251
|
Rahman K, Liu Y, Kumar P, Smith T, Thorn NE, Farris AB, Anania FA. C/EBP homologous protein modulates liraglutide-mediated attenuation of non-alcoholic steatohepatitis. J Transl Med 2016; 96:895-908. [PMID: 27239734 PMCID: PMC4965279 DOI: 10.1038/labinvest.2016.61] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 04/15/2016] [Accepted: 04/26/2016] [Indexed: 02/06/2023] Open
Abstract
The CCAAT/enhancer-binding protein (C/EBP) homologous protein (CHOP), a major transcriptional regulator of endoplasmic reticulum (ER) stress-mediated apoptosis, is implicated in lipotoxicity-induced ER stress and hepatocyte apoptosis in non-alcoholic fatty liver disease (NAFLD). We have previously demonstrated that the glucagon-like peptide-1 (GLP-1) agonist, liraglutide, protects steatotic hepatocytes from lipotoxicity-induced apoptosis by improved handling of free fatty acid (FFA)-induced ER stress. In the present study, we investigated whether CHOP is critical for GLP-1-mediated restoration of ER homeostasis and mitigation of hepatocyte apoptosis in a murine model of NASH (non-alcoholic steatohepatitis). Our data show that despite similar caloric intake, CHOP KO (CHOP(-/-)) mice fed a diet high in fat, fructose, and cholesterol (HFCD) for 16 weeks developed more severe histological features of NASH compared with wild-type (WT) controls. Severity of NASH in HFCD-fed CHOP(-/-) mice correlated with significant decrease in peroxisomal β-oxidation, and increased de novo lipogenesis and ER stress-mediated hepatocyte apoptosis. Four weeks of liraglutide treatment markedly attenuated steatohepatitis in HFCD-fed WT mice by improving insulin sensitivity, and suppressing de novo lipogenesis and ER stress-mediated hepatocyte apoptosis. However, in the absence of CHOP, liraglutide did not improve insulin sensitivity, nor suppress peroxisomal β-oxidation or ER stress-mediated hepatocyte apoptosis. Taken together, these data indicate that CHOP protects hepatocytes from HFCD-induced ER stress, and has a significant role in the mechanism of liraglutide-mediated protection against NASH pathogenesis.
Collapse
Affiliation(s)
- Khalidur Rahman
- Division of Digestive Diseases, Emory University, Atlanta, GA,Atlanta VA Medical Center, Decatur, GA,Corresponding Author: Khalidur Rahman, PhD, Assistant Professor of Medicine, Emory University School of Medicine, 615 Michael Street, Suite 201, Atlanta, GA 30322, Phone: 404-712-2867 or 404-727-5638, Fax: 404-727-5767
| | | | - Pradeep Kumar
- Division of Digestive Diseases, Emory University, Atlanta, GA
| | - Tekla Smith
- Division of Digestive Diseases, Emory University, Atlanta, GA,Atlanta VA Medical Center, Decatur, GA
| | | | - Alton B. Farris
- Department of Pathology, Emory University Hospital, Atlanta, GA
| | - Frank A. Anania
- Division of Digestive Diseases, Emory University, Atlanta, GA,Atlanta VA Medical Center, Decatur, GA
| |
Collapse
|
252
|
Zhang L, Wang HH. The essential functions of endoplasmic reticulum chaperones in hepatic lipid metabolism. Dig Liver Dis 2016; 48:709-16. [PMID: 27133206 DOI: 10.1016/j.dld.2016.03.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 03/06/2016] [Accepted: 03/22/2016] [Indexed: 12/11/2022]
Abstract
The endoplasmic reticulum (ER) is an essential organelle for protein and lipid synthesis in hepatocytes. ER homeostasis is vital to maintain normal hepatocyte physiology. Perturbed ER functions causes ER stress associated with accumulation of unfolded protein in the ER that activates a series of adaptive signalling pathways, termed unfolded protein response (UPR). The UPR regulates ER chaperone levels to preserve ER protein-folding environment to protect the cell from ER stress. Recent findings reveal an array of ER chaperones that alter the protein-folding environment in the ER of hepatocytes and contribute to dysregulation of hepatocyte lipid metabolism and liver disease. In this review, we will discuss the specific functions of these chaperones in regulation of lipid metabolism, especially de novo lipogenesis and lipid transport and demonstrate their homeostatic role not only for ER-protein synthesis but also for lipid metabolism in hepatocyte.
Collapse
Affiliation(s)
- LiChun Zhang
- Department of Emergency, Shengjing Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China.
| | - Hong-Hui Wang
- College of Biology, Hunan University, Changsha, Hunan Province, China.
| |
Collapse
|
253
|
Chen X, Zhang F, Gong Q, Cui A, Zhuo S, Hu Z, Han Y, Gao J, Sun Y, Liu Z, Yang Z, Le Y, Gao X, Dong LQ, Gao X, Li Y. Hepatic ATF6 Increases Fatty Acid Oxidation to Attenuate Hepatic Steatosis in Mice Through Peroxisome Proliferator-Activated Receptor α. Diabetes 2016; 65:1904-15. [PMID: 27207533 DOI: 10.2337/db15-1637] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 04/06/2016] [Indexed: 11/13/2022]
Abstract
The endoplasmic reticulum quality control protein activating transcription factor 6 (ATF6) has emerged as a novel metabolic regulator. Here, we show that adenovirus-mediated overexpression of the dominant-negative form of ATF6 (dnATF6) increases susceptibility to develop hepatic steatosis in diet-induced insulin-resistant mice and fasted mice. Overexpression of dnATF6 or small interfering RNA-mediated knockdown of ATF6 decreases the transcriptional activity of peroxisome proliferator-activated receptor α (PPARα)/retinoid X receptor complex, and inhibits oxygen consumption rates in hepatocytes, possibly through inhibition of the binding of PPARα to the promoter of its target gene. Intriguingly, ATF6 physically interacts with PPARα, enhances the transcriptional activity of PPARα, and triggers activation of PPARα downstream targets, such as CPT1α and MCAD, in hepatocytes. Furthermore, hepatic overexpression of the active form of ATF6 promotes hepatic fatty acid oxidation and protects against hepatic steatosis in diet-induced insulin-resistant mice. These data delineate the mechanism by which ATF6 controls the activity of PPARα and hepatic mitochondria fatty acid oxidation. Therefore, strategies to activate ATF6 could be used as an alternative avenue to improve liver function and treat hepatic steatosis in obesity.
Collapse
Affiliation(s)
- Xuqing Chen
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
| | - Feifei Zhang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Qi Gong
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Aoyuan Cui
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Shu Zhuo
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Zhimin Hu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yamei Han
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jing Gao
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yixuan Sun
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhengshuai Liu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Zhongnan Yang
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
| | - Yingying Le
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xianfu Gao
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lily Q Dong
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Xin Gao
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yu Li
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
254
|
Herrema H, Zhou Y, Zhang D, Lee J, Salazar Hernandez MA, Shulman GI, Ozcan U. XBP1s Is an Anti-lipogenic Protein. J Biol Chem 2016; 291:17394-404. [PMID: 27325692 DOI: 10.1074/jbc.m116.728949] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Indexed: 12/31/2022] Open
Abstract
Endoplasmic reticulum (ER) stress has been shown to contribute to various metabolic diseases, including non-alcoholic fatty liver disease and type 2 diabetes. Reduction of ER stress by treatment with chemical chaperones or overexpression of ER chaperone proteins alleviates hepatic steatosis. Nonetheless, X-box binding protein 1s (XBP1s), a key transcription factor that reduces ER stress, has been proposed as a lipogenic transcription factor. In this report, we document that XBP1s leads to suppression of lipogenic gene expression and reduction of hepatic triglyceride and diacylglycerol content in livers of diet-induced obese and genetically obese and insulin-resistant ob/ob mice. Furthermore, we also show that PKCϵ activity, which correlates with fatty liver and which causes insulin resistance, was significantly reduced in diet-induced obese mice. Finally, we have shown that XBP1s reduces the hepatic fatty acid synthesis rate and enhances macrolipophagy, an initiating step in lipolysis. Our results reveal that XBP1s reduces hepatic lipogenic gene expression and improves hepatosteatosis in mouse models of obesity and insulin resistance, which leads us to conclude that XBP1s has anti-lipogenic properties in the liver.
Collapse
Affiliation(s)
- Hilde Herrema
- From the Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115,
| | - Yingjiang Zhou
- From the Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Dongyan Zhang
- the Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06519, and
| | - Justin Lee
- From the Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | | | - Gerald I Shulman
- the Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06519, and Departments of Internal Medicine and Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Umut Ozcan
- From the Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115,
| |
Collapse
|
255
|
Zhou X, Wei Y, Qiu S, Xu Y, Zhang T, Zhang S. Propofol Decreases Endoplasmic Reticulum Stress-Mediated Apoptosis in Retinal Pigment Epithelial Cells. PLoS One 2016; 11:e0157590. [PMID: 27311010 PMCID: PMC4910991 DOI: 10.1371/journal.pone.0157590] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 06/01/2016] [Indexed: 12/27/2022] Open
Abstract
Age-related macular degeneration (AMD) is the major cause of loss of sight globally. There is currently no effective treatment available. Retinal pigment epithelial (RPE) cells are an important part of the outer blood-retina barrier and their death is a determinant of AMD. Propofol, a common clinically used intravenous anesthetic agent, has been shown to act as an efficacious neuroprotective agent with antioxidative and anti-inflammatory properties in vivo and in vitro. However, little is known about its effects on RPE cells. The purpose of our research was to investigate whether propofol could protect RPE cells from apoptosis through endoplasmic reticulum (ER) stress–dependent pathways. To this end, prior to stimulation with thapsigargin (TG), ARPE-19 cells were pretreated with varying concentrations of propofol. A protective effect of propofol in TG-treated ARPE-9 was apparent, TUNEL and flow cytometric assays showed decreased apoptosis. We further demonstrated that propofol pretreatment attenuated or inhibited the effects caused by TG, such as upregulation of Bax, BiP, C/EBP homologous protein (CHOP), active caspase 12, and cleaved caspase 3, and downregulation of Bcl2. It also decreased the TG-induced levels of ER stress–related molecules such as p-PERK, p-eIF2α, and ATF4. Furthermore, it downregulated the expression of nuclear factor κB (NF-κB). This study elucidated novel propofol-induced cellular mechanisms for antiapoptotic activities in RPE cells undergoing ER stress and demonstrated the potential value of using propofol in the treatment of AMD.
Collapse
Affiliation(s)
- Xuezhi Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yantao Wei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Suo Qiu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yue Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ting Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shaochong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
- * E-mail:
| |
Collapse
|
256
|
Sim J, Johnson RS. Through a Clear Cell, Darkly: HIF2α/PLIN2-Maintained Fat Droplets Protect ccRCCs from ER Stress. Cancer Discov 2016; 5:584-5. [PMID: 26037916 DOI: 10.1158/2159-8290.cd-15-0480] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Qiu and colleagues describe how a structural component of lipid droplets is markedly induced in pseudohypoxic renal tumors, where it maintains endoplasmic reticulum (ER) homeostasis. This adaptation is indispensable in tumor cells-where growth demands and a fluctuating blood supply place unnatural stresses on ER function-and is therefore an attractive therapeutic target.
Collapse
Affiliation(s)
- Jingwei Sim
- Physiological Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Randall S Johnson
- Physiological Laboratory, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
257
|
Han J, Kaufman RJ. The role of ER stress in lipid metabolism and lipotoxicity. J Lipid Res 2016; 57:1329-38. [PMID: 27146479 DOI: 10.1194/jlr.r067595] [Citation(s) in RCA: 452] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Indexed: 12/23/2022] Open
Abstract
The endoplasmic reticulum (ER) is a cellular organelle important for regulating calcium homeostasis, lipid metabolism, protein synthesis, and posttranslational modification and trafficking. Numerous environmental, physiological, and pathological insults disturb ER homeostasis, referred to as ER stress, in which a collection of conserved intracellular signaling pathways, termed the unfolded protein response (UPR), are activated to maintain ER function for cell survival. However, excessive and/or prolonged UPR activation leads to initiation of self-destruction through apoptosis. Excessive accumulation of lipids and their intermediate products causes metabolic abnormalities and cell death, called lipotoxicity, in peripheral organs, including the pancreatic islets, liver, muscle, and heart. Because accumulating evidence links chronic ER stress and defects in UPR signaling to lipotoxicity in peripheral tissues, understanding the role of ER stress in cell physiology is a topic under intense investigation. In this review, we highlight recent findings that link ER stress and UPR signaling to the pathogenesis of peripheral organs due to lipotoxicity.
