251
|
Preparation and cytotoxicity of lipid nanocarriers containing a hydrophobic flavanone. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124982] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
252
|
Cutting-edge advances in therapy for the posterior segment of the eye: Solid lipid nanoparticles and nanostructured lipid carriers. Int J Pharm 2020; 589:119831. [PMID: 32877729 DOI: 10.1016/j.ijpharm.2020.119831] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/23/2020] [Accepted: 08/26/2020] [Indexed: 12/11/2022]
Abstract
Posterior segment eye diseases affect more than 300 million patients worldwide resulting in severe visual impairment. The treatments available are invasive, costly, present irregular effectiveness, and cause serious adverse effects. These drawbacks significantly reduce patient compliance. In the last decade, solid lipid nanoparticle (SLN) and nanostructured lipid carrier (NLC) have shown potential as innovative carriers for lipophilic drug substances to overcome hurdles in treating the eye posterior segment. This review shows the advantages of these formulations, focusing on their compatibility with ocular tissues, which increases the internalization of the drug substances. Additionally, SLN and NLC can reduce the clearance by the eye's protective mechanisms due to adhesive properties related to nanometric size. Therefore, these preparations may allow the treating of several ophthalmic diseases by topical administration, increasing the interval between doses. This feature can decrease adverse effects and enhance efficacy, ultimately improving patient compliance. Thus, this critical review presents the performance of the in vitro, ex vivo, and in vivo assays that support the potential of SLN and NLC to treat diseases of the posterior segment of the eye. These nanoparticles have shown to be promising alternative towards a major shift in developing ophthalmic products.
Collapse
|
253
|
Chauhan G, Shaik AA, Kulkarni NS, Gupta V. The preparation of lipid-based drug delivery system using melt extrusion. Drug Discov Today 2020; 25:S1359-6446(20)30330-5. [PMID: 32835807 DOI: 10.1016/j.drudis.2020.07.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 05/30/2020] [Accepted: 07/28/2020] [Indexed: 01/16/2023]
Abstract
Melt extrusion of lipids is versatile with high applicability in the pharmaceutical industry. The formulations prepared can be easily customized depending on the requirements, and have the potential to open a window on personalized medicine.
Collapse
Affiliation(s)
- Gautam Chauhan
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Abdul A Shaik
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA; Current address: School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Nishant S Kulkarni
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Vivek Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| |
Collapse
|
254
|
Basahih TS, Alamoudi AA, El-Say KM, Alhakamy NA, Ahmed OAA. Improved Transmucosal Delivery of Glimepiride via Unidirectional Release Buccal Film Loaded With Vitamin E TPGS-Based Nanocarrier. Dose Response 2020; 18:1559325820945164. [PMID: 32782450 PMCID: PMC7401050 DOI: 10.1177/1559325820945164] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/19/2020] [Accepted: 06/29/2020] [Indexed: 12/02/2022] Open
Abstract
Glimepiride (GMD) is a hypoglycemic agent that has variation in bioavailability for its unexpected absorption. Glimepiride was formulated in a buccal film loaded with a nanobased formulation to enhance its absorption via buccal mucosa. Nanostructured lipid carriers (NLCs) and d-α-tocopherol polyethylene glycol 1000 succinate-based micelles enhance GMD solubility and improve its permeation through the buccal mucosa. The formulation variables were optimized using a Box-Behnken design. These factors, such as the percent of micelles relative to NLC (X1), the percent of Carbopol (X2), and the percent of permeation enhancer (X3), were investigated for their effect on the initial release (Y1) and the cumulative release after 6 hours (Y2). The optimum levels for X1, X2, and X3 were 100%, 0.05%, and 1.8%, respectively. The optimized formulation revealed that the permeation of GMD from the film was in favor of micelles. This optimized film was then coated with ethyl cellulose to direct the release only through the buccal mucosa. The optimized unidirectional GMD transmucosal film showed a release of 93.9% of GMD content at 6 hours compared to 60.41% of GMD release from the raw GMD film. This finding confirmed the suitability of transmucosal delivery of GMD via the buccal mucosa.
Collapse
Affiliation(s)
- Tahani S. Basahih
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdullah A. Alamoudi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khalid M. El-Say
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Osama A. A. Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Osama A. A. Ahmed, Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
255
|
Plant growth induction by volatile organic compound released from solid lipid nanoparticles and nanostructured lipid carriers. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124739] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
256
|
Cunha S, Costa CP, Loureiro JA, Alves J, Peixoto AF, Forbes B, Sousa Lobo JM, Silva AC. Double Optimization of Rivastigmine-Loaded Nanostructured Lipid Carriers (NLC) for Nose-to-Brain Delivery Using the Quality by Design (QbD) Approach: Formulation Variables and Instrumental Parameters. Pharmaceutics 2020; 12:E599. [PMID: 32605177 PMCID: PMC7407548 DOI: 10.3390/pharmaceutics12070599] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/18/2020] [Accepted: 06/23/2020] [Indexed: 01/02/2023] Open
Abstract
Rivastigmine is a drug commonly used in the management of Alzheimer's disease that shows bioavailability problems. To overcome this, the use of nanosystems, such as nanostructured lipid carriers (NLC), administered through alternative routes seems promising. In this work, we performed a double optimization of a rivastigmine-loaded NLC formulation for direct drug delivery from the nose to the brain using the quality by design (QbD) approach, whereby the quality target product profile (QTPP) was the requisite for nose to brain delivery. The experiments started with the optimization of the formulation variables (or critical material attributes-CMAs) using a central composite design. The rivastigmine-loaded NLC formulations with the best critical quality attributes (CQAs) of particle size, polydispersity index (PDI), zeta potential (ZP), and encapsulation efficiency (EE) were selected for the second optimization, which was related to the production methods (ultrasound technique and high-pressure homogenization). The most suitable instrumental parameters for the production of NLC were analyzed through a Box-Behnken design, with the same CQAs being evaluated for the first optimization. For the second part of the optimization studies, were selected two rivastigmine-loaded NLC formulations: one produced by ultrasound technique and the other by the high-pressure homogenization (HPH) method. Afterwards, the pH and osmolarity of these formulations were adjusted to the physiological nasal mucosa values and in vitro drug release studies were performed. The results of the first part of the optimization showed that the most adequate ratios of lipids and surfactants were 7.49:1.94 and 4.5:0.5 (%, w/w), respectively. From the second part of the optimization, the results for the particle size, PDI, ZP, and EE of the rivastigmine-loaded NLC formulations produced by ultrasound technique and HPH method were, respectively, 114.0 ± 1.9 nm and 109.0 ± 0.9 nm; 0.221 ± 0.003 and 0.196 ± 0.007; -30.6 ± 0.3 mV and -30.5 ± 0.3 mV; 97.0 ± 0.5% and 97.2 ± 0.3%. Herein, the HPH was selected as the most suitable production method, although the ultrasound technique has also shown effectiveness. In addition, no significant changes in CQAs were observed after 90 days of storage of the formulations at different temperatures. In vitro studies showed that the release of rivastigmine followed a non-Fickian mechanism, with an initial fast drug release followed by a prolonged release over 48 h. This study has optimized a rivastigmine-loaded NLC formulation produced by the HPH method for nose-to-brain delivery of rivastigmine. The next step is for in vitro and in vivo experiments to demonstrate preclinical efficacy and safety. QbD was demonstrated to be a useful approach for the optimization of NLC formulations for which specific physicochemical requisites can be identified.
Collapse
Affiliation(s)
- Sara Cunha
- UCIBIO/REQUIMTE, MEDTECH Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.C.); (C.P.C.); (J.M.S.L.)
| | - Cláudia Pina Costa
- UCIBIO/REQUIMTE, MEDTECH Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.C.); (C.P.C.); (J.M.S.L.)
| | - Joana A. Loureiro
- LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal;
| | | | - Andreia F. Peixoto
- LAQV/REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal;
| | - Ben Forbes
- Institute of Pharmaceutical Science, Faculty of Life Sciences and Medicine, King’s College London, London SE1 9NH, UK;
| | - José Manuel Sousa Lobo
- UCIBIO/REQUIMTE, MEDTECH Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.C.); (C.P.C.); (J.M.S.L.)
| | - Ana Catarina Silva
- UCIBIO/REQUIMTE, MEDTECH Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.C.); (C.P.C.); (J.M.S.L.)
