251
|
Kilmer CE, Battistoni CM, Cox A, Breur GJ, Panitch A, Liu JC. Collagen Type I and II Blend Hydrogel with Autologous Mesenchymal Stem Cells as a Scaffold for Articular Cartilage Defect Repair. ACS Biomater Sci Eng 2020; 6:3464-3476. [PMID: 33463160 PMCID: PMC8287628 DOI: 10.1021/acsbiomaterials.9b01939] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Collagen type II is a promising material to repair cartilage defects since it is a major component of articular cartilage and plays a key role in chondrocyte function. This study investigated the chondrogenic differentiation of bone marrow-derived mesenchymal stem cells (MSCs) embedded within a 3:1 collagen type I to II blend (Col I/II) hydrogel or an all collagen type I (Col I) hydrogel. Glycosaminoglycan (GAG) production in Col I/II hydrogels was statistically higher than that in Col I hydrogels or pellet culture, and these results suggested that adding collagen type II promoted GAG production. Col I/II hydrogels had statistically lower alkaline phosphatase (AP) activity than pellets cultured in a chondrogenic medium. The ability of MSCs encapsulated in Col I/II hydrogels to repair cartilage defects was investigated by creating two cartilage defects in the femurs of rabbits. After 13 weeks, histochemical staining suggested that Col I/II blend hydrogels provided favorable conditions for cartilage repair. Histological scoring revealed a statistically higher cartilage repair score for the Col I/II hydrogels compared to either the Col I hydrogels or empty defect controls. Results from this study suggest that there is clinical value in the cartilage repair capabilities of our Col I/II hydrogel with encapsulated MSCs.
Collapse
Affiliation(s)
- Claire E. Kilmer
- Davidson School of Chemical Engineering, Purdue University,
West Lafayette, IN, 47907, USA
| | - Carly M. Battistoni
- Davidson School of Chemical Engineering, Purdue University,
West Lafayette, IN, 47907, USA
| | - Abigail Cox
- Department of Comparative Pathobiology, Purdue University,
West Lafayette, IN, 47907, USA
| | - Gert J. Breur
- Department of Veterinary Clinical Sciences, Purdue
University, West Lafayette, IN, 47907, USA
| | - Alyssa Panitch
- Weldon School of Biomedical Engineering, Purdue University,
West Lafayette, IN, 47907, USA
- School of Biomedical Engineering, University of California
Davis, Davis, CA, 95616, USA
| | - Julie C. Liu
- Davidson School of Chemical Engineering, Purdue University,
West Lafayette, IN, 47907, USA
- Weldon School of Biomedical Engineering, Purdue University,
West Lafayette, IN, 47907, USA
| |
Collapse
|
252
|
Lavanya K, Chandran SV, Balagangadharan K, Selvamurugan N. Temperature- and pH-responsive chitosan-based injectable hydrogels for bone tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110862. [DOI: 10.1016/j.msec.2020.110862] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/08/2020] [Accepted: 03/16/2020] [Indexed: 01/05/2023]
|
253
|
Lara-Rico R, Claudio-Rizo JA, Múzquiz-Ramos EM, Lopez-Badillo CM. Hidrogeles de colágeno acoplados con hidroxiapatita para aplicaciones en ingeniería tisular. TIP REVISTA ESPECIALIZADA EN CIENCIAS QUÍMICO-BIOLÓGICAS 2020. [DOI: 10.22201/fesz.23958723e.2020.0.224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Los hidrogeles basados en colágeno son redes tridimensionales (3D) con la capacidad de absorber agua y una alta biocompatibilidad para utilizarlos en la reparación de tejidos dañados. Estos materiales presentan pobres propiedades mecánicas y velocidades de degradación rápidas, limitando su aplicación a estrategias de ingeniería tisular y biomedicina; por ésto, la incorporación de fases inorgánicas en la matriz 3D del colágeno como la hidroxiapatita ha contribuido en la mejora de sus propiedades, incrementado la eficiencia de los hidrogeles híbridos obtenidos. Este trabajo, presenta las contribuciones más relevantes relacionadas con los sistemas de hidrogeles basados en colágeno y partículas de hidroxiapatita dispersas dentro de la matriz colagénica, lo que evidencia que la combinación de los materiales no altera la biocompatibilidad y biodegradabilidad típicas del colágeno, permitiendo la adhesión, proliferación, crecimiento celular y control del metabolismo de las células implicadas en los procesos de una reparación ósea, presentando a los hidrogeles como una estrategia para su uso potencial en la ingeniería tisular.
Collapse
|
254
|
Wancura MM, Talanker M, Toubbeh S, Bryan A, Cosgriff-Hernandez E. Bioactive hydrogel coatings of complex substrates using diffusion-mediated redox initiation. J Mater Chem B 2020; 8:4289-4298. [PMID: 32322860 PMCID: PMC9207961 DOI: 10.1039/d0tb00055h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Hydrogels have long been established as materials with tunable stiffness and chemistry that enable controlled cellular interactions. When applied as coatings, hydrogels can be used to introduce biofunctionality to medical devices with minimal effect on bulk properties. However, it remains challenging to uniformly apply hydrogel coatings to three dimensional geometries without substantially changing the manufacturing process and potentially affecting device function. Herein, we report a new redox-based crosslinking method for applying conformable hydrogel coatings with tunable thickness and chemistry. This new diffusion-mediated strategy of redox initiation and hydrogel crosslinking enabled coating of a variety of three dimensional substrates without changing the primary fabrication process. Following adsorption of the reducing agent to the construct, hydrogel coating thickness was readily controlled by immersion time with desorption and diffusion of the reducing agent initiating hydrogel crosslinking from the surface. The process was used to generate a range of hydrogel properties by varying the macromer molecular weight and concentration. In addition, we demonstrated that these coatings can be applied sequentially to generate multilayered constructs with distinct features. Finally, incorporation of proteins into the bulk of the hydrogel coating or as a final surface layer permitted the controlled introduction of bioactivity that supported cell attachment. This work provides a versatile method for assembling bioactive coatings with a simple post-fabrication process that is amenable to diverse geometric substrates and chemistries.
Collapse
Affiliation(s)
- Megan M. Wancura
- Department of Chemistry, The University of Texas at Austin, Austin TX 78712, USA
| | - Michael Talanker
- Department of Biomedical Engineering, The University of Texas at Austin, Austin TX 78712, USA
| | - Shireen Toubbeh
- Department of Biomedical Engineering, The University of Texas at Austin, Austin TX 78712, USA
| | - Alex Bryan
- Department of Biomedical Engineering, The University of Texas at Austin, Austin TX 78712, USA
| | | |
Collapse
|
255
|
Zhai P, Peng X, Li B, Liu Y, Sun H, Li X. The application of hyaluronic acid in bone regeneration. Int J Biol Macromol 2020; 151:1224-1239. [PMID: 31751713 DOI: 10.1016/j.ijbiomac.2019.10.169] [Citation(s) in RCA: 215] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/12/2019] [Accepted: 10/22/2019] [Indexed: 12/20/2022]
Abstract
Hyaluronic acid (HA) exists naturally as an important component of the extracellular matrix (ECM) in the human body. In recent decades, HA has been widely used in bone regeneration, and is currently a popular topic, particularly in the craniofacial and dental fields. From maxilla augmentation to craniofacial bone trauma, there is now a large demand for bone regenerative therapy. Serving as a cell-seeding scaffold or a carrier for bioactive components, hyaluronic acid-incorporated scaffolds and carriers in bone regeneration can be fabricated into either rigid or colloidal forms. Since the type of material used is a critical factor in the biological properties of a scaffold, HA derivatives or HA-incorporated composite scaffolds have shown excellent potential for improving osteogenesis and mineralization. Furthermore, in order to better enhance osteogenesis, local delivery carriers based on hyaluronic acid derivatives, rather than specifically serving as scaffolds, can be established by loading different osteoinductive or osteogenetic components and acquiring different release patterns. Such osteoinductive carriers immobilized on implant surfaces are also effective in improving osseointegration. Thus, as such a competent biomaterial, hyaluronic acid should be considered a promising tool in bone regeneration.
Collapse
Affiliation(s)
- Peisong Zhai
- Department of Endodontics, School of Stomotology, Jilin University, Changchun 130021, PR China
| | - Xiaoxing Peng
- Radiology Department of Hospital Attached to Changchun University of Chinese Medicine, Changchun, PR China
| | - Baoquan Li
- Department of Endodontics, School of Stomotology, Jilin University, Changchun 130021, PR China
| | - Yiping Liu
- Department of Endodontics, School of Stomotology, Jilin University, Changchun 130021, PR China
| | - Hongchen Sun
- Department of Endodontics, School of Stomotology, Jilin University, Changchun 130021, PR China
| | - Xiangwei Li
- Department of Endodontics, School of Stomotology, Jilin University, Changchun 130021, PR China.
