251
|
Valadez-Renteria E, Oliva J, Rodriguez-Gonzalez V. Photocatalytic materials immobilized on recycled supports and their role in the degradation of water contaminants: A timely review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150820. [PMID: 34627879 DOI: 10.1016/j.scitotenv.2021.150820] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/01/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
Global concern about environmental pollution has increased in recent times due to the cumulative harmful impact on the human health occasioned by the diverse toxic substances released into the environment. Water reduced availability for human consumption and its pollution have been paid so much attention due to their relevance in agricultural and industrial activities. In this context, the advanced oxidation processes for removing contaminants from water, more specifically photocatalytic processes, have displayed their usefulness due to features such as easy application, low-cost, harmless effects and sustainable decontamination efficiency. This timely review is centered on worldwide studies, where efforts aimed at employing recycled materials as supports for purification applications such as the removal of different contaminants (dyes, pharmaceutical contaminants, and heavy metals) dissolved in aqueous environments have been reported. Materials like polyethylene terephthalic (PET), polystyrene (PS), disposal textile fabrics, newspapers, aluminum soda cans, rubber, waste electronic and electric components and used batteries have been employed either as supports for immobilizing catalysts or as photocatalysts. The present work offers a discussion of the ways through which photocatalytic composites have been immobilized or produced, employed characterization techniques, removal efficiencies achieved during photocatalytic degradation and possible degradation mechanism of pollutants; not only the highlights of all these studies are discussed, but also paths for future research works that could help improve the reported results are suggested. These new practical tools stand as novel sustainable strategies for the removal of emerging contaminants reusing waste flexible materials.
Collapse
Affiliation(s)
- E Valadez-Renteria
- División de Materiales Avanzados, Instituto Potosino de Investigación Científica y Tecnológica A. C., 78216 San Luis Potosí, SLP, Mexico
| | - J Oliva
- División de Materiales Avanzados, Instituto Potosino de Investigación Científica y Tecnológica A. C., 78216 San Luis Potosí, SLP, Mexico
| | - V Rodriguez-Gonzalez
- División de Materiales Avanzados, Instituto Potosino de Investigación Científica y Tecnológica A. C., 78216 San Luis Potosí, SLP, Mexico.
| |
Collapse
|
252
|
He Y, Bao W, Hua Y, Guo Z, Fu X, Na B, Yuan D, Peng C, Liu H. Efficient adsorption of methyl orange and methyl blue dyes by a novel triptycene-based hyper-crosslinked porous polymer. RSC Adv 2022; 12:5587-5594. [PMID: 35425553 PMCID: PMC8981499 DOI: 10.1039/d1ra08589a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/14/2022] [Indexed: 12/20/2022] Open
Abstract
It is still a great challenge to develop new materials for the highly efficient entrapment of organic dyes from aqueous solution. Herein, a novel triptycene-based hyper-crosslinked porous polymer (TPP-PP) was designed and synthesized by a simple Friedel-Crafts reaction. The obtained polymer TPP-PP has a high surface area, abundant pore structure and stable thermal performance. Due to the above characteristics, TPP-PP has good adsorption performance for anionic methyl orange solution (MO) and cationic methyl blue solution (MB). Under the optimal experiment conditions, the TPP-PP showed an excellent adsorption capacity for MO (220.82 mg g-1) and MB (159.80 mg g-1), respectively. The adsorption kinetics fitted the pseudo-second-order model. The adsorption of MO by TPP-PP reaches equilibrium within 180 minutes, and the adsorption of MB reaches equilibrium within 150 minutes. The adsorption behavior was not only spontaneous but also endothermic in reality. At the same time, TPP-PP also has good reusability. After 5 cycles of experiments, the removal rate of MO and MB by TPP-PP can still reach more than 80%. Thus, the Friedel-Crafts reaction crosslinked method might be a promising approach for the synthesis of novel material for the highly efficient extraction of dye wastewater.
Collapse
Affiliation(s)
- Yan He
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Materials Science, East China University of Technology Nanchang 330013 China
- Key Laboratory for Advanced Materials, Department of Chemistry, East China University of Science and Technology Shanghai 200237 China
| | - Wenli Bao
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Materials Science, East China University of Technology Nanchang 330013 China
| | - Yingcen Hua
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Materials Science, East China University of Technology Nanchang 330013 China
| | - Zhulei Guo
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Materials Science, East China University of Technology Nanchang 330013 China
| | - Xiaolei Fu
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Materials Science, East China University of Technology Nanchang 330013 China
| | - Bing Na
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Materials Science, East China University of Technology Nanchang 330013 China
| | - Dingzhong Yuan
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Materials Science, East China University of Technology Nanchang 330013 China
| | - Changjun Peng
- Key Laboratory for Advanced Materials, Department of Chemistry, East China University of Science and Technology Shanghai 200237 China
| | - Honglai Liu
- Key Laboratory for Advanced Materials, Department of Chemistry, East China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
253
|
Simultaneous removal of Congo red and Cr(VI) using amino-modified GO/MS composite materials. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-021-1031-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
254
|
Lee XJ, Ong HC, Ooi J, Yu KL, Tham TC, Chen WH, Ok YS. Engineered macroalgal and microalgal adsorbents: Synthesis routes and adsorptive performance on hazardous water contaminants. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:126921. [PMID: 34523506 DOI: 10.1016/j.jhazmat.2021.126921] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/30/2021] [Accepted: 08/14/2021] [Indexed: 06/13/2023]
Abstract
Colourants, micropollutants and heavy metals are regarded as the most notorious hazardous contaminants found in rivers, oceans and sewage treatment plants, with detrimental impacts on human health and environment. In recent development, algal biomass showed great potential for the synthesis of engineered algal adsorbents suitable for the adsorptive management of various pollutants. This review presents comprehensive investigations on the engineered synthesis routes focusing mainly on mechanical, thermochemical and activation processes to produce algal adsorbents. The adsorptive performances of engineered algal adsorbents are assessed in accordance with different categories of hazardous pollutants as well as in terms of their experimental and modelled adsorption capacities. Due to the unique physicochemical properties of macroalgae and microalgae in their adsorbent forms, the adsorption of hazardous pollutants was found to be highly effective, which involved different mechanisms such as physisorption, chemisorption, ion-exchange, complexation and others depending on the types of pollutants. Overall, both macroalgae and microalgae not only can be tailored into different forms of adsorbents based on the applications, their adsorption capacities are also far more superior compared to the conventional adsorbents.
