251
|
Braak H, Del Tredici K. Potential Pathways of Abnormal Tau and α-Synuclein Dissemination in Sporadic Alzheimer's and Parkinson's Diseases. Cold Spring Harb Perspect Biol 2016; 8:a023630. [PMID: 27580631 PMCID: PMC5088528 DOI: 10.1101/cshperspect.a023630] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Experimental data indicate that transneuronal propagation of abnormal protein aggregates in neurodegenerative proteinopathies, such as sporadic Alzheimer's disease (AD) and Parkinson's disease (PD), is capable of a self-propagating process that leads to a progression of neurodegeneration and accumulation of prion-like particles. The mechanisms by which misfolded tau and α-synuclein possibly spread from one involved nerve cell to the next in the neuronal chain to induce abnormal aggregation are still unknown. Based on findings from studies of human autopsy cases, we review potential pathways and mechanisms related to axonal and transneuronal dissemination of tau (sporadic AD) and α-synuclein (sporadic PD) aggregates between anatomically interconnected regions.
Collapse
Affiliation(s)
- Heiko Braak
- Clinical Neuroanatomy Section/Department of Neurology, Center for Biomedical Research, University of Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Kelly Del Tredici
- Clinical Neuroanatomy Section/Department of Neurology, Center for Biomedical Research, University of Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany
| |
Collapse
|
252
|
Suganthy N, Devi KP, Nabavi SF, Braidy N, Nabavi SM. Bioactive effects of quercetin in the central nervous system: Focusing on the mechanisms of actions. Biomed Pharmacother 2016; 84:892-908. [PMID: 27756054 DOI: 10.1016/j.biopha.2016.10.011] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/15/2016] [Accepted: 10/03/2016] [Indexed: 12/25/2022] Open
Abstract
Quercetin, a ubiquitous flavonoid that is widely distributed in plants is classified as a cognitive enhancer in traditional and oriental medicine. The protective effects of quercetin for the treatment of neurodegenerative disorders and cerebrovascular diseases have been demonstrated in both in vitro and in vivo studies. The free radical scavenging activity of quercetin has been well-documented, wherein quercetin has been observed to exhibit protective effects against oxidative stress mediated neuronal damage by modulating the expression of NRF-2 dependent antioxidant responsive elements, and attenuation of neuroinflammation by suppressing NF-κB signal transducer and activator of transcription-1 (STAT-1). Several in vitro and in vivo studies have also shown that quercetin destabilizes and enhances the clearance of abnormal protein such as beta- amyloid peptide and hyperphosphorlyated tau, the key pathological hallmarks of Alzheimer's disease. Quercetin enhances neurogenesis and neuronal longevity by modulating a broad number of kinase signaling cascades such as phophoinositide 3- kinase (P13-kinase), AKT/PKB tyrosine kinase and Protein kinase C (PKC). Quercetin has also been well reported for its ability to reverse cognitive impairment and memory enhancement during aging. The current review focuses on summarizing the recent findings on the neuroprotective effect of quercetin, its mechanism of action and its possible roles in the prevention of neurological disorders.
Collapse
Affiliation(s)
- Natarajan Suganthy
- Department of Nanoscience and Technology, Alagappa University (Science Campus), Karaikudi 630 004, Tamil Nadu, India
| | - Kasi Pandima Devi
- Department of Biotechnology, Alagappa University (Science Campus), Karaikudi 630 004, Tamil Nadu, India.
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Australia
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
253
|
Mollereau B, Rzechorzek NM, Roussel BD, Sedru M, Van den Brink DM, Bailly-Maitre B, Palladino F, Medinas DB, Domingos PM, Hunot S, Chandran S, Birman S, Baron T, Vivien D, Duarte CB, Ryoo HD, Steller H, Urano F, Chevet E, Kroemer G, Ciechanover A, Calabrese EJ, Kaufman RJ, Hetz C. Adaptive preconditioning in neurological diseases - therapeutic insights from proteostatic perturbations. Brain Res 2016; 1648:603-616. [PMID: 26923166 PMCID: PMC5010532 DOI: 10.1016/j.brainres.2016.02.033] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 02/16/2016] [Indexed: 02/06/2023]
Abstract
In neurological disorders, both acute and chronic neural stress can disrupt cellular proteostasis, resulting in the generation of pathological protein. However in most cases, neurons adapt to these proteostatic perturbations by activating a range of cellular protective and repair responses, thus maintaining cell function. These interconnected adaptive mechanisms comprise a 'proteostasis network' and include the unfolded protein response, the ubiquitin proteasome system and autophagy. Interestingly, several recent studies have shown that these adaptive responses can be stimulated by preconditioning treatments, which confer resistance to a subsequent toxic challenge - the phenomenon known as hormesis. In this review we discuss the impact of adaptive stress responses stimulated in diverse human neuropathologies including Parkinson׳s disease, Wolfram syndrome, brain ischemia, and brain cancer. Further, we examine how these responses and the molecular pathways they recruit might be exploited for therapeutic gain. This article is part of a Special Issue entitled SI:ER stress.
Collapse
Affiliation(s)
- B Mollereau
- Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR5239, INSERM U1210, Laboratory of Biology and Modelling of the Cell, F-69007, Lyon, France.
| | - N M Rzechorzek
- Centre for Clinical Brain Sciences, Chancellor's Building, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom; Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Roslin, Midlothian EH25 9RG, United Kingdom
| | - B D Roussel
- Inserm, UMR-S U919 Serine Proteases and Pathophysiology of the Neurovascular Unit, 14000 Caen, France
| | - M Sedru
- Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR5239, INSERM U1210, Laboratory of Biology and Modelling of the Cell, F-69007, Lyon, France
| | - D M Van den Brink
- Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR5239, INSERM U1210, Laboratory of Biology and Modelling of the Cell, F-69007, Lyon, France
| | - B Bailly-Maitre
- INSERM U1065, C3M, Team 8 (Hepatic Complications in Obesity), Nice, France
| | - F Palladino
- Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR5239, INSERM U1210, Laboratory of Biology and Modelling of the Cell, F-69007, Lyon, France
| | - D B Medinas
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Center for Molecular Studies of the Cell, Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Faculty of Medicine, University of Chile, Santiago, Chile
| | - P M Domingos
- ITQB-UNL, Av. da Republica, EAN, 2780-157 Oeiras, Portugal
| | - S Hunot
- Inserm, U 1127, F-75013 Paris, France; CNRS, UMR 7225, F-75013 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - S Chandran
- Centre for Clinical Brain Sciences, Chancellor's Building, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom
| | - S Birman
- Genes Circuits Rhythms and Neuropathology, Brain Plasticity Unit, CNRS UMR 8249, ESPCI ParisTech, PSL Research University, 75005 Paris, France
| | - T Baron
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Neurodegenerative Diseases Unit, 31, avenue Tony Garnier, 69364 Lyon Cedex 07, France
| | - D Vivien
- Inserm, UMR-S U919 Serine Proteases and Pathophysiology of the Neurovascular Unit, 14000 Caen, France
| | - C B Duarte
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Faculty of Medicine, Rua Larga, and Department of Life Sciences, University of Coimbra, 3004-504 Coimbra, Portugal
| | - H D Ryoo
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - H Steller
- Howard Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | - F Urano
- Washington University School of Medicine, Department of Internal Medicine, St. Louis, MO 63110 USA
| | - E Chevet
- Inserm ERL440 "Oncogenesis, Stress, Signaling", Université de Rennes 1, Rennes, France; Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - G Kroemer
- Equipe 11 labellisée par la Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; Cell Biology and Metabolomics platforms, Gustave Roussy Comprehensive Cancer Center, Villejuif, France; INSERM, U1138, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie, Paris, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France; Karolinska Institute, Department of Women׳s and Children׳s Health, Karolinska University Hospital, Stockholm, Sweden
| | - A Ciechanover
- The Polak Cancer and Vascular Biology Research Center, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 30196, Israel
| | - E J Calabrese
- Department of Environmental Health Sciences, University of Massachusetts, Morrill I, N344, Amherst, MA 01003, USA
| | - R J Kaufman
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| | - C Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Center for Molecular Studies of the Cell, Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Faculty of Medicine, University of Chile, Santiago, Chile; Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, USA
| |
Collapse
|
254
|
Morozov AV, Kulikova AA, Astakhova TM, Mitkevich VA, Burnysheva KM, Adzhubei AA, Erokhov PA, Evgen’ev MB, Sharova NP, Karpov VL, Makarov AA. Amyloid-β Increases Activity of Proteasomes Capped with 19S and 11S Regulators. J Alzheimers Dis 2016; 54:763-76. [DOI: 10.3233/jad-160491] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Alexey V. Morozov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexandra A. Kulikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Tatiana M. Astakhova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Vladimir A. Mitkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Ksenia M. Burnysheva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexei A. Adzhubei
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Pavel A. Erokhov
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Michail B. Evgen’ev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Natalia P. Sharova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Vadim L. Karpov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexander A. Makarov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
255
|
Tiernan CT, Combs B, Cox K, Morfini G, Brady ST, Counts SE, Kanaan NM. Pseudophosphorylation of tau at S422 enhances SDS-stable dimer formation and impairs both anterograde and retrograde fast axonal transport. Exp Neurol 2016; 283:318-29. [PMID: 27373205 PMCID: PMC4992631 DOI: 10.1016/j.expneurol.2016.06.030] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/22/2016] [Accepted: 06/28/2016] [Indexed: 12/17/2022]
Abstract
In Alzheimer's disease (AD), tau undergoes numerous modifications, including increased phosphorylation at serine-422 (pS422). In the human brain, pS422 tau protein is found in prodromal AD, correlates well with cognitive decline and neuropil thread pathology, and appears associated with increased oligomer formation and exposure of the N-terminal phosphatase-activating domain (PAD). However, whether S422 phosphorylation contributes to toxic mechanisms associated with disease-related forms of tau remains unknown. Here, we report that S422-pseudophosphorylated tau (S422E) lengthens the nucleation phase of aggregation without altering the extent of aggregation or the types of aggregates formed. When compared to unmodified tau aggregates, the S422E modification significantly increased the amount of SDS-stable tau dimers, despite similar levels of immunoreactivity with an oligomer-selective antibody (TOC1) and another antibody that reports PAD exposure (TNT1). Vesicle motility assays in isolated squid axoplasm further revealed that S422E tau monomers inhibited anterograde, kinesin-1 dependent fast axonal transport (FAT). Unexpectedly, and unlike unmodified tau aggregates, which selectively inhibit anterograde FAT, aggregates composed of S422E tau were found to inhibit both anterograde and retrograde FAT. Highlighting the relevance of these findings to human disease, pS422 tau was found to colocalize with tau oligomers and with a fraction of tau showing increased PAD exposure in the human AD brain. This study identifies novel effects of pS422 on tau biochemical properties, including prolonged nucleation and enhanced dimer formation, which correlate with a distinct inhibitory effect on FAT. Taken together, these findings identify a novel mechanistic basis by which pS422 confers upon tau a toxic effect that may directly contribute to axonal dysfunction in AD and other tauopathies.
Collapse
Affiliation(s)
- Chelsea T Tiernan
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Benjamin Combs
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Kristine Cox
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Gerardo Morfini
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, IL 60612, USA
| | - Scott T Brady
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, IL 60612, USA
| | - Scott E Counts
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI 49503, USA; Department of Family Medicine, Michigan State University, Grand Rapids, MI 49503, USA; Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA; Hauenstein Neuroscience Center, Mercy Health Saint Mary's Hospital, Grand Rapids, MI 49503, USA
| | - Nicholas M Kanaan
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI 49503, USA; Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA; Hauenstein Neuroscience Center, Mercy Health Saint Mary's Hospital, Grand Rapids, MI 49503, USA.
| |
Collapse
|
256
|
Arendt T, Stieler JT, Holzer M. Tau and tauopathies. Brain Res Bull 2016; 126:238-292. [PMID: 27615390 DOI: 10.1016/j.brainresbull.2016.08.018] [Citation(s) in RCA: 429] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/31/2016] [Accepted: 08/31/2016] [Indexed: 12/11/2022]
|
257
|
Regan P, Whitcomb DJ, Cho K. Physiological and Pathophysiological Implications of Synaptic Tau. Neuroscientist 2016; 23:137-151. [DOI: 10.1177/1073858416633439] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Tauopathies encompass a broad range of neurodegenerative diseases featuring extensive neuronal death and cognitive decline. However, research over the past 30 years has failed to significantly advance our understanding of how tau causes dementia, limiting the design of rational therapeutics. It has become evident that we need to expand our understanding of tau in physiology, in order to delineate how tau may contribute to pathology. This review discusses recent evidence that has uncovered a novel aspect of tau function, based on its previously uncharacterized localization to the synapse. Here, multiple streams of evidence support a critical role for synaptic tau in the regulation of synapse physiology. In particular, long-term depression, a form of synaptic weakening, is dependent on the presence of tau in hippocampal neurons. The regulation of tau by specific phosphorylation events downstream of GSK-3β activation appears to be integral to this signaling role. We also describe how the regulation of synapse physiology by tau and its phosphorylation may inform our understanding of tauopathies and comorbid diseases. This work should provide a platform for future tau biology research in addition to therapeutic design.