- UFP Energy, Environment and Health Research Unit (FP ENAS), Fernando Pessoa University, 4249-004 Porto, Portugal
| |
Collapse
|
257
|
Otarola JJ, Alejandra Luna M, Mariano Correa N, Molina PG. Noscapine‐Loaded Nanostructured Lipid Carriers as a Potential Topical Delivery to Bovine Mastitis Treatment. ChemistrySelect 2020. [DOI: 10.1002/slct.202001138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Jessica J. Otarola
- Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS). UNRC-CONICET Agencia Postal # 3. C.P. X5804BYA Río Cuarto. Argentina
- Departamento de Química. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Agencia Postal # 3. C.P. X5804BYA Río Cuarto. Argentina
| | - Maria Alejandra Luna
- Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS). UNRC-CONICET Agencia Postal # 3. C.P. X5804BYA Río Cuarto. Argentina
- Departamento de Química. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Agencia Postal # 3. C.P. X5804BYA Río Cuarto. Argentina
| | - Néstor Mariano Correa
- Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS). UNRC-CONICET Agencia Postal # 3. C.P. X5804BYA Río Cuarto. Argentina
- Departamento de Química. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Agencia Postal # 3. C.P. X5804BYA Río Cuarto. Argentina
| | - Patricia G. Molina
- Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS). UNRC-CONICET Agencia Postal # 3. C.P. X5804BYA Río Cuarto. Argentina
- Departamento de Química. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Agencia Postal # 3. C.P. X5804BYA Río Cuarto. Argentina
| |
Collapse
|
258
|
Oner E, Kotmakci M, Kantarci AG. A promising approach to develop nanostructured lipid carriers from solid lipid nanoparticles: preparation, characterization, cytotoxicity and nucleic acid binding ability. Pharm Dev Technol 2020; 25:936-948. [PMID: 32315242 DOI: 10.1080/10837450.2020.1759630] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
We aimed to develop nanostructured lipid carriers (NLCs) displaying similar characteristics - particle size, polydispersity index, and zeta potential - with the model solid lipid nanoparticles (SLNs) for better comparability. By considering the hydrophilic-lipophilic balance values of solid and liquid lipids, five out of six NLCs and eight out of eight cationic NLCs (cNLCs) were successfully prepared with similar characteristics to their precursor SLN and cationic SLNs (cSLNs), respectively. Among cationic formulations, two cSLNs containing different surfactant/co-surfactant concentrations (4% and 8% S/CoS; w/w) and their cNLC versions prepared with Labrafac lipophile WL 1349 (LWL) or Labrafac PG were selected to compare cytotoxicity, stability, and nucleic acid binding ability. All formulations are well-tolerated by L-929 cells, cSLNs being least toxic. The formulations containing 4% S/CoS had higher stability after 24-months. All nanoparticles formed complexes with pDNA (Binding ability: cNLCs > cSLNs). cSLN and LWL-cNLC containing 4% S/CoS showed the highest pDNA binding capacity in each group, and their spherical/oval shape was revealed by electron microscopy. However, they did not form complexes with siRNA. The developed approach has the potential to simplify the production of (c)NLCs having similar physicochemical properties with the optimum (c)SLN and may provide better insight for (c)SLN vs.
Collapse
Affiliation(s)
- Ezgi Oner
- Faculty of Pharmacy, Department of Pharmaceutical Biotechnology, Ege University, Izmir, Turkey
| | - Mustafa Kotmakci
- Faculty of Pharmacy, Department of Pharmaceutical Biotechnology, Ege University, Izmir, Turkey
| | - Ayse Gulten Kantarci
- Faculty of Pharmacy, Department of Pharmaceutical Biotechnology, Ege University, Izmir, Turkey
| |
Collapse
|
259
|
E. Eleraky N, M. Omar M, A. Mahmoud H, A. Abou-Taleb H. Nanostructured Lipid Carriers to Mediate Brain Delivery of Temazepam: Design and In Vivo Study. Pharmaceutics 2020; 12:pharmaceutics12050451. [PMID: 32422903 PMCID: PMC7284889 DOI: 10.3390/pharmaceutics12050451] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/09/2020] [Accepted: 05/11/2020] [Indexed: 12/23/2022] Open
Abstract
The opposing effect of the blood–brain barrier against the delivery of most drugs warrants the need for an efficient brain targeted drug delivery system for the successful management of neurological disorders. Temazepam-loaded nanostructured lipid carriers (NLCs) have shown possibilities for enhancing bioavailability and brain targeting affinity after oral administration. This study aimed to investigate these properties for insomnia treatment. Temazepam-NLCs were prepared by the solvent injection method and optimized using a 42 full factorial design. The optimum formulation (NLC-1) consisted of; Compritol® 888 ATO (75 mg), oleic acid (25 mg), and Poloxamer® 407 (0.3 g), with an entrapment efficiency of 75.2 ± 0.1%. The average size, zeta potential, and polydispersity index were determined to be 306.6 ± 49.6 nm, −10.2 ± 0.3 mV, and 0.09 ± 0.10, respectively. Moreover, an in vitro release study showed that the optimized temazepam NLC-1 formulation had a sustained release profile. Scintigraphy images showed evident improvement in brain uptake for the oral 99mTc-temazepam NLC-1 formulation versus the 99mTc-temazepam suspension. Pharmacokinetic data revealed a significant increase in the relative bioavailability of 99mTc-temazepam NLC-1 formulation (292.7%), compared to that of oral 99mTc-temazepam suspension. Besides, the NLC formulation exhibited a distinct targeting affinity to rat brain. In conclusion, our results indicate that the developed temazepam NLC formulation can be considered as a potential nanocarrier for brain-mediated drug delivery in the out-patient management of insomnia.
Collapse
Affiliation(s)
- Nermin E. Eleraky
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
- Correspondence: or
| | - Mahmoud M. Omar
- Department of Pharmaceutics and Industrial Pharmacy, Deraya University, Minia 61768, Egypt;
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt
| | - Hemat A. Mahmoud
- Department of Clinical Oncology and Nuclear Medicine, Assiut University, Assiut 71526, Egypt;
| | - Heba A. Abou-Taleb
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Nahda University (NUB), Beni-Suef 62511, Egypt;
| |
Collapse
|
260
|
Ahmed OAA, Fahmy UA, Bakhaidar R, El-Moselhy MA, Alfaleh MA, Ahmed ASF, Hammad ASA, Aldawsari H, Alhakamy NA. Pumpkin Oil-Based Nanostructured Lipid Carrier System for Antiulcer Effect in NSAID-Induced Gastric Ulcer Model in Rats. Int J Nanomedicine 2020; 15:2529-2539. [PMID: 32346290 PMCID: PMC7167276 DOI: 10.2147/ijn.s247252] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 03/29/2020] [Indexed: 12/19/2022] Open
Abstract
Background Peptic ulcer disease, a painful lesion of the gastric mucosa, is considered one of the most common gastrointestinal disorders. This study aims to investigate the formulation of pumpkin seed oil (PSO)-based nanostructured lipid carriers (NLCs) to utilize PSO as the liquid lipid component of NLCs and to achieve oil dispersion in the nano-range in the stomach. Methods Box–Behnken design was utilized to deduce the optimum formula with minimum particle size. The optimized PSO-NLCs formula was investigated for gastric ulcer protective effects in Wistar rats by evaluating ulcer index and determination of gastric mucosa oxidative stress parameters. Results PSO was successfully incorporated as the liquid lipid (LL) component of NLCs. The prepared optimum PSO-NLCs formula showed a size of 64.3 nm. Pretreatment of animals using the optimized PSO-NLCs formula showed significantly (p< 0.001) lower ulcer index compared to indomethacin alone group and significantly (p<0.05) less mucosal lesions compared to the raw oil. Conclusion These results indicated great potential for future application of optimized PSO-NLCs formula for antiulcer effect in non-steroidal anti-inflammatory drug (NSAID)-induced gastric ulcer.
Collapse
Affiliation(s)
- Osama A A Ahmed
- Advanced Drug Delivery Research Group, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Usama A Fahmy
- Advanced Drug Delivery Research Group, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Rana Bakhaidar
- Advanced Drug Delivery Research Group, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohamed A El-Moselhy
- Department of Pharmacology, School of Pharmacy, Ibn Sina National College, Jeddah 22413, Saudi Arabia.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Mohamed A Alfaleh
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Al-Shaimaa F Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Asmaa S A Hammad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Hibah Aldawsari
- Advanced Drug Delivery Research Group, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nabil A Alhakamy
- Advanced Drug Delivery Research Group, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.,Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.,Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia.,King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
261
|
Wadetwar RN, Agrawal AR, Kanojiya PS. In situ gel containing Bimatoprost solid lipid nanoparticles for ocular delivery: In-vitro and ex-vivo evaluation. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101575] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
262
|
Mannucci S, Boschi F, Cisterna B, Esposito E, Cortesi R, Nastruzzi C, Cappellozza E, Bernardi P, Sbarbati A, Malatesta M, Calderan L. A Correlative Imaging Study of in vivo and ex vivo Biodistribution of Solid Lipid Nanoparticles. Int J Nanomedicine 2020; 15:1745-1758. [PMID: 32214808 PMCID: PMC7078788 DOI: 10.2147/ijn.s236968] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/07/2020] [Indexed: 01/18/2023] Open
Abstract
Purpose Solid lipid nanoparticles are largely used in biomedical research and are characterized by high stability and biocompatibility and are also able to improve the stability of various loaded molecules. In vitro studies demonstrated that these nanoparticles are low cytotoxic, while in vivo studies proved their efficiency as nanocarriers for molecules characterized by a low bioavailability. However, to our knowledge, no data on the systemic biodistribution and organ accumulation of solid lipid nanoparticles in itself are presently available. Methods In this view, we investigated the solid lipid nanoparticles biodistribution by a multimodal imaging approach correlating in vivo and ex vivo analyses. We loaded solid lipid nanoparticles with two different fluorophores (cardiogreen and rhodamine) to observe them with an optical imager in the whole organism and in the excised organs, and with fluorescence microscopy in tissue sections. Light and transmission electron microscopy analyses were also performed to evaluate possible structural modification or damage due to nanoparticle administration. Results Solid lipid nanoparticles loaded with the two fluorochromes showed good optic characteristics and stable polydispersity. After in vivo administration, they were clearly detectable in the organism. Four hours after the injection, the fluorescent signal occurred in anatomical districts corresponding to the liver and this was confirmed by the ex vivo acquisitions of excised organs. Brightfield, fluorescence and transmission electron microscopy confirmed solid lipid nanoparticles accumulation in hepatocytes without structural damage. Conclusion Our results support the systemic biocompatibility of solid lipid nanoparticles and demonstrate their detailed biodistribution from the whole organism to organs until the cells.