Collapse
Affiliation(s)
- Jaeseok Han
- Soonchunhyang Institute of Med-bio Science (SIMS), Soonchunhyang University, Cheonan-si, Choongchungnam-do, 31151, Republic of Korea
| | - Randal J Kaufman
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92307
| |
Collapse
|
258
|
Unfolded protein response induced by Brefeldin A increases collagen type I levels in hepatic stellate cells through an IRE1α, p38 MAPK and Smad-dependent pathway. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2115-23. [PMID: 27155082 DOI: 10.1016/j.bbamcr.2016.05.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 04/16/2016] [Accepted: 05/03/2016] [Indexed: 01/04/2023]
Abstract
Unfolded protein response (UPR) triggered as a consequence of ER stress has been shown to be involved in the development of different pathologies, including fibrotic disorders. In the present paper we explore the role played by UPR on a key fibrogenic parameter in the liver: collagen type I levels in activated hepatic stellate cells (HSC). Using Brefeldin A (BFA) as an ER stress inducer we found that UPR correlated with enhanced mRNA and protein levels of collagen type I in a cell line of immortalized non-tumoral rat HSC. Analysis of the three branches of UPR revealed the activation of IRE1α, PERK and ATF6 in response to BFA, although PERK activation was shown not to be involved in the fibrogenic action of BFA. BFA also activated p38 MAPK in an IRE1α-dependent way and the p38 MAPK inhibitor SB203580 prevented the increase in collagen type I mRNA and protein levels caused by BFA, suggesting the involvement of this kinase on this effect. Analysis of Smad activation showed that phosphorylated nuclear levels of Smad2 and 3 were increased in response to BFA treatment. Inhibition of Smad3 phosphorylation by SIS3 prevented the enhancement of collagen type I levels caused by BFA. Pretreatment with IRE1α and p38 MAPK inhibitors also prevented the increased p-Smad3 accumulation in the nucleus, suggesting an IRE1α-p38 MAPK-Smad pathway to be responsible for the fibrogenic action of BFA on HSC.
Collapse
|
259
|
Lahlali T, Plissonnier ML, Romero-López C, Michelet M, Ducarouge B, Berzal-Herranz A, Zoulim F, Mehlen P, Parent R. Netrin-1 Protects Hepatocytes Against Cell Death Through Sustained Translation During the Unfolded Protein Response. Cell Mol Gastroenterol Hepatol 2016; 2:281-301.e9. [PMID: 28174720 PMCID: PMC5042567 DOI: 10.1016/j.jcmgh.2015.12.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 12/21/2015] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Netrin-1, a multifunctional secreted protein, is up-regulated in cancer and inflammation. Netrin-1 blocks apoptosis induced by the prototypical dependence receptors deleted in colorectal carcinoma and uncoordinated phenotype-5. Although the unfolded protein response (UPR) triggers apoptosis on exposure to stress, it first attempts to restore endoplasmic reticulum homeostasis to foster cell survival. Importantly, UPR is implicated in chronic liver conditions including hepatic oncogenesis. Netrin-1's implication in cell survival on UPR in this context is unknown. METHODS Isolation of translational complexes, determination of RNA secondary structures by selective 2'-hydroxyl acylation and primer extension/dimethyl sulfate, bicistronic constructs, as well as conventional cell biology and biochemistry approaches were used on in vitro-grown hepatocytic cells, wild-type, and netrin-1 transgenic mice. RESULTS HepaRG cells constitute a bona fide model for UPR studies in vitro through adequate activation of the 3 sensors of the UPR (protein kinase RNA-like endoplasmic reticulum kinase (PERK)), inositol requiring enzyme 1α (IRE1α), and activated transcription factor 6 (ATF6). The netrin-1 messenger RNA 5'-end was shown to fold into a complex double pseudoknot and bear E-loop motifs, both of which are representative hallmarks of related internal ribosome entry site regions. Cap-independent translation of netrin 5' untranslated region-driven luciferase was observed on UPR in vitro. Unlike several structurally related oncogenic transcripts (l-myc, c-myc, c-myb), netrin-1 messenger RNA was selected for translation during UPR both in human hepatocytes and in mice livers. Depletion of netrin-1 during UPR induces apoptosis, leading to cell death through an uncoordinated phenotype-5A/C-mediated involvement of protein phosphatase 2A and death-associated protein kinase 1 in vitro and in netrin transgenic mice. CONCLUSIONS UPR-resistant, internal ribosome entry site-driven netrin-1 translation leads to the inhibition of uncoordinated phenotype-5/death-associated protein kinase 1-mediated apoptosis in the hepatic context during UPR, a hallmark of chronic liver disease.
Collapse
Key Words
- ATF6, activated transcription factor 6
- CMV, cytomegalovirus
- DAPK, death-associated protein kinase
- DMS, dimethyl sulfate
- DR, dependence receptor
- DTT, dithiothreitol
- ER, endoplasmic reticulum
- FLuc, Firefly luciferase
- HBV, hepatitis B virus
- HCC, hepatocellular carcinoma
- HCV, hepatitis C virus
- Hepatocyte
- IRE1α, inositol requiring enzyme 1α
- IRES, internal ribosome entry site
- LSL, (Lox-Stop-Lox)
- NMIA, N-methyl-isatoic anhydride
- Netrin
- PBS, phosphate-buffered saline
- PERK, protein kinase RNA (PKR)-like endoplasmic reticulum kinase
- PP2A, protein phosphatase 2A
- PR65β, erine/threonine-protein phosphatase 2A 65 kDa regulatory subunit A beta isoform
- RLuc, Renilla lucerifase
- TUNEL, terminal deoxynucleotidyl transferase–mediated deoxyuridine triphosphate nick-end labeling
- Translation
- Tu, tunicamycin
- UNC5, uncoordinated phenotype-5
- UPR
- UPR, unfolded protein response
- UTR, untranslated region
- VR1, vanilloid receptor 1
- eIF2α, Eukaryotic translation initiation factor 2A
- mRNA, messenger RNA
- pBic, Bicistronic plasmid
- qRT-PCR, quantitative reverse-transcription polymerase chain reaction
- siRNA, small interfering RNA
Collapse
Affiliation(s)
- Thomas Lahlali
- Inserm U1052-UMR CNRS 5286, Centre Léon Berard, Centre de Recherche en Cancérologie, Lyon, France
| | - Marie-Laure Plissonnier
- Inserm U1052-UMR CNRS 5286, Centre Léon Berard, Centre de Recherche en Cancérologie, Lyon, France
| | - Cristina Romero-López
- Instituto de Parasitología y Biomedicina López-Neyra Consejo Superior de Investigaciones Científicas, Ciencia e Investigación (IPBLN-CSIC), Parque Tecnológico Ciencias de la Salud Granada, Armilla, Granada, Spain
| | - Maud Michelet
- Inserm U1052-UMR CNRS 5286, Centre Léon Berard, Centre de Recherche en Cancérologie, Lyon, France
| | - Benjamin Ducarouge
- Inserm U1052-UMR Centre National de la Recherche Scientifique 5286, Centre Léon Berard, Centre de Recherche en Cancérologie, Lyon, France
| | - Alfredo Berzal-Herranz
- Instituto de Parasitología y Biomedicina López-Neyra Consejo Superior de Investigaciones Científicas, Ciencia e Investigación (IPBLN-CSIC), Parque Tecnológico Ciencias de la Salud Granada, Armilla, Granada, Spain
| | - Fabien Zoulim
- Inserm U1052-UMR CNRS 5286, Centre Léon Berard, Centre de Recherche en Cancérologie, Lyon, France
| | - Patrick Mehlen
- Inserm U1052-UMR Centre National de la Recherche Scientifique 5286, Centre Léon Berard, Centre de Recherche en Cancérologie, Lyon, France
| | - Romain Parent
- Inserm U1052-UMR CNRS 5286, Centre Léon Berard, Centre de Recherche en Cancérologie, Lyon, France
| |
Collapse
|
260
|
Wang M, Kaufman RJ. Protein misfolding in the endoplasmic reticulum as a conduit to human disease. Nature 2016; 529:326-35. [PMID: 26791723 DOI: 10.1038/nature17041] [Citation(s) in RCA: 1161] [Impact Index Per Article: 129.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/11/2015] [Indexed: 12/18/2022]
Abstract
In eukaryotic cells, the endoplasmic reticulum is essential for the folding and trafficking of proteins that enter the secretory pathway. Environmental insults or increased protein synthesis often lead to protein misfolding in the organelle, the accumulation of misfolded or unfolded proteins - known as endoplasmic reticulum stress - and the activation of the adaptive unfolded protein response to restore homeostasis. If protein misfolding is not resolved, cells die. Endoplasmic reticulum stress and activation of the unfolded protein response help to determine cell fate and function. Furthermore, endoplasmic reticulum stress contributes to the aetiology of many human diseases.
Collapse
Affiliation(s)
- Miao Wang
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Randal J Kaufman
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA
| |
Collapse
|
261
|
Kim HM, Han JW, Chan JY. Nuclear Factor Erythroid-2 Like 1 (NFE2L1): Structure, function and regulation. Gene 2016; 584:17-25. [PMID: 26947393 DOI: 10.1016/j.gene.2016.03.002] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/18/2016] [Accepted: 03/01/2016] [Indexed: 02/06/2023]
Abstract
Nrf1 (also referred to as NFE2L1) is a member of the CNC-bZIP family of transcription factors that are characterized by a highly conserved CNC-domain, and a basic-leucine zipper domain required for dimerization and DNA binding. Nrf1 is ubiquitously expressed across tissue and cell types as various isoforms, and is induced by stress signals from a broad spectrum of stimuli. Evidence indicates that Nrf1 plays an important role in regulating a range of cellular functions including oxidative stress response, differentiation, inflammatory response, metabolism, and maintaining proteostasis. Thus, Nrf1 has been implicated in the pathogenesis of various disease processes including cancer development, and degenerative and metabolic disorders. This review summarizes our current understanding of Nrf1 and the molecular mechanism underlying its regulation and action in different cellular functions.
Collapse
Affiliation(s)
- Hyun Min Kim
- Department of Laboratory Medicine and Pathology, University of California, Irvine, D440 Medical Sciences, Irvine, CA 92697, USA
| | - Jeong Woo Han
- Department of Laboratory Medicine and Pathology, University of California, Irvine, D440 Medical Sciences, Irvine, CA 92697, USA
| | - Jefferson Y Chan
- Department of Laboratory Medicine and Pathology, University of California, Irvine, D440 Medical Sciences, Irvine, CA 92697, USA.
| |
Collapse
|
262
|
Pressure Combined with Ischemia/Reperfusion Injury Induces Deep Tissue Injury via Endoplasmic Reticulum Stress in a Rat Pressure Ulcer Model. Int J Mol Sci 2016; 17:284. [PMID: 26927073 PMCID: PMC4813148 DOI: 10.3390/ijms17030284] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 02/16/2016] [Accepted: 02/17/2016] [Indexed: 12/14/2022] Open
Abstract
Pressure ulcer is a complex and significant health problem in long-term bedridden patients, and there is currently no effective treatment or efficient prevention method. Furthermore, the molecular mechanisms and pathogenesis contributing to the deep injury of pressure ulcers are unclear. The aim of the study was to explore the role of endoplasmic reticulum (ER) stress and Akt/GSK3β signaling in pressure ulcers. A model of pressure-induced deep tissue injury in adult Sprague-Dawley rats was established. Rats were treated with 2-h compression and subsequent 0.5-h release for various cycles. After recovery, the tissue in the compressed regions was collected for further analysis. The compressed muscle tissues showed clear cellular degenerative features. First, the expression levels of ER stress proteins GRP78, CHOP, and caspase-12 were generally increased compared to those in the control. Phosphorylated Akt and phosphorylated GSK3β were upregulated in the beginning of muscle compression, and immediately significantly decreased at the initiation of ischemia-reperfusion injury in compressed muscles tissue. These data show that ER stress may be involved in the underlying mechanisms of cell degeneration after pressure ulcers and that the Akt/GSK3β signal pathway may play an important role in deep tissue injury induced by pressure and ischemia/reperfusion.
Collapse
|
263
|
Lipopolysaccharide markedly changes glucose metabolism and mitochondrial function in the longissimus muscle of pigs. Animal 2016; 10:1204-12. [PMID: 26863995 DOI: 10.1017/s1751731116000100] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Most previous studies on the effects of lipopolysaccharide (LPS) in pigs focused on the body's immune response, and few reports paid attention to body metabolism changes. To better understand the glucose metabolism changes in skeletal muscle following LPS challenge and to clarify the possible mechanism, 12 growing pigs were employed. Animals were treated with either 2 ml of saline or 15 µg/kg BW LPS, and samples were collected 6 h later. The glycolysis status and mitochondrial function in the longissimus dorsi (LD) muscle of pigs were analyzed. The results showed that serum lactate content and NADH content in LD muscle significantly increased compared with the control group. Most glycolysis-related genes expression, as well as hexokinase, pyruvate kinase and lactic dehydrogenase activity, in LD muscle was significantly higher compared with the control group. Mitochondrial complexes I and IV significantly increased, while mitochondrial ATP concentration markedly decreased. Significantly increased calcium content in the mitochondria was observed, and endoplasm reticulum (ER) stress has been demonstrated in the present study. The results showed that LPS treatment markedly changes glucose metabolism and mitochondrial function in the LD muscle of pigs, and increased calcium content induced by ER stress was possibly involved. The results provide new clues for clarifying metabolic diseases in muscle induced by LPS.
Collapse
|
264
|
Foufelle F, Fromenty B. Role of endoplasmic reticulum stress in drug-induced toxicity. Pharmacol Res Perspect 2016; 4:e00211. [PMID: 26977301 PMCID: PMC4777263 DOI: 10.1002/prp2.211] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 12/14/2015] [Indexed: 12/13/2022] Open
Abstract
Drug‐induced toxicity is a key issue for public health because some side effects can be severe and life‐threatening. These adverse effects can also be a major concern for the pharmaceutical companies since significant toxicity can lead to the interruption of clinical trials, or the withdrawal of the incriminated drugs from the market. Recent studies suggested that endoplasmic reticulum (ER) stress could be an important event involved in drug liability, in addition to other key mechanisms such as mitochondrial dysfunction and oxidative stress. Indeed, drug‐induced ER stress could lead to several deleterious effects within cells and tissues including accumulation of lipids, cell death, cytolysis, and inflammation. After recalling important information regarding drug‐induced adverse reactions and ER stress in diverse pathophysiological situations, this review summarizes the main data pertaining to drug‐induced ER stress and its potential involvement in different adverse effects. Drugs presented in this review are for instance acetaminophen (APAP), arsenic trioxide and other anticancer drugs, diclofenac, and different antiretroviral compounds. We also included data on tunicamycin (an antibiotic not used in human medicine because of its toxicity) and thapsigargin (a toxic compound of the Mediterranean plant Thapsia garganica) since both molecules are commonly used as prototypical toxins to induce ER stress in cellular and animal models.