Collapse
Affiliation(s)
- Philip Regan
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology (HW-LINE), Bristol, UK
| | - Daniel J. Whitcomb
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology (HW-LINE), Bristol, UK
- Centre for Synaptic Plasticity, Faculty of Health Sciences, University of Bristol, Bristol, UK
| | - Kwangwook Cho
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology (HW-LINE), Bristol, UK
- Centre for Synaptic Plasticity, Faculty of Health Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
258
|
Gadhave K, Bolshette N, Ahire A, Pardeshi R, Thakur K, Trandafir C, Istrate A, Ahmed S, Lahkar M, Muresanu DF, Balea M. The ubiquitin proteasomal system: a potential target for the management of Alzheimer's disease. J Cell Mol Med 2016; 20:1392-407. [PMID: 27028664 PMCID: PMC4929298 DOI: 10.1111/jcmm.12817] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 01/17/2016] [Indexed: 01/06/2023] Open
Abstract
The cellular quality control system degrades abnormal or misfolded proteins and consists of three different mechanisms: the ubiquitin proteasomal system (UPS), autophagy and molecular chaperones. Any disturbance in this system causes proteins to accumulate, resulting in neurodegenerative diseases such as amyotrophic lateral sclerosis, Alzheimer's disease (AD), Parkinson's disease, Huntington's disease and prion or polyglutamine diseases. Alzheimer's disease is currently one of the most common age-related neurodegenerative diseases. However, its exact cause and pathogenesis are unknown. Currently approved medications for AD provide symptomatic relief; however, they fail to influence disease progression. Moreover, the components of the cellular quality control system represent an important focus for the development of targeted and potent therapies for managing AD. This review aims to evaluate whether existing evidence supports the hypothesis that UPS impairment causes the early pathogenesis of neurodegenerative disorders. The first part presents basic information about the UPS and its molecular components. The next part explains how the UPS is involved in neurodegenerative disorders. Finally, we emphasize how the UPS influences the management of AD. This review may help in the design of future UPS-related therapies for AD.
Collapse
Affiliation(s)
- Kundlik Gadhave
- Laboratory of Neurobiology, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College, Guwahati, Assam, India
| | - Nityanand Bolshette
- Institutional Level Biotech hub (IBT hub), Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College, Guwahati, Assam, India
| | - Ashutosh Ahire
- Laboratory of Neurobiology, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College, Guwahati, Assam, India
| | - Rohit Pardeshi
- Institutional Level Biotech hub (IBT hub), Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College, Guwahati, Assam, India
| | - Krishan Thakur
- Institutional Level Biotech hub (IBT hub), Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College, Guwahati, Assam, India
| | - Cristiana Trandafir
- Faculty of Medicine, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
| | - Alexandru Istrate
- Faculty of Medicine, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
| | - Sahabuddin Ahmed
- Laboratory of Neurobiology, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College, Guwahati, Assam, India
| | - Mangala Lahkar
- Laboratory of Neurobiology, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College, Guwahati, Assam, India
- Institutional Level Biotech hub (IBT hub), Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College, Guwahati, Assam, India
| | - Dafin F Muresanu
- Faculty of Medicine, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
- Department of Clinical Neurosciences, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
- "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Maria Balea
- Department of Clinical Neurosciences, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
| |
Collapse
|
259
|
Lista S, Hampel H. Synaptic degeneration and neurogranin in the pathophysiology of Alzheimer’s disease. Expert Rev Neurother 2016; 17:47-57. [DOI: 10.1080/14737175.2016.1204234] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Simone Lista
- AXA Research Fund & UPMC Chair, Paris, France
- IHU-A-ICM – Paris Institute of Translational Neurosciences, Pitié-Salpêtrière University Hospital, Paris, France
| | - Harald Hampel
- AXA Research Fund & UPMC Chair, Paris, France
- Department of Neurology, Sorbonne Universities, Institute of Memory and Alzheimer’s Disease (IM2A) & Brain and Spine Institute (ICM) UMR S 1127, Pitié-Salpêtrière University Hospital, Pierre and Marie Curie University, Paris 06, Paris, France
| |
Collapse
|
260
|
Abstract
Exposure to chronic stress is frequently accompanied by cognitive and affective disorders in association with neurostructural adaptations. Chronic stress was previously shown to trigger Alzheimer's-like neuropathology, which is characterized by Tau hyperphosphorylation and missorting into dendritic spines followed by memory deficits. Here, we demonstrate that stress-driven hippocampal deficits in wild-type mice are accompanied by synaptic missorting of Tau and enhanced Fyn/GluN2B-driven synaptic signaling. In contrast, mice lacking Tau [Tau knockout (Tau-KO) mice] do not exhibit stress-induced pathological behaviors and atrophy of hippocampal dendrites or deficits of hippocampal connectivity. These findings implicate Tau as an essential mediator of the adverse effects of stress on brain structure and function.
Collapse
|
261
|
Koca M, Yerdelen KO, Anil B, Kasap Z, Sevindik H, Ozyurek I, Gunesacar G, Turkaydin K. Design, synthesis and biological activity of 1H-indene-2-carboxamides as multi-targeted anti-Alzheimer agents. J Enzyme Inhib Med Chem 2016; 31:13-23. [DOI: 10.1080/14756366.2016.1186019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
| | | | | | | | - Handan Sevindik
- Department of Pharmacognosy, Ataturk University, Erzurum, Turkey
| | | | | | | |
Collapse
|
262
|
Bilousova T, Miller CA, Poon WW, Vinters HV, Corrada M, Kawas C, Hayden EY, Teplow DB, Glabe C, Albay R, Cole GM, Teng E, Gylys KH. Synaptic Amyloid-β Oligomers Precede p-Tau and Differentiate High Pathology Control Cases. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:185-98. [PMID: 26718979 DOI: 10.1016/j.ajpath.2015.09.018] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 08/28/2015] [Accepted: 09/01/2015] [Indexed: 01/03/2023]
Abstract
Amyloid-β (Aβ) and hyperphosphorylated tau (p-tau) aggregates form the two discrete pathologies of Alzheimer disease (AD), and oligomeric assemblies of each protein are localized to synapses. To determine the sequence by which pathology appears in synapses, Aβ and p-tau were quantified across AD disease stages in parietal cortex. Nondemented cases with high levels of AD-related pathology were included to determine factors that confer protection from clinical symptoms. Flow cytometric analysis of synaptosome preparations was used to quantify Aβ and p-tau in large populations of individual synaptic terminals. Soluble Aβ oligomers were assayed by a single antibody sandwich enzyme-linked immunosorbent assay. Total in situ Aβ was elevated in patients with early- and late-stage AD dementia, but not in high pathology nondemented controls compared with age-matched normal controls. However, soluble Aβ oligomers were highest in early AD synapses, and this assay distinguished early AD cases from high pathology controls. Overall, synapse-associated p-tau did not increase until late-stage disease in human and transgenic rat cortex, and p-tau was elevated in individual Aβ-positive synaptosomes in early AD. These results suggest that soluble oligomers in surviving neocortical synaptic terminals are associated with dementia onset and suggest an amyloid cascade hypothesis in which oligomeric Aβ drives phosphorylated tau accumulation and synaptic spread. These results indicate that antiamyloid therapies will be less effective once p-tau pathology is developed.
Collapse
Affiliation(s)
- Tina Bilousova
- University of California Los Angeles School of Nursing, Los Angeles, California; Mary S. Easton Center for Alzheimer's Research at the University of California Los Angeles, Los Angeles, California
| | - Carol A Miller
- Departments of Pathology, Neurology, and the Program in Neuroscience, University of Southern California Keck School of Medicine, Los Angeles, California
| | - Wayne W Poon
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, California
| | - Harry V Vinters
- Department of Neurology, University of California Los Angeles School of Medicine, Los Angeles, California; Department of Pathology and Laboratory Medicine, University of California Los Angeles School of Medicine, Los Angeles, California
| | - Maria Corrada
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, California; Department of Neurology, University of California Irvine, Irvine, California
| | - Claudia Kawas
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, California; Department of Neurology, University of California Irvine, Irvine, California; Department of Neurobiology & Behavior, University of California Irvine, Irvine, California
| | - Eric Y Hayden
- Mary S. Easton Center for Alzheimer's Research at the University of California Los Angeles, Los Angeles, California; Department of Neurology, University of California Los Angeles School of Medicine, Los Angeles, California
| | - David B Teplow
- Mary S. Easton Center for Alzheimer's Research at the University of California Los Angeles, Los Angeles, California; Department of Neurology, University of California Los Angeles School of Medicine, Los Angeles, California
| | - Charles Glabe
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California
| | - Ricardo Albay
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California
| | - Gregory M Cole
- Mary S. Easton Center for Alzheimer's Research at the University of California Los Angeles, Los Angeles, California; Department of Neurology, University of California Los Angeles School of Medicine, Los Angeles, California; Department of Medicine, University of California Los Angeles School of Medicine, Los Angeles, California; Geriatric Research, Education and Clinical Center, VA Greater Los Angeles Healthcare System, Los Angeles, California
| | - Edmond Teng
- Mary S. Easton Center for Alzheimer's Research at the University of California Los Angeles, Los Angeles, California; Department of Neurology, University of California Los Angeles School of Medicine, Los Angeles, California; Geriatric Research, Education and Clinical Center, VA Greater Los Angeles Healthcare System, Los Angeles, California
| | - Karen H Gylys
- University of California Los Angeles School of Nursing, Los Angeles, California; Mary S. Easton Center for Alzheimer's Research at the University of California Los Angeles, Los Angeles, California.
| |
Collapse
|
263
|
Schorova L, Martin S. Sumoylation in Synaptic Function and Dysfunction. Front Synaptic Neurosci 2016; 8:9. [PMID: 27199730 PMCID: PMC4848311 DOI: 10.3389/fnsyn.2016.00009] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 04/08/2016] [Indexed: 12/18/2022] Open
Abstract
Sumoylation has recently emerged as a key post-translational modification involved in many, if not all, biological processes. Small Ubiquitin-like Modifier (SUMO) polypeptides are covalently attached to specific lysine residues of target proteins through a dedicated enzymatic pathway. Disruption of the SUMO enzymatic pathway in the developing brain leads to lethality indicating that this process exerts a central role during embryonic and post-natal development. However, little is still known regarding how this highly dynamic protein modification is regulated in the mammalian brain despite an increasing number of data implicating sumoylated substrates in synapse formation, synaptic communication and plasticity. The aim of this review is therefore to briefly describe the enzymatic SUMO pathway and to give an overview of our current knowledge on the function and dysfunction of protein sumoylation at the mammalian synapse.
Collapse
Affiliation(s)
- Lenka Schorova
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (UMR7275), University of Nice-Sophia-Antipolis, Laboratory of Excellence "Network for Innovation on Signal Transduction, Pathways in Life Sciences" Valbonne, France
| | - Stéphane Martin
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (UMR7275), University of Nice-Sophia-Antipolis, Laboratory of Excellence "Network for Innovation on Signal Transduction, Pathways in Life Sciences" Valbonne, France
| |
Collapse
|
264
|
Krishnan VS, White Z, McMahon CD, Hodgetts SI, Fitzgerald M, Shavlakadze T, Harvey AR, Grounds MD. A Neurogenic Perspective of Sarcopenia: Time Course Study of Sciatic Nerves From Aging Mice. J Neuropathol Exp Neurol 2016; 75:464-78. [DOI: 10.1093/jnen/nlw019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
265
|
Heinisch JJ, Brandt R. Signaling pathways and posttranslational modifications of tau in Alzheimer's disease: the humanization of yeast cells. MICROBIAL CELL 2016; 3:135-146. [PMID: 28357346 DOI: 10.15698/mic2016.04.489] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In the past decade, yeast have been frequently employed to study the molecular mechanisms of human neurodegenerative diseases, generally by means of heterologous expression of genes encoding the relevant hallmark proteins. However, it has become evident that substantial posttranslational modifications of many of these proteins are required for the development and progression of potentially disease relevant changes. This is exemplified by the neuronal tau proteins, which are critically involved in a class of neuro-degenerative diseases collectively called tauopathies and which includes Alz-heimer's disease (AD) as its most common representative. In the course of the disease, tau changes its phosphorylation state and becomes hyperphosphory-lated, gets truncated by proteolytic cleavage, is subject to O-glycosylation, sumoylation, ubiquitinylation, acetylation and some other modifications. This poses the important question, which of these posttranslational modifications are naturally occurring in the yeast model or can be reconstituted by heterol-ogous gene expression. Here, we present an overview on common modifica-tions as they occur in tau during AD, summarize their potential relevance with respect to disease mechanisms and refer to the native yeast enzyme orthologs capable to perform these modifications. We will also discuss potential approaches to humanize yeast in order to create modification patterns resembling the situation in mammalian cells, which could enhance the value of Saccharomyces cerevisiae and Kluyveromyces lactis as disease models.
