251
|
Zheng K, Kitazato K, Wang Y, He Z. Pathogenic microbes manipulate cofilin activity to subvert actin cytoskeleton. Crit Rev Microbiol 2015; 42:677-95. [PMID: 25853495 DOI: 10.3109/1040841x.2015.1010139] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Actin-depolymerizing factor (ADF)/cofilin proteins are key players in controlling the temporal and spatial extent of actin dynamics, which is crucial for mediating host-pathogen interactions. Pathogenic microbes have evolved molecular mechanisms to manipulate cofilin activity to subvert the actin cytoskeletal system in host cells, promoting their internalization into the target cells, modifying the replication niche and facilitating their intracellular and intercellular dissemination. The study of how these pathogens exploit cofilin pathways is crucial for understanding infectious disease and providing potential targets for drug therapies.
Collapse
Affiliation(s)
- Kai Zheng
- a Department of Pharmacy, School of Medicine , Shenzhen University , Shenzhen , Guangdong , People's Republic of China .,c Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University , Guangzhou , China
| | - Kaio Kitazato
- b Division of Molecular Pharmacology of Infectious Agents, Department of Molecular Microbiology and Immunology , Nagasaki University , Nagasaki , Japan , and
| | - Yifei Wang
- c Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University , Guangzhou , China
| | - Zhendan He
- a Department of Pharmacy, School of Medicine , Shenzhen University , Shenzhen , Guangdong , People's Republic of China
| |
Collapse
|
252
|
Kim J, Jo H, Hong H, Kim MH, Kim JM, Lee JK, Heo WD, Kim J. Actin remodelling factors control ciliogenesis by regulating YAP/TAZ activity and vesicle trafficking. Nat Commun 2015; 6:6781. [PMID: 25849865 DOI: 10.1038/ncomms7781] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 02/26/2015] [Indexed: 12/11/2022] Open
Abstract
Primary cilia exert a profound impact on cell signalling and cell cycle progression. Recently, actin cytoskeleton destabilization has been recognized as a dominant inducer of ciliogenesis, but the exact mechanisms regulating ciliogenesis remain poorly understood. Here we show that the actin cytoskeleton remodelling controls ciliogenesis by regulating transcriptional coactivator YAP/TAZ as well as ciliary vesicle trafficking. Cytoplasmic retention of YAP/TAZ correlates with active ciliogenesis either in spatially confined cells or in cells treated with an actin filament destabilizer. Moreover, knockdown of YAP/TAZ is sufficient to induce ciliogenesis, whereas YAP/TAZ hyperactivation suppresses serum starvation-mediated ciliogenesis. We also identify actin remodelling factors LIMK2 and TESK1 as key players in the ciliogenesis control network in which YAP/TAZ and directional vesicle trafficking are integral components. Our work provides new insights for understanding the link between actin dynamics and ciliogenesis.
Collapse
Affiliation(s)
- Jongshin Kim
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 305-701, Korea
| | - Haiin Jo
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 305-701, Korea
| | - Hyowon Hong
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 305-701, Korea
| | - Min Hwan Kim
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 305-701, Korea
| | - Jin Man Kim
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 305-701, Korea
| | - June-Koo Lee
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 305-701, Korea
| | - Won Do Heo
- 1] Department of Biological Sciences, KAIST, Daejeon 305-701, Korea [2] Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon 305-701, Korea
| | - Joon Kim
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 305-701, Korea
| |
Collapse
|
253
|
Speranza L, Giuliano T, Volpicelli F, De Stefano ME, Lombardi L, Chambery A, Lacivita E, Leopoldo M, Bellenchi GC, di Porzio U, Crispino M, Perrone-Capano C. Activation of 5-HT7 receptor stimulates neurite elongation through mTOR, Cdc42 and actin filaments dynamics. Front Behav Neurosci 2015; 9:62. [PMID: 25814944 PMCID: PMC4356071 DOI: 10.3389/fnbeh.2015.00062] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 02/23/2015] [Indexed: 12/02/2022] Open
Abstract
Recent studies have indicated that the serotonin receptor subtype 7 (5-HT7R) plays a crucial role in shaping neuronal morphology during embryonic and early postnatal life. Here we show that pharmacological stimulation of 5-HT7R using a highly selective agonist, LP-211, enhances neurite outgrowth in neuronal primary cultures from the cortex, hippocampus and striatal complex of embryonic mouse brain, through multiple signal transduction pathways. All these signaling systems, involving mTOR, the Rho GTPase Cdc42, Cdk5, and ERK, are known to converge on the reorganization of cytoskeletal proteins that subserve neurite outgrowth. Indeed, our data indicate that neurite elongation stimulated by 5-HT7R is modulated by drugs affecting actin polymerization. In addition, we show, by 2D Western blot analyses, that treatment of neuronal cultures with LP-211 alters the expression profile of cofilin, an actin binding protein involved in microfilaments dynamics. Furthermore, by using microfluidic chambers that physically separate axons from the soma and dendrites, we demonstrate that agonist-dependent activation of 5-HT7R stimulates axonal elongation. Our results identify for the first time several signal transduction pathways, activated by stimulation of 5-HT7R, that converge to promote cytoskeleton reorganization and consequent modulation of axonal elongation. Therefore, the activation of 5-HT7R might represent one of the key elements regulating CNS connectivity and plasticity during development.
Collapse
Affiliation(s)
- Luisa Speranza
- Department of Biology, University of Naples Federico II Naples, Italy ; Institute of Genetics and Biophysics "Adriano Buzzati Traverso", CNR Naples, Italy
| | - Teresa Giuliano
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso", CNR Naples, Italy
| | - Floriana Volpicelli
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso", CNR Naples, Italy ; Department of Pharmacy, University of Naples Federico II Naples, Italy
| | - M Egle De Stefano
- Department of Biology and Biotechnology "Charles Darwin", Istituto Pasteur Fondazione Cenci Bolognetti, University of Rome La Sapienza Rome, Italy
| | - Loredana Lombardi
- Department of Biology and Biotechnology "Charles Darwin", Istituto Pasteur Fondazione Cenci Bolognetti, University of Rome La Sapienza Rome, Italy
| | - Angela Chambery
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples Naples, Italy ; IRCCS, Multimedica Milano, Italy
| | - Enza Lacivita
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari Bari, Italy
| | - Marcello Leopoldo
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari Bari, Italy
| | - Gian C Bellenchi
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso", CNR Naples, Italy
| | - Umberto di Porzio
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso", CNR Naples, Italy
| | - Marianna Crispino
- Department of Biology, University of Naples Federico II Naples, Italy
| | - Carla Perrone-Capano
- Department of Biology, University of Naples Federico II Naples, Italy ; Institute of Genetics and Biophysics "Adriano Buzzati Traverso", CNR Naples, Italy
| |
Collapse
|
254
|
Ito T, Taniguchi H, Fukagai K, Okamuro S, Kobayashi A. Inhibitory mechanism of FAT4 gene expression in response to actin dynamics during Src-induced carcinogenesis. PLoS One 2015; 10:e0118336. [PMID: 25679223 PMCID: PMC4334522 DOI: 10.1371/journal.pone.0118336] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 01/13/2015] [Indexed: 01/13/2023] Open
Abstract
Oncogenic transformation is characterized by morphological changes resulting from alterations in actin dynamics and adhesive activities. Emerging evidence suggests that the protocadherin FAT4 acts as a tumor suppressor in humans, and reduced FAT4 gene expression has been reported in breast and lung cancers and melanoma. However, the mechanism controlling FAT4 gene expression is poorly understood. In this study, we show that transient activation of the Src oncoprotein represses FAT4 mRNA expression through actin depolymerization in the immortalized normal human mammary epithelial cell line MCF-10A. Src activation causes actin depolymerization via the MEK/Erk/Cofilin cascade. The MEK inhibitor U0126 blocks the inhibitory effect of Src on FAT4 mRNA expression and Src-induced actin depolymerization. To determine whether actin dynamics act on the regulation of FAT4 mRNA expression, we treated MCF-10A cells with the ROCK inhibitor Y-27632. Y-27632 treatment decreased FAT4 mRNA expression. This suppressive effect was blocked by siRNA-mediated knockdown of Cofilin1. Furthermore, simultaneous administration of Latrunculin A (an actin depolymerizing agent), Y-27632, and Cofilin1 siRNA to the cells resulted in a marked reduction of FAT4 mRNA expression. Intriguingly, we also found that FAT4 mRNA expression was reduced under both low cell density and low stiffness conditions, which suggests that mechanotransduction affects FAT4 mRNA expression. Additionally, we show that siRNA-mediated FAT4 knockdown induced the activity of the Hippo effector YAP/TAZ in MCF-10A cells. Taken together, our results reveal a novel inhibitory mechanism of FAT4 gene expression through actin depolymerization during Src-induced carcinogenesis in human breast cells.
Collapse
Affiliation(s)
- Takao Ito
- Laboratory for Genetic Code, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto, Japan
| | - Hiroaki Taniguchi
- Laboratory for Genetic Code, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto, Japan
| | - Kousuke Fukagai
- Laboratory for Genetic Code, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto, Japan
| | - Shota Okamuro
- Laboratory for Genetic Code, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto, Japan
| | - Akira Kobayashi
- Laboratory for Genetic Code, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto, Japan
- * E-mail:
| |
Collapse
|
255
|
Torres-Machorro AL, Aris JP, Pillus L. A moonlighting metabolic protein influences repair at DNA double-stranded breaks. Nucleic Acids Res 2015; 43:1646-58. [PMID: 25628362 PMCID: PMC4330366 DOI: 10.1093/nar/gku1405] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Catalytically active proteins with divergent dual functions are often described as ‘moonlighting’. In this work we characterize a new, chromatin-based function of Lys20, a moonlighting protein that is well known for its role in metabolism. Lys20 was initially described as homocitrate synthase (HCS), the first enzyme in the lysine biosynthetic pathway in yeast. Its nuclear localization led to the discovery of a key role for Lys20 in DNA damage repair through its interaction with the MYST family histone acetyltransferase Esa1. Overexpression of Lys20 promotes suppression of DNA damage sensitivity of esa1 mutants. In this work, by taking advantage of LYS20 mutants that are active in repair but not in lysine biosynthesis, the mechanism of suppression of esa1 was characterized. First we analyzed the chromatin landscape of esa1 cells, finding impaired histone acetylation and eviction. Lys20 was recruited to sites of DNA damage, and its overexpression promoted enhanced recruitment of the INO80 remodeling complex to restore normal histone eviction at the damage sites. This study improves understanding of the evolutionary, structural and biological relevance of independent activities in a moonlighting protein and links metabolism to DNA damage repair.
Collapse
Affiliation(s)
- Ana Lilia Torres-Machorro
- Section of Molecular Biology, Division of Biological Sciences, UC San Diego Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093-0347, USA
| | - John P Aris
- Department of Anatomy and Cell Biology, Health Science Center, University of Florida, Gainesville, FL 32610-0235, USA
| | - Lorraine Pillus
- Section of Molecular Biology, Division of Biological Sciences, UC San Diego Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093-0347, USA
| |
Collapse
|
256
|
Li M, Armelloni S, Zennaro C, Wei C, Corbelli A, Ikehata M, Berra S, Giardino L, Mattinzoli D, Watanabe S, Agostoni C, Edefonti A, Reiser J, Messa P, Rastaldi MP. BDNF repairs podocyte damage by microRNA-mediated increase of actin polymerization. J Pathol 2015; 235:731-44. [PMID: 25408545 DOI: 10.1002/path.4484] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 10/17/2014] [Accepted: 11/11/2014] [Indexed: 12/24/2022]
Abstract
Idiopathic focal segmental glomerulosclerosis (FSGS) is a progressive and proteinuric kidney disease that starts with podocyte injury. Podocytes cover the external side of the glomerular capillary by a complex web of primary and secondary ramifications. Similar to dendritic spines of neuronal cells, podocyte processes rely on a dynamic actin-based cytoskeletal architecture to maintain shape and function. Brain-derived neurotrophic factor (BDNF) is a pleiotropic neurotrophin that binds to the tropomyosin-related kinase B receptor (TrkB) and has crucial roles in neuron maturation, survival, and activity. In neuronal cultures, exogenously added BDNF increases the number and size of dendritic spines. In animal models, BDNF administration is beneficial in both central and peripheral nervous system disorders. Here we show that BDNF has a TrkB-dependent trophic activity on podocyte cell processes; by affecting microRNA-134 and microRNA-132 signalling, BDNF up-regulates Limk1 translation and phosphorylation, and increases cofilin phosphorylation, which results in actin polymerization. Importantly, BDNF effectively repairs podocyte damage in vitro, and contrasts proteinuria and glomerular lesions in in vivo models of FSGS, opening a potential new perspective to the treatment of podocyte disorders.