Collapse
|
265
|
Zheng J, Peng C, Ai Y, Wang H, Xiao X, Li J. Docosahexaenoic Acid Ameliorates Fructose-Induced Hepatic Steatosis Involving ER Stress Response in Primary Mouse Hepatocytes. Nutrients 2016; 8:nu8010055. [PMID: 26805874 PMCID: PMC4728666 DOI: 10.3390/nu8010055] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 01/13/2016] [Accepted: 01/14/2016] [Indexed: 12/11/2022] Open
Abstract
The increase in fructose consumption is considered to be a risk factor for developing nonalcoholic fatty liver disease (NAFLD). We investigated the effects of docosahexaenoic acid (DHA) on hepatic lipid metabolism in fructose-treated primary mouse hepatocytes, and the changes of Endoplasmic reticulum (ER) stress pathways in response to DHA treatment. The hepatocytes were treated with fructose, DHA, fructose plus DHA, tunicamycin (TM) or fructose plus 4-phenylbutyric acid (PBA) for 24 h. Intracellular triglyceride (TG) accumulation was assessed by Oil Red O staining. The mRNA expression levels and protein levels related to lipid metabolism and ER stress response were determined by real-time PCR and Western blot. Fructose treatment led to obvious TG accumulation in primary hepatocytes through increasing expression of fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC), two key enzymes in hepatic de novo lipogenesis. DHA ameliorates fructose-induced TG accumulation by upregulating the expression of carnitine palmitoyltransferase 1A (CPT-1α) and acyl-CoA oxidase 1 (ACOX1). DHA treatment or pretreatment with the ER stress inhibitor PBA significantly decreased TG accumulation and reduced the expression of glucose-regulated protein 78 (GRP78), total inositol-requiring kinase 1 (IRE1α) and p-IRE1α. The present results suggest that DHA protects against high fructose-induced hepatocellular lipid accumulation. The current findings also suggest that alleviating the ER stress response seems to play a role in the prevention of fructose-induced hepatic steatosis by DHA.
Collapse
Affiliation(s)
- Jinying Zheng
- School of Public Health and Management, Chongqing Medical University, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing 400016, China.
| | - Chuan Peng
- Laboratory of Lipid & Glucose Metabolism, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Yanbiao Ai
- School of Public Health and Management, Chongqing Medical University, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing 400016, China.
| | - Heng Wang
- Laboratory of Lipid & Glucose Metabolism, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Xiaoqiu Xiao
- Laboratory of Lipid & Glucose Metabolism, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Jibin Li
- School of Public Health and Management, Chongqing Medical University, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing 400016, China.
| |
Collapse
|
266
|
Differential Impacts of Soybean and Fish Oils on Hepatocyte Lipid Droplet Accumulation and Endoplasmic Reticulum Stress in Primary Rabbit Hepatocytes. Gastroenterol Res Pract 2016; 2016:9717014. [PMID: 27057162 PMCID: PMC4736330 DOI: 10.1155/2016/9717014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 10/29/2015] [Indexed: 01/09/2023] Open
Abstract
Parenteral nutrition-associated liver disease (PNALD) is a severe ailment associated with long-term parenteral nutrition. Soybean oil-based lipid emulsions (SOLE) are thought to promote PNALD development, whereas fish oil-based lipid emulsions (FOLE) are thought to protect against PNALD. This study aimed to investigate the effects of SOLE and FOLE on primary rabbit hepatocytes. The results reveal that SOLE caused significant endoplasmic reticulum (ER) and mitochondrial damage, ultimately resulting in lipid droplets accumulation and ER stress. While these deleterious events induce hepatocyte injury, FOLE at high doses cause only minor ER and mitochondrial damage, which has no effect on hepatic function. SOLE also significantly upregulated glucose-regulated protein 94 mRNA and protein expression. These data indicate that SOLE, but not FOLE, damage the ER and mitochondria, resulting in lipid droplets accumulation and ER stress and, finally, hepatocyte injury. This likely contributes to the differential impacts of SOLE and FOLE on PNALD development and progression.
Collapse
|
267
|
Huggins CJ, Mayekar MK, Martin N, Saylor KL, Gonit M, Jailwala P, Kasoji M, Haines DC, Quiñones OA, Johnson PF. C/EBPγ Is a Critical Regulator of Cellular Stress Response Networks through Heterodimerization with ATF4. Mol Cell Biol 2015; 36:693-713. [PMID: 26667036 PMCID: PMC4760225 DOI: 10.1128/mcb.00911-15] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 10/30/2015] [Accepted: 12/07/2015] [Indexed: 12/24/2022] Open
Abstract
The integrated stress response (ISR) controls cellular adaptations to nutrient deprivation, redox imbalances, and endoplasmic reticulum (ER) stress. ISR genes are upregulated in stressed cells, primarily by the bZIP transcription factor ATF4 through its recruitment to cis-regulatory C/EBP:ATF response elements (CAREs) together with a dimeric partner of uncertain identity. Here, we show that C/EBPγ:ATF4 heterodimers, but not C/EBPβ:ATF4 dimers, are the predominant CARE-binding species in stressed cells. C/EBPγ and ATF4 associate with genomic CAREs in a mutually dependent manner and coregulate many ISR genes. In contrast, the C/EBP family members C/EBPβ and C/EBP homologous protein (CHOP) were largely dispensable for induction of stress genes. Cebpg(-/-) mouse embryonic fibroblasts (MEFs) proliferate poorly and exhibit oxidative stress due to reduced glutathione levels and impaired expression of several glutathione biosynthesis pathway genes. Cebpg(-/-) mice (C57BL/6 background) display reduced body size and microphthalmia, similar to ATF4-null animals. In addition, C/EBPγ-deficient newborns die from atelectasis and respiratory failure, which can be mitigated by in utero exposure to the antioxidant, N-acetyl-cysteine. Cebpg(-/-) mice on a mixed strain background showed improved viability but, upon aging, developed significantly fewer malignant solid tumors than WT animals. Our findings identify C/EBPγ as a novel antioxidant regulator and an obligatory ATF4 partner that controls redox homeostasis in normal and cancerous cells.
Collapse
Affiliation(s)
- Christopher J Huggins
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Manasi K Mayekar
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Nancy Martin
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Karen L Saylor
- Laboratory Animal Sciences Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Mesfin Gonit
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Parthav Jailwala
- Advanced Biomedical Computing Center, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Manjula Kasoji
- Advanced Biomedical Computing Center, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Diana C Haines
- Pathology/Histotechnology Laboratory, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Octavio A Quiñones
- DMS, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Peter F Johnson
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| |
Collapse
|
268
|
Kakazu E, Mauer AS, Yin M, Malhi H. Hepatocytes release ceramide-enriched pro-inflammatory extracellular vesicles in an IRE1α-dependent manner. J Lipid Res 2015; 57:233-45. [PMID: 26621917 DOI: 10.1194/jlr.m063412] [Citation(s) in RCA: 218] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Indexed: 12/16/2022] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is a lipotoxic disease wherein activation of endoplasmic reticulum (ER) stress response and macrophage-mediated hepatic inflammation are key pathogenic features. However, the lipid mediators linking these two observations remain elusive. We postulated that ER stress-regulated release of pro-inflammatory extracellular vesicles (EVs) from lipotoxic hepatocytes may be this link. EVs were isolated from cell culture supernatants of hepatocytes treated with palmitate (PA) to induce lipotoxic ER stress, characterized by immunofluorescence, Western blotting, electron microscopy, and nanoparticle tracking analysis. Sphingolipids were measured by tandem mass spectrometry. EVs were employed in macrophage chemotaxis assays. PA induced significant EV release. Because PA activates ER stress, we used KO hepatocytes to demonstrate that PA-induced EV release was mediated by inositol requiring enzyme 1α (IRE1α)/X-box binding protein-1. PA-induced EVs were enriched in C16:0 ceramide in an IRE1α-dependent manner, and activated macrophage chemotaxis via formation of sphingosine-1-phosphate (S1P) from C16:0 ceramide. This chemotaxis was blocked by sphingosine kinase inhibitors and S1P receptor inhibitors. Lastly, elevated circulating EVs in experimental and human NASH demonstrated increased C16:0 ceramide. PA induces C16:0 ceramide-enriched EV release in an IRE1α-dependent manner. The ceramide metabolite, S1P, activates macrophage chemotaxis, a potential mechanism for the recruitment of macrophages to the liver under lipotoxic conditions.
Collapse
Affiliation(s)
- Eiji Kakazu
- Division of Gastroenterology and Hepatology Mayo Clinic, Rochester, MN 55905 Department of Community Medical Supports, Tohoku Medical Megabank Organization, Tohoku University, Aobaku, Sendai, 980-8573 Japan
| | - Amy S Mauer
- Division of Gastroenterology and Hepatology Mayo Clinic, Rochester, MN 55905
| | - Meng Yin
- Department of Radiology, Mayo Clinic, Rochester, MN 55905
| | - Harmeet Malhi
- Division of Gastroenterology and Hepatology Mayo Clinic, Rochester, MN 55905
| |
Collapse
|
269
|
Sato A, Kawashima T, Fujie M, Hughes S, Satoh N, Shimeld SM. Molecular basis of canalization in an ascidian species complex adapted to different thermal conditions. Sci Rep 2015; 5:16717. [PMID: 26577490 PMCID: PMC4649386 DOI: 10.1038/srep16717] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/19/2015] [Indexed: 11/09/2022] Open
Abstract
Canalization is a result of intrinsic developmental buffering that ensures phenotypic robustness under genetic variation and environmental perturbation. As a consequence, animal phenotypes are remarkably consistent within a species under a wide range of conditions, a property that seems contradictory to evolutionary change. Study of laboratory model species has uncovered several possible canalization mechanisms, however, we still do not understand how the level of buffering is controlled in natural populations. We exploit wild populations of the marine chordate Ciona intestinalis to show that levels of buffering are maternally inherited. Comparative transcriptomics show expression levels of genes encoding canonical chaperones such as Hsp70 and Hsp90 do not correlate with buffering. However the expression of genes encoding endoplasmic reticulum (ER) chaperones does correlate. We also show that ER chaperone genes are widely conserved amongst animals. Contrary to previous beliefs that expression level of Heat Shock Proteins (HSPs) can be used as a measurement of buffering levels, we propose that ER associated chaperones comprise a cellular basis for canalization. ER chaperones have been neglected by the fields of development, evolution and ecology, but their study will enhance understanding of both our evolutionary past and the impact of global environmental change.
Collapse
Affiliation(s)
- Atsuko Sato
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, United Kingdom
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth, PL1 2PB, United Kingdom
| | - Takeshi Kawashima
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Manabu Fujie
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Samantha Hughes
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, United Kingdom
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Sebastian M Shimeld
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, United Kingdom
| |
Collapse
|
270
|
The Role of Organelle Stresses in Diabetes Mellitus and Obesity: Implication for Treatment. Anal Cell Pathol (Amst) 2015; 2015:972891. [PMID: 26613076 PMCID: PMC4646985 DOI: 10.1155/2015/972891] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 10/08/2015] [Indexed: 12/17/2022] Open
Abstract
The type 2 diabetes pandemic in recent decades is a huge global health threat. This pandemic is primarily attributed to the surplus of nutrients and the increased prevalence of obesity worldwide. In contrast, calorie restriction and weight reduction can drastically prevent type 2 diabetes, indicating a central role of nutrient excess in the development of diabetes. Recently, the molecular links between excessive nutrients, organelle stress, and development of metabolic disease have been extensively studied. Specifically, excessive nutrients trigger endoplasmic reticulum stress and increase the production of mitochondrial reactive oxygen species, leading to activation of stress signaling pathway, inflammatory response, lipogenesis, and pancreatic beta-cell death. Autophagy is required for clearance of hepatic lipid clearance, alleviation of pancreatic beta-cell stress, and white adipocyte differentiation. ROS scavengers, chemical chaperones, and autophagy activators have demonstrated promising effects for the treatment of insulin resistance and diabetes in preclinical models. Further results from clinical trials are eagerly awaited.
Collapse
|
271
|
Goessling W, Sadler KC. Zebrafish: an important tool for liver disease research. Gastroenterology 2015; 149:1361-77. [PMID: 26319012 PMCID: PMC4762709 DOI: 10.1053/j.gastro.2015.08.034] [Citation(s) in RCA: 219] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 08/06/2015] [Accepted: 08/18/2015] [Indexed: 02/07/2023]
Abstract
As the incidence of hepatobiliary diseases increases, we must improve our understanding of the molecular, cellular, and physiological factors that contribute to the pathogenesis of liver disease. Animal models help us identify disease mechanisms that might be targeted therapeutically. Zebrafish (Danio rerio) have traditionally been used to study embryonic development but are also important to the study of liver disease. Zebrafish embryos develop rapidly; all of their digestive organs are mature in larvae by 5 days of age. At this stage, they can develop hepatobiliary diseases caused by developmental defects or toxin- or ethanol-induced injury and manifest premalignant changes within weeks. Zebrafish are similar to humans in hepatic cellular composition, function, signaling, and response to injury as well as the cellular processes that mediate liver diseases. Genes are highly conserved between humans and zebrafish, making them a useful system to study the basic mechanisms of liver disease. We can perform genetic screens to identify novel genes involved in specific disease processes and chemical screens to identify pathways and compounds that act on specific processes. We review how studies of zebrafish have advanced our understanding of inherited and acquired liver diseases as well as liver cancer and regeneration.