Collapse
Affiliation(s)
- Xin Jiat Lee
- Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia; Centre for Energy Sciences (ENERGY), Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Hwai Chyuan Ong
- Centre for Green Technology, Faculty of Engineering and Information Technology, University of Technology Sydney, NSW 2007, Australia.
| | - Jecksin Ooi
- Department of Chemical & Petroleum Engineering, Faculty of Engineering, Technology and Built Environment, UCSI University, No.1, Cheras Lumpur, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Kai Ling Yu
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Thing Chai Tham
- Axcel Campus, No. 11, The Cube, Jalan Puteri 7/15, Bandar Puteri, 47100 Puchong, Selangor, Malaysia
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
255
|
Duan C, Wang J, Liu Q, Zhou Y, Zhou Y. Efficient removal of Salbutamol and Atenolol by an electronegative silanized β-cyclodextrin adsorbent. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
256
|
Özüdoğru I, Yigit Avdan Z, Balbay S. A novel carbon-based material recycled from end-of-life tires (ELTs) for separation of organic dyes to understand kinetic and isotherm behavior. SEP SCI TECHNOL 2022. [DOI: 10.1080/01496395.2022.2029489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Ilknur Özüdoğru
- Department of Environmental Engineering, Eskisehir Technical University, Eskisehir, Turkey
| | - Zehra Yigit Avdan
- Department of Environmental Engineering, Eskisehir Technical University, Eskisehir, Turkey
| | - Senay Balbay
- Department of Waste Management, Vocational School, Bilecik Seyh Edebali University, Bilecik, Turkey
| |
Collapse
|
257
|
Magnetic Poly(glycidyl methacrylate) Microspheres with Grafted Polypyrrole Chains for the High-Capacity Adsorption of Congo Red Dye from Aqueous Solutions. COATINGS 2022. [DOI: 10.3390/coatings12020168] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In this study, novel magnetic poly(glycidyl methacrylate) (PGMA) microspheres with grafted polypyrrole chains (magnetic PGMA-g-PPy) were developed for the high-capacity adsorption of Congo red (CR) from aqueous solutions. The magnetic PGMA-g-PPy was synthesized by the typical dispersion polymerization method and the ring-opening reaction of epoxy groups, producing abundant hydroxyls for the grafting polymerization of pyrrole in the presence of FeCl3 as an oxidizing agent on the surface of the microspheres. The characterization results showed that magnetic PGMA-g-PPy was successfully fabricated. The adsorption equilibrium data of the adsorbents could be well fitted by the Langmuir isotherm model, showing a high maximum adsorption capacity of 502.5 mg/g for CR. The adsorption followed pseudo-second-order kinetics with a fast speed. The adsorbents had no leaching of Fe in the solution at pH 1.0–11.0 for 24 h. The adsorption process was strongly pH-dependent and weakly ionic-strength-dependent. Furthermore, the magnetic microspheres could be easily regenerated, rapidly separated from the solution, and reused for wastewater treatment. The results suggest that magnetic PGMA-g-PPy microspheres are a promising efficient adsorbent for the removal of CR from wastewater.
Collapse
|
258
|
Gholami F, Zinatizadeh AA, Zinadini S, Rittmann BE, Torres CI. Enhanced antifouling and flux performances of a composite membrane via incorporating
TiO
2
functionalized with hydrophilic groups of L‐cysteine for nanofiltration. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Foad Gholami
- Department of Applied Chemistry, Faculty of Chemistry Razi University Kermanshah Iran
| | - Ali Akbar Zinatizadeh
- Department of Applied Chemistry, Faculty of Chemistry Razi University Kermanshah Iran
- Environmental Research Center (ERC) Razi University Kermanshah Iran
| | - Sirus Zinadini
- Department of Applied Chemistry, Faculty of Chemistry Razi University Kermanshah Iran
- Environmental Research Center (ERC) Razi University Kermanshah Iran
| | - Bruce E. Rittmann
- Biodesign Swette Center for Environmental Biotechnology Arizona State University Tempe Arizona USA
- School of Sustainable Engineering and the Built Environment Arizona State University Tempe Arizona USA
| | - Cesar I. Torres
- Biodesign Swette Center for Environmental Biotechnology Arizona State University Tempe Arizona USA
- School for Engineering of Matter, Transport and Energy Arizona State University Tempe Arizona USA
| |
Collapse
|
259
|
Tene T, Bellucci S, Guevara M, Viteri E, Arias Polanco M, Salguero O, Vera-Guzmán E, Valladares S, Scarcello A, Alessandro F, Caputi LS, Vacacela Gomez C. Cationic Pollutant Removal from Aqueous Solution Using Reduced Graphene Oxide. NANOMATERIALS 2022; 12:nano12030309. [PMID: 35159653 PMCID: PMC8838539 DOI: 10.3390/nano12030309] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 12/12/2022]
Abstract
Reduced graphene oxide (rGO) is one of the most well-known graphene derivatives, which, due to its outstanding physical and chemical properties as well as its oxygen content, has been used for wastewater treatment technologies. Particularly, extra functionalized rGO is widely preferred for treating wastewater containing dyes or heavy metals. Nevertheless, the use of non-extra functionalized (pristine) rGO for the removal of cationic pollutants is not explored in detail or is ambiguous. Herein, pristine rGO—prepared by an eco-friendly protocol—is used for the removal of cationic pollutants from water, i.e., methylene blue (MB) and mercury-(II) (Hg-(II)). This work includes the eco-friendly synthesis process and related spectroscopical and morphological characterization. Most importantly, the investigated rGO shows an adsorption capacity of 121.95 mg g−1 for MB and 109.49 mg g−1 for Hg (II) at 298 K. A record adsorption time of 30 min was found for MB and 20 min for Hg (II) with an efficiency of about 89% and 73%, respectively. The capture of tested cationic pollutants on rGO exhibits a mixed physisorption–chemisorption process. The present work, therefore, presents new findings for cationic pollutant adsorbent materials based on oxidized graphenes, providing a new perspective for removing MB molecules and Hg(II) ions.
Collapse
Affiliation(s)
- Talia Tene
- Grupo de Investigación Ciencia y Tecnología de Materiales, Universidad Técnica Particular de Loja, Loja 110160, Ecuador;
| | - Stefano Bellucci
- INFN-Laboratori Nazionali di Frascati, Via E. Fermi 54, I-00044 Frascati, Italy;
| | - Marco Guevara
- School of Physical Sciences and Nanotechnology, Yachay Tech University, Urcuquí 100119, Ecuador;
- ITECA—Instituto de Tecnologías y Ciencias Avanzadas, Villarroel y Larrea, Riobamba 060104, Ecuador
| | - Edwin Viteri
- Faculty of Mechanical Engineering, Escuela Superior Politécnica de Chimborazo, Riobamba 060155, Ecuador;
| | - Malvin Arias Polanco
- Instituto Tecnológico de Santo Domingo, Área de Ciencias Básicas y Ambientales, Av. Los Próceres, Santo Domingo 10602, Dominican Republic;
- UNICARIBE Research Center, University of Calabria, I-87036 Rende (CS), Italy; (O.S.); (E.V.-G.); (S.V.); (A.S.); (F.A.); (L.S.C.)
| | - Orlando Salguero
- UNICARIBE Research Center, University of Calabria, I-87036 Rende (CS), Italy; (O.S.); (E.V.-G.); (S.V.); (A.S.); (F.A.); (L.S.C.)
| | - Eder Vera-Guzmán
- UNICARIBE Research Center, University of Calabria, I-87036 Rende (CS), Italy; (O.S.); (E.V.-G.); (S.V.); (A.S.); (F.A.); (L.S.C.)
| | - Sebastián Valladares
- UNICARIBE Research Center, University of Calabria, I-87036 Rende (CS), Italy; (O.S.); (E.V.-G.); (S.V.); (A.S.); (F.A.); (L.S.C.)
| | - Andrea Scarcello
- UNICARIBE Research Center, University of Calabria, I-87036 Rende (CS), Italy; (O.S.); (E.V.-G.); (S.V.); (A.S.); (F.A.); (L.S.C.)
- Surface Nanoscience Group, Department of Physics, University of Calabria, Via P. Bucci, Cubo 33C, I-87036 Rende, Italy
- INFN, Sezione LNF, Gruppo Collegato di Cosenza, Via P. Bucci, I-87036 Rende, Cosenza, Italy
| | - Francesca Alessandro
- UNICARIBE Research Center, University of Calabria, I-87036 Rende (CS), Italy; (O.S.); (E.V.-G.); (S.V.); (A.S.); (F.A.); (L.S.C.)