Collapse
Affiliation(s)
- Min Li
- Renal Research Laboratory, Fondazione D'Amico per la Ricerca sulle Malattie Renali & Fondazione IRCCS Ca', Granda Ospedale Maggiore Policlinico, Milano, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
257
|
Xu X, Gera N, Li H, Yun M, Zhang L, Wang Y, Wang QJ, Jin T. GPCR-mediated PLCβγ/PKCβ/PKD signaling pathway regulates the cofilin phosphatase slingshot 2 in neutrophil chemotaxis. Mol Biol Cell 2015; 26:874-86. [PMID: 25568344 PMCID: PMC4342024 DOI: 10.1091/mbc.e14-05-0982] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Chemotaxis requires precisely coordinated polymerization and depolymerization of the actin cytoskeleton at leading fronts of migrating cells. However, GPCR activation-controlled F-actin depolymerization remains largely elusive. Here, we reveal a novel signaling pathway, including Gαi, PLC, PKCβ, protein kinase D (PKD), and SSH2, in control of cofilin phosphorylation and actin cytoskeletal reorganization, which is essential for neutrophil chemotaxis. We show that PKD is essential for neutrophil chemotaxis and that GPCR-mediated PKD activation depends on PLC/PKC signaling. More importantly, we discover that GPCR activation recruits/activates PLCγ2 in a PI3K-dependent manner. We further verify that PKCβ specifically interacts with PKD1 and is required for chemotaxis. Finally, we identify slingshot 2 (SSH2), a phosphatase of cofilin (actin depolymerization factor), as a target of PKD1 that regulates cofilin phosphorylation and remodeling of the actin cytoskeleton during neutrophil chemotaxis.
Collapse
Affiliation(s)
- Xuehua Xu
- Chemotaxis Signaling Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Nidhi Gera
- Chemotaxis Signaling Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Hongyan Li
- Chemotaxis Signaling Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852 Center of Therapeutic Research for Hepatocellular Carcinoma, 302 Hospital of PLA, Beijing 100039, China
| | - Michelle Yun
- Chemotaxis Signaling Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Liyong Zhang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Youhong Wang
- Chemotaxis Signaling Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Q Jane Wang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Tian Jin
- Chemotaxis Signaling Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| |
Collapse
|
258
|
Kwok MM, Goodyear P. Prognostic and Predictive Protein Biomarkers in Laryngeal Squamous Cell Carcinoma—A Systematic Review. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/ijohns.2015.43031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
259
|
Ferraro A, Boni T, Pintzas A. EZH2 regulates cofilin activity and colon cancer cell migration by targeting ITGA2 gene. PLoS One 2014; 9:e115276. [PMID: 25549357 PMCID: PMC4280133 DOI: 10.1371/journal.pone.0115276] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 11/20/2014] [Indexed: 12/27/2022] Open
Abstract
Reorganization of cytoskeleton via actin remodeling is a basic step of cell locomotion. Although cell migration of normal and cancer cells can be stimulated by a variety of intra- and extra-cellular factors, all paths ultimate on the regulation of cofilin activity. Cofilin is a small actin-binding protein able to bind both forms of actin, globular and filament, and is regulated by phosphorylation at Serine 3. Following phosphorylation at serine 3 cofilin is inactive, therefore cannot bind actin molecules and cytoskeleton remodeling is impaired. The histone methyltransferase EZH2 is frequently over expressed in many tumour types including colorectal cancer (CRC). EZH2 over activity, which results in epigenetic gene-silencing, has been associated with many tumour properties including invasion, angiogenesis and metastasis but little is known about the underneath molecular mechanisms. Herein, we report that EZH2 is able to control cofilin activity and consequently cell locomotion of CRC cell lines through a non-conventional novel axis that involves integrin signaling. Indeed, we show how genetic and pharmacological inhibition (DZNep and GSK343) of EZH2 function produces hyper phosphorylation of cofilin and reduces cell migration. We previously demonstrated by chromatin immuno-precipitation that Integrin alpha 2 (ITGα2) expression is regulated by EZH2. In the present study we provide evidence that in EZH2-silenced cells the signaling activity of the de-repressed ITGα2 is able to increase cofilin phosphorylation, which in turn reduces cell migration. This study also proposes novel mechanisms that might provide new anti-metastatic strategies for CRC treatment based on the inhibition of the epigenetic factor EZH2 and/or its target gene.
Collapse
Affiliation(s)
- Angelo Ferraro
- Laboratory of Signal Mediated Gene Expression, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48, Vas. Constantinou Avenue, 11635, Athens, Greece
| | - Themis Boni
- Laboratory of Signal Mediated Gene Expression, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48, Vas. Constantinou Avenue, 11635, Athens, Greece
| | - Alexander Pintzas
- Laboratory of Signal Mediated Gene Expression, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48, Vas. Constantinou Avenue, 11635, Athens, Greece
| |
Collapse
|
260
|
Abe T, Yamazaki D, Murakami S, Hiroi M, Nitta Y, Maeyama Y, Tabata T. The NAV2 homolog Sickie regulates F-actin-mediated axonal growth in Drosophila mushroom body neurons via the non-canonical Rac-Cofilin pathway. Development 2014; 141:4716-28. [DOI: 10.1242/dev.113308] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Rac-Cofilin pathway is essential for cytoskeletal remodeling to control axonal development. Rac signals through the canonical Rac-Pak-LIMK pathway to suppress Cofilin-dependent axonal growth and through a Pak-independent non-canonical pathway to promote outgrowth. Whether this non-canonical pathway converges to promote Cofilin-dependent F-actin reorganization in axonal growth remains elusive. We demonstrate that Sickie, a homolog of the human microtubule-associated protein neuron navigator 2, cell-autonomously regulates axonal growth of Drosophila mushroom body (MB) neurons via the non-canonical pathway. Sickie was prominently expressed in the newborn F-actin-rich axons of MB neurons. A sickie mutant exhibited axonal growth defects, and its phenotypes were rescued by exogenous expression of Sickie. We observed phenotypic similarities and genetic interactions among sickie and Rac-Cofilin signaling components. Using the MARCM technique, distinct F-actin and phospho-Cofilin patterns were detected in developing axons mutant for sickie and Rac-Cofilin signaling regulators. The upregulation of Cofilin function alleviated the axonal defect of the sickie mutant. Epistasis analyses revealed that Sickie suppresses the LIMK overexpression phenotype and is required for Pak-independent Rac1 and Slingshot phosphatase to counteract LIMK. We propose that Sickie regulates F-actin-mediated axonal growth via the non-canonical Rac-Cofilin pathway in a Slingshot-dependent manner.
Collapse
Affiliation(s)
- Takashi Abe
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo 113-0032, Japan
- Graduate Program in Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
| | - Daisuke Yamazaki
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo 113-0032, Japan
| | - Satoshi Murakami
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo 113-0032, Japan
| | - Makoto Hiroi
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo 113-0032, Japan
| | - Yohei Nitta
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo 113-0032, Japan
| | - Yuko Maeyama
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo 113-0032, Japan
| | - Tetsuya Tabata
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo 113-0032, Japan
- Graduate Program in Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
261
|
Molecular regulation of synaptogenesis during associative learning and memory. Brain Res 2014; 1621:239-51. [PMID: 25485772 DOI: 10.1016/j.brainres.2014.11.054] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 11/24/2014] [Accepted: 11/25/2014] [Indexed: 01/06/2023]
Abstract
Synaptogenesis plays a central role in associative learning and memory. The biochemical pathways that underlie synaptogenesis are complex and incompletely understood. Nevertheless, research has so far identified three conceptually distinct routes to synaptogenesis: cell-cell contact mediated by adhesion proteins, cell-cell biochemical signaling from astrocytes and other cells, and neuronal signaling through classical ion channels and cell surface receptors. The cell adhesion pathways provide the physical substrate to the new synaptic connection, while cell-cell signaling may provide a global or regional signal, and the activity-dependent pathways provide the neuronal specificity that is required for the new synapses to produce functional neuronal networks capable of storing associative memories. These three aspects of synaptogenesis require activation of a variety of interacting biochemical pathways that converge on the actin cytoskeleton and strengthen the synapse in an information-dependent manner. This article is part of a Special Issue titled SI: Brain and Memory.
Collapse
|
262
|
Hanley JG. Actin-dependent mechanisms in AMPA receptor trafficking. Front Cell Neurosci 2014; 8:381. [PMID: 25429259 PMCID: PMC4228833 DOI: 10.3389/fncel.2014.00381] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 10/24/2014] [Indexed: 11/22/2022] Open
Abstract
The precise regulation of AMPA receptor (AMPAR) number and subtype at the synapse is crucial for the regulation of excitatory neurotransmission, synaptic plasticity and the consequent formation of appropriate neural circuits for learning and memory. AMPAR trafficking involves the dynamic processes of exocytosis, endocytosis and endosomal recycling, all of which involve the actin cytoskeleton. The actin cytoskeleton is highly dynamic and highly regulated by an abundance of actin-binding proteins and upstream signaling pathways that modulate actin polymerization and depolymerization. Actin dynamics generate forces that manipulate membranes in the process of vesicle biogenesis, and also for propelling vesicles through the cytoplasm to reach their destination. In addition, trafficking mechanisms exploit more stable aspects of the actin cytoskeleton by using actin-based motor proteins to traffic vesicular cargo along actin filaments. Numerous studies have shown that actin dynamics are critical for AMPAR localization and function. The identification of actin-binding proteins that physically interact with AMPAR subunits, and research into their mode of action is starting to shed light on the mechanisms involved. Such proteins either regulate actin dynamics to modulate mechanical forces exerted on AMPAR-containing membranes, or associate with actin filaments to target or transport AMPAR-containing vesicles to specific subcellular regions. In addition, actin-regulatory proteins that do not physically interact with AMPARs may influence AMPAR trafficking by regulating the local actin environment in the dendritic spine.
Collapse
|
263
|
Gellert M, Hanschmann EM, Lepka K, Berndt C, Lillig CH. Redox regulation of cytoskeletal dynamics during differentiation and de-differentiation. Biochim Biophys Acta Gen Subj 2014; 1850:1575-87. [PMID: 25450486 DOI: 10.1016/j.bbagen.2014.10.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 10/24/2014] [Accepted: 10/27/2014] [Indexed: 01/03/2023]
Abstract
BACKGROUND The cytoskeleton, unlike the bony vertebrate skeleton or the exoskeleton of invertebrates, is a highly dynamic meshwork of protein filaments that spans through the cytosol of eukaryotic cells. Especially actin filaments and microtubuli do not only provide structure and points of attachments, but they also shape cells, they are the basis for intracellular transport and distribution, all types of cell movement, and--through specific junctions and points of adhesion--join cells together to form tissues, organs, and organisms. SCOPE OF REVIEW The fine tuned regulation of cytoskeletal dynamics is thus indispensible for cell differentiation and all developmental processes. Here, we discussed redox signalling mechanisms that control this dynamic remodeling. Foremost, we emphasised recent discoveries that demonstrated reversible thiol and methionyl switches in the regulation of actin dynamics. MAJOR CONCLUSIONS Thiol and methionyl switches play an essential role in the regulation of cytoskeletal dynamics. GENERAL SIGNIFICANCE The dynamic remodeling of the cytoskeleton is controlled by various redox switches. These mechanisms are indispensible during development and organogenesis and might contribute to numerous pathological conditions. This article is part of a Special Issue entitled Redox regulation of differentiation and de-differentiation.