Collapse
Affiliation(s)
- Wolfram Goessling
- Divisions of Genetics and Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Gastrointestinal Cancer Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts; Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts; Broad Institute of MIT and Harvard, Harvard Medical School, Boston, Massachusetts
| | - Kirsten C Sadler
- Department of Medicine, Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
272
|
Inhibition of mitochondrial β-oxidation by miR-107 promotes hepatic lipid accumulation and impairs glucose tolerance in vivo. Int J Obes (Lond) 2015; 40:861-9. [DOI: 10.1038/ijo.2015.225] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 09/18/2015] [Accepted: 10/01/2015] [Indexed: 01/01/2023]
|
273
|
Kandel-Kfir M, Almog T, Shaish A, Shlomai G, Anafi L, Avivi C, Barshack I, Grosskopf I, Harats D, Kamari Y. Interleukin-1α deficiency attenuates endoplasmic reticulum stress-induced liver damage and CHOP expression in mice. J Hepatol 2015; 63:926-33. [PMID: 26022690 DOI: 10.1016/j.jhep.2015.05.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 05/01/2015] [Accepted: 05/11/2015] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS ER stress promotes liver fat accumulation and induction of inflammatory cytokines, which contribute to the development of steatohepatitis. Unresolved ER stress upregulates the pro-apoptotic CHOP. IL-1α is localized to the nucleus in apoptotic cells, but is released when these cells become necrotic and induce sterile inflammation. We investigated whether IL-1α is involved in ER stress-induced apoptosis and steatohepatitis. METHODS We employed WT and IL-1α-deficient mice to study the role of IL-1α in ER stress-induced steatohepatitis. RESULTS Liver CHOP mRNA was induced in a time dependent fashion in the atherogenic diet-induced steatohepatitis model, and was twofold lower in IL-1α deficient compared to WT mice. In the ER stress-driven steatohepatitis model, IL-1α deficiency decreased the elevation in serum ALT levels, the number of apoptotic cells (measured as caspase-3-positive hepatocytes), and the expression of IL-1β, IL-6, TNFα, and CHOP, with no effect on the degree of fatty liver formation. IL-1α was upregulated in ER-stressed-macrophages and the protein was localized to the nucleus. IL-1β mRNA and CHOP mRNA and protein levels were lower in ER-stressed-macrophages from IL-1α deficient compared to WT mice. ER stress induced the expression of IL-1α and IL-1β also in mouse primary hepatocytes. Recombinant IL-1α treatment in hepatocytes did not affect CHOP expression but upregulated both IL-1α and IL-1β mRNA levels. CONCLUSION We show that IL-1α is upregulated in response to ER stress and IL-1α deficiency reduces ER stress-induced CHOP expression, apoptosis and steatohepatitis. As a dual function cytokine, IL-1α may contribute to the induction of CHOP intracellularly, while IL-1α released from necrotic cells accelerates steatohepatitis via induction of inflammatory cytokines by neighboring cells.
Collapse
Affiliation(s)
- Michal Kandel-Kfir
- The Bert W. Strassburger Lipid Center, Sheba Medical Center, Tel Hashomer, Israel
| | - Tal Almog
- The Bert W. Strassburger Lipid Center, Sheba Medical Center, Tel Hashomer, Israel
| | - Aviv Shaish
- The Bert W. Strassburger Lipid Center, Sheba Medical Center, Tel Hashomer, Israel
| | - Gadi Shlomai
- The Bert W. Strassburger Lipid Center, Sheba Medical Center, Tel Hashomer, Israel
| | - Liat Anafi
- The Pathology Department, Sheba Medical Center, Tel Hashomer, Israel
| | - Camila Avivi
- The Pathology Department, Sheba Medical Center, Tel Hashomer, Israel
| | - Iris Barshack
- The Pathology Department, Sheba Medical Center, Tel Hashomer, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Israel
| | - Itamar Grosskopf
- The Bert W. Strassburger Lipid Center, Sheba Medical Center, Tel Hashomer, Israel
| | - Dror Harats
- The Bert W. Strassburger Lipid Center, Sheba Medical Center, Tel Hashomer, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Israel
| | - Yehuda Kamari
- The Bert W. Strassburger Lipid Center, Sheba Medical Center, Tel Hashomer, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Israel.
| |
Collapse
|
274
|
Cai X, Bao L, Dai X, Ding Y, Zhang Z, Li Y. Quercetin protects RAW264.7 macrophages from glucosamine-induced apoptosis and lipid accumulation via the endoplasmic reticulum stress pathway. Mol Med Rep 2015; 12:7545-53. [PMID: 26398703 DOI: 10.3892/mmr.2015.4340] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 08/24/2015] [Indexed: 11/05/2022] Open
Abstract
It is increasingly recognized that macrophages are a key cell in the development of atherosclerosis. Glucosamine, the product of the hexosamine biosynthetic pathway in diabetes mellitus, can disturb lipid metabolism, induce apoptosis and accelerate atherosclerosis via endoplasmic reticulum (ER) stress in various types of cells. Previous studies have indicated that quercetin possesses antidiabetic, anti‑oxidative, anti‑inflammatory and anti‑apoptotic activities as a flavonoid. Studies have also demonstrated its novel pharmacological properties for inhibiting ER stress. The present study focussed on the effects of quercetin on cell injury and ER stress in glucosamine‑induced macrophages. RAW264.7 macrophages were cultured with 15 mM glucosamine, following which the levels of apoptosis, intracellular total and free cholesterol, and apoptosis‑ and ER stress‑associated proteins were measured in the macrophages treated with or without quercetin. Additionally, the ratio of cholestryl ester/total cholesterol was calculated to observe the formation of foam cells. The results demonstrated that apoptosis and abnormal lipid accumulation in the RAW264.7 cells, which was induced by glucosamine, were significantly reversed by quercetin. In addition, quercetin treatment suppressed the increase of C/EBP homologous protein, and inhibited the activation of JNK and caspase‑12, which was induced by glucosamine. Quercetin also increased the expression level of full length activating transcriptional factor 6 and decreased the expression of glucose regulated protein 78. Of note, the beneficial effects of quercetin on the glucosamine‑induced RAW264.7 cells were reversed by treatment with tunicamycin. These findings suggest that quercetin may have properties to prevent glucosamine‑induced apoptosis and lipid accumulation via the ER stress pathway in RAW264.7 macrophages.
Collapse
Affiliation(s)
- Xiaxia Cai
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, P.R. China
| | - Lei Bao
- Department of Clinical Nutrition, Peking University International Hospital, Beijing 102206, P.R. China
| | - Xiaoqian Dai
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, P.R. China
| | - Ye Ding
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, P.R. China
| | - Zhaofeng Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, P.R. China
| | - Yong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, P.R. China
| |
Collapse
|
275
|
XBP1-Independent UPR Pathways Suppress C/EBP-β Mediated Chondrocyte Differentiation in ER-Stress Related Skeletal Disease. PLoS Genet 2015; 11:e1005505. [PMID: 26372225 PMCID: PMC4651170 DOI: 10.1371/journal.pgen.1005505] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 08/14/2015] [Indexed: 12/20/2022] Open
Abstract
Schmid metaphyseal chondrodysplasia (MCDS) involves dwarfism and growth plate cartilage hypertrophic zone expansion resulting from dominant mutations in the hypertrophic zone collagen, Col10a1. Mouse models phenocopying MCDS through the expression of an exogenous misfolding protein in the endoplasmic reticulum (ER) in hypertrophic chondrocytes have demonstrated the central importance of ER stress in the pathology of MCDS. The resultant unfolded protein response (UPR) in affected chondrocytes involved activation of canonical ER stress sensors, IRE1, ATF6, and PERK with the downstream effect of disrupted chondrocyte differentiation. Here, we investigated the role of the highly conserved IRE1/XBP1 pathway in the pathology of MCDS. Mice with a MCDS collagen X p.N617K knock-in mutation (ColXN617K) were crossed with mice in which Xbp1 was inactivated specifically in cartilage (Xbp1CartΔEx2), generating the compound mutant, C/X. The severity of dwarfism and hypertrophic zone expansion in C/X did not differ significantly from ColXN617K, revealing surprising redundancy for the IRE1/XBP1 UPR pathway in the pathology of MCDS. Transcriptomic analyses of hypertrophic zone cartilage identified differentially expressed gene cohorts in MCDS that are pathologically relevant (XBP1-independent) or pathologically redundant (XBP1-dependent). XBP1-independent gene expression changes included large-scale transcriptional attenuation of genes encoding secreted proteins and disrupted differentiation from proliferative to hypertrophic chondrocytes. Moreover, these changes were consistent with disruption of C/EBP-β, a master regulator of chondrocyte differentiation, by CHOP, a transcription factor downstream of PERK that inhibits C/EBP proteins, and down-regulation of C/EBP-β transcriptional co-factors, GADD45-β and RUNX2. Thus we propose that the pathology of MCDS is underpinned by XBP1 independent UPR-induced dysregulation of C/EBP-β-mediated chondrocyte differentiation. Our data suggest that modulation of C/EBP-β activity in MCDS chondrocytes may offer therapeutic opportunities. A significant component of the molecular pathology of many inherited skeletal disorders caused by mutations that cause misfolding and intracellular retention of extracellular matrix proteins is the induction of a cellular response to endoplasmic reticulum stress called the unfolded protein response (UPR). In the case of Schmid metaphyseal chondrodysplasia (MCDS) caused by collagen X misfolding mutations, the consequences of the UPR have been shown to be the central cause of the cartilage pathology. Thus understanding the involvement of canonical UPR sensors, IRE1, ATF6, and PERK and their downstream signalling effects on chondrocyte differentiation and function is important for defining disease mechanisms and devising new therapies. Using a mouse model expressing misfolding collagen X and lacking IRE1/XBP1 pathway activity in chondrocytes, we demonstrate that this highly conserved UPR pathway is redundant to the cartilage pathology thus implicating XBP1-independent UPR signalling pathways. Based on detailed analysis of gene expression patterns we propose that XBP1-independent UPR driven disruption of C/EBP-β, a master regulator of chondrocyte differentiation, is important for the pathophysiology. Strategies designed to modulate C/EBP-β activity may thus offer therapeutic opportunities.
Collapse
|
276
|
Babayev E, Lalioti MD, Favero F, Seli E. Cross-Talk Between FSH and Endoplasmic Reticulum Stress: A Mutually Suppressive Relationship. Reprod Sci 2015; 23:352-64. [PMID: 26342052 DOI: 10.1177/1933719115602770] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Suboptimal cellular conditions result in the accumulation of unfolded proteins in the endoplasmic reticulum (ER) and trigger ER stress. In this study, we investigated the effects of follicle stimulating hormone (FSH) on ER stress in granulosa cells (GCs) obtained from 3-week-old female C57BL6 mice 24 or 48 hours after intraperitoneal injection of 5 IU pregnant mare's serum gonadotropin (PMSG), and in primary mouse GCs in culture treated with FSH (10-100 mIU/mL) for 24 or 48 hours. Moreover, mouse GCs in culture were treated with tunicamycin (Tm) or thapsigargin (Tp), which induce ER stress by inhibiting N-glycosylation of ER proteins and ER calcium adenosine triphosphatase, respectively, and their response to FSH was evaluated. We found that FSH attenuated ER stress in mouse GCs in vivo and in vitro; messenger RNA levels of ER stress-associated genes Xbp1s, Atf6, Chop, and Casp12 were decreased upon exposure to FSH/PMSG. Activating transcription factor 4 protein levels also demonstrated consistent decrease following FSH stimulation. Both Tm and Tp treatments inhibited FSH response, ER stress-induced cells did not show any change in estradiol levels in response to FSH, whereas in untreated GCs, estradiol production increased 3-fold after incubation with FSH for 60 hours. Furthermore, ER stress-induced cells failed to demonstrate aromatase (Cyp19a1) expression upon exposure to FSH. Importantly, under high-ER stress conditions FSH stimulation was unable to downregulate the expression of ER stress-associated genes. Our findings suggest that FSH decreases ER stress in GCs under physiologic conditions. However, under conditions that cause a significant increase in ER stress, FSH response is attenuated.
Collapse
Affiliation(s)
- Elnur Babayev
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Maria D Lalioti
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA Biogen Idec, Cambridge, MA, USA
| | - Federico Favero
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Emre Seli
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
277
|
Ashraf NU, Sheikh TA. Endoplasmic reticulum stress and Oxidative stress in the pathogenesis of Non-alcoholic fatty liver disease. Free Radic Res 2015. [PMID: 26223319 DOI: 10.3109/10715762.2015.1078461] [Citation(s) in RCA: 226] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of metabolic syndrome. The underlying causes of the disease progression in NAFLD are unclear. Recent evidences suggest endoplasmic reticulum stress in the development of lipid droplets (steatosis) and subsequent generation of reactive oxygen species (ROS) in the progression to non-alcoholic steatohepatitis (NASH). The signalling pathway activated by disruption of endoplasmic reticulum (ER) homoeostasis, called as unfolded protein response, is linked with membrane biosynthesis, insulin action, inflammation and apoptosis. ROS are important mediators of inflammation. Protein folding in ER is linked to ROS. Therefore understanding the basic mechanisms that lead to ER stress and ROS in NAFLD have become the topics of immense interest. The present review focuses on the role of ER stress and ROS in the pathogenesis of NAFLD. We also highlight the cross talk between ER stress and oxidative stress which suggest and encourage the development of therapeutics for NAFLD. Further we have reviewed various strategies used for the management of NAFLD/NASH and limitations of such strategies. Our review therefore highlights the need for newer strategies with regards to ER stress and oxidative stress.
