of these mechanisms remain largely unknown. A growing number of studies suggest that alteration in gene expression is an important step in the progression from acute to chronic pain states and epigenetic regulation has been proposed to drive this change in gene expression. In this review, we discuss recent evidence that the DNA-binding protein neuron-restrictive silencing factor/repressor element-1 silencing transcription factor (NRSF/REST) is an important component in the development and maintenance of neuropathic pain through its role as a transcriptional regulator for a select subset of genes that it normally represses during development.
Collapse
Affiliation(s)
- Dianna E Willis
- Burke Medical Research Institute, 785 Mamaroneck Ave., White Plains, NY 10605, United States; Brain and Mind Research Institute, Weill Cornell Medical College, 1300 York Ave, NY, NY 10065, United States
| | - Meng Wang
- Burke Medical Research Institute, 785 Mamaroneck Ave., White Plains, NY 10605, United States
| | - Elizabeth Brown
- Burke Medical Research Institute, 785 Mamaroneck Ave., White Plains, NY 10605, United States
| | - Lilah Fones
- Burke Medical Research Institute, 785 Mamaroneck Ave., White Plains, NY 10605, United States
| | - John W Cave
- Burke Medical Research Institute, 785 Mamaroneck Ave., White Plains, NY 10605, United States; Brain and Mind Research Institute, Weill Cornell Medical College, 1300 York Ave, NY, NY 10065, United States.
| |
Collapse
|
252
|
Nucleosomes Are Essential for Proper Regulation of a Multigated Promoter in Saccharomyces cerevisiae. Genetics 2015; 202:551-63. [PMID: 26627840 DOI: 10.1534/genetics.115.183715] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 11/29/2015] [Indexed: 12/22/2022] Open
Abstract
Nucleosome-depleted regions (NDRs) are present immediately adjacent to the transcription start site in most eukaryotic promoters. Here we show that NDRs in the upstream promoter region can profoundly affect gene regulation. Chromatin at the yeast HO promoter is highly repressive and numerous coactivators are required for expression. We modified the HO promoter with segments from the well-studied CLN2 NDR, creating chimeric promoters differing in nucleosome occupancy but with binding sites for the same activator, SBF. Nucleosome depletion resulted in substantial increases in both factor binding and gene expression and allowed activation from a much longer distance, probably by allowing recruited coactivators to act further downstream. Nucleosome depletion also affected sequential activation of the HO promoter; HO activation typically requires the ordered recruitment of activators first to URS1, second to the left-half of URS2 (URS2-L), and finally to the right-half of URS2 (URS2-R), with each region representing distinct gates that must be unlocked to achieve activation. The absence of nucleosomes at URS2-L resulted in promoters no longer requiring both the URS1 and URS2-L gates, as either gate alone is now sufficient to promote binding of the SBF factor to URS2-R. Furthermore, nucleosome depletion at URS2 altered the timing of HO expression and bypassed the regulation that restricts expression to mother cells. Our results reveal insight into how nucleosomes can create a requirement for ordered recruitment of factors to facilitate complex transcriptional regulation.
Collapse
|
253
|
Li N, Liu Z, Wang G, Wang S. Downregulation of the sodium channel Nav1.6 by potential transcriptomic deregulation may explain sensory deficits in critical illness neuropathy. Life Sci 2015; 143:231-6. [PMID: 26562765 DOI: 10.1016/j.lfs.2015.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 10/08/2015] [Accepted: 11/07/2015] [Indexed: 11/24/2022]
Abstract
AIMS Sepsis patients and other patients in the critical care settings are at very high risk of mortality due to the primary illness. However, a fraction of patients, even after showing initial clinical improvement, deteriorates relentlessly at later stages. Increasingly, it is being identified that this is mostly due to dysfunction of the neurological system. MAIN METHODS We obtained peripheral nerve biopsies from the sural nerve from ICU patients. Nav1.6 expression was significantly diminished. The expression of cellular membrane anchoring protein for Nav1.6, ankyrin, remained unaffected, suggesting that genomic repression may be responsible for the diminished expression of the sodium channels. We examined the expression of two regulatory transcription factors: (a) a positive regulator YY1 that binds to the promoter region of sodium channels and (b) an upstream negative neuronal regulator REST. KEY FINDINGS REST expression was significantly elevated, while YY1 expression was diminished. Finally, we also observed that the cholinergic synthetic enzyme acyltransferase was also significantly diminished in sensory nerve lysates. Finally, circulating antibodies was detected in the peripheral blood against all the major sodium channels Nav1.6, 1.8 and 1.9, which contribute to the development and propagation of action potentials. SIGNIFICANCE This may potentially explain why its dysfunction affects neurological functions across all systems of the body during critical illness. The underlying mechanism of why the expression of the REST transcriptional factor is affected in critical illnesses remains our future goals of investigation.
Collapse
Affiliation(s)
- Nan Li
- Department of Intensive Care Unit, The First Hospital of Jilin University, Jilin 130021, China
| | - Zhongmin Liu
- Department of Intensive Care Unit, The First Hospital of Jilin University, Jilin 130021, China
| | - Guang Wang
- Department of Intensive Care Unit, The First Hospital of Jilin University, Jilin 130021, China
| | - Shiji Wang
- Department of Intensive Care Unit, The First Hospital of Jilin University, Jilin 130021, China.
| |
Collapse
|
254
|
Schiffer D, Caldera V, Mellai M, Conforti P, Cattaneo E, Zuccato C. Repressor element-1 silencing transcription factor (REST) is present in human control and Huntington's disease neurones. Neuropathol Appl Neurobiol 2015; 40:899-910. [PMID: 24634989 DOI: 10.1111/nan.12137] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 03/12/2014] [Indexed: 01/25/2023]
Abstract
AIMS The repressor element-1 silencing transcription factor/neurone-restrictive silencer factor (REST/NRSF) is a master regulator of neuronal gene expression. REST/NRSF functions by recruiting other cofactors to genomic loci that contain the repressor element 1/neurone restrictive silencer element (RE1/NRSE) binding motif. In brain, demonstration of REST protein presence in neurones has remained controversial. However, RE1/NRSE containing neuronal genes are actively modulated and REST dysregulation is implicated in Huntington's disease (HD). We aimed to investigate REST distribution in autopsy brain from control and HD patients. METHODS Brain tissues from six controls and six HD cases (Vonsattel grade 3 and 4) were investigated using immunohistochemical analysis. RESULTS REST was present in neurones and glial cells of the cortex, caudate nucleus, hippocampus and cerebellum. REST labelling was mainly cytoplasmic in neurones while preferential nuclear staining of REST was found in glial cells. We also found that REST and huntingtin (HTT) colocalize in human neurones. Low levels of cytoplasmic REST were detected in neurones of the HD cortex and caudate but no direct relationship between decreased neuronal REST expression and disease grade was observed. CONCLUSIONS These data support the notion of REST presence in human brain neurones and glial cells and indicate the importance of developing compounds able to restore REST-regulated transcription of neuronal genes in HD.
Collapse
Affiliation(s)
- Davide Schiffer
- Neuro-Bio-Oncology Research Center, Policlinico di Monza Foundation, Vercelli; Consorzio per le Neuroscienze, University of Pavia, Pavia
| | | | | | | | | | | |
Collapse
|
255
|
Mondragón E, Maher LJ. Anti-Transcription Factor RNA Aptamers as Potential Therapeutics. Nucleic Acid Ther 2015; 26:29-43. [PMID: 26509637 PMCID: PMC4753637 DOI: 10.1089/nat.2015.0566] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Transcription factors (TFs) are DNA-binding proteins that play critical roles in regulating gene expression. These proteins control all major cellular processes, including growth, development, and homeostasis. Because of their pivotal role, cells depend on proper TF function. It is, therefore, not surprising that TF deregulation is linked to disease. The therapeutic drug targeting of TFs has been proposed as a frontier in medicine. RNA aptamers make interesting candidates for TF modulation because of their unique characteristics. The products of in vitro selection, aptamers are short nucleic acids (DNA or RNA) that bind their targets with high affinity and specificity. Aptamers can be expressed on demand from transgenes and are intrinsically amenable to recognition by nucleic acid-binding proteins such as TFs. In this study, we review several natural prokaryotic and eukaryotic examples of RNAs that modulate the activity of TFs. These examples include 5S RNA, 6S RNA, 7SK, hepatitis delta virus-RNA (HDV-RNA), neuron restrictive silencer element (NRSE)-RNA, growth arrest-specific 5 (Gas5), steroid receptor RNA activator (SRA), trophoblast STAT utron (TSU), the 3' untranslated region of caudal mRNA, and heat shock RNA-1 (HSR1). We then review examples of unnatural RNA aptamers selected to inhibit TFs nuclear factor-kappaB (NF-κB), TATA-binding protein (TBP), heat shock factor 1 (HSF1), and runt-related transcription factor 1 (RUNX1). The field of RNA aptamers for DNA-binding proteins continues to show promise.
Collapse
Affiliation(s)
- Estefanía Mondragón
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine , Rochester, Minnesota
| | - Louis James Maher
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine , Rochester, Minnesota
| |
Collapse
|
256
|
Shudo Y, Shimojo M, Fukunaga M, Ito S. Pituitary adenylate cyclase-activating polypeptide is regulated by alternative splicing of transcriptional repressor REST/NRSF in nerve injury. Life Sci 2015; 143:174-81. [PMID: 26518165 DOI: 10.1016/j.lfs.2015.10.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 09/28/2015] [Accepted: 10/26/2015] [Indexed: 12/22/2022]
Abstract
AIMS The pathophysiological mechanism for neuropathic pain (NP), one of the most common types of intractable pain, remains largely unknown. We previously reported that pituitary adenylate-cyclase activating polypeptide (PACAP) is required for the development of spinal sensitization and induction of NP. Previous in vitro studies suggest that PACAP transcription unit has two RE1-like elements and that the transcriptional repressor REST controls expression of PACAP gene. However the regulation of PACAP gene through its RE1 sites in vivo has not been studied. We have analyzed the functional role of PACAP gene RE1 element following nerve injury. MAIN METHODS An L5-spinal nerve transection (L5-SNT) in mice was used as a model of spinal injury. DRGs after the L5-SNT were studied. KEY FINDINGS PACAP mRNA increased in the DRG following spinal nerve injury. REST4, an alternatively spliced isoform of REST was shown to be regulated by the splicing activator (nSR100) and nSR100 itself also increased. Overexpression of either REST4 or nSR100 in vitro increased PACAP expression, while overexpression of REST repressed PACAP mRNA production. Reporter gene analysis showed that a novel RE1 previously predicted by in silico analysis was indeed functional. ChIP analysis showed that REST bound significantly to this RE1 in the DRG of naïve mice, while REST binding to this RE1 was decreased following spinal nerve injury. The expression of REST was decreased by nSR100-dependent alternative splicing of the REST gene, leading to derepression of PACAP. SIGNIFICANCE PACAP expression in the DRG following spinal nerve injury is controlled through a novel RE1 by REST.