Collapse
Affiliation(s)
- Manuela Gellert
- Institut für Biochemie und Molekularbiologie, Universitätsmedizin Greifswald, Ernst-Moritz-Arndt-Universität, Greifswald, Germany
| | - Eva-Maria Hanschmann
- Institut für Biochemie und Molekularbiologie, Universitätsmedizin Greifswald, Ernst-Moritz-Arndt-Universität, Greifswald, Germany
| | - Klaudia Lepka
- Klinik für Neurologie, Medizinische Fakultät, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Carsten Berndt
- Klinik für Neurologie, Medizinische Fakultät, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Christopher Horst Lillig
- Institut für Biochemie und Molekularbiologie, Universitätsmedizin Greifswald, Ernst-Moritz-Arndt-Universität, Greifswald, Germany.
| |
Collapse
|
264
|
Takahashi K, Kanno SI, Mizuno K. Activation of cytosolic Slingshot-1 phosphatase by gelsolin-generated soluble actin filaments. Biochem Biophys Res Commun 2014; 454:471-7. [DOI: 10.1016/j.bbrc.2014.10.108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 10/21/2014] [Indexed: 12/15/2022]
|
265
|
Brommage R, Liu J, Hansen GM, Kirkpatrick LL, Potter DG, Sands AT, Zambrowicz B, Powell DR, Vogel P. High-throughput screening of mouse gene knockouts identifies established and novel skeletal phenotypes. Bone Res 2014; 2:14034. [PMID: 26273529 PMCID: PMC4472125 DOI: 10.1038/boneres.2014.34] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 07/29/2014] [Accepted: 07/31/2014] [Indexed: 12/13/2022] Open
Abstract
Screening gene function in vivo is a powerful approach to discover novel drug targets. We present high-throughput screening (HTS) data for 3 762 distinct global gene knockout (KO) mouse lines with viable adult homozygous mice generated using either gene-trap or homologous recombination technologies. Bone mass was determined from DEXA scans of male and female mice at 14 weeks of age and by microCT analyses of bones from male mice at 16 weeks of age. Wild-type (WT) cagemates/littermates were examined for each gene KO. Lethality was observed in an additional 850 KO lines. Since primary HTS are susceptible to false positive findings, additional cohorts of mice from KO lines with intriguing HTS bone data were examined. Aging, ovariectomy, histomorphometry and bone strength studies were performed and possible non-skeletal phenotypes were explored. Together, these screens identified multiple genes affecting bone mass: 23 previously reported genes (Calcr, Cebpb, Crtap, Dcstamp, Dkk1, Duoxa2, Enpp1, Fgf23, Kiss1/Kiss1r, Kl (Klotho), Lrp5, Mstn, Neo1, Npr2, Ostm1, Postn, Sfrp4, Slc30a5, Slc39a13, Sost, Sumf1, Src, Wnt10b), five novel genes extensively characterized (Cldn18, Fam20c, Lrrk1, Sgpl1, Wnt16), five novel genes with preliminary characterization (Agpat2, Rassf5, Slc10a7, Slc26a7, Slc30a10) and three novel undisclosed genes coding for potential osteoporosis drug targets.
Collapse
Affiliation(s)
| | - Jeff Liu
- Lexicon Pharmaceuticals , The Woodlands, TX, USA
| | | | | | | | | | | | | | - Peter Vogel
- Lexicon Pharmaceuticals , The Woodlands, TX, USA
| |
Collapse
|
266
|
Ht31 peptide inhibited inflammatory pain by blocking NMDA receptor-mediated nociceptive transmission in spinal dorsal horn of mice. Neuropharmacology 2014; 89:290-7. [PMID: 25312281 DOI: 10.1016/j.neuropharm.2014.09.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 09/10/2014] [Accepted: 09/30/2014] [Indexed: 12/27/2022]
Abstract
A kinase anchoring proteins (AKAPs) assemble cAMP-dependent protein kinase (PKA) into signaling complexes with a wide range of ion channels, including N-methyl-d-aspartate (NMDA)-subtype glutamate receptor (NMDAR) that is critical for the central sensitization of nociceptive behaviors. Although PKA has been widely described in the regulation of NMDAR-dependent nociceptive transmission and plasticity, the roles of AKAPs in these processes are largely unknown as yet. The present study interfered with AKAPs/PKA interaction by introducing stearated Ht31 peptide (St-Ht31) into spinal dorsal horn neurons, and investigated the possible changes of primary afferent-evoked, NMDAR-mediated excitatory postsynaptic currents (NMDAR-EPSCs). Whole-cell patch clamp recordings demonstrated that intracellular loading of St-Ht31 through the glass pipettes didn't affect NMDAR-mediated synaptic responses in the spinal cord slices from intact mice. When inflammatory pain was established by intraplantar injection of Complete Freund's Adjuvant (CFA), however, St-Ht31 significantly repressed the amplitudes of NMDAR-EPSCs by selectively removing GluN2B subunit-containing NMDAR out of synapses. With the inhibition of NMDAR-mediated nociceptive transmission, St-Ht31 effectively ameliorated CFA-induced inflammatory pain. Pharmacological manipulation of microtubule-based NMDAR transport, dynamin-dependent NMDAR endocytosis or actin depolymerization abolished the inhibitory effects of St-Ht31 peptide on NMDAR-EPSCs, suggesting that disruption of AKAPs/PKA interaction by St-Ht31 might disturb multiple NMDAR trafficking steps to reduce the receptor synaptic expression and spinal sensitization.
Collapse
|
267
|
Abstract
DAP-kinase (DAPK) is a Ca(2+)/calmodulin regulated Ser/Thr kinase that activates a diverse range of cellular activities. It is subject to multiple layers of regulation involving both intramolecular signaling, and interactions with additional proteins, including other kinases and phosphatases. Its protein stability is modulated by at least three distinct ubiquitin-dependent systems. Like many kinases, DAPK participates in several signaling cascades, by phosphorylating additional kinases such as ZIP-kinase and protein kinase D (PKD), or Pin1, a phospho-directed peptidyl-prolyl isomerase that regulates the function of many phosphorylated proteins. Other substrate targets have more direct cellular effects; for example, phosphorylation of the myosin II regulatory chain and tropomyosin mediate some of DAPK's cytoskeletal functions, including membrane blebbing during cell death and cell motility. DAPK induces distinct death pathways of apoptosis, autophagy and programmed necrosis. Among the substrates implicated in these processes, phosphorylation of PKD, Beclin 1, and the NMDA receptor has been reported. Interestingly, not all cellular effects are mediated by DAPK's catalytic activity. For example, by virtue of protein-protein interactions alone, DAPK activates pyruvate kinase isoform M2, the microtubule affinity regulating kinases and inflammasome protein NLRP3, to promote glycolysis, influence microtubule dynamics, and enhance interleukin-1β production, respectively. In addition, a number of other substrates and interacting proteins have been identified, the physiological significance of which has not yet been established. All of these substrates, effectors and regulators together comprise the DAPK interactome. By presenting the components of the interactome network, this review will clarify both the mechanisms by which DAPK function is regulated, and by which it mediates its various cellular effects.
Collapse
Affiliation(s)
- Shani Bialik
- Department of Molecular Genetics, Weizmann Institute of Science, 76100, Rehovot, Israel
| | | |
Collapse
|
268
|
Bielig H, Lautz K, Braun PR, Menning M, Machuy N, Brügmann C, Barisic S, Eisler SA, Andree M, Zurek B, Kashkar H, Sansonetti PJ, Hausser A, Meyer TF, Kufer TA. The cofilin phosphatase slingshot homolog 1 (SSH1) links NOD1 signaling to actin remodeling. PLoS Pathog 2014; 10:e1004351. [PMID: 25187968 PMCID: PMC4154870 DOI: 10.1371/journal.ppat.1004351] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 07/15/2014] [Indexed: 01/01/2023] Open
Abstract
NOD1 is an intracellular pathogen recognition receptor that contributes to anti-bacterial innate immune responses, adaptive immunity and tissue homeostasis. NOD1-induced signaling relies on actin remodeling, however, the details of the connection of NOD1 and the actin cytoskeleton remained elusive. Here, we identified in a druggable-genome wide siRNA screen the cofilin phosphatase SSH1 as a specific and essential component of the NOD1 pathway. We show that depletion of SSH1 impaired pathogen induced NOD1 signaling evident from diminished NF-κB activation and cytokine release. Chemical inhibition of actin polymerization using cytochalasin D rescued the loss of SSH1. We further demonstrate that NOD1 directly interacted with SSH1 at F-actin rich sites. Finally, we show that enhanced cofilin activity is intimately linked to NOD1 signaling. Our data thus provide evidence that NOD1 requires the SSH1/cofilin network for signaling and to detect bacterial induced changes in actin dynamics leading to NF-κB activation and innate immune responses.
Collapse
Affiliation(s)
- Harald Bielig
- Institute for Medical Microbiology, Immunology and Hygiene, Cologne, Germany
| | - Katja Lautz
- Institute for Medical Microbiology, Immunology and Hygiene, Cologne, Germany
| | - Peter R. Braun
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
- Steinbeis-Innovationszentrum Center for Systems Biomedicine, Falkensee, Germany
| | - Maureen Menning
- Institute for Medical Microbiology, Immunology and Hygiene, Cologne, Germany
| | - Nikolaus Machuy
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Christine Brügmann
- Institute for Medical Microbiology, Immunology and Hygiene, Cologne, Germany
| | - Sandra Barisic
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Stephan A. Eisler
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Maria Andree
- Institute for Medical Microbiology, Immunology and Hygiene, Cologne, Germany
| | - Birte Zurek
- Institute for Medical Microbiology, Immunology and Hygiene, Cologne, Germany
| | - Hamid Kashkar
- Institute for Medical Microbiology, Immunology and Hygiene, Cologne, Germany
| | - Philippe J. Sansonetti
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Paris, France
- INSERM U786, Institut Pasteur, Paris, France
- Microbiologie et Maladies Infectieuses, Collège de France, Paris, France
| | - Angelika Hausser
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Thomas F. Meyer
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Thomas A. Kufer
- Institute for Medical Microbiology, Immunology and Hygiene, Cologne, Germany
- University of Hohenheim, Institute of Nutritional Medicine, Stuttgart, Germany
- * E-mail:
| |
Collapse
|
269
|
Nguyen CT, Le NT, Tran TDH, Kim EH, Park SS, Luong TT, Chung KT, Pyo S, Rhee DK. Streptococcus pneumoniae ClpL modulates adherence to A549 human lung cells through Rap1/Rac1 activation. Infect Immun 2014; 82:3802-10. [PMID: 24980975 PMCID: PMC4187815 DOI: 10.1128/iai.02012-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 06/12/2014] [Indexed: 11/20/2022] Open
Abstract
Caseinolytic protease L (ClpL) is a member of the HSP100/Clp chaperone family, which is found mainly in Gram-positive bacteria. ClpL is highly expressed during infection for refolding of stress-induced denatured proteins, some of which are important for adherence. However, the role of ClpL in modulating pneumococcal virulence is poorly understood. Here, we show that ClpL impairs pneumococcal adherence to A549 lung cells by inducing and activating Rap1 and Rac1, thus increasing phosphorylation of cofilin (inactive form). Moreover, infection with a clpL mutant (ΔclpL) causes a greater degree of filopodium formation than D39 wild-type (WT) infection. Inhibition of Rap1 and Rac1 impairs filopodium formation and pneumococcal adherence. Therefore, ClpL can reduce pneumococcal adherence to A549 cells, likely via modulation of Rap1- and Rac1-mediated filopodium formation. These results demonstrate a potential role for ClpL in pneumococcal resistance to host cell adherence during infection. This study provides insight into further understanding the interactions between hosts and pathogens.
Collapse
Affiliation(s)
| | - Nhat-Tu Le
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | | | - Eun-Hye Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Sang-Sang Park
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | | | - Kyung-Tae Chung
- Department of Clinical Laboratory Science, Dong-Eui University, Busan, South Korea
| | - Suhkneung Pyo
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Dong-Kwon Rhee
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
270
|
Coque E, Raoul C, Bowerman M. ROCK inhibition as a therapy for spinal muscular atrophy: understanding the repercussions on multiple cellular targets. Front Neurosci 2014; 8:271. [PMID: 25221469 PMCID: PMC4148024 DOI: 10.3389/fnins.2014.00271] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 08/11/2014] [Indexed: 12/28/2022] Open
Abstract
Spinal muscular atrophy (SMA) is the most common genetic disease causing infant death, due to an extended loss of motoneurons. This neuromuscular disorder results from deletions and/or mutations within the Survival Motor Neuron 1 (SMN1) gene, leading to a pathological decreased expression of functional full-length SMN protein. Emerging studies suggest that the small GTPase RhoA and its major downstream effector Rho kinase (ROCK), which both play an instrumental role in cytoskeleton organization, contribute to the pathology of motoneuron diseases. Indeed, an enhanced activation of RhoA and ROCK has been reported in the spinal cord of an SMA mouse model. Moreover, the treatment of SMA mice with ROCK inhibitors leads to an increased lifespan as well as improved skeletal muscle and neuromuscular junction pathology, without preventing motoneuron degeneration. Although motoneurons are the primary target in SMA, an increasing number of reports show that other cell types inside and outside the central nervous system contribute to SMA pathogenesis. As administration of ROCK inhibitors to SMA mice was systemic, the improvement in survival and phenotype could therefore be attributed to specific effects on motoneurons and/or on other non-neuronal cell types. In the present review, we will present the various roles of the RhoA/ROCK pathway in several SMA cellular targets including neurons, myoblasts, glial cells, cardiomyocytes and pancreatic cells as well as discuss how ROCK inhibition may ameliorate their health and function. It is most likely a concerted influence of ROCK modulation on all these cell types that ultimately lead to the observed benefits of pharmacological ROCK inhibition in SMA mice.