Collapse
Affiliation(s)
- N U Ashraf
- a Academy of Scientific and Innovative Research (AcSIR) , New Delhi , India.,b PK-PD and Toxicology Division, CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu Tawi , Jammu and Kashmir , India
| | - T A Sheikh
- a Academy of Scientific and Innovative Research (AcSIR) , New Delhi , India.,b PK-PD and Toxicology Division, CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu Tawi , Jammu and Kashmir , India
| |
Collapse
|
278
|
Endoplasmic Reticulum Stress-Related Genes in Yellow Catfish Pelteobagrus fulvidraco: Molecular Characterization, Tissue Expression, and Expression Responses to Dietary Copper Deficiency and Excess. G3-GENES GENOMES GENETICS 2015; 5:2091-104. [PMID: 26276384 PMCID: PMC4592992 DOI: 10.1534/g3.115.019950] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Two endoplasmic reticulum (ER) molecular chaperones [glucose-regulated protein 78 (grp78) and calreticulin (crt)] and three ER stress sensors [PKR-like ER kinase (perk), inositol requiring enzyme (ire)-1α, and activating transcription factor (atf)-6α] cDNAs were first characterized from yellow catfish, Pelteobagrus fulvidraco. The predicted amino acid sequences for the yellow catfish grp78, crt, perk, ire-1α, and atf-6α revealed that the proteins contained all of the structural features that were characteristic of the five genes in other species, including the KDEL motif, signal peptide, sensor domain, and effector domain. mRNAs of the five genes mentioned above were expressed in various tissues, but their mRNA levels varied among tissues. Dietary Cu excess, but not Cu deficiency, activated the chaperones (grp78 and crt) and folding sensors in ER, and the UPR signaling pathways (i.e., perk–eif2α and the ire1–xbp1) in a tissue-specific manner. For the first time, our study cloned grp78, crt, perk, ire-1α, and atf-6α genes in yellow catfish and demonstrated their differential expression among tissues. Moreover, the present study also indicated differential regulation of these ER stress–related genes by dietary Cu deficiency and excess, which will be beneficial for us to evaluate effects of dietary Cu levels in fish at the molecular level, based on the upstream pathway of lipid metabolism (the ER) and thus provide novel insights regarding the nutrition of Cu in fish.
Collapse
|
279
|
Fernandes AE, de Melo ME, Fujiwara CTH, Pioltine MB, Matioli SR, Santos A, Cercato C, Halpern A, Mancini MC. Associations between a common variant near the MC4R gene and serum triglyceride levels in an obese pediatric cohort. Endocrine 2015; 49:653-8. [PMID: 25948074 DOI: 10.1007/s12020-015-0616-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/21/2015] [Indexed: 11/25/2022]
Abstract
Polymorphisms near the MC4R gene may be related to an increased risk for obesity, but studies of variations in this gene and its relation to cardiometabolic profiles and food intake are scarce and controversial. The aim of this study is to evaluate the influence of the variants rs12970134 and rs17782313 near the MC4R gene in food intake, binge eating (BE) behavior, anthropometric parameters, body composition, metabolic profile, and cardiometabolic risk factors in obese children and adolescents. This is a cross-sectional study that included obese children and adolescents. We evaluated anthropometric, metabolic parameters and cardiometabolic risk factors, including hypertension, impaired fasting glucose, hypertriglyceridemia, and low HDL-cholesterol. BE was assessed through the BE scale, and a 24-h recall was used to evaluate total caloric intake and percentage of macronutrients and types of dietary fat. The MC4R variants rs12970134 and rs17782313 were genotyped using TaqMan assay. To assess the magnitude of risk, a logistic regression adjusted for Z-BMI, age, and gender was performed, adopting the significance level of 0.05. The study included 518 subjects (52.1 % girls, 12.7 ± 2.7 years old, Z-BMI = 3.24 ± 0.57). Carriers of the variant rs17782313 exhibit increased triglyceride levels (108 ± 48 vs. 119 ± 54, p = 0.034) and an increased risk of hypertriglyceridemia (OR 1.985, 95 % CI 1.288-3.057, p = 0.002). There was no association of the SNP rs12970134 with clinical, metabolic, or nutritional parameters. The variant rs12970134 and rs17782313 did not influence food intake or the presence of BE. The variant rs17782313 is associated with an increased risk of hypertriglyceridemia in obese children and adolescents.
Collapse
Affiliation(s)
- Ariana Ester Fernandes
- League of Childhood Obesity, Service of Endocrinology and Metabolism, Faculty of Medicine, Hospital das Clinicas, University of Sao Paulo, Av. Dr. Eneas de Carvalho Aguiar, 255, 7º andar, sala 7037, Sao Paulo, SP, 05403-000, Brazil,
| | | | | | | | | | | | | | | | | |
Collapse
|
280
|
Qin W, Zhang X, Yang L, Xu L, Zhang Z, Wu J, Wang Y. Microcystin-LR altered mRNA and protein expression of endoplasmic reticulum stress signaling molecules related to hepatic lipid metabolism abnormalities in mice. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 40:114-121. [PMID: 26093960 DOI: 10.1016/j.etap.2015.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 04/27/2015] [Accepted: 05/01/2015] [Indexed: 06/04/2023]
Abstract
To explore the effects of microcystin-LR (MC-LR), a hepatotoxin, on the incidence of liver lipid metabolism abnormality, and the potential molecular mechanisms of action, healthy male Balb/c mice were intraperitoneally injected with MC-LR at doses of 0, 5, 10, and 20 μg/kg/d for 14 days. Hepatic histopathology and serum lipid parameters of mice were determined, and the changes of mRNA and protein expression of endoplasmic reticulum (ER) stress signaling molecules related to the lipid metabolism abnormalities in the livers of mice were investigated by quantitative real-time polymerase chain reaction (qPCR) and Western blotting, respectively. The results indicated that 5-20 μg/kg/d MC-LR altered serum lipid parameters and caused hepatic steatosis. MC-LR treatment at 10 or 20 μg/kg/d changed mRNA and protein expression of ER stress signaling molecules, including upregulation of mRNA and protein expression of activating transcription factor 6 (ATF6), pancreatic ER eukaryotic translation initiation factor 2α (eIF-2α) kinase (PERK), and eIF-2α. MC-LR exposure at 10 or 20 μg/kg/d also altered mRNA and protein expression of downstream factors and genes of ER stress signaling pathways, including the downregulation of sterol regulatory element binding protein 1c (SREBP-1c) and fatty acid synthase (FASn), and upregulation of acetyl-coenzyme A carboxylase α (ACACA) and glycogen synthase kinase 3β (Gsk-3β). Our results reveal that ER stress plays a significant role in hepatic lipid metabolism abnormalities in mice exposed to MC-LR.
Collapse
Affiliation(s)
- Wendi Qin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Guangxi Zhuang Autonomous Region Forestry Science Research Institute, Nanning 530002, China
| | - Xuxiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Liuyan Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Lizhi Xu
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
| | - Zongyao Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jun Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yaping Wang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
| |
Collapse
|
281
|
Yang X, Du T, Wang X, Zhang Y, Hu W, Du X, Miao L, Han C. IDH1, a CHOP and C/EBPβ-responsive gene under ER stress, sensitizes human melanoma cells to hypoxia-induced apoptosis. Cancer Lett 2015; 365:201-10. [PMID: 26049021 DOI: 10.1016/j.canlet.2015.05.027] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/22/2015] [Accepted: 05/29/2015] [Indexed: 01/07/2023]
Abstract
Isocitrate dehydrogenase1 (IDH1) is of great importance in cell metabolism and energy conversion. However, alterations in IDH1 in response to stress and excise-regulated mechanisms are not well described. Here we investigated gene expression profiles under ER stress in melanoma cells and found that IDH1 was dramatically increased with ER stress induced by tunicamycin. Elevated IDH1 subsequently sensitized human melanoma cells to hypoxia-induced apoptosis and promoted HIF-1α degradation. In addition, we revealed that CHOP and C/EBPβ were involved in hypoxia-induced apoptosis via transcriptional regulation of IDH1 expression. Our data indicate that IDH1, regulated by CHOP and C/EBPβ in response to ER stress treatment, inhibits survival of melanoma cells under hypoxia and promotes HIF-1α degradation. Therefore, we propose that IDH1 may serve as a valuable target for melanoma therapy.
Collapse
Affiliation(s)
- Xuejun Yang
- Institute of Cancer Stem Cell, Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Tongde Du
- Institute of Cancer Stem Cell, Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Xiang Wang
- Institute of Cancer Stem Cell, Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Yingqiu Zhang
- Institute of Cancer Stem Cell, Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Wanglai Hu
- Department of Immunology, Anhui Medical University, Hefei, Anhui 230601, China
| | - Xiaofeng Du
- Institute of Cancer Stem Cell, Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Lin Miao
- Oncology Department, The Second Hospital of Anhui Medical University, Hefei, Anhui 230601, China.
| | - Chuanchun Han
- Institute of Cancer Stem Cell, Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
282
|
Kohl S, Zobor D, Chiang WC, Weisschuh N, Staller J, Gonzalez Menendez I, Chang S, Beck SC, Garcia Garrido M, Sothilingam V, Seeliger MW, Stanzial F, Benedicenti F, Inzana F, Héon E, Vincent A, Beis J, Strom TM, Rudolph G, Roosing S, Hollander AID, Cremers FPM, Lopez I, Ren H, Moore AT, Webster AR, Michaelides M, Koenekoop RK, Zrenner E, Kaufman RJ, Tsang SH, Wissinger B, Lin JH. Mutations in the unfolded protein response regulator ATF6 cause the cone dysfunction disorder achromatopsia. Nat Genet 2015; 47:757-65. [PMID: 26029869 DOI: 10.1038/ng.3319] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 05/04/2015] [Indexed: 01/10/2023]
Abstract
Achromatopsia (ACHM) is an autosomal recessive disorder characterized by color blindness, photophobia, nystagmus and severely reduced visual acuity. Using homozygosity mapping and whole-exome and candidate gene sequencing, we identified ten families carrying six homozygous and two compound-heterozygous mutations in the ATF6 gene (encoding activating transcription factor 6A), a key regulator of the unfolded protein response (UPR) and cellular endoplasmic reticulum (ER) homeostasis. Patients had evidence of foveal hypoplasia and disruption of the cone photoreceptor layer. The ACHM-associated ATF6 mutations attenuate ATF6 transcriptional activity in response to ER stress. Atf6(-/-) mice have normal retinal morphology and function at a young age but develop rod and cone dysfunction with increasing age. This new ACHM-related gene suggests a crucial and unexpected role for ATF6A in human foveal development and cone function and adds to the list of genes that, despite ubiquitous expression, when mutated can result in an isolated retinal photoreceptor phenotype.
Collapse
Affiliation(s)
- Susanne Kohl
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Ditta Zobor
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Wei-Chieh Chiang
- Department of Pathology, University of California, San Diego, La Jolla, California, USA
| | - Nicole Weisschuh
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Jennifer Staller
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Irene Gonzalez Menendez
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Stanley Chang
- 1] Department of Ophthalmology, Columbia University, New York, New York, USA. [2] Edward Harkness Eye Institute, New York Presbyterian Hospital, New York, New York, USA
| | - Susanne C Beck
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Marina Garcia Garrido
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Vithiyanjali Sothilingam
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Mathias W Seeliger
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Franco Stanzial
- Clinical Genetics Service, Regional Hospital Bozen, Bozen, Italy
| | | | - Francesca Inzana
- Clinical Genetics Service, Regional Hospital Bozen, Bozen, Italy
| | - Elise Héon
- Department of Ophthalmology and Vision Sciences, Programme of Genetics and Genomic Medicine, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Ajoy Vincent
- Department of Ophthalmology and Vision Sciences, Programme of Genetics and Genomic Medicine, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Jill Beis
- Medical Genetics, IWK Health Centre, Halifax, Nova Scotia, Canada
| | - Tim M Strom
- 1] Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany. [2] Institute of Human Genetics, Technische Universität München, Munich, Germany
| | - Günther Rudolph
- University Eye Hospital, Ludwig Maximilians University, Munich, Germany
| | - Susanne Roosing
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Anneke I den Hollander
- 1] Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands. [2] Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Irma Lopez
- McGill Ocular Genetics Centre, McGill University Health Centre, Montreal, Quebec, Canada
| | - Huanan Ren
- McGill Ocular Genetics Centre, McGill University Health Centre, Montreal, Quebec, Canada
| | - Anthony T Moore
- 1] University College London Institute of Ophthalmology, University College London, London, UK. [2] Moorfields Eye Hospital, London, UK. [3] Ophthalmology Department, University of California San Francisco Medical School, San Francisco, California, USA
| | - Andrew R Webster
- 1] University College London Institute of Ophthalmology, University College London, London, UK. [2] Moorfields Eye Hospital, London, UK
| | - Michel Michaelides
- 1] University College London Institute of Ophthalmology, University College London, London, UK. [2] Moorfields Eye Hospital, London, UK
| | - Robert K Koenekoop
- McGill Ocular Genetics Centre, McGill University Health Centre, Montreal, Quebec, Canada
| | - Eberhart Zrenner
- 1] Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany. [2] Werner Reichardt Center for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Randal J Kaufman
- Degenerative Diseases Program, Sanford-Burnham Medical Research Institute, La Jolla, California, USA
| | - Stephen H Tsang
- 1] Department of Ophthalmology, Columbia University, New York, New York, USA. [2] Jonas Laboratory of Stem Cell and Regenerative Medicine, Columbia University, New York, New York, USA. [3] Brown Glaucoma Laboratory, Columbia University, New York, New York, USA. [4] Institute of Human Nutrition, Columbia University, New York, New York, USA. [5] Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| | - Bernd Wissinger
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Jonathan H Lin
- 1] Department of Pathology, University of California, San Diego, La Jolla, California, USA. [2] Department of Ophthalmology, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
283
|
Soyal SM, Nofziger C, Dossena S, Paulmichl M, Patsch W. Targeting SREBPs for treatment of the metabolic syndrome. Trends Pharmacol Sci 2015; 36:406-16. [PMID: 26005080 DOI: 10.1016/j.tips.2015.04.010] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 04/20/2015] [Accepted: 04/23/2015] [Indexed: 12/11/2022]
Abstract
Over the past few decades, mortality resulting from cardiovascular disease (CVD) steadily decreased in western countries; however, in recent years, the decline has become offset by the increase in obesity. Obesity is strongly associated with the metabolic syndrome and its atherogenic dyslipidemia resulting from insulin resistance. While lifestyle treatment would be effective, drugs targeting individual risk factors are often required. Such treatment may result in polypharmacy. Novel approaches are directed towards the treatment of several risk factors with one drug. Studies in animal models and humans suggest a central role for sterol regulatory-element binding proteins (SREBPs) in the pathophysiology of the metabolic syndrome. Four recent studies targeting the maturation or transcriptional activities of SREBPs provide proof of concept for the efficacy of SREBP inhibition in this syndrome.