Collapse
Affiliation(s)
- Jürgen J Heinisch
- Universität Osnabrück, Fachbereich Biologie/Chemie, AG Genetik, Barbarastr. 11, D-49076 Osnabrück, Germany
| | - Roland Brandt
- Universität Osnabrück, Fachbereich Biologie/Chemie, AG Neurobiologie, Barbarastr. 11, D-49076 Osnabrück, Germany
| |
Collapse
|
266
|
Heinisch JJ, Brandt R. Signaling pathways and posttranslational modifications of tau in Alzheimer's disease: the humanization of yeast cells. MICROBIAL CELL 2016. [PMID: 28357346 DOI: 10.15698/mic2016.04] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the past decade, yeast have been frequently employed to study the molecular mechanisms of human neurodegenerative diseases, generally by means of heterologous expression of genes encoding the relevant hallmark proteins. However, it has become evident that substantial posttranslational modifications of many of these proteins are required for the development and progression of potentially disease relevant changes. This is exemplified by the neuronal tau proteins, which are critically involved in a class of neuro-degenerative diseases collectively called tauopathies and which includes Alz-heimer's disease (AD) as its most common representative. In the course of the disease, tau changes its phosphorylation state and becomes hyperphosphory-lated, gets truncated by proteolytic cleavage, is subject to O-glycosylation, sumoylation, ubiquitinylation, acetylation and some other modifications. This poses the important question, which of these posttranslational modifications are naturally occurring in the yeast model or can be reconstituted by heterol-ogous gene expression. Here, we present an overview on common modifica-tions as they occur in tau during AD, summarize their potential relevance with respect to disease mechanisms and refer to the native yeast enzyme orthologs capable to perform these modifications. We will also discuss potential approaches to humanize yeast in order to create modification patterns resembling the situation in mammalian cells, which could enhance the value of Saccharomyces cerevisiae and Kluyveromyces lactis as disease models.
Collapse
Affiliation(s)
- Jürgen J Heinisch
- Universität Osnabrück, Fachbereich Biologie/Chemie, AG Genetik, Barbarastr. 11, D-49076 Osnabrück, Germany
| | - Roland Brandt
- Universität Osnabrück, Fachbereich Biologie/Chemie, AG Neurobiologie, Barbarastr. 11, D-49076 Osnabrück, Germany
| |
Collapse
|
267
|
Herms J, Dorostkar MM. Dendritic Spine Pathology in Neurodegenerative Diseases. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2016; 11:221-50. [PMID: 26907528 DOI: 10.1146/annurev-pathol-012615-044216] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Substantial progress has been made toward understanding the neuropathology, genetic origins, and epidemiology of neurodegenerative diseases, including Alzheimer's disease; tauopathies, such as frontotemporal dementia; α-synucleinopathies, such as Parkinson's disease or dementia with Lewy bodies; Huntington's disease; and amyotrophic lateral sclerosis with dementia, as well as prion diseases. Recent evidence has implicated dendritic spine dysfunction as an important substrate of the pathogenesis of dementia in these disorders. Dendritic spines are specialized structures, extending from the neuronal processes, on which excitatory synaptic contacts are formed, and the loss of dendritic spines correlates with the loss of synaptic function. We review the literature that has implicated direct or indirect structural alterations at dendritic spines in the pathogenesis of major neurodegenerative diseases, focusing on those that lead to dementias such as Alzheimer's, Parkinson's, and Huntington's diseases, as well as frontotemporal dementia and prion diseases. We stress the importance of in vivo studies in animal models.
Collapse
Affiliation(s)
- Jochen Herms
- Center for Neuropathology and Prion Research, Ludwig Maximilian University, 81377 Munich, Germany; .,Munich Cluster for Systems Neurology, Ludwig Maximilian University, 81377 Munich, Germany.,German Center for Neurodegenerative Diseases, 81377 Munich, Germany
| | - Mario M Dorostkar
- Center for Neuropathology and Prion Research, Ludwig Maximilian University, 81377 Munich, Germany;
| |
Collapse
|
268
|
Prasad KN. Simultaneous activation of Nrf2 and elevation of antioxidant compounds for reducing oxidative stress and chronic inflammation in human Alzheimer's disease. Mech Ageing Dev 2016; 153:41-7. [PMID: 26811881 DOI: 10.1016/j.mad.2016.01.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 01/10/2016] [Accepted: 01/14/2016] [Indexed: 11/18/2022]
Abstract
Despite extensive research, neither the incidence nor the rate of progression of Alzheimer's disease (AD) has significantly changed. Some biochemical and genetic defects that initiate and promote AD include: (a) increased oxidative stress, (b) chronic inflammation (c) mitochondrial dysfunction, (d) Aß1-42 peptides generated from the amyloid precursor protein (APP), (e) proteasome inhibition, and (f) mutations in APP, presenilin-1 and presenilin-2 genes. Increased oxidative stress appears to precede other biochemical and genetic defects. Oxidative damage induces chronic inflammation. Therefore, reducing these defects simultaneously may reduce the development and progression of AD. Previous studies with individual antioxidants produced consistent benefits in animal models of AD; however, a similar approach produced inconsistent results in human AD. This review proposes a hypothesis that simultaneous elevation of the levels of antioxidant enzymes and antioxidant compounds is necessary for optimally reducing oxidative stress and chronic inflammation in human AD. Supplementation can enhance the levels of antioxidant compounds; but elevation of antioxidant enzymes requires activation of Nrf2. This review discusses activation and regulation of Nrf2. The need for multi- antioxidants that can affect multi-targets has been proposed without specific recommendations. This review proposes a micronutrient mixture that would simultaneously enhance the levels of antioxidant enzymes and antioxidant compounds in human AD.
Collapse
|
269
|
Koch G, Di Lorenzo F, del Olmo MF, Bonní S, Ponzo V, Caltagirone C, Bozzali M, Martorana A. Reversal of LTP-Like Cortical Plasticity in Alzheimer’s Disease Patients with Tau-Related Faster Clinical Progression. J Alzheimers Dis 2016; 50:605-16. [DOI: 10.3233/jad-150813] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Giacomo Koch
- Non Invasive Brain Stimulation Unit/Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
- Stroke Unit, Department of Neuroscience, Tor Vergata Policlinic, Rome, Italy
| | - Francesco Di Lorenzo
- Non Invasive Brain Stimulation Unit/Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
- Stroke Unit, Department of Neuroscience, Tor Vergata Policlinic, Rome, Italy
| | - Miguel Fernandez del Olmo
- Faculty of Sciences of Sport and Physical Education, Department of Physical Education, University of A Coruña, Pazos-Liáns, Oleiros, A Coruña, Spain
| | - Sonia Bonní
- Non Invasive Brain Stimulation Unit/Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Viviana Ponzo
- Non Invasive Brain Stimulation Unit/Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Carlo Caltagirone
- Non Invasive Brain Stimulation Unit/Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Marco Bozzali
- Neuroimaging Laboratory, Santa Lucia Foundation, IRCCS, Rome, Italy
| | | |
Collapse
|
270
|
It Is All about (U)biquitin: Role of Altered Ubiquitin-Proteasome System and UCHL1 in Alzheimer Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:2756068. [PMID: 26881020 PMCID: PMC4736377 DOI: 10.1155/2016/2756068] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 11/26/2015] [Indexed: 02/07/2023]
Abstract
Free radical-mediated damage to macromolecules and the resulting oxidative modification of different cellular components are a common feature of aging, and this process becomes much more pronounced in age-associated pathologies, including Alzheimer disease (AD). In particular, proteins are particularly sensitive to oxidative stress-induced damage and these irreversible modifications lead to the alteration of protein structure and function. In order to maintain cell homeostasis, these oxidized/damaged proteins have to be removed in order to prevent their toxic accumulation. It is generally accepted that the age-related accumulation of “aberrant” proteins results from both the increased occurrence of damage and the decreased efficiency of degradative systems. One of the most important cellular proteolytic systems responsible for the removal of oxidized proteins in the cytosol and in the nucleus is the proteasomal system. Several studies have demonstrated the impairment of the proteasome in AD thus suggesting a direct link between accumulation of oxidized/misfolded proteins and reduction of this clearance system. In this review we discuss the impairment of the proteasome system as a consequence of oxidative stress and how this contributes to AD neuropathology. Further, we focus the attention on the oxidative modifications of a key component of the ubiquitin-proteasome pathway, UCHL1, which lead to the impairment of its activity.
Collapse
|
271
|
Tau-driven 26S proteasome impairment and cognitive dysfunction can be prevented early in disease by activating cAMP-PKA signaling. Nat Med 2015; 22:46-53. [PMID: 26692334 DOI: 10.1038/nm.4011] [Citation(s) in RCA: 343] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 11/17/2015] [Indexed: 12/12/2022]
Abstract
The ubiquitin proteasome system (UPS) degrades misfolded proteins including those implicated in neurodegenerative diseases. We investigated the effects of tau accumulation on proteasome function in a mouse model of tauopathy and in a cross to a UPS reporter mouse (line Ub-G76V-GFP). Accumulation of insoluble tau was associated with a decrease in the peptidase activity of brain 26S proteasomes, higher levels of ubiquitinated proteins and undegraded Ub-G76V-GFP. 26S proteasomes from mice with tauopathy were physically associated with tau and were less active in hydrolyzing ubiquitinated proteins, small peptides and ATP. 26S proteasomes from normal mice incubated with recombinant oligomers or fibrils also showed lower hydrolyzing capacity in the same assays, implicating tau as a proteotoxin. Administration of an agent that activates cAMP-protein kinase A (PKA) signaling led to attenuation of proteasome dysfunction, probably through proteasome subunit phosphorylation. In vivo, this led to lower levels of aggregated tau and improvements in cognitive performance.
Collapse
|
272
|
Guerrero-Muñoz MJ, Gerson J, Castillo-Carranza DL. Tau Oligomers: The Toxic Player at Synapses in Alzheimer's Disease. Front Cell Neurosci 2015; 9:464. [PMID: 26696824 PMCID: PMC4667007 DOI: 10.3389/fncel.2015.00464] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 11/16/2015] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive disorder in which the most noticeable symptoms are cognitive impairment and memory loss. However, the precise mechanism by which those symptoms develop remains unknown. Of note, neuronal loss occurs at sites where synaptic dysfunction is observed earlier, suggesting that altered synaptic connections precede neuronal loss. The abnormal accumulation of amyloid-β (Aβ) and tau protein is the main histopathological feature of the disease. Several lines of evidence suggest that the small oligomeric forms of Aβ and tau may act synergistically to promote synaptic dysfunction in AD. Remarkably, tau pathology correlates better with the progression of the disease than Aβ. Recently, a growing number of studies have begun to suggest that missorting of tau protein from the axon to the dendrites is required to mediate the detrimental effects of Aβ. In this review we discuss the novel findings regarding the potential mechanisms by which tau oligomers contribute to synaptic dysfunction in AD.
