251
|
Anthony WE, Carr RR, DeLorenzo DM, Campbell TP, Shang Z, Foston M, Moon TS, Dantas G. Development of Rhodococcus opacus as a chassis for lignin valorization and bioproduction of high-value compounds. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:192. [PMID: 31404385 PMCID: PMC6683499 DOI: 10.1186/s13068-019-1535-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/24/2019] [Indexed: 05/09/2023]
Abstract
The current extraction and use of fossil fuels has been linked to extensive negative health and environmental outcomes. Lignocellulosic biomass-derived biofuels and bioproducts are being actively considered as renewable alternatives to the fuels, chemicals, and materials produced from fossil fuels. A major challenge limiting large-scale, economic deployment of second-generation biorefineries is the insufficient product yield, diversity, and value that current conversion technologies can extract from lignocellulose, in particular from the underutilized lignin fraction. Rhodococcus opacus PD630 is an oleaginous gram-positive bacterium with innate catabolic pathways and tolerance mechanisms for the inhibitory aromatic compounds found in depolymerized lignin, as well as native or engineered pathways for hexose and pentose sugars found in the carbohydrate fractions of biomass. As a result, R. opacus holds potential as a biological chassis for the conversion of lignocellulosic biomass into biodiesel precursors and other value-added products. This review begins by examining the important role that lignin utilization will play in the future of biorefineries and by providing a concise survey of the current lignin conversion technologies. The genetic machinery and capabilities of R. opacus that allow the bacterium to tolerate and metabolize aromatic compounds and depolymerized lignin are also discussed, along with a synopsis of the genetic toolbox and synthetic biology methods now available for engineering this organism. Finally, we summarize the different feedstocks that R. opacus has been demonstrated to consume, and the high-value products that it has been shown to produce. Engineered R. opacus will enable lignin valorization over the coming years, leading to cost-effective conversion of lignocellulose into fuels, chemicals, and materials.
Collapse
Affiliation(s)
- Winston E. Anthony
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110 USA
| | - Rhiannon R. Carr
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130 USA
| | - Drew M. DeLorenzo
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130 USA
| | - Tayte P. Campbell
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110 USA
| | - Zeyu Shang
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130 USA
| | - Marcus Foston
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130 USA
| | - Tae Seok Moon
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130 USA
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110 USA
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO 63108 USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130 USA
- Department of Molecular Microbiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63108 USA
| |
Collapse
|
252
|
Calero P, Nikel PI. Chasing bacterial chassis for metabolic engineering: a perspective review from classical to non-traditional microorganisms. Microb Biotechnol 2019; 12:98-124. [PMID: 29926529 PMCID: PMC6302729 DOI: 10.1111/1751-7915.13292] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 05/28/2018] [Accepted: 05/29/2018] [Indexed: 12/27/2022] Open
Abstract
The last few years have witnessed an unprecedented increase in the number of novel bacterial species that hold potential to be used for metabolic engineering. Historically, however, only a handful of bacteria have attained the acceptance and widespread use that are needed to fulfil the needs of industrial bioproduction - and only for the synthesis of very few, structurally simple compounds. One of the reasons for this unfortunate circumstance has been the dearth of tools for targeted genome engineering of bacterial chassis, and, nowadays, synthetic biology is significantly helping to bridge such knowledge gap. Against this background, in this review, we discuss the state of the art in the rational design and construction of robust bacterial chassis for metabolic engineering, presenting key examples of bacterial species that have secured a place in industrial bioproduction. The emergence of novel bacterial chassis is also considered at the light of the unique properties of their physiology and metabolism, and the practical applications in which they are expected to outperform other microbial platforms. Emerging opportunities, essential strategies to enable successful development of industrial phenotypes, and major challenges in the field of bacterial chassis development are also discussed, outlining the solutions that contemporary synthetic biology-guided metabolic engineering offers to tackle these issues.
Collapse
Affiliation(s)
- Patricia Calero
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of Denmark2800Kongens LyngbyDenmark
| | - Pablo I. Nikel
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of Denmark2800Kongens LyngbyDenmark
| |
Collapse
|
253
|
Asare SO, Huang F, Lynn BC. Characterization and sequencing of lithium cationized β-O-4 lignin oligomers using higher-energy collisional dissociation mass spectrometry. Anal Chim Acta 2019; 1047:104-114. [DOI: 10.1016/j.aca.2018.09.068] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 09/05/2018] [Accepted: 09/29/2018] [Indexed: 10/28/2022]
|
254
|
Hasanin MS, Darwesh OM, Matter IA, El-Saied H. Isolation and characterization of non-cellulolytic Aspergillus flavus EGYPTA5 exhibiting selective ligninolytic potential. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2018.11.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
255
|
Matsagar BM, Kang TC, Wang ZY, Yoshikawa T, Nakasaka Y, Masuda T, Chuang LC, Wu KCW. Efficient liquid-phase hydrogenolysis of a lignin model compound (benzyl phenyl ether) using a Ni/carbon catalyst. REACT CHEM ENG 2019. [DOI: 10.1039/c8re00304a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Efficient liquid-phase hydrogenolysis of benzyl phenyl ether using Ni/CB in an EtOH/H2O co-solvent system.
Collapse
Affiliation(s)
| | - Ting-Cih Kang
- Department of Chemical Engineering
- National Taiwan University
- Taipei 10617
- Taiwan
| | - Zheng-Yen Wang
- Department of Chemical Engineering
- National Taiwan University
- Taipei 10617
- Taiwan
| | | | - Yuta Nakasaka
- Division of Applied Chemistry
- Hokkaido University
- Sapporo
- Japan
| | - Takao Masuda
- Division of Applied Chemistry
- Hokkaido University
- Sapporo
- Japan
| | - Li-Ching Chuang
- Division of Chemical Engineering
- Institute of Nuclear Energy Research
- Taoyuan 320
- Taiwan
| | - Kevin C.-W. Wu
- Department of Chemical Engineering
- National Taiwan University
- Taipei 10617
- Taiwan
- Center of Atomic Initiative for New Materials (AI-MAT)
| |
Collapse
|
256
|
Zhang F, Jiang X, Lin J, Zhao G, Chang HM, Jameel H. Reactivity improvement by phenolation of wheat straw lignin isolated from a biorefinery process. NEW J CHEM 2019. [DOI: 10.1039/c8nj05016c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work describes an effective phenolation process to improve wheat straw biorefinery lignin reactivity.
Collapse
Affiliation(s)
- Fangda Zhang
- Beijing Key Laboratory of Wood Science and Engineering
- Beijing Forestry University
- Beijing 100083
- China
- Department of Forest Biomaterials
| | - Xiao Jiang
- Department of Forest Biomaterials
- North Carolina State University
- Raleigh
- USA
| | - Jian Lin
- Beijing Key Laboratory of Wood Science and Engineering
- Beijing Forestry University
- Beijing 100083
- China
| | - Guangjie Zhao
- Beijing Key Laboratory of Wood Science and Engineering
- Beijing Forestry University
- Beijing 100083
- China
| | - Hou-min Chang
- Department of Forest Biomaterials
- North Carolina State University
- Raleigh
- USA
| | - Hasan Jameel
- Department of Forest Biomaterials
- North Carolina State University
- Raleigh
- USA
| |
Collapse
|
257
|
Li X, He Y, Zhang L, Xu Z, Ben H, Gaffrey MJ, Yang Y, Yang S, Yuan JS, Qian WJ, Yang B. Discovery of potential pathways for biological conversion of poplar wood into lipids by co-fermentation of Rhodococci strains. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:60. [PMID: 30923568 PMCID: PMC6423811 DOI: 10.1186/s13068-019-1395-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/06/2019] [Indexed: 05/23/2023]
Abstract
BACKGROUND Biological routes for utilizing both carbohydrates and lignin are important to reach the ultimate goal of bioconversion of full carbon in biomass into biofuels and biochemicals. Recent biotechnology advances have shown promises toward facilitating biological transformation of lignin into lipids. Natural and engineered Rhodococcus strains (e.g., R. opacus PD630, R. jostii RHA1, and R. jostii RHA1 VanA-) have been demonstrated to utilize lignin for lipid production, and co-culture of them can promote lipid production from lignin. RESULTS In this study, a co-fermentation module of natural and engineered Rhodococcus strains with significant improved lignin degradation and/or lipid biosynthesis capacities was established, which enabled simultaneous conversion of glucose, lignin, and its derivatives into lipids. Although Rhodococci sp. showed preference to glucose over lignin, nearly half of the lignin was quickly depolymerized to monomers by these strains for cell growth and lipid synthesis after glucose was nearly consumed up. Profiles of metabolites produced by Rhodococcus strains growing on different carbon sources (e.g., glucose, alkali lignin, and dilute acid flowthrough-pretreated poplar wood slurry) confirmed lignin conversion during co-fermentation, and indicated novel metabolic capacities and unexplored metabolic pathways in these organisms. Proteome profiles suggested that lignin depolymerization by Rhodococci sp. involved multiple peroxidases with accessory oxidases. Besides the β-ketoadipate pathway, the phenylacetic acid (PAA) pathway was another potential route for the in vivo ring cleavage activity. In addition, deficiency of reducing power and cellular oxidative stress probably led to lower lipid production using lignin as the sole carbon source than that using glucose. CONCLUSIONS This work demonstrated a potential strategy for efficient bioconversion of both lignin and glucose into lipids by co-culture of multiple natural and engineered Rhodococcus strains. In addition, the involvement of PAA pathway in lignin degradation can help to further improve lignin utilization, and the combinatory proteomics and bioinformatics strategies used in this study can also be applied into other systems to reveal the metabolic and regulatory pathways for balanced cellular metabolism and to select genetic targets for efficient conversion of both lignin and carbohydrates into biofuels.