Collapse
Affiliation(s)
- Selma M Soyal
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Salzburg, Austria
| | - Charity Nofziger
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Salzburg, Austria
| | - Silvia Dossena
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Salzburg, Austria
| | - Markus Paulmichl
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Salzburg, Austria
| | - Wolfgang Patsch
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Salzburg, Austria.
| |
Collapse
|
284
|
Valdés A, Sullini G, Ibáñez E, Cifuentes A, García-Cañas V. Rosemary polyphenols induce unfolded protein response and changes in cholesterol metabolism in colon cancer cells. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.03.043] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
285
|
Li JS, Wang WJ, Sun Y, Zhang YH, Zheng L. Ursolic acid inhibits the development of nonalcoholic fatty liver disease by attenuating endoplasmic reticulum stress. Food Funct 2015; 6:1643-51. [PMID: 25892149 DOI: 10.1039/c5fo00083a] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ursolic acid (UA) is a natural pentacyclic triterpenoid compound, which is enriched with many herbs and plants, such as apple, cranberry and olive. UA performs multiple biological activities including anti-oxidation, anti-inflammation, anti-cancer and hepatoprotection. However, the exact mechanism underlying the hepatoprotective activity of UA remains unclear. In this study, the effects of UA on the development of nonalcoholic fatty liver disease (NAFLD) were investigated. In vivo, UA treatment (0.14%, w/w) significantly decreased the liver weight, serum levels of ALT/AST and hepatic steatosis in db/db mice (a type 2 diabetic mouse model). In vitro, UA treatment (10-30 μg ml(-1)) significantly decreased palmitic acid induced intracellular lipid accumulation in L02 cells. Our results suggested that the beneficial effects of UA on NAFLD may be due to its ability to increase lipid β-oxidation and to inhibit the hepatic endoplasmic reticulum (ER) stress. Together, UA may be further considered as a natural compound for NAFLD treatment.
Collapse
Affiliation(s)
- Jian-Shuang Li
- College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China.
| | | | | | | | | |
Collapse
|
286
|
Zhang Q, Li Y, Liang T, Lu X, Zhang C, Liu X, Jiang X, Martin RC, Cheng M, Cai L. ER stress and autophagy dysfunction contribute to fatty liver in diabetic mice. Int J Biol Sci 2015; 11:559-68. [PMID: 25892963 PMCID: PMC4400387 DOI: 10.7150/ijbs.10690] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 01/15/2015] [Indexed: 12/13/2022] Open
Abstract
Diabetes mellitus and nonalcoholic fatty liver disease (NAFLD) are often identified in patients simultaneously. Recent evidence suggests that endoplasmic reticulum (ER) stress and autophagy dysfunction play an important role in hepatocytes injury and hepatic lipid metabolism, however the mechanistic interaction between diabetes and NAFLD is largely unknown. In this study, we used a diabetic mouse model to study the interplay between ER stress and autophagy during the pathogenic transformation of NAFLD. The coexist of inflammatory hepatic injury and hepatic accumulation of triglycerides (TGs) stored in lipid droplets indicated development of steatohepatitis in the diabetic mice. The alterations of components for ER stress signaling including ATF6, GRP78, CHOP and caspase12 indicated increased ER stress in liver tissues in early stage but blunted in the later stage during the development of diabetes. Likewise, autophagy functioned well in the early stage but suppressed in the later stage. The inactivation of unfolded protein response and suppression of autophagy were positively related to the development of steatohepatitis, which linked to metabolic abnormalities in the compromised hepatic tissues in diabetic condition. We conclude that the adaption of ER stress and impairment of autophagy play an important role to exacerbate lipid metabolic disorder contributing to steatohepatitis in diabetes.
Collapse
Affiliation(s)
- Quan Zhang
- 1. Department of Infectious Diseases, Affiliated Hospital of Guiyang Medical College, Guiyang, Guizhou, China, 550004 ; 4. Kosair Children's Hospital Research Institute, the Department of Pediatrics of the University of Louisville, Louisville, KY 40202, USA
| | - Yan Li
- 2. Department of Surgery, School of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Tingting Liang
- 1. Department of Infectious Diseases, Affiliated Hospital of Guiyang Medical College, Guiyang, Guizhou, China, 550004 ; 4. Kosair Children's Hospital Research Institute, the Department of Pediatrics of the University of Louisville, Louisville, KY 40202, USA
| | - Xuemian Lu
- 3. Chinese-American Research Institute for Diabetic Complications RuiAn Center, the Department of Endocrinology, The Third Affiliated Hospital of Wenzhou Medical University, Ruian, Zhejiang, China, 325200
| | - Chi Zhang
- 3. Chinese-American Research Institute for Diabetic Complications RuiAn Center, the Department of Endocrinology, The Third Affiliated Hospital of Wenzhou Medical University, Ruian, Zhejiang, China, 325200
| | - Xingkai Liu
- 4. Kosair Children's Hospital Research Institute, the Department of Pediatrics of the University of Louisville, Louisville, KY 40202, USA ; 5. The First Hospital of Jilin University, Changchun, China 130021
| | - Xin Jiang
- 5. The First Hospital of Jilin University, Changchun, China 130021
| | - Robert C Martin
- 2. Department of Surgery, School of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Mingliang Cheng
- 1. Department of Infectious Diseases, Affiliated Hospital of Guiyang Medical College, Guiyang, Guizhou, China, 550004
| | - Lu Cai
- 3. Chinese-American Research Institute for Diabetic Complications RuiAn Center, the Department of Endocrinology, The Third Affiliated Hospital of Wenzhou Medical University, Ruian, Zhejiang, China, 325200 ; 4. Kosair Children's Hospital Research Institute, the Department of Pediatrics of the University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
287
|
Dong K, Li H, Zhang M, Jiang S, Chen S, Zhou J, Dai Z, Fang Q, Jia W. Endoplasmic reticulum stress induces up-regulation of hepatic β-Klotho expression through ATF4 signaling pathway. Biochem Biophys Res Commun 2015; 459:300-305. [PMID: 25727012 DOI: 10.1016/j.bbrc.2015.02.104] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 02/18/2015] [Indexed: 12/27/2022]
Abstract
Fibroblast growth factor 21 (FGF21) plays critical roles in regulating glucose and lipid metabolism. β-Klotho is the co-receptor for mediating FGF21 signaling, and the mRNA levels of this receptor are increased in the liver of human subjects with obesity. However, the molecular mechanisms underlying the regulation of β-klotho expression remain poorly defined. Here, we report that elevation of β-klotho protein expression in diet-induced obese mice and human patients is associated with increased endoplasmic reticulum (ER) stress. In vivo study indicates that administration of the ER stressor tunicamycin in mice led to increased expression of β-klotho in the liver. In addition, we show that ER stress is sufficient to potentiate FGF21 signaling in HepG2 cell and ATF4 signaling pathway is essential for mediating the effect of ER stress on β-klotho expression. These findings demonstrate a link of ER stress with up-regulation of hepatic β-klotho expression and the molecular mechanism underlying ER stress-regulated FGF21 signaling.
Collapse
Affiliation(s)
- Kun Dong
- Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Huating Li
- Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Mingliang Zhang
- Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Shan Jiang
- Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Shuqin Chen
- Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jian Zhou
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhi Dai
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qichen Fang
- Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Weiping Jia
- Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| |
Collapse
|
288
|
Vacaru AM, Di Narzo AF, Howarth DL, Tsedensodnom O, Imrie D, Cinaroglu A, Amin S, Hao K, Sadler KC. Molecularly defined unfolded protein response subclasses have distinct correlations with fatty liver disease in zebrafish. Dis Model Mech 2015; 7:823-35. [PMID: 24973751 PMCID: PMC4073272 DOI: 10.1242/dmm.014472] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The unfolded protein response (UPR) is a complex network of sensors and target genes that ensure efficient folding of secretory proteins in the endoplasmic reticulum (ER). UPR activation is mediated by three main sensors, which regulate the expression of hundreds of targets. UPR activation can result in outcomes ranging from enhanced cellular function to cell dysfunction and cell death. How this pathway causes such different outcomes is unknown. Fatty liver disease (steatosis) is associated with markers of UPR activation and robust UPR induction can cause steatosis; however, in other cases, UPR activation can protect against this disease. By assessing the magnitude of activation of UPR sensors and target genes in the liver of zebrafish larvae exposed to three commonly used ER stressors (tunicamycin, thapsigargin and Brefeldin A), we have identified distinct combinations of UPR sensors and targets (i.e. subclasses) activated by each stressor. We found that only the UPR subclass characterized by maximal induction of UPR target genes, which we term a stressed-UPR, induced steatosis. Principal component analysis demonstrated a significant positive association between UPR target gene induction and steatosis. The same principal component analysis showed significant correlation with steatosis in samples from patients with fatty liver disease. We demonstrate that an adaptive UPR induced by a short exposure to thapsigargin prior to challenging with tunicamycin reduced both the induction of a stressed UPR and steatosis incidence. We conclude that a stressed UPR causes steatosis and an adaptive UPR prevents it, demonstrating that this pathway plays dichotomous roles in fatty liver disease.
Collapse
Affiliation(s)
- Ana M Vacaru
- Department of Medicine/Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA. Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, Box 1020, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Antonio Fabio Di Narzo
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Deanna L Howarth
- Department of Medicine/Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA. Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, Box 1020, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Orkhontuya Tsedensodnom
- Department of Medicine/Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA. Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, Box 1020, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Dru Imrie
- Department of Medicine/Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA. Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, Box 1020, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Ayca Cinaroglu
- Department of Medicine/Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA. Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, Box 1020, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Salma Amin
- Department of Medicine/Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA. Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, Box 1020, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Ke Hao
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kirsten C Sadler
- Department of Medicine/Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA. Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, Box 1020, 1 Gustave L. Levy Place, New York, NY 10029, USA. Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
289
|
Afrin R, Arumugam S, Soetikno V, Thandavarayan RA, Pitchaimani V, Karuppagounder V, Sreedhar R, Harima M, Suzuki H, Miyashita S, Nomoto M, Suzuki K, Watanabe K. Curcumin ameliorates streptozotocin-induced liver damage through modulation of endoplasmic reticulum stress-mediated apoptosis in diabetic rats. Free Radic Res 2015; 49:279-89. [PMID: 25536420 PMCID: PMC4389763 DOI: 10.3109/10715762.2014.999674] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We investigated the effect of curcumin on liver injury in diabetic rats induced by streptozotocin (STZ) through modulation of endoplasmic reticulum stress (ERS) and unfolded protein response (UPR). Experimental diabetes was induced by a single intraperitoneal injection of STZ (55 mg/kg), and curcumin was given at 100 mg/kg by gavage for 56 days. We observed that curcumin improved the morphological and histopathological changes, significantly decreased hepatic ERS marker protein: glucose-regulated protein 78, and improved liver function in diabetic rats. Moreover, treatment with curcumin markedly decreased the sub-arm of the UPR signaling protein such as phospho-double-stranded RNA-dependent protein kinase-like ER kinase, CCAAT/enhancer-binding protein homologous protein, tumor necrosis factor receptor-associated factor 2, and inositol-requiring enzyme1α; and inhibited tumor necrosis factor α, interleukin 1β, phospho-p38 mitogen-activated protein kinase, and apoptosis signal-regulating kinase 1 in liver tissues of diabetic rats. Apoptotic and anti-apoptotic signaling proteins, such as cleaved caspase-3 and B-cell lymphoma 2, were significantly increased and decreased, respectively in diabetic rats; curcumin treatment prevented all of these alterations. In summary, our results indicate that curcumin has the potential to protect the diabetic liver by modulating hepatic ERS-mediated apoptosis, and provides a novel therapeutic strategy for the diabetic liver damage.
