251
|
Head JR, Gacioch L, Pennisi M, Meyers JR. Activation of canonical Wnt/β-catenin signaling stimulates proliferation in neuromasts in the zebrafish posterior lateral line. Dev Dyn 2013; 242:832-46. [PMID: 23606225 DOI: 10.1002/dvdy.23973] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 03/22/2013] [Accepted: 03/23/2013] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND The posterior lateral line in zebrafish develops from a migrating primordium that deposits clusters of cells that differentiate into neuromasts at regular intervals along the trunk. The deposition of these neuromasts is known to be coordinated by Wnt and FGF signals that control the proliferation, migration, and organization of the primordium. However, little is known about the control of proliferation in the neuromasts following their deposition. RESULTS We show that pharmacological activation of the Wnt/β-catenin signaling pathway with 1-azakenpaullone upregulates proliferation in neuromasts post-deposition. This results in increased size of the neuromasts and overproduction of sensory hair cells. We also show that activation of Wnt signaling returns already quiescent supporting cells to a proliferative state in mature neuromasts. Additionally, activation of Wnt signaling increases the number of supporting cells that return to the cell cycle in response to hair cell damage and the number of regenerated hair cells. Finally, we show that inhibition of Wnt signaling by overexpression of dkk1b suppresses proliferation during both differentiation and regeneration. CONCLUSIONS These data suggest that Wnt/β-catenin signaling is both necessary and sufficient for the control of proliferation of lateral line progenitors during development, ongoing growth of the neuromasts, and hair cell regeneration.
Collapse
Affiliation(s)
- Jeffery R Head
- Neuroscience Program, Colgate University, Hamilton, New York, USA
| | | | | | | |
Collapse
|
252
|
Zhang J, Wei XL, Chen LP, Chen N, Li YH, Wang WM, Wang HL. Sequence analysis and expression differentiation of chemokine receptor CXCR4b among three populations of Megalobrama amblycephala. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 40:195-201. [PMID: 23403065 DOI: 10.1016/j.dci.2013.01.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 01/22/2013] [Accepted: 01/22/2013] [Indexed: 05/12/2023]
Abstract
Chemokine (C-X-C motif), receptor 4 (CXCR4), a member of the family of seven transmembrane G-protein-coupled receptors, plays important roles in immunomodulation, organogenesis, hematopoiesis, and derailed cerebellar neuron migration. We characterized the sequences and expression profiles of CXCR4b in Megalobrama amblycephala. The full-length cDNA was 1638bp, encoding 353 amino acid residues. Multiple alignment and phylogenetic analysis indicated that M. amblycephala CXCR4b contained the similar conservative sequences and motifs with other organisms. The CXCR4b expression in different development stages of M. amblycephala showed the mRNA levels before hatching and at 62h post fertilization (hpf) were significantly higher than at other post hatching stages (P<0.05). Besides, CXCR4b was constitutively expressed in a wide range of tissues, at higher levels in headkidney, liver, intestine spleen, blood and gill, where a larger number of immune cells including lymphocytes and macrophages reside, suggesting its specific roles in inflammatory responses. The CXCR4b expression after high nitrite concentration (ρNO(2-)-N: 20.29mg/L) exposure supported a potential pro-inflammatory function for CXCR4b. In order to identify the better population with immune property for breeding, we compared the tissue expression of CXCR4b among Liangzi Lake population (L), Yuni Lake population (Y) and Poyang Lake population (P), it was indicated that the expression levels in the population Y were obviously higher than that of the other two populations.
Collapse
Affiliation(s)
- Jie Zhang
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural University, 430070 Wuhan, PR China
| | | | | | | | | | | | | |
Collapse
|
253
|
Kwong RWM, Perry SF. Cortisol regulates epithelial permeability and sodium losses in zebrafish exposed to acidic water. J Endocrinol 2013; 217:253-64. [PMID: 23503775 DOI: 10.1530/joe-12-0574] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The effects of cortisol on epithelial permeability and sodium (Na(+)) handling during acid exposure were investigated in larval zebrafish (Danio rerio). The results demonstrated that the whole-body absorption of the paracellular permeability marker polyethylene glycol-4000 (PEG-4000) decreased with increasing levels of exogenous cortisol. Western blot analysis revealed that the abundance of the epithelial tight junction proteins occludin-a and claudin-b was increased after cortisol treatment. Furthermore, translational gene knockdown of claudin-b using an antisense morpholino oligonucleotide caused an increase in the permeability to PEG-4000, which was mitigated by cortisol treatment, further suggesting a role for cortisol in reducing paracellular permeability. Exposure to acidic water (pH 4.0 vs 7.6) caused an expected increase in the diffusive loss of Na(+) and a decrease in whole-body Na(+) levels. These disruptive effects of acute acid exposure on Na(+) balance were reduced by treatment of larvae with exogenous cortisol. Translational knockdown of the glucocorticoid receptor (GR) abolished the effects of cortisol on epithelial PEG permeability, suggesting that activation of GR was probably the major signaling pathway for reducing epithelial permeability. During acid exposure, the epithelial PEG permeability in the GR morphants was significantly higher than in the control fish. Additionally, GR morphants exhibited a more pronounced diffusive loss of Na(+) than the control fish during acid exposure. These findings suggest that cortisol may help to minimize the negative consequences of acid exposure on Na(+) homoeostasis via GR-mediated reductions in epithelial permeability and paracellular Na(+) loss.
Collapse
Affiliation(s)
- Raymond W M Kwong
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Ontario, Canada K1N 6N5.
| | | |
Collapse
|
254
|
Matsuda M, Nogare DD, Somers K, Martin K, Wang C, Chitnis AB. Lef1 regulates Dusp6 to influence neuromast formation and spacing in the zebrafish posterior lateral line primordium. Development 2013; 140:2387-97. [PMID: 23637337 DOI: 10.1242/dev.091348] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The posterior lateral line primordium (PLLp) migrates caudally and periodically deposits neuromasts. Coupled, but mutually inhibitory, Wnt-FGF signaling systems regulate proto-neuromast formation in the PLLp: FGF ligands expressed in response to Wnt signaling activate FGF receptors and initiate proto-neuromast formation. FGF receptor signaling, in turn, inhibits Wnt signaling. However, mechanisms that determine periodic neuromast formation and deposition in the PLLp remain poorly understood. Previous studies showed that neuromasts are deposited closer together and the PLLp terminates prematurely in lef1-deficient zebrafish embryos. It was suggested that this results from reduced proliferation in the leading domain of the PLLp and/or premature incorporation of progenitors into proto-neuromasts. We found that rspo3 knockdown reduces proliferation in a manner similar to that seen in lef1 morphants. However, it does not cause closer neuromast deposition or premature termination of the PLLp, suggesting that such changes in lef1-deficient embryos are not linked to changes in proliferation. Instead, we suggest that they are related to the role of Lef1 in regulating the balance of Wnt and FGF functions in the PLLp. Lef1 determines expression of the FGF signaling inhibitor Dusp6 in leading cells and regulates incorporation of cells into neuromasts; reduction of Dusp6 in leading cells in lef1-deficient embryos allows new proto-neuromasts to form closer to the leading edge. This is associated with progressively slower PLLp migration, reduced spacing between deposited neuromasts and premature termination of the PLLp system.
Collapse
Affiliation(s)
- Miho Matsuda
- Program in Genomics of Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20852, USA
| | | | | | | | | | | |
Collapse
|
255
|
Vass S, Heck MM. Perturbation of invadolysin disrupts cell migration in zebrafish (Danio rerio). Exp Cell Res 2013; 319:1198-212. [PMID: 23422038 PMCID: PMC3632754 DOI: 10.1016/j.yexcr.2013.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Revised: 01/30/2013] [Accepted: 02/02/2013] [Indexed: 11/03/2022]
Abstract
Invadolysin is an essential, conserved metalloprotease which links cell division with cell migration and is intriguingly associated with lipid droplets. In this work we examine the expression pattern, protein localisation and gross anatomical consequences of depleting invadolysin in the teleost Danio rerio. We observe that invadolysin plays a significant role in cell migration during development. When invadolysin is depleted by targeted morpholino injection, the appropriate deposition of neuromast clusters and distribution of melanophores are both disrupted. We also observe that blood vessels generated via angiogenesis are affected in invadolysin morphant fish while those formed by vasculogenesis appear normal, demonstrating an unanticipated role for invadolysin in vessel formation. Our results thus highlight a common feature shared by, and a requirement for invadolysin in, these distinct morphological events dependent on cell migration.
Collapse
Affiliation(s)
| | - Margarete M.S. Heck
- University of Edinburgh, Queen's Medical Research Institute, University/BHF Centre for Cardiovascular Science, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| |
Collapse
|
256
|
Jung JJ, Inamdar SM, Tiwari A, Ye D, Lin F, Choudhury A. Syntaxin 16 regulates lumen formation during epithelial morphogenesis. PLoS One 2013; 8:e61857. [PMID: 23626741 PMCID: PMC3633931 DOI: 10.1371/journal.pone.0061857] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 03/15/2013] [Indexed: 11/19/2022] Open
Abstract
The formation and maintenance of cell-cell junctions, both under physiological and pathological conditions, requires the targeting and trafficking of junctional proteins. Proteins of the syntaxin (Stx)-family localize to a variety of subcellular membranes and contribute to intracellular transport of cargo by regulating vesicle fusion events at these sites. Unlike plasma membrane localized Stxs, the roles of endosome- and Golgi-localized stx proteins in epithelial morphogenesis are less understood. Here we show that Stx16- an endosome- and Golgi-localized target-membrane soluble N-ethylmaleimide attachment protein receptor (t-SNARE) that plays a role in membrane trafficking between these compartments - is essential for lumen development. In cultured Madin Darby Canine Kidney (MDCK) cells, Stx16 was selectively upregulated as sparsely plated cells attained confluency. Stx16-depleted confluent monolayers consistently showed lower transepithelial resistance than control monolayers, and failed to maintain endogenous and ectopically expressed E-cadherin at the adherens junctions due to decreased recycling. We further found that whereas cysts formed by MDCK cells cultured in Matrigel have a single hollow lumen, those formed by stx16-depleted counterparts had multiple lumens, due to abnormal orientiation of the mitotic spindle. Finally, a similar role for stx16 function in vivo is indicated by our analysis of pronephric-duct development in zebrafish expressing the claudinB:lynGFP transgene; lack of stx16 function in this structure (in stx16-morphant embryos) led to the development of enlarged, torturous pronephric ducts with more than one lumen. Taken together, our in vitro and in vivo studies establish a role for Stx16 in maintaining the integrity of cell-cell junctions, and thereby in morphogenesis of the kidney epithelial lumen.