| |
Collapse
|
256
|
Xu H, Yang W, Chen P, Chen R, Xue P, Wang L, Yuan J, Yao Q, Chen B, Zhao Y. Bone‐Inspired Tube Filling Decellularized Matrix of Toad Cartilage Provided an Osteoinductive Microenvironment for Mesenchymal Stem Cells to Facilitate the Radius Defect Repair of Rabbit. Biotechnol J 2020; 15:e2000004. [DOI: 10.1002/biot.202000004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/18/2020] [Indexed: 12/13/2022]
Affiliation(s)
- He‐Lin Xu
- Department of Pharmaceutics, School of Pharmaceutical SciencesWenzhou Medical University Wenzhou Zhejiang Province 325035 China
| | - Wai‐Geng Yang
- Department of Pharmaceutics, School of Pharmaceutical SciencesWenzhou Medical University Wenzhou Zhejiang Province 325035 China
| | - Pian‐Pian Chen
- Department of Pharmaceutics, School of Pharmaceutical SciencesWenzhou Medical University Wenzhou Zhejiang Province 325035 China
| | - Rui Chen
- Department of Pharmaceutics, School of Pharmaceutical SciencesWenzhou Medical University Wenzhou Zhejiang Province 325035 China
| | - Peng‐Peng Xue
- Department of Pharmaceutics, School of Pharmaceutical SciencesWenzhou Medical University Wenzhou Zhejiang Province 325035 China
| | - Li‐Fen Wang
- Department of Pharmaceutics, School of Pharmaceutical SciencesWenzhou Medical University Wenzhou Zhejiang Province 325035 China
| | - Jian‐Dong Yuan
- Department of OrthopedicsThe First Affiliated Hospital of Wenzhou Medical University Wenzhou Zhejiang 325000 P. R. China
| | - Qing Yao
- Department of Pharmaceutics, School of Pharmaceutical SciencesWenzhou Medical University Wenzhou Zhejiang Province 325035 China
| | - Bin Chen
- Department of UltrasonographyThe First Affiliated Hospital of Wenzhou Medical University Wenzhou Zhejiang Province 325000 China
| | - Ying‐Zheng Zhao
- Department of Pharmaceutics, School of Pharmaceutical SciencesWenzhou Medical University Wenzhou Zhejiang Province 325035 China
| |
Collapse
|
257
|
Li H, Pan S, Xia P, Chang Y, Fu C, Kong W, Yu Z, Wang K, Yang X, Qi Z. Advances in the application of gold nanoparticles in bone tissue engineering. J Biol Eng 2020; 14:14. [PMID: 32391080 PMCID: PMC7201659 DOI: 10.1186/s13036-020-00236-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/24/2020] [Indexed: 12/18/2022] Open
Abstract
The materials used in bone tissue engineering (BTE) have been advancing with each passing day. With the continuous development of nanomedicine, gold nanoparticles (GNPs), which are easy to be synthesized and functionalized, have attracted increasing attention. Recent years have witnessed this amazing material, i.e., GNPs characterized with large surface area to volume ratio, biocompatibility, medical imaging property, hypotoxicity, translocation into the cells, high reactivity, and other properties, perform distinct functions in BTE. However, the low stability of GNPs in the biotic environment makes them in the requirements of modification or recombination before being used. After being combined with the advantages of other materials, the structures of GNPs have exhibited great potential in stem cells, scaffolds, delivery systems, medical imaging, and other aspects. This review will focus on the advances in the application of GNPs after modification or recombination with other materials to BTE.
Collapse
Affiliation(s)
- Hongru Li
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Ziqiang Street No. 218, Changchun, TX 130041 PR China
| | - Su Pan
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Ziqiang Street No. 218, Changchun, TX 130041 PR China
| | - Peng Xia
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Ziqiang Street No. 218, Changchun, TX 130041 PR China
| | - Yuxin Chang
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Ziqiang Street No. 218, Changchun, TX 130041 PR China
| | - Chuan Fu
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Ziqiang Street No. 218, Changchun, TX 130041 PR China
| | - Weijian Kong
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Ziqiang Street No. 218, Changchun, TX 130041 PR China
| | - Ziyuan Yu
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Ziqiang Street No. 218, Changchun, TX 130041 PR China
| | - Kai Wang
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Ziqiang Street No. 218, Changchun, TX 130041 PR China
| | - Xiaoyu Yang
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Ziqiang Street No. 218, Changchun, TX 130041 PR China
| | - Zhiping Qi
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Ziqiang Street No. 218, Changchun, TX 130041 PR China
| |
Collapse
|
258
|
Chindamo G, Sapino S, Peira E, Chirio D, Gonzalez MC, Gallarate M. Bone Diseases: Current Approach and Future Perspectives in Drug Delivery Systems for Bone Targeted Therapeutics. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E875. [PMID: 32370009 PMCID: PMC7279399 DOI: 10.3390/nano10050875] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/16/2020] [Accepted: 04/19/2020] [Indexed: 12/14/2022]
Abstract
Bone diseases include a wide group of skeletal-related disorders that cause mobility limitations and mortality. In some cases, e.g., in osteosarcoma (OS) and metastatic bone cancer, current treatments are not fully effective, mainly due to low patient compliance and to adverse side effects. To overcome these drawbacks, nanotechnology is currently under study as a potential strategy allowing specific drug release kinetics and enhancing bone regeneration. Polymers, ceramics, semiconductors, metals, and self-assembled molecular complexes are some of the most used nanoscale materials, although in most cases their surface properties need to be tuned by chemical or physical reactions. Among all, scaffolds, nanoparticles (NPs), cements, and hydrogels exhibit more advantages than drawbacks when compared to other nanosystems and are therefore the object of several studies. The aim of this review is to provide information about the current therapies of different bone diseases focusing the attention on new discoveries in the field of targeted delivery systems. The authors hope that this paper could help to pursue further directions about bone targeted nanosystems and their application for bone diseases and bone regeneration.
Collapse
Affiliation(s)
- Giulia Chindamo
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (G.C.); (E.P.); (D.C.); (M.G.)
| | - Simona Sapino
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (G.C.); (E.P.); (D.C.); (M.G.)
| | - Elena Peira
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (G.C.); (E.P.); (D.C.); (M.G.)
| | - Daniela Chirio
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (G.C.); (E.P.); (D.C.); (M.G.)
| | - Mónica Cristina Gonzalez
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata 1900, Argentina;
| | - Marina Gallarate
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (G.C.); (E.P.); (D.C.); (M.G.)
| |
Collapse
|
259
|
Yazdi MK, Vatanpour V, Taghizadeh A, Taghizadeh M, Ganjali MR, Munir MT, Habibzadeh S, Saeb MR, Ghaedi M. Hydrogel membranes: A review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 114:111023. [PMID: 32994021 DOI: 10.1016/j.msec.2020.111023] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/22/2020] [Accepted: 04/26/2020] [Indexed: 12/12/2022]
Abstract
Hydrogel membranes (HMs) are defined and applied as hydrated porous media constructed of hydrophilic polymers for a broad range of applications. Fascinating physiochemical properties, unique porous architecture, water-swollen features, biocompatibility, and special water content dependent transport phenomena in semi-permeable HMs make them appealing constructs for various applications from wastewater treatment to biomedical fields. Water absorption, mechanical properties, and viscoelastic features of three-dimensional (3D) HM networks evoke the extracellular matrix (ECM). On the other hand, the porous structure with controlled/uniform pore-size distribution, permeability/selectivity features, and structural/chemical tunability of HMs recall membrane separation processes such as desalination, wastewater treatment, and gas separation. Furthermore, supreme physiochemical stability and high ion conductivity make them promising to be utilised in the structure of accumulators such as batteries and supercapacitors. In this review, after summarising the general concepts and production processes for HMs, a comprehensive overview of their applications in medicine, environmental engineering, sensing usage, and energy storage/conservation is well-featured. The present review concludes with existing restrictions, possible potentials, and future directions of HMs.
Collapse
Affiliation(s)
- Mohsen Khodadadi Yazdi
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Vahid Vatanpour
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, Iran, Tehran.
| | - Ali Taghizadeh
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Mohsen Taghizadeh
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran; Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Muhammad Tajammal Munir
- College of Engineering and Technology, American University of the Middle East, Kuwait; Department of Chemical and Materials Engineering, The University of Auckland, New Zealand
| | - Sajjad Habibzadeh
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Mohammad Reza Saeb
- Department of Resin and Additives, Institute for Color Science and Technology, P.O. Box: 16765-654, Tehran, Iran
| | - Mehrorang Ghaedi
- Chemistry Department, Yasouj University, Yasouj 75918-74831, Iran.
| |
Collapse
|
260
|
Safarova Y, Umbayev B, Hortelano G, Askarova S. Mesenchymal stem cells modifications for enhanced bone targeting and bone regeneration. Regen Med 2020; 15:1579-1594. [PMID: 32297546 DOI: 10.2217/rme-2019-0081] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In pathological bone conditions (e.g., osteoporotic fractures or critical size bone defects), increasing the pool of osteoblast progenitor cells is a promising therapeutic approach to facilitate bone healing. Since mesenchymal stem cells (MSCs) give rise to the osteogenic lineage, a number of clinical trials investigated the potential of MSCs transplantation for bone regeneration. However, the engraftment of transplanted cells is often hindered by insufficient oxygen and nutrients supply and the tendency of MSCs to home to different sites of the body. In this review, we discuss various approaches of MSCs transplantation for bone regeneration including scaffold and hydrogel constructs, genetic modifications and surface engineering of the cell membrane aimed to improve homing and increase cell viability, proliferation and differentiation.
Collapse
Affiliation(s)
- Yuliya Safarova
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan.,School of Engineering & Digital Sciences, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Bauyrzhan Umbayev
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Gonzalo Hortelano
- School of Sciences & Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Sholpan Askarova
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan
| |
Collapse
|
261
|
Wang C, Fischer A, Ehrlich A, Nahmias Y, Willner I. Biocatalytic reversible control of the stiffness of DNA-modified responsive hydrogels: applications in shape-memory, self-healing and autonomous controlled release of insulin. Chem Sci 2020; 11:4516-4524. [PMID: 34122910 PMCID: PMC8159436 DOI: 10.1039/d0sc01319f] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/13/2020] [Indexed: 12/31/2022] Open
Abstract
The enzymes glucose oxidase (GOx), acetylcholine esterase (AchE) and urease that drive biocatalytic transformations to alter pH, are integrated into pH-responsive DNA-based hydrogels. A two-enzyme-loaded hydrogel composed of GOx/urease or AchE/urease and a three-enzyme-loaded hydrogel composed of GOx/AchE/urease are presented. The biocatalytic transformations within the hydrogels lead to the dictated reconfiguration of nucleic acid bridges and the switchable control over the stiffness of the respective hydrogels. The switchable stiffness features are used to develop biocatalytically guided shape-memory and self-healing matrices. In addition, loading of GOx/insulin in a pH-responsive DNA-based hydrogel yields a glucose-triggered matrix for the controlled release of insulin, acting as an artificial pancreas. The release of insulin is controlled by the concentrations of glucose, hence, the biocatalytic insulin-loaded hydrogel provides an interesting sense-and-treat carrier for controlling diabetes.