Collapse
Affiliation(s)
- R Afrin
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences , Niigata , Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
290
|
Abstract
The liver is an essential metabolic organ, and its metabolic function is controlled by insulin and other metabolic hormones. Glucose is converted into pyruvate through glycolysis in the cytoplasm, and pyruvate is subsequently oxidized in the mitochondria to generate ATP through the TCA cycle and oxidative phosphorylation. In the fed state, glycolytic products are used to synthesize fatty acids through de novo lipogenesis. Long-chain fatty acids are incorporated into triacylglycerol, phospholipids, and/or cholesterol esters in hepatocytes. These complex lipids are stored in lipid droplets and membrane structures, or secreted into the circulation as very low-density lipoprotein particles. In the fasted state, the liver secretes glucose through both glycogenolysis and gluconeogenesis. During pronged fasting, hepatic gluconeogenesis is the primary source for endogenous glucose production. Fasting also promotes lipolysis in adipose tissue, resulting in release of nonesterified fatty acids which are converted into ketone bodies in hepatic mitochondria though β-oxidation and ketogenesis. Ketone bodies provide a metabolic fuel for extrahepatic tissues. Liver energy metabolism is tightly regulated by neuronal and hormonal signals. The sympathetic system stimulates, whereas the parasympathetic system suppresses, hepatic gluconeogenesis. Insulin stimulates glycolysis and lipogenesis but suppresses gluconeogenesis, and glucagon counteracts insulin action. Numerous transcription factors and coactivators, including CREB, FOXO1, ChREBP, SREBP, PGC-1α, and CRTC2, control the expression of the enzymes which catalyze key steps of metabolic pathways, thus controlling liver energy metabolism. Aberrant energy metabolism in the liver promotes insulin resistance, diabetes, and nonalcoholic fatty liver diseases.
Collapse
Affiliation(s)
- Liangyou Rui
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
291
|
Mei Y, Thompson MD, Shiraishi Y, Cohen RA, Tong X. Sarcoplasmic/endoplasmic reticulum Ca2+ ATPase C674 promotes ischemia- and hypoxia-induced angiogenesis via coordinated endothelial cell and macrophage function. J Mol Cell Cardiol 2014; 76:275-82. [PMID: 25260714 PMCID: PMC4250384 DOI: 10.1016/j.yjmcc.2014.09.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 09/10/2014] [Accepted: 09/15/2014] [Indexed: 12/22/2022]
Abstract
Ischemia is a complex phenomenon modulated by the concerted action of several cell types. We have identified that sarcoplasmic/endoplasmic reticulum Ca(2+) ATPase 2 (SERCA 2) cysteine 674 (C674) S-glutathiolation is essential for ischemic angiogenesis, vascular endothelial growth factor (VEGF)-mediated endothelial cell (EC) migration and network formation. A heterozygote SERCA 2 C674S knockin (SKI) mouse shows impaired ischemic blood flow recovery after femoral artery ligation, and its ECs show depleted endoplasmic reticulum (ER) Ca(2+) stores and impaired angiogenic behavior. Here we studied the role of SERCA 2 C674 in the interaction between ECs and macrophages in the context of ischemia and discovered the involvement of the ER stress response protein, ER oxidoreductin-1α (ERO1). In wild type (WT) mice, expression of ERO1 was increased in the ischemic hind limb in vivo, as well as in ECs and macrophages exposed to hypoxia in vitro. The increase in ERO1 to ischemia/hypoxia was less in SKI mice. In WT ECs, both vascular cell adhesion molecule 1 (VCAM1) expression and bone marrow-derived macrophage adhesion to ECs were increased by hypoxia, and both were attenuated in SKI ECs. In WT ECs, ERO1 siRNA blocked hypoxia-induced VCAM1 expression and macrophage adhesion. In WT macrophages, hypoxia also stimulated both ERO1 and VEGF expression, and both were less in SKI macrophages. Compared with conditioned media of hypoxic SKI macrophages, conditioned media from WT macrophages had a greater effect on EC angiogenic behavior, and were blocked by VEGF neutralizing antibody. Taken together, under hypoxic conditions, SERCA 2 C674 and ERO1 enable increased VCAM1 expression and macrophage adhesion to ECs, as well as macrophage VEGF production that, in turn, promote angiogenesis. This study highlights the hitherto unrecognized interaction of two ER proteins, SERCA 2 C674 and ERO1, which mediate the EC and macrophage angiogenic response to ischemia/hypoxia.
Collapse
Affiliation(s)
- Yu Mei
- Vascular Biology Section, Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA
| | - Melissa D Thompson
- Vascular Biology Section, Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA
| | - Yasunaga Shiraishi
- Vascular Biology Section, Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA
| | - Richard A Cohen
- Vascular Biology Section, Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Xiaoyong Tong
- Innovative Drug Research Centre, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
292
|
Damiano F, Tocci R, Gnoni GV, Siculella L. Expression of citrate carrier gene is activated by ER stress effectors XBP1 and ATF6α, binding to an UPRE in its promoter. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:23-31. [PMID: 25450523 DOI: 10.1016/j.bbagrm.2014.10.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 10/17/2014] [Accepted: 10/21/2014] [Indexed: 01/04/2023]
Abstract
The Unfolded Protein Response (UPR) is an intracellular signaling pathway which is activated when unfolded or misfolded proteins accumulate in the Endoplasmic Reticulum (ER), a condition commonly referred to as ER stress. It has been shown that lipid biosynthesis is increased in ER-stressed cells. The N(ε)-lysine acetylation of ER-resident proteins, including chaperones and enzymes involved in the post-translational protein modification and folding, occurs upon UPR activation. In both ER proteins acetylation and lipid synthesis, acetyl-CoA is the donor of acetyl group and it is transported from the cytosol into the ER. The cytosolic pool of acetyl-CoA is mainly derived from the activity of mitochondrial citrate carrier (CiC). Here, we have demonstrated that expression of CiC is activated in human HepG2 and rat BRL-3A cells during tunicamycin-induced ER stress. This occurs through the involvement of an ER stress responsive region identified within the human and rat CiC proximal promoter. A functional Unfolded Protein Response Element (UPRE) confers responsiveness to the promoter activation by UPR transducers ATF6α and XBP1. Overall, our data demonstrate that CiC expression is activated during ER stress through the binding of ATF6α and XBP1 to an UPRE element located in the proximal promoter of Cic gene. The role of ER stress-mediated induction of CiC expression has been discussed.
Collapse
Affiliation(s)
- Fabrizio Damiano
- Laboratory of Biochemistry and Molecular Biology, Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Prov. le Lecce-Monteroni, Lecce 73100, Italy.
| | - Romina Tocci
- Laboratory of Biochemistry and Molecular Biology, Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Prov. le Lecce-Monteroni, Lecce 73100, Italy
| | - Gabriele Vincenzo Gnoni
- Laboratory of Biochemistry and Molecular Biology, Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Prov. le Lecce-Monteroni, Lecce 73100, Italy
| | - Luisa Siculella
- Laboratory of Biochemistry and Molecular Biology, Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Prov. le Lecce-Monteroni, Lecce 73100, Italy
| |
Collapse
|
293
|
Single-prolonged stress activates the transcription factor ATF6α branch of the unfolded protein response in rat neurons of dorsal raphe nucleus. Mol Cell Biochem 2014; 399:209-16. [DOI: 10.1007/s11010-014-2247-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 10/09/2014] [Indexed: 01/08/2023]
|
294
|
Choi YJ, Shin HS, Choi HS, Park JW, Jo I, Oh ES, Lee KY, Lee BH, Johnson RJ, Kang DH. Uric acid induces fat accumulation via generation of endoplasmic reticulum stress and SREBP-1c activation in hepatocytes. J Transl Med 2014; 94:1114-25. [PMID: 25111690 DOI: 10.1038/labinvest.2014.98] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 05/13/2014] [Accepted: 06/10/2014] [Indexed: 12/19/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is currently one of the most common types of chronic liver injury. Elevated serum uric acid is a strong predictor of the development of fatty liver as well as metabolic syndrome. Here we demonstrate that uric acid induces triglyceride accumulation by SREBP-1c activation via induction of endoplasmic reticulum (ER) stress in hepatocytes. Uric acid-induced ER stress resulted in an increase of glucose-regulated protein (GRP78/94), splicing of the X-box-binding protein-1 (XBP-1), the phosphorylation of protein kinase RNA-like ER kinase (PERK), and eukaryotic translation initiation factor-2α (eIF-2α) in cultured hepatocytes. Uric acid promoted hepatic lipogenesis through overexpression of the lipogenic enzyme, acetyl-CoA carboxylase 1 (ACC1), fatty acid synthase (FAS), and stearoyl-CoA desaturase 1 (SCD1) via activation of SREBP-1c, which was blocked by probenecid, an organic anion transport blocker in HepG2 cells and primary hepatocytes. A blocker of ER stress, tauroursodeoxycholic acid (TUDCA), and an inhibitor of SREBP-1c, metformin, blocked hepatic fat accumulation, suggesting that uric acid promoted fat synthesis in hepatocytes via ER stress-induced activation of SREBP-1c. Uric acid-induced activation of NADPH oxidase preceded ER stress, which further induced mitochondrial ROS production in hepatocytes. These studies provide new insights into the mechanisms by which uric acid stimulates fat accumulation in the liver.
Collapse
Affiliation(s)
- Yea-Jin Choi
- Department of Internal Medicine, Ewha Womans University School of Medicine, Ewha Medical Research Center, Seoul, Republic of Korea
| | - Hyun-Soo Shin
- Department of Internal Medicine, Ewha Womans University School of Medicine, Ewha Medical Research Center, Seoul, Republic of Korea
| | - Hack Sun Choi
- Department of Internal Medicine, Ewha Womans University School of Medicine, Ewha Medical Research Center, Seoul, Republic of Korea
| | - Joo-Won Park
- Department of Biochemistry, Ewha Womans University School of Medicine, Ewha Medical Research Center, Seoul, Republic of Korea
| | - Inho Jo
- Department of Molecular Medicine, Ewha Womans University School of Medicine, Ewha Medical Research Center, Seoul, Republic of Korea
| | - Eok-Soo Oh
- Department of Life Sciences, Division of Life and Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Kang-Yo Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Byung-Hoon Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Richard J Johnson
- The Division of Renal Diseases and Hypertension, University of Colorado Denver, Aurora, Colorado, USA
| | - Duk-Hee Kang
- Department of Internal Medicine, Ewha Womans University School of Medicine, Ewha Medical Research Center, Seoul, Republic of Korea
| |
Collapse
|
295
|
Dufey E, Sepúlveda D, Rojas-Rivera D, Hetz C. Cellular Mechanisms of Endoplasmic Reticulum Stress Signaling in Health and Disease. 1. An overview. Am J Physiol Cell Physiol 2014; 307:C582-94. [DOI: 10.1152/ajpcell.00258.2014] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Increased demand on the protein folding capacity of the endoplasmic reticulum (ER) engages an adaptive reaction known as the unfolded protein response (UPR). The UPR regulates protein translation and the expression of numerous target genes that contribute to restore ER homeostasis or induce apoptosis of irreversibly damaged cells. UPR signaling is highly regulated and dynamic and integrates information about the type, intensity, and duration of the stress stimuli, thereby determining cell fate. Recent advances highlight novel physiological outcomes of the UPR beyond specialized secretory cells, particularly in innate immunity, metabolism, and cell differentiation. Here we discuss studies on the fine-tuning of the UPR and its physiological role in diverse organs and diseases.
Collapse
Affiliation(s)
- Estefanie Dufey
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Center for Molecular Studies of the Cell, University of Chile, Santiago, Chile
| | - Denisse Sepúlveda
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Center for Molecular Studies of the Cell, University of Chile, Santiago, Chile
| | - Diego Rojas-Rivera
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Center for Molecular Studies of the Cell, University of Chile, Santiago, Chile
| | - Claudio Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Center for Molecular Studies of the Cell, University of Chile, Santiago, Chile
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts; and
- Neurounion Biomedical Foundation, CENPAR, Santiago, Chile
| |
Collapse
|
296
|
Nakagawa H, Umemura A, Taniguchi K, Font-Burgada J, Dhar D, Ogata H, Zhong Z, Valasek MA, Seki E, Hidalgo J, Koike K, Kaufman RJ, Karin M. ER stress cooperates with hypernutrition to trigger TNF-dependent spontaneous HCC development. Cancer Cell 2014; 26:331-343. [PMID: 25132496 PMCID: PMC4165611 DOI: 10.1016/j.ccr.2014.07.001] [Citation(s) in RCA: 410] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 05/28/2014] [Accepted: 07/01/2014] [Indexed: 02/06/2023]
Abstract
Endoplasmic reticulum (ER) stress has been implicated in the pathogenesis of viral hepatitis, insulin resistance, hepatosteatosis, and nonalcoholic steatohepatitis (NASH), disorders that increase risk of hepatocellular carcinoma (HCC). To determine whether and how ER stress contributes to obesity-driven hepatic tumorigenesis we fed wild-type (WT) and MUP-uPA mice, in which hepatocyte ER stress is induced by plasminogen activator expression, with high-fat diet. Although both strains were equally insulin resistant, the MUP-uPA mice exhibited more liver damage, more immune infiltration, and increased lipogenesis and, as a result, displayed classical NASH signs and developed typical steatohepatitic HCC. Both NASH and HCC development were dependent on TNF produced by inflammatory macrophages that accumulate in the MUP-uPA liver in response to hepatocyte ER stress.