Collapse
Affiliation(s)
- Jae-Joon Jung
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Shivangi M. Inamdar
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Ajit Tiwari
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Ding Ye
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Fang Lin
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Amit Choudhury
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa, United States of America
- Orthopaedics and Rehabilitation, University of Iowa, Iowa City, Iowa, United States of America
| |
Collapse
|
257
|
Sulf1 modulates BMP signaling and is required for somite morphogenesis and development of the horizontal myoseptum. Dev Biol 2013; 378:107-21. [PMID: 23583585 DOI: 10.1016/j.ydbio.2013.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 03/22/2013] [Accepted: 04/02/2013] [Indexed: 12/11/2022]
Abstract
Heparan sulfate proteoglycans (HSPGs) are glycosylated extracellular or membrane-associated proteins. Their unbranched heparan sulfate (HS) disaccharide chains interact with many growth factors and receptors, modifying their activity or diffusion. The pattern of HS sulfation can be altered by the enzymes Sulf1 and Sulf2, secreted extracellular 6-O endosulfatases, which remove specific sulfate groups from HS. Modification by Sulf enzymes changes the binding affinity of HS for protein such as ligands and receptors, affecting growth factor gradients and activities. The precise expression of these sulfatases are thought to be necessary for normal development. We have examined the role of the sulf1 gene in trunk development of zebrafish embryos. sulf1 is expressed in the developing trunk musculature and as well as in midline structures such as the notochord, floorplate and hypochord. Knockdown of sulf1 with antisense morpholinos results in poor differentiation of the somitic trunk muscle, loss of the horizontal myoseptum, lack of pigmentation along the mediolateral stripe, and improper migration of the lateral line primordium. sulf1 knockdown results in a decrease in the number of Pax7-expressing dermomyotome cells, particularly along the midline where the horizontal myoseptum develops. It also leads to decreased sdf1/cxcl12 expression along the mediolateral trunk musculature. Both the Pax7 and cxcl12 expression can be restored by inhibition pharmacological inhibition of BMP signaling, which also restores formation of the myoseptum, fast muscle development, and pigmentation patterning. Lateral line migration and neuromast deposition depend on sdf1/cxcl12 and FGF signaling respectively, both of which are disrupted in sulf1 morphants. Pharmacological activation of FGF signaling can rescue the spacing of neuromast deposition in these fish. Together this data indicate that sulf1 plays a crucial role in modulating both BMP and FGF signaling along the developing myoseptum to coordinate the morphogenesis of trunk musculature, associated pigment cells, and lateral line neuromasts.
Collapse
|
258
|
Innervation is required for sense organ development in the lateral line system of adult zebrafish. Proc Natl Acad Sci U S A 2013; 110:5659-64. [PMID: 23509277 DOI: 10.1073/pnas.1214004110] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Superficial mechanosensory organs (neuromasts) distributed over the head and body of fishes and amphibians form the "lateral line" system. During zebrafish adulthood, each neuromast of the body (posterior lateral line system, or PLL) produces "accessory" neuromasts that remain tightly clustered, thereby increasing the total number of PLL neuromasts by a factor of more than 10. This expansion is achieved by a budding process and is accompanied by branches of the afferent nerve that innervates the founder neuromast. Here we show that innervation is essential for the budding process, in complete contrast with the development of the embryonic PLL, where innervation is entirely dispensable. To obtain insight into the molecular mechanisms that underlie the budding process, we focused on the terminal system that develops at the posterior tip of the body and on the caudal fin. In this subset of PLL neuromasts, bud neuromasts form in a reproducible sequence over a few days, much faster than for other PLL neuromasts. We show that wingless/int (Wnt) signaling takes place during, and is required for, the budding process. We also show that the Wnt activator R-spondin is expressed by the axons that innervate budding neuromasts. We propose that the axon triggers Wnt signaling, which itself is involved in the proliferative phase that leads to bud formation. Finally, we show that innervation is required not only for budding, but also for long-term maintenance of all PLL neuromasts.
Collapse
|
259
|
Quezada M, Alvarez M, Peña OA, Henríquez S, d' Alençon CA, Lange S, Oliva B, Owen GI, Allende ML. Antiangiogenic, antimigratory and antiinflammatory effects of 2-methoxyestradiol in zebrafish larvae. Comp Biochem Physiol C Toxicol Pharmacol 2013; 157:141-9. [PMID: 23142146 DOI: 10.1016/j.cbpc.2012.10.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Revised: 10/30/2012] [Accepted: 10/31/2012] [Indexed: 12/13/2022]
Abstract
2-Methoxyestradiol (2ME), an endogenous metabolite of 17β-estradiol, has been previously reported to possess antiangiogenic and antitumor properties. Herein, we demonstrate that the effects of this antiangiogenic steroid can be readily assayed in live zebrafish, introducing a convenient and robust new model system as a screening tool for both single cell and collective cell migration assays. Using the in vitro mammalian endothelial cell line EA.hy926, we first show that cell migration and angiogenesis, as estimated by wound assay and tube formation respectively, are antagonized by 2ME. In zebrafish (Danio rerio) larvae, dose-dependent exposure to 2ME diminishes (1) larval angiogenesis, (2) leukocyte recruitment to damaged lateral line neuromasts and (3) retards the lateral line primordium in its migration along the body. Our results indicate that 2ME has an effect on collective cell migration in vivo as well as previously reported anti-tumorigenic activity and suggests that the molecular mechanisms governing cell migration in a variety of contexts are conserved between fish and mammals. Moreover, we exemplify the versatility of the zebrafish larvae for testing diverse physiological processes and screening for antiangiogenic and antimigratory drugs in vivo.
Collapse
Affiliation(s)
- Marisol Quezada
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | | | | | | | | | |
Collapse
|
260
|
Kwong RWM, Perry SF. The tight junction protein claudin-b regulates epithelial permeability and sodium handling in larval zebrafish, Danio rerio. Am J Physiol Regul Integr Comp Physiol 2013; 304:R504-13. [PMID: 23364531 DOI: 10.1152/ajpregu.00385.2012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The functional role of the tight junction protein claudin-b in larval zebrafish (Danio rerio) was investigated. We showed that claudin-b protein is expressed at epithelial cell-cell contacts on the skin. Translational gene knockdown of claudin-b protein expression caused developmental defects, including edema in the pericardial cavity and yolk sac. Claudin-b morphants exhibited an increase in epithelial permeability to the paracellular marker polyethylene glycol (PEG-4000) and fluorescein isothiocyanate-dextran (FD-4). Accumulation of FD-4 was confined mainly to the yolk sac and pericardial cavity in the claudin-b morphants, suggesting these regions became particularly leaky in the absence of claudin-b expression. Additionally, Na(+) efflux was substantially increased in the claudin-b morphants, which contributed to a significant reduction in whole-body Na(+) levels. These results indicate that claudin-b normally acts as a paracellular barrier to Na(+). Nevertheless, the elevated loss of Na(+) in the morphants was compensated by an increase in Na(+) uptake. Notably, we observed that the increased Na(+) uptake in the morphants was attenuated in the presence of the selective Na(+)/Cl(-)-cotransporter (NCC) inhibitor metolazone, or during exposure to Cl(-)-free water. These results suggested that the increased Na(+) uptake in the morphants was, at least in part, mediated by NCC. Furthermore, treatment with an H(+)-ATPase inhibitor bafilomycin A1 was found to reduce Na(+) uptake in the morphants, suggesting that H(+)-ATPase activity was essential to provide a driving force for Na(+) uptake. Overall, the results suggest that claudin-b plays an important role in regulating epithelial permeability and Na(+) handling in zebrafish.
Collapse
Affiliation(s)
- Raymond W M Kwong
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Ontario, K1N 10 6N5 Canada.
| | | |
Collapse
|
261
|
Cell lineage analysis reveals three different progenitor pools for neurosensory elements in the otic vesicle. J Neurosci 2013; 32:16424-34. [PMID: 23152625 DOI: 10.1523/jneurosci.3686-12.2012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In the inner ear, sensory versus neuronal specification is achieved through few well-defined bHLH transcription factors. However, the molecular mechanisms regulating the generation of the appropriate cell type in the correct place and at the correct time are not completely understood yet. Various studies have shown that hair cell- and neuron-specifying genes partially overlap in the otic territory, suggesting that mutual interactions among these bHLH factors could direct the generation of the two cell types from a common neurosensory progenitor. Although there is little evidence for a clonal relationship between macular hair cells and sensory neurons, the existence of a single progenitor able to give both sensory and neuronal cell types remains an open question. Here, we identified a population of common neurosensory progenitors in the zebrafish inner ear and studied the proneural requirement for cell fate decision within this population. Expression analysis reveals that proneural genes for hair cells and neurons overlap within the posteromedial otic epithelium. Combined results from single-cell lineage and functional studies on neurog1 and neuroD1 further demonstrate the following: (1) in the anterior region of the ear, neuronal and sensory lineages have already segregated at the onset of proneural gene expression and are committed to a given fate very early; (2) in contrast, the posteromedial part of the ear harbors a population of common progenitors giving both neurons and hair cells until late stages; and finally (3) neuroD1 is required within this pool of bipotent progenitors to generate the hair cell fate.
Collapse
|
262
|
Bercier V, Brustein E, Liao M, Dion PA, Lafrenière RG, Rouleau GA, Drapeau P. WNK1/HSN2 mutation in human peripheral neuropathy deregulates KCC2 expression and posterior lateral line development in zebrafish (Danio rerio). PLoS Genet 2013; 9:e1003124. [PMID: 23300475 PMCID: PMC3536653 DOI: 10.1371/journal.pgen.1003124] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 10/13/2012] [Indexed: 12/05/2022] Open
Abstract
Hereditary sensory and autonomic neuropathy type 2 (HSNAII) is a rare pathology characterized by an early onset of severe sensory loss (all modalities) in the distal limbs. It is due to autosomal recessive mutations confined to exon "HSN2" of the WNK1 (with-no-lysine protein kinase 1) serine-threonine kinase. While this kinase is well studied in the kidneys, little is known about its role in the nervous system. We hypothesized that the truncating mutations present in the neural-specific HSN2 exon lead to a loss-of-function of the WNK1 kinase, impairing development of the peripheral sensory system. To investigate the mechanisms by which the loss of WNK1/HSN2 isoform function causes HSANII, we used the embryonic zebrafish model and observed strong expression of WNK1/HSN2 in neuromasts of the peripheral lateral line (PLL) system by immunohistochemistry. Knocking down wnk1/hsn2 in embryos using antisense morpholino oligonucleotides led to improper PLL development. We then investigated the reported interaction between the WNK1 kinase and neuronal potassium chloride cotransporter KCC2, as this transporter is a target of WNK1 phosphorylation. In situ hybridization revealed kcc2 expression in mature neuromasts of the PLL and semi-quantitative RT-PCR of wnk1/hsn2 knockdown embryos showed an increased expression of kcc2 mRNA. Furthermore, overexpression of human KCC2 mRNA in embryos replicated the wnk1/hsn2 knockdown phenotype. We validated these results by obtaining double knockdown embryos, both for wnk1/hsn2 and kcc2, which alleviated the PLL defects. Interestingly, overexpression of inactive mutant KCC2-C568A, which does not extrude ions, allowed a phenocopy of the PLL defects. These results suggest a pathway in which WNK1/HSN2 interacts with KCC2, producing a novel regulation of its transcription independent of KCC2's activation, where a loss-of-function mutation in WNK1 induces an overexpression of KCC2 and hinders proper peripheral sensory nerve development, a hallmark of HSANII.