Collapse
Affiliation(s)
- Marcos J Guerrero-Muñoz
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston TX, USA ; Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston TX, USA
| | - Julia Gerson
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston TX, USA ; Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston TX, USA
| | - Diana L Castillo-Carranza
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston TX, USA ; Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston TX, USA
| |
Collapse
|
273
|
Yerdelen KO, Koca M, Anil B, Sevindik H, Kasap Z, Halici Z, Turkaydin K, Gunesacar G. Synthesis of donepezil-based multifunctional agents for the treatment of Alzheimer’s disease. Bioorg Med Chem Lett 2015; 25:5576-82. [DOI: 10.1016/j.bmcl.2015.10.051] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 10/14/2015] [Accepted: 10/16/2015] [Indexed: 10/22/2022]
|
274
|
Huang HJ, Chen SL, Hsieh-Li HM. Administration of NaHS Attenuates Footshock-Induced Pathologies and Emotional and Cognitive Dysfunction in Triple Transgenic Alzheimer's Mice. Front Behav Neurosci 2015; 9:312. [PMID: 26635562 PMCID: PMC4658416 DOI: 10.3389/fnbeh.2015.00312] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 11/02/2015] [Indexed: 12/18/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by progressive cognitive decline and neuropsychiatric symptoms. Increasing evidence indicates that environmental risk factors in young adults may accelerate cognitive loss in AD and that Hydrogen Sulfide (H2S) may represent an innovative treatment to slow the progression of AD. Therefore, the aim of this study was to evaluate the effects of NaHS, an H2S donor, in a triple transgenic AD mouse model (3×Tg-AD) under footshock with situational reminders (SRs). Inescapable footshock with SRs induced anxiety and cognitive dysfunction as well as a decrease in the levels of plasma H2S and GSH and an increase in IL-6 levels in 3×Tg-AD mice. Under footshock with SR stimulus, amyloid deposition, tau protein hyperphosphorylation, and microgliosis were highly increased in the stress-responsive brain structures, including the hippocampus and amygdala, of the AD mice. Oxidative stress, inflammatory response, and β-site APP cleaving enzyme 1 (BACE1) levels were also increased, and the level of inactivated glycogen synthase kinase-3β (GSK3β) (pSer9) was decreased in the hippocampi of AD mice subjected to footshock with SRs. Furthermore, the numbers of cholinergic neurons in the medial septum/diagonal band of Broca (MS/DB) and noradrenergic neurons in the locus coeruleus (LC) were also decreased in the 3×Tg-AD mice under footshock with SRs. These biochemical hallmarks and pathological presentations were all alleviated by the semi-acute administration of NaHS in the AD mice. Together, these findings suggest that footshock with SRs induces the impairment of spatial cognition and emotion, which involve pathological changes in the peripheral and central systems, including the hippocampus, MS/DB, LC, and BLA, and that the administration of NaHS may be a candidate strategy to ameliorate the progression of neurodegeneration.
Collapse
Affiliation(s)
- Hei-Jen Huang
- Department of Nursing, Mackay Junior College of Medicine, Nursing and Management Taipei, Taiwan
| | - Shu-Ling Chen
- Department of Life Science, National Taiwan Normal University Taipei, Taiwan
| | - Hsiu Mei Hsieh-Li
- Department of Life Science, National Taiwan Normal University Taipei, Taiwan
| |
Collapse
|
275
|
Sotiropoulos I, Sousa N. Tau as the Converging Protein between Chronic Stress and Alzheimer's Disease Synaptic Pathology. NEURODEGENER DIS 2015; 16:22-5. [DOI: 10.1159/000440844] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 09/03/2015] [Indexed: 11/19/2022] Open
|
276
|
Wegmann S, Maury EA, Kirk MJ, Saqran L, Roe A, DeVos SL, Nicholls S, Fan Z, Takeda S, Cagsal-Getkin O, William CM, Spires-Jones TL, Pitstick R, Carlson GA, Pooler AM, Hyman BT. Removing endogenous tau does not prevent tau propagation yet reduces its neurotoxicity. EMBO J 2015; 34:3028-41. [PMID: 26538322 DOI: 10.15252/embj.201592748] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 10/02/2015] [Indexed: 12/22/2022] Open
Abstract
In Alzheimer's disease and tauopathies, tau protein aggregates into neurofibrillary tangles that progressively spread to synaptically connected brain regions. A prion-like mechanism has been suggested: misfolded tau propagating through the brain seeds neurotoxic aggregation of soluble tau in recipient neurons. We use transgenic mice and viral tau expression to test the hypotheses that trans-synaptic tau propagation, aggregation, and toxicity rely on the presence of endogenous soluble tau. Surprisingly, mice expressing human P301Ltau in the entorhinal cortex showed equivalent tau propagation and accumulation in recipient neurons even in the absence of endogenous tau. We then tested whether the lack of endogenous tau protects against misfolded tau aggregation and toxicity, a second prion model paradigm for tau, using P301Ltau-overexpressing mice with severe tangle pathology and neurodegeneration. Crossed onto tau-null background, these mice had similar tangle numbers but were protected against neurotoxicity. Therefore, misfolded tau can propagate across neural systems without requisite templated misfolding, but the absence of endogenous tau markedly blunts toxicity. These results show that tau does not strictly classify as a prion protein.
Collapse
Affiliation(s)
- Susanne Wegmann
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Eduardo A Maury
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Molly J Kirk
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Lubna Saqran
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Allyson Roe
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Sarah L DeVos
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Samantha Nicholls
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Zhanyun Fan
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Shuko Takeda
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Ozge Cagsal-Getkin
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Christopher M William
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Tara L Spires-Jones
- Centre for Cognitive and Neural Systems and Euan MacDonald Centre, University of Edinburgh, Edinburgh, UK
| | | | | | - Amy M Pooler
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
277
|
Tampellini D. Synaptic activity and Alzheimer's disease: a critical update. Front Neurosci 2015; 9:423. [PMID: 26582973 PMCID: PMC4631827 DOI: 10.3389/fnins.2015.00423] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 10/19/2015] [Indexed: 11/16/2022] Open
Abstract
Synapses have been known for many years to be the crucial target of pathology in different forms of dementia, in particular Alzheimer's disease (AD). Synapses and their appropriate activation or inhibition are fundamental for the proper brain function. Alterations in synaptic/neuronal activity and brain metabolism are considered among the earliest symptoms linked to the progression of AD, and lead to a central question in AD research: what is the role played by synaptic activity in AD pathogenesis? Intriguingly, in the last decade, important studies demonstrated that the state of activation of synapses affects the homeostasis of beta-amyloid (Aβ) and tau, both of which aggregate and accumulate during AD, and are involved in neuronal dysfunction. In this review we aim to summarize the up-to-date data linking synaptic/neuronal activity with Aβ and tau; moreover, we also intend to provide a critical overview on brain activity alterations in AD, and their role in the disease's pathophysiology.
Collapse
Affiliation(s)
- Davide Tampellini
- U 1195 Institut National de la Santé et de la Recherche Médicale, Université Paris Sud, Université Paris-Saclay Le Kremlin-Bicêtre, France
| |
Collapse
|
278
|
Jadhav S, Cubinkova V, Zimova I, Brezovakova V, Madari A, Cigankova V, Zilka N. Tau-mediated synaptic damage in Alzheimer's disease. Transl Neurosci 2015; 6:214-226. [PMID: 28123806 PMCID: PMC4936631 DOI: 10.1515/tnsci-2015-0023] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/04/2015] [Indexed: 12/16/2022] Open
Abstract
Synapses are the principal sites for chemical communication between neurons and are essential for performing the dynamic functions of the brain. In Alzheimer’s disease and related tauopathies, synapses are exposed to disease modified protein tau, which may cause the loss of synaptic contacts that culminate in dementia. In recent decades, structural, transcriptomic and proteomic studies suggest that Alzheimer’s disease represents a synaptic disorder. Tau neurofibrillary pathology and synaptic loss correlate well with cognitive impairment in these disorders. Moreover, regional distribution and the load of neurofibrillary lesions parallel the distribution of the synaptic loss. Several transgenic models of tauopathy expressing various forms of tau protein exhibit structural synaptic deficits. The pathological tau proteins cause the dysregulation of synaptic proteome and lead to the functional abnormalities of synaptic transmission. A large body of evidence suggests that tau protein plays a key role in the synaptic impairment of human tauopathies.
Collapse
Affiliation(s)
- Santosh Jadhav
- Institute of Neuroimmunology, Slovak Academy of Sciences, Centre of Excellence for Alzheimer's Disease and Related Disorders, Dubravska 9, 845 10 Bratislava, Slovak Republic
| | - Veronika Cubinkova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Centre of Excellence for Alzheimer's Disease and Related Disorders, Dubravska 9, 845 10 Bratislava, Slovak Republic; Axon Neuroscience SE, Grosslingova 45, Bratislava, Slovak Republic
| | - Ivana Zimova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Centre of Excellence for Alzheimer's Disease and Related Disorders, Dubravska 9, 845 10 Bratislava, Slovak Republic; Axon Neuroscience SE, Grosslingova 45, Bratislava, Slovak Republic
| | - Veronika Brezovakova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Centre of Excellence for Alzheimer's Disease and Related Disorders, Dubravska 9, 845 10 Bratislava, Slovak Republic
| | - Aladar Madari
- Small animal clinic, University of Veterinary Medicine and Pharmacy, Komenskeho 73, Kosice, Slovak Republic
| | - Viera Cigankova
- Department of Anatomy, Histology and Physiology, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovak Republic
| | - Norbert Zilka
- Institute of Neuroimmunology, Slovak Academy of Sciences, Centre of Excellence for Alzheimer's Disease and Related Disorders, Dubravska 9, 845 10 Bratislava, Slovak Republic; Axon Neuroscience SE, Grosslingova 45, Bratislava, Slovak Republic
| |
Collapse
|
279
|
Deger JM, Gerson JE, Kayed R. The interrelationship of proteasome impairment and oligomeric intermediates in neurodegeneration. Aging Cell 2015; 14:715-24. [PMID: 26053162 PMCID: PMC4568959 DOI: 10.1111/acel.12359] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2015] [Indexed: 01/07/2023] Open
Abstract
Various neurodegenerative diseases are characterized by the accumulation of amyloidogenic proteins such as tau, α-synuclein, and amyloid-β. Prior to the formation of these stable aggregates, intermediate species of the respective proteins-oligomers-appear. Recently acquired data have shown that oligomers may be the most toxic and pathologically significant to neurodegenerative diseases such as Alzheimer's and Parkinson's. The covalent modification of these oligomers may be critically important for biological processes in disease. Ubiquitin and small ubiquitin-like modifiers are the commonly used tags for degradation. While the modification of large amyloid aggregates by ubiquitination is well established, very little is known about the role ubiquitin may play in oligomer processing and the importance of the more recently discovered sumoylation. Many proteins involved in neurodegeneration have been found to be sumoylated, notably tau protein in brains afflicted with Alzheimer's. This evidence suggests that while the cell may not have difficulty recognizing dangerous proteins, in brains afflicted with neurodegenerative disease, the proteasome may be unable to properly digest the tagged proteins. This would allow toxic aggregates to develop, leading to even more proteasome impairment in a snowball effect that could explain the exponential progression in most neurodegenerative diseases. A better understanding of the covalent modifications of oligomers could have a huge impact on the development of therapeutics for neurodegenerative diseases. This review will focus on the proteolysis of tau and other amyloidogenic proteins induced by covalent modification, and recent findings suggesting a relationship between tau oligomers and sumoylation.
Collapse
Affiliation(s)
- Jennifer M. Deger
- Departments of Neurology, Neuroscience and Cell Biology Mitchell Center for Neurodegenerative Diseases University of Texas Medical Branch 301 University Building, Medical Research Building Galveston TX 77555‐1045 USA
| | - Julia E. Gerson
- Departments of Neurology, Neuroscience and Cell Biology Mitchell Center for Neurodegenerative Diseases University of Texas Medical Branch 301 University Building, Medical Research Building Galveston TX 77555‐1045 USA
| | - Rakez Kayed
- Departments of Neurology, Neuroscience and Cell Biology Mitchell Center for Neurodegenerative Diseases University of Texas Medical Branch 301 University Building, Medical Research Building Galveston TX 77555‐1045 USA
| |
Collapse
|
280
|
Min SW, Chen X, Tracy TE, Li Y, Zhou Y, Wang C, Shirakawa K, Minami SS, Defensor E, Mok SA, Sohn PD, Schilling B, Cong X, Ellerby L, Gibson BW, Johnson J, Krogan N, Shamloo M, Gestwicki J, Masliah E, Verdin E, Gan L. Critical role of acetylation in tau-mediated neurodegeneration and cognitive deficits. Nat Med 2015; 21:1154-62. [PMID: 26390242 PMCID: PMC4598295 DOI: 10.1038/nm.3951] [Citation(s) in RCA: 390] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 08/20/2015] [Indexed: 12/12/2022]
Abstract
Tauopathies, including frontotemporal dementia (FTD) and Alzheimer's disease (AD), are neurodegenerative diseases in which tau fibrils accumulate. Recent evidence supports soluble tau species as the major toxic species. How soluble tau accumulates and causes neurodegeneration remains unclear. Here we identify tau acetylation at Lys174 (K174) as an early change in AD brains and a critical determinant in tau homeostasis and toxicity in mice. The acetyl-mimicking mutant K174Q slows tau turnover and induces cognitive deficits in vivo. Acetyltransferase p300-induced tau acetylation is inhibited by salsalate and salicylate, which enhance tau turnover and reduce tau levels. In the PS19 transgenic mouse model of FTD, administration of salsalate after disease onset inhibited p300 activity, lowered levels of total tau and tau acetylated at K174, rescued tau-induced memory deficits and prevented hippocampal atrophy. The tau-lowering and protective effects of salsalate were diminished in neurons expressing K174Q tau. Targeting tau acetylation could be a new therapeutic strategy against human tauopathies.