Collapse
Affiliation(s)
- Yoshie Shudo
- Department of Medical Chemistry, Kansai Medical University, Osaka, Japan; Department of Psychosomatic Medicine, Kansai Medical University, Osaka, Japan
| | - Masahito Shimojo
- Department of Medical Chemistry, Kansai Medical University, Osaka, Japan.
| | - Mikihiko Fukunaga
- Department of Psychosomatic Medicine, Kansai Medical University, Osaka, Japan
| | - Seiji Ito
- Department of Medical Chemistry, Kansai Medical University, Osaka, Japan
| |
Collapse
|
257
|
Vandamme J, Sidoli S, Mariani L, Friis C, Christensen J, Helin K, Jensen ON, Salcini AE. H3K23me2 is a new heterochromatic mark in Caenorhabditis elegans. Nucleic Acids Res 2015; 43:9694-710. [PMID: 26476455 PMCID: PMC4787770 DOI: 10.1093/nar/gkv1063] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 10/01/2015] [Indexed: 12/05/2022] Open
Abstract
Genome-wide analyses in Caenorhabditis elegans show that post-translational modifications (PTMs) of histones are evolutionary conserved and distributed along functionally distinct genomic domains. However, a global profile of PTMs and their co-occurrence on the same histone tail has not been described in this organism. We used mass spectrometry based middle-down proteomics to analyze histone H3 N-terminal tails from C. elegans embryos for the presence, the relative abundance and the potential cross-talk of co-existing PTMs. This analysis highlighted that the lysine 23 of histone H3 (H3K23) is extensively modified by methylation and that tri-methylated H3K9 (H3K9me3) is exclusively detected on histone tails with di-methylated H3K23 (H3K23me2). Chromatin immunoprecipitation approaches revealed a positive correlation between H3K23me2 and repressive marks. By immunofluorescence analyses, H3K23me2 appears differentially regulated in germ and somatic cells, in part by the action of the histone demethylase JMJD-1.2. H3K23me2 is enriched in heterochromatic regions, localizing in H3K9me3 and heterochromatin protein like-1 (HPL-1)-positive foci. Biochemical analyses indicated that HPL-1 binds to H3K23me2 and interacts with a conserved CoREST repressive complex. Thus, our study suggests that H3K23me2 defines repressive domains and contributes to organizing the genome in distinct heterochromatic regions during embryogenesis.
Collapse
Affiliation(s)
- Julien Vandamme
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark Centre for Epigenetics, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Simone Sidoli
- Centre for Epigenetics, Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense M, Denmark
| | - Luca Mariani
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark Centre for Epigenetics, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Carsten Friis
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark Centre for Epigenetics, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Jesper Christensen
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark Centre for Epigenetics, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Kristian Helin
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark Centre for Epigenetics, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark The Danish Stem Cell Centre (Danstem), University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Ole N Jensen
- Centre for Epigenetics, Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense M, Denmark
| | - Anna Elisabetta Salcini
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark Centre for Epigenetics, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| |
Collapse
|
258
|
Transcriptional regulation of the neuropeptide VGF by the neuron-restrictive silencer factor/neuron-restrictive silencer element. Neuroreport 2015; 26:144-51. [PMID: 25569790 DOI: 10.1097/wnr.0000000000000316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The neurotrophin-inducible gene VGF plays an important role in the maintenance of organismal energy balance and in the mediation of hippocampal synaptic activity. The regulatory mechanism of VGF transcription is not fully understood. The neuron-restrictive silencer factor (NRSF) binds with the neuron-restrictive silencer element (NRSE), thereby suppressing the transcription of NRSE-containing genes. In this study, we show that the NRSE sequence of the VGF gene critically regulates the repression of VGF expression in NMB cells. Sequence analysis also establishes the presence of two putative NRSEs (NRSE-1 and NRSE-2) in the promoter region of the VGF gene. In reporter gene experiments, a more than eight-fold increase in the promoter activity was observed when both NRSE-1 and NRSE-2 were deleted. Deletion of NRSE-2 alone did not affect the promoter activity, thus indicating that NRSE-1 could be solely responsible for the repression of VGF gene expression. Mutations in the NRSE-1 sequence increased promoter activity. However, no change in activity was observed when NRSE-1 was coexpressed with dominant-negative NRSF, thereby suggesting that endogenous NRSF interacts with NRSE-1. Binding of NRSF to NRSE in a sequence-specific manner was confirmed with chromatin immunoprecipitation assays, respectively. Furthermore, the overexpressed NRSF in PC12 cells significantly suppressed the VGF gene expression by interacting with the NRSE located in the VGF promoter region. Our results indicate that NRSF plays an important role as a repressor of VGF gene regulation in NMB cells through a mechanism that is dependent on VGF-NRSE.
Collapse
|
259
|
Beckervordersandforth R, Zhang CL, Lie DC. Transcription-Factor-Dependent Control of Adult Hippocampal Neurogenesis. Cold Spring Harb Perspect Biol 2015; 7:a018879. [PMID: 26430216 DOI: 10.1101/cshperspect.a018879] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Adult-generated dentate granule neurons have emerged as major contributors to hippocampal plasticity. New neurons are generated from neural stem cells through a complex sequence of proliferation, differentiation, and maturation steps. Development of the new neuron is dependent on the precise temporal activity of transcription factors, which coordinate the expression of stage-specific genetic programs. Here, we review current knowledge in transcription factor-mediated regulation of mammalian neural stem cells and neurogenesis and will discuss potential mechanisms of how transcription factor networks, on one hand, allow for precise execution of the developmental sequence and, on the other hand, allow for adaptation of the rate and timing of adult neurogenesis in response to complex stimuli. Understanding transcription factor-mediated control of neuronal development will provide new insights into the mechanisms underlying neurogenesis-dependent plasticity in health and disease.
Collapse
Affiliation(s)
- Ruth Beckervordersandforth
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Chun-Li Zhang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Dieter Chichung Lie
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
260
|
Epigenomics of Neural Cells: REST-Induced Down- and Upregulation of Gene Expression in a Two-Clone PC12 Cell Model. BIOMED RESEARCH INTERNATIONAL 2015; 2015:202914. [PMID: 26413508 PMCID: PMC4564578 DOI: 10.1155/2015/202914] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 07/16/2015] [Indexed: 01/02/2023]
Abstract
Cell epigenomics depends on the marks released by transcription factors operating via the assembly of complexes that induce focal changes of DNA and histone structure. Among these factors is REST, a repressor that, via its strong decrease, governs both neuronal and neural cell differentiation and specificity. REST operation on thousands of possible genes can occur directly or via indirect mechanisms including repression of other factors. In previous studies of gene down- and upregulation, processes had been only partially investigated in neural cells. PC12 are well-known neural cells sharing properties with neurons. In the widely used PC12 populations, low-REST cells coexist with few, spontaneous high-REST PC12 cells. High- and low-REST PC12 clones were employed to investigate the role and the mechanisms of the repressor action. Among 15,500 expressed genes we identified 1,770 target and nontarget, REST-dependent genes. Functionally, these genes were found to operate in many pathways, from synaptic function to extracellular matrix. Mechanistically, downregulated genes were predominantly repressed directly by REST; upregulated genes were mostly governed indirectly. Among other factors, Polycomb complexes cooperated with REST for downregulation, and Smad3 and Myod1 participated in upregulation. In conclusion, we have highlighted that PC12 clones are a useful model to investigate REST, opening opportunities to development of epigenomic investigation.
Collapse
|
261
|
A comprehensive 1,000 Genomes-based genome-wide association meta-analysis of coronary artery disease. Nat Genet 2015; 47:1121-1130. [PMID: 26343387 PMCID: PMC4589895 DOI: 10.1038/ng.3396] [Citation(s) in RCA: 1773] [Impact Index Per Article: 177.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 08/14/2015] [Indexed: 02/06/2023]
Abstract
Existing knowledge of genetic variants affecting risk of coronary artery disease (CAD) is largely based on genome-wide association studies (GWAS) analysis of common SNPs. Leveraging phased haplotypes from the 1000 Genomes Project, we report a GWAS meta-analysis of 185 thousand CAD cases and controls, interrogating 6.7 million common (MAF>0.05) as well as 2.7 million low frequency (0.005<MAF<0.05) variants. In addition to confirmation of most known CAD loci, we identified 10 novel loci, eight additive and two recessive, that contain candidate genes that newly implicate biological processes in vessel walls. We observed intra-locus allelic heterogeneity but little evidence of low frequency variants with larger effects and no evidence of synthetic association. Our analysis provides a comprehensive survey of the fine genetic architecture of CAD showing that genetic susceptibility to this common disease is largely determined by common SNPs of small effect size.
Collapse
|
262
|
Hu Y, Sun Q, Zhang C, Sha Q, Sun X. RE1 silencing transcription factor (REST) negatively regulates ALL1-fused from chromosome 1q (AF1q) gene transcription. BMC Mol Biol 2015; 16:15. [PMID: 26341630 PMCID: PMC4560861 DOI: 10.1186/s12867-015-0043-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 08/27/2015] [Indexed: 11/18/2022] Open
Abstract
Background ALL1-fused from chromosome 1q (AF1q), originally considered as an oncogenic factor, has been implicated in neuronal development; however, its upstream regulatory mechanisms in neural system remained elusive. Results Our study showed that REST (RE1 silencing transcription factor), a key transcription factor in neurodevelopment, could down-regulate the gene expression of AF1q. The promoter assay identified a neuron-restrictive silencer element at −383 to −363 bp of human AF1q promoter. Electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (CHIP) confirmed the binding of REST to the NRSE in AF1q gene promoter. Additionally, the negative correlation between the expression levels of Af1q and Rest in mice neurodevelopment supported the negative regulation of AF1q by REST and the potential functions of AF1q in neurodevelopment. Conclusion These results demonstrate that REST regulates AF1q gene transcription through directly binding to a NRSE at −383 to −363 bp of AF1q promoter.
Collapse
Affiliation(s)
- Yuanyuan Hu
- Department of Neurology, Qilu Hospital Shandong University, 107 Wenhuaxi Rd., Jinan, 250012, Shandong Province, China.
| | - Qianwen Sun
- Department of Neurology, Qilu Hospital Shandong University, 107 Wenhuaxi Rd., Jinan, 250012, Shandong Province, China.
| | - Chen Zhang
- Department of Neurology, Qilu Hospital Shandong University, 107 Wenhuaxi Rd., Jinan, 250012, Shandong Province, China.
| | - Qingquan Sha
- Department of Neurology, Qilu Hospital Shandong University, 107 Wenhuaxi Rd., Jinan, 250012, Shandong Province, China.
| | - Xiulian Sun
- Department of Neurology, Qilu Hospital Shandong University, 107 Wenhuaxi Rd., Jinan, 250012, Shandong Province, China. .,Brain Research Institute, Qilu Hospital of Shandong University, 107 Wenhuaxi Rd., Jinan, 250012, Shandong Province, China.
| |
Collapse
|
263
|
Molecular Biomarkers for Embryonic and Adult Neural Stem Cell and Neurogenesis. BIOMED RESEARCH INTERNATIONAL 2015; 2015:727542. [PMID: 26421301 PMCID: PMC4569757 DOI: 10.1155/2015/727542] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 11/19/2014] [Indexed: 02/07/2023]
Abstract
The procedure of neurogenesis has made numerous achievements in the past decades, during which various molecular biomarkers have been emerging and have been broadly utilized for the investigation of embryonic and adult neural stem cell (NSC). Nevertheless, there is not a consistent and systematic illustration to depict the functional characteristics of the specific markers expressed in distinct cell types during the different stages of neurogenesis. Here we gathered and generalized a series of NSC biomarkers emerging during the procedures of embryonic and adult neural stem cell, which may be used to identify the subpopulation cells with distinguishing characters in different timeframes of neurogenesis. The identifications of cell patterns will provide applications to the detailed investigations of diverse developmental cell stages and the extents of cell differentiation, which will facilitate the tracing of cell time-course and fate determination of specific cell types and promote the further and literal discoveries of embryonic and adult neurogenesis. Meanwhile, via the utilization of comprehensive applications under the aiding of the systematic knowledge framework, researchers may broaden their insights into the derivation and establishment of novel technologies to analyze the more detailed process of embryogenesis and adult neurogenesis.