Collapse
Affiliation(s)
- Valérie Bercier
- Department of Pathology and Cell Biology, Université de Montréal, Montréal, Québec, Canada
- Groupe de Recherche sur le Système Nerveux Central, Université de Montréal, Montréal, Québec, Canada
- Centre of Excellence in Neuroscience, Centre Hospitalier de l'Université de Montréal Research Center, Montréal, Québec, Canada
| | - Edna Brustein
- Department of Pathology and Cell Biology, Université de Montréal, Montréal, Québec, Canada
- Groupe de Recherche sur le Système Nerveux Central, Université de Montréal, Montréal, Québec, Canada
| | - Meijiang Liao
- Department of Pathology and Cell Biology, Université de Montréal, Montréal, Québec, Canada
- Groupe de Recherche sur le Système Nerveux Central, Université de Montréal, Montréal, Québec, Canada
| | - Patrick A. Dion
- Department of Pathology and Cell Biology, Université de Montréal, Montréal, Québec, Canada
- Centre of Excellence in Neuroscience, Centre Hospitalier de l'Université de Montréal Research Center, Montréal, Québec, Canada
| | - Ronald G. Lafrenière
- Centre of Excellence in Neuroscience, Centre Hospitalier de l'Université de Montréal Research Center, Montréal, Québec, Canada
| | - Guy A. Rouleau
- Centre of Excellence in Neuroscience, Centre Hospitalier de l'Université de Montréal Research Center, Montréal, Québec, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Pierre Drapeau
- Department of Pathology and Cell Biology, Université de Montréal, Montréal, Québec, Canada
- Groupe de Recherche sur le Système Nerveux Central, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
263
|
Schüler S, Hauptmann J, Perner B, Kessels MM, Englert C, Qualmann B. Ciliated sensory hair cell formation and function require the F-BAR protein syndapin I and the WH2 domain-based actin nucleator Cobl. J Cell Sci 2012. [PMID: 23203810 DOI: 10.1242/jcs.111674] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
During development, general body plan information must be translated into distinct morphologies of individual cells. Shaping cells is thought to involve cortical cytoskeletal components and Bin-Amphiphysin-Rvs167 (BAR) superfamily proteins. We therefore conducted comprehensive side-by-side loss-of-function studies of zebrafish orthologs of the F-BAR protein syndapin I and the actin nucleator Cobl. Zebrafish syndapin I associates with Cobl. The loss-of-function phenotypes of these proteins were remarkably similar and suggested a common function. Both cobl- and syndapin I-morphant fish showed severe swimming and balance-keeping defects, reflecting an impaired organization and function of the lateral line organ. Their lateral line organs lacked several neuromasts and showed an impaired functionality of the sensory hair cells within the neuromasts. Scanning electron microscopy revealed that sensory hair cells of both cobl- and syndapin I-morphant animals showed defects in the formation of both microtubule-dependent kinocilia and F-actin-rich stereocilia. Consistent with the kinocilia defects in sensory hair cells, body length was shortened and the development of body laterality, a process depending on motile cilia, was also impaired. Interestingly, Cobl and syndapin I both localized to the base of forming cilia. Rescue experiments demonstrated that proper formation of ciliated sensory hair cell rosettes relied on Cobl's syndapin I-binding Cobl homology domain, the actin-nucleating C-terminus of Cobl and the membrane curvature-inducing F-BAR domain of syndapin I. Our data thus suggest that the formation of distinct types of ciliary structures relies on membrane topology-modulating mechanisms that are based on F-BAR domain functions and on complex formation of syndapin I with the actin nucleator Cobl.
Collapse
Affiliation(s)
- Susann Schüler
- Institute of Biochemistry I, Jena University Hospital/Friedrich-Schiller-University Jena, 07743 Jena, Germany
| | | | | | | | | | | |
Collapse
|
264
|
Sánchez-Martín L, Sánchez-Mateos P, Cabañas C. CXCR7 impact on CXCL12 biology and disease. Trends Mol Med 2012; 19:12-22. [PMID: 23153575 DOI: 10.1016/j.molmed.2012.10.004] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 09/20/2012] [Accepted: 10/11/2012] [Indexed: 12/14/2022]
Abstract
It is known that the chemokine receptor CXCR7 (RDC1) can be engaged by both chemokines CXCL12 (SDF-1) and CXCL11 (I-TAC), but the exact expression pattern and function of CXCR7 is controversial. CXCR7 expression seems to be enhanced during pathological inflammation and tumor development, and emerging data suggest this receptor is an attractive therapeutic target for autoimmune diseases and cancer. CXCR7/CXCR4 heterodimerization, β-arrestin-mediated signaling, and modulation of CXCL12 responsiveness by CXCR7 suggest that the monogamous CXCR4/CXCL12 signaling axis is an oversimplified model that needs to be revisited. Consequently, research into CXCR7 biology is of great interest and further studies are warranted. This review summarizes recent findings about the CXCR7 receptor and analyses its impact on understanding the roles of CXCL12 biology in health and disease.
Collapse
Affiliation(s)
- Lorena Sánchez-Martín
- Departamento de Biología Celular e Inmunología, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid 28049, Spain.
| | | | | |
Collapse
|
265
|
Ernst S, Liu K, Agarwala S, Moratscheck N, Avci ME, Dalle Nogare D, Chitnis AB, Ronneberger O, Lecaudey V. Shroom3 is required downstream of FGF signalling to mediate proneuromast assembly in zebrafish. Development 2012; 139:4571-81. [PMID: 23136387 DOI: 10.1242/dev.083253] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
During development, morphogenetic processes require a precise coordination of cell differentiation, cell shape changes and, often, cell migration. Yet, how pattern information is used to orchestrate these different processes is still unclear. During lateral line (LL) morphogenesis, a group of cells simultaneously migrate and assemble radially organized cell clusters, termed rosettes, that prefigure LL sensory organs. This process is controlled by Fibroblast growth factor (FGF) signalling, which induces cell fate changes, cell migration and cell shape changes. However, the exact molecular mechanisms induced by FGF activation that mediate these changes on a cellular level are not known. Here, we focus on the mechanisms by which FGFs control apical constriction and rosette assembly. We show that apical constriction in the LL primordium requires the activity of non-muscle myosin. We demonstrate further that shroom3, a well-known regulator of non-muscle myosin activity, is expressed in the LL primordium and that its expression requires FGF signalling. Using gain- and loss-of-function experiments, we demonstrate that Shroom3 is the main organizer of cell shape changes during rosette assembly, probably by coordinating Rho kinase recruitment and non-muscle myosin activation. In order to quantify morphogenesis in the LL primordium in an unbiased manner, we developed a unique trainable 'rosette detector'. We thus propose a model in which Shroom3 drives rosette assembly in the LL downstream of FGF in a Rho kinase- and non-muscle myosin-dependent manner. In conclusion, we uncovered the first mechanistic link between patterning and morphogenesis during LL sensory organ formation.
Collapse
Affiliation(s)
- Sandra Ernst
- Centre for Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, D-79104 Freiburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
266
|
The stat3/socs3a pathway is a key regulator of hair cell regeneration in zebrafish. [corrected]. J Neurosci 2012; 32:10662-73. [PMID: 22855815 DOI: 10.1523/jneurosci.5785-10.2012] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
All nonmammalian vertebrates studied can regenerate inner ear mechanosensory receptors (i.e., hair cells) (Corwin and Cotanche, 1988; Lombarte et al., 1993; Baird et al., 1996), but mammals possess only a very limited capacity for regeneration after birth (Roberson and Rubel, 1994). As a result, mammals experience permanent deficiencies in hearing and balance once their inner ear hair cells are lost. The mechanisms of hair cell regeneration are poorly understood. Because the inner ear sensory epithelium is highly conserved in all vertebrates (Fritzsch et al., 2007), we chose to study hair cell regeneration mechanism in adult zebrafish, hoping the results would be transferrable to inducing hair cell regeneration in mammals. We defined the comprehensive network of genes involved in hair cell regeneration in the inner ear of adult zebrafish with the powerful transcriptional profiling technique digital gene expression, which leverages the power of next-generation sequencing ('t Hoen et al., 2008). We also identified a key pathway, stat3/socs3, and demonstrated its role in promoting hair cell regeneration through stem cell activation, cell division, and differentiation. In addition, transient pharmacological inhibition of stat3 signaling accelerated hair cell regeneration without overproducing cells. Taking other published datasets into account (Sano et al., 1999; Schebesta et al., 2006; Dierssen et al., 2008; Riehle et al., 2008; Zhu et al., 2008; Qin et al., 2009), we propose that the stat3/socs3 pathway is a key response in all tissue regeneration and thus an important therapeutic target for a broad application in tissue repair and injury healing.
Collapse
|
267
|
Rørth P. Fellow travellers: emergent properties of collective cell migration. EMBO Rep 2012; 13:984-91. [PMID: 23059978 DOI: 10.1038/embor.2012.149] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 09/20/2012] [Indexed: 11/09/2022] Open
Abstract
Cells can migrate individually or collectively. Collective movement is common during normal development and is also a characteristic of some cancers. This review discusses recent insights into features that are unique to collective cell migration, as well as properties that emerge from these features. The first feature is that cells of the collective affect each other through adhesion, force-dependent and signalling interactions. The second feature is that cells of the collective differ from one another: leaders from followers, tip from stalk and front from back. These are dynamic differences that are important for directional movement. Last, an unexpected property is discussed: epithelial cells can rotate persistently in constrained spaces.