Collapse
Affiliation(s)
- Xiaolu Li
- Bioproducts, Sciences and Engineering Laboratory, Department of Biological Systems Engineering, Washington State University, 2710 Crimson Way, Richland, WA 99354 USA
| | - Yucai He
- Bioproducts, Sciences and Engineering Laboratory, Department of Biological Systems Engineering, Washington State University, 2710 Crimson Way, Richland, WA 99354 USA
| | - Libing Zhang
- Bioproducts, Sciences and Engineering Laboratory, Department of Biological Systems Engineering, Washington State University, 2710 Crimson Way, Richland, WA 99354 USA
| | - Zhangyang Xu
- Bioproducts, Sciences and Engineering Laboratory, Department of Biological Systems Engineering, Washington State University, 2710 Crimson Way, Richland, WA 99354 USA
| | - Haoxi Ben
- Bioproducts, Sciences and Engineering Laboratory, Department of Biological Systems Engineering, Washington State University, 2710 Crimson Way, Richland, WA 99354 USA
| | - Matthew J. Gaffrey
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352 USA
| | - Yongfu Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Shihui Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Joshua S. Yuan
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77840 USA
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352 USA
| | - Bin Yang
- Bioproducts, Sciences and Engineering Laboratory, Department of Biological Systems Engineering, Washington State University, 2710 Crimson Way, Richland, WA 99354 USA
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352 USA
| |
Collapse
|
258
|
Kumar P, Maharjan A, Jun H, Kim BS. Bioconversion of lignin and its derivatives into polyhydroxyalkanoates: Challenges and opportunities. Biotechnol Appl Biochem 2018; 66:153-162. [DOI: 10.1002/bab.1720] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 12/18/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Prasun Kumar
- Department of Chemical EngineeringChungbuk National University Chungbuk Republic of Korea
| | - Anoth Maharjan
- Department of Chemical EngineeringChungbuk National University Chungbuk Republic of Korea
| | - Hang‐Bae Jun
- Department of Environmental EngineeringChungbuk National University Chungbuk Republic of Korea
| | - Beom Soo Kim
- Department of Chemical EngineeringChungbuk National University Chungbuk Republic of Korea
| |
Collapse
|
259
|
Henson WR, Hsu FF, Dantas G, Moon TS, Foston M. Lipid metabolism of phenol-tolerant Rhodococcus opacus strains for lignin bioconversion. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:339. [PMID: 30607174 PMCID: PMC6309088 DOI: 10.1186/s13068-018-1337-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 12/11/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Lignin is a recalcitrant aromatic polymer that is a potential feedstock for renewable fuel and chemical production. Rhodococcus opacus PD630 is a promising strain for the biological upgrading of lignin due to its ability to tolerate and utilize lignin-derived aromatic compounds. To enhance its aromatic tolerance, we recently applied adaptive evolution using phenol as a sole carbon source and characterized a phenol-adapted R. opacus strain (evol40) and the wild-type (WT) strain by whole genome and RNA sequencing. While this effort increased our understanding of the aromatic tolerance, the tolerance mechanisms were not completely elucidated. RESULTS We hypothesize that the composition of lipids plays an important role in phenol tolerance. To test this hypothesis, we applied high-resolution mass spectrometry analysis to lipid samples obtained from the WT and evol40 strains grown in 1 g/L glucose (glucose), 0.75 g/L phenol (low phenol), or 1.5 g/L phenol (high phenol, evol40 only) as a sole carbon source. This analysis identified > 100 lipid species of mycolic acids, phosphatidylethanolamines (PEs), phosphatidylinositols (PIs), and triacylglycerols. In both strains, mycolic acids had fewer double bond numbers in phenol conditions than the glucose condition, and evol40 had significantly shorter mycolic acid chain lengths than the WT strain in phenol conditions. These results indicate that phenol adaptation affected mycolic acid membrane composition. In addition, the percentage of unsaturated phospholipids decreased for both strains in phenol conditions compared to the glucose condition. Moreover, the PI content increased for both strains in the low phenol condition compared to the glucose condition, and the PI content increased further for evol40 in the high phenol condition relative to the low phenol condition. CONCLUSIONS This work represents the first comprehensive lipidomic study on the membrane of R. opacus grown using phenol as a sole carbon source. Our results suggest that the alteration of the mycolic acid and phospholipid membrane composition may be a strategy of R. opacus for phenol tolerance.
Collapse
Affiliation(s)
- William R. Henson
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130 USA
| | - Fong-Fu Hsu
- Mass Spectrometry Resource, Division of Endocrinology, Diabetes, Metabolism, and Lipid Research, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Gautam Dantas
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO 63108 USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110 USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130 USA
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO 63108 USA
| | - Tae Seok Moon
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130 USA
| | - Marcus Foston
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130 USA
| |
Collapse
|
260
|
Köhnke J, Rennhofer H, Unterweger C, Gierlinger N, Keckes J, Zollfrank C, Rojas OJ, Gindl-Altmutter W. Electrically-Conductive Sub-Micron Carbon Particles from Lignin: Elucidation of Nanostructure and Use as Filler in Cellulose Nanopapers. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E1055. [PMID: 30558292 PMCID: PMC6316020 DOI: 10.3390/nano8121055] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/09/2018] [Accepted: 12/12/2018] [Indexed: 12/11/2022]
Abstract
Carbon particles were produced from kraft lignin through carbonization of perfectly spherical, sub-micron beads obtained by aerosol flow. The structure of the resulting carbon particles was elucidated and compared to that derived from commercially available technical lignin powder, which is undefined in geometry. In addition to the smaller diameters of the lignin beads (<1 µm) compared to those of the lignin powder (100 µm), the former displayed a slightly higher structural order as revealed by X-ray diffraction and Raman spectroscopy. With regard to potential application in composite structures, the sub-micron carbon beads were clearly advantageous as a filler of cellulose nanopapers, which displayed better mechanical performance but with limited electrical conductivity. Compression sensing was achieved for this nanocomposite system.
Collapse
Affiliation(s)
- Janea Köhnke
- Department of Materials Science and Process Engineering, BOKU-University of Natural Resources and Life Science, Vienna, 3430 Tulln, Austria.
| | - Harald Rennhofer
- Department of Materials Science and Process Engineering, BOKU-University of Natural Resources and Life Science, Vienna, 3430 Tulln, Austria.
| | | | - Notburga Gierlinger
- Department of Nanobiotechnology, BOKU-University of Natural Resources and Life Science, Vienna, 1190 Vienna, Austria.
| | - Jozef Keckes
- Department of Materials Physics, Montanuniversität of Leoben, 8700 Leoben, Austria.
| | - Cordt Zollfrank
- Chair for Biogenic Polymers, Technische Universität München, 94315 Straubing, Germany.
| | - Orlando J Rojas
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, 00076 Aalto, Finland.
| | - Wolfgang Gindl-Altmutter
- Department of Materials Science and Process Engineering, BOKU-University of Natural Resources and Life Science, Vienna, 3430 Tulln, Austria.
| |
Collapse
|
261
|
Xu R, Zhang K, Liu P, Han H, Zhao S, Kakade A, Khan A, Du D, Li X. Lignin depolymerization and utilization by bacteria. BIORESOURCE TECHNOLOGY 2018; 269:557-566. [PMID: 30219494 DOI: 10.1016/j.biortech.2018.08.118] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/28/2018] [Accepted: 08/29/2018] [Indexed: 05/21/2023]
Abstract
Lignin compound wastes are generated as a result of agricultural and industrial practices. Microorganism-mediated bio-catalytic processes can depolymerize and utilize lignin eco-friendly. Although fungi have been studied since several decades for their ability to depolymerize lignin, strict growth conditions of fungus limit it's industrial application. Compared with fungi, bacteria can tolerate wider pH, temperature, oxygen ranges and are easy to manipulate. Several studies have focused on bacteria involved in the process of lignin depolymerization and utilization. Pseudomonas have been used for paper mill wastewater treatment while Rhodococcus are widely reported to accumulate lipid. In this review, the recent studies on bacterial utilization in paper wastewater treatment, lignin conversion to biofuels, bioplastic, biofertilizers and other value-added chemicals are summarized. As bacteria possess remarkable advantages in industrial production, they may play a promising role in the future commercial lignin utilization.
Collapse
Affiliation(s)
- Rong Xu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu 730000, People's Republic of China
| | - Kai Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu 730000, People's Republic of China
| | - Pu Liu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu 730000, People's Republic of China
| | - Huawen Han
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu 730000, People's Republic of China
| | - Shuai Zhao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu 730000, People's Republic of China
| | - Apurva Kakade
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu 730000, People's Republic of China
| | - Aman Khan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu 730000, People's Republic of China
| | - Daolin Du
- Institute for Energy Research, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, People's Republic of China
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu 730000, People's Republic of China.
| |
Collapse
|
262
|
Cui M, Nguyen NA, Bonnesen PV, Uhrig D, Keum JK, Naskar AK. Rigid Oligomer from Lignin in Designing of Tough, Self-Healing Elastomers. ACS Macro Lett 2018; 7:1328-1332. [PMID: 35651238 DOI: 10.1021/acsmacrolett.8b00600] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Converting lignin into well-defined compounds is often challenged by structural complexation and inorganic contamination induced by the pulping process. In this report, instead of breaking down lignin into small molecules, we extracted a uniform and rigid oligomer from the lignin waste stream. The multifunctional polyphenol oligomer containing carboxylic acid, alcohol, and phenol groups is highly reactive and brings stiffness into the material matrix. Tough and self-healing elastomers are economically prepared from this oligomer by a reaction with epoxy-terminated polyethylene glycol, without needing any solvent. Specifically, the polyaromatic backbone's rigidity enhances the elastomer's toughness, and the multiple polar substituents form a network of hydrogen bonding that heals the elastomer. Many other applications, including adhesives, hydrogels, coating, and metal scavengers, are envisioned based on this oligomer's unique properties.
Collapse
Affiliation(s)
- Mengmeng Cui
- Carbon and Composite Group, Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Ngoc A. Nguyen
- Carbon and Composite Group, Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Peter V. Bonnesen
- Center for Nanophase Materials Science, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - David Uhrig
- Center for Nanophase Materials Science, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Jong K. Keum
- Neutron Science Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Amit K. Naskar
- Carbon and Composite Group, Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
263
|
Zhang R, Li C, Wang J, Yan Y. Microbial Ligninolysis: Toward a Bottom-Up Approach for Lignin Upgrading. Biochemistry 2018; 58:1501-1510. [DOI: 10.1021/acs.biochem.8b00920] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Ruihua Zhang
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, Georgia 30602, United States
| | - Chenyi Li
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, Georgia 30602, United States
| | - Jian Wang
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, Georgia 30602, United States
| | - Yajun Yan
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
264
|
Martins-Santana L, Nora LC, Sanches-Medeiros A, Lovate GL, Cassiano MHA, Silva-Rocha R. Systems and Synthetic Biology Approaches to Engineer Fungi for Fine Chemical Production. Front Bioeng Biotechnol 2018; 6:117. [PMID: 30338257 PMCID: PMC6178918 DOI: 10.3389/fbioe.2018.00117] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 08/02/2018] [Indexed: 01/16/2023] Open
Abstract
Since the advent of systems and synthetic biology, many studies have sought to harness microbes as cell factories through genetic and metabolic engineering approaches. Yeast and filamentous fungi have been successfully harnessed to produce fine and high value-added chemical products. In this review, we present some of the most promising advances from recent years in the use of fungi for this purpose, focusing on the manipulation of fungal strains using systems and synthetic biology tools to improve metabolic flow and the flow of secondary metabolites by pathway redesign. We also review the roles of bioinformatics analysis and predictions in synthetic circuits, highlighting in silico systemic approaches to improve the efficiency of synthetic modules.