Collapse
Affiliation(s)
- Chen Wang
- Institute of Chemistry, The Minerva Center for Bio-hybrid Complex Systems, The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Amit Fischer
- Institute of Chemistry, The Minerva Center for Bio-hybrid Complex Systems, The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Avner Ehrlich
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem 91904 Israel
| | - Yaakov Nahmias
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem 91904 Israel
| | - Itamar Willner
- Institute of Chemistry, The Minerva Center for Bio-hybrid Complex Systems, The Hebrew University of Jerusalem Jerusalem 91904 Israel
| |
Collapse
|
262
|
Chen S, Jang TS, Pan HM, Jung HD, Sia MW, Xie S, Hang Y, Chong SKM, Wang D, Song J. 3D Freeform Printing of Nanocomposite Hydrogels through in situ Precipitation in Reactive Viscous Fluid. Int J Bioprint 2020; 6:258. [PMID: 32782988 PMCID: PMC7415863 DOI: 10.18063/ijb.v6i2.258] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/03/2020] [Indexed: 12/25/2022] Open
Abstract
Composite hydrogels have gained great attention as three-dimensional (3D) printing biomaterials because of their enhanced intrinsic mechanical strength and bioactivity compared to pure hydrogels. In most conventional printing methods for composite hydrogels, particles are preloaded in ink before printing, which often reduces the printability of composite ink with little mechanical improvement due to poor particle-hydrogel interaction of physical mixing. In contrast, the in situ incorporation of nanoparticles into a hydrogel during 3D printing achieves uniform distribution of particles with remarkable mechanical reinforcement, while precursors dissolved in inks do not influence the printing process. Herein, we introduced a "printing in liquid" technique coupled with a hybridization process, which allows 3D freeform printing of nanoparticle-reinforced composite hydrogels. A viscoplastic matrix for this printing system provides not only support for printed hydrogel filaments but also chemical reactants to induce various reactions in printed objects for in situ modification. Nanocomposite hydrogel scaffolds were successfully fabricated through this 3D freeform printing of hyaluronic acid (HAc)-alginate (Alg) hydrogel inks through a two-step crosslinking strategy. The first ionic crosslinking of Alg provided structural stability during printing, while the secondary crosslinking of photo-curable HAc improved the mechanical and physiological stability of the nanocomposite hydrogels. For in situ precipitation during 3D printing, phosphate ions were dissolved in the hydrogel ink and calcium ions were added to the viscoplastic matrix. The composite hydrogels demonstrated a significant improvement in mechanical strength, biostability, as well as biological performance compared to pure HAc. Moreover, the multi-material printing of composites with different calcium phosphate contents was achieved by adjusting the ionic concentration of inks. Our method greatly accelerates the 3D printing of various functional or hybridized materials with complex geometries through the design and modification of printing materials coupled with in situ post-printing functionalization and hybridization in reactive viscoplastic matrices.
Collapse
Affiliation(s)
- Shengyang Chen
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore
| | - Tae-Sik Jang
- Liquid Processing and Casting Technology R&D Group, Korea Institute of Industrial Technology, Incheon 406-840, Republic of Korea
| | - Houwen Matthew Pan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore
| | - Hyun-Do Jung
- Liquid Processing and Casting Technology R&D Group, Korea Institute of Industrial Technology, Incheon 406-840, Republic of Korea
| | - Ming Wei Sia
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore
| | - Shuying Xie
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore
| | - Yao Hang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, P. R. China
| | - Seow Khoon Mark Chong
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore
| | - Dongan Wang
- Department of Biomedical Engineering, City University of Hong Kong,83 Tat Chee Avenue, Kowloon Tong, Hong Kong
| | - Juha Song
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore
| |
Collapse
|
263
|
Chen S, Jang TS, Pan HM, Jung HD, Sia MW, Xie S, Hang Y, Chong SKM, Wang D, Song J. 3D Freeform Printing of Nanocomposite Hydrogels through in situ Precipitation in Reactive Viscous Fluid. Int J Bioprint 2020. [PMID: 32782988 DOI: 10.18063/ijb.v6i2.258.] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Composite hydrogels have gained great attention as three-dimensional (3D) printing biomaterials because of their enhanced intrinsic mechanical strength and bioactivity compared to pure hydrogels. In most conventional printing methods for composite hydrogels, particles are preloaded in ink before printing, which often reduces the printability of composite ink with little mechanical improvement due to poor particle-hydrogel interaction of physical mixing. In contrast, the in situ incorporation of nanoparticles into a hydrogel during 3D printing achieves uniform distribution of particles with remarkable mechanical reinforcement, while precursors dissolved in inks do not influence the printing process. Herein, we introduced a "printing in liquid" technique coupled with a hybridization process, which allows 3D freeform printing of nanoparticle-reinforced composite hydrogels. A viscoplastic matrix for this printing system provides not only support for printed hydrogel filaments but also chemical reactants to induce various reactions in printed objects for in situ modification. Nanocomposite hydrogel scaffolds were successfully fabricated through this 3D freeform printing of hyaluronic acid (HAc)-alginate (Alg) hydrogel inks through a two-step crosslinking strategy. The first ionic crosslinking of Alg provided structural stability during printing, while the secondary crosslinking of photo-curable HAc improved the mechanical and physiological stability of the nanocomposite hydrogels. For in situ precipitation during 3D printing, phosphate ions were dissolved in the hydrogel ink and calcium ions were added to the viscoplastic matrix. The composite hydrogels demonstrated a significant improvement in mechanical strength, biostability, as well as biological performance compared to pure HAc. Moreover, the multi-material printing of composites with different calcium phosphate contents was achieved by adjusting the ionic concentration of inks. Our method greatly accelerates the 3D printing of various functional or hybridized materials with complex geometries through the design and modification of printing materials coupled with in situ post-printing functionalization and hybridization in reactive viscoplastic matrices.
Collapse
Affiliation(s)
- Shengyang Chen
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore
| | - Tae-Sik Jang
- Liquid Processing and Casting Technology R&D Group, Korea Institute of Industrial Technology, Incheon 406-840, Republic of Korea
| | - Houwen Matthew Pan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore
| | - Hyun-Do Jung
- Liquid Processing and Casting Technology R&D Group, Korea Institute of Industrial Technology, Incheon 406-840, Republic of Korea
| | - Ming Wei Sia
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore
| | - Shuying Xie
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore
| | - Yao Hang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, P. R. China
| | - Seow Khoon Mark Chong
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore
| | - Dongan Wang
- Department of Biomedical Engineering, City University of Hong Kong,83 Tat Chee Avenue, Kowloon Tong, Hong Kong
| | - Juha Song
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore
| |
Collapse
|
264
|
Fan C, Zhan SH, Dong ZX, Yang W, Deng WS, Liu X, Wang DA, Sun P. Cross-linked gelatin microsphere-based scaffolds as a delivery vehicle of MC3T3-E1 cells: in vitro and in vivo evaluation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 108:110399. [DOI: 10.1016/j.msec.2019.110399] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/29/2019] [Accepted: 11/04/2019] [Indexed: 12/21/2022]
|
265
|
Medina-Cruz D, Mostafavi E, Vernet-Crua A, Cheng J, Shah V, Cholula-Diaz JL, Guisbiers G, Tao J, García-Martín JM, Webster TJ. Green nanotechnology-based drug delivery systems for osteogenic disorders. Expert Opin Drug Deliv 2020; 17:341-356. [PMID: 32064959 DOI: 10.1080/17425247.2020.1727441] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Current treatments for osteogenic disorders are often successful, however they are not free of drawbacks, such as toxicity or side effects. Nanotechnology offers a platform for drug delivery in the treatment of bone disorders, which can overcome such limitations. Nevertheless, traditional synthesis of nanomaterials presents environmental and health concerns due to its production of toxic by-products, the need for extreme and harsh raw materials, and their lack of biocompatibility over time.Areas covered: This review article contains an overview of the current status of treating osteogenic disorders employing green nanotechnological approaches, showing some of the latest advances in the application of green nanomaterials, as drug delivery carriers, for the effective treatment of osteogenic disorders.Expert opinion: Green nanotechnology, as a potential solution, is understood as the use of living organisms, biomolecules and environmentally friendly processes for the production of nanomaterials. Nanomaterials derived from bacterial cultures or biomolecules isolated from living organisms, such as carbohydrates, proteins, and nucleic acids, have been proven to be effective composites. These nanomaterials introduce enhancements in the treatment and prevention of osteogenic disorders, compared to physiochemically-synthesized nanostructures, specifically in terms of their improved cell attachment and proliferation, as well as their ability to prevent bacterial adhesion.
Collapse
Affiliation(s)
- David Medina-Cruz
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Ebrahim Mostafavi
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Ada Vernet-Crua
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Junjiang Cheng
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Veer Shah
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | | | - Gregory Guisbiers
- Department of Physics and Astronomy, University of Arkansas at Little Rock, Little Rock, AR, USA
| | - Juan Tao
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | | | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| |
Collapse
|
266
|
Moghanian A, Portillo-Lara R, Shirzaei Sani E, Konisky H, Bassir SH, Annabi N. Synthesis and characterization of osteoinductive visible light-activated adhesive composites with antimicrobial properties. J Tissue Eng Regen Med 2020; 14:66-81. [PMID: 31850689 PMCID: PMC6992487 DOI: 10.1002/term.2964] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 09/03/2019] [Accepted: 09/11/2019] [Indexed: 11/07/2022]
Abstract
Orthopedic surgical procedures based on the use of conventional biological graft tissues are often associated with serious post-operative complications such as immune rejection, bacterial infection, and poor osseointegration. Bioresorbable bone graft substitutes have emerged as attractive alternatives to conventional strategies because they can mimic the composition and mechanical properties of the native bone. Among these, bioactive glasses (BGs) hold great potential to be used as biomaterials for bone tissue engineering owing to their biomimetic composition and high biocompatibility and osteoinductivity. Here, we report the development of a novel composite biomaterial for bone tissue engineering based on the incorporation of a modified strontium- and lithium-doped 58S BG (i.e., BG-5/5) into gelatin methacryloyl (GelMA) hydrogels. We characterized the physicochemical properties of the BG formulation via different analytical techniques. Composite hydrogels were then prepared by directly adding BG-5/5 to the GelMA hydrogel precursor, followed by photocrosslinking of the polymeric network via visible light. We characterized the physical, mechanical, and adhesive properties of GelMA/BG-5/5 composites, as well as their in vitro cytocompatibility and osteoinductivity. In addition, we evaluated the antimicrobial properties of these composites in vitro, using a strain of methicillin-resistant Staphylococcus Aureus. GelMA/BG-5/5 composites combined the functional characteristics of the inorganic BG component, with the biocompatibility, biodegradability, and biomimetic composition of the hydrogel network. This novel biomaterial could be used for developing osteoinductive scaffolds or implant surface coatings with intrinsic antimicrobial properties and higher therapeutic efficacy.