- Surface Nanoscience Group, Department of Physics, University of Calabria, Via P. Bucci, Cubo 33C, I-87036 Rende, Italy
| | - Lorenzo S. Caputi
- UNICARIBE Research Center, University of Calabria, I-87036 Rende (CS), Italy; (O.S.); (E.V.-G.); (S.V.); (A.S.); (F.A.); (L.S.C.)
- Surface Nanoscience Group, Department of Physics, University of Calabria, Via P. Bucci, Cubo 33C, I-87036 Rende, Italy
| | - Cristian Vacacela Gomez
- School of Physical Sciences and Nanotechnology, Yachay Tech University, Urcuquí 100119, Ecuador;
- UNICARIBE Research Center, University of Calabria, I-87036 Rende (CS), Italy; (O.S.); (E.V.-G.); (S.V.); (A.S.); (F.A.); (L.S.C.)
- Correspondence:
| |
Collapse
|
260
|
Esmaeilian A, O'Shea KE. Application of dimensional analysis in sorption modeling of the styryl pyridinium cationic dyes on reusable iron based humic acid coated magnetic nanoparticles. CHEMOSPHERE 2022; 286:131699. [PMID: 34358892 DOI: 10.1016/j.chemosphere.2021.131699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Cationic dyes exist in various industrial wastewaters and removal prior to discharge is necessary due to their carcinogenic behavior which poses a serious threat to human health. Iron based humic acid coated magnetic nanoparticles (HA-MNPs) were evaluated for the removal of 2-[4-(dimethylamino) styryl]-1-methylpyridinium iodide (2-ASP) as a model compound for cationic styryl pyridinium dyes from aqueous media. HA-MNPs were prepared by co-precipitation and characterized. The adsorption of 2-ASP, measured by fluorescence, demonstrates HA-MNPs are efficient for the 2-ASP removal with a maximum adsorption capacity of ~8 mg/g. Kinetic behavior and equilibrium studies showed the adsorption process fits with pseudo 2nd order and Langmuir isotherm models. The adsorption is relatively fast with ~70% of the adsorption complete within 30 min. The overall removal increases by increasing solution pH. The observed increase in adsorption can be assigned to an enhanced electrostatic attraction between the positively charged 2-ASP and the increase in the negative charge on the HA-MNPs surface as a function of increasing solution pH. Effective and repetitive regeneration of the HA-MNPs was achieved using NaOH treatment of saturated sorbent. Regeneration of HA-MNPs showed that removal efficiency remains consistently high after five consecutive cycles. Dimensional analysis suggested that initial concentration/sorbent dose ratio should be considered for accurate sorption modeling confirmed by experimental data. Then generalized empirical models for isothermal study and removal efficiency prediction were accurately deduced. This finding will help researchers in sorption studies to design their experiments more efficiently and to develop improved empirical models in removal prediction.
Collapse
Affiliation(s)
- Anahita Esmaeilian
- Department of Chemistry and Biochemistry, Florida International University, 11200, SW 8th Street, Miami, FL, 33199, USA.
| | - Kevin E O'Shea
- Department of Chemistry and Biochemistry, Florida International University, 11200, SW 8th Street, Miami, FL, 33199, USA.
| |
Collapse
|
261
|
Tran TV, Nguyen DTC, Kumar PS, Din ATM, Jalil AA, Vo DVN. Green synthesis of ZrO 2 nanoparticles and nanocomposites for biomedical and environmental applications: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2022; 20:1309-1331. [PMID: 35035338 PMCID: PMC8741578 DOI: 10.1007/s10311-021-01367-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/30/2021] [Indexed: 05/05/2023]
Abstract
Pollution and diseases such as the coronavirus pandemic (COVID-19) are major issues that may be solved partly by nanotechnology. Here we review the synthesis of ZrO2 nanoparticles and their nanocomposites using compounds from bacteria, fungi, microalgae, and plants. For instance, bacteria, microalgae, and fungi secret bioactive metabolites such as fucoidans, digestive enzymes, and proteins, while plant tissues are rich in reducing sugars, polyphenols, flavonoids, saponins, and amino acids. These compounds allow reducing, capping, chelating, and stabilizing during the transformation of Zr4+ into ZrO2 nanoparticles. Green ZrO2 nanoparticles display unique properties such as a nanoscale size of 5-50 nm, diverse morphologies, e.g. nanospheres, nanorods and nanochains, and wide bandgap energy of 3.7-5.5 eV. Their high stability and biocompatibility are suitable biomedical and environmental applications, such as pathogen and cancer inactivation, and pollutant removal. Emerging applications of green ZrO2-based nanocomposites include water treatment, catalytic reduction, nanoelectronic devices, and anti-biofilms.
Collapse
Affiliation(s)
- Thuan Van Tran
- Institute of Environmental Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414 Vietnam
| | - Duyen Thi Cam Nguyen
- Institute of Environmental Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414 Vietnam
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, UTM Johor Bahru, 81310 Johor, Malaysia
| | - Ponnusamy Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110 India
| | - Azam Taufik Mohd Din
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang, Malaysia
| | - Aishah Abdul Jalil
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, UTM Johor Bahru, 81310 Johor, Malaysia
- Centre of Hydrogen Energy, Institute of Future Energy, UTM Johor Bahru, 81310 Johor, Malaysia
| | - Dai-Viet N. Vo
- Institute of Environmental Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414 Vietnam
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang, Malaysia
| |
Collapse
|
262
|
Samanta A, Pal SK, Jana S. Exploring flowery MnO 2/Ag nanocomposite as an efficient solar-light-driven photocatalyst. NEW J CHEM 2022. [DOI: 10.1039/d1nj04880e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An efficient approach was developed to boost the solar light driven photocatalytic efficacy of pristine flowery MnO2 NCs through the immobilization of Ag NPs, which in turn produces MnO2/Ag NCs.
Collapse
Affiliation(s)
- Arnab Samanta
- Department of Chemical, Biological & Macro-Molecular Sciences, S. N. Bose National Centre for Basic Sciences, Block - JD, Sector-III, Salt Lake, Kolkata-700106, India
| | - Samir Kumar Pal
- Department of Chemical, Biological & Macro-Molecular Sciences, S. N. Bose National Centre for Basic Sciences, Block - JD, Sector-III, Salt Lake, Kolkata-700106, India
- Technical Research Centre, S. N. Bose National Centre for Basic Sciences, Block - JD, Sector-III, Salt Lake, Kolkata-700106, India
| | - Subhra Jana
- Department of Chemical, Biological & Macro-Molecular Sciences, S. N. Bose National Centre for Basic Sciences, Block - JD, Sector-III, Salt Lake, Kolkata-700106, India
- Technical Research Centre, S. N. Bose National Centre for Basic Sciences, Block - JD, Sector-III, Salt Lake, Kolkata-700106, India
| |
Collapse
|
263
|
Ighalo JO, Rangabhashiyam S, Adeyanju CA, Ogunniyi S, Adeniyi AG, Igwegbe CA. Zeolitic Imidazolate Frameworks (ZIFs) for aqueous phase adsorption – A review. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.09.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
264
|
Hang MT, Cheng Y, Wang YT, Li H, Zheng MQ, He MY, Chen Q, Zhang ZH. Rational synthesis of isomorphic rare earth metal–organic framework materials for simultaneous adsorption and photocatalytic degradation of organic dyes in water. CrystEngComm 2022. [DOI: 10.1039/d1ce01411k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Two isomorphic rare earth metal–organic frameworks (MOFs) were synthesized by a solvothermal method. These MOFs have good removal effects on cationic and neutral dyes through simultaneous adsorption and photocatalysis.