Collapse
Affiliation(s)
- Sang-Won Min
- Gladstone Institute of Neurological Disease, San Francisco, California, USA.,Department of Neurology, University of California, San Francisco, San Francisco, California, USA
| | - Xu Chen
- Gladstone Institute of Neurological Disease, San Francisco, California, USA.,Department of Neurology, University of California, San Francisco, San Francisco, California, USA
| | - Tara E Tracy
- Gladstone Institute of Neurological Disease, San Francisco, California, USA.,Department of Neurology, University of California, San Francisco, San Francisco, California, USA
| | - Yaqiao Li
- Gladstone Institute of Neurological Disease, San Francisco, California, USA
| | - Yungui Zhou
- Gladstone Institute of Neurological Disease, San Francisco, California, USA
| | - Chao Wang
- Gladstone Institute of Neurological Disease, San Francisco, California, USA.,Department of Neurology, University of California, San Francisco, San Francisco, California, USA
| | - Kotaro Shirakawa
- Gladstone Institute of Virology and Immunology, San Francisco, California, USA
| | - S Sakura Minami
- Gladstone Institute of Neurological Disease, San Francisco, California, USA.,Department of Neurology, University of California, San Francisco, San Francisco, California, USA
| | - Erwin Defensor
- Stanford Institute for Neuro-Innovation and Translational Neurosciences, Stanford University School of Medicine, Stanford, California, USA
| | - Sue Ann Mok
- Department of Pharmaceutical Chemistry, Institute for Neurodegenerative Disease, University of California, San Francisco, San Francisco, California, USA
| | - Peter Dongmin Sohn
- Gladstone Institute of Neurological Disease, San Francisco, California, USA.,Neuroscience Graduate Program, University of California, San Francisco, San Francisco, California, USA
| | | | - Xin Cong
- Buck Institute for Research on Aging, Novato, California, USA
| | - Lisa Ellerby
- Buck Institute for Research on Aging, Novato, California, USA
| | | | - Jeffrey Johnson
- Gladstone Institute of Cardiovascular Disease, San Francisco, California, USA
| | - Nevan Krogan
- Gladstone Institute of Cardiovascular Disease, San Francisco, California, USA
| | - Mehrdad Shamloo
- Stanford Institute for Neuro-Innovation and Translational Neurosciences, Stanford University School of Medicine, Stanford, California, USA
| | - Jason Gestwicki
- Department of Pharmaceutical Chemistry, Institute for Neurodegenerative Disease, University of California, San Francisco, San Francisco, California, USA
| | - Eliezer Masliah
- Department of Neuroscience, University of California, San Diego, San Diego, California, USA
| | - Eric Verdin
- Gladstone Institute of Virology and Immunology, San Francisco, California, USA
| | - Li Gan
- Gladstone Institute of Neurological Disease, San Francisco, California, USA.,Department of Neurology, University of California, San Francisco, San Francisco, California, USA.,Neuroscience Graduate Program, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
281
|
Violet M, Chauderlier A, Delattre L, Tardivel M, Chouala MS, Sultan A, Marciniak E, Humez S, Binder L, Kayed R, Lefebvre B, Bonnefoy E, Buée L, Galas MC. Prefibrillar Tau oligomers alter the nucleic acid protective function of Tau in hippocampal neurons in vivo. Neurobiol Dis 2015; 82:540-551. [PMID: 26385829 DOI: 10.1016/j.nbd.2015.09.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Revised: 07/09/2015] [Accepted: 09/13/2015] [Indexed: 01/05/2023] Open
Abstract
The accumulation of DNA and RNA oxidative damage is observed in cortical and hippocampal neurons from Alzheimer's disease (AD) brains at early stages of pathology. We recently reported that Tau is a key nuclear player in the protection of neuronal nucleic acid integrity in vivo under physiological conditions and hyperthermia, a strong inducer of oxidative stress. In a mouse model of tauopathy (THY-Tau22), we demonstrate that hyperthermia selectively induces nucleic acid oxidative damage and nucleic acid strand breaks in the nucleus and cytoplasm of hippocampal neurons that display early Tau phosphorylation but no Tau fibrils. Nucleic acid-damaged neurons were exclusively immunoreactive for prefibrillar Tau oligomers. A similar association between prefibrillar Tau oligomers and nucleic acid oxidative damage was observed in AD brains. Pretreatment with Methylene Blue (MB), a Tau aggregation inhibitor and a redox cycler, reduced hyperthermia-induced Tau oligomerization as well as nucleic acid damage. This study clearly highlights the existence of an early and critical time frame for hyperthermia-induced Tau oligomerization, which most likely occurs through increased oxidative stress, and nucleic acid vulnerability during the progression of Tau pathology. These results suggest that at early stages of AD, Tau oligomerization triggers the loss of the nucleic acid protective function of monomeric Tau. This study highlights the existence of a short therapeutic window in which to prevent the formation of pathological forms of Tau and their harmful consequences on nucleic acid integrity during the progression of Tau pathology.
Collapse
Affiliation(s)
- Marie Violet
- Inserm, UMRS1172, JPArc, Alzheimer & Tauopathies, 1 rue Polonovski, 59045 Lille, France; Université de Lille, Faculté de Médecine, Lille, France; CHRU, Memory Clinic, Lille, France
| | - Alban Chauderlier
- Inserm, UMRS1172, JPArc, Alzheimer & Tauopathies, 1 rue Polonovski, 59045 Lille, France; Université de Lille, Faculté de Médecine, Lille, France; CHRU, Memory Clinic, Lille, France
| | - Lucie Delattre
- Inserm, UMRS1172, JPArc, Alzheimer & Tauopathies, 1 rue Polonovski, 59045 Lille, France; Université de Lille, Faculté de Médecine, Lille, France; CHRU, Memory Clinic, Lille, France
| | - Meryem Tardivel
- Inserm, UMRS1172, JPArc, Alzheimer & Tauopathies, 1 rue Polonovski, 59045 Lille, France; Université de Lille, Faculté de Médecine, Lille, France; CHRU, Memory Clinic, Lille, France
| | - Meliza Sendid Chouala
- Inserm, UMRS1172, JPArc, Alzheimer & Tauopathies, 1 rue Polonovski, 59045 Lille, France; Université de Lille, Faculté de Médecine, Lille, France; CHRU, Memory Clinic, Lille, France
| | - Audrey Sultan
- Inserm, UMRS1172, JPArc, Alzheimer & Tauopathies, 1 rue Polonovski, 59045 Lille, France; Université de Lille, Faculté de Médecine, Lille, France; CHRU, Memory Clinic, Lille, France
| | - Elodie Marciniak
- Inserm, UMRS1172, JPArc, Alzheimer & Tauopathies, 1 rue Polonovski, 59045 Lille, France; Université de Lille, Faculté de Médecine, Lille, France; CHRU, Memory Clinic, Lille, France
| | - Sandrine Humez
- Inserm, UMRS1172, JPArc, Alzheimer & Tauopathies, 1 rue Polonovski, 59045 Lille, France; Université de Lille, Faculté de Médecine, Lille, France; CHRU, Memory Clinic, Lille, France
| | - Lester Binder
- Department of Translational Science & Molecular Medicine, College of Human Medicine, Michigan State University, 333 Bostwick Ave. NE, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Rakez Kayed
- Department of Neurology, George and Cynthia Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Blvd, Medical Research Building, Room 10.138C, Galveston, TX 77555-1045, USA; Department of Neuroscience & Cell Biology, George and Cynthia Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Blvd, Medical Research Building, Room 10.138C, Galveston, TX 77555-1045, USA
| | - Bruno Lefebvre
- Inserm, UMRS1172, JPArc, Alzheimer & Tauopathies, 1 rue Polonovski, 59045 Lille, France; Université de Lille, Faculté de Médecine, Lille, France; CHRU, Memory Clinic, Lille, France
| | - Eliette Bonnefoy
- Inserm UMRS 1007, Université Paris Descartes, 45 rue des Saints Pères, 75006 Paris Cedex 06, France
| | - Luc Buée
- Inserm, UMRS1172, JPArc, Alzheimer & Tauopathies, 1 rue Polonovski, 59045 Lille, France; Université de Lille, Faculté de Médecine, Lille, France; CHRU, Memory Clinic, Lille, France
| | - Marie-Christine Galas
- Inserm, UMRS1172, JPArc, Alzheimer & Tauopathies, 1 rue Polonovski, 59045 Lille, France; Université de Lille, Faculté de Médecine, Lille, France; CHRU, Memory Clinic, Lille, France.
| |
Collapse
|
282
|
Grüninger F. Invited review: Drug development for tauopathies. Neuropathol Appl Neurobiol 2015; 41:81-96. [PMID: 25354646 DOI: 10.1111/nan.12192] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 10/27/2014] [Indexed: 12/18/2022]
Abstract
Many different approaches to treating tauopathies are currently being explored, with a few compounds already in clinical development (including small molecules such as anti-aggregation compound LMTX and active vaccines AADvac1 and ACI-35). This review aims to summarize the status of the clinical candidates and to highlight the emerging areas of research that hold promise for drug development. Tau is post-translationally modified in several different ways (phosphorylated, acetylated, glycosylated and truncated). The extent of these modifications can be manipulated to influence tau aggregation state and pathogenesis and the enzymes involved provide tractable targets for drug intervention. In addition, modulation of tau expression levels is an attractive therapeutic approach. Finally, the recently described prion-like spreading of tau between cells opens up novel avenues from the tau drug development perspective. The review compares the merits of small-molecule and antibody-based therapies and emphasizes the need for amenable clinical biomarkers for drug development, particularly PET imaging.
Collapse
Affiliation(s)
- F Grüninger
- Pharmaceutical Research and Early Development, NORD Disease & Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche AG, CH-4070, Basel, Switzerland
| |
Collapse
|
283
|
Henstridge CM, Jackson RJ, Kim JM, Herrmann AG, Wright AK, Harris SE, Bastin ME, Starr JM, Wardlaw J, Gillingwater TH, Smith C, McKenzie CA, Cox SR, Deary IJ, Spires-Jones TL. Post-mortem brain analyses of the Lothian Birth Cohort 1936: extending lifetime cognitive and brain phenotyping to the level of the synapse. Acta Neuropathol Commun 2015; 3:53. [PMID: 26335101 PMCID: PMC4559320 DOI: 10.1186/s40478-015-0232-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 08/19/2015] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Non-pathological, age-related cognitive decline varies markedly between individuals andplaces significant financial and emotional strain on people, their families and society as a whole.Understanding the differential age-related decline in brain function is critical not only for the development oftherapeutics to prolong cognitive health into old age, but also to gain insight into pathological ageing suchas Alzheimer's disease. The Lothian Birth Cohort of 1936 (LBC1936) comprises a rare group of people forwhom there are childhood cognitive test scores and longitudinal cognitive data during older age, detailedstructural brain MRI, genome-wide genotyping, and a multitude of other biological, psycho-social, andepidemiological data. Synaptic integrity is a strong indicator of cognitive health in the human brain;however, until recently, it was prohibitively difficult to perform detailed analyses of synaptic and axonalstructure in human tissue sections. We have adapted a novel method of tissue preparation at autopsy toallow the study of human synapses from the LBC1936 cohort in unprecedented morphological andmolecular detail, using the high-resolution imaging techniques of array tomography and electronmicroscopy. This allows us to analyze the brain at sub-micron resolution to assess density, proteincomposition and health of synapses. Here we present data from the first donated LBC1936 brain andcompare our findings to Alzheimer's diseased tissue to highlight the differences between healthy andpathological brain ageing. RESULTS Our data indicates that compared to an Alzheimer's disease patient, the cognitively normalLBC1936 participant had a remarkable degree of preservation of synaptic structures. However,morphological and molecular markers of degeneration in areas of the brain associated with cognition(prefrontal cortex, anterior cingulate cortex, and superior temporal gyrus) were observed. CONCLUSIONS Our novel post-mortem protocol facilitates high-resolution neuropathological analysis of the well-characterized LBC1936 cohort, extending phenotyping beyond cognition and in vivo imaging to nowinclude neuropathological changes, at the level of single synapses. This approach offers an unprecedentedopportunity to study synaptic and axonal integrity during ageing and how it contributes to differences in agerelatedcognitive change.