Collapse
Affiliation(s)
- Pernille Rørth
- Institute of Molecular & Cell Biology, 61 Biopolis Drive, Singapore 138673, and Department of Biological Sciences, The National University of Singapore, Singapore 117604.
| |
Collapse
|
268
|
A mutation in the Srrm4 gene causes alternative splicing defects and deafness in the Bronx waltzer mouse. PLoS Genet 2012; 8:e1002966. [PMID: 23055939 PMCID: PMC3464207 DOI: 10.1371/journal.pgen.1002966] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Accepted: 08/08/2012] [Indexed: 11/19/2022] Open
Abstract
Sensory hair cells are essential for hearing and balance. Their development from epithelial precursors has been extensively characterized with respect to transcriptional regulation, but not in terms of posttranscriptional influences. Here we report on the identification and functional characterization of an alternative-splicing regulator whose inactivation is responsible for defective hair-cell development, deafness, and impaired balance in the spontaneous mutant Bronx waltzer (bv) mouse. We used positional cloning and transgenic rescue to locate the bv mutation to the splicing factor-encoding gene Ser/Arg repetitive matrix 4 (Srrm4). Transcriptome-wide analysis of pre–mRNA splicing in the sensory patches of embryonic inner ears revealed that specific alternative exons were skipped at abnormally high rates in the bv mice. Minigene experiments in a heterologous expression system confirmed that these skipped exons require Srrm4 for inclusion into the mature mRNA. Sequence analysis and mutagenesis experiments showed that the affected transcripts share a novel motif that is necessary for the Srrm4-dependent alternative splicing. Functional annotations and protein–protein interaction data indicated that the encoded proteins cluster in the secretion and neurotransmission pathways. In addition, the splicing of a few transcriptional regulators was found to be Srrm4 dependent, and several of the genes known to be targeted by these regulators were expressed at reduced levels in the bv mice. Although Srrm4 expression was detected in neural tissues as well as hair cells, analyses of the bv mouse cerebellum and neocortex failed to detect splicing defects. Our data suggest that Srrm4 function is critical in the hearing and balance organs, but not in all neural tissues. Srrm4 is the first alternative-splicing regulator to be associated with hearing, and the analysis of bv mice provides exon-level insights into hair-cell development. The identification of novel deafness-causing mutations has been instrumental in revealing unexpected mechanisms that are required for development of the sound- and gravity-sensing hair cells of the inner ear. The Bronx waltzer (bv) mouse is characterized by defects in hair-cell development, as well as by deafness and impaired balance. Here, we report on our identification of a mutation in the Ser/Arg repetitive matrix 4 (Srrm4) gene as the source of these defects. The encoded protein, Srrm4, belongs to a family of RNA splicing factors that regulate the inclusion of certain genetic information (i.e. alternative exons) into the transcribed RNA. We analyzed the molecular function of Srrm4 by comparing the exon composition of RNAs in the inner ear of bv and control mice. This approach revealed that, in the bv mice, specific alternative exons were omitted from protein-encoding RNAs. The affected transcripts shared two features: they contained a short sequence motif that was required for Srrm4-dependent splicing, and they encoded proteins that were related predominantly to secretion and neurotransmission. In addition, RNAs of a few gene expression regulators contained Srrm4-regulated exons. Our data suggest that Srrm4-dependent alternative splicing has a profound effect on the developmental program of hair cells.
Collapse
|
269
|
Itou J, Oishi I, Kawakami H, Glass TJ, Richter J, Johnson A, Lund TC, Kawakami Y. Migration of cardiomyocytes is essential for heart regeneration in zebrafish. Development 2012; 139:4133-42. [PMID: 23034636 DOI: 10.1242/dev.079756] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Adult zebrafish possess a significant ability to regenerate injured heart tissue through proliferation of pre-existing cardiomyocytes, which contrasts with the inability of mammals to do so after the immediate postnatal period. Zebrafish therefore provide a model system in which to study how an injured heart can be repaired. However, it remains unknown what important processes cardiomyocytes are involved in other than partial de-differentiation and proliferation. Here we show that migration of cardiomyocytes to the injury site is essential for heart regeneration. Ventricular amputation induced expression of cxcl12a and cxcr4b, genes encoding a chemokine ligand and its receptor. We found that cxcl12a was expressed in the epicardial tissue and that Cxcr4 was expressed in cardiomyocytes. We show that pharmacological blocking of Cxcr4 function as well as genetic loss of cxcr4b function causes failure to regenerate the heart after ventricular resection. Cardiomyocyte proliferation was not affected but a large portion of proliferating cardiomyocytes remained localized outside the injury site. A photoconvertible fluorescent reporter-based cardiomyocyte-tracing assay demonstrates that cardiomyocytes migrated into the injury site in control hearts but that migration was inhibited in the Cxcr4-blocked hearts. By contrast, the epicardial cells and vascular endothelial cells were not affected by blocking Cxcr4 function. Our data show that the migration of cardiomyocytes into the injury site is regulated independently of proliferation, and that coordination of both processes is necessary for heart regeneration.
Collapse
Affiliation(s)
- Junji Itou
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | |
Collapse
|
270
|
Torregroza I, Holtzinger A, Mendelson K, Liu TC, Hla T, Evans T. Regulation of a vascular plexus by gata4 is mediated in zebrafish through the chemokine sdf1a. PLoS One 2012; 7:e46844. [PMID: 23056483 PMCID: PMC3463525 DOI: 10.1371/journal.pone.0046844] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 09/10/2012] [Indexed: 01/08/2023] Open
Abstract
Using the zebrafish model we describe a previously unrecognized requirement for the transcription factor gata4 controlling embryonic angiogenesis. The development of a vascular plexus in the embryonic tail, the caudal hematopoietic tissue (CHT), fails in embryos depleted of gata4. Rather than forming a normal vascular plexus, the CHT of gata4 morphants remains fused, and cells in the CHT express high levels of osteogenic markers ssp1 and runx1. Definitive progenitors emerge from the hemogenic aortic endothelium, but fail to colonize the poorly vascularized CHT. We also found abnormal patterns and levels for the chemokine sdf1a in gata4 morphants, which was found to be functionally relevant, since the embryos also show defects in development of the lateral line, a mechano-sensory organ system highly dependent on a gradient of sdf1a levels. Reduction of sdf1a levels was sufficient to rescue lateral line development, circulation, and CHT morphology. The result was surprising since neither gata4 nor sdf1a is obviously expressed in the CHT. Therefore, we generated transgenic fish that conditionally express a dominant-negative gata4 isoform, and determined that gata4 function is required during gastrulation, when it is co-expressed with sdf1a in lateral mesoderm. Our study shows that the gata4 gene regulates sdf1a levels during early embryogenesis, which impacts embryonic patterning and subsequently the development of the caudal vascular plexus.
Collapse
Affiliation(s)
- Ingrid Torregroza
- Department of Surgery, Weill Cornell Medical College, New York, New York, United States of America
| | - Audrey Holtzinger
- Department of Surgery, Weill Cornell Medical College, New York, New York, United States of America
| | - Karen Mendelson
- Department of Surgery, Weill Cornell Medical College, New York, New York, United States of America
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Ting-Chun Liu
- Department of Surgery, Weill Cornell Medical College, New York, New York, United States of America
| | - Timothy Hla
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Todd Evans
- Department of Surgery, Weill Cornell Medical College, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
271
|
Abstract
Cell migration is fundamental to establishing and maintaining the proper organization of multicellular organisms. Morphogenesis can be viewed as a consequence, in part, of cell locomotion, from large-scale migrations of epithelial sheets during gastrulation, to the movement of individual cells during development of the nervous system. In an adult organism, cell migration is essential for proper immune response, wound repair, and tissue homeostasis, while aberrant cell migration is found in various pathologies. Indeed, as our knowledge of migration increases, we can look forward to, for example, abating the spread of highly malignant cancer cells, retarding the invasion of white cells in the inflammatory process, or enhancing the healing of wounds. This article is organized in two main sections. The first section is devoted to the single-cell migrating in isolation such as occurs when leukocytes migrate during the immune response or when fibroblasts squeeze through connective tissue. The second section is devoted to cells collectively migrating as part of multicellular clusters or sheets. This second type of migration is prevalent in development, wound healing, and in some forms of cancer metastasis.
Collapse
Affiliation(s)
- Xavier Trepat
- Institute for Bioengineering of Catalonia, Barcelona, Spain.
| | | | | |
Collapse
|
272
|
Dynamic expression profiles of virus-responsive and putative antimicrobial peptide-encoding transcripts during Atlantic cod (Gadus morhua) embryonic and early larval development. Gene 2012; 509:232-46. [PMID: 22925828 DOI: 10.1016/j.gene.2012.08.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 08/01/2012] [Accepted: 08/13/2012] [Indexed: 02/06/2023]
Abstract
Early life stage mortality is one of the problems faced by Atlantic cod aquaculture. However, our understanding of immunity in early life stage fish is still incomplete, and the information available is restricted to a few species. In the present work we investigated the expression of immune-relevant transcripts in Atlantic cod during early development. The transcripts subjected to QPCR analysis in the present study were previously identified as putative anti-viral or anti-bacterial genes in Atlantic cod using suppression subtractive hybridization (SSH) libraries, QPCR, and/or microarrays. Of the 11 genes involved in this study, only atf3, cxc chemokine and gaduscidin-1 were not detected at the transcript level in all developmental stages investigated from unfertilized egg to early larval stage. Adam22, hamp, il8, irf1, irf7, lgp2, sacsin, and stat1 transcripts were detected in unfertilized egg and 7h post-fertilization (~2-cell stage) embryos, showing maternal contribution of these immune-relevant transcripts to the early embryonic transcriptome. The Atlantic cod genes included in this study presented diverse transcript expression profiles throughout embryonic and early larval development. For example, adam22 and sacsin transcripts rose abruptly during blastula/gastrula stage and were then expressed at relatively high levels through subsequent embryonic and early larval developmental stages. A peak in irf1 and irf7 transcript expression during early segmentation suggests that these interferon pathway genes play developmental stage-specific roles during cod embryogenesis. Stat1 had increasing transcript expression throughout blastula/gastrula, segmentation, and early larval developmental stages. Atf3, cxc chemokine, gaduscidin-1, and il8 transcripts rose approximately 2-3 fold during hatching, supporting the hypothesis that there is preparation at the immune-relevant transcript expression level to deal with environmental pathogens that may be encountered during early larval development. The specific roles that interferon pathway and other immune-relevant genes play in early life stage cod, and the potential impact of their dynamic transcript expression on immune competence of Atlantic cod embryos and larvae, remain unclear and warrant further study.