Collapse
Affiliation(s)
- Meng-Ting Hang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| | - Yi Cheng
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| | - Yi-Tong Wang
- China International Engineering Consulting Corporation, Beijing 100089, China
| | - Huan Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| | - Meng-Qi Zheng
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| | - Ming-Yang He
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| | - Qun Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| | - Zhi-Hui Zhang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
- Jiangsu Key Laboratory for Biomass Energy and Material, Jiangsu Province, Nanjing, 210042, China
| |
Collapse
|
265
|
Asadi E, Bakherad M, Ghasemi MH. High and selective adsorption of methylene blue using N-rich, microporous metal–organic framework [ZnBT(H2O)2]n. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022. [DOI: 10.1007/s13738-021-02297-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
266
|
Sarojini G, Babu SV, Rajasimman M. Adsorptive potential of iron oxide based nanocomposite for the sequestration of Congo red from aqueous solution. CHEMOSPHERE 2022; 287:132371. [PMID: 34597648 DOI: 10.1016/j.chemosphere.2021.132371] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 09/08/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
The ability of polypyrrole-Iron oxide-seaweed nanocomposite has been tested for the removal of congo red from aqueous solution. The characteristics of nanocomposite after adsorption of Congo red (CR) have been analyzed. FTIR results authorized the involvement of various functional groups in the adsorption of CR. The change in morphology of nanocomposite was analyzed using scanning electron microscope (SEM). TEM and BET analysis were performed to characterize the nanocomposite. The effect of various parameters namely pH, adsorbent dosage, initial dye concentration, adsorption time and temperature are studied. The optimum condition for the effective removal of CR are: pH-3, initial CR concentration- 40 mg/L, nanocomposite dosage- 20 mg, contact time-40 min and temperature-40οC. Adsorption isotherm studies and kinetic studies were done. Langmuir isotherm fits with the experimental data very well with high coefficient of determination (R2 = 0.98) and maximum dye uptake of 500 mg/g is reported. In kinetic studies, pseudo second order model was obeyed (R2 = 0.994). Thermodynamic properties were determined and found that the nature of process is spontaneous, endothermic and increased in randomness. The mechanism of sorption was proposed. Desorption studies were carried out and showed that the nanocomposite could be effectively reused up to five cycles. Thus the outcomes proved that the polypyrrole-iron oxide-seaweed nanocomposite to be an operative, recyclable and low-cost adsorbent for the treatment of dye bearing water.
Collapse
|
267
|
Du W, Fan J, Ma R, Yang G, Liu J, Zhang S, Chen T. Radiation‐initiated chitosan‐based double network hydrogel: Synthesis, characterization, and adsorption of methylene blue. J Appl Polym Sci 2021. [DOI: 10.1002/app.51531] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Wenjie Du
- Faculty of Materials Science and Chemistry China University of Geosciences Wuhan China
| | - Jinxu Fan
- Faculty of Materials Science and Chemistry China University of Geosciences Wuhan China
| | - Rui Ma
- Faculty of Materials Science and Chemistry China University of Geosciences Wuhan China
| | - Gang Yang
- Faculty of Materials Science and Chemistry China University of Geosciences Wuhan China
| | - Jiaqi Liu
- Faculty of Materials Science and Chemistry China University of Geosciences Wuhan China
| | - Shifan Zhang
- Faculty of Materials Science and Chemistry China University of Geosciences Wuhan China
| | - Tao Chen
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology Hubei University of Science and Technology Xianning China
| |
Collapse
|
268
|
Feng M, Wu L, Wang X, Wang J, Wang D, Li C. A strategy of designed anionic metal–organic framework adsorbent based on reticular chemistry for rapid selective capture of carcinogenic dyes. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Meng Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences Zhejiang Normal University Jinhua China
| | - Liang Wu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences Zhejiang Normal University Jinhua China
| | - Xirong Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences Zhejiang Normal University Jinhua China
| | - Jingyu Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences Zhejiang Normal University Jinhua China
| | - Dongmei Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences Zhejiang Normal University Jinhua China
| | - Chunxia Li
- Institute of Molecular Sciences and Engineering Shandong University Qingdao China
| |
Collapse
|
269
|
Torezan L, Bortoluz J, Guerra NB, Ferrarini F, Bonetto LR, da Silva Teixeira C, da Silva Crespo J, Giovanela M, Carli LN. Magnetic chitosan microspheres for the removal of methyl violet 2B from aqueous solutions. J DISPER SCI TECHNOL 2021. [DOI: 10.1080/01932691.2021.2008420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Luciane Torezan
- Área do Conhecimento de Ciências Exatas e Engenharias, Universidade de Caxias do Sul, Caxias do Sul, Rio Grande do Sul, Brazil
| | - Jordana Bortoluz
- Área do Conhecimento de Ciências Exatas e Engenharias, Universidade de Caxias do Sul, Caxias do Sul, Rio Grande do Sul, Brazil
| | - Nayrim Brizuela Guerra
- Área do Conhecimento de Ciências Exatas e Engenharias, Universidade de Caxias do Sul, Caxias do Sul, Rio Grande do Sul, Brazil
| | - Fabrício Ferrarini
- Laboratório Virtual de Predição de Propriedades – LVPP, Departamento de Engenharia Química, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Luis Rafael Bonetto
- Área do Conhecimento de Ciências Exatas e Engenharias, Universidade de Caxias do Sul, Caxias do Sul, Rio Grande do Sul, Brazil
| | - Cristiano da Silva Teixeira
- Centro Tecnológico, de Ciências Exatas e Educação, Universidade Federal de Santa Catarina, Blumenau, Santa Catarina, Brazil
| | - Janaina da Silva Crespo
- Área do Conhecimento de Ciências Exatas e Engenharias, Universidade de Caxias do Sul, Caxias do Sul, Rio Grande do Sul, Brazil
| | - Marcelo Giovanela
- Área do Conhecimento de Ciências Exatas e Engenharias, Universidade de Caxias do Sul, Caxias do Sul, Rio Grande do Sul, Brazil
| | - Larissa Nardini Carli
- Centro Tecnológico, de Ciências Exatas e Educação, Universidade Federal de Santa Catarina, Blumenau, Santa Catarina, Brazil
| |
Collapse
|
270
|
Sellaoui L, Dhaouadi F, Reynel-Avila HE, Mendoza-Castillo DI, Bonilla-Petriciolet A, Trejo-Valencia R, Taamalli S, Louis F, El Bakali A, Chen Z. Physicochemical assessment of anionic dye adsorption on bone char using a multilayer statistical physics model. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:67248-67255. [PMID: 34245418 DOI: 10.1007/s11356-021-15264-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
The statistical physics modeling is a reliable approach to interpret and understand the adsorption mechanism of both organic and inorganic adsorbates. Herein, a theoretical study of the adsorption mechanism of anionic dyes, namely reactive blue 4 (RB4), acid blue 74 (AB74), and acid blue 25 (AB25), on bone char was performed with a multilayer statistical physics model. This model was applied to fit the equilibrium adsorption data of these dyes at 298-313 K and pH 4. Results indicated that the global number of formed dye layers on the bone char varied from 1.62 to 2.24 for RB4, AB74, and AB25 dyes depending on the solution temperature where the saturation adsorption capacities ranged from 0.08 to 0.12 mmol/g. Dye molecular aggregation was also identified for these dyes where dimers and trimers prevailed at different operating conditions especially for adsorbates RB4 and AB74. Adsorption mechanism of these dyes was multimolecular and endothermic with adsorption energies from 10.6 to 20.8 kJ/mol where van der Waals interactions and hydrogen bonding could be present. This investigation contributes to understand the physicochemical variables associated to dye adsorption using low-cost adsorbents as bone char.