Collapse
Affiliation(s)
- Christopher M Henstridge
- Centre for Cognitive and Neural Systems, University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Rosemary J Jackson
- Centre for Cognitive and Neural Systems, University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - JeeSoo M Kim
- Centre for Cognitive and Neural Systems, University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Abigail G Herrmann
- Centre for Cognitive and Neural Systems, University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Ann K Wright
- Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
| | - Sarah E Harris
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
- Medical Genetics Section, University of Edinburgh Centre for Genomic and Experimental Medicine and MRC Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - Mark E Bastin
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - John M Starr
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
- Geriatric Medicine Unit, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - Joanna Wardlaw
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Thomas H Gillingwater
- Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
| | - Colin Smith
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Chris-Anne McKenzie
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Simon R Cox
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
- Department of Psychology, CCACE, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
| | - Ian J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK.
- Department of Psychology, CCACE, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK.
| | - Tara L Spires-Jones
- Centre for Cognitive and Neural Systems, University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK.
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK.
| |
Collapse
|
284
|
Pinheiro S, Silva J, Mota C, Vaz-Silva J, Veloso A, Pinto V, Sousa N, Cerqueira J, Sotiropoulos I. Tau Mislocation in Glucocorticoid-Triggered Hippocampal Pathology. Mol Neurobiol 2015; 53:4745-53. [PMID: 26328538 DOI: 10.1007/s12035-015-9356-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 07/13/2015] [Indexed: 12/22/2022]
Abstract
The exposure to high glucocorticoids (GC) triggers neuronal atrophy and cognitive deficits, but the exact cellular mechanisms underlying the GC-associated dendritic remodeling and spine loss are still poorly understood. Previous studies have implicated sustained GC elevations in neurodegenerative mechanisms through GC-evoked hyperphosphorylation of the cytoskeletal protein Tau while Tau mislocation has recently been proposed as relevant in Alzheimer's disease (AD) pathology. In light of the dual cytoplasmic and synaptic role of Tau, this study monitored the impact of prolonged GC treatment on Tau intracellular localization and its phosphorylation status in different cellular compartments. We demonstrate, both by biochemical and ultrastructural analysis, that GC administration led to cytosolic and dendritic Tau accumulation in rat hippocampus, and triggered Tau hyperphosphorylation in epitopes related to its malfunction (Ser396/404) and cytoskeletal pathology (e.g., Thr231 and Ser262). In addition, we show, for the first time, that chronic GC administration also increased Tau levels in synaptic compartment; however, at the synapse, there was an increase in phosphorylation of Ser396/404, but a decrease of Thr231. These GC-triggered Tau changes were paralleled by reduced levels of synaptic scaffolding proteins such as PSD-95 and Shank proteins as well as reduced dendritic branching and spine loss. These in vivo findings add to our limited knowledge about the underlying mechanisms of GC-evoked synaptic atrophy and neuronal disconnection implicating Tau missorting in mechanism(s) of synaptic damage, beyond AD pathology.
Collapse
Affiliation(s)
- Sara Pinheiro
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus Gualtar, 4710-057, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joana Silva
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus Gualtar, 4710-057, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Cristina Mota
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus Gualtar, 4710-057, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - João Vaz-Silva
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus Gualtar, 4710-057, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana Veloso
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus Gualtar, 4710-057, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Vítor Pinto
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus Gualtar, 4710-057, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus Gualtar, 4710-057, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - João Cerqueira
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus Gualtar, 4710-057, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ioannis Sotiropoulos
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus Gualtar, 4710-057, Braga, Portugal. .,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
285
|
Yap YW, Llanos RM, La Fontaine S, Cater MA, Beart PM, Cheung NS. Comparative Microarray Analysis Identifies Commonalities in Neuronal Injury: Evidence for Oxidative Stress, Dysfunction of Calcium Signalling, and Inhibition of Autophagy-Lysosomal Pathway. Neurochem Res 2015; 41:554-67. [PMID: 26318862 DOI: 10.1007/s11064-015-1666-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 07/14/2015] [Accepted: 07/14/2015] [Indexed: 12/21/2022]
Abstract
Mitochondrial dysfunction, ubiquitin-proteasomal system impairment and excitotoxicity occur during the injury and death of neurons in neurodegenerative conditions. The aim of this work was to elucidate the cellular mechanisms that are universally altered by these conditions. Through overlapping expression profiles of rotenone-, lactacystin- and N-methyl-D-aspartate-treated cortical neurons, we have identified three affected biological processes that are commonly affected; oxidative stress, dysfunction of calcium signalling and inhibition of the autophagic-lysosomal pathway. These data provides many opportunities for therapeutic intervention in neurodegenerative conditions, where mitochondrial dysfunction, proteasomal inhibition and excitotoxicity are evident.
Collapse
Affiliation(s)
- Yann Wan Yap
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, VIC, 3125, Australia
| | - Roxana M Llanos
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, VIC, 3125, Australia
| | - Sharon La Fontaine
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, VIC, 3125, Australia.,Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Michael A Cater
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, VIC, 3125, Australia
| | - Philip M Beart
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Nam Sang Cheung
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, VIC, 3125, Australia.
| |
Collapse
|
286
|
Smolek T, Madari A, Farbakova J, Kandrac O, Jadhav S, Cente M, Brezovakova V, Novak M, Zilka N. Tau hyperphosphorylation in synaptosomes and neuroinflammation are associated with canine cognitive impairment. J Comp Neurol 2015; 524:874-95. [PMID: 26239295 DOI: 10.1002/cne.23877] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 07/28/2015] [Accepted: 07/30/2015] [Indexed: 12/24/2022]
Abstract
Canine cognitive impairment syndrome (CDS) represents a group of symptoms related to the aging of the canine brain. These changes ultimately lead to a decline of memory function and learning abilities, alteration of social interaction, impairment of normal housetraining, and changes in sleep-wake cycle and general activity. We have clinically examined 215 dogs, 28 of which underwent autopsy. With canine brains, we performed extensive analysis of pathological abnormalities characteristic of human Alzheimer's disease and frontotemporal lobar degeneration, including β-amyloid senile plaques, tau neurofibrillary tangles, and fused in sarcoma (FUS) and TAR DNA-binding protein 43 (TDP43) inclusions. Most demented dogs displayed senile plaques, mainly in the frontal and temporal cortex. Tau neurofibrillary inclusions were found in only one dog. They were identified with antibodies used to detect tau neurofibrillary lesions in the human brain. The inclusions were also positive for Gallyas silver staining. As in humans, they were distributed mainly in the entorhinal cortex, hippocampus, and temporal cortex. On the other hand, FUS and TDP43 aggregates were not present in any of the examined brain samples. We also found that CDS was characterized by the presence of reactive and senescent microglial cells in the frontal cortex. Our transcriptomic study revealed a significant dysregulation of genes involved in neuroinflammation. Finally, we analyzed tau phosphoproteome in the synaptosomes. Proteomic studies revealed a significant increase of hyperphosphorylated tau in synaptosomes of demented dogs compared with nondemented dogs. This study suggests that cognitive decline in dogs is related to the tau synaptic impairment and neuroinflammation. J. Comp. Neurol. 524:874-895, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Tomas Smolek
- Institute of Neuroimmunology, Slovak Academy of Sciences, 845 10, Bratislava, Slovak Republic
| | - Aladar Madari
- University of Veterinary Medicine and Pharmacy, 040 01, Kosice, Slovak Republic
| | - Jana Farbakova
- University of Veterinary Medicine and Pharmacy, 040 01, Kosice, Slovak Republic
| | - Ondrej Kandrac
- University of Veterinary Medicine and Pharmacy, 040 01, Kosice, Slovak Republic
| | - Santosh Jadhav
- Institute of Neuroimmunology, Slovak Academy of Sciences, 845 10, Bratislava, Slovak Republic
| | - Martin Cente
- Institute of Neuroimmunology, Slovak Academy of Sciences, 845 10, Bratislava, Slovak Republic.,Axon Neuroscience SE, 811 02, Bratislava, Slovak Republic
| | - Veronika Brezovakova
- Institute of Neuroimmunology, Slovak Academy of Sciences, 845 10, Bratislava, Slovak Republic
| | - Michal Novak
- Institute of Neuroimmunology, Slovak Academy of Sciences, 845 10, Bratislava, Slovak Republic.,Axon Neuroscience SE, 811 02, Bratislava, Slovak Republic
| | - Norbert Zilka
- Institute of Neuroimmunology, Slovak Academy of Sciences, 845 10, Bratislava, Slovak Republic.,Axon Neuroscience SE, 811 02, Bratislava, Slovak Republic.,Institute of Neuroimmunology, n.o., 811 02, Bratislava, Slovak Republic
| |
Collapse
|
287
|
Sequence-dependent abnormal aggregation of human Tau fragment in an inducible cell model. Biochim Biophys Acta Mol Basis Dis 2015; 1852:1561-73. [DOI: 10.1016/j.bbadis.2015.04.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 03/27/2015] [Accepted: 04/14/2015] [Indexed: 11/15/2022]
|
288
|
Dorostkar MM, Zou C, Blazquez-Llorca L, Herms J. Analyzing dendritic spine pathology in Alzheimer's disease: problems and opportunities. Acta Neuropathol 2015; 130:1-19. [PMID: 26063233 PMCID: PMC4469300 DOI: 10.1007/s00401-015-1449-5] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 06/02/2015] [Accepted: 06/02/2015] [Indexed: 12/22/2022]
Abstract
Synaptic failure is an immediate cause of cognitive decline and memory dysfunction in Alzheimer’s disease. Dendritic spines are specialized structures on neuronal processes, on which excitatory synaptic contacts take place and the loss of dendritic spines directly correlates with the loss of synaptic function. Dendritic spines are readily accessible for both in vitro and in vivo experiments and have, therefore, been studied in great detail in Alzheimer’s disease mouse models. To date, a large number of different mechanisms have been proposed to cause dendritic spine dysfunction and loss in Alzheimer’s disease. For instance, amyloid beta fibrils, diffusible oligomers or the intracellular accumulation of amyloid beta have been found to alter the function and structure of dendritic spines by distinct mechanisms. Furthermore, tau hyperphosphorylation and microglia activation, which are thought to be consequences of amyloidosis in Alzheimer’s disease, may also contribute to spine loss. Lastly, genetic and therapeutic interventions employed to model the disease and elucidate its pathogenetic mechanisms in experimental animals may cause alterations of dendritic spines on their own. However, to date none of these mechanisms have been translated into successful therapeutic approaches for the human disease. Here, we critically review the most intensely studied mechanisms of spine loss in Alzheimer’s disease as well as the possible pitfalls inherent in the animal models of such a complex neurodegenerative disorder.
Collapse
Affiliation(s)
- Mario M. Dorostkar
- />Ludwig-Maximilians University Munich, Center for Neuropathology and Prion Research, Feodor-Lynen-Str. 23, 81377 Munich, Germany
| | - Chengyu Zou
- />Ludwig-Maximilians University Munich, Center for Neuropathology and Prion Research, Feodor-Lynen-Str. 23, 81377 Munich, Germany
- />Graduate School of Systemic Neuroscience, Ludwig-Maximilians-University Munich, Munich, Germany
- />German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen-Str. 23, 81377 Munich, Germany
| | - Lidia Blazquez-Llorca
- />Ludwig-Maximilians University Munich, Center for Neuropathology and Prion Research, Feodor-Lynen-Str. 23, 81377 Munich, Germany
- />German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen-Str. 23, 81377 Munich, Germany
| | - Jochen Herms
- />German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen-Str. 23, 81377 Munich, Germany
- />Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
289
|
C-terminal neurogranin is increased in cerebrospinal fluid but unchanged in plasma in Alzheimer's disease. Alzheimers Dement 2015; 11:1461-1469. [PMID: 26092348 DOI: 10.1016/j.jalz.2015.05.012] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 01/27/2015] [Accepted: 05/09/2015] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Biomarkers monitoring synaptic degeneration/loss would be valuable for Alzheimer's disease (AD) diagnosis. Postsynaptic protein neurogranin may be a promising cerebrospinal fluid (CSF) biomarker but has not yet been evaluated as a plasma biomarker. METHODS Using an in-house designed prototype enzyme-linked immunosorbent assay (ELISA) targeting neurogranin C-terminally, we studied neurogranin in paired CSF/plasma samples of controls (n = 29) versus patients experiencing MCI, or dementia, due to AD (in total n = 59). RESULTS CSF neurogranin was increased in AD and positively correlated with CSF tau, whereas there was a negative relationship between CSF neurogranin (and tau) and CSF Aβ1-42/Aβ1-40. No differences were detected in plasma neurogranin between controls and AD. Also, there was no correlation between CSF and plasma neurogranin, excluding confounding effects of the latter. DISCUSSION This study strengthens the potential of neurogranin as an AD CSF biomarker, which now needs validation in larger studies. As tools, straightforward immunoassays can be used, as demonstrated by the described ELISA.