Collapse
Affiliation(s)
- Emmanuelle Coque
- The Institute for Neurosciences of Montpellier, Saint Eloi Hospital, Institut National de la Santé et de la Recherche Médicale UMR1051 Montpellier, France ; Université de Montpellier 1 and 2 Montpellier, France
| | - Cédric Raoul
- The Institute for Neurosciences of Montpellier, Saint Eloi Hospital, Institut National de la Santé et de la Recherche Médicale UMR1051 Montpellier, France ; Université de Montpellier 1 and 2 Montpellier, France
| | - Mélissa Bowerman
- The Institute for Neurosciences of Montpellier, Saint Eloi Hospital, Institut National de la Santé et de la Recherche Médicale UMR1051 Montpellier, France ; Université de Montpellier 1 and 2 Montpellier, France
| |
Collapse
|
271
|
Agarwal A, Zhang M, Trembak-Duff I, Unterbarnscheidt T, Radyushkin K, Dibaj P, Martins de Souza D, Boretius S, Brzózka MM, Steffens H, Berning S, Teng Z, Gummert MN, Tantra M, Guest PC, Willig KI, Frahm J, Hell SW, Bahn S, Rossner MJ, Nave KA, Ehrenreich H, Zhang W, Schwab MH. Dysregulated expression of neuregulin-1 by cortical pyramidal neurons disrupts synaptic plasticity. Cell Rep 2014; 8:1130-45. [PMID: 25131210 DOI: 10.1016/j.celrep.2014.07.026] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 04/04/2014] [Accepted: 07/16/2014] [Indexed: 12/17/2022] Open
Abstract
Neuregulin-1 (NRG1) gene variants are associated with increased genetic risk for schizophrenia. It is unclear whether risk haplotypes cause elevated or decreased expression of NRG1 in the brains of schizophrenia patients, given that both findings have been reported from autopsy studies. To study NRG1 functions in vivo, we generated mouse mutants with reduced and elevated NRG1 levels and analyzed the impact on cortical functions. Loss of NRG1 from cortical projection neurons resulted in increased inhibitory neurotransmission, reduced synaptic plasticity, and hypoactivity. Neuronal overexpression of cysteine-rich domain (CRD)-NRG1, the major brain isoform, caused unbalanced excitatory-inhibitory neurotransmission, reduced synaptic plasticity, abnormal spine growth, altered steady-state levels of synaptic plasticity-related proteins, and impaired sensorimotor gating. We conclude that an "optimal" level of NRG1 signaling balances excitatory and inhibitory neurotransmission in the cortex. Our data provide a potential pathomechanism for impaired synaptic plasticity and suggest that human NRG1 risk haplotypes exert a gain-of-function effect.
Collapse
Affiliation(s)
- Amit Agarwal
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21025, USA
| | - Mingyue Zhang
- Laboratory of Molecular Psychiatry, Department of Psychiatry, University of Münster, 48149 Muenster Germany
| | - Irina Trembak-Duff
- Laboratory of Molecular Psychiatry, Department of Psychiatry, University of Münster, 48149 Muenster Germany
| | - Tilmann Unterbarnscheidt
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Konstantin Radyushkin
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Payam Dibaj
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | | | - Susann Boretius
- Biomedizinische NMR Forschungs GmbH, Max Planck Institute of Biophysical Chemistry, 37077 Göttingen, Germany
| | - Magdalena M Brzózka
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Heinz Steffens
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Sebastian Berning
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Zenghui Teng
- Laboratory of Molecular Psychiatry, Department of Psychiatry, University of Münster, 48149 Muenster Germany
| | - Maike N Gummert
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Martesa Tantra
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Peter C Guest
- Institute of Biotechnology, University of Cambridge, Cambridge CB2 1QT, UK
| | - Katrin I Willig
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Jens Frahm
- Biomedizinische NMR Forschungs GmbH, Max Planck Institute of Biophysical Chemistry, 37077 Göttingen, Germany
| | - Stefan W Hell
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Sabine Bahn
- Institute of Biotechnology, University of Cambridge, Cambridge CB2 1QT, UK
| | - Moritz J Rossner
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Hannelore Ehrenreich
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Weiqi Zhang
- Laboratory of Molecular Psychiatry, Department of Psychiatry, University of Münster, 48149 Muenster Germany.
| | - Markus H Schwab
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany.
| |
Collapse
|
272
|
Homma Y, Kanno SI, Sasaki K, Nishita M, Yasui A, Asano T, Ohashi K, Mizuno K. Insulin receptor substrate-4 binds to Slingshot-1 phosphatase and promotes cofilin dephosphorylation. J Biol Chem 2014; 289:26302-26313. [PMID: 25100728 DOI: 10.1074/jbc.m114.565945] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cofilin plays an essential role in cell migration and morphogenesis by enhancing actin filament dynamics via its actin filament-severing activity. Slingshot-1 (SSH1) is a protein phosphatase that plays a crucial role in regulating actin dynamics by dephosphorylating and reactivating cofilin. In this study, we identified insulin receptor substrate (IRS)-4 as a novel SSH1-binding protein. Co-precipitation assays revealed the direct endogenous binding of IRS4 to SSH1. IRS4, but not IRS1 or IRS2, was bound to SSH1. IRS4 was bound to SSH1 mainly through the unique region (amino acids 335-400) adjacent to the C terminus of the phosphotyrosine-binding domain of IRS4. The N-terminal A, B, and phosphatase domains of SSH1 were bound to IRS4 independently. Whereas in vitro phosphatase assays revealed that IRS4 does not directly affect the cofilin phosphatase activity of SSH1, knockdown of IRS4 increased cofilin phosphorylation in cultured cells. Knockdown of IRS4 decreased phosphatidylinositol 3-kinase (PI3K) activity, and treatment with an inhibitor of PI3K increased cofilin phosphorylation. Akt preferentially phosphorylated SSH1 at Thr-826, but expression of a non-phosphorylatable T826A mutant of SSH1 did not affect insulin-induced cofilin dephosphorylation, and an inhibitor of Akt did not increase cofilin phosphorylation. These results suggest that IRS4 promotes cofilin dephosphorylation through sequential activation of PI3K and SSH1 but not through Akt. In addition, IRS4 co-localized with SSH1 in F-actin-rich membrane protrusions in insulin-stimulated cells, which suggests that the association of IRS4 with SSH1 contributes to localized activation of cofilin in membrane protrusions.
Collapse
Affiliation(s)
- Yuta Homma
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Shin-Ichiro Kanno
- Division of Dynamic Proteome in Cancer and Aging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi 980-8575, Japan, and
| | - Kazutaka Sasaki
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Michiru Nishita
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Akira Yasui
- Division of Dynamic Proteome in Cancer and Aging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi 980-8575, Japan, and
| | - Tomoichiro Asano
- Department of Medical Science, Graduate School of Medicine, University of Hiroshima, Hiroshima, Hiroshima 734-8553, Japan
| | - Kazumasa Ohashi
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Kensaku Mizuno
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan,.
| |
Collapse
|
273
|
Aurora A kinase modulates actin cytoskeleton through phosphorylation of Cofilin: Implication in the mitotic process. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2719-29. [PMID: 25090971 DOI: 10.1016/j.bbamcr.2014.07.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Revised: 07/24/2014] [Accepted: 07/25/2014] [Indexed: 11/22/2022]
Abstract
Aurora A kinase regulates early mitotic events through phosphorylation and activation of a variety of proteins. Specifically, Aur-A is involved in centrosomal separation and formation of mitotic spindles in early prophase. The effect of Aur-A on mitotic spindles is mediated by the modulation of microtubule dynamics and association with microtubule binding proteins. In this study we show that Aur-A exerts its effects on spindle organization through the regulation of the actin cytoskeleton. Aurora A phosphorylates Cofilin at multiple sites including S(3) resulting in the inactivation of its actin depolymerizing function. Aur-A interacts with Cofilin in early mitotic phases and regulates its phosphorylation status. Cofilin phosphorylation follows a dynamic pattern during the progression of prophase to metaphase. Inhibition of Aur-A activity induced a delay in the progression of prophase to metaphase. Aur-A inhibitor also disturbed the pattern of Cofilin phosphorylation, which correlated with the mitotic delay. Our results establish a novel function of Aur-A in the regulation of actin cytoskeleton reorganization, through Cofilin phosphorylation during early mitotic stages.
Collapse
|
274
|
Genetic modulation of soluble Aβ rescues cognitive and synaptic impairment in a mouse model of Alzheimer's disease. J Neurosci 2014; 34:7871-85. [PMID: 24899710 DOI: 10.1523/jneurosci.0572-14.2014] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An unresolved debate in Alzheimer's disease (AD) is whether amyloid plaques are pathogenic, causing overt physical disruption of neural circuits, or protective, sequestering soluble forms of amyloid-β (Aβ) that initiate synaptic damage and cognitive decline. Few animal models of AD have been capable of isolating the relative contribution made by soluble and insoluble forms of Aβ to the behavioral symptoms and biochemical consequences of the disease. Here we use a controllable transgenic mouse model expressing a mutant form of amyloid precursor protein (APP) to distinguish the impact of soluble Aβ from that of deposited amyloid on cognitive function and synaptic structure. Rapid inhibition of transgenic APP modulated the production of Aβ without affecting pre-existing amyloid deposits and restored cognitive performance to the level of healthy controls in Morris water maze, radial arm water maze, and fear conditioning. Selective reduction of Aβ with a γ-secretase inhibitor provided similar improvement, suggesting that transgene suppression restored cognition, at least in part by lowering Aβ. Cognitive improvement coincided with reduced levels of synaptotoxic Aβ oligomers, greater synaptic density surrounding amyloid plaques, and increased expression of presynaptic and postsynaptic markers. Together these findings indicate that transient Aβ species underlie much of the cognitive and synaptic deficits observed in this model and demonstrate that significant functional and structural recovery can be attained without removing deposited amyloid.
Collapse
|
275
|
Weiss MB, Abel EV, Dadpey N, Aplin AE. FOXD3 modulates migration through direct transcriptional repression of TWIST1 in melanoma. Mol Cancer Res 2014; 12:1314-23. [PMID: 25061102 DOI: 10.1158/1541-7786.mcr-14-0170] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
UNLABELLED The neural crest is a multipotent, highly migratory cell population that gives rise to diverse cell types, including melanocytes. Factors regulating the development of the neural crest and emigration of its cells are likely to influence melanoma metastasis. The transcription factor FOXD3 plays an essential role in premigratory neural crest development and has been implicated in melanoma cell dormancy and response to therapeutics. FOXD3 is downregulated during the migration of the melanocyte lineage from the neural crest, and our previous work supports a role for FOXD3 in suppressing melanoma cell migration and invasion. Alternatively, TWIST1 is known to have promigratory and proinvasive roles in a number of cancers, including melanoma. Using ChIP-seq analysis, TWIST1 was identified as a potential transcriptional target of FOXD3. Mechanistically, FOXD3 directly binds to regions of the TWIST1 gene locus, leading to transcriptional repression of TWIST1 in human mutant BRAF melanoma cells. In addition, depletion of endogenous FOXD3 promotes upregulation of TWIST1 transcripts and protein. Finally, FOXD3 expression leads to a significant decrease in cell migration that can be efficiently reversed by the overexpression of TWIST1. These findings uncover the novel interplay between FOXD3 and TWIST1, which is likely to be important in the melanoma metastatic cascade. IMPLICATIONS FOXD3 and TWIST1 define distinct subgroups of cells within a heterogeneous tumor.
Collapse
Affiliation(s)
- Michele B Weiss
- Department of Cancer Biology and Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Ethan V Abel
- Department of Cancer Biology and Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania. Jefferson College of Graduate Studies, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Neda Dadpey
- Department of Cancer Biology and Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Andrew E Aplin
- Department of Cancer Biology and Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania. Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania.
| |
Collapse
|
276
|
Li Y, Hu F, Chen HJ, Du YJ, Xie ZY, Zhang Y, Wang J, Wang Y. LIMK-Dependent Actin Polymerization in Primary Sensory Neurons Promotes the Development of Inflammatory Heat Hyperalgesia in Rats. Sci Signal 2014; 7. [DOI: 10.1126/scisignal.2005353] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Inflammation-induced sensitivity to pain could be reduced by disrupting the actin cytoskeleton in primary sensory neurons.