Collapse
Affiliation(s)
- Leonardo Martins-Santana
- Systems and Synthetic Biology Laboratory, Cell and Molecular Biology Department, Ribeirão Preto Medical School, São Paulo University (FMRP-USP), Ribeirão Preto, Brazil
| | - Luisa C Nora
- Systems and Synthetic Biology Laboratory, Cell and Molecular Biology Department, Ribeirão Preto Medical School, São Paulo University (FMRP-USP), Ribeirão Preto, Brazil
| | - Ananda Sanches-Medeiros
- Systems and Synthetic Biology Laboratory, Cell and Molecular Biology Department, Ribeirão Preto Medical School, São Paulo University (FMRP-USP), Ribeirão Preto, Brazil
| | - Gabriel L Lovate
- Systems and Synthetic Biology Laboratory, Cell and Molecular Biology Department, Ribeirão Preto Medical School, São Paulo University (FMRP-USP), Ribeirão Preto, Brazil
| | - Murilo H A Cassiano
- Systems and Synthetic Biology Laboratory, Cell and Molecular Biology Department, Ribeirão Preto Medical School, São Paulo University (FMRP-USP), Ribeirão Preto, Brazil
| | - Rafael Silva-Rocha
- Systems and Synthetic Biology Laboratory, Cell and Molecular Biology Department, Ribeirão Preto Medical School, São Paulo University (FMRP-USP), Ribeirão Preto, Brazil
| |
Collapse
|
265
|
Ravi K, Abdelaziz OY, Nöbel M, García-Hidalgo J, Gorwa-Grauslund MF, Hulteberg CP, Lidén G. Bacterial conversion of depolymerized Kraft lignin. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:240. [PMID: 30202435 PMCID: PMC6123935 DOI: 10.1186/s13068-018-1240-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/27/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Lignin is a potential feedstock for microbial conversion into various chemicals. However, the degradation rate of native or technical lignin is low, and depolymerization is needed to obtain reasonable conversion rates. In the current study, base-catalyzed depolymerization-using NaOH (5 wt%)-of softwood Kraft lignin was conducted in a continuous-flow reactor system at temperatures in the range 190-240 °C and residence times of 1 or 2 min. The ability of growth of nine bacterial strains belonging to the genera Pseudomonas and Rhodococcus was tested using the alkaline-treated lignin as a sole carbon source. RESULTS Pseudomonas fluorescens and Rhodococcus opacus showed the best growth of the tested species on plates with lignin. Further evaluation of P. fluorescens and R. opacus was made in liquid cultivations with depolymerized lignin (DL) at a concentration of 1 g/L. Size exclusion chromatography (SEC) showed that R. opacus consumed most of the available lower molecular weight compounds (approximately 0.1-0.4 kDa) in the DL, but the weight distribution of larger fractions was almost unaffected. Importantly, the consumed compounds included guaiacol-one of the main monomers in the DL. SEC analysis of P. fluorescens culture broth, in contrast, did not show a large conversion of low molecular weight compounds, and guaiacol remained unconsumed. However, a significant shift in molecular weight distribution towards lower average weights was seen. CONCLUSIONS Rhodococcus opacus and P. fluorescens were identified as two potential microbial candidates for the conversion/consumption of base-catalyzed depolymerized lignin, acting on low and high molecular weight lignin fragments, respectively. These findings will be of relevance for designing bioconversion of softwood Kraft lignin.
Collapse
Affiliation(s)
- Krithika Ravi
- Department of Chemical Engineering, Lund University, P.O. Box 124, 221 00 Lund, Sweden
| | - Omar Y. Abdelaziz
- Department of Chemical Engineering, Lund University, P.O. Box 124, 221 00 Lund, Sweden
| | - Matthias Nöbel
- Department of Chemical Engineering, Lund University, P.O. Box 124, 221 00 Lund, Sweden
- Present Address: Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072 Australia
| | - Javier García-Hidalgo
- Department of Chemistry, Applied Microbiology, Lund University, P.O. Box 124, 221 00 Lund, Sweden
| | - Marie F. Gorwa-Grauslund
- Department of Chemistry, Applied Microbiology, Lund University, P.O. Box 124, 221 00 Lund, Sweden
| | | | - Gunnar Lidén
- Department of Chemical Engineering, Lund University, P.O. Box 124, 221 00 Lund, Sweden
| |
Collapse
|
266
|
Core element characterization of Rhodococcus promoters and development of a promoter-RBS mini-pool with different activity levels for efficient gene expression. N Biotechnol 2018; 44:41-49. [DOI: 10.1016/j.nbt.2018.04.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 04/19/2018] [Accepted: 04/19/2018] [Indexed: 11/15/2022]
|
267
|
Abstract
Lignin valorization is a key aspect to design sustainable management systems for lignocellulosic biomass. The successful implementation of bio-refineries requires high value added applications for the chemicals derived from lignin. Without effective separation processes, the achievement of this purpose is difficult. Supported ionic liquid membranes can play a relevant role in the separation and purification of lignocellulosic components. This work investigated different supported ionic liquid membranes for selective transport of two different types of technical lignins (Kraft lignin and lignosulphonate) and monosaccharides (xylose and glucose) in aqueous solution. Although five different membrane supports and nine ionic liquids were tested, only the system composed by [BMIM][DBP] as an ionic liquid and polytetrafluoroethylene (PTFE) as a membrane support allowed the selective transport of the tested solutes. The results obtained with this selective membrane demonstrated that lignins were more slowly transferred from the feed compartment to the stripping compartment through the membrane than the monosaccharides. A model was proposed to calculate the effective mass transfer constants of the solutes through the membrane (values in the range 0.5–2.0 × 10−3 m/h). Nevertheless, the stability of this identified selective membrane and its potential to be implemented in effective separation processes must be further analyzed.
Collapse
|
268
|
Malaeke H, Housaindokht MR, Monhemi H, Izadyar M. Deep eutectic solvent as an efficient molecular liquid for lignin solubilization and wood delignification. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.05.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
269
|
Alternatives for Chemical and Biochemical Lignin Valorization: Hot Topics from a Bibliometric Analysis of the Research Published During the 2000–2016 Period. Processes (Basel) 2018. [DOI: 10.3390/pr6080098] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A complete bibliometric analysis of the Scopus database was performed to identify the research trends related to lignin valorization from 2000 to 2016. The results from this analysis revealed an exponentially increasing number of publications and a high relevance of interdisciplinary collaboration. The simultaneous valorization of the three main components of lignocellulosic biomass (cellulose, hemicellulose, and lignin) has been revealed as a key aspect and optimal pretreatment is required for the subsequent lignin valorization. Research covers the determination of the lignin structure, isolation, and characterization; depolymerization by thermal and thermochemical methods; chemical, biochemical and biological conversion of depolymerized lignin; and lignin applications. Most methods for lignin depolymerization are focused on the selective cleavage of the β-O-4 linkage. Although many depolymerization methods have been developed, depolymerization with sodium hydroxide is the dominant process at industrial scale. Oxidative conversion of lignin is the most used method for the chemical lignin upgrading. Lignin uses can be classified according to its structure into lignin-derived aromatic compounds, lignin-derived carbon materials and lignin-derived polymeric materials. There are many advances in all approaches, but lignin-derived polymeric materials appear as a promising option.
Collapse
|
270
|
Matsakas L, Karnaouri A, Cwirzen A, Rova U, Christakopoulos P. Formation of Lignin Nanoparticles by Combining Organosolv Pretreatment of Birch Biomass and Homogenization Processes. Molecules 2018; 23:E1822. [PMID: 30041408 PMCID: PMC6100471 DOI: 10.3390/molecules23071822] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/18/2018] [Accepted: 07/20/2018] [Indexed: 11/16/2022] Open
Abstract
Valorization of lignocellulosic biomass into a biorefinery scheme requires the use of all biomass components; in this, the lignin fraction is often underutilized. Conversion of lignin to nanoparticles is an attractive solution. Here, we investigated the effect of different lignin isolation processes and a post-treatment homogenization step on particle formation. Lignin was isolated from birch chips by using two organosolv processes, traditional organosolv (OS) and hybrid organosolv-steam explosion (HOS-SE) at various ethanol contents. For post-treatment, lignin was homogenized at 500 bar using different ethanol:water ratios. Isolation of lignin with OS resulted in unshaped lignin particles, whereas after HOS-SE, lignin micro-particles were formed directly. Addition of an acidic catalyst during HOS-SE had a negative impact on the particle formation, and the optimal ethanol content was 50⁻60% v/v. Homogenization had a positive effect as it transformed initially unshaped lignin into spherical nanoparticles and reduced the size of the micro-particles isolated by HOS-SE. Ethanol content during homogenization affected the size of the particles, with the optimal results obtained at 75% v/v. We demonstrate that organosolv lignin can be used as an excellent starting material for nanoparticle preparation, with a simple method without the need for extensive chemical modification. It was also demonstrated that tuning of the operational parameters results in nanoparticles of smaller size and with better size homogeneity.
Collapse
Affiliation(s)
- Leonidas Matsakas
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971-87 Luleå, Sweden.
| | - Anthi Karnaouri
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971-87 Luleå, Sweden.
| | - Andrzej Cwirzen
- Structural Engineering, Division of Structural and Fire Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971-87 Luleå, Sweden.
| | - Ulrika Rova
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971-87 Luleå, Sweden.
| | - Paul Christakopoulos
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971-87 Luleå, Sweden.
| |
Collapse
|
271
|
Lazaridis PA, Fotopoulos AP, Karakoulia SA, Triantafyllidis KS. Catalytic Fast Pyrolysis of Kraft Lignin With Conventional, Mesoporous and Nanosized ZSM-5 Zeolite for the Production of Alkyl-Phenols and Aromatics. Front Chem 2018; 6:295. [PMID: 30073162 PMCID: PMC6058026 DOI: 10.3389/fchem.2018.00295] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 06/26/2018] [Indexed: 12/04/2022] Open
Abstract
The valorization of lignin that derives as by product in various biomass conversion processes has become a major research and technological objective. The potential of the production of valuable mono-aromatics (BTX and others) and (alkyl)phenols by catalytic fast pyrolysis of lignin is investigated in this work by the use of ZSM-5 zeolites with different acidic and porosity characteristics. More specifically, conventional microporous ZSM-5 (Si/Al = 11.5, 25, 40), nano-sized (≤20 nm, by direct synthesis) and mesoporous (9 nm, by mild alkaline treatment) ZSM-5 zeolites were tested in the fast pyrolysis of a softwood kraft lignin at 400-600°C on a Py/GC-MS system and a fixed-bed reactor unit. The composition of lignin (FT-IR, 2D HSQC NMR) was correlated with the composition of the thermal (non-catalytic) pyrolysis oil, while the effect of pyrolysis temperature and catalyst-to-lignin (C/L) ratio, as well as of the Si/Al ratio, acidity, micro/mesoporosity and nano-size of ZSM-5, on bio-oil composition was thoroughly investigated. It was shown that the conventional microporous ZSM-5 zeolites are more selective toward mono-aromatics while the nano-sized and mesoporous ZSM-5 exhibited also high selectivity for (alkyl)phenols. However, the nano-sized ZSM-5 zeolite exhibited the lowest yield of organic bio-oil and highest production of water, coke and non-condensable gases compared to the conventional microporous and mesoporous ZSM-5 zeolites.