Collapse
|
290
|
Abstract
Tau belongs to the family of microtubule-associated proteins predominantly expressed in neurons where they play an important role in promoting microtubule assembly and stabilizing microtubules. In addition, tau proteins interact with other cytoskeletal elements to allow spacing between microtubules. Recent studies have shown that tau is also actively involved in regulating cell viability and activity. Translated from a single gene located on chromosome 17q21, six isoforms of tau are produced by alternative splicing in adult human brain. Due to multiple post-translational modifications, heterogeneous tau species with a wide range of apparent molecular masses have been observed by denaturing polyacrylamide-gel electrophoresis. Since tau gene mutations and abnormal post-translational modifications have been detected in over 20 neurodegenerative disorders, namely the tauopathies, tau has gained widespread attention as a target protein in Alzheimer's disease and other neurodegenerative disorders. In the present chapter, research progress regarding physiology and pathology of tau is reviewed, particularly in terms of the role of post-translational modification.
Collapse
|
291
|
Chang RYK, Etheridge N, Nouwens AS, Dodd PR. SWATH analysis of the synaptic proteome in Alzheimer's disease. Neurochem Int 2015; 87:1-12. [PMID: 25958317 DOI: 10.1016/j.neuint.2015.04.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 04/20/2015] [Accepted: 04/21/2015] [Indexed: 10/23/2022]
Abstract
Brain tissue from Alzheimer's disease patients exhibits synaptic degeneration in selected regions. Synaptic dysfunction occurs early in the disease and is a primary pathological target for treatment. The molecular mechanisms underlying this degeneration remain unknown. Quantifying the synaptic proteome in autopsy brain and comparing tissue from Alzheimer's disease cases and subjects with normal aging are critical to understanding the molecular mechanisms associated with Alzheimer pathology. We isolated synaptosomes from hippocampus and motor cortex so as to reduce sample complexity relative to whole-tissue homogenates. Synaptosomal extracts were subjected to strong cation exchange (SCX) fractionation to further partition sample complexity; each fraction received SWATH-based information-dependent acquisition to generate a comprehensive peptide-ion library. The expression of synaptic proteins from AD hippocampus and motor cortex was then compared between groups. A total of 2077 unique proteins were identified at a critical local false discovery rate <5%. Thirty of these, including 17 novel proteins, exhibited significant expression differences between cases and controls; these proteins are involved in cellular functions including structural maintenance, signal transduction, autophagy, oxidative stress, and proteasome activity, or they have synaptic-vesicle related or energy-related functions. Differentially expressed proteins were subjected to pathway analysis to identify protein-protein interactions. This revealed that the most perturbed molecular and cellular functions were cellular assembly and organization. Core analysis revealed RhoA signaling to be the top canonical pathway. Network analysis showed that differentially expressed proteins were related to cellular assembly and organization, and cellular function and maintenance. This is the first study to combine SCX fractionation with SWATH analysis. SWATH is a promising new technique that can greatly enhance protein identification in any proteome, and has many other benefits; however, there are limitations yet to be resolved.
Collapse
Affiliation(s)
| | - Naomi Etheridge
- School of Chemistry and Molecular Biosciences, University of Queensland, Australia
| | - Amanda S Nouwens
- School of Chemistry and Molecular Biosciences, University of Queensland, Australia
| | - Peter R Dodd
- School of Chemistry and Molecular Biosciences, University of Queensland, Australia.
| |
Collapse
|
292
|
Degradation of misfolded proteins in neurodegenerative diseases: therapeutic targets and strategies. Exp Mol Med 2015; 47:e147. [PMID: 25766616 PMCID: PMC4351408 DOI: 10.1038/emm.2014.117] [Citation(s) in RCA: 618] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 11/19/2014] [Indexed: 12/13/2022] Open
Abstract
Mammalian cells remove misfolded proteins using various proteolytic systems, including the ubiquitin (Ub)-proteasome system (UPS), chaperone mediated autophagy (CMA) and macroautophagy. The majority of misfolded proteins are degraded by the UPS, in which Ub-conjugated substrates are deubiquitinated, unfolded and cleaved into small peptides when passing through the narrow chamber of the proteasome. The substrates that expose a specific degradation signal, the KFERQ sequence motif, can be delivered to and degraded in lysosomes via the CMA. Aggregation-prone substrates resistant to both the UPS and the CMA can be degraded by macroautophagy, in which cargoes are segregated into autophagosomes before degradation by lysosomal hydrolases. Although most misfolded and aggregated proteins in the human proteome can be degraded by cellular protein quality control, some native and mutant proteins prone to aggregation into β-sheet-enriched oligomers are resistant to all known proteolytic pathways and can thus grow into inclusion bodies or extracellular plaques. The accumulation of protease-resistant misfolded and aggregated proteins is a common mechanism underlying protein misfolding disorders, including neurodegenerative diseases such as Huntington's disease (HD), Alzheimer's disease (AD), Parkinson's disease (PD), prion diseases and Amyotrophic Lateral Sclerosis (ALS). In this review, we provide an overview of the proteolytic pathways in neurons, with an emphasis on the UPS, CMA and macroautophagy, and discuss the role of protein quality control in the degradation of pathogenic proteins in neurodegenerative diseases. Additionally, we examine existing putative therapeutic strategies to efficiently remove cytotoxic proteins from degenerating neurons.
Collapse
|
293
|
Jadhav S, Katina S, Kovac A, Kazmerova Z, Novak M, Zilka N. Truncated tau deregulates synaptic markers in rat model for human tauopathy. Front Cell Neurosci 2015; 9:24. [PMID: 25755633 PMCID: PMC4337338 DOI: 10.3389/fncel.2015.00024] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 01/14/2015] [Indexed: 01/04/2023] Open
Abstract
Synaptic failure and neurofibrillary degeneration are two major neuropathological substrates of cognitive dysfunction in Alzheimer’s disease (AD). Only a few studies have demonstrated a direct relationship between these two AD hallmarks. To investigate tau mediated synaptic injury we used rat model of tauopathy that develops extensive neurofibrillary pathology in the cortex. Using fractionation of cortical synapses, we identified an increase in endogenous rat tau isoforms in presynaptic compartment, and their mis-sorting to the postsynaptic density (PSD). Truncated transgenic tau was distributed in both compartments exhibiting specific phospho-pattern that was characteristic for each synaptic compartment. In the presynaptic compartment, truncated tau was associated with impairment of dynamic stability of microtubules which could be responsible for reduction of synaptic vesicles. In the PSD, truncated tau lowered the levels of neurofilaments. Truncated tau also significantly decreased the synaptic levels of Aβ40 but not Aβ42. These data show that truncated tau differentially deregulates synaptic proteome in pre- and postsynaptic compartments. Importantly, we show that alteration of Aβ can arise downstream of truncated tau pathology.
Collapse
Affiliation(s)
- Santosh Jadhav
- Institute of Neuroimmunology, Slovak Academy of Sciences Bratislava, Slovak Republic
| | - Stanislav Katina
- Axon Neuroscience GmbH Bratislava, Slovak Republic ; Institute of Mathematics and Statistics, Masaryk University Brno, Czech Republic
| | - Andrej Kovac
- Axon Neuroscience GmbH Bratislava, Slovak Republic
| | - Zuzana Kazmerova
- Institute of Neuroimmunology, Slovak Academy of Sciences Bratislava, Slovak Republic
| | - Michal Novak
- Institute of Neuroimmunology, Slovak Academy of Sciences Bratislava, Slovak Republic ; Axon Neuroscience GmbH Bratislava, Slovak Republic
| | - Norbert Zilka
- Institute of Neuroimmunology, Slovak Academy of Sciences Bratislava, Slovak Republic ; Axon Neuroscience GmbH Bratislava, Slovak Republic
| |
Collapse
|
294
|
Corsetti V, Florenzano F, Atlante A, Bobba A, Ciotti MT, Natale F, Della Valle F, Borreca A, Manca A, Meli G, Ferraina C, Feligioni M, D'Aguanno S, Bussani R, Ammassari-Teule M, Nicolin V, Calissano P, Amadoro G. NH2-truncated human tau induces deregulated mitophagy in neurons by aberrant recruitment of Parkin and UCHL-1: implications in Alzheimer's disease. Hum Mol Genet 2015; 24:3058-81. [PMID: 25687137 DOI: 10.1093/hmg/ddv059] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 02/10/2015] [Indexed: 01/26/2023] Open
Abstract
Disarrangement in functions and quality control of mitochondria at synapses are early events in Alzheimer's disease (AD) pathobiology. We reported that a 20-22 kDa NH2-tau fragment mapping between 26 and 230 amino acids of the longest human tau isoform (aka NH2htau): (i) is detectable in cellular and animal AD models, as well in synaptic mitochondria and cerebrospinal fluids (CSF) from human AD subjects; (ii) is neurotoxic in primary hippocampal neurons; (iii) compromises the mitochondrial biology both directly, by inhibiting the ANT-1-dependent ADP/ATP exchange, and indirectly, by impairing their selective autophagic clearance (mitophagy). Here, we show that the extensive Parkin-dependent turnover of mitochondria occurring in NH2htau-expressing post-mitotic neurons plays a pro-death role and that UCHL-1, the cytosolic Ubiquitin-C-terminal hydrolase L1 which directs the physiological remodeling of synapses by controlling ubiquitin homeostasis, critically contributes to mitochondrial and synaptic failure in this in vitro AD model. Pharmacological or genetic suppression of improper mitophagy, either by inhibition of mitochondrial targeting to autophagosomes or by shRNA-mediated silencing of Parkin or UCHL-1 gene expression, restores synaptic and mitochondrial content providing partial but significant protection against the NH2htau-induced neuronal death. Moreover, in mitochondria from human AD synapses, the endogenous NH2htau is stably associated with Parkin and with UCHL-1. Taken together, our studies show a causative link between the excessive mitochondrial turnover and the NH2htau-induced in vitro neuronal death, suggesting that pathogenetic tau truncation may contribute to synaptic deterioration in AD by aberrant recruitment of Parkin and UCHL-1 to mitochondria making them more prone to detrimental autophagic clearance.