Collapse
Affiliation(s)
- Lotfi Sellaoui
- Department of Environmental Engineering, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China.
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China.
| | - Fatma Dhaouadi
- Laboratory of Quantum and Statistical Physics, LR18ES18, Faculty of Sciences of Monastir, Monastir University, Monastir, Tunisia
| | | | | | | | | | - Sonia Taamalli
- CNRS, UMR 8522 - PC2A - PhysicoChimie des Processus de Combustion et de l'Atmosphère, Université de Lille, 59000, Lille, France
| | - Florent Louis
- CNRS, UMR 8522 - PC2A - PhysicoChimie des Processus de Combustion et de l'Atmosphère, Université de Lille, 59000, Lille, France
| | - Abderrahman El Bakali
- CNRS, UMR 8522 - PC2A - PhysicoChimie des Processus de Combustion et de l'Atmosphère, Université de Lille, 59000, Lille, France
| | - Zhuqi Chen
- Department of Environmental Engineering, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China.
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China.
| |
Collapse
|
271
|
Lincy V, Prasannan A, Hong PD. Rational design of multifunctional membrane material with underwater superoleophobicity for dye contaminated emulsion separation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
272
|
Tchinsa A, Hossain MF, Wang T, Zhou Y. Removal of organic pollutants from aqueous solution using metal organic frameworks (MOFs)-based adsorbents: A review. CHEMOSPHERE 2021; 284:131393. [PMID: 34323783 DOI: 10.1016/j.chemosphere.2021.131393] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
The development of metal organic frameworks (MOFs) has recently drawn a lot of scientific interest in water treatment due to the unique properties such as tunable porosities, large pore volumes, hierarchical structures, excellent adsorption and regeneration performances. MOFs represent an eco-friendly alternative to conventional adsorbents especially for the adsorptive removal of noxious organic pollutants from aqueous solution. Advanced MOFs' performances are justified by the introduction of functional groups, magnetic moieties, and specific foreign materials onto MOFs. This however leads to increase in the manufacturing costs of MOFs and consequently possess a huge challenge in large-scale applications. This review hence critically discusses the recent progresses in the development of MOFs-based adsorbents for the removal of selected organic pollutants (e.g., dyes, antibiotics and pesticides) from aqueous solution. Furthermore, major interaction mechanisms between MOFs and organic pollutants in response to numerous experimental conditions, such as pH, temperature, coexisting ions are put forward. Finally, some recommendations in support for designing MOFs with improved adsorption performances are also highlighted.
Collapse
Affiliation(s)
- Audrey Tchinsa
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, No. 130 Meilong Road, Shanghai, 200237, China
| | - Md Faysal Hossain
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, No. 130 Meilong Road, Shanghai, 200237, China
| | - Tong Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, No. 130 Meilong Road, Shanghai, 200237, China
| | - Yanbo Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, No. 130 Meilong Road, Shanghai, 200237, China; National Engineering Laboratory for Industrial Wastewater Treatment, East China University of Science and Technology, No. 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
273
|
Gao P, Chen D, Chen W, Sun J, Wang G, Zhou L. Facile synthesis of amine-crosslinked starch as an efficient biosorbent for adsorptive removal of anionic organic pollutants from water. Int J Biol Macromol 2021; 191:1240-1248. [PMID: 34624378 DOI: 10.1016/j.ijbiomac.2021.09.206] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 09/25/2021] [Accepted: 09/30/2021] [Indexed: 11/18/2022]
Abstract
Developing applicable biosorbents for adsorptive removal of organic pollutants from water is highly demanded. However, most biosorbents suffer poor adsorption capability for anionic organic pollutants due to their negatively charged surface. Herein, we present a facile method to synthesize amine-crosslinked starch (ACS) biosorbent for removing anionic organic pollutants. The adsorption properties of ACS were thoroughly evaluated by selecting anionic brilliant blue (BB), amaranth (ART), diclofenac sodium (DS) as representatives. The results show that the ACS can selectively adsorb anionic molecules with large adsorption capacity and fast removal rate. The adsorption kinetic and isotherm behaviors can be well described by the pseudo-second-order and Langmuir models, respectively. The maximum uptake capacity of ACS for BB, ART and DS is as high as 1287.7, 724.6 and 595.2 mg g-1, respectively. Moreover, the ACS can be easily regenerated and still exhibits favorable adsorption performance even after reusing for five times.
Collapse
Affiliation(s)
- Pengxiang Gao
- Key Laboratory of New Processing Technology for Nonferrous Metal and Materials of Chinese Ministry of Education, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Donglin Chen
- Key Laboratory of New Processing Technology for Nonferrous Metal and Materials of Chinese Ministry of Education, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Weilin Chen
- Key Laboratory of New Processing Technology for Nonferrous Metal and Materials of Chinese Ministry of Education, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Jiahui Sun
- Key Laboratory of New Processing Technology for Nonferrous Metal and Materials of Chinese Ministry of Education, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Guan Wang
- Institute of Materials Research and Engineering, A*STAR, Singapore 138634, Singapore
| | - Li Zhou
- Key Laboratory of New Processing Technology for Nonferrous Metal and Materials of Chinese Ministry of Education, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China.
| |
Collapse
|
274
|
Fagieh TM, Bakhsh EM, Khan SB, Akhtar K, Asiri AM. Alginate/Banana Waste Beads Supported Metal Nanoparticles for Efficient Water Remediation. Polymers (Basel) 2021; 13:polym13234054. [PMID: 34883558 PMCID: PMC8659063 DOI: 10.3390/polym13234054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 10/30/2021] [Accepted: 11/08/2021] [Indexed: 11/23/2022] Open
Abstract
Water pollution is considered a perilous issue that requires an immediate solution. This is largely because of the strong correlation between the global population increase and the amount of waste produced (most notably food waste). This project prompts the conversion of food waste into useful materials that can be used with sodium alginate as a catalytic support for metal nanoparticles. Sodium alginate/banana peel (Alg/BP) beads were prepared simply using an eco-friendly method. The prepared materials were modified using nanostructured materials to enhance their characteristics. Alg/BP beads were employed as adsorbents for metals that were then treated with sodium borohydride to produce MNPs@Alg/BP. Different MNPs@Alg/BP (MNPs = Ag, Ni, Co, Fe, and Cu) were used as catalysts for reducing 4-nitrophenol (4-NP) by NaBH4 to evaluate each catalyst performance in a model reaction. The results exhibited that Cu@Alg/BP was most efficient toward complete transformation of 4-NP. Therefore, Cu@Alg/BP was also used as a catalyst for the reduction of potassium ferricyanide, congo red, methyl orange (MO), and methylene blue. It was found that Cu@Alg/BP beads catalytically reduced up to 95–99% of above pollutants within a few minutes. Cu@Alg/BP beads were more selective in reducing MO among the pollutants. The catalytic activity of Cu@Alg/BP was examined by evaluating the impact of numerous parameters on MO reduction. The results are expected to provide a new strategy for the removal of inorganic and organic water contaminants based on efficient and low-cost catalysts.