Collapse
Affiliation(s)
- Silvia Mannucci
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona I-37134, Italy
| | - Federico Boschi
- Department of Computer Science, University of Verona, Verona I-37134, Italy
| | - Barbara Cisterna
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona I-37134, Italy
| | - Elisabetta Esposito
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Ferrara I-44121, Italy
| | - Rita Cortesi
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Ferrara I-44121, Italy
| | - Claudio Nastruzzi
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Ferrara I-44121, Italy
| | - Enrica Cappellozza
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona I-37134, Italy
| | - Paolo Bernardi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona I-37134, Italy
| | - Andrea Sbarbati
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona I-37134, Italy
| | - Manuela Malatesta
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona I-37134, Italy
| | - Laura Calderan
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona I-37134, Italy
| |
Collapse
|
263
|
Nanostructured Lipid Carriers for Delivery of Chemotherapeutics: A Review. Pharmaceutics 2020; 12:pharmaceutics12030288. [PMID: 32210127 PMCID: PMC7151211 DOI: 10.3390/pharmaceutics12030288] [Citation(s) in RCA: 207] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/07/2020] [Accepted: 03/14/2020] [Indexed: 12/15/2022] Open
Abstract
The efficacy of current standard chemotherapy is suboptimal due to the poor solubility and short half-lives of chemotherapeutic agents, as well as their high toxicity and lack of specificity which may result in severe side effects, noncompliance and patient inconvenience. The application of nanotechnology has revolutionized the pharmaceutical industry and attracted increasing attention as a significant means for optimizing the delivery of chemotherapeutic agents and enhancing their efficiency and safety profiles. Nanostructured lipid carriers (NLCs) are lipid-based formulations that have been broadly studied as drug delivery systems. They have a solid matrix at room temperature and are considered superior to many other traditional lipid-based nanocarriers such as nanoemulsions, liposomes and solid lipid nanoparticles (SLNs) due to their enhanced physical stability, improved drug loading capacity, and biocompatibility. This review focuses on the latest advances in the use of NLCs as drug delivery systems and their preparation and characterization techniques with special emphasis on their applications as delivery systems for chemotherapeutic agents and different strategies for their use in tumor targeting.
Collapse
|
264
|
Akbarzadeh Khiavi M, Safary A, Barar J, Ajoolabady A, Somi MH, Omidi Y. Multifunctional nanomedicines for targeting epidermal growth factor receptor in colorectal cancer. Cell Mol Life Sci 2020; 77:997-1019. [PMID: 31563999 PMCID: PMC11104811 DOI: 10.1007/s00018-019-03305-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/08/2019] [Accepted: 09/16/2019] [Indexed: 02/06/2023]
Abstract
Systemic administration of chemotherapeutics by nanocarriers (NCs) functionalized with targeting agents provides a localized accumulation of drugs in the target tissues and cells. Advanced nanoscaled medicaments can enter into the tumor microenvironment (TME) and overcome the uniquely dysregulated biological settings of TME, including highly pressurized tumor interstitial fluid in an acidic milieu. Such multimodal nanomedicines seem to be one of the most effective treatment modalities against solid tumors such as colorectal cancer (CRC). To progress and invade, cancer cells overexpress various oncogenes and molecular markers such as epidermal growth factor receptors (EGFRs), which can be exploited for targeted delivery of nanoscaled drug delivery systems (DDSs). In fact, to develop effective personalized multimodal nanomedicines, the type of solid tumor and status of the disease in each patient should be taken into consideration. While the development of such multimodal-targeted nanomedicines is largely dependent on the expression level of oncomarkers, the type of NCs and homing/imaging agents play key roles in terms of their efficient applications. In this review, we provide deep insights into the development of EGFR-targeting nanomedicines and discuss various types of nanoscale DDSs (e.g., organic and inorganic nanoparticles) for targeting of the EGFR-positive solid tumors such as CRC.
Collapse
Affiliation(s)
- Mostafa Akbarzadeh Khiavi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, 51656-65811, Iran
| | - Azam Safary
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, 51656-65811, Iran
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, 51656-65811, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Ajoolabady
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, 51656-65811, Iran
| | - Mohammad Hossein Somi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, 51656-65811, Iran.
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
265
|
Lombardo D, Calandra P, Pasqua L, Magazù S. Self-assembly of Organic Nanomaterials and Biomaterials: The Bottom-Up Approach for Functional Nanostructures Formation and Advanced Applications. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E1048. [PMID: 32110877 PMCID: PMC7084717 DOI: 10.3390/ma13051048] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 02/17/2020] [Accepted: 02/20/2020] [Indexed: 12/11/2022]
Abstract
In this paper, we survey recent advances in the self-assembly processes of novel functional platforms for nanomaterials and biomaterials applications. We provide an organized overview, by analyzing the main factors that influence the formation of organic nanostructured systems, while putting into evidence the main challenges, limitations and emerging approaches in the various fields of nanotechology and biotechnology. We outline how the building blocks properties, the mutual and cooperative interactions, as well as the initial spatial configuration (and environment conditions) play a fundamental role in the construction of efficient nanostructured materials with desired functional properties. The insertion of functional endgroups (such as polymers, peptides or DNA) within the nanostructured units has enormously increased the complexity of morphologies and functions that can be designed in the fabrication of bio-inspired materials capable of mimicking biological activity. However, unwanted or uncontrollable effects originating from unexpected thermodynamic perturbations or complex cooperative interactions interfere at the molecular level with the designed assembly process. Correction and harmonization of unwanted processes is one of the major challenges of the next decades and requires a deeper knowledge and understanding of the key factors that drive the formation of nanomaterials. Self-assembly of nanomaterials still remains a central topic of current research located at the interface between material science and engineering, biotechnology and nanomedicine, and it will continue to stimulate the renewed interest of biologist, physicists and materials engineers by combining the principles of molecular self-assembly with the concept of supramolecular chemistry.
Collapse
Affiliation(s)
- Domenico Lombardo
- Consiglio Nazionale delle Ricerche, Istituto per i Processi Chimico-Fisici, 98158 Messina, Italy
| | - Pietro Calandra
- Consiglio Nazionale delle Ricerche, Istituto Studio Materiali Nanostrutturati, 00015 Roma, Italy;
| | - Luigi Pasqua
- Department of Environmental and Chemical Engineering, University of Calabria, 87036 Rende, Italy;
| | - Salvatore Magazù
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università di Messina, 98166 Messina, Italy;
| |
Collapse
|
266
|
Souto EB, Baldim I, Oliveira WP, Rao R, Yadav N, Gama FM, Mahant S. SLN and NLC for topical, dermal, and transdermal drug delivery. Expert Opin Drug Deliv 2020; 17:357-377. [PMID: 32064958 DOI: 10.1080/17425247.2020.1727883] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Introduction: From a biopharmaceutical standpoint, the skin is recognized as an interesting route for drug delivery. In general, small molecules are able to penetrate the stratum corneum, the outermost layer of the skin. In contrast, the delivery of larger molecules, such as peptides and proteins, remains a challenge. Nanoparticles have been exploited not only to enhance skin penetration of drugs but also to expand the range of molecules to be clinically used.Areas covered: This review focus on Solid lipid nanoparticles (SLN) and Nanostructured lipid carriers (NLC) for skin administration. We discuss the selection criteria for lipids, surfactants, and surface modifiers commonly in use in SLN/NLC, their production techniques, and the range of drugs loaded in these lipid nanoparticles for the treatment of skin disorders.Expert opinion: Depending on the lipid and surfactant composition, different nanoparticle morphologies can be generated. Both SLN and NLC are composed of lipids that resemble those of the skin and sebum, which contribute to their enhanced biocompatibility, with limited toxicological risk. SLN and NLC can be loaded with very chemically different drugs, may provide a tunable release profile, can be produced in a sterilized environment, and be scaled-up without the need for organic solvents.