Collapse
Affiliation(s)
- Yi Li
- Neuroscience Research Institute and Department of Neurobiology, Key Laboratory for Neuroscience of Ministry of Education and Health, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Fang Hu
- Neuroscience Research Institute and Department of Neurobiology, Key Laboratory for Neuroscience of Ministry of Education and Health, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Hai-Jing Chen
- Neuroscience Research Institute and Department of Neurobiology, Key Laboratory for Neuroscience of Ministry of Education and Health, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Yi-Juan Du
- Neuroscience Research Institute and Department of Neurobiology, Key Laboratory for Neuroscience of Ministry of Education and Health, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Zhi-Ying Xie
- Beijing Huijia Private School, Beijing 102200, China
| | - Ying Zhang
- Neuroscience Research Institute and Department of Neurobiology, Key Laboratory for Neuroscience of Ministry of Education and Health, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Jun Wang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Yun Wang
- Neuroscience Research Institute and Department of Neurobiology, Key Laboratory for Neuroscience of Ministry of Education and Health, School of Basic Medical Sciences, Peking University, Beijing 100191, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| |
Collapse
|
277
|
Kawauchi T. Cdk5 regulates multiple cellular events in neural development, function and disease. Dev Growth Differ 2014; 56:335-48. [PMID: 24844647 DOI: 10.1111/dgd.12138] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 03/19/2014] [Accepted: 03/30/2014] [Indexed: 12/21/2022]
Abstract
Cyclin-dependent kinases (CDKs) generally regulate cell proliferation in dividing cells, including neural progenitors. In contrast, an unconventional CDK, Cdk5, is predominantly activated in post-mitotic cells, and involved in various cellular events, such as microtubule and actin cytoskeletal organization, cell-cell and cell-extracellular matrix adhesions, and membrane trafficking. Interestingly, recent studies have indicated that Cdk5 is associated with several cell cycle-related proteins, Cyclin-E and p27(kip1) . Taking advantage of multiple functionality, Cdk5 plays important roles in neuronal migration, layer formation, axon elongation and dendrite arborization in many regions of the developing brain, including cerebral cortex and cerebellum. Cdk5 is also required for neurogenesis at least in the cerebral cortex. Furthermore, Cdk5 is reported to control neurotransmitter release at presynaptic sites, endocytosis of the NMDA receptor at postsynaptic sites and dendritic spine remodeling, and thereby regulate synaptic plasticity and memory formation and extinction. In addition to these physiological roles in brain development and function, Cdk5 is associated with many neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis. In this review, I will introduce the physiological and pathological roles of Cdk5 in mammalian brains from the viewpoint of not only in vivo phenotypes but also its molecular and cellular functions.
Collapse
Affiliation(s)
- Takeshi Kawauchi
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Saitama, 332-0012, Japan; Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| |
Collapse
|
278
|
Döppler H, Bastea LI, Borges S, Spratley SJ, Pearce SE, Storz P. Protein kinase d isoforms differentially modulate cofilin-driven directed cell migration. PLoS One 2014; 9:e98090. [PMID: 24840177 PMCID: PMC4026536 DOI: 10.1371/journal.pone.0098090] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 04/28/2014] [Indexed: 11/19/2022] Open
Abstract
Background Protein kinase D (PKD) enzymes regulate cofilin-driven actin reorganization and directed cell migration through both p21-activated kinase 4 (PAK4) and the phosphatase slingshot 1L (SSH1L). The relative contributions of different endogenous PKD isoforms to both signaling pathways have not been elucidated, sufficiently. Methodology/Principal Findings We here analyzed two cell lines (HeLa and MDA-MB-468) that express the subtypes protein kinase D2 (PKD2) and protein kinase D3 (PKD3). We show that under normal growth conditions both isoforms can form a complex, in which PKD3 is basally-active and PKD2 is inactive. Basal activity of PKD3 mediates PAK4 activity and downstream signaling, but does not significantly inhibit SSH1L. This signaling constellation was required for facilitating directed cell migration. Activation of PKD2 and further increase of PKD3 activity leads to additional phosphorylation and inhibition of endogenous SSH1L. Net effect is a dramatic increase in phospho-cofilin and a decrease in cell migration, since now both PAK4 and SSH1L are regulated by the active PKD2/PKD3 complex. Conclusions/Significance Our data suggest that PKD complexes provide an interface for both cofilin regulatory pathways. Dependent on the activity of involved PKD enzymes signaling can be balanced to guarantee a functional cofilin activity cycle and increase cell migration, or imbalanced to decrease cell migration. Our data also provide an explanation of how PKD isoforms mediate different effects on directed cell migration.
Collapse
Affiliation(s)
- Heike Döppler
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, United States of America
| | - Ligia I. Bastea
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, United States of America
| | - Sahra Borges
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, United States of America
| | - Samantha J. Spratley
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, United States of America
| | - Sarah E. Pearce
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, United States of America
| | - Peter Storz
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, United States of America
- * E-mail:
| |
Collapse
|
279
|
Zheng K, Xiang Y, Wang Q, Jin F, Chen M, Ma K, Ren Z, Wang Y. Calcium-signal facilitates herpes simplex virus type 1 nuclear transport through slingshot 1 and calpain-1 activation. Virus Res 2014; 188:32-7. [PMID: 24670325 DOI: 10.1016/j.virusres.2014.03.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 03/10/2014] [Accepted: 03/12/2014] [Indexed: 10/25/2022]
Abstract
Herpes simplex virus type 1 (HSV-1) can establish its latency in neurons and is associated with virus-induced pathological neurodegeneration in the nervous system. Here we show that viral penetration-induced calcium release facilitated HSV-1 intracellular trafficking through activating slingshot 1 (SSH), a phosphatase regulating actin filament dynamics. More detailed studies revealed that phospholipase C gamma 1, and the inositol 1,4,5-trisphosphate receptor isoform 1 were required for SSH activation. Besides, calpain-1, a calcium-dependent cysteine protease, was involved in viral intracellular migration. These results may lead to new targets for antiviral therapy.
Collapse
Affiliation(s)
- Kai Zheng
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, China; College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yangfei Xiang
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, China
| | - Qiaoli Wang
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, China
| | - Fujun Jin
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, China
| | - Maoyun Chen
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, China
| | - Kaiqi Ma
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, China
| | - Zhe Ren
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, China
| | - Yifei Wang
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, China.
| |
Collapse
|
280
|
Cook M, Bolkan BJ, Kretzschmar D. Increased actin polymerization and stabilization interferes with neuronal function and survival in the AMPKγ mutant Loechrig. PLoS One 2014; 9:e89847. [PMID: 24587072 PMCID: PMC3934941 DOI: 10.1371/journal.pone.0089847] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 01/27/2014] [Indexed: 11/18/2022] Open
Abstract
loechrig (loe) mutant flies are characterized by progressive neuronal degeneration, behavioral deficits, and early death. The mutation is due to a P-element insertion in the gene for the γ-subunit of the trimeric AMP-activated protein kinase (AMPK) complex, whereby the insertion affects only one of several alternative transcripts encoding a unique neuronal isoform. AMPK is a cellular energy sensor that regulates a plethora of signaling pathways, including cholesterol and isoprenoid synthesis via its downstream target hydroxy-methylglutaryl (HMG)-CoA reductase. We recently showed that loe interferes with isoprenoid synthesis and increases the prenylation and thereby activation of RhoA. During development, RhoA plays an important role in neuronal outgrowth by activating a signaling cascade that regulates actin dynamics. Here we show that the effect of loe/AMPKγ on RhoA prenylation leads to a hyperactivation of this signaling pathway, causing increased phosphorylation of the actin depolymerizating factor cofilin and accumulation of filamentous actin. Furthermore, our results show that the resulting cytoskeletal changes in loe interfere with neuronal growth and disrupt axonal integrity. Surprisingly, these phenotypes were enhanced by expressing the Slingshot (SSH) phosphatase, which during development promotes actin depolymerization by dephosphorylating cofilin. However, our studies suggest that in the adult SSH promotes actin polymerization, supporting in vitro studies using human SSH1 that suggested that SSH can also stabilize and bundle filamentous actin. Together with the observed increase in SSH levels in the loe mutant, our experiments suggest that in mature neurons SSH may function as a stabilization factor for filamentous actin instead of promoting actin depolymerization.
Collapse
Affiliation(s)
- Mandy Cook
- Oregon Institute of Occupational Health Sciences, Oregon Health & Sciences University, Portland, Oregon, United States of America
| | - Bonnie J. Bolkan
- Oregon Institute of Occupational Health Sciences, Oregon Health & Sciences University, Portland, Oregon, United States of America
| | - Doris Kretzschmar
- Oregon Institute of Occupational Health Sciences, Oregon Health & Sciences University, Portland, Oregon, United States of America
- * E-mail:
| |
Collapse
|
281
|
Ambriz-Peña X, García-Zepeda EA, Meza I, Soldevila G. Jak3 enables chemokine-dependent actin cytoskeleton reorganization by regulating cofilin and Rac/Rhoa GTPases activation. PLoS One 2014; 9:e88014. [PMID: 24498424 PMCID: PMC3912156 DOI: 10.1371/journal.pone.0088014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 01/03/2014] [Indexed: 01/02/2023] Open
Abstract
We have previously shown that Jak3 is involved in the signaling pathways of CCR7, CCR9 and CXCR4 in murine T lymphocytes and that Jak3−/− lymphocytes display an intrinsic defect in homing to peripheral lymph nodes. However, the molecular mechanism underlying the defective migration observed in Jak3−/− lymphocytes remains elusive. Here, it is demonstrated for the first time, that Jak3 is required for the actin cytoskeleton reorganization in T lymphocytes responding to chemokines. It was found that Jak3 regulates actin polymerization by controlling cofilin inactivation in response to CCL21 and CXCL12. Interestingly, cofilin inactivation was not precluded in PTX- treated cells despite their impaired actin polymerization. Additionally, Jak3 was required for small GTPases Rac1 and RhoA activation, which are indispensable for acquisition of the migratory cell phenotype and the generation of a functional leading edge and uropod, respectively. This defect correlates with data obtained by time-lapse video-microscopy showing an incompetent uropod formation and impaired motility in Jak3-pharmacologically inhibited T lymphocytes. Our data support a new model in which Jak3 and heterotrimeric G proteins can use independent, but complementary, signaling pathways to regulate actin cytoskeleton dynamics during cell migration in response to chemokines.
Collapse
Affiliation(s)
- Xochitl Ambriz-Peña
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, Distrito Federal, México
| | - Eduardo Alberto García-Zepeda
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, Distrito Federal, México
| | - Isaura Meza
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados (CINVESTAV IPN), Departamento de Biomedicina Molecular, México, Distrito Federal, México
| | - Gloria Soldevila
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, Distrito Federal, México
- * E-mail:
| |
Collapse
|
282
|
Ohashi K, Sampei K, Nakagawa M, Uchiumi N, Amanuma T, Aiba S, Oikawa M, Mizuno K. Damnacanthal, an effective inhibitor of LIM-kinase, inhibits cell migration and invasion. Mol Biol Cell 2014; 25:828-40. [PMID: 24478456 PMCID: PMC3952852 DOI: 10.1091/mbc.e13-09-0540] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Damnacanthal is identified as an effective inhibitor of LIM-kinase. It inhibits chemotaxis of T-cells and migration and invasion of breast carcinoma cells in culture and hapten-induced migration of epidermal Langerhans cells in mouse ears. Damnacanthal is a useful tool for investigating the cellular and physiological functions of LIM-kinase. LIM-kinases (LIMKs) play crucial roles in various cell activities, including migration, division, and morphogenesis, by phosphorylating and inactivating cofilin. Using a bimolecular fluorescence complementation assay to detect the actin–cofilin interaction, we screened LIMK1 inhibitors and identified two effective inhibitors, damnacanthal (Dam) and MO-26 (a pyrazolopyrimidine derivative). These compounds have already been shown to inhibit Lck, a Src family tyrosine kinase. However, in vitro kinase assays revealed that Dam inhibited LIMK1 more effectively than Lck. Dam suppressed LIMK1-induced cofilin phosphorylation and deceleration of actin retrograde flow in lamellipodia in N1E-115 cells. Dam impaired CXCL12-induced chemotactic migration of Jurkat T lymphocytes and Jurkat-derived, Lck-deficient JCaM1.6 cells and also inhibited serum-induced migration and invasion of MDA-MB-231 breast carcinoma cells. These results suggest that Dam has the potential to suppress cell migration and invasion primarily through the inhibition of LIMK kinase activity. Topical application of Dam also suppressed hapten-induced migration of epidermal Langerhans cells in mouse ears. Dam provides a useful tool for investigating cellular and physiological functions of LIMKs and holds promise for the development of agents against LIMK-related diseases. The bimolecular fluorescence complementation assay system used in this study will provide a useful method to screen for inhibitors of various protein kinases.