Collapse
MESH Headings
- Animals
- Carcinoma, Hepatocellular/etiology
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cells, Cultured
- Diet, High-Fat/adverse effects
- Endoplasmic Reticulum Chaperone BiP
- Endoplasmic Reticulum Stress
- Fatty Liver/etiology
- Fatty Liver/metabolism
- Heat-Shock Proteins/metabolism
- Lipogenesis
- Liver Neoplasms, Experimental/etiology
- Liver Neoplasms, Experimental/metabolism
- Liver Neoplasms, Experimental/pathology
- Male
- Mice
- Mice, Transgenic
- Overnutrition/complications
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Signal Transduction
- Tumor Burden
- Tumor Necrosis Factor-alpha/physiology
- Urokinase-Type Plasminogen Activator/genetics
- Urokinase-Type Plasminogen Activator/metabolism
Collapse
Affiliation(s)
- Hayato Nakagawa
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California, San Diego, 9500 Gilman Drive, San Diego, CA 92093, USA; Department of Gastroenterology, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Atsushi Umemura
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California, San Diego, 9500 Gilman Drive, San Diego, CA 92093, USA
| | - Koji Taniguchi
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California, San Diego, 9500 Gilman Drive, San Diego, CA 92093, USA
| | - Joan Font-Burgada
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California, San Diego, 9500 Gilman Drive, San Diego, CA 92093, USA
| | - Debanjan Dhar
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California, San Diego, 9500 Gilman Drive, San Diego, CA 92093, USA
| | - Hisanobu Ogata
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California, San Diego, 9500 Gilman Drive, San Diego, CA 92093, USA; Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Zhenyu Zhong
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California, San Diego, 9500 Gilman Drive, San Diego, CA 92093, USA
| | - Mark A Valasek
- Department of Pathology, School of Medicine, University of California, San Diego, 9500 Gilman Drive, San Diego, CA 92093, USA
| | - Ekihiro Seki
- Department of Medicine, School of Medicine, University of California, San Diego, 9500 Gilman Drive, San Diego, CA 92093, USA
| | - Juan Hidalgo
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autonoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Kazuhiko Koike
- Department of Gastroenterology, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Randal J Kaufman
- Program in Degenerative Diseases, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California, San Diego, 9500 Gilman Drive, San Diego, CA 92093, USA; Department of Pathology, School of Medicine, University of California, San Diego, 9500 Gilman Drive, San Diego, CA 92093, USA.
| |
Collapse
|
297
|
Mao HZ, Ehrhardt N, Bedoya C, Gomez JA, DeZwaan-McCabe D, Mungrue IN, Kaufman RJ, Rutkowski DT, Péterfy M. Lipase maturation factor 1 (lmf1) is induced by endoplasmic reticulum stress through activating transcription factor 6α (Atf6α) signaling. J Biol Chem 2014; 289:24417-27. [PMID: 25035425 PMCID: PMC4148868 DOI: 10.1074/jbc.m114.588764] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Indexed: 11/06/2022] Open
Abstract
Lipase maturation factor 1 (Lmf1) is a critical determinant of plasma lipid metabolism, as demonstrated by severe hypertriglyceridemia associated with its mutations in mice and human subjects. Lmf1 is a chaperone localized to the endoplasmic reticulum (ER) and required for the post-translational maturation and activation of several vascular lipases. Despite its importance in plasma lipid homeostasis, the regulation of Lmf1 remains unexplored. We report here that Lmf1 expression is induced by ER stress in various cell lines and in tunicamycin (TM)-injected mice. Using genetic deficiencies in mouse embryonic fibroblasts and mouse liver, we identified the Atf6α arm of the unfolded protein response as being responsible for the up-regulation of Lmf1 in ER stress. Experiments with luciferase reporter constructs indicated that ER stress activates the Lmf1 promoter through a GC-rich DNA sequence 264 bp upstream of the transcriptional start site. We demonstrated that Atf6α is sufficient to induce the Lmf1 promoter in the absence of ER stress, and this effect is mediated by the TM-responsive cis-regulatory element. Conversely, Atf6α deficiency induced by genetic ablation or a dominant-negative form of Atf6α abolished TM stimulation of the Lmf1 promoter. In conclusion, our results indicate that Lmf1 is an unfolded protein response target gene, and Atf6α signaling is sufficient and necessary for activation of the Lmf1 promoter. Importantly, the induction of Lmf1 by ER stress appears to be a general phenomenon not restricted to lipase-expressing cells, which suggests a lipase-independent cellular role for this protein in ER homeostasis.
Collapse
Affiliation(s)
- Hui Z Mao
- From the Medical Genetics Research Institute and
| | | | - Candy Bedoya
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048
| | - Javier A Gomez
- Department of Anatomy and Cell Biology and Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242
| | - Diane DeZwaan-McCabe
- Department of Anatomy and Cell Biology and Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242
| | - Imran N Mungrue
- the Department of Pharmacology and Experimental Therapeutics, Louisiana State University School of Medicine, New Orleans, Louisiana 70112
| | - Randal J Kaufman
- Degenerative Disease Research, Sanford-Burnham Medical Research Institute, La Jolla, California 92037, and
| | - D Thomas Rutkowski
- Department of Anatomy and Cell Biology and Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242
| | - Miklós Péterfy
- From the Medical Genetics Research Institute and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, the Department of Medicine, David Geffen School of Medicine at the University of California, Los Angeles, California 90095
| |
Collapse
|
298
|
Jiang S, Yan C, Fang QC, Shao ML, Zhang YL, Liu Y, Deng YP, Shan B, Liu JQ, Li HT, Yang L, Zhou J, Dai Z, Liu Y, Jia WP. Fibroblast growth factor 21 is regulated by the IRE1α-XBP1 branch of the unfolded protein response and counteracts endoplasmic reticulum stress-induced hepatic steatosis. J Biol Chem 2014; 289:29751-65. [PMID: 25170079 DOI: 10.1074/jbc.m114.565960] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Endoplasmic reticulum (ER) stress activates the adaptive unfolded protein response (UPR) and represents a critical mechanism that underlies metabolic dysfunctions. Fibroblast growth factor 21 (FGF21), a hormone that is predominantly secreted by the liver, exerts a broad range of effects upon the metabolism of carbohydrates and lipids. Although increased circulating levels of FGF21 have been documented in animal models and human subjects with obesity and nonalcoholic fatty liver disease, the functional interconnections between metabolic ER stress and FGF21 are incompletely understood. Here, we report that increased ER stress along with the simultaneous elevation of FGF21 expression were associated with the occurrence of nonalcoholic fatty liver disease both in diet-induced obese mice and human patients. Intraperitoneal administration of the ER stressor tunicamycin in mice resulted in hepatic steatosis, accompanied by activation of the three canonical UPR branches and increased the expression of FGF21. Furthermore, the IRE1α-XBP1 pathway of the UPR could directly activate the transcriptional expression of Fgf21. Administration of recombinant FGF21 in mice alleviated tunicamycin-induced liver steatosis, in parallel with reduced eIF2α-ATF4-CHOP signaling. Taken together, these results suggest that FGF21 is an integral physiological component of the cellular UPR program, which exerts beneficial feedback effects upon lipid metabolism through counteracting ER stress.
Collapse
Affiliation(s)
- Shan Jiang
- From the Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, and Shanghai Key Clinical Center for Metabolic Disease, Shanghai JiaoTong University Affiliated Sixth People's Hospital, Shanghai 200233
| | - Cheng Yan
- the Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai 200031, and
| | - Qi-chen Fang
- From the Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, and Shanghai Key Clinical Center for Metabolic Disease, Shanghai JiaoTong University Affiliated Sixth People's Hospital, Shanghai 200233
| | - Meng-le Shao
- the Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai 200031, and
| | - Yong-liang Zhang
- the Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai 200031, and
| | - Yang Liu
- the Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai 200031, and
| | - Yi-ping Deng
- the Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai 200031, and
| | - Bo Shan
- the Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai 200031, and
| | - Jing-qi Liu
- the Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai 200031, and
| | - Hua-ting Li
- From the Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, and Shanghai Key Clinical Center for Metabolic Disease, Shanghai JiaoTong University Affiliated Sixth People's Hospital, Shanghai 200233
| | - Liu Yang
- the Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai 200031, and
| | - Jian Zhou
- the Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhi Dai
- the Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yong Liu
- the Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai 200031, and
| | - Wei-ping Jia
- From the Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, and Shanghai Key Clinical Center for Metabolic Disease, Shanghai JiaoTong University Affiliated Sixth People's Hospital, Shanghai 200233,
| |
Collapse
|
299
|
Cao SS, Kaufman RJ. Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease. Antioxid Redox Signal 2014; 21:396-413. [PMID: 24702237 PMCID: PMC4076992 DOI: 10.1089/ars.2014.5851] [Citation(s) in RCA: 982] [Impact Index Per Article: 89.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
SIGNIFICANCE The endoplasmic reticulum (ER) is a specialized organelle for the folding and trafficking of proteins, which is highly sensitive to changes in intracellular homeostasis and extracellular stimuli. Alterations in the protein-folding environment cause accumulation of misfolded proteins in the ER that profoundly affect a variety of cellular signaling processes, including reduction-oxidation (redox) homeostasis, energy production, inflammation, differentiation, and apoptosis. The unfolded protein response (UPR) is a collection of adaptive signaling pathways that evolved to resolve protein misfolding and restore an efficient protein-folding environment. RECENT ADVANCES Production of reactive oxygen species (ROS) has been linked to ER stress and the UPR. ROS play a critical role in many cellular processes and can be produced in the cytosol and several organelles, including the ER and mitochondria. Studies suggest that altered redox homeostasis in the ER is sufficient to cause ER stress, which could, in turn, induce the production of ROS in the ER and mitochondria. CRITICAL ISSUES Although ER stress and oxidative stress coexist in many pathologic states, whether and how these stresses interact is unknown. It is also unclear how changes in the protein-folding environment in the ER cause oxidative stress. In addition, how ROS production and protein misfolding commit the cell to an apoptotic death and contribute to various degenerative diseases is unknown. FUTURE DIRECTIONS A greater fundamental understanding of the mechanisms that preserve protein folding homeostasis and redox status will provide new information toward the development of novel therapeutics for many human diseases.
Collapse
Affiliation(s)
- Stewart Siyan Cao
- 1 Degenerative Diseases Program, Sanford Burnham Medical Research Institute , La Jolla, California
| | | |
Collapse
|
300
|
Bai Y, Hassler J, Ziyar A, Li P, Wright Z, Menon R, Omenn GS, Cavalcoli JD, Kaufman RJ, Sartor MA. Novel bioinformatics method for identification of genome-wide non-canonical spliced regions using RNA-Seq data. PLoS One 2014; 9:e100864. [PMID: 24991935 PMCID: PMC4084626 DOI: 10.1371/journal.pone.0100864] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 05/31/2014] [Indexed: 12/03/2022] Open
Abstract
Setting During endoplasmic reticulum (ER) stress, the endoribonuclease (RNase) Ire1α initiates removal of a 26 nt region from the mRNA encoding the transcription factor Xbp1 via an unconventional mechanism (atypically within the cytosol). This causes an open reading frame-shift that leads to altered transcriptional regulation of numerous downstream genes in response to ER stress as part of the unfolded protein response (UPR). Strikingly, other examples of targeted, unconventional splicing of short mRNA regions have yet to be reported. Objective Our goal was to develop an approach to identify non-canonical, possibly very short, splicing regions using RNA-Seq data and apply it to ER stress-induced Ire1α heterozygous and knockout mouse embryonic fibroblast (MEF) cell lines to identify additional Ire1α targets. Results We developed a bioinformatics approach called the Read-Split-Walk (RSW) pipeline, and evaluated it using two Ire1α heterozygous and two Ire1α-null samples. The 26 nt non-canonical splice site in Xbp1 was detected as the top hit by our RSW pipeline in heterozygous samples but not in the negative control Ire1α knockout samples. We compared the Xbp1 results from our approach with results using the alignment program BWA, Bowtie2, STAR, Exonerate and the Unix “grep” command. We then applied our RSW pipeline to RNA-Seq data from the SKBR3 human breast cancer cell line. RSW reported a large number of non-canonical spliced regions for 108 genes in chromosome 17, which were identified by an independent study. Conclusions We conclude that our RSW pipeline is a practical approach for identifying non-canonical splice junction sites on a genome-wide level. We demonstrate that our pipeline can detect novel splice sites in RNA-Seq data generated under similar conditions for multiple species, in our case mouse and human.
Collapse
Affiliation(s)
- Yongsheng Bai
- Department of Computational Medicine and Bioinformatics, and Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Justin Hassler
- Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Ahdad Ziyar
- Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Philip Li
- Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Zachary Wright
- Department of Computational Medicine and Bioinformatics, and Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Rajasree Menon
- Department of Computational Medicine and Bioinformatics, and Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Gilbert S. Omenn
- Department of Computational Medicine and Bioinformatics, and Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
- Departments of Internal Medicine and Human Genetics, and School of Public Health, University of Michigan, United States of America
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - James D. Cavalcoli
- Department of Computational Medicine and Bioinformatics, and Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Randal J. Kaufman
- Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
- * E-mail: (RJK); (MAS)
| | - Maureen A. Sartor
- Department of Computational Medicine and Bioinformatics, and Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail: (RJK); (MAS)
| |
Collapse
|