Collapse
Affiliation(s)
| | | | - Stamatia A. Karakoulia
- Chemical Process and Energy Resources Institute, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Konstantinos S. Triantafyllidis
- Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Chemical Process and Energy Resources Institute, Centre for Research and Technology Hellas, Thessaloniki, Greece
| |
Collapse
|
272
|
Tumen-Velasquez M, Johnson CW, Ahmed A, Dominick G, Fulk EM, Khanna P, Lee SA, Schmidt AL, Linger JG, Eiteman MA, Beckham GT, Neidle EL. Accelerating pathway evolution by increasing the gene dosage of chromosomal segments. Proc Natl Acad Sci U S A 2018; 115:7105-7110. [PMID: 29915086 PMCID: PMC6142232 DOI: 10.1073/pnas.1803745115] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Experimental evolution is a critical tool in many disciplines, including metabolic engineering and synthetic biology. However, current methods rely on the chance occurrence of a key step that can dramatically accelerate evolution in natural systems, namely increased gene dosage. Our studies sought to induce the targeted amplification of chromosomal segments to facilitate rapid evolution. Since increased gene dosage confers novel phenotypes and genetic redundancy, we developed a method, Evolution by Amplification and Synthetic Biology (EASy), to create tandem arrays of chromosomal regions. In Acinetobacter baylyi, EASy was demonstrated on an important bioenergy problem, the catabolism of lignin-derived aromatic compounds. The initial focus on guaiacol (2-methoxyphenol), a common lignin degradation product, led to the discovery of Amycolatopsis genes (gcoAB) encoding a cytochrome P450 enzyme that converts guaiacol to catechol. However, chromosomal integration of gcoAB in Pseudomonas putida or A. baylyi did not enable guaiacol to be used as the sole carbon source despite catechol being a growth substrate. In ∼1,000 generations, EASy yielded alleles that in single chromosomal copy confer growth on guaiacol. Different variants emerged, including fusions between GcoA and CatA (catechol 1,2-dioxygenase). This study illustrates the power of harnessing chromosomal gene amplification to accelerate the evolution of desirable traits.
Collapse
Affiliation(s)
| | | | - Alaa Ahmed
- Department of Microbiology, University of Georgia, Athens, GA 30602
| | - Graham Dominick
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO 80401
| | - Emily M Fulk
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO 80401
| | - Payal Khanna
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO 80401
| | - Sarah A Lee
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, GA 30602
| | - Alicia L Schmidt
- Department of Microbiology, University of Georgia, Athens, GA 30602
| | - Jeffrey G Linger
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO 80401
| | - Mark A Eiteman
- Department of Microbiology, University of Georgia, Athens, GA 30602
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, GA 30602
| | - Gregg T Beckham
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO 80401;
| | - Ellen L Neidle
- Department of Microbiology, University of Georgia, Athens, GA 30602;
| |
Collapse
|
273
|
Mallinson SJB, Machovina MM, Silveira RL, Garcia-Borràs M, Gallup N, Johnson CW, Allen MD, Skaf MS, Crowley MF, Neidle EL, Houk KN, Beckham GT, DuBois JL, McGeehan JE. A promiscuous cytochrome P450 aromatic O-demethylase for lignin bioconversion. Nat Commun 2018; 9:2487. [PMID: 29950589 PMCID: PMC6021390 DOI: 10.1038/s41467-018-04878-2] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 05/26/2018] [Indexed: 11/18/2022] Open
Abstract
Microbial aromatic catabolism offers a promising approach to convert lignin, a vast source of renewable carbon, into useful products. Aryl-O-demethylation is an essential biochemical reaction to ultimately catabolize coniferyl and sinapyl lignin-derived aromatic compounds, and is often a key bottleneck for both native and engineered bioconversion pathways. Here, we report the comprehensive characterization of a promiscuous P450 aryl-O-demethylase, consisting of a cytochrome P450 protein from the family CYP255A (GcoA) and a three-domain reductase (GcoB) that together represent a new two-component P450 class. Though originally described as converting guaiacol to catechol, we show that this system efficiently demethylates both guaiacol and an unexpectedly wide variety of lignin-relevant monomers. Structural, biochemical, and computational studies of this novel two-component system elucidate the mechanism of its broad substrate specificity, presenting it as a new tool for a critical step in biological lignin conversion.
Collapse
Affiliation(s)
- Sam J B Mallinson
- Molecular Biophysics, School of Biological Sciences, Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, PO1 2DY, UK
| | - Melodie M Machovina
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA
| | - Rodrigo L Silveira
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
- Institute of Chemistry, University of Campinas, Campinas, Sao Paulo, 13083-970, Brazil
| | - Marc Garcia-Borràs
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Nathan Gallup
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Christopher W Johnson
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Mark D Allen
- Molecular Biophysics, School of Biological Sciences, Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, PO1 2DY, UK
| | - Munir S Skaf
- Institute of Chemistry, University of Campinas, Campinas, Sao Paulo, 13083-970, Brazil
| | - Michael F Crowley
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Ellen L Neidle
- Department of Microbiology, University of Georgia, Athens, GA, 30602, USA
| | - Kendall N Houk
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, CA, 90095, USA.
| | - Gregg T Beckham
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA.
| | - Jennifer L DuBois
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA.
| | - John E McGeehan
- Molecular Biophysics, School of Biological Sciences, Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, PO1 2DY, UK.
| |
Collapse
|
274
|
Fang S, Wang W, Tong S, Zhang C, Liu P. Evaluation of the Effects of Isolated Lignin on Cellulose Enzymatic Hydrolysis of Corn Stover Pretreatment by NaOH Combined with Ozone. Molecules 2018; 23:molecules23061495. [PMID: 29925811 PMCID: PMC6099953 DOI: 10.3390/molecules23061495] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/16/2018] [Accepted: 06/17/2018] [Indexed: 11/26/2022] Open
Abstract
In this experiment, corn stover was treated with optimal combined pretreatment conditions: 2% NaOH at 80 °C treated 2 h combined with initial pH 9 at the ozone concentration of 78 mg/mL treated 25 min. The effect of lignin removal rate on the enzymatic hydrolysis degree of cellulose during the treatment process was studied. At the same time, the lignin in the optimal pretreated corn stover was separated and extracted by enzymatic acidolysis, and its structure and connection were characterized. The results showed that the alkali combined with ozone pretreatment improved the enzymatic hydrolysis degree of the cellulose while exfoliating and degrading the macromolecular lignin into small molecules. The stable crosslink structure of the lignin-cellulose-hemicellulose was destroyed, and the lignocellulosic structure changed in favor of the enzymatic hydrolysis of the cellulose.
Collapse
Affiliation(s)
- Shuo Fang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Wenhui Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Shisheng Tong
- Bio-Pharmaceutical College, Beijing City University, Beijing 100094, China.
| | - Chunyan Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Ping Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
275
|
Kumar M, Verma S, Gazara RK, Kumar M, Pandey A, Verma PK, Thakur IS. Genomic and proteomic analysis of lignin degrading and polyhydroxyalkanoate accumulating β-proteobacterium Pandoraea sp. ISTKB. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:154. [PMID: 29991962 PMCID: PMC5987411 DOI: 10.1186/s13068-018-1148-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 05/17/2018] [Indexed: 05/06/2023]
Abstract
BACKGROUND Lignin is a major component of plant biomass and is recalcitrant to degradation due to its complex and heterogeneous aromatic structure. The biomass-based research mainly focuses on polysaccharides component of biomass and lignin is discarded as waste with very limited usage. The sustainability and success of plant polysaccharide-based biorefinery can be possible if lignin is utilized in improved ways and with minimal waste generation. Discovering new microbial strains and understanding their enzyme system for lignin degradation are necessary for its conversion into fuel and chemicals. The Pandoraea sp. ISTKB was previously characterized for lignin degradation and successfully applied for pretreatment of sugarcane bagasse and polyhydroxyalkanoate (PHA) production. In this study, genomic analysis and proteomics on aromatic polymer kraft lignin and vanillic acid are performed to find the important enzymes for polymer utilization. RESULTS Genomic analysis of Pandoraea sp. ISTKB revealed the presence of strong lignin degradation machinery and identified various candidate genes responsible for lignin degradation and PHA production. We also applied label-free quantitative proteomic approach to identify the expression profile on monoaromatic compound vanillic acid (VA) and polyaromatic kraft lignin (KL). Genomic and proteomic analysis simultaneously discovered Dyp-type peroxidase, peroxidases, glycolate oxidase, aldehyde oxidase, GMC oxidoreductase, laccases, quinone oxidoreductase, dioxygenases, monooxygenases, glutathione-dependent etherases, dehydrogenases, reductases, and methyltransferases and various other recently reported enzyme systems such as superoxide dismutases or catalase-peroxidase for lignin degradation. A strong stress response and detoxification mechanism was discovered. The two important gene clusters for lignin degradation and three PHA polymerase spanning gene clusters were identified and all the clusters were functionally active on KL-VA. CONCLUSIONS The unusual aerobic '-CoA'-mediated degradation pathway of phenylacetate and benzoate (reported only in 16 and 4-5% of total sequenced bacterial genomes), peroxidase-accessory enzyme system, and fenton chemistry based are the major pathways observed for lignin degradation. Both ortho and meta ring cleavage pathways for aromatic compound degradation were observed in expression profile. Genomic and proteomic approaches provided validation to this strain's robust machinery for the metabolism of recalcitrant compounds and PHA production and provide an opportunity to target important enzymes for lignin valorization in future.