Collapse
|
273
|
Breau MA, Wilson D, Wilkinson DG, Xu Q. Chemokine and Fgf signalling act as opposing guidance cues in formation of the lateral line primordium. Development 2012; 139:2246-53. [PMID: 22619392 DOI: 10.1242/dev.080275] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The directional migration of many cell populations occurs as a coherent group. An amenable model is provided by the posterior lateral line in zebrafish, which is formed by a cohesive primordium that migrates from head to tail and deposits future neuromasts at intervals. We found that prior to the onset of migration, the compact state of the primordium is not fully established, as isolated cells with lateral line identity are present caudal to the main primordium. These isolated cells are retained in position such that they fuse with the migrating primordium as it advances, and later contribute to the leading zone and terminal neuromasts. We found that the isolated lateral line cells are positioned by two antagonistic cues: Fgf signalling attracts them towards the primordium, which counteracts Sdf1α/Cxcr4b-mediated caudal attraction. These findings reveal a novel chemotactic role for Fgf signalling in which it enables the coalescence of the lateral line primordium from an initial fuzzy pattern into a compact group of migrating cells.
Collapse
Affiliation(s)
- Marie A Breau
- Division of Developmental Neurobiology, MRC National Institute for Medical Research, London NW7 1AA, UK
| | | | | | | |
Collapse
|
274
|
González-Rosa JM, Peralta M, Mercader N. Pan-epicardial lineage tracing reveals that epicardium derived cells give rise to myofibroblasts and perivascular cells during zebrafish heart regeneration. Dev Biol 2012; 370:173-86. [PMID: 22877945 DOI: 10.1016/j.ydbio.2012.07.007] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 06/27/2012] [Accepted: 07/10/2012] [Indexed: 01/09/2023]
Abstract
Myocardial infarction (MI) leads to a severe loss of cardiomyocytes, which in mammals are replaced by scar tissue. Epicardial derived cells (EPDCs) have been reported to differentiate into cardiomyocytes during development, and proposed to have cardiomyogenic potential in the adult heart. However, mouse MI models reveal little if any contribution of EPDCs to myocardium. In contrast to adult mammals, teleosts possess a high myocardial regenerative capacity. To test if this advantage relates to the properties of their epicardium, we studied the fate of EPDCs in cryoinjured zebrafish hearts. To avoid the limitations of genetic labelling, which might trace only a subpopulation of EPDCs, we used cell transplantation to track all EPDCs during regeneration. EPDCs migrated to the injured myocardium, where they differentiated into myofibroblasts and perivascular fibroblasts. However, we did not detect any differentiation of EPDCs nor any other non-cardiomyocyte population into cardiomyocytes, even in a context of impaired cardiomyocyte proliferation. Our results support a model in which the epicardium promotes myocardial regeneration by forming a cellular scaffold, and suggests that it might induce cardiomyocyte proliferation and contribute to neoangiogenesis in a paracrine manner.
Collapse
Affiliation(s)
- Juan Manuel González-Rosa
- Department of Cardiovascular Development and Repair, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Calle Melchor Fernández Almagro 3, E-28029 Madrid, Spain
| | | | | |
Collapse
|
275
|
Kwong RWM, Kumai Y, Perry SF. Evidence for a role of tight junctions in regulating sodium permeability in zebrafish (Danio rerio) acclimated to ion-poor water. J Comp Physiol B 2012; 183:203-13. [PMID: 22843140 DOI: 10.1007/s00360-012-0700-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Revised: 07/07/2012] [Accepted: 07/14/2012] [Indexed: 11/29/2022]
Abstract
Freshwater teleosts are challenged by diffusive ion loss across permeable epithelia including gills and skin. Although the mechanisms regulating ion loss are poorly understood, a significant component is thought to involve paracellular efflux through pathways formed via tight junction proteins. The mammalian orthologue (claudin-4) of zebrafish (Danio rerio) tight junction protein, claudin-b, has been proposed to form a cation-selective barrier regulating the paracellular loss of Na(+). The present study investigated the cellular localization and regulation of claudin-b, as well as its potential contribution to Na(+) homeostasis in adult zebrafish acclimated to ion-poor water. Using a green fluorescent protein-expressing line of transgenic zebrafish, we found that claudin-b was expressed along the lamellar epithelium as well as on the filament in the inter-lamellar regions. Co-localization of claudin-b and Na(+)/K(+)-ATPase was observed, suggesting its interaction with mitochondrion-rich cells. Claudin-b also appeared to be associated with other cell types, including the pavement cells. In the kidney, claudin-b was expressed predominantly in the collecting tubules. In addition, exposure to ion-poor water caused a significant increase in claudin-b abundance as well as a decrease in Na(+) efflux, suggesting a possible role for claudin-b in regulating paracellular Na(+) loss. Interestingly, the whole-body uptake of a paracellular permeability marker, polyethylene glycol-400, increased significantly after prolonged exposure to ion-poor water, indicating that an increase in epithelial permeability is not necessarily coupled with an increase in passive Na(+) loss. Overall, our study suggests that in ion-poor conditions, claudin-b may contribute to a selective reduction in passive Na(+) loss in zebrafish.
Collapse
|
276
|
Harding MJ, Nechiporuk AV. Fgfr-Ras-MAPK signaling is required for apical constriction via apical positioning of Rho-associated kinase during mechanosensory organ formation. Development 2012; 139:3130-5. [PMID: 22833124 DOI: 10.1242/dev.082271] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Many morphogenetic movements during development require the formation of transient intermediates called rosettes. Within rosettes, cells are polarized with apical ends constricted towards the rosette center and nuclei basally displaced. Whereas the polarity and cytoskeletal machinery establishing these structures has been extensively studied, the extracellular cues and intracellular signaling cascades that promote their formation are not well understood. We examined how extracellular Fibroblast growth factor (Fgf) signals regulate rosette formation in the zebrafish posterior lateral line primordium (pLLp), a group of ∼100 cells that migrates along the trunk during embryonic development to form the lateral line mechanosensory system. During migration, the pLLp deposits rosettes from the trailing edge, while cells are polarized and incorporated into nascent rosettes in the leading region. Fgf signaling was previously shown to be crucial for rosette formation in the pLLp. We demonstrate that activation of Fgf receptor (Fgfr) induces intracellular Ras-MAPK, which is required for apical constriction and rosette formation in the pLLp. Inhibiting Fgfr-Ras-MAPK leads to loss of apically localized Rho-associated kinase (Rock) 2a, which results in failed actomyosin cytoskeleton activation. Using mosaic analyses, we show that a cell-autonomous Ras-MAPK signal is required for apical constriction and Rock2a localization. We propose a model whereby activated Fgfr signals through Ras-MAPK to induce apical localization of Rock2a in a cell-autonomous manner, activating the actomyosin network to promote apical constriction and rosette formation in the pLLp. This mechanism presents a novel cellular strategy for driving cell shape changes.
Collapse
Affiliation(s)
- Molly J Harding
- Department of Cell and Developmental Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | | |
Collapse
|
277
|
Wittmann C, Reischl M, Shah AH, Mikut R, Liebel U, Grabher C. Facilitating drug discovery: an automated high-content inflammation assay in zebrafish. J Vis Exp 2012:e4203. [PMID: 22825322 PMCID: PMC3476412 DOI: 10.3791/4203] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Zebrafish larvae are particularly amenable to whole animal small molecule screens1,2 due to their small size and relative ease of manipulation and observation, as well as the fact that compounds can simply be added to the bathing water and are readily absorbed when administered in a <1% DMSO solution. Due to the optical clarity of zebrafish larvae and the availability of transgenic lines expressing fluorescent proteins in leukocytes, zebrafish offer the unique advantage of monitoring an acute inflammatory response in vivo. Consequently, utilizing the zebrafish for high-content small molecule screens aiming at the identification of immune-modulatory compounds with high throughput has been proposed3-6, suggesting inflammation induction scenarios e.g. localized nicks in fin tissue, laser damage directed to the yolk surface of embryos7 or tailfin amputation3,5,6. The major drawback of these methods however was the requirement of manual larva manipulation to induce wounding, thus preventing high-throughput screening. Introduction of the chemically induced inflammation (ChIn) assay8 eliminated these obstacles. Since wounding is inflicted chemically the number of embryos that can be treated simultaneously is virtually unlimited. Temporary treatment of zebrafish larvae with copper sulfate selectively induces cell death in hair cells of the lateral line system and results in rapid granulocyte recruitment to injured neuromasts. The inflammatory response can be followed in real-time by using compound transgenic cldnB::GFP/lysC::DsRED26,9 zebrafish larvae that express a green fluorescent protein in neuromast cells, as well as a red fluorescent protein labeling granulocytes. In order to devise a screening strategy that would allow both high-content and high-throughput analyses we introduced robotic liquid handling and combined automated microscopy with a custom developed software script. This script enables automated quantification of the inflammatory response by scoring the percent area occupied by red fluorescent leukocytes within an empirically defined area surrounding injured green fluorescent neuromasts. Furthermore, we automated data processing, handling, visualization, and storage all based on custom developed MATLAB and Python scripts. In brief, we introduce an automated HC/HT screen that allows testing of chemical compounds for their effect on initiation, progression or resolution of a granulocytic inflammatory response. This protocol serves a good starting point for more in-depth analyses of drug mechanisms and pathways involved in the orchestration of an innate immune response. In the future, it may help identifying intolerable toxic or off-target effects at earlier phases of drug discovery and thereby reduce procedural risks and costs for drug development.
Collapse
Affiliation(s)
- Christine Wittmann
- Institute for Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | | | | | | | | | | |
Collapse
|
278
|
Cha YR, Fujita M, Butler M, Isogai S, Kochhan E, Siekmann AF, Weinstein BM. Chemokine signaling directs trunk lymphatic network formation along the preexisting blood vasculature. Dev Cell 2012; 22:824-36. [PMID: 22516200 DOI: 10.1016/j.devcel.2012.01.011] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 11/07/2011] [Accepted: 01/17/2012] [Indexed: 01/19/2023]
Abstract
The lymphatic system is crucial for fluid homeostasis, immune responses, and numerous pathological processes. However, the molecular mechanisms responsible for establishing the anatomical form of the lymphatic vascular network remain largely unknown. Here, we show that chemokine signaling provides critical guidance cues directing early trunk lymphatic network assembly and patterning. The chemokine receptors Cxcr4a and Cxcr4b are expressed in lymphatic endothelium, whereas chemokine ligands Cxcl12a and Cxcl12b are expressed in adjacent tissues along which the developing lymphatics align. Loss- and gain-of-function studies in zebrafish demonstrate that chemokine signaling orchestrates the stepwise assembly of the trunk lymphatic network. In addition to providing evidence for a lymphatic vascular guidance mechanism, these results also suggest a molecular basis for the anatomical coalignment of lymphatic and blood vessels.