Collapse
Affiliation(s)
- Eliana B Souto
- Faculty of Pharmacy, University of Coimbra (FFUC), Coimbra, Portugal.,CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Iara Baldim
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal.,Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, SP, Brazil
| | - Wanderley P Oliveira
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, SP, Brazil
| | - Rekha Rao
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, India
| | - Nitesh Yadav
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, India
| | - Francisco M Gama
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Sheefali Mahant
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, India
| |
Collapse
|
267
|
Viegas JSR, Praça FG, Caron AL, Suzuki I, Silvestrini AVP, Medina WSG, Del Ciampo JO, Kravicz M, Bentley MVLB. Nanostructured lipid carrier co-delivering tacrolimus and TNF-α siRNA as an innovate approach to psoriasis. Drug Deliv Transl Res 2020; 10:646-660. [DOI: 10.1007/s13346-020-00723-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
268
|
Agrawal M, Saraf S, Saraf S, Dubey SK, Puri A, Patel RJ, Ajazuddin, Ravichandiran V, Murty US, Alexander A. Recent strategies and advances in the fabrication of nano lipid carriers and their application towards brain targeting. J Control Release 2020; 321:372-415. [PMID: 32061621 DOI: 10.1016/j.jconrel.2020.02.020] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/10/2020] [Accepted: 02/10/2020] [Indexed: 12/20/2022]
Abstract
In last two decades, the lipid nanocarriers have been extensively investigated for their drug targeting efficiency towards the critical areas of the human body like CNS, cardiac region, tumor cells, etc. Owing to the flexibility and biocompatibility, the lipid-based nanocarriers, including nanoemulsion, liposomes, SLN, NLC etc. have gained much attention among various other nanocarrier systems for brain targeting of bioactives. Across different lipid nanocarriers, NLC remains to be the safest, stable, biocompatible and cost-effective drug carrier system with high encapsulation efficiency. Drug delivery to the brain always remains a challenging issue for scientists due to the complex structure and various barrier mechanisms surrounding the brain. The application of a suitable nanocarrier system and the use of any alternative route of drug administration like nose-to-brain drug delivery could overcome the hurdle and improves the therapeutic efficiency of CNS acting drugs thereof. NLC, a second-generation lipid nanocarrier, upsurges the drug permeation across the BBB due to its unique structural properties. The biocompatible lipid matrix and nano-size make it an ideal drug carrier for brain targeting. It offers many advantages over other drug carrier systems, including ease of manufacturing and scale-up to industrial level, higher drug targeting, high drug loading, control drug release, compatibility with a wide range of drug substances, non-toxic and non-irritant behavior. This review highlights recent progresses towards the development of NLC for brain targeting of bioactives with particular reference to its surface modifications, formulations aspects, pharmacokinetic behavior and efficacy towards the treatment of various neurological disorders like AD, PD, schizophrenia, epilepsy, brain cancer, CNS infection (viral and fungal), multiple sclerosis, cerebral ischemia, and cerebral malaria. This work describes in detail the role and application of NLC, along with its different fabrication techniques and associated limitations. Specific emphasis is given to compile a summary and graphical data on the area explored by scientists and researchers worldwide towards the treatment of neurological disorders with or without NLC. The article also highlights a brief insight into two prime approaches for brain targeting, including drug delivery across BBB and direct nose-to-brain drug delivery along with the current global status of specific neurological disorders.
Collapse
Affiliation(s)
- Mukta Agrawal
- Rungta College of Pharmaceutical Sciences and Research, Kohka-Kurud Road, Bhilai, Chhattisgarh 490024, India
| | - Swarnlata Saraf
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492010, India
| | - Shailendra Saraf
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492010, India
| | - Sunil Kumar Dubey
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, India
| | - Anu Puri
- RNA Structure and Design Section, RNA Biology Laboratory (RBL), Center for Cancer Research, NCI-Frederick, NIH, Frederick, USA
| | - Ravish J Patel
- Ramanbhai Patel College of Pharmacy (RPCP), Charotar University of Sciences and Technology (CHARUSAT), Gujarat 388421, India
| | - Ajazuddin
- Rungta College of Pharmaceutical Sciences and Research, Kohka-Kurud Road, Bhilai, Chhattisgarh 490024, India
| | - V Ravichandiran
- National Institute of Pharmaceutical Education and Research (NIPER-Kolkata), Ministry of Chemicals & Fertilizers, Govt. of India, Chunilal Bhawan 168, Maniktala Main Road, Kolkata 700054, India
| | - Upadhyayula Suryanarayana Murty
- National Institute of Pharmaceutical Education and Research (NIPER-Guwahati), Department of Pharmaceuticals, Ministry of Chemicals & Fertilizers, Govt. of India, NH 37, NITS Mirza, Kamrup, 781125 Guwahati, Assam, India
| | - Amit Alexander
- National Institute of Pharmaceutical Education and Research (NIPER-Guwahati), Department of Pharmaceuticals, Ministry of Chemicals & Fertilizers, Govt. of India, NH 37, NITS Mirza, Kamrup, 781125 Guwahati, Assam, India.
| |
Collapse
|
269
|
Salehi B, Calina D, Docea AO, Koirala N, Aryal S, Lombardo D, Pasqua L, Taheri Y, Marina Salgado Castillo C, Martorell M, Martins N, Iriti M, Suleria HAR, Sharifi-Rad J. Curcumin's Nanomedicine Formulations for Therapeutic Application in Neurological Diseases. J Clin Med 2020; 9:E430. [PMID: 32033365 PMCID: PMC7074182 DOI: 10.3390/jcm9020430] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 01/31/2020] [Accepted: 02/03/2020] [Indexed: 12/17/2022] Open
Abstract
The brain is the body's control center, so when a disease affects it, the outcomes are devastating. Alzheimer's and Parkinson's disease, and multiple sclerosis are brain diseases that cause a large number of human deaths worldwide. Curcumin has demonstrated beneficial effects on brain health through several mechanisms such as antioxidant, amyloid β-binding, anti-inflammatory, tau inhibition, metal chelation, neurogenesis activity, and synaptogenesis promotion. The therapeutic limitation of curcumin is its bioavailability, and to address this problem, new nanoformulations are being developed. The present review aims to summarize the general bioactivity of curcumin in neurological disorders, how functional molecules are extracted, and the different types of nanoformulations available.
Collapse
Affiliation(s)
- Bahare Salehi
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam 44340847, Iran
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Niranjan Koirala
- Department of Natural Products Research, Dr. Koirala Research Institute for Biotechnology and Biodiversity, Kathmandu 44600, Nepal
| | - Sushant Aryal
- Department of Natural Products Research, Dr. Koirala Research Institute for Biotechnology and Biodiversity, Kathmandu 44600, Nepal
| | | | - Luigi Pasqua
- Department of Environmental and Chemical Engineering, University of Calabria, 87036 Rende (CS), Italy
| | - Yasaman Taheri
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1991953381, Iran
| | | | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion 4070386, Chile
- Unidad de Desarrollo Tecnológico, Universidad de Concepción UDT, Concepcion 4070386, Chile
| | - Natália Martins
- Faculty of Medicine, University of Porto, Alameda Prof. HernâniMonteiro, 4200-319 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
| | - Marcello Iriti
- Department of Agricultural and Environmental Sciences, Milan State University, 20133 Milan, Italy
| | | | - Javad Sharifi-Rad
- Zabol Medicinal Plants Research Center, Zabol University of Medical Sciences, Zabol 61615-585, Iran
| |
Collapse
|
270
|
Paliwal R, Paliwal SR, Kenwat R, Kurmi BD, Sahu MK. Solid lipid nanoparticles: a review on recent perspectives and patents. Expert Opin Ther Pat 2020; 30:179-194. [DOI: 10.1080/13543776.2020.1720649] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Rishi Paliwal
- Nanomedicine and Bioengineering Research Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, India
| | - Shivani Rai Paliwal
- SLT Institute of Pharmaceutical Sciences, Guru Ghasidas University, Bilaspur, India
| | - Rameshroo Kenwat
- Nanomedicine and Bioengineering Research Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, India
| | - Balak Das Kurmi
- SLT Institute of Pharmaceutical Sciences, Guru Ghasidas University, Bilaspur, India
| | - Mukesh Kumar Sahu
- Department of Pharmaceutics, Columbia Institute of Pharmacy, Raipur, India
| |
Collapse
|
271
|
Otarola JJ, Cobo Solís AK, Mariano Correa N, Molina PG. Piroxicam‐Loaded Nanostructured Lipid Nanocarriers Modified with Salicylic Acid: The Effect on Drug Release. ChemistrySelect 2020. [DOI: 10.1002/slct.201904227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jessica J. Otarola
- Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS). UNRC-CONICET. Agencia Postal # 3. C.P. X5804BYA Río Cuarto. Argentina
- Departamento de Química. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Agencia Postal # 3. C.P. X5804BYA Río Cuarto. Argentina
| | - Airam K. Cobo Solís
- Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS). UNRC-CONICET. Agencia Postal # 3. C.P. X5804BYA Río Cuarto. Argentina
- Departamento de Química. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Agencia Postal # 3. C.P. X5804BYA Río Cuarto. Argentina
| | - N. Mariano Correa
- Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS). UNRC-CONICET. Agencia Postal # 3. C.P. X5804BYA Río Cuarto. Argentina
- Departamento de Química. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Agencia Postal # 3. C.P. X5804BYA Río Cuarto. Argentina
| | - Patricia G. Molina
- Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS). UNRC-CONICET. Agencia Postal # 3. C.P. X5804BYA Río Cuarto. Argentina
- Departamento de Química. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Agencia Postal # 3. C.P. X5804BYA Río Cuarto. Argentina
| |
Collapse
|
272
|
Akel H, Ismail R, Csóka I. Progress and perspectives of brain-targeting lipid-based nanosystems via the nasal route in Alzheimer's disease. Eur J Pharm Biopharm 2020; 148:38-53. [PMID: 31926222 DOI: 10.1016/j.ejpb.2019.12.014] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/28/2019] [Accepted: 12/31/2019] [Indexed: 12/17/2022]
Abstract
Since health care systems dedicate substantial resources to Alzheimer's disease (AD), it poses an increasing challenge to scientists and health care providers worldwide, especially that many decades of research in the medical field revealed no optimal effective treatment for this disease. The intranasal administration route seems to be a preferable route of anti-AD drug delivery over the oral one as it demonstrates an ability to overcome the related obstacles reflected in low bioavailability, limited brain exposure and undesired pharmacokinetics or side effects. This delivery route can bypass the systemic circulation through the intraneuronal and extraneuronal pathways, providing truly needleless and direct brain drug delivery of the therapeutics due to its large surface area, porous endothelial membrane, the avoidance of the first-pass metabolism, and ready accessibility. Among the different nano-carrier systems developed, lipid-based nanosystems have become increasingly popular and have proven to be effective in managing the common symptoms of AD when administered via the nose-to-brain delivery route, which provides an answer to circumventing the BBB. The design of such lipid-based nanocarriers could be challenging since many factors can contribute to the quality of the final product. Hence, according to the authors, it is recommended to follow the quality by design methodology from the early stage of development to ensure high product quality while saving efforts and costs. This review article aims to draw attention to the up-to-date findings in the field of lipid-based nanosystems and the potential role of developing such forms in the management of AD by means of the nose-to-brain delivery route, in addition to highlighting the significant role of applying QbD methodology in this development.