Collapse
|
264
|
CDRI-08 Attenuates REST/NRSF-Mediated Expression of NMDAR1 Gene in PBDE-209-Exposed Mice Brain. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:403840. [PMID: 26413122 PMCID: PMC4564648 DOI: 10.1155/2015/403840] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 02/16/2015] [Accepted: 02/22/2015] [Indexed: 11/17/2022]
Abstract
CDRI-08 is a standardized bacoside enriched ethanolic extract of Bacopa monnieri, a nootropic plant. We reported that CDRI-08 attenuated oxidative stress and memory impairment in mice, induced by a flame retardant, PBDE-209. In order to explore the mechanism, present study was designed to examine the role of CDRI-08 on the expression of NMDAR1 (NR1) and the binding of REST/NRSF to NR1 promoter against postnatal exposure of PBDE-209. Male mice pups were orally supplemented with CDRI-08 at the doses of 40, 80, or 120 mg/kg along with PBDE-209 (20 mg/kg) during PND 3–10 and frontal cortex and hippocampus were collected at PND 11 and 60 to study the expression and regulation of NR1 by RT-PCR and electrophoretic mobility shift assay, respectively. The findings showed upregulated expression of NR1 and decreased binding of REST/NRSF to NR1 promoter after postnatal exposure of PBDE-209. Interestingly, supplementation with CDRI-08 significantly restored the expression of NR1 and binding of REST/NRSF to NR1 promoter near to the control value at the dose of 120 mg/kg. In conclusion, the results suggest that CDRI-08 possibly acts on glutamatergic system through expression and regulation of NR1 and may restore memory, impaired by PBDE-209 as reported in our previous study.
Collapse
|
265
|
Nesti E. Harnessing the master transcriptional repressor REST to reciprocally regulate neurogenesis. NEUROGENESIS 2015; 2:e1055419. [PMID: 27535341 PMCID: PMC4973598 DOI: 10.1080/23262133.2015.1055419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 05/16/2015] [Accepted: 05/21/2015] [Indexed: 02/04/2023]
Abstract
Neurogenesis begins in embryonic development and continues at a reduced rate into adulthood in vertebrate species, yet the signaling cascades regulating this process remain poorly understood. Plasma membrane-initiated signaling cascades regulate neurogenesis via downstream pathways including components of the transcriptional machinery. A nuclear factor that temporally regulates neurogenesis by repressing neuronal differentiation is the repressor element 1 (RE1) silencing transcription (REST) factor. We have recently discovered a regulatory site on REST that serves as a molecular switch for neuronal differentiation. Specifically, C-terminal domain small phosphatase 1, CTDSP1, present in non-neuronal cells, maintains REST activity by dephosphorylating this site. Reciprocally, extracellular signal-regulated kinase, ERK, activated by growth factor signaling in neural progenitors, and peptidylprolyl cis/trans isomerase Pin1, decrease REST activity through phosphorylation-dependent degradation. Our findings further resolve the mechanism for temporal regulation of REST and terminal neuronal differentiation. They also provide new potential therapeutic targets to enhance neuronal regeneration after injury.
Collapse
Affiliation(s)
- Edmund Nesti
- Alcamena Stem Cell Therapeutics, LLC ; Beltsville, MD USA
| |
Collapse
|
266
|
Abstract
PURPOSE OF REVIEW Hypertension and hyperglycaemia are major risk factors that result in chronic kidney disease (CKD). Achievement of blood pressure goals, optimal control of blood glucose levels and the use of agents to block the renin-angiotensin-aldosterone system slow the progression of CKD. However, not all patients are benefited by these interventions and novel strategies to arrest or reverse the pathological processes inherent in CKD are needed. The therapeutic potential of targeting KCa3.1 in CKD will be discussed in this review. RECENT FINDINGS Blockade of KCa3.1 ameliorates activation of renal fibroblasts in diabetic mice by inhibiting the transforming growth factor-β1/small mothers against decapentaplegic pathway. A concomitant reduction in nuclear factor-κB activation in human proximal tubular cells under diabetic conditions has been observed. Advanced glycosylated endproducts induce both protein expression and current density of KCa3.1, which, in turn, mediates migration and proliferation of vascular smooth muscle cells via Ca²⁺-dependent signalling pathways. SUMMARY Studies have clearly demonstrated a causal role of chronic hyperglycaemia and hypertension in the development of CKD. However, a large proportion of patients develop end-stage kidney disease despite strict glycaemic control and the attainment of recommended blood pressure goals. Therefore, it is essential to identify and validate novel targets to reduce the development and progression of CKD. Recent findings demonstrate that genetic deletion or pharmacologic inhibition of KCa3.1 significantly reduces the development of diabetic nephropathy in animal models. However, the consequences of blockade of KCa3.1 in preventing and treating established diabetic nephropathy in humans warrants further study.
Collapse
|
267
|
Suo H, Wang P, Tong J, Cai L, Liu J, Huang D, Huang L, Wang Z, Huang Y, Xu J, Ma Y, Yu M, Fei J, Huang F. NRSF is an essential mediator for the neuroprotection of trichostatin A in the MPTP mouse model of Parkinson's disease. Neuropharmacology 2015; 99:67-78. [PMID: 26188143 DOI: 10.1016/j.neuropharm.2015.07.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 06/26/2015] [Accepted: 07/14/2015] [Indexed: 11/29/2022]
Abstract
Neuron-restrictive silencer factor (NRSF) blocks the expression of many neuronal genes in non-neuronal cells and neural stem cells. There is growing body of evidence that NRSF functions in mature neurons and plays critical roles in various neurological disorders. Our previous study demonstrated that the expression of NRSF target genes brain-derived neurotrophic factor (BDNF), and tyrosine hydroxylase (TH) is transiently decreased in 1-methyl-4-phenyl-pyridinium ion (MPP+)-treated SH-SY5Y cells. NRSF neuronal deficient mice are more vulnerable to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Here we investigated the effect of epigenetic modulation on the expression of NRSF target genes in in vitro and in vivo models of Parkinson's disease (PD). Trichostatin A (TSA) was further used to study the effects of histone deacetylase inhibition on NRSF-mediated repression. We found that the repression of NRSF target genes was relieved by TSA in vitro. A single dose TSA pretreatment also upregulated the expression of TH and BDNF and protected the nigrostriatal dopaminergic pathway against MPTP-induced degeneration in wild type mice. However, the protective functions of TSA were fully abolished in NRSF neuronal deficient mice. Our results suggest that NRSF serves as an essential mediator for the neuroprotection of TSA in the MPTP model of PD.
Collapse
Affiliation(s)
- Haiyun Suo
- The State Key Laboratory of Medical Neurobiology, the Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Pan Wang
- The State Key Laboratory of Medical Neurobiology, the Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Jiabin Tong
- The State Key Laboratory of Medical Neurobiology, the Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Lei Cai
- Shanghai Research Center for Model Organisms, Pudong, Shanghai 201203, China
| | - Jie Liu
- The State Key Laboratory of Medical Neurobiology, the Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Dongping Huang
- The State Key Laboratory of Medical Neurobiology, the Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Li Huang
- The State Key Laboratory of Medical Neurobiology, the Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Zishan Wang
- The State Key Laboratory of Medical Neurobiology, the Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Yufang Huang
- The State Key Laboratory of Medical Neurobiology, the Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Jing Xu
- The State Key Laboratory of Medical Neurobiology, the Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Yuanyuan Ma
- The State Key Laboratory of Medical Neurobiology, the Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Mei Yu
- The State Key Laboratory of Medical Neurobiology, the Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China.
| | - Jian Fei
- School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Research Center for Model Organisms, Pudong, Shanghai 201203, China.
| | - Fang Huang
- The State Key Laboratory of Medical Neurobiology, the Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China; Key Laboratory of Smart Drug Delivery, Fudan University, Ministry of Education, Shanghai 201203, China.
| |
Collapse
|
268
|
The Transcription Repressor REST in Adult Neurons: Physiology, Pathology, and Diseases. eNeuro 2015; 2:eN-REV-0010-15. [PMID: 26465007 PMCID: PMC4596026 DOI: 10.1523/eneuro.0010-15.2015] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 06/11/2015] [Accepted: 06/18/2015] [Indexed: 12/21/2022] Open
Abstract
REST [RE1-silencing transcription factor (also called neuron-restrictive silencer factor)] is known to repress thousands of possible target genes, many of which are neuron specific. To date, REST repression has been investigated mostly in stem cells and differentiating neurons. Current evidence demonstrates its importance in adult neurons as well. Low levels of REST, which are acquired during differentiation, govern the expression of specific neuronal phenotypes. REST-dependent genes encode important targets, including transcription factors, transmitter release proteins, voltage-dependent and receptor channels, and signaling proteins. Additional neuronal properties depend on miRNAs expressed reciprocally to REST and on specific splicing factors. In adult neurons, REST levels are not always low. Increases occur during aging in healthy humans. Moreover, extensive evidence demonstrates that prolonged stimulation with various agents induces REST increases, which are associated with the repression of neuron-specific genes with appropriate, intermediate REST binding affinity. Whether neuronal increases in REST are protective or detrimental remains a subject of debate. Examples of CA1 hippocampal neuron protection upon depolarization, and of neurodegeneration upon glutamate treatment and hypoxia have been reported. REST participation in psychiatric and neurological diseases has been shown, especially in Alzheimer’s disease and Huntington’s disease, as well as epilepsy. Distinct, complex roles of the repressor in these different diseases have emerged. In conclusion, REST is certainly very important in a large number of conditions. We suggest that the conflicting results reported for the role of REST in physiology, pathology, and disease depend on its complex, direct, and indirect actions on many gene targets and on the diverse approaches used during the investigations.
Collapse
|
269
|
Martin D, Kim YH, Sever D, Mao CA, Haefliger JA, Grapin-Botton A. REST represses a subset of the pancreatic endocrine differentiation program. Dev Biol 2015; 405:316-27. [PMID: 26156633 DOI: 10.1016/j.ydbio.2015.07.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 07/01/2015] [Accepted: 07/02/2015] [Indexed: 12/20/2022]
Abstract
To contribute to devise successful beta-cell differentiation strategies for the cure of Type 1 diabetes we sought to uncover barriers that restrict endocrine fate acquisition by studying the role of the transcriptional repressor REST in the developing pancreas. Rest expression is prevented in neurons and in endocrine cells, which is necessary for their normal function. During development, REST represses a subset of genes in the neuronal differentiation program and Rest is down-regulated as neurons differentiate. Here, we investigate the role of REST in the differentiation of pancreatic endocrine cells, which are molecularly close to neurons. We show that Rest is widely expressed in pancreas progenitors and that it is down-regulated in differentiated endocrine cells. Sustained expression of REST in Pdx1(+) progenitors impairs the differentiation of endocrine-committed Neurog3(+) progenitors, decreases beta and alpha cell mass by E18.5, and triggers diabetes in adulthood. Conditional inactivation of Rest in Pdx1(+) progenitors is not sufficient to trigger endocrine differentiation but up-regulates a subset of differentiation genes. Our results show that the transcriptional repressor REST is active in pancreas progenitors where it gates the activation of part of the beta cell differentiation program.
Collapse
Affiliation(s)
- David Martin
- Swiss Institute for Experimental Cancer Research, Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Station 19, 1015 Lausanne, Switzerland
| | - Yung-Hae Kim
- DanStem, University of Copenhagen, 3B Blegdamsvej, DK-2200 Copenhagen N, Denmark
| | - Dror Sever
- DanStem, University of Copenhagen, 3B Blegdamsvej, DK-2200 Copenhagen N, Denmark
| | - Chai-An Mao
- Department of Systems Biology, The University of MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jacques-Antoine Haefliger
- Department of Medicine, Laboratory of Experimental Medicine, C/O Department of Physiology, Bugnon 7a, 1005 Lausanne, Switzerland
| | - Anne Grapin-Botton
- Swiss Institute for Experimental Cancer Research, Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Station 19, 1015 Lausanne, Switzerland; DanStem, University of Copenhagen, 3B Blegdamsvej, DK-2200 Copenhagen N, Denmark.
| |
Collapse
|
270
|
Genome-wide binding and mechanistic analyses of Smchd1-mediated epigenetic regulation. Proc Natl Acad Sci U S A 2015; 112:E3535-44. [PMID: 26091879 DOI: 10.1073/pnas.1504232112] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Structural maintenance of chromosomes flexible hinge domain containing 1 (Smchd1) is an epigenetic repressor with described roles in X inactivation and genomic imprinting, but Smchd1 is also critically involved in the pathogenesis of facioscapulohumeral dystrophy. The underlying molecular mechanism by which Smchd1 functions in these instances remains unknown. Our genome-wide transcriptional and epigenetic analyses show that Smchd1 binds cis-regulatory elements, many of which coincide with CCCTC-binding factor (Ctcf) binding sites, for example, the clustered protocadherin (Pcdh) genes, where we show Smchd1 and Ctcf act in opposing ways. We provide biochemical and biophysical evidence that Smchd1-chromatin interactions are established through the homodimeric hinge domain of Smchd1 and, intriguingly, that the hinge domain also has the capacity to bind DNA and RNA. Our results suggest Smchd1 imparts epigenetic regulation via physical association with chromatin, which may antagonize Ctcf-facilitated chromatin interactions, resulting in coordinated transcriptional control.