Collapse
Affiliation(s)
- Young Ryun Cha
- Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, National Institutes of Health, 6B/309, 6 Center Drive, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
279
|
Theveneau E, Mayor R. Can mesenchymal cells undergo collective cell migration? The case of the neural crest. Cell Adh Migr 2012; 5:490-8. [PMID: 22274714 DOI: 10.4161/cam.5.6.18623] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cell migration is critical for proper development of the embryo and is also used by many cell types to perform their physiological function. For instance, cell migration is essential for immune cells to monitor the body and for epithelial cells to heal a wound whereas, in cancer cells, acquisition of migratory capabilities is a critical step towards malignancy. Migratory cells are often categorized into two groups: mesenchymal cells, produced by an epithelium-to-mesenchyme transition, that undergo solitary migration and epithelial-like cells which migrate collectively. However, on some occasions, mesenchymal cells may travel in large, dense groups and exhibit key features of collectively migrating cells such as coordination and cooperation. Here, using data published on Neural Crest cells, a highly invasive mesenchymal cell population that extensively migrate throughout the embryo, we explore the idea that other mesenchymal cells, including cancer cells, might be able to undergo collective cell migration under certain conditions and discuss how they could do so.
Collapse
Affiliation(s)
- Eric Theveneau
- Department of Cell and Developmental Biology, University College London, London, UK
| | | |
Collapse
|
280
|
Aman A, Piotrowski T. Cell-cell signaling interactions coordinate multiple cell behaviors that drive morphogenesis of the lateral line. Cell Adh Migr 2012; 5:499-508. [PMID: 22274715 DOI: 10.4161/cam.5.6.19113] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The zebrafish sensory lateral line system has emerged as a powerful model for the mechanistic study of collective cell migration and morphogenesis. Recent work has uncovered the details of a signaling network involving the Wnt/β-catenin, Fgf and Delta-Notch pathways that patterns the migrating lateral line primordium into distinct regions. Cells within these regions exhibit different fundamental behaviors that together orchestrate normal lateral line morphogenesis. In this review, we summarize the signaling network that patterns the migrating lateral line primordium and describe how this patterning coordinates crucial morphogenic cell behaviors.
Collapse
Affiliation(s)
- Andy Aman
- Department of Neurobiology and Anatomy, University of Utah Medical School, Salt Lake City, UT, USA
| | | |
Collapse
|
281
|
Moro E, Ozhan-Kizil G, Mongera A, Beis D, Wierzbicki C, Young RM, Bournele D, Domenichini A, Valdivia LE, Lum L, Chen C, Amatruda JF, Tiso N, Weidinger G, Argenton F. In vivo Wnt signaling tracing through a transgenic biosensor fish reveals novel activity domains. Dev Biol 2012; 366:327-40. [PMID: 22546689 DOI: 10.1016/j.ydbio.2012.03.023] [Citation(s) in RCA: 200] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 03/09/2012] [Accepted: 03/21/2012] [Indexed: 11/30/2022]
Abstract
The creation of molecular tools able to unravel in vivo spatiotemporal activation of specific cell signaling events during cell migration, differentiation and morphogenesis is of great relevance to developmental cell biology. Here, we describe the generation, validation and applications of two transgenic reporter lines for Wnt/β-catenin signaling, named TCFsiam, and show that they are reliable and sensitive Wnt biosensors for in vivo studies. We demonstrate that these lines sensitively detect Wnt/β-catenin pathway activity in several cellular contexts, from sensory organs to cardiac valve patterning. We provide evidence that Wnt/β-catenin activity is involved in the formation and maintenance of the zebrafish CNS blood vessel network, on which sox10 neural crest-derived cells migrate and proliferate. We finally show that these transgenic lines allow for screening of Wnt signaling modifying compounds, tissue regeneration assessment as well as evaluation of potential Wnt/β-catenin genetic modulators.
Collapse
Affiliation(s)
- Enrico Moro
- Department of Biomedical Sciences, University of Padova, I-35121 Padova, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
282
|
Crowding induces live cell extrusion to maintain homeostatic cell numbers in epithelia. Nature 2012; 484:546-9. [PMID: 22504183 PMCID: PMC4593481 DOI: 10.1038/nature10999] [Citation(s) in RCA: 620] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 02/27/2012] [Indexed: 12/16/2022]
|
283
|
Mirkovic I, Pylawka S, Hudspeth AJ. Rearrangements between differentiating hair cells coordinate planar polarity and the establishment of mirror symmetry in lateral-line neuromasts. Biol Open 2012; 1:498-505. [PMID: 23213442 PMCID: PMC3507212 DOI: 10.1242/bio.2012570] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In addition to their ubiquitous apical-basal polarity, many epithelia are also polarized along an orthogonal axis, a phenomenon termed planar cell polarity (PCP). In the mammalian inner ear and the zebrafish lateral line, PCP is revealed through the orientation of mechanosensitive hair cells relative to each other and to the body axes. In each neuromast, the receptor organ of the lateral line, hair bundles are arranged in a mirror-symmetrical fashion. Here we show that the establishment of mirror symmetry is preceded by rotational rearrangements between hair-cell pairs, a behavior consistently associated with the division of hair-cell precursors. Time-lapse imaging of trilobite mutants, which lack the core PCP constituent Vang-like protein 2 (Vangl2), shows that their misoriented hair cells correlate with misaligned divisions of hair-cell precursors and an inability to complete rearrangements accurately. Vangl2 is asymmetrically localized in the cells of the neuromast, a configuration required for accurate completion of rearrangements. Manipulation of Vangl2 expression or of Notch signaling results in a uniform hair-cell polarity, indicating that rearrangements refine neuromast polarity with respect to the body axes.
Collapse
Affiliation(s)
- Ivana Mirkovic
- Howard Hughes Medical Institute and Laboratory of Sensory Neuroscience, The Rockefeller University , 1230 York Avenue, New York, NY 10065 , USA
| | | | | |
Collapse
|
284
|
Abstract
The posterior lateral line (pLL) in zebrafish has emerged as an excellent system to study how a sensory organ system develops. Here we review recent studies that illustrate how interactions between multiple signaling pathways coordinate cell fate,morphogenesis, and collective migration of cells in the posterior lateral line primordium. These studies also illustrate how the pLL system is contributing much more broadly to our understanding of mechanisms operating during the growth, regeneration, and self-organization of other organ systems during development and disease.
Collapse
Affiliation(s)
- Ajay B Chitnis
- Program in Genomics of Development, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda MD, USA
| | - Damian Dalle Nogare
- Program in Genomics of Development, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda MD, USA
| | - Miho Matsuda
- Program in Genomics of Development, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda MD, USA
| |
Collapse
|
285
|
Behra M, Gallardo VE, Bradsher J, Torrado A, Elkahloun A, Idol J, Sheehy J, Zonies S, Xu L, Shaw KM, Satou C, Higashijima SI, Weinstein BM, Burgess SM. Transcriptional signature of accessory cells in the lateral line, using the Tnk1bp1:EGFP transgenic zebrafish line. BMC DEVELOPMENTAL BIOLOGY 2012; 12:6. [PMID: 22273551 PMCID: PMC3305402 DOI: 10.1186/1471-213x-12-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 01/24/2012] [Indexed: 11/10/2022]
Abstract
Background Because of the structural and molecular similarities between the two systems, the lateral line, a fish and amphibian specific sensory organ, has been widely used in zebrafish as a model to study the development/biology of neuroepithelia of the inner ear. Both organs have hair cells, which are the mechanoreceptor cells, and supporting cells providing other functions to the epithelium. In most vertebrates (excluding mammals), supporting cells comprise a pool of progenitors that replace damaged or dead hair cells. However, the lack of regenerative capacity in mammals is the single leading cause for acquired hearing disorders in humans. Results In an effort to understand the regenerative process of hair cells in fish, we characterized and cloned an egfp transgenic stable fish line that trapped tnks1bp1, a highly conserved gene that has been implicated in the maintenance of telomeres' length. We then used this Tg(tnks1bp1:EGFP) line in a FACsorting strategy combined with microarrays to identify new molecular markers for supporting cells. Conclusions We present a Tg(tnks1bp1:EGFP) stable transgenic line, which we used to establish a transcriptional profile of supporting cells in the zebrafish lateral line. Therefore we are providing a new set of markers specific for supporting cells as well as candidates for functional analysis of this important cell type. This will prove to be a valuable tool for the study of regeneration in the lateral line of zebrafish in particular and for regeneration of neuroepithelia in general.
Collapse
Affiliation(s)
- Martine Behra
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
286
|
Theveneau E, Mayor R. Neural crest delamination and migration: from epithelium-to-mesenchyme transition to collective cell migration. Dev Biol 2012; 366:34-54. [PMID: 22261150 DOI: 10.1016/j.ydbio.2011.12.041] [Citation(s) in RCA: 374] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 12/26/2011] [Indexed: 10/25/2022]
Abstract
After induction and specification in the ectoderm, at the border of the neural plate, the neural crest (NC) population leaves its original territory through a delamination process. Soon afterwards, the NC cells migrate throughout the embryo and colonize a myriad of tissues and organs where they settle and differentiate. The delamination involves a partial or complete epithelium-to-mesenchyme transition (EMT) regulated by a complex network of transcription factors including several proto-oncogenes. Studying the relationship between these genes at the time of emigration, and their individual or collective impact on cell behavior, provides valuable information about their role in EMT in other contexts such as cancer metastasis. During migration, NC cells are exposed to large number of positive and negative regulators that control where they go by generating permissive and restricted areas and by modulating their motility and directionality. In addition, as most NC cells migrate collectively, cell-cell interactions play a crucial role in polarizing the cells and interpreting external cues. Cell cooperation eventually generates an overall polarity to the population, leading to directional collective cell migration. This review will summarize our current knowledge on delamination, EMT and migration of NC cells using key examples from chicken, Xenopus, zebrafish and mouse embryos. Given the similarities between neural crest migration and cancer invasion, these cells may represent a useful model for understanding the mechanisms of metastasis.
Collapse
Affiliation(s)
- Eric Theveneau
- Department of Cell and Developmental Biology, University College London, UK
| | | |
Collapse
|
287
|
Lin CY, Chen YM, Hsu HH, Shiu CT, Kuo HC, Chen TY. Grouper (Epinephelus coioides) CXCR4 is expressed in response to pathogens infection and early stage of development. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 36:112-120. [PMID: 21726578 DOI: 10.1016/j.dci.2011.06.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 06/16/2011] [Accepted: 06/17/2011] [Indexed: 05/31/2023]
Abstract
Chemokine (C-X-C motif) receptor 4 (CXCR4) from orange-spotted grouper (Epinephelus coioides) was identified and characterized in this study. gCXCR4 shared common features in protein sequence and predicted structure of CXCR4 family. This suggested that gCXCR4 is a member of G protein-coupled receptors with seven transmembrane domains. The expression patterns revealed that gCXCR4 may play a key role in early development of grouper. Furthermore, overexpression of gCXCR4-GFP for 48 h had significant effects on the GF-1 cell viability. gCXCR4 protein was mainly expressed in the marginal zone of head kidney and on the surface of intestinal villi. gCXCR4 expression can be detected in all the examined tissues and significantly up-regulated in eye and brain, which are the main targets for nervous necrosis virus (NNV) infection and replication. gCXCR4 gene expression can be induced in the spleen and eye by lipopolysaccharide and NNV, respectively. Our data suggested that gCXCR4 may not only play a role in the early immune response to microbial infection but also restrain to the immune system and central nervous system.