Collapse
Affiliation(s)
- Hussein Akel
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös utca 6, H-6720 Szeged, Hungary
| | - Ruba Ismail
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös utca 6, H-6720 Szeged, Hungary; Institute of Pharmaceutical Technology and Regulatory Affairs, Interdisciplinary Centre of Excellence, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| | - Ildikó Csóka
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös utca 6, H-6720 Szeged, Hungary; Institute of Pharmaceutical Technology and Regulatory Affairs, Interdisciplinary Centre of Excellence, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary.
| |
Collapse
|
273
|
Khosa A, Krishna KV, Dubey SK, Saha RN. Lipid Nanocarriers for Enhanced Delivery of Temozolomide to the Brain. Methods Mol Biol 2020; 2059:285-298. [PMID: 31435928 DOI: 10.1007/978-1-4939-9798-5_15] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Brain disorders, a diverse range of conditions comprising of neurological and psychiatric conditions, are the leading cause of disability, severely affect the quality of life, and in many cases lead to mortality. The prime challenge in treatment of brain disorders is to deliver therapeutics by overcoming the blood-brain barrier (BBB), a unique anatomical and physiological barrier which restricts the passage of a number of molecules, proteins, and cells from the bloodstream. Lipid nanoparticles have emerged as promising drug delivery systems primarily because of biodegradability, low toxicity potential, and the ability to cross physiological barriers especially the BBB even without surface modifications.In this chapter we discuss the preparation and characterization of nanostructured lipid carriers of temozolomide, a chemotherapeutic drug. Evaluation of pharmacokinetics and biodistribution of the nanocarrier system in rats revealed improved delivery of the chemotherapeutic agent to the brain with the potential of lesser side effects.
Collapse
Affiliation(s)
- Archana Khosa
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani, India.
| | - Kowthavarapu V Krishna
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani, India
| | - Sunil Kumar Dubey
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani, India
| | | |
Collapse
|
274
|
Lombardo SM, Schneider M, Türeli AE, Günday Türeli N. Key for crossing the BBB with nanoparticles: the rational design. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:866-883. [PMID: 32551212 PMCID: PMC7277618 DOI: 10.3762/bjnano.11.72] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 05/08/2020] [Indexed: 05/15/2023]
Abstract
Central nervous system diseases are a heavy burden on society and health care systems. Hence, the delivery of drugs to the brain has gained more and more interest. The brain is protected by the blood-brain barrier (BBB), a selective barrier formed by the endothelial cells of the cerebral microvessels, which at the same time acts as a bottleneck for drug delivery by preventing the vast majority of drugs to reach the brain. To overcome this obstacle, drugs can be loaded inside nanoparticles that can carry the drug through the BBB. However, not all particles are able to cross the BBB and a multitude of factors needs to be taken into account when developing a carrier system for this purpose. Depending on the chosen pathway to cross the BBB, nanoparticle material, size and surface properties such as functionalization and charge should be tailored to fit the specific route of BBB crossing.
Collapse
Affiliation(s)
- Sonia M Lombardo
- MyBiotech GmbH; Industriestraße 1B, 66802 Überherrn, Germany
- Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, Campus C4 1, 66123 Saarbrücken, Germany
| | - Marc Schneider
- Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, Campus C4 1, 66123 Saarbrücken, Germany
| | - Akif E Türeli
- MyBiotech GmbH; Industriestraße 1B, 66802 Überherrn, Germany
| | | |
Collapse
|
275
|
Lipid Nanoarchitectonics for Natural Products Delivery in Cancer Therapy. SUSTAINABLE AGRICULTURE REVIEWS 2020. [DOI: 10.1007/978-3-030-41842-7_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
276
|
Karthivashan G, Ganesan P, Park SY, Lee HW, Choi DK. Lipid-based nanodelivery approaches for dopamine-replacement therapies in Parkinson's disease: From preclinical to translational studies. Biomaterials 2019; 232:119704. [PMID: 31901690 DOI: 10.1016/j.biomaterials.2019.119704] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 12/09/2019] [Accepted: 12/18/2019] [Indexed: 12/26/2022]
Abstract
The incidence of Parkinson's disease (PD), the second most common neurodegenerative disorder, has increased exponentially as the global population continues to age. Although the etiological factors contributing to PD remain uncertain, its average incidence rate is reported to be 1% of the global population older than 60 years. PD is primarily characterized by the progressive loss of dopaminergic (DAergic) neurons and/or associated neuronal networks and the subsequent depletion of dopamine (DA) levels in the brain. Thus, DA or levodopa (l-dopa), a precursor of DA, represent cardinal targets for both idiopathic and symptomatic PD therapeutics. While several therapeutic strategies have been investigated over the past decade for their abilities to curb the progression of PD, an effective cure for PD is currently unavailable. Even DA replacement therapy, an effective PD therapeutic strategy that provides an exogenous supply of DA or l-dopa, has been hindered by severe challenges, such as a poor capacity to bypass the blood-brain barrier and inadequate bioavailability. Nevertheless, with recent advances in nanotechnology, several drug delivery systems have been developed to bypass the barriers associated with central nervous system therapeutics. In here, we sought to describe the adapted lipid-based nanodrug delivery systems used in the field of PD therapeutics and their recent advances, with a particular focus placed on DA replacement therapies. This work initially explores the background of PD; offers descriptions of the most recent molecular targets; currently available clinical medications/limitations; an overview of several lipid-based PD nanotherapeutics, functionalized nanoparticles, and technical aspects in brain delivery; and, finally, presents future perspectives to enhance the use of nanotherapeutics in PD treatment.
Collapse
Affiliation(s)
- Govindarajan Karthivashan
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, 27478, Republic of Korea; Research Institute of Inflammatory Diseases (RID), College of Biomedical and Health Science and BK21plus Glocal Education Program of Nutraceuticals Development, Konkuk University, Chungju, 27478, Republic of Korea
| | - Palanivel Ganesan
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, 27478, Republic of Korea; Department of Biomedical Chemistry, Nanotechnology Research Center, Department of Applied Life Science, College of Biomedical and Health Science, Konkuk University, Chungju, 27478, Republic of Korea
| | - Shin-Young Park
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, 27478, Republic of Korea
| | - Ho-Won Lee
- Department of Neurology, Kyungpook National University School of Medicine and Brain Science & Engineering Institute, Kyungpook National University, Daegu, 41404, Republic of Korea
| | - Dong-Kug Choi
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, 27478, Republic of Korea; Research Institute of Inflammatory Diseases (RID), College of Biomedical and Health Science and BK21plus Glocal Education Program of Nutraceuticals Development, Konkuk University, Chungju, 27478, Republic of Korea.
| |
Collapse
|
277
|
L. Kiss E, Berkó S, Gácsi A, Kovács A, Katona G, Soós J, Csányi E, Gróf I, Harazin A, Deli MA, Budai-Szűcs M. Design and Optimization of Nanostructured Lipid Carrier Containing Dexamethasone for Ophthalmic Use. Pharmaceutics 2019; 11:pharmaceutics11120679. [PMID: 31847336 PMCID: PMC6955972 DOI: 10.3390/pharmaceutics11120679] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to perform a preformulation study of dexamethasone (DXM)-loaded nanostructured lipid carriers (NLCs) for ocular use. Lipid screening was applied to find the most suitable solid and liquid lipids and surfactant for the NLC formulation. The visual observation was proved with XRD measurements for the establishment of the soluble state of DXM. Thermoanalytical measurements indicated that the most relevant depression of the crystallinity index could be ensured when using a 7:3 solid lipid:oil ratio. In order to optimize the NLC composition, a 23 full factorial experimental design was used. It was established that each independent factor (lipid, DXM, and surfactant concentration) had a significant effect on the particle size while in the case of entrapment efficiency, the DXM and surfactant concentrations were significant. Lower surfactant and lipid concentrations could be beneficial because the stability and the entrapment efficacy of NLCs were more favorable. The toxicity tests on human cornea cells indicated good ophthalmic tolerability of NLCs. The in vitro drug release study predicted a higher concentration of the solute DXM on the eye surface while the Raman mapping penetration study on the porcine cornea showed a high concentration of nanocarriers in the hydrophylic stroma layer.