Collapse
|
271
|
Low WC, Rujitanaroj PO, Lee DK, Kuang J, Messersmith PB, Chan JKY, Chew SY. Mussel-Inspired Modification of Nanofibers for REST siRNA Delivery: Understanding the Effects of Gene-Silencing and Substrate Topography on Human Mesenchymal Stem Cell Neuronal Commitment. Macromol Biosci 2015; 15:1457-68. [DOI: 10.1002/mabi.201500101] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 05/05/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Wei Ching Low
- School of Chemical and Biomedical Engineering; Nanyang Technological University; Singapore 637459
| | - Pim-On Rujitanaroj
- School of Chemical and Biomedical Engineering; Nanyang Technological University; Singapore 637459
| | - Dong-Keun Lee
- Department of Biomedical Engineering; Northwestern University, Evanston; Illinois 60208, USA
| | - Jinghao Kuang
- Department of Biomedical Engineering; Northwestern University, Evanston; Illinois 60208, USA
| | - Phillip B. Messersmith
- Department of Biomedical Engineering; Northwestern University, Evanston; Illinois 60208, USA
| | - Jerry Kok Yen Chan
- Department of Reproductive Medicine; KK Women's and Children's Hospital; 100 Bukit Timah Road Singapore 229899
| | - Sing Yian Chew
- School of Chemical and Biomedical Engineering; Nanyang Technological University; Singapore 637459
- Lee Kong Chian School of Medicine; Nanyang Technological University; Singapore 308232
| |
Collapse
|
272
|
Ruggiero C, Doghman M, Lalli E. How genomic studies have improved our understanding of the mechanisms of transcriptional regulation by NR5A nuclear receptors. Mol Cell Endocrinol 2015; 408:138-144. [PMID: 25449416 DOI: 10.1016/j.mce.2014.10.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 10/27/2014] [Indexed: 02/03/2023]
Abstract
SF-1 and LRH-1 are transcription factors that belong to the NR5A family of nuclear receptors that both have an essential role during development. Recent studies at the genome-wide scale have enabled the characterization of the cistrome and transcriptome regulated by SF-1 and LRH-1 in different cell lines and tissues. Those studies have allowed us to make a significant leap forward in our understanding of the mechanisms of transcriptional regulation of NR5A nuclear receptors in stem cells and cancer.
Collapse
Affiliation(s)
- Carmen Ruggiero
- Institut de Pharmacologie Moléculaire et Cellulaire CNRS UMR 7275, Sophia Antipolis, Valbonne, France; Laboratoire International Associé (LIA) CNRS NEOGENEX, Sophia Antipolis, Valbonne, France; Université de Nice, Sophia Antipolis, Valbonne, France
| | - Mabrouka Doghman
- Institut de Pharmacologie Moléculaire et Cellulaire CNRS UMR 7275, Sophia Antipolis, Valbonne, France; Laboratoire International Associé (LIA) CNRS NEOGENEX, Sophia Antipolis, Valbonne, France; Université de Nice, Sophia Antipolis, Valbonne, France
| | - Enzo Lalli
- Institut de Pharmacologie Moléculaire et Cellulaire CNRS UMR 7275, Sophia Antipolis, Valbonne, France; Laboratoire International Associé (LIA) CNRS NEOGENEX, Sophia Antipolis, Valbonne, France; Université de Nice, Sophia Antipolis, Valbonne, France.
| |
Collapse
|
273
|
Lee NS, Evgrafov OV, Souaiaia T, Bonyad A, Herstein J, Lee JY, Kim J, Ning Y, Sixto M, Weitz AC, Lenz HJ, Wang K, Knowles JA, Press MF, Salvaterra PM, Shung KK, Chow RH. Non-coding RNAs derived from an alternatively spliced REST transcript (REST-003) regulate breast cancer invasiveness. Sci Rep 2015; 5:11207. [PMID: 26053433 PMCID: PMC4459148 DOI: 10.1038/srep11207] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/17/2015] [Indexed: 11/29/2022] Open
Abstract
RE1-Silencing Transcription factor (REST) has a well-established role in regulating transcription of genes important for neuronal development. Its role in cancer, though significant, is less well understood. We show that REST downregulation in weakly invasive MCF-7 breast cancer cells converts them to a more invasive phenotype, while REST overexpression in highly invasive MDA-MB-231 cells suppresses invasiveness. Surprisingly, the mechanism responsible for these phenotypic changes does not depend directly on the transcriptional function of REST protein. Instead, it is driven by previously unstudied mid-size (30–200 nt) non-coding RNAs (ncRNAs) derived from the first exon of an alternatively spliced REST transcript: REST-003. We show that processing of REST-003 into ncRNAs is controlled by an uncharacterized serine/arginine repeat-related protein, SRRM3. SRRM3 expression may be under REST-mediated transcriptional control, as it increases following REST downregulation. The SRRM3-dependent regulation of REST-003 processing into ncRNAs has many similarities to recently described promoter-associated small RNA-like processes. Targeting ncRNAs that control invasiveness could lead to new therapeutic approaches to limit breast cancer metastasis.
Collapse
Affiliation(s)
- Nan Sook Lee
- 1] Physiology &Biophysics and Zilkha Neurogenetic Institute, University of Southern California, Los Angeles [2] Dept of Biomedical Engineering, University of Southern California, Los Angeles
| | - Oleg V Evgrafov
- Psychiatry &the Behavioral Sciences, University of Southern California, Los Angeles
| | - Tade Souaiaia
- Psychiatry &the Behavioral Sciences, University of Southern California, Los Angeles
| | - Adrineh Bonyad
- Physiology &Biophysics and Zilkha Neurogenetic Institute, University of Southern California, Los Angeles
| | - Jennifer Herstein
- Psychiatry &the Behavioral Sciences, University of Southern California, Los Angeles
| | - Joo Yeun Lee
- Neuroscience Graduate Program, University of Southern California, Los Angeles
| | - Jihong Kim
- Psychiatry &the Behavioral Sciences, University of Southern California, Los Angeles
| | - Yan Ning
- Dept of Medicine, Norris Cancer Center, University of Southern California, Los Angeles
| | | | - Andrew C Weitz
- Dept of Ophthalmology, University of Southern California, Los Angeles, CA
| | - Heinz-Josef Lenz
- Dept of Medicine, Norris Cancer Center, University of Southern California, Los Angeles
| | - Kai Wang
- Psychiatry &the Behavioral Sciences, University of Southern California, Los Angeles
| | - James A Knowles
- Psychiatry &the Behavioral Sciences, University of Southern California, Los Angeles
| | - Michael F Press
- Dept of Pathology, Norris Cancer Center, University of Southern California, Los Angeles
| | - Paul M Salvaterra
- Department of Neuroscience, Beckman Research Institute of the City of Hope, Duarte, CA
| | - K Kirk Shung
- Dept of Biomedical Engineering, University of Southern California, Los Angeles
| | - Robert H Chow
- Physiology &Biophysics and Zilkha Neurogenetic Institute, University of Southern California, Los Angeles
| |
Collapse
|
274
|
Ren H, Gao Z, Wu N, Zeng L, Tang X, Chen X, Liu Z, Zhang W, Wang L, Li Z. Expression of REST4 in human gliomas in vivo and influence of pioglitazone on REST in vitro. Biochem Biophys Res Commun 2015; 463:504-9. [PMID: 26003726 DOI: 10.1016/j.bbrc.2015.05.058] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 05/14/2015] [Indexed: 11/25/2022]
Abstract
The repressor element-1 (RE1) silencing transcription factor/neuron-restrictive silencer factor (REST/NRSF) has an irreplaceable role during the differentiation of neurons. REST has multiple splice variants which link to various types of cancer. Previous work had highlighted the role of REST in glioma, where the expression of REST is enhanced. But whether alternative splicing of REST is expressed in glioma has not been described. Here, we show that a specific isoform REST4 is expressed in glioma specimens, and will influence the mRNA level of REST in vivo. Peroxisome proliferator-activated receptor-γ (PPARγ) agonists have a role of antineoplastic in various tumor cells, which including glioma cells. Moreover, study indicated that PPARγ agonist pioglitazone can promote alternative splicing of REST pre-mRNA. In this study, we selected pioglitazone as a tool drug to explore whether the role of pioglitazone in anti-glioma is mediated by regulating REST expression or promoting alternative splicing of REST in glioma cells. Results show that pioglitazone can inhibit proliferation and induce apoptosis of glioma cell in vitro, which may be mediated by down-regulating REST mRNA level but not by inducing alternative splicing of REST pre-mRNA. Our study firstly reports the expression of REST4 in glioma tissue samples. And we recommend that pioglitazone, which can reduce the expression level of REST, represents a promising drug for therapy of glioma.
Collapse
Affiliation(s)
- Huan Ren
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, China
| | - Zhangfeng Gao
- Department of Neurosurgery, Second Xiangya Hospital of Central South University, Changsha 410008, China
| | - Nayiyuan Wu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, China
| | - Liu Zeng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, China
| | - Xinyue Tang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, China
| | - Xiaoping Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, China
| | - Zhaoqian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, China
| | - Liansheng Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, China
| | - Zhi Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, China.
| |
Collapse
|
275
|
Saritas-Yildirim B, Childers CP, Elsik CG, Silva EM. Identification of REST targets in the Xenopus tropicalis genome. BMC Genomics 2015; 16:380. [PMID: 25971704 PMCID: PMC4430910 DOI: 10.1186/s12864-015-1591-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 04/28/2015] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND A major role of REST (repressor element-1 silencing transcription factor) is to inhibit the expression of neuronal genes in neural stem cells and non-neuronal cells by binding to a 21 bp consensus sequence and recruiting epigenetic and regulatory cofactors to gene regulatory regions. In neural stem cells, REST silences differentiation-promoting genes to prevent their premature expression and is central to the regulation of neurogenesis and the balance of neural stem cells and neurons. RESULTS To understand the role of REST in vertebrate neurogenesis, we performed a genome-wide screen for REST targets in Xenopus tropicalis. We identified 742 neuron-restrictive silencer elements (NRSE) associated with 1396 genes that are enriched in neuronal function. Comparative analyses revealed that characteristics of NRSE motifs in frog are similar to those in mammals in terms of the distance to target genes, frequency of motifs and the repertoire of putative target genes. In addition, we identified four F-box ubiquitin ligases as putative REST targets and determined that they are expressed in neuronal tissues during Xenopus development. CONCLUSION We identified a conserved core of putative target genes in human, mouse and frog that may be fundamental to REST function in vertebrates. We demonstrate that NRSE sites are associated with both protein-coding genes and lncRNAs in the human genome. Furthermore, we demonstrate that REST binding sites are abundant in low gene-occupancy regions of the human genome but this is not due to an increased association with non-coding RNAs. Our findings identify novel targets of REST and broaden the known mechanism of REST-mediated silencing in neurogenesis.