Collapse
Affiliation(s)
- Ching-Yu Lin
- Laboratory of Molecular Genetics, Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan
| | | | | | | | | | | |
Collapse
|
288
|
Wang CC, Jamal L, Janes KA. Normal morphogenesis of epithelial tissues and progression of epithelial tumors. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2012; 4:51-78. [PMID: 21898857 PMCID: PMC3242861 DOI: 10.1002/wsbm.159] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Epithelial cells organize into various tissue architectures that largely maintain their structure throughout the life of an organism. For decades, the morphogenesis of epithelial tissues has fascinated scientists at the interface of cell, developmental, and molecular biology. Systems biology offers ways to combine knowledge from these disciplines by building integrative models that are quantitative and predictive. Can such models be useful for gaining a deeper understanding of epithelial morphogenesis? Here, we take inventory of some recurring themes in epithelial morphogenesis that systems approaches could strive to capture. Predictive understanding of morphogenesis at the systems level would prove especially valuable for diseases such as cancer, where epithelial tissue architecture is profoundly disrupted.
Collapse
Affiliation(s)
- Chun-Chao Wang
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Leen Jamal
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Kevin A. Janes
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
289
|
Schlosser G. Evolution of Sensory Development – Lessons from the Lateral Line. BRAIN, BEHAVIOR AND EVOLUTION 2012; 79:73-4. [DOI: 10.1159/000335696] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
290
|
Bischoff M. Lamellipodia-based migrations of larval epithelial cells are required for normal closure of the adult epidermis of Drosophila. Dev Biol 2011; 363:179-90. [PMID: 22230614 PMCID: PMC3314956 DOI: 10.1016/j.ydbio.2011.12.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 12/19/2011] [Accepted: 12/20/2011] [Indexed: 11/29/2022]
Abstract
Cell migrations are an important feature of animal development. They are, furthermore, essential to wound healing and tumour progression. Despite recent progress, it is still mysterious how cell migration is spatially and temporally regulated during morphogenesis and how cell migration is coordinated with other cellular behaviours to shape tissues and organs. The formation of the abdominal epithelium of Drosophila during metamorphosis provides an attractive system to study morphogenesis. Here, the diploid adult histoblasts replace the polyploid larval epithelial cells (LECs). Using in vivo 4D microscopy, I show that, besides apical constriction and apoptosis, the LECs undergo extensive coordinated migrations. The migrations follow a transition from a stationary (epithelial) to a migratory mode. The migratory behaviour is stimulated by autocrine Dpp signalling. Directed apical lamellipodia-like protrusions propel the cells. Initially, planar cell polarity determines the orientation of LEC migration. While LECs are migrating they also constrict apically, and changes in activity of the small GTPase Rho1 can favour one behaviour over the other. This study shows that the LECs play a more active role in morphogenesis than previously thought, with their migrations contributing to abdominal closure. It furthermore provides insights into how the migratory behaviour of cells is regulated during morphogenesis.
Collapse
Affiliation(s)
- Marcus Bischoff
- University of Cambridge, Department of Zoology, Cambridge, UK.
| |
Collapse
|
291
|
Role of zebrafish lbx2 in embryonic lateral line development. PLoS One 2011; 6:e29515. [PMID: 22216300 PMCID: PMC3245281 DOI: 10.1371/journal.pone.0029515] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2011] [Accepted: 11/29/2011] [Indexed: 11/19/2022] Open
Abstract
Background The zebrafish ladybird homeobox homologous gene 2 (lbx2) has been suggested to play a key role in the regulation of hypaxial myogenic precursor cell migration. Unlike their lbx counterparts in mammals, the function of teleost lbx genes beyond myogenesis during embryonic development remains unexplored. Principal Findings Abrogation of lbx2 function using a specific independent morpholino oligonucleotide (MO) or truncated lbx2 mRNA with an engrailed domain deletion (lbx2eh-) resulted in defective formation of the zebrafish posterior lateral line (PLL). Migration of the PLL primordium was altered and accompanied by increased cell death in the primordium of lbx2-MO-injected embryos. A decreased number of muscle pioneer cells and impaired expression pattern of sdf1a in the horizontal myoseptum was observed in lbx2 morphants. Significance Injection of lbx2 MO or lbx2eh- mRNA resulted in defective PPL formation and altered sdf1a expression, confirming an important function for lbx2 in sdf1a-dependent migration. In addition, the disassociation of PPL nerve extension with PLL primordial migration in some lbx2 morphants suggests that pathfinding of the PLL primordium and the lateral line nerve may be regulated independently.
Collapse
|
292
|
Neuron and sensory epithelial cell fate is sequentially determined by Notch signaling in zebrafish lateral line development. J Neurosci 2011; 31:15522-30. [PMID: 22031898 DOI: 10.1523/jneurosci.3948-11.2011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Sensory systems are specialized to recognize environmental changes. Sensory organs are complex structures composed of different cell types, including neurons and sensory receptor cells, and how these organs are generated is an important question in developmental neurobiology. The posterior lateral line (pLL) is a simple sensory system in fish and amphibians that detects changes in water motion. It consists of neurons and sensory receptor hair cells, both of which are derived from the cranial ectoderm preplacodal region. However, it is not clearly understood how neurons and the sensory epithelium develop separately from the same preplacodal progenitors. We found that the numbers of posterior lateral line ganglion (pLLG) neurons, which are marked by neurod expression, increased in embryos with reduced Notch activity, but the forced activation of Notch reduced their number, suggesting that Notch-mediated lateral inhibition regulates the pLLG cell fate in zebrafish. By fate-mapping analysis, we found that cells adjacent to the pLLG neurons in the pre-pLL placodal region gave rise to the anterior part of the pLL primordium (i.e., sensory epithelial progenitor cells), and that the choice of cell fate between pLLG neuron or pLL primordium was regulated by Notch signaling. Since Notch signaling also affects hair cell fate determination at a later stage, our study suggests that Notch signaling has dual, time-dependent roles in specifying multiple cell types during pLL development.
Collapse
|
293
|
Weber GF, Bjerke MA, DeSimone DW. A mechanoresponsive cadherin-keratin complex directs polarized protrusive behavior and collective cell migration. Dev Cell 2011; 22:104-15. [PMID: 22169071 DOI: 10.1016/j.devcel.2011.10.013] [Citation(s) in RCA: 275] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 08/15/2011] [Accepted: 10/18/2011] [Indexed: 12/16/2022]
Abstract
Collective cell migration requires maintenance of adhesive contacts between adjacent cells, coordination of polarized cell protrusions, and generation of propulsive traction forces. We demonstrate that mechanical force applied locally to C-cadherins on single Xenopus mesendoderm cells is sufficient to induce polarized cell protrusion and persistent migration typical of individual cells within a collectively migrating tissue. Local tension on cadherin adhesions induces reorganization of the keratin intermediate filament network toward these stressed sites. Plakoglobin, a member of the catenin family, is localized to cadherin adhesions under tension and is required for both mechanoresponsive cell behavior and assembly of the keratin cytoskeleton at the rear of these cells. Local tugging forces on cadherins occur in vivo through interactions with neighboring cells, and these forces result in coordinate changes in cell protrusive behavior. Thus, cadherin-dependent force-inducible regulation of cell polarity in single mesendoderm cells represents an emergent property of the intact tissue.
Collapse
Affiliation(s)
- Gregory F Weber
- Department of Cell Biology, School of Medicine, University of Virginia Health System, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|
294
|
Valdivia LE, Young RM, Hawkins TA, Stickney HL, Cavodeassi F, Schwarz Q, Pullin LM, Villegas R, Moro E, Argenton F, Allende ML, Wilson SW. Lef1-dependent Wnt/β-catenin signalling drives the proliferative engine that maintains tissue homeostasis during lateral line development. Development 2011; 138:3931-41. [PMID: 21862557 DOI: 10.1242/dev.062695] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
During tissue morphogenesis and differentiation, cells must self-renew while contemporaneously generating daughters that contribute to the growing tissue. How tissues achieve this precise balance between proliferation and differentiation is, in most instances, poorly understood. This is in part due to the difficulties in dissociating the mechanisms that underlie tissue patterning from those that regulate proliferation. In the migrating posterior lateral line primordium (PLLP), proliferation is predominantly localised to the leading zone. As cells emerge from this zone, they periodically organise into rosettes that subsequently dissociate from the primordium and differentiate as neuromasts. Despite this reiterative loss of cells, the primordium maintains its size through regenerative cell proliferation until it reaches the tail. In this study, we identify a null mutation in the Wnt-pathway transcription factor Lef1 and show that its activity is required to maintain proliferation in the progenitor pool of cells that sustains the PLLP as it undergoes migration, morphogenesis and differentiation. In absence of Lef1, the leading zone becomes depleted of cells during its migration leading to the collapse of the primordium into a couple of terminal neuromasts. We show that this behaviour resembles the process by which the PLLP normally ends its migration, suggesting that suppression of Wnt signalling is required for termination of neuromast production in the tail. Our data support a model in which Lef1 sustains proliferation of leading zone progenitors, maintaining the primordium size and defining neuromast deposition rate.
Collapse
Affiliation(s)
- Leonardo E Valdivia
- FONDAP Center for Genome Regulation, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
295
|
McGraw HF, Drerup CM, Culbertson MD, Linbo T, Raible DW, Nechiporuk AV. Lef1 is required for progenitor cell identity in the zebrafish lateral line primordium. Development 2011; 138:3921-30. [PMID: 21862556 DOI: 10.1242/dev.062554] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The zebrafish posterior lateral line (pLL) is a sensory system that comprises clusters of mechanosensory organs called neuromasts (NMs) that are stereotypically positioned along the surface of the trunk. The NMs are deposited by a migrating pLL primordium, which is organized into polarized rosettes (proto-NMs). During migration, mature proto-NMs are deposited from the trailing part of the primordium, while progenitor cells in the leading part give rise to new proto-NMs. Wnt signaling is active in the leading zone of the primordium and global Wnt inactivation leads to dramatic disorganization of the primordium and a loss of proto-NM formation. However, the exact cellular events that are regulated by the Wnt pathway are not known. We identified a mutant strain, lef1(nl2), that contains a lesion in the Wnt effector gene lef1. lef1(nl2) mutants lack posterior NMs and live imaging reveals that rosette renewal fails during later stages of migration. Surprisingly, the overall primordium patterning, as assayed by the expression of various markers, appears unaltered in lef1(nl2) mutants. Lineage tracing and mosaic analyses revealed that the leading cells (presumptive progenitors) move out of the primordium and are incorporated into NMs; this results in a decrease in the number of proliferating progenitor cells and eventual primordium disorganization. We concluded that Lef1 function is not required for initial primordium organization or migration, but is necessary for proto-NM renewal during later stages of pLL formation. These findings revealed a novel role for the Wnt signaling pathway during mechanosensory organ formation in zebrafish.