Collapse
Affiliation(s)
- Eszter L. Kiss
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (E.L.K.); (S.B.); (A.G.); (A.K.); (G.K.); (E.C.)
| | - Szilvia Berkó
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (E.L.K.); (S.B.); (A.G.); (A.K.); (G.K.); (E.C.)
| | - Attila Gácsi
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (E.L.K.); (S.B.); (A.G.); (A.K.); (G.K.); (E.C.)
| | - Anita Kovács
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (E.L.K.); (S.B.); (A.G.); (A.K.); (G.K.); (E.C.)
| | - Gábor Katona
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (E.L.K.); (S.B.); (A.G.); (A.K.); (G.K.); (E.C.)
| | - Judit Soós
- Department of Ophthalmology, Faculty of Medicine, University of Szeged, Korányi Fasor 10-11, H-6720 Szeged, Hungary;
| | - Erzsébet Csányi
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (E.L.K.); (S.B.); (A.G.); (A.K.); (G.K.); (E.C.)
| | - Ilona Gróf
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, H-6726 Szeged, Hungary; (I.G.); (A.H.); (M.A.D.)
- Doctoral School of Biology, University of Szeged, Dugonics tér 13, H-6720 Szeged, Hungary
| | - András Harazin
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, H-6726 Szeged, Hungary; (I.G.); (A.H.); (M.A.D.)
| | - Mária A. Deli
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, H-6726 Szeged, Hungary; (I.G.); (A.H.); (M.A.D.)
- Department of Cell Biology and Molecular Medicine, University of Szeged, Somogyi u. 4, H-6720 Szeged, Hungary
| | - Mária Budai-Szűcs
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (E.L.K.); (S.B.); (A.G.); (A.K.); (G.K.); (E.C.)
- Correspondence:
| |
Collapse
|
278
|
|
279
|
Puglia C, Pignatello R, Fuochi V, Furneri PM, Lauro MR, Santonocito D, Cortesi R, Esposito E. Lipid Nanoparticles and Active Natural Compounds: A Perfect Combination for Pharmaceutical Applications. Curr Med Chem 2019; 26:4681-4696. [PMID: 31203795 DOI: 10.2174/0929867326666190614123835] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 03/06/2019] [Accepted: 03/12/2019] [Indexed: 12/13/2022]
Abstract
Phytochemicals represent an important class of bioactive compounds characterized by significant health benefits. Notwithstanding these important features, their potential therapeutic properties suffer from poor water solubility and membrane permeability limiting their approach to nutraceutical and pharmaceutical applications. Lipid nanoparticles are well known carrier systems endowed with high biodegradation and an extraordinary biocompatible chemical nature, successfully used as platform for advanced delivery of many active compounds, including the oral, topical and systemic routes. This article is aimed at reviewing the last ten years of studies about the application of lipid nanoparticles in active natural compounds reporting examples and advantages of these colloidal carrier systems.
Collapse
Affiliation(s)
- Carmelo Puglia
- Department of Drug Sciences, University of Catania, Catania, Italy
| | | | - Virginia Fuochi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Pio Maria Furneri
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | | | | | - Rita Cortesi
- Department of Life Sciences and Biotechnologies, University of Ferrara, Ferrara, Italy
| | - Elisabetta Esposito
- Department of Life Sciences and Biotechnologies, University of Ferrara, Ferrara, Italy
| |
Collapse
|
280
|
Mangla B, Neupane YR, Singh A, Kohli K. Tamoxifen and Sulphoraphane for the breast cancer management: A synergistic nanomedicine approach. Med Hypotheses 2019; 132:109379. [PMID: 31454641 DOI: 10.1016/j.mehy.2019.109379] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 08/21/2019] [Indexed: 12/31/2022]
Abstract
Breast cancer is second most leading cause of death in all over the world and not only limited to the females. Tamoxifen has been considered as the gold line therapy for estrogen receptor positive breast cancer. However, this chemopreventive approach has been focused at individuals in high risk group and limits its clinical applications to moderate and/or lower risk groups. Moreover, Tamoxifen treatment is associated with a dose related hepatotoxicity and nephrotoxicity and eventually results in poor quality of life of patients. Sulphoraphane, a naturally occurring isothiocyanate derivative has been investigated for its numerous potential biological activities including anticancer effects. The present hypothesis aims to put forward in which Tamoxifen is combined with a natural bioactive Sulphoraphane, both incorporated into a novel lipid based nanocarrier at a reduced dose, which would eventually shuttle the cargo to the target site. At the breast cancer, Sulphoraphane sensitizes the estrogen receptors and ameliorates the binding affinity of Tamoxifen to these receptors, thereby potentiating the anticancer efficacy and reducing the offsite toxicity of Tamoxifen. This dual loaded zero-dimension lipid carrier would be a value addition to the current treatment regimen for breast cancer management.
Collapse
Affiliation(s)
- Bharti Mangla
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062 India
| | - Yub Raj Neupane
- Department of Pharmacy, National University of Singapore, Singapore 117559, Singapore
| | - Archu Singh
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062 India
| | - Kanchan Kohli
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062 India.
| |
Collapse
|
281
|
Tan JSL, Roberts C, Billa N. Pharmacokinetics and tissue distribution of an orally administered mucoadhesive chitosan-coated amphotericin B-Loaded nanostructured lipid carrier (NLC) in rats. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 31:141-154. [DOI: 10.1080/09205063.2019.1680926] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Janet Sui Ling Tan
- School of Pharmacy, The University of Nottingham, Malaysia, Semenyih, Selangor, Malaysia
| | - Clive Roberts
- School of Pharmacy, The University of Nottingham, Nottingham, UK
| | - Nashiru Billa
- School of Pharmacy, The University of Nottingham, Malaysia, Semenyih, Selangor, Malaysia
- College of Pharmacy, Qatar University, Doha, Qatar
| |
Collapse
|
282
|
Wang D, Ma B, Zhao Y, Sun Y, Luan Y, Wang J. Preparation and Properties of Semi-Self-Assembled Lipopeptide Vesicles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:13174-13181. [PMID: 31532218 DOI: 10.1021/acs.langmuir.9b02513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Novel lipopeptide vesicles are prepared from self-assembled nanomembranes through an extrusion method. The size of vesicles can be controlled by the pore diameter of the extrusion filter. The vesicles are rather stable because hydrogen bonds exist among the peptide headgroups. When doxorubicin hydrochloride (DOX·HCl) is encapsulated in the vesicles, it could be released sustainably, and its side effect would also be reduced due to encapsulation. The leakage rate of DOX·HCl depends on the pH via charge regulation. As drug carriers, lipopeptide vesicles have been proved to have nontoxicity to normal cells. A magnetic surfactant CH3(CH2)14CH2N(CH3)3+ [FeCl3Br]- (CTAFe) was mixed with lipopeptide to modify the vesicles. Also, the results demonstrated that the vesicles is endowed with magnetic property after the addition of CTAFe. We believe that the strategy of lipopeptide vesicle preparation would enrich the drug carrier family and expand the application of lipopeptide materials.
Collapse
Affiliation(s)
- Dong Wang
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology , China University of Petroleum (East China) , Qingdao 266580 , China
| | - Bente Ma
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology , China University of Petroleum (East China) , Qingdao 266580 , China
| | - Yurong Zhao
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology , China University of Petroleum (East China) , Qingdao 266580 , China
| | - Yawei Sun
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology , China University of Petroleum (East China) , Qingdao 266580 , China
| | - Yuxia Luan
- School of Pharmaceutical Science, Key Laboratory of Chemical Biology (Ministry of Education) , Shandong University , 44 West Wenhua Road , Jinan , Shandong 250012 , China
| | - Jiqian Wang
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology , China University of Petroleum (East China) , Qingdao 266580 , China
| |
Collapse
|
283
|
Kanwar R, Gradzielski M, Prevost S, Appavou MS, Mehta S. Experimental validation of biocompatible nanostructured lipid carriers of sophorolipid: Optimization, characterization and in-vitro evaluation. Colloids Surf B Biointerfaces 2019; 181:845-855. [DOI: 10.1016/j.colsurfb.2019.06.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/11/2019] [Accepted: 06/16/2019] [Indexed: 01/29/2023]
|
284
|
Ketabat F, Pundir M, Mohabatpour F, Lobanova L, Koutsopoulos S, Hadjiiski L, Chen X, Papagerakis P, Papagerakis S. Controlled Drug Delivery Systems for Oral Cancer Treatment-Current Status and Future Perspectives. Pharmaceutics 2019; 11:E302. [PMID: 31262096 PMCID: PMC6680655 DOI: 10.3390/pharmaceutics11070302] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 12/18/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC), which encompasses the oral cavity-derived malignancies, is a devastating disease causing substantial morbidity and mortality in both men and women. It is the most common subtype of the head and neck squamous cell carcinoma (HNSCC), which is ranked the sixth most common malignancy worldwide. Despite promising advancements in the conventional therapeutic approaches currently available for patients with oral cancer, many drawbacks are still to be addressed; surgical resection leads to permanent disfigurement, altered sense of self and debilitating physiological consequences, while chemo- and radio-therapies result in significant toxicities, all affecting patient wellbeing and quality of life. Thus, the development of novel therapeutic approaches or modifications of current strategies is paramount to improve individual health outcomes and survival, while early tumour detection remains a priority and significant challenge. In recent years, drug delivery systems and chronotherapy have been developed as alternative methods aiming to enhance the benefits of the current anticancer therapies, while minimizing their undesirable toxic effects on the healthy non-cancerous cells. Targeted drug delivery systems have the potential to increase drug bioavailability and bio-distribution at the site of the primary tumour. This review confers current knowledge on the diverse drug delivery methods, potential carriers (e.g., polymeric, inorganic, and combinational nanoparticles; nanolipids; hydrogels; exosomes) and anticancer targeted approaches for oral squamous cell carcinoma treatment, with an emphasis on their clinical relevance in the era of precision medicine, circadian chronobiology and patient-centred health care.