Collapse
Affiliation(s)
- Amirhossein Moghanian
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Materials Engineering, Imam Khomeini International University, Qazvin, Iran
| | - Roberto Portillo-Lara
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Zapopan, Mexico
| | - Ehsan Shirzaei Sani
- Chemical and Biomolecular Engineering Department, University of California-Los Angeles, Los Angeles, CA, USA
| | - Hailey Konisky
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Seyed Hossein Bassir
- Department of Periodontology, School of Dental Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Nasim Annabi
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Chemical and Biomolecular Engineering Department, University of California-Los Angeles, Los Angeles, CA, USA
- Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI), University of California-Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
267
|
Belleghem SMV, Mahadik B, Snodderly KL, Fisher JP. Overview of Tissue Engineering Concepts and Applications. Biomater Sci 2020. [DOI: 10.1016/b978-0-12-816137-1.00081-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
268
|
Kim T, See CW, Li X, Zhu D. Orthopedic implants and devices for bone fractures and defects: Past, present and perspective. ENGINEERED REGENERATION 2020. [DOI: 10.1016/j.engreg.2020.05.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
269
|
Phogat K, Kanwar S, Nayak D, Mathur N, Ghosh SB, Bandyopadhyay‐Ghosh S. Nano‐enabled poly(vinyl alcohol) based injectable bio‐nanocomposite hydrogel scaffolds. J Appl Polym Sci 2019. [DOI: 10.1002/app.48789] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Kapender Phogat
- Department of Mechanical EngineeringManipal University Jaipur Jaipur Rajasthan India
- Department of Mechanical EngineeringJECRC University Jaipur Rajasthan India
| | - Susheem Kanwar
- Department of Mechanical EngineeringManipal University Jaipur Jaipur Rajasthan India
| | - Debabrata Nayak
- Department of Mechanical EngineeringManipal University Jaipur Jaipur Rajasthan India
| | - Navya Mathur
- Department of Mechanical EngineeringManipal University Jaipur Jaipur Rajasthan India
| | - Subrata Bandhu Ghosh
- Department of Mechanical EngineeringManipal University Jaipur Jaipur Rajasthan India
| | | |
Collapse
|
270
|
Zhang R, Inoue Y, Konno T, Ishihara K. Hybridization of a phospholipid polymer hydrogel with a natural extracellular matrix using active cell immobilization. Biomater Sci 2019; 7:2793-2802. [PMID: 31044192 DOI: 10.1039/c9bm00093c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Three-dimensional tissue organization is still an obstacle in the field of tissue engineering, which generally involves cell immobilization, proliferation, and organization. As an artificial extracellular matrix (ECM) for providing a suitable environment of cells to construct tissues, combination of cytocompatible polymer hydrogels and natural ECM produced by the immobilized cells was considered. In this research, we designed a spontaneously forming hydrogel system between two water-soluble polymers for the immobilization of cells. These polymers were poly(2-methacryloyloxyethyl phosphorylcholine-co-n-butyl methacrylate-co-p-vinylphenylboronic acid-co-N-succinimidyloxycarbonyl tetra(ethylene glycol)methacrylate) (PMBVS) and poly(vinyl alcohol) (PVA) to form a PMBVS/PVA hydrogel in a cell culture medium under mild conditions. Basic fibroblast growth factor (bFGF) was conjugated with PMBVS (PMBV-bFGF). To enhance the growth of the immobilized cells, mouse fibroblast L929 cells were immobilized in the PMBVS/PVA hydrogel and the PMBV-bFGF/PVA hydrogel, and their proliferation and secretion of the ECM under stimulation with bFGF was observed. The ECM infiltrated and replaced the hydrogel, resulting in the formation of a hybrid hydrogel with the ECM and laden cells.
Collapse
Affiliation(s)
- Ren Zhang
- Department of Bioengineering, School of Engineering, The University of Tokyo, Bunkyo-ku 113-8656, 7-3-1 Hongo, Japan.
| | | | | | | |
Collapse
|
271
|
Strasser V, Matijaković N, Mihelj Josipović T, Kontrec J, Lyons DM, Kralj D, Dutour Sikirić M. Factors affecting calcium phosphate mineralization within bulk alginate hydrogels. JOURNAL OF POLYMER RESEARCH 2019. [DOI: 10.1007/s10965-019-1942-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
272
|
Abdulghani S, Mitchell GR. Biomaterials for In Situ Tissue Regeneration: A Review. Biomolecules 2019; 9:E750. [PMID: 31752393 PMCID: PMC6920773 DOI: 10.3390/biom9110750] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/15/2019] [Accepted: 11/17/2019] [Indexed: 12/11/2022] Open
Abstract
This review focuses on a somewhat unexplored strand of regenerative medicine, that is in situ tissue engineering. In this approach manufactured scaffolds are implanted in the injured region for regeneration within the patient. The scaffold is designed to attract cells to the required volume of regeneration to subsequently proliferate, differentiate, and as a consequence develop tissue within the scaffold which in time will degrade leaving just the regenerated tissue. This review highlights the wealth of information available from studies of ex-situ tissue engineering about the selection of materials for scaffolds. It is clear that there are great opportunities for the use of additive manufacturing to prepare complex personalized scaffolds and we speculate that by building on this knowledge and technology, the development of in situ tissue engineering could rapidly increase. Ex-situ tissue engineering is handicapped by the need to develop the tissue in a bioreactor where the conditions, however optimized, may not be optimum for accelerated growth and maintenance of the cell function. We identify that in both methodologies the prospect of tissue regeneration has created much promise but delivered little outside the scope of laboratory-based experiments. We propose that the design of the scaffolds and the materials selected remain at the heart of developments in this field and there is a clear need for predictive modelling which can be used in the design and optimization of materials and scaffolds.
Collapse
Affiliation(s)
- Saba Abdulghani
- Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, 2430-080 Marinha Grande, Portugal;
| | | |
Collapse
|
273
|
Abstract
This review focuses on a somewhat unexplored strand of regenerative medicine, that is in situ tissue engineering. In this approach manufactured scaffolds are implanted in the injured region for regeneration within the patient. The scaffold is designed to attract cells to the required volume of regeneration to subsequently proliferate, differentiate, and as a consequence develop tissue within the scaffold which in time will degrade leaving just the regenerated tissue. This review highlights the wealth of information available from studies of ex-situ tissue engineering about the selection of materials for scaffolds. It is clear that there are great opportunities for the use of additive manufacturing to prepare complex personalized scaffolds and we speculate that by building on this knowledge and technology, the development of in situ tissue engineering could rapidly increase. Ex-situ tissue engineering is handicapped by the need to develop the tissue in a bioreactor where the conditions, however optimized, may not be optimum for accelerated growth and maintenance of the cell function. We identify that in both methodologies the prospect of tissue regeneration has created much promise but delivered little outside the scope of laboratory-based experiments. We propose that the design of the scaffolds and the materials selected remain at the heart of developments in this field and there is a clear need for predictive modelling which can be used in the design and optimization of materials and scaffolds.
Collapse
|
274
|
Zhou Y, Gu Z, Liu J, Huang K, Liu G, Wu J. Arginine based poly (ester amide)/ hyaluronic acid hybrid hydrogels for bone tissue Engineering. Carbohydr Polym 2019; 230:115640. [PMID: 31887895 DOI: 10.1016/j.carbpol.2019.115640] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/08/2019] [Accepted: 11/18/2019] [Indexed: 10/25/2022]
Abstract
Bone transplantations are still facing many serious challenges, hydrogel as a new kind of artificial bone substitutes has developed into a promising bone scaffold material. However, it is still a challenge to combine bioactive agents and hydrogel matrix to promote osteoinductivity. Herein, we developed a novel bioactive hydrogel based on arginine-based unsaturated poly (ester amide) (Arg-UPEA) and methacrylated hyaluronic acid (HA-MA) via photo-crosslinking. As the results indicated, we found that the introduction of Arg-UPEA into HA-MA hydrogels could finely modulate their compressive modulus, swelling level and porous structure. Besides, among groups of different feed ratio, groups of 10 % and 15 % of Arg-UPEA content effectively enhanced osteogenic differentiation in osteoblasts when compared with HA-MA hydrogel. Furthermore, better bone regeneration and expression of osteogenesis-related factors in vivo also verified the Arg-UPEA/HA-MA hybrid hydrogels as a promising scaffold material for bone tissue engineering.