Collapse
Affiliation(s)
- Kazumasa Ohashi
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8574, Japan Graduate School of Nanobioscience, Yokohama City University, Seto, Kanazawa-ku, Yokohama 236-0027, Japan
| | | | | | | | | | | | | | | |
Collapse
|
283
|
Huh YH, Kim SH, Chung KH, Oh S, Kwon MS, Choi HW, Rhee S, Ryu JH, Park ZY, Jun CD, Song WK. Swiprosin-1 modulates actin dynamics by regulating the F-actin accessibility to cofilin. Cell Mol Life Sci 2014; 70:4841-54. [PMID: 23959172 PMCID: PMC3830201 DOI: 10.1007/s00018-013-1447-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 07/31/2013] [Accepted: 08/02/2013] [Indexed: 11/27/2022]
Abstract
Membrane protrusions, like lamellipodia, and cell movement are dependent on actin dynamics, which are regulated by a variety of actin-binding proteins acting cooperatively to reorganize actin filaments. Here, we provide evidence that Swiprosin-1, a newly identified actin-binding protein, modulates lamellipodial dynamics by regulating the accessibility of F-actin to cofilin. Overexpression of Swiprosin-1 increased lamellipodia formation in B16F10 melanoma cells, whereas knockdown of Swiprosin-1 inhibited EGF-induced lamellipodia formation, and led to a loss of actin stress fibers at the leading edges of cells but not in the cell cortex. Swiprosin-1 strongly facilitated the formation of entangled or clustered F-actin, which remodeled the structural organization of actin filaments making them in accessible to cofilin. EGF-induced phosphorylation of Swiprosin-1 at Ser183, a phosphorylation site newly identified using mass spectrometry, effectively inhibited clustering of actin filaments and permitted cofilin access to F-actin, resulting in actin depolymerization. Cells over expressing a Swiprosin-1 phosphorylation-mimicking mutant or a phosphorylation-deficient mutant exhibited irregular membrane dynamics during the protrusion and retraction cycles of lamellipodia. Taken together, these findings suggest that dynamic exchange of Swiprosin-1 phosphorylation and dephosphorylation is a novel mechanism that regulates actin dynamics by modulating the pattern of cofilin activity at the leading edges of cells.
Collapse
Affiliation(s)
- Yun Hyun Huh
- Bio Imaging and Cell Dynamics Research Center, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 500712 Korea
| | - So Hee Kim
- Bio Imaging and Cell Dynamics Research Center, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 500712 Korea
| | - Kyoung-Hwun Chung
- Bio Imaging and Cell Dynamics Research Center, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 500712 Korea
| | - Sena Oh
- Bio Imaging and Cell Dynamics Research Center, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 500712 Korea
| | - Min-Sung Kwon
- Bio Imaging and Cell Dynamics Research Center, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 500712 Korea
| | - Hyun-Woo Choi
- Bio Imaging and Cell Dynamics Research Center, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 500712 Korea
| | - Sangmyung Rhee
- School of Biological Sciences, Joong Ang University, Seoul, 156756 Korea
| | - Je-Hwang Ryu
- Research Center for Biomineralization Disorders and Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, 500757 Korea
| | - Zee Yong Park
- Bio Imaging and Cell Dynamics Research Center, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 500712 Korea
| | - Chang-Duk Jun
- Bio Imaging and Cell Dynamics Research Center, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 500712 Korea
| | - Woo Keun Song
- Bio Imaging and Cell Dynamics Research Center, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 500712 Korea
| |
Collapse
|
284
|
Epidermal growth factor receptor-PI3K signaling controls cofilin activity to facilitate herpes simplex virus 1 entry into neuronal cells. mBio 2014; 5:e00958-13. [PMID: 24425731 PMCID: PMC3903278 DOI: 10.1128/mbio.00958-13] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Herpes simplex virus type 1 (HSV-1) establishes latency in neurons and can cause severe disseminated infection with neurological impairment and high mortality. This neurodegeneration is thought to be tightly associated with virus-induced cytoskeleton disruption. Currently, the regulation pattern of the actin cytoskeleton and the involved molecular mechanisms during HSV-1 entry into neurons remain unclear. Here, we demonstrate that the entry of HSV-1 into neuronal cells induces biphasic remodeling of the actin cytoskeleton and an initial inactivation followed by the subsequent activation of cofilin, a member of the actin depolymerizing factor family that is critical for actin reorganization. The disruption of F-actin dynamics or the modulation of cofilin activity by mutation, knockdown, or overexpression affects HSV-1 entry efficacy and virus-mediated cell ruffle formation. Binding of the HSV-1 envelope initiates the epidermal growth factor receptor (EGFR)-phosphatidylinositide 3-kinase (PI3K) signaling pathway, which leads to virus-induced early cofilin phosphorylation and F-actin polymerization. Moreover, the extracellular signal-regulated kinase (ERK) kinase and Rho-associated, coiled-coil-containing protein kinase 1 (ROCK) are recruited as downstream mediators of the HSV-1-induced cofilin inactivation pathway. Inhibitors specific for those kinases significantly reduce the virus infectivity without affecting virus binding to the target cells. Additionally, lipid rafts are clustered to promote EGFR-associated signaling cascade transduction. We propose that HSV-1 hijacks cofilin to initiate infection. These results could promote a better understanding of the pathogenesis of HSV-1-induced neurological diseases. The actin cytoskeleton is involved in many crucial cellular processes and acts as an obstacle to pathogen entry into host cells. Because HSV-1 establishes lifelong latency in neurons and because neuronal cytoskeletal disruption is thought to be the main cause of HSV-1-induced neurodegeneration, understanding the F-actin remodeling pattern by HSV-1 infection and the molecular interactions that facilitate HSV-1 entry into neurons is important. In this study, we showed that HSV-1 infection induces the rearrangement of the cytoskeleton as well as the initial inactivation and subsequent activation of cofilin. Then, we determined that activation of the EGFR-PI3K-Erk1/2 signaling pathway inactivates cofilin and promotes F-actin polymerization. We postulate that by regulating actin cytoskeleton dynamics, cofilin biphasic activation could represent the specific cellular machinery usurped by pathogen infection, and these results will greatly contribute to the understanding of HSV-1-induced early and complex changes in host cells that are closely linked to HSV-1 pathogenesis.
Collapse
|
285
|
Antonyak MA, Cerione RA. Microvesicles as mediators of intercellular communication in cancer. Methods Mol Biol 2014; 1165:147-73. [PMID: 24839024 DOI: 10.1007/978-1-4939-0856-1_11] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The discovery that cancer cells generate large membrane-enclosed packets of epigenetic information, known as microvesicles (MVs), that can be transferred to other cells and influence their behavior (Antonyak et al., Small GTPases 3:219-224, 2012; Cocucci et al., Trends Cell Biol 19:43-51, 2009; Rak, Semin Thromb Hemost 36:888-906, 2010; Skog et al., Nat Cell Biol 10:1470-1476, 2008) has added a unique perspective to the classical paracrine signaling paradigm. This is largely because, in addition to growth factors and cytokines, MVs contain a variety of components that are not usually thought to be released into the extracellular environment by viable cells including plasma membrane-associated proteins, cytosolic- and nuclear-localized proteins, as well as nucleic acids, particularly RNA transcripts and micro-RNAs (Skog et al., Nat Cell Biol 10:1470-1476, 2008; Al-Nedawi et al., Nat Cell Biol 10:619-624, 2008; Antonyak et al., Proc Natl Acad Sci U S A 108:4852-4857, 2011; Balaj et al., Nat Commun 2:180, 2011; Choi et al., J Proteome Res 6:4646-4655, 2007; Del Conde et al., Blood 106:1604-1611, 2005; Gallo et al., PLoS One 7:e30679, 2012; Graner et al., FASEB J 23:1541-1557, 2009; Grange et al., Cancer Res 71:5346-5356, 2011; Hosseini-Beheshti et al., Mol Cell Proteomics 11:863-885, 2012; Martins et al., Curr Opin Oncol 25:66-75, 2013; Noerholm et al., BMC Cancer 12:22, 2012; Zhuang et al., EMBO J 31:3513-3523, 2012). When transferred between cancer cells, MVs have been shown to stimulate signaling events that promote cell growth and survival (Al-Nedawi et al., Nat Cell Biol 10:619-624, 2008). Cancer cell-derived MVs can also be taken up by normal cell types that surround the tumor, an outcome that helps shape the tumor microenvironment, trigger tumor vascularization, and even confer upon normal recipient cells the transformed characteristics of a cancer cell (Antonyak et al., Proc Natl Acad Sci U S A 108:4852-4857, 2011; Martins et al., Curr Opin Oncol 25:66-75, 2013; Al-Nedawi et al., Proc Natl Acad Sci U S A 106:3794-3799, 2009; Ge et al., Cancer Microenviron 5:323-332, 2012). Thus, the production of MVs by cancer cells plays crucial roles in driving the expansion of the primary tumor. However, it is now becoming increasingly clear that MVs are also stable in the circulation of cancer patients, where they can mediate long-range effects and contribute to the formation of the pre-metastatic niche, an essential step in metastasis (Skog et al., Nat Cell Biol 10:1470-1476, 2008; Noerholm et al., BMC Cancer 12:22, 2012; Peinado et al., Nat Med 18:883-891, 2012; Piccin et al., Blood Rev 21:157-171, 2007; van der Vos et al., Cell Mol Neurobiol 31:949-959, 2011). These findings, when taken together with the fact that MVs are being aggressively pursued as diagnostic markers, as well as being considered as potential targets for intervention against cancer (Antonyak et al., Small GTPases 3:219-224, 2012; Hosseini-Beheshti et al., Mol Cell Proteomics 11:863-885, 2012; Martins et al., Curr Opin Oncol 25:66-75, 2013; Ge et al., Cancer Microenviron 5:323-332, 2012; Peinado et al., Nat Med 18:883-891, 2012; Piccin et al., Blood Rev 21:157-171, 2007; Al-Nedawi et al., Cell Cycle 8:2014-2018, 2009; Cocucci and Meldolesi, Curr Biol 21:R940-R941, 2011; D'Souza-Schorey and Clancy, Genes Dev 26:1287-1299, 2012; Shao et al., Nat Med 18:1835-1840, 2012), point to critically important roles for MVs in human cancer progression that can potentially be exploited to develop new targeted approaches for treating this disease.
Collapse
Affiliation(s)
- Marc A Antonyak
- Department of Molecular Medicine, Cornell University, Ithaca, NY, USA
| | | |
Collapse
|
286
|
Simonishvili S, Jain M, Li H, Levison S, Wood T. Identification of Bax-interacting proteins in oligodendrocyte progenitors during glutamate excitotoxicity and perinatal hypoxia-ischemia. ASN Neuro 2013; 5:e00131. [PMID: 24195677 PMCID: PMC3891358 DOI: 10.1042/an20130027] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
OPC (oligodendrocyte progenitor cell) death contributes significantly to the pathology and functional deficits following hypoxic-ischemic injury in the immature brain and to deficits resulting from demyelinating diseases, trauma and degenerative disorders in the adult CNS. Glutamate toxicity is a major cause of oligodendroglial death in diverse CNS disorders, and previous studies have demonstrated that AMPA/kainate receptors require the pro-apoptotic protein Bax in OPCs undergoing apoptosis. The goal of the present study was to define the pro-apoptotic and anti-apoptotic effectors that regulate Bax in healthy OPCs and after exposure to excess glutamate in vitro and following H-I (hypoxia-ischemia) in the immature rat brain. We show that Bax associates with a truncated form of Bid, a BH3-only domain protein, subsequent to glutamate treatment. Furthermore, glutamate exposure reduces Bax association with the anti-apoptotic Bcl family member, Bcl-xL. Cell fractionation studies demonstrated that both Bax and Bid translocate from the cytoplasm to mitochondria during the early stages of cell death consistent with a role for Bid as an activator, whereas Bcl-xL, which normally complexes with both Bax and Bid, disassociates from these complexes when OPCs are exposed to excess glutamate. Bax remained unactivated in the presence of insulin-like growth factor-1, and the Bcl-xL complexes were protected. Our data similarly demonstrate loss of Bcl-xL-Bax association in white matter following H-I and implicate active Bad in Bax-mediated OPC death. To identify other Bax-binding partners, we used proteomics and identified cofilin as a Bax-associated protein in OPCs. Cofilin and Bax associated in healthy OPCs, whereas the Bax-cofilin association was disrupted during glutamate-induced OPC apoptosis.