Collapse
Affiliation(s)
- Taghreed M Fagieh
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Esraa M Bakhsh
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sher Bahadar Khan
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence for Advanced Materials, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Kalsoom Akhtar
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdullah M Asiri
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence for Advanced Materials, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
275
|
Lv W, Shen T, Ding F, Mao S, Ma Z, Xie J, Gao M. A novel NH2-rich polymer/graphene oxide/organo-vermiculite adsorbent for the efficient removal of azo dyes. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117308] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
276
|
Meshram AA, Sontakke SM. Synthesis of highly stable nanoscale MIL-53 MOF and its application for the treatment of complex mixed dye solutions and real-time dye industry effluent. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119073] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
277
|
Saxena M, Sharma N, Saxena R. 4‐Aminosalicylic Acid Functionalized Multiwalled Carbon Nanotubes for Rapid Removal of Crystal Violet Dye from Wastewater Using Minicolumn. ChemistrySelect 2021. [DOI: 10.1002/slct.202102847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Megha Saxena
- Department of Chemistry Kirori Mal College University of Delhi Delhi 110007 India
| | - Niharika Sharma
- Department of Chemistry Kirori Mal College University of Delhi Delhi 110007 India
| | - Reena Saxena
- Department of Chemistry Kirori Mal College University of Delhi Delhi 110007 India
| |
Collapse
|
278
|
Adsorption Kinetics and Isotherm Study of Basic Red 5 on Synthesized Silica Monolith Particles. WATER 2021. [DOI: 10.3390/w13202803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The Silica monolith particles (SMP) were prepared from Tetra-Methyl-Ortho-Silicate (TMOS) and characterized by Fourier transforms infrared (FTIR), Scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and surface area analyzer. FTIR analysis showed the Si−O stretching confirming SMP formation. SEM analysis provided information about the mean diameter of SMP (1−5 µm). EDX confirmed the presence of silicon and oxygen in the SMP. Moreover, the calculated surface area for SMP was found to be around 367 m2/g, whereas BJH pore size distributed particles were 87.15 along with the total pore volume and pore radius of 0.073 cm3/g and 16.627 Å, respectively. Besides, the removal efficiency was found to be about 96%. Various kinetic equations were used to calculate the adsorption parameters. Overall, the results show that the most appropriate model for the kinetics data was the pseudo-second order kinetics model while the mechanism of adsorption was best explained by the Langmuir isotherm. The highest removal of Basic Red 5 dye after 120 min at 298 K was 576 mg/g. Moreover, the thermodynamics parameters (Enthalpy, Gibb’s energy, and Entropy) were also estimated. The ΔH° (0.995 kJ/mol) value depicted the endothermic nature of the process. The non-spontaneous aspect of the process was evident from the ΔG° values which were 60.431, 328.93, and 339.5 kJ/mol at 293, 303, and 313 K, respectively. From the high removal efficiency value, it can be concluded that the prepared adsorbent can be a potential adsorbent in the reclamation of dyes from wastewater.
Collapse
|
279
|
Getachew D, Suresh A, Kamaraj M, Ayele A, Benor S. Removal of malachite green and mixed dyes from aqueous and textile effluents using acclimatized and sonicated microalgal ( Oscillatoria sp.) biosorbents and process optimization using the response surface methodology. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 24:881-892. [PMID: 34618651 DOI: 10.1080/15226514.2021.1984387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Synthetic dyes are toxic and their release into the environment harms the ecosystem. Phycoremediation of synthetic dyes with acclimatized and native species has advantages over other methods. In this study, textile effluent-acclimatized microalgae species of Oscillatoria were grown in Bold's Basal Medium (BBM), dried, powdered using sonication, and optimized the removal malachite green (MG), using the response surface methodology (RSM). The effects of algal biosorbent concentration (AC), pH, and contact time (CT) were studied with 1 g L-1 MG in an aqueous solution, and the interaction model exerted significance (p < 0.001). The removal of MG was higher at alkaline pH (90% at pH 8.5) than at acidic pH (70% at pH 4). Under the optimized conditions of 1.2 g L-1 AC, 8.5 pH, and 30 min CT, the MG removal was documented at 90.8% with the biosorption capacity of 757 mg g-1. Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) analysis revealed the occurrence of different electronegative functional groups, aromatic vibrations, and the crystalline nature of the biosorbent. The algal sorbent exhibited a good performance of 80.9% for the removal of the crude color in real textile effluents. This microalgal sorbent is an attractive option for promoting large-scale applications.
Collapse
Affiliation(s)
- Deribe Getachew
- Department of Biotechnology, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| | - Arumuganainar Suresh
- Department of Biotechnology, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
- Department of Biological Sciences and BioC technology, Institute of Advanced Research - The University for Innovation, Gandhinagar, India
- Waste Management Unit, Suguna Foods Private Limited, Udumalaipettai, India
| | - Murugesan Kamaraj
- Department of Biotechnology, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| | - Abate Ayele
- Department of Biotechnology, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| | - Solomon Benor
- Department of Biotechnology, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
- Office of Science and Research Affair Director General, Ministry of Science and Higher Education, Addis Ababa, Ethiopia
| |
Collapse
|
280
|
Saravanan A, Kumar PS, Vo DVN, Jeevanantham S, Karishma S, Yaashikaa PR. A review on catalytic-enzyme degradation of toxic environmental pollutants: Microbial enzymes. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126451. [PMID: 34174628 DOI: 10.1016/j.jhazmat.2021.126451] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/14/2021] [Accepted: 06/18/2021] [Indexed: 05/17/2023]
Abstract
Industrialization and other human anthropogenic activities cause serious threats to the environment. The toxic pollutants can cause detrimental diseases on diverse living beings in their respective ecosystems. Bioremediation is one of the efficient remediation methods in which the toxic pollutants are removed from the environment by the application of microorganisms or their biologically active products (enzymes). Typically, the microorganisms in the environment produce various enzymes to immobilize and degrade the toxic environmental pollutants by utilizing them as a substrate for their growth and development. Both the bacterial and fungal enzymes can degrade the toxic pollutants present in the environment and convert them into non-toxic forms through their catalytic reaction mechanism. Hydrolases, oxidoreductases, dehalogenases, oxygenases and transferases are the major classes of microbial enzymes responsible for the degradation of most of the toxic pollutants in the environment. Recently, there are different immobilizations and genetic engineering techniques have been developed to enhance enzyme efficiency and diminish the process cost for pollutant removal. This review focused on enzymatic removal of toxic pollutants such as heavy metals, dyes, plastics and pesticides in the environment. Current trends and further expansion for efficient removal of toxic pollutants through enzymatic degradation are also reviewed in detail.
Collapse
Affiliation(s)
- A Saravanan
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai 602105, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, India.
| | - Dai-Viet N Vo
- Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| | - S Jeevanantham
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai 602105, India
| | - S Karishma
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai 602105, India
| | - P R Yaashikaa
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| |
Collapse
|
281
|
Liu M, Yin W, Zhao TL, Yao QZ, Fu SQ, Zhou GT. High-efficient removal of organic dyes from model wastewater using Mg(OH)2-MnO2 nanocomposite: Synergistic effects of adsorption, precipitation, and photodegradation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118901] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
282
|
Januário EFD, Vidovix TB, Beluci NDCL, Paixão RM, Silva LHBRD, Homem NC, Bergamasco R, Vieira AMS. Advanced graphene oxide-based membranes as a potential alternative for dyes removal: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 789:147957. [PMID: 34052486 DOI: 10.1016/j.scitotenv.2021.147957] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/02/2021] [Accepted: 05/17/2021] [Indexed: 05/23/2023]
Abstract
Graphene oxide (GO) is one of the most well-known graphene derivatives which, due to its outstanding chemical, electrical and optical properties as well as its high oxygen content, has been recently applied in several fields such as in the construction of sensors, as antimicrobial agent for biomedical applications, as well as nanofiller material for membranes applied in wastewater treatment. In this last-mentioned field, the synthesis and functionalization of membranes with GO has proven to improve the performance of membranes applied in the treatment of wastewater containing dyes, regarding antifouling behavior, selectivity and flux. In this review, an overview of water pollution caused by effluents containing synthetic dyes, the advantages and limitations of GO-based membranes and the latest research advances on the use of GO-based membranes for dyes removal, including its impact on membrane performance, are discussed in detail. The future panorama of the applicability of GO-based membranes for the treatment of water contaminated by dyes is also provided.