Collapse
Affiliation(s)
- Yang Zhou
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510006, Guangdong Province, China
| | - Zhipeng Gu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510006, Guangdong Province, China
| | - Jie Liu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510006, Guangdong Province, China; Research Institute of Sun Yat-Sen University in Shenzhen, Shenzhen, 518057, China
| | - Keqing Huang
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510006, Guangdong Province, China; Research Institute of Sun Yat-Sen University in Shenzhen, Shenzhen, 518057, China
| | - Guiting Liu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510006, Guangdong Province, China.
| | - Jun Wu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510006, Guangdong Province, China; Research Institute of Sun Yat-Sen University in Shenzhen, Shenzhen, 518057, China.
| |
Collapse
|
275
|
Valot L, Maumus M, Montheil T, Martinez J, Noël D, Mehdi A, Subra G. Biocompatible Glycine-Assisted Catalysis of the Sol-Gel Process: Development of Cell-Embedded Hydrogels. Chempluschem 2019; 84:1720-1729. [PMID: 31943873 DOI: 10.1002/cplu.201900509] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/11/2019] [Indexed: 12/15/2022]
Abstract
The sol-gel process can be used for hydrogel cross-linking, thus opening an attractive route for the design of biocompatible hydrogels under soft conditions. The sol-gel process can be catalysed at basic or acidic pH values, under neutral conditions with the addition of a nucleophile. Therefore, working around pH 7 unlocks the possibility of direct cell embedment and the preparation of bioinks. We aimed to propose a generic method for sol-gel 3D bioprinting, and first screened different nucleophilic catalysts using bis-silylated polyethylene glycol (PEG) as a model hydrogel. A synergistic effect of glycine and NaF, used in low concentrations to avoid any toxicity, was observed. Biocompatibility of the approach was demonstrated by embedding primary mouse mesenchymal stem cells. The measure of viscosity as a function of time showed the impact of reaction parameters, such as temperature, complexity of the medium, pH and cell addition, on the kinetics of the sol-gel process, and allowed prediction of the gelation time.
Collapse
Affiliation(s)
- Laurine Valot
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France.,ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Marie Maumus
- IRMB, Univ Montpellier, INSERM, CHU, Montpellier, France
| | | | - Jean Martinez
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Danièle Noël
- IRMB, Univ Montpellier, INSERM, CHU, Montpellier, France
| | - Ahmad Mehdi
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Gilles Subra
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| |
Collapse
|
276
|
A hydrogel/fiber scaffold based on silk fibroin/oxidized pectin with sustainable release of vancomycin hydrochloride. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.06.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
277
|
Yahia S, Khalil IA, El-Sherbiny IM. Sandwich-Like Nanofibrous Scaffolds for Bone Tissue Regeneration. ACS APPLIED MATERIALS & INTERFACES 2019; 11:28610-28620. [PMID: 31328910 DOI: 10.1021/acsami.9b06359] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Advanced bone healing approaches included a wide range of biomaterials that mainly mimic the composition, structure, and properties of bone extracellular matrix with osteogenic activity. The present study aimed to develop a sandwich-like structure of electrospun nanofibers (NFs) based on polycaprolactone (PCL) and chitosan/polyethylene oxide (CS/PEO) composite to stimulate bone fracture healing. The morphology of the fabricated scaffolds was examined using scanning electron microscopy (SEM). Apatite deposition was evaluated using simulated body fluid (SBF). The physicochemical and mechanical properties of samples were analyzed by Fourier transform infrared, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and universal testing machine. SEM images exhibited a porous three-dimensional structure with NF diameters of 514-4745 nm and 68-786 nm for PCL NFs layer and the sandwich-like NFs scaffolds, respectively. Deposition of apatite crystal on scaffolds started at week 2 followed by heavy deposition at week 8. This was confirmed by measuring the consumption of calcium and phosphorous ions from SBF. Thermal stability of scaffolds was confirmed using DSC and TGA. Moreover, the PCL NF layer in the middle of the developed sandwich structure reinforced the scaffolds with bear load up to 12.224 ± 1.12 MPa and Young's modulus of 17.53 ± 3.24 MPa. The scaffolds' porous structure enhanced both cell propagation and proliferation. Besides, the presence of CS in the outer NF layers of the scaffolds increased the hydrophilicity, as evidenced by the reduction of contact angle from 116.6 to 57.6°, which is essential for cell attachment. Cell viability study on mesenchymal stem cells proved the cytocompatibility of the fabricated scaffolds. Finally, in vivo mandibular bone defect rabbit model was used to confirm the regeneration of a new healthy bone within 28 days. In conclusion, the developed scaffolds could be a promising solution to stimulate bone regeneration.
Collapse
Affiliation(s)
- Sarah Yahia
- Nanomedicine Lab, Center of Materials Sciences (CMS) , Zewail City of Science and Technology , 6th of October, Giza 12578 , Egypt
| | - Islam A Khalil
- Nanomedicine Lab, Center of Materials Sciences (CMS) , Zewail City of Science and Technology , 6th of October, Giza 12578 , Egypt
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy and Drug Manufacturing , Misr University of Science and Technology (MUST) , 6th of October, Giza 12566 , Egypt
| | - Ibrahim M El-Sherbiny
- Nanomedicine Lab, Center of Materials Sciences (CMS) , Zewail City of Science and Technology , 6th of October, Giza 12578 , Egypt
| |
Collapse
|
278
|
Iskandar L, Rojo L, Di Silvio L, Deb S. The effect of chelation of sodium alginate with osteogenic ions, calcium, zinc, and strontium. J Biomater Appl 2019; 34:573-584. [DOI: 10.1177/0885328219861904] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Lilis Iskandar
- King's College London, Guy's Hospital, Centre for Oral, Clinical & Translational Sciences, London, UK
| | - Luis Rojo
- Consejo Superior de Investigaciones Cientificas, Madrid, Spain
| | - Lucy Di Silvio
- King's College London, Guy's Hospital, Centre for Oral, Clinical & Translational Sciences, London, UK
| | - Sanjukta Deb
- King's College London, Guy's Hospital, Centre for Oral, Clinical & Translational Sciences, London, UK
| |
Collapse
|
279
|
Vieira S, da Silva Morais A, Garet E, Silva-Correia J, Reis RL, González-Fernández Á, Miguel Oliveira J. Self-mineralizing Ca-enriched methacrylated gellan gum beads for bone tissue engineering. Acta Biomater 2019; 93:74-85. [PMID: 30708066 DOI: 10.1016/j.actbio.2019.01.053] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/07/2019] [Accepted: 01/27/2019] [Indexed: 02/07/2023]
Abstract
In this study, methacrylated gellan-gum (GG-MA) heteropolysaccharide is proposed as a hydrogel for drug delivery and bone tissue engineering applications. Calcium-enriched beads obtained from the crosslinking of 1% (w/v) GG-MA solutions with 0.1 MCaCl2 were investigated, considering their intrinsic capacity to promote self-mineralization by ion binding and deposition. Indeed, when immersed in a physiological environment, the Ca-enriched beads promoted the development of a bone-like apatite layer, as confirmed by EDS and XRD chemical analysis. Additionally, the mild production process is compatible with drugs incorporation and release. After encapsulation, Dextran with different molecular weights as well as Dexamethasone 21-phosphate were efficiently released to the surrounding environment. The engineered system was also evaluated considering its biocompatibility, by means of qualitative determination of total complement activation, macrophage proliferation, cytokine release and in vitro cell culture. These experiments showed that the developed hydrogels may not stimulate a disproportionate pro-inflammatory reaction once transplanted. At last, when implanted subcutaneously in CD1 male mice up to 8 weeks, the beads were completely calcified, and no inflammatory reaction was observed. Summing up, these results show that calcium-enriched GG-MA hydrogel beads hold great potential as news tools for bone tissue regeneration and local drug delivery applications. STATEMENT OF SIGNIFICANCE: This work describes a low-cost and straightforward strategy to prepare bioactive methacrylated gellan gum (GG-MA) hydrogels, which can be used as drug delivery systems. GG-MA is a highly anionic polymer, that can be crosslinked with divalent ions, as calcium. Taking advantage of this feature, it was possible to prepare Ca-enriched GG-MA hydrogel beads. These beads display a bioactive behavior, since they promote apatite deposition when placed in physiological conditions. Studies on the immune response suggest that the developed beads do not trigger severe immune responses. Importantly, the mild processing method render these beads compliant with drug delivery strategies, paving the way for the application of dual-functional materials on bone tissue engineering.
Collapse
Affiliation(s)
- Sílvia Vieira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Alain da Silva Morais
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Elina Garet
- Immunology, Centro de Investigaciones Biomédicas (CINBIO) (Centro Singular de Investigación de Galicia 2016-2019) & Galicia-Sur Health Research Institute (IIS-GS), University Campus, Vigo, Pontevedra 36310, Spain
| | - Joana Silva-Correia
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, AvePark, 4805-017 Barco, Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, AvePark, 4805-017 Barco, Guimarães, Portugal
| | - África González-Fernández
- Immunology, Centro de Investigaciones Biomédicas (CINBIO) (Centro Singular de Investigación de Galicia 2016-2019) & Galicia-Sur Health Research Institute (IIS-GS), University Campus, Vigo, Pontevedra 36310, Spain
| | - J Miguel Oliveira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, AvePark, 4805-017 Barco, Guimarães, Portugal.
| |
Collapse
|
280
|
Nam K, Kim K, Dean SM, Brown CT, Davis RS, Okano T, Baker OJ. Using cell sheets to regenerate mouse submandibular glands. NPJ Regen Med 2019; 4:16. [PMID: 31285850 PMCID: PMC6609686 DOI: 10.1038/s41536-019-0078-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 06/14/2019] [Indexed: 12/13/2022] Open
Abstract
Temperature-responsive polymer grafted tissue culture dishes release cells as confluent living sheets in response to small changes in temperature, with recovered cell sheets retaining cell-cell communications, functional extracellular matrices and tissue-like behaviors. These features promote tissue regeneration and improve transplantation efficacy in various tissues including cartilage, heart, kidney, liver, endometrium, cornea, middle ear, periodontium, and esophageal living sheet transplants. However, the functional effects of cell sheets for salivary gland regeneration to treat hyposalivation have not yet been studied. Thus, the present study aims to both establish the viability of thermoresponsive cell sheets for use in salivary glands and then explore the delivery option (i.e., single vs. multiple layers) that would result in the most complete tissue growth in terms of cell differentiation and recovered tissue integrity. Results indicate that single cell sheets form polarized structures that maintain cell-cell junctions and secretory granules in vitro while layering of two-single cell sheets forms a glandular-like pattern in vitro. Moreover, double layer cell sheets enhance tissue formation, cell differentiation and saliva secretion in vivo. In contrast, single cell sheets demonstrated only modest gains relative to the robust growth seen with the double layer variety. Together, these data verify the utility of thermoresponsive cell sheets for use in salivary glands and indicates the double layer form to provide the best option in terms of cell differentiation and recovered tissue integrity, thereby offering a potential new therapeutic strategy for treating hyposalivation.