Collapse
Key Words
- apoptosis
- bcl-xl
- bid
- cofilin
- insulin-like growth factor 1 (igf-i)
- oligodendrocyte
- acn, acetonitrile
- adf, actin depolymerizing factor
- af488, alexa fluor 488
- af546, alexa fluor 546
- cca, common carotid artery
- cl, contralateral
- cns, central nervous system
- dmem, dulbecco’s modified eagle’s medium
- fbs, fetal bovine serum
- fgf-2, fibroblast growth factor-2
- h–i, hypoxia–ischemia
- igf, insulin-like growth factor
- il, ipsilateral
- ip, immunoprecipitation
- mem, minimal essential media
- opc, oligodendrocyte progenitor cell
- pic, protease inhibitor cocktail
- tbid, truncated bid
- vdac, voltage-dependent anion channel
Collapse
Affiliation(s)
- Sopio Simonishvili
- *Department of Neurology & Neuroscience, New Jersey Medical School Cancer Center, Rutgers Biomedical & Health Sciences, Newark, NJ 07101, U.S.A
| | - Mohit Raja Jain
- †Center for Advanced Proteomic Research and Department of Biochemistry and Molecular Biology, New Jersey Medical School Cancer Center, Rutgers Biomedical & Health Sciences, Newark, NJ 07101, U.S.A
| | - Hong Li
- †Center for Advanced Proteomic Research and Department of Biochemistry and Molecular Biology, New Jersey Medical School Cancer Center, Rutgers Biomedical & Health Sciences, Newark, NJ 07101, U.S.A
| | - Steven W. Levison
- *Department of Neurology & Neuroscience, New Jersey Medical School Cancer Center, Rutgers Biomedical & Health Sciences, Newark, NJ 07101, U.S.A
| | - Teresa L. Wood
- *Department of Neurology & Neuroscience, New Jersey Medical School Cancer Center, Rutgers Biomedical & Health Sciences, Newark, NJ 07101, U.S.A
- 1To whom correspondence should be addressed (email )
| |
Collapse
|
287
|
Granata A, Nicoletti R, Tinaglia V, De Cecco L, Pisanu ME, Ricci A, Podo F, Canevari S, Iorio E, Bagnoli M, Mezzanzanica D. Choline kinase-alpha by regulating cell aggressiveness and drug sensitivity is a potential druggable target for ovarian cancer. Br J Cancer 2013; 110:330-40. [PMID: 24281000 PMCID: PMC3899765 DOI: 10.1038/bjc.2013.729] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 10/23/2013] [Accepted: 10/24/2013] [Indexed: 12/31/2022] Open
Abstract
Background: Aberrant choline metabolism has been proposed as a novel cancer hallmark. We recently showed that epithelial ovarian cancer (EOC) possesses an altered MRS-choline profile, characterised by increased phosphocholine (PCho) content to which mainly contribute over-expression and activation of choline kinase-alpha (ChoK-alpha). Methods: To assess its biological relevance, ChoK-alpha expression was downmodulated by transient RNA interference in EOC in vitro models. Gene expression profiling by microarray analysis and functional analysis was performed to identify the pathway/functions perturbed in ChoK-alpha-silenced cells, then validated by in vitro experiments. Results: In silenced cells, compared with control, we observed: (I) a significant reduction of both CHKA transcript and ChoK-alpha protein expression; (II) a dramatic, proportional drop in PCho content ranging from 60 to 71%, as revealed by 1H-magnetic spectroscopy analysis; (III) a 35–36% of cell growth inhibition, with no evidences of apoptosis or modification of the main cellular survival signalling pathways; (IV) 476 differentially expressed genes, including genes related to lipid metabolism. Ingenuity pathway analysis identified cellular functions related to cell death and cellular proliferation and movement as the most perturbed. Accordingly, CHKA-silenced cells displayed a significant delay in wound repair, a reduced migration and invasion capability were also observed. Furthermore, although CHKA silencing did not directly induce cell death, a significant increase of sensitivity to platinum, paclitaxel and doxorubicin was observed even in a drug-resistant context. Conclusion: We showed for the first time in EOC that CHKA downregulation significantly decreased the aggressive EOC cell behaviour also affecting cells' sensitivity to drug treatment. These observations open the way to further analysis for ChoK-alpha validation as a new EOC therapeutic target to be used alone or in combination with conventional drugs.
Collapse
Affiliation(s)
- A Granata
- Unit of Molecular Therapies, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy
| | - R Nicoletti
- Unit of Molecular Therapies, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy
| | - V Tinaglia
- Unit of Molecular Therapies, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy
| | - L De Cecco
- Unit of Functional Genomics, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy
| | - M E Pisanu
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - A Ricci
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - F Podo
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - S Canevari
- 1] Unit of Molecular Therapies, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy [2] Unit of Functional Genomics, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy
| | - E Iorio
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - M Bagnoli
- Unit of Molecular Therapies, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy
| | - D Mezzanzanica
- Unit of Molecular Therapies, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy
| |
Collapse
|
288
|
Huang X, Pan Q, Sun D, Chen W, Shen A, Huang M, Ding J, Geng M. O-GlcNAcylation of cofilin promotes breast cancer cell invasion. J Biol Chem 2013; 288:36418-25. [PMID: 24214978 DOI: 10.1074/jbc.m113.495713] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
O-GlcNAcylation is a post-translational modification that regulates a broad range of nuclear and cytoplasmic proteins and is emerging as a key regulator of various biological processes. Previous studies have shown that increased levels of global O-GlcNAcylation and O-GlcNAc transferase (OGT) are linked to the incidence of metastasis in breast cancer patients, but the molecular basis behind this is not fully known. In this study, we have determined that the actin-binding protein cofilin is O-GlcNAcylated by OGT and mainly, if not completely, mediates OGT modulation of cell mobility. O-GlcNAcylation at Ser-108 of cofilin is required for its proper localization in invadopodia at the leading edge of breast cancer cells during three-dimensional cell invasion. Loss of O-GlcNAcylation of cofilin leads to destabilization of invadopodia and impairs cell invasion, although the actin-severing activity or lamellipodial localization is not affected. Our study provides insights into the mechanism of post-translational modification in fine-tuning the regulation of cofilin activity and suggests its important implications in cancer metastasis.
Collapse
Affiliation(s)
- Xun Huang
- From the Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203 and
| | | | | | | | | | | | | | | |
Collapse
|
289
|
Rom S, Zuluaga-Ramirez V, Dykstra H, Reichenbach NL, Pacher P, Persidsky Y. Selective activation of cannabinoid receptor 2 in leukocytes suppresses their engagement of the brain endothelium and protects the blood-brain barrier. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:1548-1558. [PMID: 24055259 PMCID: PMC3814716 DOI: 10.1016/j.ajpath.2013.07.033] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 07/18/2013] [Accepted: 07/25/2013] [Indexed: 01/13/2023]
Abstract
Cannabinoid receptor 2 (CB2) is highly expressed in immune cells and stimulation decreases inflammatory responses. We tested the idea that selective CB2 activation in human monocytes suppresses their ability to engage the brain endothelium and migrate across the blood-brain barrier (BBB), preventing consequent injury. Intravital videomicroscopy was used to quantify adhesion of leukocytes to cortical vessels in lipopolysaccharide-induced neuroinflammation, after injection of ex vivo CB2-activated leukocytes into mice; CB2 agonists markedly decreased adhesion of ex vivo labeled cells in vivo. In an in vitro BBB model, CB2 activation in monocytes largely attenuated adhesion to and migration across monolayers of primary human brain microvascular endothelial cells and diminished BBB damage. CB2 stimulation in monocytes down-regulated active forms of integrins, lymphocyte function-associated antigen 1 (LFA-1), and very late antigen 4 (VLA-4). Cells treated with CB2 agonists exhibited increased phosphorylation levels of inhibitory sites of the actin-binding proteins cofilin and VASP, which are upstream regulators of conformational integrin changes. Up-regulated by relevant stimuli, Rac1 and RhoA were suppressed by CB2 agonists in monocytes. CB2 stimulation decreased formation of lamellipodia, which play a key role in monocyte migration. These results indicate that selective CB2 activation in leukocytes decreases key steps in monocyte-BBB engagement, thus suppressing inflammatory leukocyte responses and preventing neuroinflammation.
Collapse
Affiliation(s)
- Slava Rom
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania.
| | - Viviana Zuluaga-Ramirez
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Holly Dykstra
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Nancy L Reichenbach
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Pal Pacher
- Section on Oxidative Stress and Tissue Injury, Laboratory of Physiological Studies, National Institutes of Health/Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland
| | - Yuri Persidsky
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania.
| |
Collapse
|
290
|
Samstag Y, John I, Wabnitz GH. Cofilin: a redox sensitive mediator of actin dynamics during T-cell activation and migration. Immunol Rev 2013; 256:30-47. [PMID: 24117811 PMCID: PMC3884758 DOI: 10.1111/imr.12115] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cofilin is an actin-binding protein that depolymerizes and/or severs actin filaments. This dual function of cofilin makes it one of the major regulators of actin dynamics important for T-cell activation and migration. The activity of cofilin is spatio-temporally regulated. Its main control mechanisms comprise a molecular toolbox of phospho-, phospholipid, and redox regulation. Phosphorylated cofilin is inactive and represents the dominant cofilin fraction in the cytoplasm of resting human T cells. A fraction of dephosphorylated cofilin is kept inactive at the plasma membrane by binding to phosphatidylinositol 4,5-bisphosphate. Costimulation via the T-cell receptor/CD3 complex (signal 1) together with accessory receptors (signal 2) or triggering through the chemokine SDF1α (stromal cell-derived factor 1α) induce Ras-dependent dephosphorylation of cofilin, which is important for immune synapse formation, T-cell activation, and T-cell migration. Recently, it became evident that cofilin is also highly sensitive for microenvironmental changes, particularly for alterations in the redox milieu. Cofilin is inactivated by oxidation, provoking T-cell hyporesponsiveness or necrotic-like programmed cell death. In contrast, in a reducing environment, even phosphatidylinositol 4,5-bisphosphate-bound cofilin becomes active, leading to actin dynamics in the vicinity of the plasma membrane. In addition to the well-established three signals for T-cell activation, this microenvironmental control of cofilin delivers a modulating signal for T-cell-dependent immune reactions. This fourth modulating signal highly impacts both initial T-cell activation and the effector phase of T-cell-mediated immune responses.
Collapse
Affiliation(s)
- Yvonne Samstag
- Institute for Immunology, Ruprecht-Karls-UniversityHeidelberg, Germany
| | - Isabel John
- Institute for Immunology, Ruprecht-Karls-UniversityHeidelberg, Germany
| | - Guido H Wabnitz
- Institute for Immunology, Ruprecht-Karls-UniversityHeidelberg, Germany
| |
Collapse
|
291
|
Akhshi TK, Wernike D, Piekny A. Microtubules and actin crosstalk in cell migration and division. Cytoskeleton (Hoboken) 2013; 71:1-23. [DOI: 10.1002/cm.21150] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 10/02/2013] [Accepted: 10/06/2013] [Indexed: 12/22/2022]
Affiliation(s)
| | - Denise Wernike
- Department of Biology; Concordia University; Montreal Quebec Canada
| | - Alisa Piekny
- Department of Biology; Concordia University; Montreal Quebec Canada
| |
Collapse
|
292
|
Kamal AHM, Kim WK, Cho K, Park A, Min JK, Han BS, Park SG, Lee SC, Bae KH. Investigation of adipocyte proteome during the differentiation of brown preadipocytes. J Proteomics 2013; 94:327-36. [PMID: 24129212 DOI: 10.1016/j.jprot.2013.10.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 09/02/2013] [Accepted: 10/01/2013] [Indexed: 02/07/2023]
Abstract
UNLABELLED Brown adipocytes oxidize fatty acids to produce heat in response to cold or caloric overfeeding. The motivation and function of the development of brown fat may thus counteract obesity, though this remains uncertain. We investigated the brown adipocyte proteome by two-dimensional gel electrophoresis followed by mass spectrometry. Comparative analyses of proteins focused on total protein spots to filter differentially expressed proteins during the differentiation of mouse primary brown preadipocytes. A Western blot analysis was performed to verify the target proteins. The results indicated that 10 protein spots were differentially expressed with significant changes, including the three up-regulated proteins of prohibitin, hypoxanthine-guanine phosphoribosyltransferase, and enoyl-CoA hydratase protein; the 5 down-regulated proteins of triosephosphate isomerase, elongation factor 2, α-tropomyosin slow, endophilin-B1, and cofilin-1 (CFL1); and the two unequivocally expressed proteins of peroxiredoxin-1 and collagen α-1(i) chain precursor. We found that during brown adipogenesis, CFL1 has an inhibitory effect on brown adipocyte differentiation. The overexpression of CFL1 inhibited the brown fat deposition and repressed the brown marker genes UCP1, PRDM16, PGC-1α and PPARγ via actin dynamics and polymerization. These observations may be novel findings that bring new insight into the detailed mechanisms of brown adipogenesis and identify possible therapeutic targets for anti-obesity. BIOLOGICAL SIGNIFICANCE We use 2-DE to compare the proteomes of adipocytes during the brown adipogenesis of primary mouse preadipocytes. We identified 10 proteins that are differentially expressed. Among these, we found that the actin binding protein CFL1 inhibits the differentiation of brown preadipocytes. CFL1 overexpressing cells showed lower deposition of brown fat droplets, and the brown marker genes of UCP1, PRDM16, PGC-1α and PPARγ were decreased through actin dynamics and polymerization.