Collapse
Affiliation(s)
- Hillary F McGraw
- Department of Cell and Developmental Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | | | | | | | | | | |
Collapse
|
296
|
Kimmel RA, Onder L, Wilfinger A, Ellertsdottir E, Meyer D. Requirement for Pdx1 in specification of latent endocrine progenitors in zebrafish. BMC Biol 2011; 9:75. [PMID: 22034951 PMCID: PMC3215967 DOI: 10.1186/1741-7007-9-75] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 10/31/2011] [Indexed: 12/17/2022] Open
Abstract
Background Insulin-producing beta cells emerge during pancreas development in two sequential waves. Recently described later-forming beta cells in zebrafish show high similarity to second wave mammalian beta cells in developmental capacity. Loss-of-function studies in mouse and zebrafish demonstrated that the homeobox transcription factors Pdx1 and Hb9 are both critical for pancreas and beta cell development and discrete stage-specific requirements for these genes have been uncovered. Previously, exocrine and endocrine cell recovery was shown to follow loss of pdx1 in zebrafish, but the progenitor cells and molecular mechanisms responsible have not been clearly defined. In addition, interactions of pdx1 and hb9 in beta cell formation have not been addressed. Results To learn more about endocrine progenitor specification, we examined beta cell formation following morpholino-mediated depletion of pdx1 and hb9. We find that after early beta cell reduction, recovery occurs following loss of either pdx1 or hb9 function. Unexpectedly, simultaneous knockdown of both hb9 and pdx1 leads to virtually complete and persistent beta cell deficiency. We used a NeuroD:EGFP transgenic line to examine endocrine cell behavior in vivo and developed a novel live-imaging technique to document emergence and migration of late-forming endocrine precursors in real time. Our data show that Notch-responsive progenitors for late-arising endocrine cells are predominantly post mitotic and depend on pdx1. By contrast, early-arising endocrine cells are specified and differentiate independent of pdx1. Conclusions The nearly complete beta cell deficiency after combined loss of hb9 and pdx1 suggests functional cooperation, which we clarify as distinct roles in early and late endocrine cell formation. A novel imaging approach permitted visualization of the emergence of late endocrine cells within developing embryos for the first time. We demonstrate a pdx1-dependent progenitor population essential for the formation of duct-associated, second wave endocrine cells. We further reveal an unexpectedly low mitotic activity in these progenitor cells, indicating that they are set aside early in development.
Collapse
Affiliation(s)
- Robin A Kimmel
- Institute of Molecular Biology/CMBI; Leopold-Francis University, Technikerstrasse 25, A-6020 Innsbruck, Austria.
| | | | | | | | | |
Collapse
|
297
|
Cheung ID, Bagnat M, Ma TP, Datta A, Evason K, Moore JC, Lawson ND, Mostov KE, Moens CB, Stainier DYR. Regulation of intrahepatic biliary duct morphogenesis by Claudin 15-like b. Dev Biol 2011; 361:68-78. [PMID: 22020048 DOI: 10.1016/j.ydbio.2011.10.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 10/03/2011] [Accepted: 10/04/2011] [Indexed: 02/06/2023]
Abstract
The intrahepatic biliary ducts transport bile produced by the hepatocytes out of the liver. Defects in biliary cell differentiation and biliary duct remodeling cause a variety of congenital diseases including Alagille Syndrome and polycystic liver disease. While the molecular pathways regulating biliary cell differentiation have received increasing attention (Lemaigre, 2010), less is known about the cellular behavior underlying biliary duct remodeling. Here, we have identified a novel gene, claudin 15-like b (cldn15lb), which exhibits a unique and dynamic expression pattern in the hepatocytes and biliary epithelial cells in zebrafish. Claudins are tight junction proteins that have been implicated in maintaining epithelial polarity, regulating paracellular transport, and providing barrier function. In zebrafish cldn15lb mutant livers, tight junctions are observed between hepatocytes, but these cells show polarization defects as well as canalicular malformations. Furthermore, cldn15lb mutants show abnormalities in biliary duct morphogenesis whereby biliary epithelial cells remain clustered together and form a disorganized network. Our data suggest that Cldn15lb plays an important role in the remodeling process during biliary duct morphogenesis. Thus, cldn15lb mutants provide a novel in vivo model to study the role of tight junction proteins in the remodeling of the biliary network and hereditary cholestasis.
Collapse
Affiliation(s)
- Isla D Cheung
- Department of Biochemistry and Biophysics, Program in Developmental and Stem Cell Biology, and Institute for Regeneration Medicine, University of California, San Francisco, CA 94158, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
298
|
Reffay M, Petitjean L, Coscoy S, Grasland-Mongrain E, Amblard F, Buguin A, Silberzan P. Orientation and polarity in collectively migrating cell structures: statics and dynamics. Biophys J 2011; 100:2566-75. [PMID: 21641301 DOI: 10.1016/j.bpj.2011.04.047] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 04/06/2011] [Accepted: 04/25/2011] [Indexed: 10/18/2022] Open
Abstract
Collective cell migration is often characterized by the spontaneous onset of multicellular protrusions (known as fingers) led by a single leader cell. Working with epithelial Madin-Darby canine kidney monolayers we show that cells within the fingers, as compared with the epithelium, are well oriented and polarized along the main finger direction, which suggests that these cells actively migrate. The cell orientation and polarity decrease continuously from the tip toward the epithelium over a penetration distance of typically two finger lengths. Furthermore, laser photoablation experiments at various locations along these fingers demonstrate that the cells in the fingers are submitted to a tensile stress whose value is larger close to the tip. From a dynamical point of view, cells entering a finger gradually polarize on timescales that depend upon their particular initial position. Selective laser nanosurgery of the leader lamellipodium shows not only that these structures need a leader to progress, but that this leader itself is the consequence of a prior self-organization of the cells forming the finger. These results highlight the complex interplay between the collective orientation within the fingers and the mechanical action of the leader.
Collapse
Affiliation(s)
- M Reffay
- Laboratoire Physico-chimie Curie, Paris, France
| | | | | | | | | | | | | |
Collapse
|
299
|
Wojcechowskyj JA, Lee JY, Seeholzer SH, Doms RW. Quantitative phosphoproteomics of CXCL12 (SDF-1) signaling. PLoS One 2011; 6:e24918. [PMID: 21949786 PMCID: PMC3176801 DOI: 10.1371/journal.pone.0024918] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 08/19/2011] [Indexed: 11/18/2022] Open
Abstract
CXCL12 (SDF-1) is a chemokine that binds to and signals through the seven transmembrane receptor CXCR4. The CXCL12/CXCR4 signaling axis has been implicated in both cancer metastases and human immunodeficiency virus type 1 (HIV-1) infection and a more complete understanding of CXCL12/CXCR4 signaling pathways may support efforts to develop therapeutics for these diseases. Mass spectrometry-based phosphoproteomics has emerged as an important tool in studying signaling networks in an unbiased fashion. We employed stable isotope labeling with amino acids in cell culture (SILAC) quantitative phosphoproteomics to examine the CXCL12/CXCR4 signaling axis in the human lymphoblastic CEM cell line. We quantified 4,074 unique SILAC pairs from 1,673 proteins and 89 phosphopeptides were deemed CXCL12-responsive in biological replicates. Several well established CXCL12-responsive phosphosites such as AKT (pS473) and ERK2 (pY204) were confirmed in our study. We also validated two novel CXCL12-responsive phosphosites, stathmin (pS16) and AKT1S1 (pT246) by Western blot. Pathway analysis and comparisons with other phosphoproteomic datasets revealed that genes from CXCL12-responsive phosphosites are enriched for cellular pathways such as T cell activation, epidermal growth factor and mammalian target of rapamycin (mTOR) signaling, pathways which have previously been linked to CXCL12/CXCR4 signaling. Several of the novel CXCL12-responsive phosphoproteins from our study have also been implicated with cellular migration and HIV-1 infection, thus providing an attractive list of potential targets for the development of cancer metastasis and HIV-1 therapeutics and for furthering our understanding of chemokine signaling regulation by reversible phosphorylation.
Collapse
Affiliation(s)
- Jason A. Wojcechowskyj
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Jessica Y. Lee
- Protein and Proteomics Core, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, United States of America
| | - Steven H. Seeholzer
- Protein and Proteomics Core, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, United States of America
| | - Robert W. Doms
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
300
|
Walsh GS, Grant PK, Morgan JA, Moens CB. Planar polarity pathway and Nance-Horan syndrome-like 1b have essential cell-autonomous functions in neuronal migration. Development 2011; 138:3033-42. [PMID: 21693519 PMCID: PMC3119310 DOI: 10.1242/dev.063842] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Components of the planar cell polarity (PCP) pathway are required for the caudal tangential migration of facial branchiomotor (FBM) neurons, but how PCP signaling regulates this migration is not understood. In a forward genetic screen, we identified a new gene, nhsl1b, required for FBM neuron migration. nhsl1b encodes a WAVE-homology domain-containing protein related to human Nance-Horan syndrome (NHS) protein and Drosophila GUK-holder (Gukh), which have been shown to interact with components of the WAVE regulatory complex that controls cytoskeletal dynamics and with the polarity protein Scribble, respectively. Nhsl1b localizes to FBM neuron membrane protrusions and interacts physically and genetically with Scrib to control FBM neuron migration. Using chimeric analysis, we show that FBM neurons have two modes of migration: one involving interactions between the neurons and their planar-polarized environment, and an alternative, collective mode involving interactions between the neurons themselves. We demonstrate that the first mode of migration requires the cell-autonomous functions of Nhsl1b and the PCP components Scrib and Vangl2 in addition to the non-autonomous functions of Scrib and Vangl2, which serve to polarize the epithelial cells in the environment of the migrating neurons. These results define a role for Nhsl1b as a neuronal effector of PCP signaling and indicate that proper FBM neuron migration is directly controlled by PCP signaling between the epithelium and the migrating neurons.
Collapse
Affiliation(s)
- Gregory S Walsh
- Howard Hughes Medical Institute and Division of Basic Science, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA
| | | | | | | |
Collapse
|