Collapse
Affiliation(s)
- Kihoon Nam
- School of Dentistry, The University of Utah, Salt Lake City, UT USA
| | - Kyungsook Kim
- Cell Sheet Tissue Engineering Center (CSTEC), Department of Pharmaceutics and Pharmaceutical Chemistry, The University of Utah, Salt Lake City, UT USA
| | - Spencer M. Dean
- School of Dentistry, The University of Utah, Salt Lake City, UT USA
| | - Callie T. Brown
- School of Dentistry, The University of Utah, Salt Lake City, UT USA
| | - Ryan S. Davis
- School of Dentistry, The University of Utah, Salt Lake City, UT USA
| | - Teruo Okano
- Cell Sheet Tissue Engineering Center (CSTEC), Department of Pharmaceutics and Pharmaceutical Chemistry, The University of Utah, Salt Lake City, UT USA
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, Tokyo, Japan
| | - Olga J. Baker
- School of Dentistry, The University of Utah, Salt Lake City, UT USA
| |
Collapse
|
281
|
Huang M, Zhang X, Li J, Li Y, Wang Q, Teng W. Comparison of osteogenic differentiation induced by siNoggin and pBMP-2 delivered by lipopolysaccharide-amine nanopolymersomes and underlying molecular mechanisms. Int J Nanomedicine 2019; 14:4229-4245. [PMID: 31239677 PMCID: PMC6559258 DOI: 10.2147/ijn.s203540] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/26/2019] [Indexed: 01/08/2023] Open
Abstract
Purpose: Gene therapies via Noggin small interfering (si)RNA (siNoggin) and bone morphogenetic protein (BMP)-2 plasmid DNA (pBMP-2) may be promising strategies for bone repair/regeneration, but their ideal delivery vectors, efficacy difference, and underlying mechanisms have not been explored, so these issues were probed here. Methods: This study used lipopolysaccharide-amine nanopolymersomes (LNPs), an efficient cytosolic delivery vector developed by the research team, to mediate siNoggin and pBMP-2 to transfect MC3T3-E1 cells, respectively. The cytotoxicity, cell uptake, and gene knockdown efficiency of siNoggin-loaded LNPs (LNPs/siNoggin) were studied, then the osteogenic-differentiation efficacy of MC3T3-E1 cells treated by LNPs/pBMP-2 and LNPs/siNoggin, respectively, were compared by measuring the expression of osteogenesis-related genes and proteins, alkaline phosphatase (ALP) activity, and mineralization of the extracellular matrix at all osteogenic stages. Finally, the possible signaling pathways of the two treatments were explored. Results: LNPs delivered siNoggin into cells efficiently to silence 50% of Noggin expression without obvious cytotoxicity. LNPs/siNoggin and LNPs/pBMP-2 enhanced the osteogenic differentiation of MC3T3 E1 cells, but LNPs/siNoggin was better than LNPs/pBMP-2. BMP/Mothers against decapentaplegic homolog (Smad) and glycogen synthase kinase (GSK)-3β/β-catenin signaling pathways appeared to be involved in osteogenic differentiation induced by LNPs/siNoggin, but GSK-3β/β-catenin was not stimulated upon LNPs/pBMP-2 treatment. Conclusion: LNPs are safe and efficient delivery vectors for DNA and RNA, which may find wide applications in gene therapy. siNoggin treatment may be a more efficient strategy to enhance osteogenic differentiation than pBMP-2 treatment. LNPs loaded with siNoggin and/or pBMP-2 may provide new opportunities for the repair and regeneration of bone.
Collapse
Affiliation(s)
- Mingdi Huang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Xinchun Zhang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Jing Li
- Laboratory of Biomaterials, Key Laboratory on Assisted Circulation, Ministry of Health, Cardiovascular Division, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yanshan Li
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Qinmei Wang
- Laboratory of Biomaterials, Key Laboratory on Assisted Circulation, Ministry of Health, Cardiovascular Division, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Wei Teng
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, People's Republic of China
| |
Collapse
|
282
|
Maire du Poset A, Lerbret A, Boué F, Zitolo A, Assifaoui A, Cousin F. Tuning the Structure of Galacturonate Hydrogels: External Gelation by Ca, Zn, or Fe Cationic Cross-Linkers. Biomacromolecules 2019; 20:2864-2872. [PMID: 31180649 DOI: 10.1021/acs.biomac.9b00726] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We show here how the nature of various divalent cations M2+ (Ca2+, Zn2+, or Fe2+) influences the structure and mechanical properties of ionotropic polygalacturonate (polyGal) hydrogels designed by the diffusion of cations along one direction (external gelation). All hydrogels exhibit strong gradients of polyGal and cation concentrations, which are similar for all studied cations with a constant ratio R = [M2+]/[Gal] equal to 0.25, showing that every M2+ cation interacts with four galacturonate (Gal) units all along the gels. The regions of the hydrogels formed in the early stages of the gelation process are also similar for all cations and are homogeneous, with the same characteristic mesh size (75 ± 5 Å, as measured by small angle neutron scattering (SANS)) and the same storage modulus G' (∼5 × 104 Pa). Conversely, in the regions of the gels formed in later stages of the process there exist differences in mechanical properties, turbidity, and local structure from one cation to another. Zn(II)-polyGal and Fe(II)-polyGal hydrogels display mesoscopic heterogeneities, more marked in case of Fe than for Zn, that are not present in Ca(II)-polyGal hydrogels. This comes from the mode and the strength of association between the cation and the Gal unit (bidentate for Ca2+ and monodentate "egg-box" for Zn2+ and Fe2+). Cross-links formed by Zn2+ and Fe2+ have a higher stability (lower ability to untie and reform) that induces the formation of local heterogeneities in the early stages of the gelation process whose size progressively increases during the gel growth, a mechanism that does not occur for cross-links made by Ca2+ that are less stable and enable possible reorganizations between polyGal chains.
Collapse
Affiliation(s)
- Aline Maire du Poset
- Université Bourgogne - Franche-Comté , AgroSup Dijon , PAM UMR A 02.102, F-21000 Dijon , France.,Synchrotron SOLEIL , L'Orme des Merisiers, BP 48 St Aubin , 91192 Gif-sur-Yvette , France.,Laboratoire Léon Brillouin , CEA-Saclay , 91191 Gif-sur-Yvette , France
| | - Adrien Lerbret
- Université Bourgogne - Franche-Comté , AgroSup Dijon , PAM UMR A 02.102, F-21000 Dijon , France
| | - François Boué
- Laboratoire Léon Brillouin , CEA-Saclay , 91191 Gif-sur-Yvette , France
| | - Andrea Zitolo
- Synchrotron SOLEIL , L'Orme des Merisiers, BP 48 St Aubin , 91192 Gif-sur-Yvette , France
| | - Ali Assifaoui
- Université Bourgogne - Franche-Comté , AgroSup Dijon , PAM UMR A 02.102, F-21000 Dijon , France
| | - Fabrice Cousin
- Laboratoire Léon Brillouin , CEA-Saclay , 91191 Gif-sur-Yvette , France
| |
Collapse
|
283
|
Qasim M, Chae DS, Lee NY. Advancements and frontiers in nano-based 3D and 4D scaffolds for bone and cartilage tissue engineering. Int J Nanomedicine 2019; 14:4333-4351. [PMID: 31354264 PMCID: PMC6580939 DOI: 10.2147/ijn.s209431] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 05/06/2019] [Indexed: 01/23/2023] Open
Abstract
Given the enormous increase in the risks of bone and cartilage defects with the rise in the aging population, the current treatments available are insufficient for handling this burden, and the supply of donor organs for transplantation is limited. Therefore, tissue engineering is a promising approach for treating such defects. Advances in materials research and high-tech optimized fabrication of scaffolds have increased the efficiency of tissue engineering. Electrospun nanofibrous scaffolds and hydrogel scaffolds mimic the native extracellular matrix of bone, providing a support for bone and cartilage tissue engineering by increasing cell viability, adhesion, propagation, and homing, and osteogenic isolation and differentiation, vascularization, host integration, and load bearing. The use of these scaffolds with advanced three- and four-dimensional printing technologies has enabled customized bone grafting. In this review, we discuss the different approaches used for cartilage and bone tissue engineering.
Collapse
Affiliation(s)
- Muhammad Qasim
- Department of BioNano Technology, Gachon University, Seongnam-si, Gyeonggi-do13120, Republic of Korea
| | - Dong Sik Chae
- Department of Orthopedic Surgery, International St. Mary’s Hospital, Catholic Kwandong University College of Medicine, Incheon, Republic of Korea
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University, Seongnam-si, Gyeonggi-do13120, Republic of Korea
| |
Collapse
|
284
|
Al-Jabari M, Ghyadah RA, Alokely R. Recovery of hydrogel from baby diaper wastes and its application for enhancing soil irrigation management. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 239:255-261. [PMID: 30903837 DOI: 10.1016/j.jenvman.2019.03.087] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/16/2019] [Accepted: 03/17/2019] [Indexed: 06/09/2023]
Abstract
Improving irrigation management by using hydrogels is an advanced approach for maximizing agricultural land productivity. This experimental study demonstrated the technical feasibility of utilizing superabsorbent polymer recovered from waste baby diapers for increasing water retention in soil and improving irrigation management. After separation, recovery and cleaning of the recycled hydrogel, experimental parametric study was performed. It investigated the swelling capacity and kinetics, de-swelling behavior, and the effects of temperature, salt concentration, and pH on the performance of recycled hydrogel. Red clay soil modified with the recovered hydrogel was used to investigate water retention ability in soil. The swelling capacity increases with time, until it approaches an equilibrium state within about 100 min. At normal conditions, the equilibrium swelling capacity achieves an equilibrium value of 235 g water/g hydrogel. The swelling capacity increases with temperature, while it decreases with increasing pH or salt concentration. The addition of the recycled hydrogel to soil decreases water loss by infiltration and enhances irrigation management and plant growth.