Collapse
Affiliation(s)
- V Corsetti
- Institute of Translational Pharmacology (IFT) - National Research Council (CNR), Via Fosso del Cavaliere 100-00133, Rome, Italy
| | - F Florenzano
- European Brain Research Institute (EBRI), Via del Fosso di Fiorano 64-65, 00143 Rome, Italy
| | - A Atlante
- Institute of Biomembranes and Bioenergetics (IBBE)-CNR, Via Amendola 165/A, 70126 Bari, Italy
| | - A Bobba
- Institute of Biomembranes and Bioenergetics (IBBE)-CNR, Via Amendola 165/A, 70126 Bari, Italy
| | - M T Ciotti
- Institute of Cellular Biology and Neuroscience (IBCN)-CNR, IRCSS Santa Lucia Foundation Via del Fosso di Fiorano 64-65, 00143 Rome, Italy
| | - F Natale
- Institute of Cellular Biology and Neuroscience (IBCN)-CNR, IRCSS Santa Lucia Foundation Via del Fosso di Fiorano 64-65, 00143 Rome, Italy
| | - F Della Valle
- Institute of Cellular Biology and Neuroscience (IBCN)-CNR, IRCSS Santa Lucia Foundation Via del Fosso di Fiorano 64-65, 00143 Rome, Italy
| | - A Borreca
- Institute of Cellular Biology and Neuroscience (IBCN)-CNR, IRCSS Santa Lucia Foundation Via del Fosso di Fiorano 64-65, 00143 Rome, Italy
| | - A Manca
- European Brain Research Institute (EBRI), Via del Fosso di Fiorano 64-65, 00143 Rome, Italy
| | - G Meli
- European Brain Research Institute (EBRI), Via del Fosso di Fiorano 64-65, 00143 Rome, Italy
| | - C Ferraina
- European Brain Research Institute (EBRI), Via del Fosso di Fiorano 64-65, 00143 Rome, Italy
| | - M Feligioni
- European Brain Research Institute (EBRI), Via del Fosso di Fiorano 64-65, 00143 Rome, Italy
| | - S D'Aguanno
- Institute of Cellular Biology and Neuroscience (IBCN)-CNR, IRCSS Santa Lucia Foundation Via del Fosso di Fiorano 64-65, 00143 Rome, Italy
| | - R Bussani
- UCO Pathological Anatomy and Histopathology Unit, Cattinara Hospital Strada di Fiume 447, 34149 Trieste, Italy and
| | - M Ammassari-Teule
- Institute of Cellular Biology and Neuroscience (IBCN)-CNR, IRCSS Santa Lucia Foundation Via del Fosso di Fiorano 64-65, 00143 Rome, Italy
| | - V Nicolin
- Department of Medical, Surgical and Health Science, University of Trieste, Strada di Fiume 449, 34149 Trieste, Italy
| | - P Calissano
- European Brain Research Institute (EBRI), Via del Fosso di Fiorano 64-65, 00143 Rome, Italy
| | - G Amadoro
- Institute of Translational Pharmacology (IFT) - National Research Council (CNR), Via Fosso del Cavaliere 100-00133, Rome, Italy European Brain Research Institute (EBRI), Via del Fosso di Fiorano 64-65, 00143 Rome, Italy
| |
Collapse
|
295
|
The calcium-binding protein EFhd2 modulates synapse formation in vitro and is linked to human dementia. J Neuropathol Exp Neurol 2015; 73:1166-82. [PMID: 25383639 PMCID: PMC4238966 DOI: 10.1097/nen.0000000000000138] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
EFhd2 is a calcium-binding adaptor protein that has been found to be associated with pathologically aggregated tau in the brain in Alzheimer disease and in a mouse model of frontotemporal dementia. EFhd2 has cell type-specific functions, including the modulation of intracellular calcium responses, actin dynamics, and microtubule transport. Here we report that EFhd2 protein and mRNA levels are reduced in human frontal cortex tissue affected by different types of dementia with and without tau pathology. We show that EFhd2 is mainly a neuronal protein in the brain and is abundant in the forebrain. Using short hairpin RNA-mediated knockdown of EFhd2 expression in cultured cortical neurons, we demonstrate that loss of EFhd2 affects the number of synapses developed in vitro whereas it does not alter neurite outgrowth per se. Our data suggest that EFhd2 is involved in the control of synapse development and maintenance through means other than affecting neurite development. The changes in expression levels observed in human dementias might, therefore, play a significant role in disease onset and progression of dementia, which is characterized by the loss of synapses.
Collapse
|
296
|
Sokolow S, Henkins KM, Bilousova T, Gonzalez B, Vinters HV, Miller CA, Cornwell L, Poon WW, Gylys KH. Pre-synaptic C-terminal truncated tau is released from cortical synapses in Alzheimer's disease. J Neurochem 2015; 133:368-79. [PMID: 25393609 DOI: 10.1111/jnc.12991] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 10/02/2014] [Accepted: 11/06/2014] [Indexed: 12/31/2022]
Abstract
The microtubule-associated protein tau has primarily been associated with axonal location and function; however, recent work shows tau release from neurons and suggests an important role for tau in synaptic plasticity. In our study, we measured synaptic levels of total tau using synaptosomes prepared from cryopreserved human postmortem Alzheimer's disease (AD) and control samples. Flow cytometry data show that a majority of synaptic terminals are highly immunolabeled with the total tau antibody (HT7) in both AD and control samples. Immunoblots of synaptosomal fractions reveal increases in a 20 kDa tau fragment and in tau dimers in AD synapses, and terminal-specific antibodies show that in many synaptosome samples tau lacks a C-terminus. Flow cytometry experiments to quantify the extent of C-terminal truncation reveal that only 15-25% of synaptosomes are positive for intact C-terminal tau. Potassium-induced depolarization demonstrates release of tau and tau fragments from pre-synaptic terminals, with increased release from AD compared to control samples. This study indicates that tau is normally highly localized to synaptic terminals in cortex where it is well-positioned to affect synaptic plasticity. Tau cleavage may facilitate tau aggregation as well as tau secretion and propagation of tau pathology from the pre-synaptic compartment in AD. Results demonstrate the abundance of tau, mainly C-terminal truncated tau, in synaptic terminals in aged control and in Alzheimer's disease (AD) samples. Tau fragments and dimers/oligomers are prominent in AD synapses. Following depolarization, tau release is potentiated in AD nerve terminals compared to aged controls. We hypothesize (i) endosomal release of the different tau peptides from AD synapses, and (ii) together with phosphorylation, fragmentation of synaptic tau exacerbates tau aggregation, synaptic dysfunction, and the spread of tau pathology in AD. Aβ = amyloid-beta.
Collapse
Affiliation(s)
- Sophie Sokolow
- UCLA School of Nursing, Los Angeles, California, USA; UCLA Brain Research Institute, Los Angeles, California, USA; UCLA Center for the Advancement of Gerontological Nursing Sciences, Los Angeles, California, USA; UCLA Clinical and Translational Science Institute, Los Angeles, California, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
297
|
Umeda T, Eguchi H, Kunori Y, Matsumoto Y, Taniguchi T, Mori H, Tomiyama T. Passive immunotherapy of tauopathy targeting pSer413-tau: a pilot study in mice. Ann Clin Transl Neurol 2015; 2:241-55. [PMID: 25815351 PMCID: PMC4369274 DOI: 10.1002/acn3.171] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 12/09/2014] [Accepted: 12/11/2014] [Indexed: 11/17/2022] Open
Abstract
Objective Cellular inclusions of hyperphosphorylated tau are a hallmark of tauopathies, which are neurodegenerative disorders that include Alzheimer's disease (AD). Active and passive immunization against hyperphosphorylated tau has been shown to attenuate phenotypes in model mice. We developed new monoclonal antibodies to hyperphosphorylated tau and sought high therapeutic efficacy for future clinical use. Methods Using more than 20 antibodies, we investigated which sites on tau are phosphorylated early and highly in the tauopathy mouse models tau609 and tau784. These mice display tau hyperphosphorylation, synapse loss, memory impairment at 6 months, and tangle formation and neuronal loss at 15 months. We generated mouse monoclonal antibodies to selected epitopes and examined their effects on memory and tau pathology in aged tau609 and tau784 mice by the Morris water maze and by histological and biochemical analyses. Results Immunohistochemical screening revealed that pSer413 is expressed early and highly. Monoclonal antibodies to pSer413 and to pSer396 (control) were generated. These antibodies specifically recognized pathological tau in AD brains but not normal tau in control brains according to Western blots. Representative anti-pSer413 and anti-pSer396 antibodies were injected intraperitoneally into 10–11- or 14-month-old mice once a week at 0.1 or 1 mg/shot 5 times. The anti-pSer413 antibody significantly improved memory, whereas the anti-pSer396 antibodies showed less effect. The cognitive improvement paralleled a reduction in the levels of tau hyperphosphorylation, tau oligomer accumulation, synapse loss, tangle formation, and neuronal loss. Interpretation These results indicate that pSer413 is a promising target in the treatment of tauopathy.
Collapse
Affiliation(s)
- Tomohiro Umeda
- Department of Neuroscience, Osaka City University Graduate School of Medicine Osaka, Japan
| | - Hiroshi Eguchi
- Teijin Institute for Bio-medical Research, Teijin Pharma Limited Hino, Japan
| | - Yuichi Kunori
- Teijin Institute for Bio-medical Research, Teijin Pharma Limited Hino, Japan
| | - Yoichi Matsumoto
- Teijin Institute for Bio-medical Research, Teijin Pharma Limited Hino, Japan
| | - Taizo Taniguchi
- Faculty of Pharmaceutical Sciences, Himeji Dokkyo University Himeji, Japan
| | - Hiroshi Mori
- Department of Neuroscience, Osaka City University Graduate School of Medicine Osaka, Japan
| | - Takami Tomiyama
- Department of Neuroscience, Osaka City University Graduate School of Medicine Osaka, Japan
| |
Collapse
|
298
|
Kukharsky MS, Ovchinnikov RK, Bachurin SO. Molecular aspects of the pathogenesis and current approaches to pharmacological correction of Alzheimer’s disease. Zh Nevrol Psikhiatr Im S S Korsakova 2015; 115:103-114. [DOI: 10.17116/jnevro20151156103-114] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
299
|
Cárdenas-Aguayo MDC, Gómez-Virgilio L, DeRosa S, Meraz-Ríos MA. The role of tau oligomers in the onset of Alzheimer's disease neuropathology. ACS Chem Neurosci 2014; 5:1178-91. [PMID: 25268947 DOI: 10.1021/cn500148z] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Most neurodegenerative diseases are characterized by the presence of protein aggregates. Alzheimer's disease (AD) is the most common cause of dementia in people over age 60. One of the histopathological hallmarks of AD is the presence of tau protein aggregates. Historically, it has been thought that paired helical filaments (PHFs) were the toxic form of tau that assembled to form neurofibrillary tangles (NFTs), but recently there has been evidence that tau oligomers, which form before PHFs and NFTs, could be the structures mediating neurodegeneration even before the fibrillary tau is deposited. Here, we discuss the recent advances in tau oligomer research, their implications on AD and other tauopathies, the mechanisms of tau turnover by the principal protein clearance systems (the proteasome and autophagy), and the potential use of tau oligomers as drug targets for the development of new therapeutic approaches.
Collapse
Affiliation(s)
- María del Carmen Cárdenas-Aguayo
- Molecular
Biomedicine Department, CINVESTAV-IPN, Ave. Politécnico 2508, Colonia
San Pedro Zacatenco, México City, D.F. 07360, México
| | - Laura Gómez-Virgilio
- Molecular
Biomedicine Department, CINVESTAV-IPN, Ave. Politécnico 2508, Colonia
San Pedro Zacatenco, México City, D.F. 07360, México
| | - Steven DeRosa
- Center
for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, New York 10962, United States
| | - Marco Antonio Meraz-Ríos
- Molecular
Biomedicine Department, CINVESTAV-IPN, Ave. Politécnico 2508, Colonia
San Pedro Zacatenco, México City, D.F. 07360, México
| |
Collapse
|
300
|
Tian H, Davidowitz E, Lopez P, He P, Schulz P, Moe J, Sierks MR. Isolation and characterization of antibody fragments selective for toxic oligomeric tau. Neurobiol Aging 2014; 36:1342-55. [PMID: 25616912 DOI: 10.1016/j.neurobiolaging.2014.12.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 11/27/2014] [Accepted: 12/04/2014] [Indexed: 11/20/2022]
Abstract
Oligomeric tau species are important in the onset and progression of Alzheimer's disease (AD), as they are neurotoxic and can propagate tau-tangle pathology. Therefore, reagents that selectively recognize different key morphologies of tau are needed to help define the role of tau in AD and related diseases. We utilized a biopanning protocol that combines the binding diversity of phage-displayed antibody libraries with the powerful imaging capability of atomic force microscopy to isolate single-chain antibody fragments (scFvs) that selectively bind toxic oligomeric tau. We isolated 3 different antibody fragments that bind oligomeric but not monomeric or fibrillar tau. The scFvs differentiate brain tissue homogenates of both 3×TG and tau-AD mice from wild-type mice, detecting oligomeric tau at much earlier ages than when neurofibrillary tangles are typically detected. The scFvs also distinguish human postmortem AD brain tissue from cognitively normal postmortem human brain tissue, demonstrating the potential of this approach for developing biomarkers for early detection and progression of AD.
Collapse
Affiliation(s)
- Huilai Tian
- Department of Chemical Engineering, Arizona State University, Tempe, AZ, USA
| | | | | | - Ping He
- Department of Chemical Engineering, Arizona State University, Tempe, AZ, USA
| | - Philip Schulz
- Department of Chemical Engineering, Arizona State University, Tempe, AZ, USA
| | | | - Michael R Sierks
- Department of Chemical Engineering, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|