Collapse
Affiliation(s)
- Madan Kumar
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sandhya Verma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Rajesh Kumar Gazara
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Manish Kumar
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ashok Pandey
- CSIR-Indian Institute of Toxicology Research, 31 MG Marg, Lucknow, 226 001 India
| | - Praveen Kumar Verma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Indu Shekhar Thakur
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
276
|
Kumar AK, Sharma S, Shah E, Patel A. Technical assessment of natural deep eutectic solvent (NADES) mediated biorefinery process: A case study. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.03.107] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
277
|
Biodegradation of Lignin Monomers Vanillic, p-Coumaric, and Syringic Acid by the Bacterial Strain, Sphingobacterium sp. HY-H. Curr Microbiol 2018; 75:1156-1164. [PMID: 29750329 DOI: 10.1007/s00284-018-1504-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 04/27/2018] [Indexed: 10/16/2022]
Abstract
Many bacterial strains have been demonstrated to biodegrade lignin for contaminant removal or resource regeneration. The goal of this study was to investigate the biodegradation amount and associated pathways of three lignin monomers, vanillic, p-coumaric, and syringic acid by strain Sphingobacterium sp. HY-H. Vanillic, p-coumaric, and syringic acid degradation with strain HY-H was estimated as 88.71, 76.67, and 72.78%, respectively, after 96 h. Correspondingly, the same three monomers were associated with a COD removal efficiency of 87.30, 55.17, and 67.23%, and a TOC removal efficiency of 82.14, 61.03, and 43.86%. The results of GC-MS, HPLC, FTIR, and enzyme activities show that guaiacol and o-dihydroxybenzene are key intermediate metabolites of the vanillic acid and syringic acid degradation. p-Hydroxybenzoic acid is an important intermediate metabolite for p-coumaric and syringic acid degradation. LiP and MnP play an important role in the degradation of lignin monomers and their intermediate metabolites. One possible pathway is that strain HY-H degrades lignin monomers into guaiacol (through decarboxylic and demethoxy reaction) or p-hydroxybenzoic acid (through side-chain oxidation); then guaiacol demethylates to o-dihydroxybenzene. The p-hydroxybenzoic acid and o-dihydroxybenzene are futher through ring cleavage reaction to form small molecule acids (butyric, valproic, oxalic acid, and propionic acid) and alcohols (ethanol and ethanediol), then these acids and alcohols are finally decomposed into CO2 and H2O through the tricarboxylic acid cycle. If properly optimized and controlled, the strain HY-H may play a role in breaking down lignin-related compounds for biofuel and chemical production.
Collapse
|
278
|
Kohlstedt M, Starck S, Barton N, Stolzenberger J, Selzer M, Mehlmann K, Schneider R, Pleissner D, Rinkel J, Dickschat JS, Venus J, B.J.H. van Duuren J, Wittmann C. From lignin to nylon: Cascaded chemical and biochemical conversion using metabolically engineered Pseudomonas putida. Metab Eng 2018; 47:279-293. [DOI: 10.1016/j.ymben.2018.03.003] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 03/02/2018] [Accepted: 03/04/2018] [Indexed: 12/31/2022]
|
279
|
Xu T, Huang X, Li Z, Ki Lin CS, Li S. Enhanced Purification Efficiency and Thermal Tolerance of Thermoanaerobacterium aotearoense β-Xylosidase through Aggregation Triggered by Short Peptides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:4182-4188. [PMID: 29633613 DOI: 10.1021/acs.jafc.8b00551] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
To simplify purification and improve heat tolerance of a thermostable β-xylosidase (ThXylC), a short ELK16 peptide was attached to its C-terminus, which is designated as ThXylC-ELK. Wild-type ThXylC was normally expressed in soluble form. However, ThXylC-ELK assembled into aggregates with 98.6% of total β-xylosidase activity. After simple centrifugation and buffer washing, the ThXylC-ELK particles were collected with 92.57% activity recovery and 95% purity, respectively. Meanwhile, the wild-type ThXylC recovery yield was less than 55% after heat inactivation, affinity and desalting chromatography followed by HRV 3C protease cleavage purification. Catalytic efficiency ( Kcat/ Km) was increased from 21.31 mM-1 s-1 for ThXylC to 32.19 mM-1 s-1 for ThXylC-ELK accompanied by a small increase in Km value. Heat tolerance of ThXylC-ELK at high temperatures was also increased. The ELK16 peptide attachment resulted in 6.2-fold increase of half-life at 65 °C. Released reducing sugars were raised 1.3-fold during sugar cane bagasse hydrolysis when ThXylC-ELK was supplemented into the combination of XynAΔSLH and Cellic CTec2.
Collapse
Affiliation(s)
- Tianwang Xu
- Provincial Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering , South China University of Technology , Guangzhou 510006 , China
| | - Xiongliang Huang
- Provincial Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering , South China University of Technology , Guangzhou 510006 , China
| | - Zhe Li
- Provincial Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering , South China University of Technology , Guangzhou 510006 , China
| | - Carol Sze Ki Lin
- School of Energy and Environment , City University of Hong Kong , Tat Chee Avenue , Kowloon , Hong Kong
| | - Shuang Li
- Provincial Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering , South China University of Technology , Guangzhou 510006 , China
| |
Collapse
|
280
|
Moraes EC, Alvarez TM, Persinoti GF, Tomazetto G, Brenelli LB, Paixão DAA, Ematsu GC, Aricetti JA, Caldana C, Dixon N, Bugg TDH, Squina FM. Lignolytic-consortium omics analyses reveal novel genomes and pathways involved in lignin modification and valorization. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:75. [PMID: 29588660 PMCID: PMC5863372 DOI: 10.1186/s13068-018-1073-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 03/09/2018] [Indexed: 05/19/2023]
Abstract
BACKGROUND Lignin is a heterogeneous polymer representing a renewable source of aromatic and phenolic bio-derived products for the chemical industry. However, the inherent structural complexity and recalcitrance of lignin makes its conversion into valuable chemicals a challenge. Natural microbial communities produce biocatalysts derived from a large number of microorganisms, including those considered unculturable, which operate synergistically to perform a variety of bioconversion processes. Thus, metagenomic approaches are a powerful tool to reveal novel optimized metabolic pathways for lignin conversion and valorization. RESULTS The lignin-degrading consortium (LigMet) was obtained from a sugarcane plantation soil sample. The LigMet taxonomical analyses (based on 16S rRNA) indicated prevalence of Proteobacteria, Actinobacteria and Firmicutes members, including the Alcaligenaceae and Micrococcaceae families, which were enriched in the LigMet compared to sugarcane soil. Analysis of global DNA sequencing revealed around 240,000 gene models, and 65 draft bacterial genomes were predicted. Along with depicting several peroxidases, dye-decolorizing peroxidases, laccases, carbohydrate esterases, and lignocellulosic auxiliary (redox) activities, the major pathways related to aromatic degradation were identified, including benzoate (or methylbenzoate) degradation to catechol (or methylcatechol), catechol ortho-cleavage, catechol meta-cleavage, and phthalate degradation. A novel Paenarthrobacter strain harboring eight gene clusters related to aromatic degradation was isolated from LigMet and was able to grow on lignin as major carbon source. Furthermore, a recombinant pathway for vanillin production was designed based on novel gene sequences coding for a feruloyl-CoA synthetase and an enoyl-CoA hydratase/aldolase retrieved from the metagenomic data set. CONCLUSION The enrichment protocol described in the present study was successful for a microbial consortium establishment towards the lignin and aromatic metabolism, providing pathways and enzyme sets for synthetic biology engineering approaches. This work represents a pioneering study on lignin conversion and valorization strategies based on metagenomics, revealing several novel lignin conversion enzymes, aromatic-degrading bacterial genomes, and a novel bacterial strain of potential biotechnological interest. The validation of a biosynthetic route for vanillin synthesis confirmed the applicability of the targeted metagenome discovery approach for lignin valorization strategies.
Collapse
Affiliation(s)
- Eduardo C. Moraes
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Brazil
| | - Thabata M. Alvarez
- Master Program in Industrial Biotechnology, Universidade Positivo (UP), Curitiba, Brazil
| | - Gabriela F. Persinoti
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Brazil
| | - Geizecler Tomazetto
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Brazil
| | - Livia B. Brenelli
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Brazil
| | - Douglas A. A. Paixão
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Brazil
| | - Gabriela C. Ematsu
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Brazil
| | - Juliana A. Aricetti
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Brazil
| | - Camila Caldana
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Brazil
| | - Neil Dixon
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester, UK
| | | | - Fabio M. Squina
- Programa de Processos Tecnológicos e Ambientais, Universidade de Sorocaba, Sorocaba, Brazil
| |
Collapse
|
281
|
Schutyser W, Renders T, Van den Bosch S, Koelewijn SF, Beckham GT, Sels BF. Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading. Chem Soc Rev 2018; 47:852-908. [PMID: 29318245 DOI: 10.1039/c7cs00566k] [Citation(s) in RCA: 923] [Impact Index Per Article: 131.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In pursuit of more sustainable and competitive biorefineries, the effective valorisation of lignin is key. An alluring opportunity is the exploitation of lignin as a resource for chemicals. Three technological biorefinery aspects will determine the realisation of a successful lignin-to-chemicals valorisation chain, namely (i) lignocellulose fractionation, (ii) lignin depolymerisation, and (iii) upgrading towards targeted chemicals. This review provides a summary and perspective of the extensive research that has been devoted to each of these three interconnected biorefinery aspects, ranging from industrially well-established techniques to the latest cutting edge innovations. To navigate the reader through the overwhelming collection of literature on each topic, distinct strategies/topics were delineated and summarised in comprehensive overview figures. Upon closer inspection, conceptual principles arise that rationalise the success of certain methodologies, and more importantly, can guide future research to further expand the portfolio of promising technologies. When targeting chemicals, a key objective during the fractionation and depolymerisation stage is to minimise lignin condensation (i.e. formation of resistive carbon-carbon linkages). During fractionation, this can be achieved by either (i) preserving the (native) lignin structure or (ii) by tolerating depolymerisation of the lignin polymer but preventing condensation through chemical quenching or physical removal of reactive intermediates. The latter strategy is also commonly applied in the lignin depolymerisation stage, while an alternative approach is to augment the relative rate of depolymerisation vs. condensation by enhancing the reactivity of the lignin structure towards depolymerisation. Finally, because depolymerised lignins often consist of a complex mixture of various compounds, upgrading of the raw product mixture through convergent transformations embodies a promising approach to decrease the complexity. This particular upgrading approach is termed funneling, and includes both chemocatalytic and biological strategies.
Collapse
Affiliation(s)
- W Schutyser
- Center for Surface Chemistry and Catalysis, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium.
| | | | | | | | | | | |
Collapse
|
282
|
Ravi K, García-Hidalgo J, Nöbel M, Gorwa-Grauslund MF, Lidén G. Biological conversion of aromatic monolignol compounds by a Pseudomonas isolate from sediments of the Baltic Sea. AMB Express 2018; 8:32. [PMID: 29500726 PMCID: PMC5834416 DOI: 10.1186/s13568-018-0563-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 02/22/2018] [Indexed: 11/10/2022] Open
Abstract
Bacterial strains were isolated from the sediments of the Baltic Sea using ferulic acid, guaiacol or a lignin-rich softwood waste stream as substrate. In total nine isolates were obtained, five on ferulic acid, two on guaiacol and two on a lignin-rich softwood stream as a carbon source. Three of the isolates were found to be Pseudomonas sp. based on 16S rRNA sequencing. Among them, isolate 9.1, which showed the fastest growth in defined M9 medium, was tentatively identified as a Pseudomonas deceptionensis strain based on the gyrB sequencing. The growth of isolate 9.1 was further examined on six selected lignin model compounds (ferulate, p-coumarate, benzoate, syringate, vanillin and guaiacol) from different upper funneling aromatic pathways and was found able to grow on four out of these six compounds. No growth was detected on syringate and guaiacol. The highest specific growth and uptake rates were observed for benzoate (0.3 h-1 and 4.2 mmol g CDW-1 h-1) whereas the lowest were for the compounds from the coniferyl branch. Interestingly, several pathway intermediates were excreted during batch growth. Vanillyl alcohol was found to be excreted during growth on vanillin. Several other intermediates like cis,cis-muconate, catechol, vanillate and 4-hydroxybenzoate from the known bacterial catabolic pathways were excreted during growth on the model compounds.