Collapse
Affiliation(s)
- Farinaz Ketabat
- Laboratory of Oral, Head and Neck Cancer - Personalized Diagnostics and Therapeutics, Department of Surgery - Division of Head and Neck Surgery, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
- Laboratory of Precision Oral Health and Chronobiology, College of Dentistry, University of Saskatchewan, Saskatoon, SK S7N 5E4, Canada
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK S7K 5A9, Canada
| | - Meenakshi Pundir
- Laboratory of Oral, Head and Neck Cancer - Personalized Diagnostics and Therapeutics, Department of Surgery - Division of Head and Neck Surgery, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
- Laboratory of Precision Oral Health and Chronobiology, College of Dentistry, University of Saskatchewan, Saskatoon, SK S7N 5E4, Canada
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK S7K 5A9, Canada
| | - Fatemeh Mohabatpour
- Laboratory of Oral, Head and Neck Cancer - Personalized Diagnostics and Therapeutics, Department of Surgery - Division of Head and Neck Surgery, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
- Laboratory of Precision Oral Health and Chronobiology, College of Dentistry, University of Saskatchewan, Saskatoon, SK S7N 5E4, Canada
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK S7K 5A9, Canada
| | - Liubov Lobanova
- Laboratory of Precision Oral Health and Chronobiology, College of Dentistry, University of Saskatchewan, Saskatoon, SK S7N 5E4, Canada
| | - Sotirios Koutsopoulos
- Center for Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Lubomir Hadjiiski
- Departmnet of Radiology, School of Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xiongbiao Chen
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK S7K 5A9, Canada
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK S7K 5A9, Canada
| | - Petros Papagerakis
- Laboratory of Precision Oral Health and Chronobiology, College of Dentistry, University of Saskatchewan, Saskatoon, SK S7N 5E4, Canada
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK S7K 5A9, Canada
| | - Silvana Papagerakis
- Laboratory of Oral, Head and Neck Cancer - Personalized Diagnostics and Therapeutics, Department of Surgery - Division of Head and Neck Surgery, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada.
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK S7K 5A9, Canada.
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
285
|
Kanwar R, Rathee J, Salunke DB, Mehta SK. Green Nanotechnology-Driven Drug Delivery Assemblies. ACS OMEGA 2019; 4:8804-8815. [PMID: 31459969 PMCID: PMC6648705 DOI: 10.1021/acsomega.9b00304] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 05/09/2019] [Indexed: 05/24/2023]
Abstract
Green nanotechnology incorporates the principles of green chemistry and green engineering to fabricate innocuous and eco-friendly nanoassemblies to combat the problems affecting the human health or environment. Subsequently, amalgamation of green nanotechnology with drug delivery area has actually commenced a new realm of "green nanomedicine". The burgeoning demand for green nanotechnology-driven drug delivery systems has led to the development of different types of delivery devices, like inorganic (metallic) nanoparticles, quantum dots, organic polymeric nanoparticles, mesoporous silica nanoparticles, dendrimers, nanostructured lipid carriers, solid lipid nanoparticles, etc. The present article deals with a brief account of delivery devices produced from green methods and describes site-specific drug delivery systems (including their pros and cons) and their relevance in the field of green nanomedicine.
Collapse
Affiliation(s)
- Rohini Kanwar
- Department of Chemistry and
Center of Advanced Studies in Chemistry, Panjab University, Chandigarh U.T. 160014, India
| | - Jyoti Rathee
- Department of Chemistry and
Center of Advanced Studies in Chemistry, Panjab University, Chandigarh U.T. 160014, India
| | - Deepak B. Salunke
- Department of Chemistry and
Center of Advanced Studies in Chemistry, Panjab University, Chandigarh U.T. 160014, India
| | - Surinder K. Mehta
- Department of Chemistry and
Center of Advanced Studies in Chemistry, Panjab University, Chandigarh U.T. 160014, India
| |
Collapse
|
286
|
Ghate VM, Kodoth AK, Raja S, Vishalakshi B, Lewis SA. Development of MART for the Rapid Production of Nanostructured Lipid Carriers Loaded with All-Trans Retinoic Acid for Dermal Delivery. AAPS PharmSciTech 2019; 20:162. [PMID: 30989451 DOI: 10.1208/s12249-019-1307-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 01/08/2019] [Indexed: 01/20/2023] Open
Abstract
All-trans retinoic acid (ATRA) has been regarded as a wonder drug for many dermatological complications; however, its application is limited due to the extreme irritation, and toxicity seen once it has sufficiently concentrated into the bloodstream from the skin. Thus, the present study was aimed to increase the entrapment of ATRA and minimize its transdermal permeation. ATRA incorporated within nanostructured lipid carriers (NLCs) were produced by a green and facile thin lipid-film based microwave-assisted rapid technique (MART). The optimization was carried out using the response surface methodology (RSM)-driven artificial neural network (ANN) coupled with genetic algorithm (GA). The liquid lipid and surfactants were seen to play a very crucial role culminating in the particle size (< 70 nm), zeta potential (< - 32 mV), and entrapment of ATRA (> 98%). ANN-GA-optimized NLCs required a minimal quantity of the surfactants, formed within 2 min and were stable for 1 year at different storage conditions. The optimized NLC-loaded creams showed a skin retention (ex vivo) to an extent of 87.42% with no detectable drug in the receptor fluid (24 h) in comparison to the marketed cream which released 47.32% (12 h) of ATRA. The results were in good correlation with the in vivo skin deposition studies. The NLCs were biocompatible and non-skin irritant based on the primary irritation index. In conclusion, the NLCs were seen to have a very high potential in overcoming the drawbacks of ATRA for dermal delivery and could be produced conveniently by the MART.
Collapse
|
287
|
Majumder J, Taratula O, Minko T. Nanocarrier-based systems for targeted and site specific therapeutic delivery. Adv Drug Deliv Rev 2019; 144:57-77. [PMID: 31400350 PMCID: PMC6748653 DOI: 10.1016/j.addr.2019.07.010] [Citation(s) in RCA: 187] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/02/2019] [Accepted: 07/05/2019] [Indexed: 01/04/2023]
Abstract
Systemic drug delivery methods such as oral or parenteral administration of free drugs possess relatively low treatment efficiency and marked adverse side effects. The use of nanoparticles for drug delivery in most cases substantially enhances drug efficacy, improves pharmacokinetics and drug release and limits their side effects. However, further enhancement in drug efficacy and significant limitation of adverse side effects can be achieved by specific targeting of nanocarrier-based delivery systems especially in combination with local administration. The present review describes major advantages and limitations of organic and inorganic nanocarriers or living cell-based drug and nucleic acid delivery systems. Among these, different nanoparticles, supramolecular gels, therapeutic cells as living drug carriers etc. have emerged as a new frontier in modern medicine.
Collapse
Affiliation(s)
- Joydeb Majumder
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Oleh Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, USA
| | - Tamara Minko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA; Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA; Environmental and Occupational Health Science Institute, Piscataway, NJ 08854, USA.
| |
Collapse
|
288
|
Ling JTS, Roberts CJ, Billa N. Antifungal and Mucoadhesive Properties of an Orally Administered Chitosan-Coated Amphotericin B Nanostructured Lipid Carrier (NLC). AAPS PharmSciTech 2019; 20:136. [PMID: 30838459 DOI: 10.1208/s12249-019-1346-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/18/2019] [Indexed: 01/11/2023] Open
Abstract
Surface-modified nanostructured lipid carriers (NLC) represent a promising mode of drug delivery used to enhance retention of drugs at absorption site. Formulated chitosan-coated amphotericin-B-loaded NLC (ChiAmp NLC) had a size of 394.4 ± 6.4 nm, encapsulation and loading efficiencies of 86.0 ± 3% and 11.0 ± 0.1% respectively. Amphotericin-B release from NLCs was biphasic with no changes in physical properties upon exposure to simulated gastrointestinal conditions. Antifungal properties of Amphotericin-B and ChiAmpB NLC were comparable but ChiAmpB NLC was twice less toxic to red blood cells and ten times safer on HT-29 cell lines. In vitro mucoadhesion data were observed ex vivo, where ChiAmpB NLC resulted in higher retention within the small intestine compared to the uncoated formulation. The data strongly offers the possibility of orally administering a non-toxic, yet effective Amphotericin-B nanoformulation for the treatment of systemic fungal infections.