Collapse
Affiliation(s)
- Banu Saritas-Yildirim
- Department of Biology, Georgetown University, 411 Regents Hall, Washington, DC, 20057, USA.
| | - Christopher P Childers
- Department of Biology, Georgetown University, 411 Regents Hall, Washington, DC, 20057, USA. .,Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA.
| | - Christine G Elsik
- Department of Biology, Georgetown University, 411 Regents Hall, Washington, DC, 20057, USA. .,Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA. .,Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA.
| | - Elena M Silva
- Department of Biology, Georgetown University, 411 Regents Hall, Washington, DC, 20057, USA.
| |
Collapse
|
276
|
Roberts TC, Morris KV, Wood MJA. The role of long non-coding RNAs in neurodevelopment, brain function and neurological disease. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0507. [PMID: 25135968 DOI: 10.1098/rstb.2013.0507] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are transcripts with low protein-coding potential that represent a large proportion of the transcriptional output of the cell. Many lncRNAs exhibit features indicative of functionality including tissue-restricted expression, localization to distinct subcellular structures, regulated expression and evolutionary conservation. Some lncRNAs have been shown to associate with chromatin-modifying activities and transcription factors, suggesting that a common mode of action may be to guide protein complexes to target genomic loci. However, the functions (if any) of the vast majority of lncRNA transcripts are currently unknown, and the subject of investigation. Here, we consider the putative role(s) of lncRNAs in neurodevelopment and brain function with an emphasis on the epigenetic regulation of gene expression. Associations of lncRNAs with neurodevelopmental/neuropsychiatric disorders, neurodegeneration and brain cancers are also discussed.
Collapse
Affiliation(s)
- Thomas C Roberts
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Kevin V Morris
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA School of Biotechnology and Biomedical Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Matthew J A Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| |
Collapse
|
277
|
Warburton A, Breen G, Rujescu D, Bubb VJ, Quinn JP. Characterization of a REST-Regulated Internal Promoter in the Schizophrenia Genome-Wide Associated Gene MIR137. Schizophr Bull 2015; 41:698-707. [PMID: 25154622 PMCID: PMC4393679 DOI: 10.1093/schbul/sbu117] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
MIR137 has been identified as a candidate gene for schizophrenia from genome-wide association studies via association with an intronic single nucleotide polymorphism (SNP), rs1625579. The location of the SNP suggests one mechanism in which transcriptional or posttranscriptional regulation of miR-137 expression could underlie schizophrenia. We identified and validated a novel promoter of the MIR137 gene adjacent to miR-137 itself which can direct the expression of distinct mRNA isoforms encoding miR-137. Analysis of both endogenous gene expression and reporter gene assays determined that this internal promoter is regulated by repressor element-1 silencing transcription factor (REST), which has previously been associated with pathways linked to schizophrenia. Distinct isoforms of REST mediate differential expression at this locus, suggesting the relative levels of these isoforms are important for miR-137 expression profiles. The internal promoter contains a variable number tandem repeat (VNTR) domain adjacent to the pre-miR-137 sequence. The reporter gene activity directed by this promoter was modified by the genotype of the VNTR. Differential expression was also observed in response to cocaine, which is known to regulate the REST pathway in SH-SY5Y cells. Our data support the hypothesis that a "gene × environment" interaction could modify the level of miR-137 expression via this internal promoter and that the genotype of the VNTR could modulate transcriptional responses. We demonstrate that this promoter region is not in disequilibrium with rs1625579 and therefore would supply a distinct pathway to potentially alter miR-137 levels in response to environmental cues.
Collapse
Affiliation(s)
- Alix Warburton
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, UK;
| | - Gerome Breen
- King’s College London, MRC Social Genetic and Developmental Psychiatry Research Centre, Institute of Psychiatry, London, UK; ,National Institute for Health Research (NIHR), Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, King’s College London SE5 8DF, UK;
| | - Dan Rujescu
- Department of Psychiatry, University of Halle-Wittenberg, Halle, Germany
| | - Vivien J. Bubb
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, UK;
| | - John P. Quinn
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, UK; ,*To whom correspondence should be addressed; Department of Molecular and Clinical Pharmacology, University of Liverpool, Crown Street, Liverpool L69 3BX, UK; tel: +44-151-794-5498, fax: +44-151-794-5517, e-mail:
| |
Collapse
|
278
|
TET3 is recruited by REST for context-specific hydroxymethylation and induction of gene expression. Cell Rep 2015; 11:283-94. [PMID: 25843715 DOI: 10.1016/j.celrep.2015.03.020] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 01/09/2015] [Accepted: 03/07/2015] [Indexed: 12/17/2022] Open
Abstract
Ten-eleven translocation hydroxylases (TET1-3) oxidize 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC). In neurons, increased 5hmC levels within gene bodies correlate positively with gene expression. The mechanisms controlling TET activity and 5hmC levels are poorly understood. In particular, it is not known how the neuronal TET3 isoform lacking a DNA-binding domain is targeted to the DNA. To identify factors binding to TET3, we screened for proteins that co-precipitate with TET3 from mouse retina and identified the transcriptional repressor REST as a highly enriched TET3-specific interactor. REST was able to enhance TET3 hydroxylase activity after co-expression and overexpression of TET3-activated transcription of REST target genes. Moreover, we found that TET3 also interacts with NSD3 and two other H3K36 methyltransferases and is able to induce H3K36 trimethylation. We propose a mechanism for transcriptional activation in neurons that involves REST-guided targeting of TET3 to the DNA for directed 5hmC generation and NSD3-mediated H3K36 trimethylation.
Collapse
|
279
|
Aoki H, Hara A, Kunisada T. White spotting phenotype induced by targeted REST disruption during neural crest specification to a melanocyte cell lineage. Genes Cells 2015; 20:439-49. [DOI: 10.1111/gtc.12235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 02/15/2015] [Indexed: 01/07/2023]
Affiliation(s)
- Hitomi Aoki
- Department of Tissue and Organ Development, Regeneration, and Advanced Medical Science; Gifu University Graduate School of Medicine; 1-1 Yanagido Gifu 501-1194 Japan
| | - Akira Hara
- Department of Tumor Pathology; Gifu University Graduate School of Medicine; 1-1 Yanagido Gifu 501-1194 Japan
| | - Takahiro Kunisada
- Department of Tissue and Organ Development, Regeneration, and Advanced Medical Science; Gifu University Graduate School of Medicine; 1-1 Yanagido Gifu 501-1194 Japan
| |
Collapse
|
280
|
Abstract
The RE1 Silencing Transcription Factor (REST) acts as a governor of the mature neuronal phenotype by repressing a large consortium of neuronal genes in non-neuronal cells. In the developing nervous system, REST is present in progenitors and downregulated at terminal differentiation to promote acquisition of mature neuronal phenotypes. Paradoxically, REST is still detected in some regions of the adult nervous system, but how REST levels are regulated, and whether REST can still repress neuronal genes, is not known. Here, we report that homeostatic levels of REST are maintained in mature peripheral neurons by a constitutive post-transcriptional mechanism. Specifically, using a three-hybrid genetic screen, we identify the RNA binding protein, ZFP36L2, associated previously only with female fertility and hematopoiesis, and show that it regulates REST mRNA stability. Dorsal root ganglia in Zfp36l2 knock-out mice, or wild-type ganglia expressing ZFP36L2 shRNA, show higher steady-state levels of Rest mRNA and protein, and extend thin and disintegrating axons. This phenotype is due, at least in part, to abnormally elevated REST levels in the ganglia because the axonal phenotype is attenuated by acute knockdown of REST in Zfp36l2 KO DRG explants. The higher REST levels result in lower levels of target genes, indicating that REST can still fine-tune gene expression through repression. Thus, REST levels are titrated in mature peripheral neurons, in part through a ZFP36L2-mediated post-transcriptional mechanism, with consequences for axonal integrity.
Collapse
|
281
|
Lu C, Shi L, Zhang J, Kong M, Liu Y, Zhou Y, Xu L, He J, Ma Z, Gu X. Neuron-restrictive silencer factor in periaqueductal gray contributes to remifentanil-induced postoperative hyperalgesia via repression of the mu-opioid receptor. J Neurol Sci 2015; 352:48-52. [PMID: 25819118 DOI: 10.1016/j.jns.2015.03.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 03/10/2015] [Accepted: 03/11/2015] [Indexed: 01/16/2023]
Abstract
BACKGROUND The ultra-short-acting mu-opioid receptor (MOR) agonist remifentanil induces postoperative hyperalgesia both in preclinical and clinical research studies. However, the precise mechanisms remain unclear, although changes in opioid receptor expression might be a correlative feature. Neuron-restrictive silencer factor (NRSF) functions as a crucial regulator of MOR expression in specific neuronal cells. Using a mouse model of incisional postoperative pain, we assessed the expression of MOR and NRSF and investigated whether disruption of NRSF expression could prevent the postoperative nociceptive sensitization induced by surgical incision and subcutaneous infusion of remifentanil. METHODS Paw withdrawal mechanical threshold (PWMT) and paw withdrawal thermal latency (PWTL) were independently used to assess mechanical allodynia and thermal hyperalgesia after surgery and cerebral ventricle injection of NRSF antisense oligonucleotide. Western blotting analyses were preformed to assess the expression levels of MOR and NRSF. RESULTS NRSF expression levels were enhanced after intraoperative infusion of remifentanil, resulting in repression of MOR expression in the periaqueductal gray (PAG). NRSF blockade with an NRSF antisense oligonucleotide significantly enhanced the expression levels of MOR and alleviated mechanical allodynia and thermal hyperalgesia induced by intraoperative infusion of remifentanil. CONCLUSION NRSF functions as a negative regulator of MOR in PAG and contributes to remifentanil-induced postoperative hyperalgesia. NRSF in PAG may be a potential target for this pain therapy.
Collapse
Affiliation(s)
- Cui'e Lu
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical College of Nanjing University, 321 Zhong Shan North Road, Nanjing 210008, Jiangsu Province, China.
| | - Linyu Shi
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical College of Nanjing University, 321 Zhong Shan North Road, Nanjing 210008, Jiangsu Province, China.
| | - Juan Zhang
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical College of Nanjing University, 321 Zhong Shan North Road, Nanjing 210008, Jiangsu Province, China.
| | - Mingjian Kong
- Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing 210008, Jiangsu Province China.
| | - Yue Liu
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical College of Nanjing University, 321 Zhong Shan North Road, Nanjing 210008, Jiangsu Province, China.
| | - Yu Zhou
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical College of Nanjing University, 321 Zhong Shan North Road, Nanjing 210008, Jiangsu Province, China.
| | - Li Xu
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical College of Nanjing University, 321 Zhong Shan North Road, Nanjing 210008, Jiangsu Province, China.
| | - Jianhua He
- Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing 210008, Jiangsu Province China.
| | - Zhengliang Ma
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical College of Nanjing University, 321 Zhong Shan North Road, Nanjing 210008, Jiangsu Province, China.
| | - Xiaoping Gu
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical College of Nanjing University, 321 Zhong Shan North Road, Nanjing 210008, Jiangsu Province, China.
| |
Collapse
|
282
|
Love CE, Prince VE. Rest represses maturation within migrating facial branchiomotor neurons. Dev Biol 2015; 401:220-35. [PMID: 25769695 DOI: 10.1016/j.ydbio.2015.02.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 02/04/2015] [Accepted: 02/28/2015] [Indexed: 10/23/2022]
Abstract
The vertebrate brain arises from the complex organization of millions of neurons. Neurogenesis encompasses not only cell fate specification from neural stem cells, but also the terminal molecular and morphological maturation of neurons at correct positions within the brain. RE1-silencing transcription factor (Rest) is expressed in non-neural tissues and neuronal progenitors where it inhibits the terminal maturation of neurons by repressing hundreds of neuron-specific genes. Here we show that Rest repression of maturation is intimately linked with the migratory capability of zebrafish facial branchiomotor neurons (FBMNs), which undergo a characteristic tangential migration from hindbrain rhombomere (r) 4 to r6/r7 during development. We establish that FBMN migration is increasingly disrupted as Rest is depleted in zebrafish rest mutant embryos, such that around two-thirds of FBMNs fail to complete migration in mutants depleted of both maternal and zygotic Rest. Although Rest is broadly expressed, we show that de-repression or activation of Rest target genes only within FBMNs is sufficient to disrupt their migration. We demonstrate that this migration defect is due to precocious maturation of FBMNs, based on both morphological and molecular criteria. We further show that the Rest target gene and alternative splicing factor srrm4 is a key downstream regulator of maturation; Srrm4 knockdown partially restores the ability of FBMNs to migrate in rest mutants while preventing their precocious morphological maturation. Rest must localize to the nucleus to repress its targets, and its subcellular localization is highly regulated: we show that targeting Rest specifically to FBMN nuclei rescues FBMN migration in Rest-deficient embryos. We conclude that Rest functions in FBMN nuclei to inhibit maturation until the neurons complete their migration.