Collapse
Affiliation(s)
- Krithika Ravi
- Department of Chemical Engineering, Lund University, P.O. Box 124, 221 00 Lund, Sweden
| | - Javier García-Hidalgo
- Department of Chemistry, Applied Microbiology, Lund University, P.O. Box 124, 221 00 Lund, Sweden
| | - Matthias Nöbel
- Department of Chemical Engineering, Lund University, P.O. Box 124, 221 00 Lund, Sweden
| | - Marie F. Gorwa-Grauslund
- Department of Chemistry, Applied Microbiology, Lund University, P.O. Box 124, 221 00 Lund, Sweden
| | - Gunnar Lidén
- Department of Chemical Engineering, Lund University, P.O. Box 124, 221 00 Lund, Sweden
| |
Collapse
|
283
|
Pérez E, Tuck CO, Poliakoff M. Valorisation of lignin by depolymerisation and fractionation using supercritical fluids and conventional solvents. J Supercrit Fluids 2018. [DOI: 10.1016/j.supflu.2017.07.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
284
|
Thompson B, Pugh S, Machas M, Nielsen DR. Muconic Acid Production via Alternative Pathways and a Synthetic "Metabolic Funnel". ACS Synth Biol 2018; 7:565-575. [PMID: 29053259 DOI: 10.1021/acssynbio.7b00331] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Muconic acid is a promising platform biochemical and precursor to adipic acid, which can be used to synthesize various plastics and polymers. In this study, the systematic construction and comparative evaluation of a modular network of non-natural pathways for muconic acid biosynthesis was investigated in Escherichia coli, including via three distinct and novel pathways proceeding via phenol as a common intermediate. However, poor recombinant activity and high promiscuity of phenol hydroxylase ultimately limited "phenol-dependent" muconic acid production. A fourth pathway proceeding via p-hydroxybenzoate, protocatechuate, and catechol was accordingly developed, though with muconic acid titers by this route reaching just 819 mg/L, its performance lagged behind that of the established, "3-dehydroshikimiate-derived" route. Finally, these two most promising pathways were coexpressed in parallel to create a synthetic "metabolic funnel" that, by enabling maximal net precursor assimilation and flux while preserving native chorismate biosynthesis, nearly doubled muconic acid production to up to >3.1 g/L at a glucose yield of 158 mg/g while introducing only a single auxotrophy. This generalizable, "funneling" strategy is expected to have broad applications in metabolic engineering for further enhancing production of muconic acid, as well as other important bioproducts of interest.
Collapse
Affiliation(s)
- Brian Thompson
- Chemical Engineering, School for Engineering
of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Shawn Pugh
- Chemical Engineering, School for Engineering
of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Michael Machas
- Chemical Engineering, School for Engineering
of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - David R. Nielsen
- Chemical Engineering, School for Engineering
of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
285
|
DeLorenzo DM, Rottinghaus AG, Henson WR, Moon TS. Molecular Toolkit for Gene Expression Control and Genome Modification in Rhodococcus opacus PD630. ACS Synth Biol 2018; 7:727-738. [PMID: 29366319 DOI: 10.1021/acssynbio.7b00416] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Rhodococcus opacus PD630 is a non-model Gram-positive bacterium that possesses desirable traits for lignocellulosic biomass conversion. In particular, it has a relatively rapid growth rate, exhibits genetic tractability, produces high quantities of lipids, and can tolerate and consume toxic lignin-derived aromatic compounds. Despite these unique, industrially relevant characteristics, R. opacus has been underutilized because of a lack of reliable genetic parts and engineering tools. In this work, we developed a molecular toolbox for reliable gene expression control and genome modification in R. opacus. To facilitate predictable gene expression, a constitutive promoter library spanning ∼45-fold in output was constructed. To improve the characterization of available plasmids, the copy numbers of four heterologous and nine endogenous plasmids were determined using quantitative PCR. The molecular toolbox was further expanded by screening a previously unreported antibiotic resistance marker (HygR) and constructing a curable plasmid backbone for temporary gene expression (pB264). Furthermore, a system for genome modification was devised, and three neutral integration sites were identified using a novel combination of transcriptomic data, genomic architecture, and growth rate analysis. Finally, the first reported system for targeted, tunable gene repression in Rhodococcus was developed by utilizing CRISPR interference (CRISPRi). Overall, this work greatly expands the ability to manipulate and engineer R. opacus, making it a viable new chassis for bioproduction from renewable feedstocks.
Collapse
Affiliation(s)
- Drew M. DeLorenzo
- Department of Energy, Environmental
and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Austin G. Rottinghaus
- Department of Energy, Environmental
and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - William R. Henson
- Department of Energy, Environmental
and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Tae Seok Moon
- Department of Energy, Environmental
and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
286
|
Santos WCC, Dias KA, Santos LP, Kisukuri CM, Rodrigues TS, Geonmonond RS, Camargo PHC, Andrade LH. Evaluating Gold and Selenium Chemistry for Selective Transformations of Lignin Model Compounds. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201701207] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Wagner C. C. Santos
- Institute of Chemistry; University of São Paulo; Av. Prof. Lineu Prestes, 748 05508-000 São Paulo, SP Brazil
| | - Kevin A. Dias
- Institute of Chemistry; University of São Paulo; Av. Prof. Lineu Prestes, 748 05508-000 São Paulo, SP Brazil
| | - Leidaiany P. Santos
- Institute of Chemistry; University of São Paulo; Av. Prof. Lineu Prestes, 748 05508-000 São Paulo, SP Brazil
| | - Camila M. Kisukuri
- Institute of Chemistry; University of São Paulo; Av. Prof. Lineu Prestes, 748 05508-000 São Paulo, SP Brazil
| | - Thenner S. Rodrigues
- Institute of Chemistry; University of São Paulo; Av. Prof. Lineu Prestes, 748 05508-000 São Paulo, SP Brazil
| | - Rafael S. Geonmonond
- Institute of Chemistry; University of São Paulo; Av. Prof. Lineu Prestes, 748 05508-000 São Paulo, SP Brazil
| | - Pedro H. C. Camargo
- Institute of Chemistry; University of São Paulo; Av. Prof. Lineu Prestes, 748 05508-000 São Paulo, SP Brazil
| | - Leandro H. Andrade
- Institute of Chemistry; University of São Paulo; Av. Prof. Lineu Prestes, 748 05508-000 São Paulo, SP Brazil
| |
Collapse
|
287
|
Cortes-Tolalpa L, Norder J, van Elsas JD, Falcao Salles J. Halotolerant microbial consortia able to degrade highly recalcitrant plant biomass substrate. Appl Microbiol Biotechnol 2018; 102:2913-2927. [PMID: 29397428 PMCID: PMC5847192 DOI: 10.1007/s00253-017-8714-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/29/2017] [Accepted: 12/11/2017] [Indexed: 12/30/2022]
Abstract
The microbial degradation of plant-derived compounds under salinity stress remains largely underexplored. The pretreatment of lignocellulose material, which is often needed to improve the production of lignocellulose monomers, leads to high salt levels, generating a saline environment that raises technical considerations that influence subsequent downstream processes. Here, we constructed halotolerant lignocellulose degrading microbial consortia by enriching a salt marsh soil microbiome on a recalcitrant carbon and energy source, i.e., wheat straw. The consortia were obtained after six cycles of growth on fresh substrate (adaptation phase), which was followed by four cycles on pre-digested (highly-recalcitrant) substrate (stabilization phase). The data indicated that typical salt-tolerant bacteria made up a large part of the selected consortia. These were “trained” to progressively perform better on fresh substrate, but a shift was observed when highly recalcitrant substrate was used. The most dominant bacteria in the consortia were Joostella marina, Flavobacterium beibuense, Algoriphagus ratkowskyi, Pseudomonas putida, and Halomonas meridiana. Interestingly, fungi were sparsely present and negatively affected by the change in the substrate composition. Sarocladium strictum was the single fungal strain recovered at the end of the adaptation phase, whereas it was deselected by the presence of recalcitrant substrate. Consortia selected in the latter substrate presented higher cellulose and lignin degradation than consortia selected on fresh substrate, indicating a specialization in transforming the recalcitrant regions of the substrate. Moreover, our results indicate that bacteria have a prime role in the degradation of recalcitrant lignocellulose under saline conditions, as compared to fungi. The final consortia constitute an interesting source of lignocellulolytic haloenzymes that can be used to increase the efficiency of the degradation process, while decreasing the associated costs.
Collapse
Affiliation(s)
- Larisa Cortes-Tolalpa
- Department of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands.
| | - Justin Norder
- Department of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Jan Dirk van Elsas
- Department of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Joana Falcao Salles
- Department of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
288
|
Zhou S, Herpoël‐Gimbert I, Grisel S, Sigoillot J, Sergent M, Raouche S. Biological wheat straw valorization: Multicriteria optimization of Polyporus brumalis pretreatment in packed bed bioreactor. Microbiologyopen 2018; 7:e00530. [PMID: 29076291 PMCID: PMC5822346 DOI: 10.1002/mbo3.530] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 07/13/2017] [Accepted: 07/18/2017] [Indexed: 12/15/2022] Open
Abstract
The purpose of this work was to optimize the pretreatment process of wheat straw by Polyporus brumalis_BRFM985 in order to improve carbohydrate accessibility for more efficient bioconversion. Indeed, there is growing demands to develop sustainable routes for lignocellulosic feedstocks valorization into value-added products in energy, chemicals, materials, and animal feed fields. To be achieved, implementation of cheap and ecofriendly biomass pretreatment processes is necessary. In this frame, white rot basidiomycetes, well known for their ability to degrade lignin efficiently and selectively, are of great interest. The pretreatment of wheat straw by Polyporus brumalis_BRFM985 was performed in packed bed bioreactor and optimized using response surface methodology. The four pretreatment parameters optimized were metals addition (Cu, Mn, and Fe), time of culture, initial water content, and temperature. Multicriteria optimization highlighted that wheat straw pretreatment by Polyporus brumalis_BRFM985 in the presence of metals with high initial water content of 3.6 g H2 O/g at 27°C for 15-16 days led to an improvement of carbohydrate accessibility with minimal matter loss.