Collapse
Affiliation(s)
- Abu Hena Mostafa Kamal
- Research Center for Integrated Cellulomics, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305-806, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
293
|
Wang Y, Lei Y, Fang L, Mu Y, Wu J, Zhang X. Roles of phosphotase 2A in nociceptive signal processing. Mol Pain 2013; 9:46. [PMID: 24010880 PMCID: PMC3844580 DOI: 10.1186/1744-8069-9-46] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Accepted: 08/30/2013] [Indexed: 12/23/2022] Open
Abstract
Multiple protein kinases affect the responses of dorsal horn neurons through phosphorylation of synaptic receptors and proteins involved in intracellular signal transduction pathways, and the consequences of this modulation may be spinal central sensitization. In contrast, the phosphatases catalyze an opposing reaction of de-phosphorylation, which may also modulate the functions of crucial proteins in signaling nociception. This is an important mechanism in the regulation of intracellular signal transduction pathways in nociceptive neurons. Accumulated evidence has shown that phosphatase 2A (PP2A), a serine/threonine specific phosphatase, is implicated in synaptic plasticity of the central nervous system and central sensitization of nociception. Therefore, targeting protein phosphotase 2A may provide an effective and novel strategy for the treatment of clinical pain. This review will characterize the structure and functional regulation of neuronal PP2A and bring together recent advances on the modulation of PP2A in targeted downstream substrates and relevant multiple nociceptive signaling molecules.
Collapse
Affiliation(s)
- Yun Wang
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China.
| | | | | | | | | | | |
Collapse
|
294
|
Schulte B, John I, Simon B, Brockmann C, Oelmeier SA, Jahraus B, Kirchgessner H, Riplinger S, Carlomagno T, Wabnitz GH, Samstag Y. A reducing milieu renders cofilin insensitive to phosphatidylinositol 4,5-bisphosphate (PIP2) inhibition. J Biol Chem 2013; 288:29430-9. [PMID: 24003227 PMCID: PMC3795243 DOI: 10.1074/jbc.m113.479766] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Oxidative stress can lead to T cell hyporesponsiveness. A reducing micromilieu (e.g. provided by dendritic cells) can rescue T cells from such oxidant-induced dysfunction. However, the reducing effects on proteins leading to restored T cell activation remained unknown. One key molecule of T cell activation is the actin-remodeling protein cofilin, which is dephosphorylated on serine 3 upon T cell costimulation and has an essential role in formation of mature immune synapses between T cells and antigen-presenting cells. Cofilin is spatiotemporally regulated; at the plasma membrane, it can be inhibited by phosphatidylinositol 4,5-bisphosphate (PIP2). Here, we show by NMR spectroscopy that a reducing milieu led to structural changes in the cofilin molecule predominantly located on the protein surface. They overlapped with the PIP2- but not actin-binding sites. Accordingly, reduction of cofilin had no effect on F-actin binding and depolymerization and did not influence the cofilin phosphorylation state. However, it did prevent inhibition of cofilin activity through PIP2. Therefore, a reducing milieu may generate an additional pool of active cofilin at the plasma membrane. Consistently, in-flow microscopy revealed increased actin dynamics in the immune synapse of untransformed human T cells under reducing conditions. Altogether, we introduce a novel mechanism of redox regulation: reduction of the actin-remodeling protein cofilin renders it insensitive to PIP2 inhibition, resulting in enhanced actin dynamics.
Collapse
Affiliation(s)
- Bianca Schulte
- From the Institute for Immunology, Ruprecht Karls University, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
295
|
Signaling mechanisms of glucose-induced F-actin remodeling in pancreatic islet β cells. Exp Mol Med 2013; 45:e37. [PMID: 23969997 PMCID: PMC3789261 DOI: 10.1038/emm.2013.73] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 06/24/2013] [Indexed: 12/12/2022] Open
Abstract
The maintenance of whole-body glucose homeostasis is critical for survival, and is controlled by the coordination of multiple organs and endocrine systems. Pancreatic islet β cells secrete insulin in response to nutrient stimuli, and insulin then travels through the circulation promoting glucose uptake into insulin-responsive tissues such as liver, skeletal muscle and adipose. Many of the genes identified in human genome-wide association studies of diabetic individuals are directly associated with β cell survival and function, giving credence to the idea that β-cell dysfunction is central to the development of type 2 diabetes. As such, investigations into the mechanisms by which β cells sense glucose and secrete insulin in a regulated manner are a major focus of current diabetes research. In particular, recent discoveries of the detailed role and requirements for reorganization/remodeling of filamentous actin (F-actin) in the regulation of insulin release from the β cell have appeared at the forefront of islet function research, having lapsed in prior years due to technical limitations. Recent advances in live-cell imaging and specialized reagents have revealed localized F-actin remodeling to be a requisite for the normal biphasic pattern of nutrient-stimulated insulin secretion. This review will provide an historical look at the emergent focus on the role of the actin cytoskeleton and its regulation of insulin secretion, leading up to the cutting-edge research in progress in the field today.
Collapse
|
296
|
Chen H, Yi M, Sheng Y, Cheng H, Zhou R. A novel testis-enriched gene Spata33 is expressed during spermatogenesis. PLoS One 2013; 8:e67882. [PMID: 23844118 PMCID: PMC3699523 DOI: 10.1371/journal.pone.0067882] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 05/23/2013] [Indexed: 12/03/2022] Open
Abstract
With an increasing incidence of male idiopathic infertility, identification of novel genes involved in spermatogenesis is an important aspect for the understanding of human testicular failure. In the present study, we have identified a novel gene Spata33, also called as 4732415M23Rik or C16orf55, which is conserved in mammalian species. Spata33 was predominantly expressed in the postpartum and adult mouse testes at mRNA and protein levels. Its expression was increased during the first wave of the spermatogenesis, indicating that Spata33 may be associated with the meiotic process. Further immunohistochemistry analysis revealed that Spata33 was mainly expressed in the spermatocytes, spermatogonia and round spermatids. Its expression was uniformly distributed in the nucleus and cytosol in these germ cells, which was further confirmed by Spata33-tagged with GFP staining in the GC-1 and TM4 cells. These results indicated that Spata33 was predominantly expressed in the mouse testis and associated with spermatogenesis. Identification and characterization of the novel testis-enriched gene Spata33 may provide a new route for understanding of spermatogenesis failure.
Collapse
Affiliation(s)
- Hengling Chen
- Department of Genetics, College of Life Sciences, Wuhan University, Wuhan, People’s Republic of China
| | - Minhan Yi
- Department of Genetics, College of Life Sciences, Wuhan University, Wuhan, People’s Republic of China
| | - Yue Sheng
- Department of Genetics, College of Life Sciences, Wuhan University, Wuhan, People’s Republic of China
| | - Hanhua Cheng
- Department of Genetics, College of Life Sciences, Wuhan University, Wuhan, People’s Republic of China
- * E-mail: (HC); (RZ)
| | - Rongjia Zhou
- Department of Genetics, College of Life Sciences, Wuhan University, Wuhan, People’s Republic of China
- * E-mail: (HC); (RZ)
| |
Collapse
|
297
|
Bravo-Cordero JJ, Magalhaes MAO, Eddy RJ, Hodgson L, Condeelis J. Functions of cofilin in cell locomotion and invasion. Nat Rev Mol Cell Biol 2013; 14:405-15. [PMID: 23778968 DOI: 10.1038/nrm3609] [Citation(s) in RCA: 367] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recently, a consensus has emerged that cofilin severing activity can generate free actin filament ends that are accessible for F-actin polymerization and depolymerization without changing the rate of G-actin association and dissociation at either filament end. The structural basis of actin filament severing by cofilin is now better understood. These results have been integrated with recently discovered mechanisms for cofilin activation in migrating cells, which led to new models for cofilin function that provide insights into how cofilin regulation determines the temporal and spatial control of cell behaviour.
Collapse
Affiliation(s)
- Jose Javier Bravo-Cordero
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine of Yeshiva University, 1300 Morris Park Avenue, Bronx, New York 10461, USA.
| | | | | | | | | |
Collapse
|
298
|
Olayioye MA, Barisic S, Hausser A. Multi-level control of actin dynamics by protein kinase D. Cell Signal 2013; 25:1739-47. [PMID: 23688773 DOI: 10.1016/j.cellsig.2013.04.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 04/24/2013] [Accepted: 04/30/2013] [Indexed: 11/26/2022]
Abstract
Dynamic actin remodeling is fundamental to processes such as cell motility, vesicle trafficking, and cytokinesis. Protein kinase D (PKD) is a serine-threonine kinase known to be involved in diverse biological functions ranging from vesicle fission at the Golgi complex to regulation of cell motility and invasion. This review addresses the role of PKD in the organization of the actin cytoskeleton with a particular emphasis on the substrates associated with this function. We further highlight the multi-level control of actin dynamics by PKD and suggest that the tight spatio-temporal control of PKD activity is critical for the coordination of directed cell migration.
Collapse
Affiliation(s)
- Monilola A Olayioye
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | | | | |
Collapse
|
299
|
Saito A, Miyajima K, Akatsuka J, Kondo H, Mashiko T, Kiuchi T, Ohashi K, Mizuno K. CaMKIIβ-mediated LIM-kinase activation plays a crucial role in BDNF-induced neuritogenesis. Genes Cells 2013; 18:533-43. [PMID: 23600483 DOI: 10.1111/gtc.12054] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 03/10/2013] [Indexed: 12/01/2022]
Abstract
LIM-kinase 1 (LIMK1) regulates actin cytoskeletal reorganization by phosphorylating and inactivating actin-depolymerizing factor and cofilin. We examined the role of LIMK1 in brain-derived neurotrophic factor (BDNF)-induced neuritogenesis in primary-cultured rat cortical neurons. Knockdown of LIMK1 or expression of a kinase-dead LIMK1 mutant suppressed BDNF-induced enhancement of primary neurite formation. By contrast, expression of an active form of LIMK1 promoted primary neuritogenesis in the absence of BDNF. BDNF-induced neuritogenesis was inhibited by KN-93, an inhibitor of Ca(2+) /calmodulin-dependent protein kinases (CaMKs), but not by STO-609, an inhibitor of CaMK-kinase (CaMKK). CaMKK activity is required for the activation of CaMKI and CaMKIV, but not CaMKII, which suggests that CaMKII is principally involved in BDNF-induced enhancement of neuritogenesis. Knockdown of CaMKIIβ, but not CaMKIIα, suppressed BDNF-induced neuritogenesis. Active CaMKIIβ promoted neuritogenesis, and this promotion was inhibited by knockdown of LIMK1, indicating that CaMKIIβ is involved in BDNF-induced neuritogenesis via activation of LIMK1. Furthermore, in vitro kinase assays revealed that CaMKIIβ phosphorylates LIMK1 at Thr-508 in the kinase domain and activates the cofilin-phosphorylating activity of LIMK1. In summary, these results suggest that CaMKIIβ-mediated activation of LIMK1 plays a crucial role in BDNF-induced enhancement of primary neurite formation.
Collapse
Affiliation(s)
- Akihiko Saito
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | | | | | | | | | | | | | | |
Collapse
|
300
|
Porter K, Day B. Actin branches out to link pathogen perception and host gene regulation. PLANT SIGNALING & BEHAVIOR 2013; 8:e23468. [PMID: 23333960 PMCID: PMC3676516 DOI: 10.4161/psb.23468] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 12/30/2012] [Indexed: 05/29/2023]
Abstract
Cellular functions of actin, and associated actin binding proteins (ABPs), have been well characterized with respect to their dynamic cytosolic role as components of the complex cytoskeletal network. In this regard, the collective research in this field has vastly expanded our knowledge of the role of actin to more recently identify a key role within the nucleus as an integral part gene organization and expression. Herein, we describe the requirement of the ABP actin depolymerizing factor-4 (ADF4) as a regulator of resistance to Pseudomonas syringae DC3000 expressing the effector AvrPphB via ADF4's cytosolic and nuclear functions. In total, our work has identified significant alterations in the expression of the resistance protein RPS5 in an ADF4 phosphorylation dependent manner. In this mini-review, we provide compelling evidence in support of both a nuclear function for ADF4, as well as potential targeting of the actin cytoskeleton by the bacterial effector AvrPphB.
Collapse
Affiliation(s)
- Katie Porter
- Graduate Program in Cell and Molecular Biology; Michigan State University; East Lansing, MI USA
| | - Brad Day
- Graduate Program in Cell and Molecular Biology; Michigan State University; East Lansing, MI USA
- Department of Plant, Soil, and Microbial Sciences; Michigan State University; East Lansing, MI USA
| |
Collapse
|