Collapse
Affiliation(s)
| | - Taynara Basso Vidovix
- State University of Maringá, Department of Chemical Engineering, Maringa 87020-900, Paraná, Brazil
| | | | - Rebecca Manesco Paixão
- State University of Maringá, Department of Chemical Engineering, Maringa 87020-900, Paraná, Brazil
| | | | - Natália Cândido Homem
- University of Minho, Centre for Textile Science and Technology (2C2T), Department of Textile Engineering, 4800-058 Guimarães, Portugal.
| | - Rosangela Bergamasco
- State University of Maringá, Department of Chemical Engineering, Maringa 87020-900, Paraná, Brazil
| | | |
Collapse
|
283
|
Saravanan A, Senthil Kumar P, Jeevanantham S, Karishma S, Tajsabreen B, Yaashikaa PR, Reshma B. Effective water/wastewater treatment methodologies for toxic pollutants removal: Processes and applications towards sustainable development. CHEMOSPHERE 2021; 280:130595. [PMID: 33940449 DOI: 10.1016/j.chemosphere.2021.130595] [Citation(s) in RCA: 214] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 05/16/2023]
Abstract
Release of pollutants due to inflating anthropogenic activities has a conspicuous effect on the environment. As water is uniquely vulnerable to pollution, water pollution control has received a considerable attention among the most critical environmental challenges. Diverse sources such as heavy metals, dyes, pathogenic and organic compounds lead to deterioration in water quality. Demand for the pollutant free water has created a greater concern in water treatment technologies. The pollutants can be mitigated through physical, chemical and biological methodologies thereby alleviating the health and environmental effects caused. Diverse technologies for wastewater treatment with an accentuation on pre-treatment of feedstock and post treatment are concisely summed up. Pollutants present in the water can be removed by processes some of which include filtration, reverse osmosis, degasification, sedimentation, flocculation, precipitation and adsorption. Membrane separation and adsorption methodologies utilized to control water pollution and are found to be more effective than conventional methods and established recovery processes. This audit relatively features different methodologies that show remarkable power of eliminating pollutants from wastewater. This review describes recent research development on wastewater treatment and its respective benefits/applications in field scale were discussed. Finally, the difficulties in the enhancement of treatment methodologies for pragmatic commercial application are recognized and the future viewpoints are introduced.
Collapse
Affiliation(s)
- A Saravanan
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105, India
| | - P Senthil Kumar
- Deprtament of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India.
| | - S Jeevanantham
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105, India
| | - S Karishma
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105, India
| | - B Tajsabreen
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105, India
| | - P R Yaashikaa
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 602105, India
| | - B Reshma
- Deprtament of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India
| |
Collapse
|
284
|
Ahmed A, Usman M, Yu B, Shen Y, Cong H. Sustainable fabrication of hematite (α-Fe2O3) nanoparticles using biomolecules of Punica granatum seed extract for unconventional solar-light-driven photocatalytic remediation of organic dyes. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116729] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
285
|
An evaluation into the biosorption and biodegradation of azo dyes by indigenous siderophores-producing bacteria immobilized in chitosan. Biodegradation 2021; 32:697-710. [PMID: 34550530 DOI: 10.1007/s10532-021-09961-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 09/09/2021] [Indexed: 10/20/2022]
Abstract
The biodegradation and biosorption efficiency of an indigenous siderophores-producing bacterial community on azo dyes with immobilization in chitosan beads was evaluated in this study. 13 bacterial strains were isolated from textile wastewater streams. The bacterial strains were tested for the production of siderophores as well as their ability to decolorize toxic azo dyes in aqueous solution. Both qualitatively and quantitatively, all of the strains displayed high siderophores productivity. Furthermore, they displayed remarkable decolorization efficiency for azo dyes (Acid Black 1 and Reactive Black 5) in both free and immobilized form. The immobilization process was found not only to enhance the decolorization but also the degradation of azo dyes by the bacterial isolates. In a SEM micrograph, bacterial strains were immobilized, and the pores in chitosan bead to be trapped and adsorbed for dyes from synthetic wastewater. The extent of dye compounds degradation were examined using UV-visible and FTIR spectrophotometers on treated water samples and dye absorbed beads. After 72 h of incubation, the UV-visible analysis revealed that the bacterial community could significantly reduce both azo dyes in wastewater by 90% at 300 mgL-1 dyes initial concentration. FTIR study confirmed the bonds of these dyes were broken to form less toxic chemicals via the bacterial community immobilized in chitosan beads. The immobilized bacterial community thus demonstrated effective approach of azo dye biosorption and biodegradation.
Collapse
|
286
|
Rápó E, Tonk S. Factors Affecting Synthetic Dye Adsorption; Desorption Studies: A Review of Results from the Last Five Years (2017-2021). Molecules 2021; 26:5419. [PMID: 34500848 PMCID: PMC8433845 DOI: 10.3390/molecules26175419] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 12/07/2022] Open
Abstract
The primary, most obvious parameter indicating water quality is the color of the water. Not only can it be aesthetically disturbing, but it can also be an indicator of contamination. Clean, high-quality water is a valuable, essential asset. Of the available technologies for removing dyes, adsorption is the most used method due to its ease of use, cost-effectiveness, and high efficiency. The adsorption process is influenced by several parameters, which are the basis of all laboratories researching the optimum conditions. The main objective of this review is to provide up-to-date information on the most studied influencing factors. The effects of initial dye concentration, pH, adsorbent dosage, particle size and temperature are illustrated through examples from the last five years (2017-2021) of research. Moreover, general trends are drawn based on these findings. The removal time ranged from 5 min to 36 h (E = 100% was achieved within 5-60 min). In addition, nearly 80% efficiency can be achieved with just 0.05 g of adsorbent. It is important to reduce adsorbent particle size (with Φ decrease E = 8-99%). Among the dyes analyzed in this paper, Methylene Blue, Congo Red, Malachite Green, Crystal Violet were the most frequently studied. Our conclusions are based on previously published literature.