Collapse
Affiliation(s)
- Crystal E Love
- Committee on Development, Regeneration and Stem Cell Biology, University of Chicago, Chicago, IL 60615, USA
| | - Victoria E Prince
- Committee on Development, Regeneration and Stem Cell Biology, University of Chicago, Chicago, IL 60615, USA; Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
283
|
Kuwanon V inhibits proliferation, promotes cell survival and increases neurogenesis of neural stem cells. PLoS One 2015; 10:e0118188. [PMID: 25706719 PMCID: PMC4338147 DOI: 10.1371/journal.pone.0118188] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 01/05/2015] [Indexed: 02/07/2023] Open
Abstract
Neural stem cells (NSCs) have the ability to proliferate and differentiate into neurons and glia. Regulation of NSC fate by small molecules is important for the generation of a certain type of cell. The identification of small molecules that can induce new neurons from NSCs could facilitate regenerative medicine and drug development for neurodegenerative diseases. In this study, we screened natural compounds to identify molecules that are effective on NSC cell fate determination. We found that Kuwanon V (KWV), which was isolated from the mulberry tree (Morus bombycis) root, increased neurogenesis in rat NSCs. In addition, during NSC differentiation, KWV increased cell survival and inhibited cell proliferation as shown by 5-bromo-2-deoxyuridine pulse experiments, Ki67 immunostaining and neurosphere forming assays. Interestingly, KWV enhanced neuronal differentiation and decreased NSC proliferation even in the presence of mitogens such as epidermal growth factor and fibroblast growth factor 2. KWV treatment of NSCs reduced the phosphorylation of extracellular signal-regulated kinase 1/2, increased mRNA expression levels of the cyclin-dependent kinase inhibitor p21, down-regulated Notch/Hairy expression levels and up-regulated microRNA miR-9, miR-29a and miR-181a. Taken together, our data suggest that KWV modulates NSC fate to induce neurogenesis, and it may be considered as a new drug candidate that can regenerate or protect neurons in neurodegenerative diseases.
Collapse
|
284
|
Moravec CE, Li E, Maaswinkel H, Kritzer MF, Weng W, Sirotkin HI. Rest mutant zebrafish swim erratically and display atypical spatial preferences. Behav Brain Res 2015; 284:238-48. [PMID: 25712696 DOI: 10.1016/j.bbr.2015.02.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 02/09/2015] [Accepted: 02/13/2015] [Indexed: 10/24/2022]
Abstract
The Rest/Nrsf transcriptional repressor modulates expression of a large set of neural specific genes. Many of these target genes have well characterized roles in nervous system processes including development, plasticity and synaptogenesis. However, the impact of Rest-mediated transcriptional regulation on behavior has been understudied due in part to the embryonic lethality of the mouse knockout. To investigate the requirement for Rest in behavior, we employed the zebrafish rest mutant to explore a range of behaviors in adults and larva. Adult rest mutants of both sexes showed abnormal behaviors in a novel environment including increased vertical swimming, erratic swimming patterns and a proclivity for the tank walls. Adult males also had diminished reproductive success. At 6 days post fertilization (dpf), rest mutant larva were hypoactive, but displayed normal evoked responses to light and sound stimuli. Overall, these results provide evidence that rest dysfunction produces atypical swimming patterns and preferences in adults, and reduced locomotor activity in larvae. This study provides the first behavioral analysis of rest mutants and reveals specific behaviors that are modulated by Rest.
Collapse
Affiliation(s)
- Cara E Moravec
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794, USA; Genetics Gradate Program Stony Brook University, Stony Brook, NY 11794, USA
| | - Edward Li
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794, USA
| | | | - Mary F Kritzer
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794, USA
| | - Wei Weng
- xyZfish, 2200 Smithtown Ave, Ronkonkoma, NY 11779, USA
| | - Howard I Sirotkin
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794, USA; Genetics Gradate Program Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
285
|
Shen L, Liu G, Zou Y, Zhou Z, Su Z, Gu X. The evolutionary panorama of organ-specifically expressed or repressed orthologous genes in nine vertebrate species. PLoS One 2015; 10:e0116872. [PMID: 25679776 PMCID: PMC4332667 DOI: 10.1371/journal.pone.0116872] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 12/15/2014] [Indexed: 12/29/2022] Open
Abstract
RNA sequencing (RNA-Seq) technology provides the detailed transcriptomic information for a biological sample. Using the RNA-Seq data of six organs from nine vertebrate species, we identified a number of organ-specifically expressed or repressed orthologous genes whose expression patterns are mostly conserved across nine species. Our analyses show the following results: (i) About 80% of these genes have a chordate or more ancient origin and more than half of them are the legacy of one or multiple rounds of large-scale gene duplication events. (ii) Their evolutionary rates are shaped by the organ in which they are expressed or repressed, e.g. the genes specially expressed in testis and liver generally evolve more than twice as fast as the ones specially expressed in brain and cerebellum. The organ-specific transcription factors were discriminated from these genes. The ChIP-seq data from the ENCODE project also revealed the transcription-related factors that might be involved in regulating human organ-specifically expressed or repressed genes. Some of them are shared by all six human organs. The comparison of ENCODE data with mouse/chicken ChIP-seq data proposes that organ-specifically expressed or repressed orthologous genes are regulated in various combinatorial fashions in different species, although their expression features are conserved among these species. We found that the duplication events in some gene families might help explain the quick organ/tissue divergence in vertebrate lineage. The phylogenetic analysis of testis-specifically expressed genes suggests that some of them are prone to develop new functions for other organs/tissues.
Collapse
Affiliation(s)
- Libing Shen
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, PR China
| | - Gangbiao Liu
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, PR China
| | - Yangyun Zou
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, PR China
| | - Zhan Zhou
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, PR China
| | - Zhixi Su
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, PR China
| | - Xun Gu
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, PR China
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|
286
|
An RCOR1 loss–associated gene expression signature identifies a prognostically significant DLBCL subgroup. Blood 2015; 125:959-66. [DOI: 10.1182/blood-2013-06-507152] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Key Points
Integration of genome-wide copy number and whole transcriptome data identifies key mutational events in the pathogenesis of DLBCL. Genomic deletions in RCOR1 are associated with a specific gene expression signature and with unfavorable clinical outcomes in DLBCL patients.
Collapse
|
287
|
Epping MT, Lunardi A, Nachmani D, Castillo-Martin M, Thin TH, Cordon-Cardo C, Pandolfi PP. TSPYL2 is an essential component of the REST/NRSF transcriptional complex for TGFβ signaling activation. Cell Death Differ 2015; 22:1353-62. [PMID: 25613376 DOI: 10.1038/cdd.2014.226] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 11/02/2014] [Accepted: 11/19/2014] [Indexed: 11/09/2022] Open
Abstract
REST/NRSF is a transcriptional repressor of neuronal genes that has been implicated in development and cancer. In epithelial tissues, REST acts as a tumor suppressor and in breast cancer, loss of REST is associated with disease recurrence and poor prognosis. Here, we identify TSPYL2 (also known as CDA1 and DENTT) as a novel component of the REST protein complex. We show that REST and TSPYL2 are regulators of TGFβ signaling and that cell-cycle arrest induced by TGFβ requires both REST and TSPYL2. Importantly, knockdown of REST or TSPYL2 resulted in transformation of human mammary epithelial cells. Mechanistically, we demonstrate that the TSPYL2/REST complex promotes TGFβ signaling by repressing the expression of genes, such as the proto-oncogene neurotrophic tyrosine kinase receptor C (TrkC). These data provide insight into the role of REST as a tumor suppressor in epithelial tissues through the regulation of the TGFβ pathway.
Collapse
Affiliation(s)
- M T Epping
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - A Lunardi
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - D Nachmani
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - M Castillo-Martin
- Department of Pathology, Mount Sinai School of Medicine, New York, NY, USA
| | - T H Thin
- Department of Pathology, Mount Sinai School of Medicine, New York, NY, USA
| | - C Cordon-Cardo
- Department of Pathology, Mount Sinai School of Medicine, New York, NY, USA
| | - P P Pandolfi
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
288
|
Abernathy DG, Yoo AS. MicroRNA-dependent genetic networks during neural development. Cell Tissue Res 2015; 359:179-85. [PMID: 24865244 PMCID: PMC4247364 DOI: 10.1007/s00441-014-1899-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 04/15/2014] [Indexed: 12/21/2022]
Abstract
The development of the structurally and functionally diverse mammalian nervous system requires the integration of numerous levels of gene regulation. Accumulating evidence suggests that microRNAs are key mediators of genetic networks during neural development. Importantly, microRNAs are found to regulate both feedback and feedforward loops during neural development leading to large changes in gene expression. These repressive interactions provide an additional mechanism that facilitates the establishment of complexity within the nervous system. Here, we review studies that have enabled the identification of microRNAs enriched in the brain and discuss the way that genetic networks in neural development depend on microRNAs.
Collapse
Affiliation(s)
- Daniel G Abernathy
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | | |
Collapse
|
289
|
Desplats PA. Perinatal programming of neurodevelopment: epigenetic mechanisms and the prenatal shaping of the brain. ADVANCES IN NEUROBIOLOGY 2015; 10:335-61. [PMID: 25287548 DOI: 10.1007/978-1-4939-1372-5_16] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The recent years have witnessed an exponential growth in the knowledge of epigenetic mechanisms, and piling evidence now links DNA methylation and histone modifications with a wide range of physiological processes from embryonic development to memory formation and behavior. Not surprisingly, deregulation of epigenetic modifications is associated with human diseases as well.An important feature of epigenetics is the ability of transducing environmental input into biological signaling, mainly by modulation of the transcriptome in response to a particular scenario. This characteristic generates developmental plasticity and allows the manifestation of a variety of phenotypes from the same genome.The early-life years represent a period of particular susceptibility to epigenetic alteration, as active changes in DNA methylation and histone marks are occurring as part of developmental programs and in response to environmental cues, which notably include psychosocial stimulation and maternal behavior. Memory formation and storage, response to stress in adult life, behavior, and manifestation of neurodegenerative conditions can all be imprinted in the organism by epigenetic modifications that contribute to shape the brain during prenatal or early postnatal life. Moreover, if these epigenetic alterations are preserved in the germ line, changes induced in one generation are likely inherited by future offspring. Programming by transgenerational inheritance thus represents a central mechanism by which environmental conditions may influence disease risk across multiple generations.As novel techniques emerge and as genome-wide profiling of disease-associated methylomes is achieved, epigenetic marks open a new source for biomarker discovery.
Collapse
Affiliation(s)
- Paula A Desplats
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA,
| |
Collapse
|
290
|
Cho E, Moon SM, Park BR, Kim DK, Lee BK, Kim CS. NRSF/REST regulates the mTOR signaling pathway in oral cancer cells. Oncol Rep 2014; 33:1459-64. [PMID: 25524378 DOI: 10.3892/or.2014.3675] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 11/21/2014] [Indexed: 11/06/2022] Open
Abstract
The neuron-restrictive silencer factor/repressor element 1-silencing transcription factor (NRSF/REST) was originally discovered as a transcriptional repressor of neuronal genes in non-neuronal cells. However, it was recently reported to be abundantly expressed in several types of aggressive cancer cells, as well as in mature neurons. In the present study, the role of NRSF/REST in the human oral squamous cell carcinoma (SCC) KB cell line was evaluated. NRSF/REST was expressed at a higher level in KB cells when compared with that in normal human oral keratinocytes (NHOKs). Knockdown of NRSF/REST by siRNA reduced cell viability only in KB cells in a time-dependent manner, and this effect was due to the activation of apoptosis components and DNA fragmentation. In addition, knockdown of NRSF/REST disrupted the mTOR signaling pathway which is a key survival factor in many types of cancer cells. For example, the phosphorylation of elF4G, elF4E and 4E-BP1 was significantly reduced in the KΒ cells upon NRSF/REST knockdown. These results imply that NRSF/REST plays an important role in the survival of oral cancer cells by regulating the mTOR signaling pathway.