Collapse
Affiliation(s)
- Maher Al-Jabari
- Environmental Technology Engineering, Palestine Polytechnic University, Hebron, Palestine.
| | - Rana Abu Ghyadah
- Environmental Technology Engineering, Palestine Polytechnic University, Hebron, Palestine
| | - Rawan Alokely
- Environmental Technology Engineering, Palestine Polytechnic University, Hebron, Palestine
| |
Collapse
|
285
|
Longo GS, Pérez-Chávez NA, Szleifer I. How protonation modulates the interaction between proteins and pH-responsive hydrogel films. Curr Opin Colloid Interface Sci 2019. [DOI: 10.1016/j.cocis.2018.11.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
286
|
Chang Y, Cho B, Kim S, Kim J. Direct conversion of fibroblasts to osteoblasts as a novel strategy for bone regeneration in elderly individuals. Exp Mol Med 2019; 51:1-8. [PMID: 31073120 PMCID: PMC6509166 DOI: 10.1038/s12276-019-0251-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 12/24/2018] [Accepted: 01/28/2019] [Indexed: 12/31/2022] Open
Abstract
Mortality caused by age-related bone fractures or osteoporosis is steadily increasing worldwide as the population ages. The pace of the development of bone regeneration engineering to treat bone fractures has consequently increased in recent years. A range of techniques for bone regeneration, such as immunotherapy, allografts, and hydrogel therapy, have been devised. Cell-based therapies using bone marrow-derived mesenchymal stem cells and induced pluripotent stem cells derived from somatic cells are considered to be suitable approaches for bone repair. However, these cell-based therapies suffer from a number of limitations in terms of efficiency and safety. Somatic cells can also be directly differentiated into osteoblasts by several transcription factors. As osteoblasts play a central role in the process of bone formation, the direct reprogramming of fibroblasts into osteoblasts may hence be a new way to treat bone fractures in elderly individuals. Here, we review recent developments regarding the therapeutic potential of the direct reprogramming of cells for bone regeneration. Reprogramming cells that produce connective tissue to form bone instead could help prevent fractures in the elderly. Bones weaken with age, and fractures are a significant health risk in ageing populations. Most current bone regeneration treatments use stem cells, which can differentiate into any type of cell and have infinite capacity to divide; however, they are difficult to source and can lead to tumor formation. Jongpil Kim at Dongguk University in South Korea and coworkers have reviewed a new method that uses genetic signals to transform connective tissue-forming cells into bone-producing cells. The reprogrammed cells have been shown to generate new bone at the desired site, and because they have already lost their capacity for infinite division, tumor formation risk is greatly reduced. This method shows promise to expand treatment options for fractures and osteoporosis.
Collapse
Affiliation(s)
- Yujung Chang
- Department of Biomedical Engineering, Dongguk University, Pildong-ro 1-gil 30, Jung-gu, Seoul, 04620, Republic of Korea
| | - Byounggook Cho
- Department of Biomedical Engineering, Dongguk University, Pildong-ro 1-gil 30, Jung-gu, Seoul, 04620, Republic of Korea
| | - Siyoung Kim
- Department of Biomedical Engineering, Dongguk University, Pildong-ro 1-gil 30, Jung-gu, Seoul, 04620, Republic of Korea
| | - Jongpil Kim
- Department of Biomedical Engineering, Dongguk University, Pildong-ro 1-gil 30, Jung-gu, Seoul, 04620, Republic of Korea. .,Department of Chemistry, Dongguk University, 30, Pildong-ro 1-gil 30, Jung-gu, Seoul, 04620, Republic of Korea.
| |
Collapse
|
287
|
Zhou L, Xi Y, Xue Y, Wang M, Liu Y, Guo Y, Lei B. Injectable Self‐Healing Antibacterial Bioactive Polypeptide‐Based Hybrid Nanosystems for Efficiently Treating Multidrug Resistant Infection, Skin‐Tumor Therapy, and Enhancing Wound Healing. ADVANCED FUNCTIONAL MATERIALS 2019; 29. [DOI: 10.1002/adfm.201806883] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Indexed: 01/27/2025]
Abstract
AbstractThe surgical procedure in skin‐tumor therapy usually results in cutaneous defects, and multidrug‐resistant bacterial infection could cause chronic wounds. Here, for the first time, an injectable self‐healing antibacterial bioactive polypeptide‐based hybrid nanosystem is developed for treating multidrug resistant infection, skin‐tumor therapy, and wound healing. The multifunctional hydrogel is successfully prepared through incorporating monodispersed polydopamine functionalized bioactive glass nanoparticles (BGN@PDA) into an antibacterial F127‐ε‐Poly‐L‐lysine hydrogel. The nanocomposites hydrogel displays excellent self‐healing and injectable ability, as well as robust antibacterial activity, especially against multidrug‐resistant bacteria in vitro and in vivo. The nanocomposites hydrogel also demonstrates outstanding photothermal performance with (near‐infrared laser irradiation) NIR irradiation, which could effectively kill the tumor cell (>90%) and inhibit tumor growth (inhibition rate up to 94%) in a subcutaneous skin‐tumor model. In addition, the nanocomposites hydrogel effectively accelerates wound healing in vivo. These results suggest that the BGN‐based nanocomposite hydrogel is a promising candidate for skin‐tumor therapy, wound healing, and anti‐infection. This work may offer a facile strategy to prepare multifunctional bioactive hydrogels for simultaneous tumor therapy, tissue regeneration, and anti‐infection.
Collapse
Affiliation(s)
- Li Zhou
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research College of Stomatology Xi'an Jiaotong University Xi'an 710049 China
- Frontier Institute of Science and Technology Xi'an Jiaotong University Xi'an 710049 China
| | - Yuewei Xi
- Frontier Institute of Science and Technology Xi'an Jiaotong University Xi'an 710049 China
| | - Yumeng Xue
- Frontier Institute of Science and Technology Xi'an Jiaotong University Xi'an 710049 China
| | - Min Wang
- Frontier Institute of Science and Technology Xi'an Jiaotong University Xi'an 710049 China
| | - Yanle Liu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research College of Stomatology Xi'an Jiaotong University Xi'an 710049 China
| | - Yi Guo
- Frontier Institute of Science and Technology Xi'an Jiaotong University Xi'an 710049 China
- Department of Biomedical Engineering University of Michigan Ann Arbor MI 48109 USA
| | - Bo Lei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research College of Stomatology Xi'an Jiaotong University Xi'an 710049 China
- Frontier Institute of Science and Technology Xi'an Jiaotong University Xi'an 710049 China
- Instrument Analysis Center Xi'an Jiaotong University Xi'an 710049 China
| |
Collapse
|
288
|
Huang Y, Shi F, Wang L, Yang Y, Khan BM, Cheong KL, Liu Y. Preparation and evaluation of Bletilla striata polysaccharide/carboxymethyl chitosan/Carbomer 940 hydrogel for wound healing. Int J Biol Macromol 2019; 132:729-737. [PMID: 30940589 DOI: 10.1016/j.ijbiomac.2019.03.157] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/12/2019] [Accepted: 03/22/2019] [Indexed: 12/13/2022]
Abstract
This study aims at developing an effective, safe and economic hydrogel, with wound healing ability, by making use of polysaccharides. Bletilla striata polysaccharide (Bsp) and the bioactive natural polymers, carboxymethyl chitosan (CMC), were physically blended with Carbomer 940 (CBM940) in order to promote gel-forming and improve water retention. FT-IR displayed hydrogen bonding between CBM940 and CMC played a role in physical gel formation. XRD showed broad and weak intensity peak of Bsp/CMC/CBM940 hydrogel. SEM, rheological measurement and water loss test revealed that the best hydrogel with optimum characteristics in relation to porous structure, elastic property and water retention could be obtained by mixing Bsp, CMC and CBM940 in a ratio of 4:1:1. In vitro studies proved that the Bsp/CMC/CBM940 hydrogel possessed blood compatibility. M293T cells viability was over 85% via MTT assay which revealed non-cytotoxicity. Hydroxyl radical scavenging property highly improved while Bsp combined with CMC. The full-thickness wound experiment illustrated 71.64 ± 6.64% and 83.80 ± 5.56% wound healing rates for Bsp4:CMC1:CBM9401 hydrogel on Day 7 and Day 14, respectively, which showed no significant differences (p > 0.05) in comparison to the positive control. Histological observation expressed epithelization, dense collagen fiber and neovascular formation in hydrogel group on Day 14. Bsp/CMC/CBM940 hydrogel can, hence, serve as an attractive candidate for healing wounds.
Collapse
Affiliation(s)
- Yingbei Huang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, PR China
| | - Fulin Shi
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, PR China
| | - Liming Wang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, PR China
| | - Yu Yang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, PR China
| | - Bilal Muhammad Khan
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, PR China
| | - Kit-Leong Cheong
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, PR China
| | - Yang Liu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, PR China.
| |
Collapse
|
289
|
Kumar Meena L, Rather H, Kedaria D, Vasita R. Polymeric microgels for bone tissue engineering applications – a review. INT J POLYM MATER PO 2019. [DOI: 10.1080/00914037.2019.1570512] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Lalit Kumar Meena
- Biomaterials & Biomimetics laboratory, School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Hilal Rather
- Biomaterials & Biomimetics laboratory, School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Dhaval Kedaria
- Biomaterials & Biomimetics laboratory, School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Rajesh Vasita
- Biomaterials & Biomimetics laboratory, School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| |
Collapse
|
290
|
Biomaterials: Foreign Bodies or Tuners for the Immune Response? Int J Mol Sci 2019; 20:ijms20030636. [PMID: 30717232 PMCID: PMC6386828 DOI: 10.3390/ijms20030636] [Citation(s) in RCA: 363] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/22/2019] [Accepted: 01/28/2019] [Indexed: 12/11/2022] Open
Abstract
The perspectives of regenerative medicine are still severely hampered by the host response to biomaterial implantation, despite the robustness of technologies that hold the promise to recover the functionality of damaged organs and tissues. In this scenario, the cellular and molecular events that decide on implant success and tissue regeneration are played at the interface between the foreign body and the host inflammation, determined by innate and adaptive immune responses. To avoid adverse events, rather than the use of inert scaffolds, current state of the art points to the use of immunomodulatory biomaterials and their knowledge-based use to reduce neutrophil activation, and optimize M1 to M2 macrophage polarization, Th1 to Th2 lymphocyte switch, and Treg induction. Despite the fact that the field is still evolving and much remains to be accomplished, recent research breakthroughs have provided a broader insight on the correct choice of biomaterial physicochemical modifications to tune the reaction of the host immune system to implanted biomaterial and to favor integration and healing.