Collapse
|
289
|
Use of Lipid Nanocarriers to Improve Oral Delivery of Vitamins. Nutrients 2019; 11:nu11010068. [PMID: 30609658 PMCID: PMC6357185 DOI: 10.3390/nu11010068] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/01/2018] [Accepted: 12/03/2018] [Indexed: 12/12/2022] Open
Abstract
The chemical environment and enzymes in the gastrointestinal (GI) membrane limit the oral absorption of some vitamins. The GI epithelium also contributes to the poor permeability of numerous antioxidant agents. Thus, lipophilic vitamins do not readily dissolve in the GI tract, and therefore they have low bioavailability. Nanomedicine has the potential to improve the delivery efficiency of oral vitamins. In particular, the use of lipid nanocarriers for certain vitamins that are administered orally can provide improved solubility, chemical stability, epithelium permeability and bioavailability, half-life, nidus targeting, and fewer adverse effects. These lipid nanocarriers include self-emulsifying drug delivery systems (SEDDSs), nanoemulsions, microemulsions, solid lipid nanoparticles (SLNs), and nanostructured lipid carriers (NLCs). The use of nontoxic excipients and sophisticated material engineering of lipid nanosystems allows for control of the physicochemical properties of the nanoparticles and improved GI permeation via mucosal or lymphatic transport. In this review, we highlight recent progress in the development of lipid nanocarriers for vitamin delivery. In addition, the same lipid nanocarriers used for vitamins may also be effective as carriers of vitamin derivatives, and therefore enhance their oral bioavailability. One example is the incorporation of d-α-tocopheryl polyethylene glycol succinate (TPGS) as the emulsifier in lipid nanocarriers to increase the solubility and inhibit P-glycoprotein (P-gp) efflux. We also survey the concepts and discuss the mechanisms of nanomedical techniques that are used to develop vitamin-loaded nanocarriers.
Collapse
|
290
|
Dua K, Malyla V, Singhvi G, Wadhwa R, Krishna RV, Shukla SD, Shastri MD, Chellappan DK, Maurya PK, Satija S, Mehta M, Gulati M, Hansbro N, Collet T, Awasthi R, Gupta G, Hsu A, Hansbro PM. Increasing complexity and interactions of oxidative stress in chronic respiratory diseases: An emerging need for novel drug delivery systems. Chem Biol Interact 2018; 299:168-178. [PMID: 30553721 DOI: 10.1016/j.cbi.2018.12.009] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/02/2018] [Accepted: 12/12/2018] [Indexed: 02/07/2023]
Abstract
Oxidative stress is intensely involved in enhancing the severity of various chronic respiratory diseases (CRDs) including asthma, chronic obstructive pulmonary disease (COPD), infections and lung cancer. Even though there are various existing anti-inflammatory therapies, which are not enough to control the inflammation caused due to various contributing factors such as anti-inflammatory genes and antioxidant enzymes. This leads to an urgent need of novel drug delivery systems to combat the oxidative stress. This review gives a brief insight into the biological factors involved in causing oxidative stress, one of the emerging hallmark feature in CRDs and particularly, highlighting recent trends in various novel drug delivery carriers including microparticles, microemulsions, microspheres, nanoparticles, liposomes, dendrimers, solid lipid nanocarriers etc which can help in combating the oxidative stress in CRDs and ultimately reducing the disease burden and improving the quality of life with CRDs patients. These carriers improve the pharmacokinetics and bioavailability to the target site. However, there is an urgent need for translational studies to validate the drug delivery carriers for clinical administration in the pulmonary clinic.
Collapse
Affiliation(s)
- Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) & School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, 2308, Australia; Centre for Inflammation, Centenary Institute, Sydney, NSW, 2050, Australia.
| | - Vamshikrishna Malyla
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Centre for Inflammation, Centenary Institute, Sydney, NSW, 2050, Australia
| | - Gautam Singhvi
- Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani, 333031, India
| | - Ridhima Wadhwa
- Faculty of Life Sciences and Biotechnology, South Asian University, Akbar Bhawan, Chanakyapuri, New Delhi, 110021, India
| | - Rapalli Vamshi Krishna
- Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani, 333031, India
| | - Shakti Dhar Shukla
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) & School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Madhur D Shastri
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, 57000, Malaysia
| | - Pawan Kumar Maurya
- Department of Biochemistry, Central University of Haryana, Jant-Pali, Mahendergarh District, 123031, Haryana, India
| | - Saurabh Satija
- School of Pharmaceutical Sciences, Lovely Faculty of Applied Medical Sciences, Lovely Professional University, Phagwara, Punjab, 144441, India
| | - Meenu Mehta
- School of Pharmaceutical Sciences, Lovely Faculty of Applied Medical Sciences, Lovely Professional University, Phagwara, Punjab, 144441, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Faculty of Applied Medical Sciences, Lovely Professional University, Phagwara, Punjab, 144441, India
| | - Nicole Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) & School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, 2308, Australia; Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Centre for Inflammation, Centenary Institute, Sydney, NSW, 2050, Australia
| | - Trudi Collet
- Indigenous Medicines Group, Institute of Health & Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Brisbane, Queensland, 4059, Australia
| | - Rajendra Awasthi
- Amity Institute of Pharmacy, Amity University, Sec. 125, Noida, 201303, Uttar Pradesh, India
| | - Gaurav Gupta
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura, 302017, Jaipur, India
| | - Alan Hsu
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) & School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) & School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, 2308, Australia; Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Centre for Inflammation, Centenary Institute, Sydney, NSW, 2050, Australia
| |
Collapse
|
291
|
Solid lipid nanoparticles and nanostructured lipid carriers: A review emphasizing on particle structure and drug release. Eur J Pharm Biopharm 2018; 133:285-308. [DOI: 10.1016/j.ejpb.2018.10.017] [Citation(s) in RCA: 199] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/17/2018] [Accepted: 10/22/2018] [Indexed: 12/11/2022]
|
292
|
Multi-drug resistant Mycobacterium tuberculosis & oxidative stress complexity: Emerging need for novel drug delivery approaches. Biomed Pharmacother 2018; 107:1218-1229. [DOI: 10.1016/j.biopha.2018.08.101] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/03/2018] [Accepted: 08/17/2018] [Indexed: 12/15/2022] Open
|
293
|
Rouco H, Diaz-Rodriguez P, Rama-Molinos S, Remuñán-López C, Landin M. Delimiting the knowledge space and the design space of nanostructured lipid carriers through Artificial Intelligence tools. Int J Pharm 2018; 553:522-530. [PMID: 30442594 DOI: 10.1016/j.ijpharm.2018.10.058] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/24/2018] [Accepted: 10/25/2018] [Indexed: 12/24/2022]
Abstract
Nanostructured lipid carriers (NLC) are biocompatible and biodegradable nanoscale systems with extensive application for controlled drug release. However, the development of optimal nanosystems along with a reproducible manufacturing process is still challenging. In this study, a two-step experimental design was performed and databases were successfully modelled using Artificial Intelligence techniques as an innovative method to get optimal, reproducible and stable NLC. The initial approach, including a wide range of values for the different variables, was followed by a second set of experiments with variable values in a narrower range, more suited to the characteristics of the system. NLC loaded with rifabutin, a hydrophobic drug model, were produced by hot homogenization and fully characterized in terms of particle size, size distribution, zeta potential, encapsulation efficiency and drug loading. The use of Artificial Intelligence tools has allowed to elucidate the key parameters that modulate each formulation property. Stable nanoparticles with low sizes and polydispersions, negative zeta potentials and high drug loadings were obtained when the proportion of lipid components, drug, surfactants and stirring speed were optimized by FormRules® and INForm®. The successful application of Artificial Intelligence tools on NLC formulation optimization constitutes a pioneer approach in the field of lipid nanoparticles.
Collapse
Affiliation(s)
- Helena Rouco
- R+D Pharma Group (GI-1645), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidade de Santiago de Compostela-Campus Vida, 15782-Santiago de Compostela, Spain
| | - Patricia Diaz-Rodriguez
- R+D Pharma Group (GI-1645), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidade de Santiago de Compostela-Campus Vida, 15782-Santiago de Compostela, Spain
| | - Santiago Rama-Molinos
- R+D Pharma Group (GI-1645), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidade de Santiago de Compostela-Campus Vida, 15782-Santiago de Compostela, Spain
| | - Carmen Remuñán-López
- NanoBiofar Group (GI-1643), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidade de Santiago de Compostela-Campus Vida, 15782-Santiago de Compostela, Spain
| | - Mariana Landin
- R+D Pharma Group (GI-1645), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidade de Santiago de Compostela-Campus Vida, 15782-Santiago de Compostela, Spain.
| |
Collapse
|
294
|
Mishra V, Bansal KK, Verma A, Yadav N, Thakur S, Sudhakar K, Rosenholm JM. Solid Lipid Nanoparticles: Emerging Colloidal Nano Drug Delivery Systems. Pharmaceutics 2018; 10:E191. [PMID: 30340327 PMCID: PMC6321253 DOI: 10.3390/pharmaceutics10040191] [Citation(s) in RCA: 307] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 09/23/2018] [Accepted: 09/26/2018] [Indexed: 11/16/2022] Open
Abstract
Solid lipid nanoparticles (SLNs) are nanocarriers developed as substitute colloidal drug delivery systems parallel to liposomes, lipid emulsions, polymeric nanoparticles, and so forth. Owing to their unique size dependent properties and ability to incorporate drugs, SLNs present an opportunity to build up new therapeutic prototypes for drug delivery and targeting. SLNs hold great potential for attaining the goal of targeted and controlled drug delivery, which currently draws the interest of researchers worldwide. The present review sheds light on different aspects of SLNs including fabrication and characterization techniques, formulation variables, routes of administration, surface modifications, toxicity, and biomedical applications.
Collapse
Affiliation(s)
- Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India.
| | - Kuldeep K Bansal
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Abo Akademi University, 20520 Turku, Finland.
| | - Asit Verma
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India.
| | - Nishika Yadav
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India.
| | - Sourav Thakur
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India.
| | - Kalvatala Sudhakar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India.
| | - Jessica M Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Abo Akademi University, 20520 Turku, Finland.
| |
Collapse
|