Collapse
Affiliation(s)
- Simeng Zhou
- Aix‐Marseille UnivINRABBFBiodiversité et Biotechnologie FongiquesMarseilleFrance
| | | | - Sacha Grisel
- Aix‐Marseille UnivINRABBFBiodiversité et Biotechnologie FongiquesMarseilleFrance
| | | | - Michelle Sergent
- Aix‐Marseille UnivLISALaboratoire d'Instrumentations et Sciences AnalytiquesMarseilleFrance
| | - Sana Raouche
- Aix‐Marseille UnivINRABBFBiodiversité et Biotechnologie FongiquesMarseilleFrance
| |
Collapse
|
289
|
Pérez E, Tuck CO. Quantitative analysis of products from lignin depolymerisation in high-temperature water. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2017.11.053] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
290
|
Substrate-based differential expression analysis reveals control of biomass degrading enzymes in Pycnoporus cinnabarinus. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2017.11.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
291
|
Liu ZH, Xie S, Lin F, Jin M, Yuan JS. Combinatorial pretreatment and fermentation optimization enabled a record yield on lignin bioconversion. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:21. [PMID: 29422949 PMCID: PMC5787925 DOI: 10.1186/s13068-018-1021-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 01/11/2018] [Indexed: 05/23/2023]
Abstract
BACKGROUND Lignin valorization has recently been considered to be an essential process for sustainable and cost-effective biorefineries. Lignin represents a potential new feedstock for value-added products. Oleaginous bacteria such as Rhodococcus opacus can produce intracellular lipids from biodegradation of aromatic substrates. These lipids can be used for biofuel production, which can potentially replace petroleum-derived chemicals. However, the low reactivity of lignin produced from pretreatment and the underdeveloped fermentation technology hindered lignin bioconversion to lipids. In this study, combinatorial pretreatment with an optimized fermentation strategy was evaluated to improve lignin valorization into lipids using R. opacus PD630. RESULTS As opposed to single pretreatment, combinatorial pretreatment produced a 12.8-75.6% higher lipid concentration in fermentation using lignin as the carbon source. Gas chromatography-mass spectrometry analysis showed that combinatorial pretreatment released more aromatic monomers, which could be more readily utilized by lignin-degrading strains. Three detoxification strategies were used to remove potential inhibitors produced from pretreatment. After heating detoxification of the lignin stream, the lipid concentration further increased by 2.9-9.7%. Different fermentation strategies were evaluated in scale-up lipid fermentation using a 2.0-l fermenter. With laccase treatment of the lignin stream produced from combinatorial pretreatment, the highest cell dry weight and lipid concentration were 10.1 and 1.83 g/l, respectively, in fed-batch fermentation, with a total soluble substrate concentration of 40 g/l. The improvement of the lipid fermentation performance may have resulted from lignin depolymerization by the combinatorial pretreatment and laccase treatment, reduced inhibition effects by fed-batch fermentation, adequate oxygen supply, and an accurate pH control in the fermenter. CONCLUSIONS Overall, these results demonstrate that combinatorial pretreatment, together with fermentation optimization, favorably improves lipid production using lignin as the carbon source. Combinatorial pretreatment integrated with fed-batch fermentation was an effective strategy to improve the bioconversion of lignin into lipids, thus facilitating lignin valorization in biorefineries.
Collapse
Affiliation(s)
- Zhi-Hua Liu
- Synthetic and Systems Biology Innovation Hub (SSBiH), Texas A&M University, College Station, TX 77843 USA
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843 USA
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843 USA
| | - Shangxian Xie
- Synthetic and Systems Biology Innovation Hub (SSBiH), Texas A&M University, College Station, TX 77843 USA
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843 USA
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843 USA
| | - Furong Lin
- Synthetic and Systems Biology Innovation Hub (SSBiH), Texas A&M University, College Station, TX 77843 USA
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843 USA
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843 USA
| | - Mingjie Jin
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
- Guangdong Cleamol LTD, Foshan, 528225 China
| | - Joshua S. Yuan
- Synthetic and Systems Biology Innovation Hub (SSBiH), Texas A&M University, College Station, TX 77843 USA
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843 USA
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843 USA
| |
Collapse
|
292
|
Sun Z, Fridrich B, de Santi A, Elangovan S, Barta K. Bright Side of Lignin Depolymerization: Toward New Platform Chemicals. Chem Rev 2018; 118:614-678. [PMID: 29337543 PMCID: PMC5785760 DOI: 10.1021/acs.chemrev.7b00588] [Citation(s) in RCA: 824] [Impact Index Per Article: 117.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Indexed: 11/28/2022]
Abstract
Lignin, a major component of lignocellulose, is the largest source of aromatic building blocks on the planet and harbors great potential to serve as starting material for the production of biobased products. Despite the initial challenges associated with the robust and irregular structure of lignin, the valorization of this intriguing aromatic biopolymer has come a long way: recently, many creative strategies emerged that deliver defined products via catalytic or biocatalytic depolymerization in good yields. The purpose of this review is to provide insight into these novel approaches and the potential application of such emerging new structures for the synthesis of biobased polymers or pharmacologically active molecules. Existing strategies for functionalization or defunctionalization of lignin-based compounds are also summarized. Following the whole value chain from raw lignocellulose through depolymerization to application whenever possible, specific lignin-based compounds emerge that could be in the future considered as potential lignin-derived platform chemicals.
Collapse
Affiliation(s)
- Zhuohua Sun
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Bálint Fridrich
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Alessandra de Santi
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Saravanakumar Elangovan
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Katalin Barta
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
293
|
Tarmadi D, Tobimatsu Y, Yamamura M, Miyamoto T, Miyagawa Y, Umezawa T, Yoshimura T. NMR studies on lignocellulose deconstructions in the digestive system of the lower termite Coptotermes formosanus Shiraki. Sci Rep 2018; 8:1290. [PMID: 29358744 PMCID: PMC5778066 DOI: 10.1038/s41598-018-19562-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 01/03/2018] [Indexed: 11/09/2022] Open
Abstract
Termites represent one of the most efficient lignocellulose decomposers on earth. The mechanism by which termites overcome the recalcitrant lignin barrier to gain access to embedded polysaccharides for assimilation and energy remains largely unknown. In the present study, softwood, hardwood, and grass lignocellulose diets were fed to Coptotermes formosanus workers, and structural differences between the original lignocellulose diets and the resulting feces were examined by solution-state multidimensional nuclear magnetic resonance (NMR) techniques as well as by complementary wet-chemical methods. Overall, our data support the view that lignin polymers are partially decomposed during their passage through the termite gut digestive system, although polysaccharide decomposition clearly dominates the overall lignocellulose deconstruction process and the majority of lignin polymers remain intact in the digestive residues. High-resolution NMR structural data suggested preferential removal of syringyl aromatic units in hardwood lignins, but non-acylated guaiacyl units as well as tricin end-units in grass lignins. In addition, our data suggest that termites and/or their gut symbionts may favor degradation of C-C-bonded β-5 and resinol-type β-β lignin inter-monomeric units over degradation of ether-bonded β-O-4 units, which is in contrast to what has been observed in typical lignin biodegradation undertaken by wood-decaying fungi.
Collapse
Affiliation(s)
- Didi Tarmadi
- Research Institute for Sustainable Humanosphere (RISH), Kyoto University, Gokasho Uji, Kyoto, 611-0011, Japan.,Research Center for Biomaterials, Indonesian Institute of Sciences (LIPI), Jl. Raya Bogor KM.46, Cibinong, Bogor, West Java, 16911, Indonesia
| | - Yuki Tobimatsu
- Research Institute for Sustainable Humanosphere (RISH), Kyoto University, Gokasho Uji, Kyoto, 611-0011, Japan.
| | - Masaomi Yamamura
- Research Institute for Sustainable Humanosphere (RISH), Kyoto University, Gokasho Uji, Kyoto, 611-0011, Japan
| | - Takuji Miyamoto
- Research Institute for Sustainable Humanosphere (RISH), Kyoto University, Gokasho Uji, Kyoto, 611-0011, Japan
| | - Yasuyuki Miyagawa
- Research Institute for Sustainable Humanosphere (RISH), Kyoto University, Gokasho Uji, Kyoto, 611-0011, Japan
| | - Toshiaki Umezawa
- Research Institute for Sustainable Humanosphere (RISH), Kyoto University, Gokasho Uji, Kyoto, 611-0011, Japan.,Research Unit for Development and Global Sustainability, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Tsuyoshi Yoshimura
- Research Institute for Sustainable Humanosphere (RISH), Kyoto University, Gokasho Uji, Kyoto, 611-0011, Japan.
| |
Collapse
|
294
|
Li W, Amos K, Li M, Pu Y, Debolt S, Ragauskas AJ, Shi J. Fractionation and characterization of lignin streams from unique high-lignin content endocarp feedstocks. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:304. [PMID: 30455733 PMCID: PMC6222996 DOI: 10.1186/s13068-018-1305-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/27/2018] [Indexed: 05/02/2023]
Abstract
BACKGROUND Lignin is a promising source of building blocks for upgrading to valuable aromatic chemicals and materials. Endocarp biomass represents a non-edible crop residue in an existing agricultural setting which cannot be used as animal feed nor soil amendment. With significantly higher lignin content and bulk energy density, endocarps have significant advantages to be converted into both biofuel and bioproducts as compared to other biomass resources. Deep eutectic solvent (DES) is highly effective in fractionating lignin from a variety of biomass feedstocks with high yield and purity while at lower cost comparing to certain ionic liquids. RESULTS In the present study, the structural and compositional features of peach and walnut endocarp cells were characterized. Compared to typical woody and herbaceous biomass, endocarp biomass exhibits significantly higher bulk density and hardness due to its high cellular density. The sugar yields of DES (1:2 choline chloride: lactic acid) pretreated peach pit (Prunus persica) and walnut shell (Juglans nigra) were determined and the impacts of DES pretreatment on the physical and chemical properties of extracted lignin were characterized. Enzymatic saccharification of DES pretreated walnut and peach endocarps gave high glucose yields (over 90%); meanwhile, compared with dilute acid and alkaline pretreatment, DES pretreatment led to significantly higher lignin removal (64.3% and 70.2% for walnut and peach endocarps, respectively). The molecular weights of the extracted lignin from DES pretreated endocarp biomass were significantly reduced. 1H-13C HSQC NMR results demonstrate that the native endocarp lignins were SGH type lignins with dominant G-unit (86.7% and 80.5% for walnut and peach endocarps lignins, respectively). DES pretreatment decreased the S and H-unit while led to an increase in condensed G-units, which may contribute to a higher thermal stability of the isolated lignin. Nearly all β-O-4' and a large portion of β-5' linkages were removed during DES pretreatment. CONCLUSIONS The high lignin content endocarps have unique cell wall characteristics when compared to the other lignocellulosic biomass feedstocks. DES pretreatment was highly effective in fractionating high lignin content endocarps to produce both sugar and lignin streams while the DES extracted lignins underwent significant changes in SGH ratio, interunit linkages, and molecular sizes.