Collapse
|
291
|
Campos JM, Sousa AC, Pinto PO, Ribeiro J, França ML, Caseiro AR, Branquinho MV, Pedrosa SS, Mendonça C, Brandão A, Santos JD, Afonso A, Atayde LM, Luís AL, Maurício AC. Application of Bonelike® as synthetic bone graft in orthopaedic and oral surgery in veterinary clinical cases. Biomater Res 2018; 22:38. [PMID: 30619619 PMCID: PMC6310926 DOI: 10.1186/s40824-018-0150-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 12/07/2018] [Indexed: 01/01/2023] Open
Abstract
Autologous bone remains the gold standard grafting substrate for bone fusions used for small gaps and critical defects. However, significant morbidity is associated with the harvesting of autologous bone grafts and, for that reason, alternative bone graft substitutes have been developed. In the present case series, a glass-reinforced hydroxyapatite synthetic bone substitute, with osteoinductive and osteoconductive proprieties, was applied. This synthetic bone substitute comprises the incorporation of P2O5-CaO glass-based system within a hydroxyapatite matrix, moulded into spherical pellets with 250-500 μm of diameter. A total of 14 veterinary clinical cases of appendicular bone defects and maxillary / mandibular bone defects are described. In all clinical cases, the synthetic bone substitute was used to fill bone defects, enhancing bone regeneration and complementing the recommended surgical techniques. Results demonstrated that it is an appropriate synthetic bone graft available to be used in veterinary patients. It functioned as a space filler in association with standard orthopaedic and odontological procedures of stabilization, promoting a faster bone fusion without any local or systemic adverse reactions. This procedure improves the animals' quality of life, decreasing pain and post-operative recovery period, as well as increasing bone stability improving positive clinical outcomes.
Collapse
Affiliation(s)
- José Miguel Campos
- Escola Universitária Vasco da Gama (EUVG), Hospital Veterinário Universitário de Coimbra, Coimbra, Portugal
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Porto, Portugal
| | - Ana Catarina Sousa
- REQUIMTE/LAQV – U. Porto – Porto/Portugal, Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| | - Pedro Olivério Pinto
- Escola Universitária Vasco da Gama (EUVG), Hospital Veterinário Universitário de Coimbra, Coimbra, Portugal
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Porto, Portugal
| | - Jorge Ribeiro
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Porto, Portugal
| | - Miguel Lacueva França
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Porto, Portugal
| | - Ana Rita Caseiro
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Porto, Portugal
- REQUIMTE/LAQV – U. Porto – Porto/Portugal, Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| | - Mariana Vieira Branquinho
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Porto, Portugal
| | - Sílvia Santos Pedrosa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Porto, Portugal
| | - Carla Mendonça
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Porto, Portugal
| | - Ana Brandão
- Biosckin, Molecular and Cell Therapies S.A., Laboratório Criovida, TecMaia, Rua Engenheiro Frederico Ulrich 2650, 4470-605 Moreira da Maia, Portugal
| | - José Domingos Santos
- REQUIMTE/LAQV – U. Porto – Porto/Portugal, Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| | - Américo Afonso
- Faculdade de Medicina Dentária da Universidade do Porto (FMDUP), 4200-393 Porto, Portugal
| | - Luís Miguel Atayde
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Porto, Portugal
| | - Ana Lúcia Luís
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Porto, Portugal
| | - Ana Colette Maurício
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Porto, Portugal
| |
Collapse
|
292
|
Abedin E, Lari R, Mahdavi Shahri N, Fereidoni M. Development of a demineralized and decellularized human epiphyseal bone scaffold for tissue engineering: A histological study. Tissue Cell 2018; 55:46-52. [DOI: 10.1016/j.tice.2018.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 08/25/2018] [Accepted: 09/17/2018] [Indexed: 12/13/2022]
|
293
|
Peculiarities of Ion-Exchange Adsorption of Ca2+ and
HPO
4
2
−
$$ {\mathrm{HPO}}_4^{2-} $$
as Main Factor of Self-Assembly of Apatite in the Surface Layer of Biomineralization Initiators. THEOR EXP CHEM+ 2018. [DOI: 10.1007/s11237-018-9579-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
294
|
Greenberg-Worisek AJ, Runge BK, Solyntjes SA, St Helene-Kraft J, Glass SL, Waletzki BE, Herrick JL, Miller AL, Yaszemski MJ, Windebank AJ, Wang H. Establishing a Current Good Manufacturing Practice Facility for Biomaterials and Biomolecules in an Academic Medical Center. TISSUE ENGINEERING PART B-REVIEWS 2018; 24:493-498. [PMID: 30084747 DOI: 10.1089/ten.teb.2018.0114] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
IMPACT STATEMENT This article describes the feasibility and path to establishing a current good manufacturing practice biomaterial facility in an academic medical center. It presents a solution to overcome the "Valley of Death" in bench to bedside translation of biomaterials-based medical devices. It sets a good and feasible example to those who are interested in joining the path toward clinical practice/commercialization, and helps to spur other institutions and investigators to think about how they could incorporate in-house processes and facilities to help speed up the translation of their work into first-in-human trials.
Collapse
Affiliation(s)
- Alexandra J Greenberg-Worisek
- 1 Center for Regenerative Medicine, Mayo Clinic , Rochester, Minnesota.,2 Department of Neurology, Mayo Clinic , Rochester, Minnesota
| | | | - Sarah A Solyntjes
- 3 Manufacturing Compliance Office, Mayo Clinic , Rochester, Minnesota
| | | | - Suzanne L Glass
- 4 Department of Orthopedic Surgery and Mayo Clinic , Rochester, Minnesota
| | - Brian E Waletzki
- 4 Department of Orthopedic Surgery and Mayo Clinic , Rochester, Minnesota
| | - James L Herrick
- 4 Department of Orthopedic Surgery and Mayo Clinic , Rochester, Minnesota
| | - Alan Lee Miller
- 4 Department of Orthopedic Surgery and Mayo Clinic , Rochester, Minnesota
| | - Michael J Yaszemski
- 1 Center for Regenerative Medicine, Mayo Clinic , Rochester, Minnesota.,4 Department of Orthopedic Surgery and Mayo Clinic , Rochester, Minnesota
| | - Anthony J Windebank
- 1 Center for Regenerative Medicine, Mayo Clinic , Rochester, Minnesota.,2 Department of Neurology, Mayo Clinic , Rochester, Minnesota
| | - Huan Wang
- 1 Center for Regenerative Medicine, Mayo Clinic , Rochester, Minnesota.,5 Department of Neurologic Surgery, Mayo Clinic , Rochester, Minnesota
| |
Collapse
|
295
|
Wu D, Xu X. Exploring cutting-edge hydrogel technologies and their biomedical applications. Bioact Mater 2018; 3:446-447. [PMID: 30182071 PMCID: PMC6117948 DOI: 10.1016/j.bioactmat.2018.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 08/18/2018] [Indexed: 11/06/2022] Open
Affiliation(s)
- Decheng Wu
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Xiaoyang Xu
- Chemical and Material Engineering, New Jersey Institute of Technology, Newark, NJ, United States
| |
Collapse
|
296
|
Saravanan S, Vimalraj S, Anuradha D. Chitosan based thermoresponsive hydrogel containing graphene oxide for bone tissue repair. Biomed Pharmacother 2018; 107:908-917. [PMID: 30257403 DOI: 10.1016/j.biopha.2018.08.072] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/14/2018] [Accepted: 08/15/2018] [Indexed: 12/12/2022] Open
Abstract
Chitosan (CS), glycerophosphate (GP) based injectable hydrogels are explored for its implications in bone defect healing and regeneration. Both acellular and cell laden CS based hydrogels are widely investigated and improved through the inclusion of various nanoparticles, polymers and bioactive molecules. In order to improve its applicability for bone tissue repair, we developed an injectable, thermosensitive CS hydrogel containing graphene oxide (GO) and investigated its properties. The hydrogels were investigated for its porous architecture using scanning electron microscopy (SEM), swelling property, protein adsorption ability, degradation rate and exogenous biomineralization. GO addition improved the physico-chemical properties with notable betterment. The CS/GP/GO hydrogel was biocompatible to mesenchymal stem cells and they were metabolically active upon encapsulation. The hydrogel promoted osteogenic differentiation of mouse mesenchymal stem cells by upregualtion of Runt-related transcription factor 2 (Runx2), Alkaline phosphatase (ALP), Type -1 collagen (COL-1), and osteocalcin (OC) under osteogenic conditions. The hydrogel proves to be an amenable platform for carrying cells and exhibited suitable properties to be a potential candidate for bone tissue regeneration.
Collapse
Affiliation(s)
- Sekaran Saravanan
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), Department of Bioengineering, School of Chemical and Biotechnology, SASTRA University, Thanjavur, 613 401, Tamil Nadu, India.
| | - Selvaraj Vimalraj
- Centre for Biotechnology, Anna University, Chennai, 600 025, Tamil Nadu, India.
| | | |
Collapse
|