Collapse
Affiliation(s)
- Eugene Cho
- Oral Biology Research Institute, Chosun University, Gwangju 501-759, Republic of Korea
| | - Sung-Min Moon
- Oral Biology Research Institute, Chosun University, Gwangju 501-759, Republic of Korea
| | - Bo Ram Park
- Oral Biology Research Institute, Chosun University, Gwangju 501-759, Republic of Korea
| | - Do Kyung Kim
- Oral Biology Research Institute, Chosun University, Gwangju 501-759, Republic of Korea
| | - Byung-Kwon Lee
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| | - Chun Sung Kim
- Oral Biology Research Institute, Chosun University, Gwangju 501-759, Republic of Korea
| |
Collapse
|
291
|
NRSF: an Angel or a Devil in Neurogenesis and Neurological Diseases. J Mol Neurosci 2014; 56:131-44. [DOI: 10.1007/s12031-014-0474-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 11/18/2014] [Indexed: 12/12/2022]
|
292
|
Urbán N, Guillemot F. Neurogenesis in the embryonic and adult brain: same regulators, different roles. Front Cell Neurosci 2014; 8:396. [PMID: 25505873 PMCID: PMC4245909 DOI: 10.3389/fncel.2014.00396] [Citation(s) in RCA: 352] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 11/05/2014] [Indexed: 12/12/2022] Open
Abstract
Neurogenesis persists in adult mammals in specific brain areas, known as neurogenic niches. Adult neurogenesis is highly dynamic and is modulated by multiple physiological stimuli and pathological states. There is a strong interest in understanding how this process is regulated, particularly since active neuronal production has been demonstrated in both the hippocampus and the subventricular zone (SVZ) of adult humans. The molecular mechanisms that control neurogenesis have been extensively studied during embryonic development. Therefore, we have a broad knowledge of the intrinsic factors and extracellular signaling pathways driving proliferation and differentiation of embryonic neural precursors. Many of these factors also play important roles during adult neurogenesis, but essential differences exist in the biological responses of neural precursors in the embryonic and adult contexts. Because adult neural stem cells (NSCs) are normally found in a quiescent state, regulatory pathways can affect adult neurogenesis in ways that have no clear counterpart during embryogenesis. BMP signaling, for instance, regulates NSC behavior both during embryonic and adult neurogenesis. However, this pathway maintains stem cell proliferation in the embryo, while it promotes quiescence to prevent stem cell exhaustion in the adult brain. In this review, we will compare and contrast the functions of transcription factors (TFs) and other regulatory molecules in the embryonic brain and in adult neurogenic regions of the adult brain in the mouse, with a special focus on the hippocampal niche and on the regulation of the balance between quiescence and activation of adult NSCs in this region.
Collapse
Affiliation(s)
- Noelia Urbán
- Department of Molecular Neurobiology, MRC National Institute for Medical Research London, UK
| | - François Guillemot
- Department of Molecular Neurobiology, MRC National Institute for Medical Research London, UK
| |
Collapse
|
293
|
Karlin KL, Mondal G, Hartman JK, Tyagi S, Kurley SJ, Bland CS, Hsu TYT, Renwick A, Fang JE, Migliaccio I, Callaway C, Nair A, Dominguez-Vidana R, Nguyen DX, Osborne CK, Schiff R, Yu-Lee LY, Jung SY, Edwards DP, Hilsenbeck SG, Rosen JM, Zhang XHF, Shaw CA, Couch FJ, Westbrook TF. The oncogenic STP axis promotes triple-negative breast cancer via degradation of the REST tumor suppressor. Cell Rep 2014; 9:1318-32. [PMID: 25453754 PMCID: PMC4427000 DOI: 10.1016/j.celrep.2014.10.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 07/28/2014] [Accepted: 10/02/2014] [Indexed: 12/29/2022] Open
Abstract
Defining the molecular networks that drive breast cancer has led to therapeutic interventions and improved patient survival. However, the aggressive triple-negative breast cancer subtype (TNBC) remains recalcitrant to targeted therapies because its molecular etiology is poorly defined. In this study, we used a forward genetic screen to discover an oncogenic network driving human TNBC. SCYL1, TEX14, and PLK1 ("STP axis") cooperatively trigger degradation of the REST tumor suppressor protein, a frequent event in human TNBC. The STP axis induces REST degradation by phosphorylating a conserved REST phospho-degron and bridging REST interaction with the ubiquitin-ligase βTRCP. Inhibition of the STP axis leads to increased REST protein levels and impairs TNBC transformation, tumor progression, and metastasis. Expression of the STP axis correlates with low REST protein levels in human TNBCs and poor clinical outcome for TNBC patients. Our findings demonstrate that the STP-REST axis is a molecular driver of human TNBC.
Collapse
Affiliation(s)
- Kristen L Karlin
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Integrative Molecular and Biomedical Sciences Program, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Gourish Mondal
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jessica K Hartman
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Siddhartha Tyagi
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Sarah J Kurley
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Chris S Bland
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Tiffany Y T Hsu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Integrative Molecular and Biomedical Sciences Program, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Alexander Renwick
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Justin E Fang
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Ilenia Migliaccio
- The Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Celetta Callaway
- Department of Molecular and Cell Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Amritha Nair
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Rocio Dominguez-Vidana
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Integrative Molecular and Biomedical Sciences Program, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Don X Nguyen
- Department of Pathology, Yale University School of Medicine, Yale Cancer Center, New Haven, CT 06510, USA
| | - C Kent Osborne
- The Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Rachel Schiff
- The Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Li-Yuan Yu-Lee
- Department of Molecular and Cell Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Sung Y Jung
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Dean P Edwards
- Department of Molecular and Cell Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Susan G Hilsenbeck
- Dan L. Duncan Cancer Center Division of Biostatistics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Jeffrey M Rosen
- Department of Molecular and Cell Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Xiang H-F Zhang
- Department of Molecular and Cell Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; The Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Chad A Shaw
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Thomas F Westbrook
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Integrative Molecular and Biomedical Sciences Program, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
294
|
Meier K, Brehm A. Chromatin regulation: how complex does it get? Epigenetics 2014; 9:1485-95. [PMID: 25482055 PMCID: PMC4622878 DOI: 10.4161/15592294.2014.971580] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 08/18/2014] [Accepted: 09/29/2014] [Indexed: 12/16/2022] Open
Abstract
Gene transcription is tightly regulated at different levels to ensure that the transcriptome of the cell is appropriate for developmental stage and cell type. The chromatin state in which a gene is embedded determines its expression level to a large extent. Activation or repression of transcription is typically accomplished by the recruitment of chromatin-associated multisubunit protein complexes that combine several molecular tools, such as histone-binding and chromatin-modifying activities. Recent biochemical purifications of such complexes have revealed a substantial diversity. On the one hand, complexes that were thought to be unique have been revealed to be part of large complex families. On the other hand, protein subunits that were thought to only exist in separate complexes have been shown to coexist in novel assemblies. In this review we discuss our current knowledge of repressor complexes that contain MBT domain proteins and/or the CoREST co-repressor and use them as a paradigm to illustrate the unexpected heterogeneity and tool sharing of chromatin regulating protein complexes. These recent insights also challenge the ways we define and think about protein complexes in general.
Collapse
Key Words
- ATP, adenosine triphosphate
- BAP, brahma associated protein
- BHC80, BRAF-histone deacetylase complex 80
- BRG1, brahma Related Gene 1
- CHD, chromo domain helicase DNA binding
- CoREST
- CoREST REST, corepressor
- DNA, deoxyribonucleic acid
- DNMT, DNA methyltransferase
- DP-1, dimerization partner 1
- E2F, E2 transcription Factor
- ELM2, EGL-27 and MTA1 homology 2
- ES cell, embryonic stem cells
- H, histone
- HDAC, histone deacetylas
- HMTase, histone methylase
- HP1, heterochromatin protein 1
- K, lysine
- L3MBTL, lethal 3 malignant brain tumor-like
- LINT, l(3)mbt interacting
- LSD1, lysine-specific demethylase 1
- Lint-1, l(3)mbt interacting 1
- MBT protein
- MBT, malignant brain tumor
- MBTS, malignant brain tumor signature
- NPA1, nucleosome assembly protein
- NRSF, neural-restrictive silencing factor
- NuRD, nucleosome remodeling and deacetylase
- PBAP, polybromo-associated BAP
- PHD, plant homeo domain
- PRC1, polycomb repressive complex 1
- PRE, polycomb responsive element
- Pc, polycomb
- PcG, polycomb group
- Ph, polyhomeotic
- Pho, pleiohomeotic
- PhoRC, Pho repressive complex
- Psc, posterior sex combs
- RB, retinoblastoma
- REST, repressor element 1 silencing transcription factor
- RNA, ribonucleic acid
- Rpd3, reduced potassium dependency 3
- SANT, SWI/ADA2/N-CoR/TFIIIB
- SCML, sex combs on midleg-like
- SLC, SFMBT1, LSD1, CoREST
- SWH, Salvador-Warts-Hippo
- SWI/SNF, switching defective/sucrose non-fermenting
- Sce, sex combs extra
- Scm, sex combs on midleg
- Sfmbt, Scm-related gene containing 4 mbt domains
- TSS, transcription start site
- YY1, ying-yang 1
- ZNF, zinc finger
- complex family
- dL(3)mbt, Drosophila Lethal 3 malignant brain tumor
- hBRM, human Brahma
- l(3)mbt, lethal 3 malignant brain tumor
- protein complex
- transcriptional regulation
Collapse
Affiliation(s)
- Karin Meier
- Institut für Molekularbiologie und Tumorforschung; Philipps-Universität Marburg; Marburg, Germany
- Instituto de Fisiología Celular; Departamento de Genética Molecular; Universidad Nacional Autónoma de México; México City, México
| | - Alexander Brehm
- Institut für Molekularbiologie und Tumorforschung; Philipps-Universität Marburg; Marburg, Germany
| |
Collapse
|
295
|
Adoue V, Schiavi A, Light N, Almlöf JC, Lundmark P, Ge B, Kwan T, Caron M, Rönnblom L, Wang C, Chen SH, Goodall AH, Cambien F, Deloukas P, Ouwehand WH, Syvänen AC, Pastinen T. Allelic expression mapping across cellular lineages to establish impact of non-coding SNPs. Mol Syst Biol 2014; 10:754. [PMID: 25326100 PMCID: PMC4299376 DOI: 10.15252/msb.20145114] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Most complex disease-associated genetic variants are located in non-coding regions and are
therefore thought to be regulatory in nature. Association mapping of differential allelic expression
(AE) is a powerful method to identify SNPs with direct cis-regulatory impact
(cis-rSNPs). We used AE mapping to identify cis-rSNPs regulating
gene expression in 55 and 63 HapMap lymphoblastoid cell lines from a Caucasian and an African
population, respectively, 70 fibroblast cell lines, and 188 purified monocyte samples and found
40–60% of these cis-rSNPs to be shared across cell types. We uncover
a new class of cis-rSNPs, which disrupt footprint-derived de novo
motifs that are predominantly bound by repressive factors and are implicated in disease
susceptibility through overlaps with GWAS SNPs. Finally, we provide the proof-of-principle for a new
approach for genome-wide functional validation of transcription factor–SNP interactions. By
perturbing NFκB action in lymphoblasts, we identified 489 cis-regulated
transcripts with altered AE after NFκB perturbation. Altogether, we perform a comprehensive
analysis of cis-variation in four cell populations and provide new tools for the
identification of functional variants associated to complex diseases.