Collapse
Affiliation(s)
- Wenqi Li
- 1Biosystems and Agricultural Engineering, University of Kentucky, Lexington, KY 40506 USA
| | - Kirtley Amos
- 2Department of Horticulture, University of Kentucky, Lexington, KY 40506 USA
| | - Mi Li
- 3Joint Institute of Biological Science, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- 4Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996 USA
| | - Yunqiao Pu
- 3Joint Institute of Biological Science, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Seth Debolt
- 2Department of Horticulture, University of Kentucky, Lexington, KY 40506 USA
| | - Arthur J Ragauskas
- 3Joint Institute of Biological Science, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- 4Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996 USA
- 5Department of Forestry, Wildlife, and Fisheries, Center for Renewable Carbon, University of Tennessee Institute of Agriculture, Knoxville, TN 37996 USA
| | - Jian Shi
- 1Biosystems and Agricultural Engineering, University of Kentucky, Lexington, KY 40506 USA
| |
Collapse
|
295
|
Enabling the valorization of guaiacol-based lignin: Integrated chemical and biochemical production of cis,cis-muconic acid using metabolically engineered Amycolatopsis sp ATCC 39116. Metab Eng 2017; 45:200-210. [PMID: 29246517 DOI: 10.1016/j.ymben.2017.12.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 11/18/2017] [Accepted: 12/01/2017] [Indexed: 01/20/2023]
Abstract
Lignin is nature's second most abundant polymer and displays a largely unexploited renewable resource for value-added bio-production. None of the lignin-based fermentation processes so far managed to use guaiacol (2-methoxy phenol), the predominant aromatic monomer in depolymerized lignin. In this work, we describe metabolic engineering of Amycolatopsis sp. ATCC 39116 to produce cis,cis-muconic acid (MA), a precursor of recognized industrial value for commercial plastics, from guaiacol. The microbe utilized a very broad spectrum of lignin-based aromatics, such as catechol, guaiacol, phenol, toluene, p-coumarate, and benzoate, tolerated them in elevated amounts and even preferred them over sugars. As a next step, we developed a novel approach for genomic engineering of this challenging, GC-rich actinomycete. The successful introduction of conjugation and blue-white screening, using β-glucuronidase, enabled tailored genomic modifications within ten days. Successive deletion of two putative muconate cycloisomerases from the genome provided the mutant Amycolatopsis sp. ATCC 39116 MA-2, which accumulated 3.1gL-1 MA from guaiacol within 24h, achieving a yield of 96%. The mutant was found also capable to produce MA from a guaiacol-rich true lignin hydrolysate, obtained from pine through hydrothermal conversion. This provides an important proof-of-concept to successfully coupling chemical and biochemical process steps into a value chain from the lignin polymer to an industrial chemical. In addition, Amycolatopsis sp. ATCC 39116 MA-2 was able to produce 2-methyl MA from o-cresol (2-methyl phenol), which opens possibilities towards polymers with novel architecture and properties.
Collapse
|
296
|
Gilna P, Lynd LR, Mohnen D, Davis MF, Davison BH. Progress in understanding and overcoming biomass recalcitrance: a BioEnergy Science Center (BESC) perspective. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:285. [PMID: 29213324 PMCID: PMC5707806 DOI: 10.1186/s13068-017-0971-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 11/15/2017] [Indexed: 06/07/2023]
Abstract
The DOE BioEnergy Science Center has operated as a virtual center with multiple partners for a decade targeting overcoming biomass recalcitrance. BESC has redefined biomass recalcitrance from an observable phenotype to a better understood and manipulatable fundamental and operational property. These manipulations are the result of deeper biological understanding and can be combined with other advanced biotechnology improvements in biomass conversion to improve bioenergy processes and markets. This article provides an overview of key accomplishments in overcoming recalcitrance via better plants, better microbes, and better tools and combinations. A perspective on the aspects of successful center operation is presented.
Collapse
Affiliation(s)
- Paul Gilna
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Bldg. 1505, Rm. 100A, Oak Ridge, TN 37831-6037 USA
| | - Lee R. Lynd
- Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Bldg. 1505, Rm. 100A, Oak Ridge, TN 37831-6037 USA
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755 USA
| | - Debra Mohnen
- Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Bldg. 1505, Rm. 100A, Oak Ridge, TN 37831-6037 USA
- Complex Carbohydrate Research Center and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602 USA
| | - Mark F. Davis
- Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Bldg. 1505, Rm. 100A, Oak Ridge, TN 37831-6037 USA
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
| | - Brian H. Davison
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Bldg. 1505, Rm. 100A, Oak Ridge, TN 37831-6037 USA
| |
Collapse
|
297
|
Crawford EA, Gerbig S, Spengler B, Volmer DA. Rapid fingerprinting of lignin by ambient ionization high resolution mass spectrometry and simplified data mining. Anal Chim Acta 2017; 994:38-48. [DOI: 10.1016/j.aca.2017.09.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/31/2017] [Accepted: 09/03/2017] [Indexed: 01/31/2023]
|
298
|
Das L, Liu E, Saeed A, Williams DW, Hu H, Li C, Ray AE, Shi J. Industrial hemp as a potential bioenergy crop in comparison with kenaf, switchgrass and biomass sorghum. BIORESOURCE TECHNOLOGY 2017; 244:641-649. [PMID: 28810219 DOI: 10.1016/j.biortech.2017.08.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/02/2017] [Accepted: 08/03/2017] [Indexed: 05/17/2023]
Abstract
This study takes combined field trial, lab experiment, and economic analysis approaches to evaluate the potential of industrial hemp in comparison with kenaf, switchgrass and biomass sorghum. Agronomy data suggest that the per hectare yield (5437kg) of industrial hemp stem alone was at a similar level with switchgrass and sorghum; while the hemp plants require reduced inputs. Field trial also showed that ∼1230kg/ha hemp grain can be harvested in addition to stems. Results show a predicted ethanol yield of ∼82gallons/dry ton hemp stems, which is comparable to the other three tested feedstocks. A comparative cost analysis indicates that industrial hemp could generate higher per hectare gross profit than the other crops if both hemp grains and biofuels from hemp stem were counted. These combined evaluation results demonstrate that industrial hemp has great potential to become a promising regional commodity crop for producing both biofuels and value-added products.
Collapse
Affiliation(s)
- Lalitendu Das
- Biosystems and Agricultural Engineering Department, University of Kentucky, Lexington, KY 40546, United States
| | - Enshi Liu
- Biosystems and Agricultural Engineering Department, University of Kentucky, Lexington, KY 40546, United States
| | - Areej Saeed
- Biosystems and Agricultural Engineering Department, University of Kentucky, Lexington, KY 40546, United States
| | - David W Williams
- Plant and Soils Science Department, University of Kentucky, Lexington, KY 40546, United States; Robinson Center for Appalachian Resource Sustainability (RCARS), Jackson, KY 41339, United States
| | - Hongqiang Hu
- Energy and Environment Science and Technology, Idaho National Laboratory, Idaho Falls, ID 83415, United States
| | - Chenlin Li
- Energy and Environment Science and Technology, Idaho National Laboratory, Idaho Falls, ID 83415, United States
| | - Allison E Ray
- Energy and Environment Science and Technology, Idaho National Laboratory, Idaho Falls, ID 83415, United States
| | - Jian Shi
- Biosystems and Agricultural Engineering Department, University of Kentucky, Lexington, KY 40546, United States.
| |
Collapse
|
299
|
DeLorenzo DM, Henson WR, Moon TS. Development of Chemical and Metabolite Sensors for Rhodococcus opacus PD630. ACS Synth Biol 2017; 6:1973-1978. [PMID: 28745867 DOI: 10.1021/acssynbio.7b00192] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Rhodococcus opacus PD630 is a nonmodel, Gram-positive bacterium that possesses desirable traits for biomass conversion, including consumption capabilities for lignocellulose-based sugars and toxic lignin-derived aromatic compounds, significant triacylglycerol accumulation, relatively rapid growth rate, and genetic tractability. However, few genetic elements have been directly characterized in R. opacus, limiting its application for lignocellulose bioconversion. Here, we report the characterization and development of genetic tools for tunable gene expression in R. opacus, including: (1) six fluorescent reporters for quantifying promoter output, (2) three chemically inducible promoters for variable gene expression, and (3) two classes of metabolite sensors derived from native R. opacus promoters that detect nitrogen levels or aromatic compounds. Using these tools, we also provide insights into native aromatic consumption pathways in R. opacus. Overall, this work expands the ability to control and characterize gene expression in R. opacus for future lignocellulose-based fuel and chemical production.
Collapse
Affiliation(s)
- Drew M. DeLorenzo
- Department of Energy, Environmental
and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - William R. Henson
- Department of Energy, Environmental
and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Tae Seok Moon
- Department of Energy, Environmental
and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
300
|
Narron RH, Han Q, Park S, Chang HM, Jameel H. Lignocentric analysis of a carbohydrate-producing lignocellulosic biorefinery process. BIORESOURCE TECHNOLOGY 2017; 241:857-867. [PMID: 28629103 DOI: 10.1016/j.biortech.2017.05.207] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/30/2017] [Accepted: 05/31/2017] [Indexed: 05/27/2023]
Abstract
A biologically-based lignocellulosic biorefinery process for obtaining carbohydrates from raw biomass was investigated across six diverse biomasses (three hardwoods & three nonwoods) for the purpose of decoding lignin's influence on sugar production. Acknowledging that lignin could positively alter the economics of an entire process if valorized appropriately, we sought to correlate the chemical properties of lignin within the process to the traditional metrics associated with carbohydrate production-cellulolytic digestibility and total sugar recovery. Based on raw carbohydrate, enzymatic recovery ranged from 40 to 64% w/w and total recovery ranged from 70 to 87% w/w. Using nitrobenzene oxidation to quantify non-condensed lignin structures, it was found that raw hardwoods bearing increasing non-condensed S/V ratios (2.5-5.1) render increasing total carbohydrate recovery from hardwood biomasses. This finding indicates that the chemical structure of hardwood lignin influences the investigated biorefinery process' ability to generate carbohydrates from a given raw hardwood feedstock.
Collapse
Affiliation(s)
- Robert H Narron
- Department of Forest Biomaterials, North Carolina State University, 2820 Faucette Dr, Raleigh 27607, NC, United States
| | - Qiang Han
- Department of Forest Biomaterials, North Carolina State University, 2820 Faucette Dr, Raleigh 27607, NC, United States
| | - Sunkyu Park
- Department of Forest Biomaterials, North Carolina State University, 2820 Faucette Dr, Raleigh 27607, NC, United States
| | - Hou-Min Chang
- Department of Forest Biomaterials, North Carolina State University, 2820 Faucette Dr, Raleigh 27607, NC, United States
| | - Hasan Jameel
- Department of Forest Biomaterials, North Carolina State University, 2820 Faucette Dr, Raleigh 27607, NC, United States.
| |
Collapse
|