Collapse
Affiliation(s)
- Veronique Adoue
- Institute National de la Santé et de la Recherche Médicale (INSERM), U1043, Toulouse, France
| | - Alicia Schiavi
- Department of Human Genetics, McGill University and Genome Quebec Innovation Centre, Montreal, QC, Canada
| | - Nicholas Light
- Department of Human Genetics, McGill University and Genome Quebec Innovation Centre, Montreal, QC, Canada
| | - Jonas Carlsson Almlöf
- Department of Medical Sciences, Molecular Medicine, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Per Lundmark
- Department of Medical Sciences, Molecular Medicine, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Bing Ge
- Department of Human Genetics, McGill University and Genome Quebec Innovation Centre, Montreal, QC, Canada
| | - Tony Kwan
- Department of Human Genetics, McGill University and Genome Quebec Innovation Centre, Montreal, QC, Canada
| | - Maxime Caron
- Department of Human Genetics, McGill University and Genome Quebec Innovation Centre, Montreal, QC, Canada
| | - Lars Rönnblom
- Rheumatology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Chuan Wang
- Department of Medical Sciences, Molecular Medicine, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Shu-Huang Chen
- Department of Human Genetics, McGill University and Genome Quebec Innovation Centre, Montreal, QC, Canada
| | - Alison H Goodall
- Department of Cardiovascular Science, University of Leicester, Leicester, UK Leicester NIHR Biomedical Research Unit in Cardiovascular Disease, Glenfield Hospital, Leicester, UK Cardiogenics Consortium
| | - Francois Cambien
- Cardiogenics Consortium INSERM UMRS 937 Pierre and Marie Curie University and Medical School, Paris, France
| | - Panos Deloukas
- Cardiogenics Consortium Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
| | - Willem H Ouwehand
- Cardiogenics Consortium Department of Haematology, University of Cambridge, Cambridge, UK National Health Service Blood and Transplant, Cambridge Centre, Cambridge, UK
| | - Ann-Christine Syvänen
- Department of Medical Sciences, Molecular Medicine, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Tomi Pastinen
- Department of Human Genetics, McGill University and Genome Quebec Innovation Centre, Montreal, QC, Canada
| |
Collapse
|
296
|
McGann JC, Oyer JA, Garg S, Yao H, Liu J, Feng X, Liao L, Yates JR, Mandel G. Polycomb- and REST-associated histone deacetylases are independent pathways toward a mature neuronal phenotype. eLife 2014; 3:e04235. [PMID: 25250711 PMCID: PMC4371837 DOI: 10.7554/elife.04235] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 09/22/2014] [Indexed: 12/17/2022] Open
Abstract
The bivalent hypothesis posits that genes encoding developmental regulators required
for early lineage decisions are poised in stem/progenitor cells by the balance
between a repressor histone modification (H3K27me3), mediated by the Polycomb
Repressor Complex 2 (PRC2), and an activator modification (H3K4me3). In this study,
we test whether this mechanism applies equally to genes that are not required until
terminal differentiation. We focus on the RE1 Silencing Transcription Factor (REST)
because it is expressed highly in stem cells and is an established global repressor
of terminal neuronal genes. Elucidation of the REST complex, and comparison of
chromatin marks and gene expression levels in control and REST-deficient stem cells,
shows that REST target genes are poised by a mechanism independent of Polycomb, even
at promoters which bear the H3K27me3 mark. Specifically, genes under REST control are
actively repressed in stem cells by a balance of the H3K4me3 mark and a repressor
complex that relies on histone deacetylase activity. Thus, chromatin distinctions
between pro-neural and terminal neuronal genes are established at the embryonic stem
cell stage by two parallel, but distinct, repressor pathways. DOI:http://dx.doi.org/10.7554/eLife.04235.001 When an embryo is developing, genes are switched on or off at different times, for
many different reasons. Many of these genes are switched off, or repressed, by making
the DNA inaccessible to the various proteins and molecules that control gene
activity. This is achieved by altering the way that the DNA is packaged into a
compacted structure called chromatin. A host of proteins modify the structure of
chromatin: it can be made more tightly packaged, which keeps genes switched off; or
it can be made more loosely packaged, which allows the genes within to be accessed
and switched on. The stem cells in an embryo are able to give rise to many different types of
specialized cell. Genes that determine which cell type a stem cell will eventually
become are often kept in a so-called ‘poised’ state, and have chromatin modifications
that encourage genes to be switch on, as well as modifications that switch genes off.
Current thinking is that this poised state allows these genes to be switched on or
off rapidly in response to the signals that the cell receives during development. The only known protein complex that causes the chromatin to become more compacted in
this poised state is the Polycomb complex. This complex binds to specific regions of
DNA and is thought to allow stem cells to remain able to become different cell types
by repressing the genes required for adopting a specialized cell fate. However, it is
unclear if this poised state also regulates those genes that control the final stages
of a cell becoming a specific cell type. McGann et al. investigated genes that are involved in the final stages of a nerve
cell's development. These genes are regulated by another protein called REST, which
acts to repress the genes in non-neuronal cells. McGann et al. found that the genes
that are regulated by REST in embryonic stem cells from mice also have their
chromatin modified in two contrasting ways. Some of the modifications are linked to
switching genes on, while others are linked to keeping genes switched off. Thus these
genes are also in a poised state. However, for these genes, this state is acquired
without the activity of the Polycomb complex. The results of McGann et al. show that two similar, but distinct, mechanisms keep the
genes required for the early and the late stages of nerve cell development in a
poised state. If this poised state aids the development of other cell types (for
example muscle or fat cells), uncovering how it is achieved could improve our ability
to direct stem cells to develop into specific cell types and tissues. DOI:http://dx.doi.org/10.7554/eLife.04235.002
Collapse
Affiliation(s)
- James C McGann
- Vollum Institute, Oregon Health and Science University, Portland, United States
| | - Jon A Oyer
- Vollum Institute, Oregon Health and Science University, Portland, United States
| | - Saurabh Garg
- Vollum Institute, Oregon Health and Science University, Portland, United States
| | - Huilan Yao
- Vollum Institute, Oregon Health and Science University, Portland, United States
| | - Jun Liu
- Vollum Institute, Oregon Health and Science University, Portland, United States
| | - Xin Feng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - Lujian Liao
- Department of Chemical Physiology, Scripps Research Institute, La Jolla, United States
| | - John R Yates
- Department of Chemical Physiology, Scripps Research Institute, La Jolla, United States
| | - Gail Mandel
- Vollum Institute, Oregon Health and Science University, Portland, United States
| |
Collapse
|
297
|
Henriksson R, Bäckman CM, Harvey BK, Kadyrova H, Bazov I, Shippenberg TS, Bakalkin G. PDYN, a gene implicated in brain/mental disorders, is targeted by REST in the adult human brain. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:1226-32. [PMID: 25220237 DOI: 10.1016/j.bbagrm.2014.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 08/21/2014] [Accepted: 09/02/2014] [Indexed: 11/29/2022]
Abstract
The dynorphin κ-opioid receptor system is implicated in mental health and brain/mental disorders. However, despite accumulating evidence that PDYN and/or dynorphin peptide expression is altered in the brain of individuals with brain/mental disorders, little is known about transcriptional control of PDYN in humans. In the present study, we show that PDYN is targeted by the transcription factor REST in human neuroblastoma SH-SY5Y cells and that that interfering with REST activity increases PDYN expression in these cells. We also show that REST binding to PDYN is reduced in the adult human brain compared to SH-SY5Y cells, which coincides with higher PDYN expression. This may be related to MIR-9 mediated down-regulation of REST as suggested by a strong inverse correlation between REST and MIR-9 expression. Our results suggest that REST represses PDYN expression in SH-SY5Y cells and the adult human brain and may have implications for mental health and brain/mental disorders.
Collapse
Affiliation(s)
- Richard Henriksson
- Integrative Neuroscience Section, Integrative Neuroscience Research Branch, NIDA-IRP, NIH, 333 Cassell Dr, Baltimore, MD 21224, USA; Department of Clinical Neuroscience, Karolinska Institutet, Cell and Molecular Medicine, L8:01, 17176 Stockholm, Sweden; Department of Pharmaceutical Biosciences, Uppsala University, Uppsala Biomedical Centre, Box 591, Husargatan 3, 751 24 Uppsala, Sweden.
| | - Cristina M Bäckman
- Cellular Neurophysiology Section, Cellular Neurobiology Research Branch, NIDA-IRP, NIH, 333 Cassell Dr, Baltimore, MD 21224, USA
| | - Brandon K Harvey
- Neural Protection and Regeneration Section, Molecular Neuropsychiatry Research Branch, NIDA-IRP, NIH, 251 Bayview Blvd., Baltimore, MD 21224, USA
| | - Helena Kadyrova
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala Biomedical Centre, Box 591, Husargatan 3, 751 24 Uppsala, Sweden
| | - Igor Bazov
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala Biomedical Centre, Box 591, Husargatan 3, 751 24 Uppsala, Sweden
| | - Toni S Shippenberg
- Integrative Neuroscience Section, Integrative Neuroscience Research Branch, NIDA-IRP, NIH, 333 Cassell Dr, Baltimore, MD 21224, USA
| | - Georgy Bakalkin
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala Biomedical Centre, Box 591, Husargatan 3, 751 24 Uppsala, Sweden
| |
Collapse
|
298
|
Son EY, Crabtree GR. The role of BAF (mSWI/SNF) complexes in mammalian neural development. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2014; 166C:333-49. [PMID: 25195934 DOI: 10.1002/ajmg.c.31416] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The BAF (mammalian SWI/SNF) complexes are a family of multi-subunit ATP-dependent chromatin remodelers that use ATP hydrolysis to alter chromatin structure. Distinct BAF complex compositions are possible through combinatorial assembly of homologous subunit families and can serve non-redundant functions. In mammalian neural development, developmental stage-specific BAF assemblies are found in embryonic stem cells, neural progenitors and postmitotic neurons. In particular, the neural progenitor-specific BAF complexes are essential for controlling the kinetics and mode of neural progenitor cell division, while neuronal BAF function is necessary for the maturation of postmitotic neuronal phenotypes as well as long-term memory formation. The microRNA-mediated mechanism for transitioning from npBAF to nBAF complexes is instructive for the neuronal fate and can even convert fibroblasts into neurons. The high frequency of BAF subunit mutations in neurological disorders underscores the rate-determining role of BAF complexes in neural development, homeostasis, and plasticity.
Collapse
|
299
|
C-terminal domain small phosphatase 1 and MAP kinase reciprocally control REST stability and neuronal differentiation. Proc Natl Acad Sci U S A 2014; 111:E3929-36. [PMID: 25197063 DOI: 10.1073/pnas.1414770111] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The repressor element 1 (RE1) silencing transcription factor (REST) in stem cells represses hundreds of genes essential to neuronal function. During neurogenesis, REST is degraded in neural progenitors to promote subsequent elaboration of a mature neuronal phenotype. Prior studies indicate that part of the degradation mechanism involves phosphorylation of two sites in the C terminus of REST that require activity of beta-transducin repeat containing E3 ubiquitin protein ligase, βTrCP. We identify a proline-directed phosphorylation motif, at serines 861/864 upstream of these sites, which is a substrate for the peptidylprolyl cis/trans isomerase, Pin1, as well as the ERK1/2 kinases. Mutation at S861/864 stabilizes REST, as does inhibition of Pin1 activity. Interestingly, we find that C-terminal domain small phosphatase 1 (CTDSP1), which is recruited by REST to neuronal genes, is present in REST immunocomplexes, dephosphorylates S861/864, and stabilizes REST. Expression of a REST peptide containing S861/864 in neural progenitors inhibits terminal neuronal differentiation. Together with previous work indicating that both REST and CTDSP1 are expressed to high levels in stem cells and down-regulated during neurogenesis, our results suggest that CTDSP1 activity stabilizes REST in stem cells and that ERK-dependent phosphorylation combined with Pin1 activity promotes REST degradation in neural progenitors.
Collapse
|
300
|
50 years of research on the phenomena and epigenetic mechanism of neurogenesis. Neurosci Res 2014; 86:3-13. [DOI: 10.1016/j.neures.2014.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 02/28/2014] [Accepted: 03/01/2014] [Indexed: 11/18/2022]
|