Collapse
Affiliation(s)
- Eszter Rápó
- Environmental Science Department, Sapientia Hungarian University of Transylvania, Calea Turzii No. 4, 400193 Cluj-Napoca, Romania
- Department of Genetics, Microbiology and Biotechnology, Hungarian University of Agriculture and Life Sciences, Páter Károly No. 1, H-2100 Gödöllő, Hungary
| | - Szende Tonk
- Environmental Science Department, Sapientia Hungarian University of Transylvania, Calea Turzii No. 4, 400193 Cluj-Napoca, Romania
| |
Collapse
|
287
|
Xie Z, Li L, Hsu Y, Asoh T, Uyama H. Citric acid functionalized cellulose monolith for continuous‐flow removal of cationic dye in water. NANO SELECT 2021. [DOI: 10.1002/nano.202100185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Zhengtian Xie
- Department of Applied Chemistry Graduate School of Engineering Osaka University 2‐1 Yamadaoka Suita Osaka 565–0871 Japan
| | - Linxuan Li
- Department of Applied Chemistry Graduate School of Engineering Osaka University 2‐1 Yamadaoka Suita Osaka 565–0871 Japan
| | - Yu‐I Hsu
- Department of Applied Chemistry Graduate School of Engineering Osaka University 2‐1 Yamadaoka Suita Osaka 565–0871 Japan
| | - Taka‐Aki Asoh
- Department of Applied Chemistry Graduate School of Engineering Osaka University 2‐1 Yamadaoka Suita Osaka 565–0871 Japan
| | - Hiroshi Uyama
- Department of Applied Chemistry Graduate School of Engineering Osaka University 2‐1 Yamadaoka Suita Osaka 565–0871 Japan
| |
Collapse
|
288
|
Chakhtouna H, Benzeid H, Zari N, Qaiss AEK, Bouhfid R. Recent progress on Ag/TiO 2 photocatalysts: photocatalytic and bactericidal behaviors. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:44638-44666. [PMID: 34212334 PMCID: PMC8249049 DOI: 10.1007/s11356-021-14996-y] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 06/15/2021] [Indexed: 05/23/2023]
Abstract
For many decades, titanium dioxide (TiO2) semiconductor has been extensively applied in several environmental applications due to its higher photocatalytic performances toward different organic pollutants, pharmaceutical compounds, and bacteria. However, its shortfall response to visible light, and the expeditious recombination rate of the photogenerated electron-hole pairs, hampers its utilization. Doping TiO2 semiconductor with silver nanoparticles is a sound strategy to (1) extend its photocatalytic activity to visible light, (2) prevent the electron/holes pairs recombination due to the formation of the Schottky barrier at the interfaces with TiO2 that act as an electron-trapping center, and (3) enhance its bactericide performances. This review focuses on the recent progress on silver-doped titanium dioxide (Ag/TiO2)-based photocatalysts. It addresses a wide range of Ag/TiO2 synthesis techniques, their physicochemical properties and discusses thoroughly the important role of silver (Ag) nanoparticles in enhancing the removal capacity and antibacterial performances of the Ag/TiO2 photocatalysts.
Collapse
Affiliation(s)
- Hanane Chakhtouna
- Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Composites and Nanocomposites Center, Rabat Design Center, Rue Mohamed El Jazouli, Madinat El Irfane, 10100, Rabat, Morocco
- Laboratory of Analytical Chemistry and Bromatology, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Hanane Benzeid
- Laboratory of Analytical Chemistry and Bromatology, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Nadia Zari
- Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Composites and Nanocomposites Center, Rabat Design Center, Rue Mohamed El Jazouli, Madinat El Irfane, 10100, Rabat, Morocco
| | - Abou El Kacem Qaiss
- Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Composites and Nanocomposites Center, Rabat Design Center, Rue Mohamed El Jazouli, Madinat El Irfane, 10100, Rabat, Morocco
| | - Rachid Bouhfid
- Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Composites and Nanocomposites Center, Rabat Design Center, Rue Mohamed El Jazouli, Madinat El Irfane, 10100, Rabat, Morocco.
| |
Collapse
|
289
|
Uflyand IE, Zhinzhilo VA, Nikolaevskaya VO, Kharisov BI, González CMO, Kharissova OV. Recent strategies to improve MOF performance in solid phase extraction of organic dyes. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106387] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
290
|
Polysulfone/Polyetherimide Ultrafiltration composite membranes constructed on a three-component Nylon-fiberglass-Nylon support for azo dyes removal: Experimental and molecular dynamics simulations. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126941] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
291
|
Kinetic Study of the Ultrasound Effect on Acid Brown 83 Dye Degradation by Hydrogen Peroxide Oxidation Processes. CHEMENGINEERING 2021. [DOI: 10.3390/chemengineering5030052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The effect of ultrasound on the degradation of the dye Acid Brown 83 by seven different degradation methods (blank test using only ultrasound, hydrogen peroxide in a neutral medium, hydrogen peroxide in a sulfuric acid medium and hydrogen peroxide in a sulfuric acid medium in the presence of Fe(II), both without and with ultrasonic irradiation) is studied in this paper. The effectiveness of these methods is compared by analyzing the degradation percentages of the dye and its initial degradation rate. The application of ultrasound leads to a significant increase in the efficiency of any of the degradation method studied. Kinetic study of Acid Brown 83 degradation by the above-mentioned methods is carried out by using four kinetic models (first order, second order, Behnajady and pseudo-first order). The pseudo-first order model is the one that best fits the experimental data in all the used degradation methods. Although when the degradation is performed in the presence of Fe(II), the Behnajady model presents correlation coefficients slightly higher than those of the pseudo-first order, the maximum experimental conversions obtained fit much better in all cases to the pseudo first order model.
Collapse
|
292
|
Yadav A, Bagotia N, Sharma AK, Kumar S. Advances in decontamination of wastewater using biomass-basedcomposites: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:147108. [PMID: 33892326 DOI: 10.1016/j.scitotenv.2021.147108] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
Contaminant removal from wastewater using natural biosorbents has been widely studied as a suitable and environmentally benign alternative for conventional techniques. Currently, researchers are working on various biomass-based composites for wastewater remediation to improve the performance of natural biosorbents. This review takes into focus a wide range of biomass-based composites like hydrogel composites, metal oxide composites, magnetic composites, polymer composites, carbon nanotubes (CNTs) and graphene composites, metal organic framework composites (MOFs) and clay composites for the removal of various contaminants from wastewater. It is evident from the literature survey that the composite fabrication involves the modification of morphological and textural features of the biomass which results in significant enhancement of adsorption capacity. Apart from this, regeneration of the used biomass-based composite is also studied in depth in order to overcome the problem of solid waste generation. This review would prove to be beneficial for researchers who are currently focusing on the development of cost-effective, easily available, recyclable biomass-based composites with enhanced adsorption capacities for wastewater treatment.
Collapse
Affiliation(s)
- Aruna Yadav
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani 127021, Haryana, India
| | - Nisha Bagotia
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani 127021, Haryana, India
| | - Ashok K Sharma
- Department of Chemistry, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Sonepat 131039, Haryana, India
| | - Surender Kumar
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani 127021, Haryana, India.
| |
Collapse
|
293
|
Chen X, Ning XA, Lai X, Wang Y, Zhang Y, He Y. Chlorophenols in textile dyeing sludge: Pollution characteristics and environmental risk control. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125721. [PMID: 34492775 DOI: 10.1016/j.jhazmat.2021.125721] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 06/13/2023]
Abstract
Chlorophenols (CPs) are toxic contaminants that tend to accumulate in textile dyeing sludge and pose a threat to the environment through the disposal process. To comprehensively evaluate CPs in sludge, the characteristics and risks of CPs from five textile dyeing plants (TDPs) were investigated in this study. The total concentration of 19 CPs (Σ19 CPs) varied from 170.90 to 6290.30 ng g-1 dry weight (dw), among which high-chlorine phenols accounted for the greatest proportion. The ecological screening level (ESL) of CPs was used to judge their pollution levels, while the risk quotient (RQ) value and dioxin conversion rate were used to analyze their potential risk. The results indicated that CPs may pose a moderate to high risk to the environment. The Fenton process was used to condition the hazardous sludge, and a higher content of CPs was found after conditioning. A lower rate of CP increase was achieved with a reagent dose of 180 mmol/L, H2O2:Fe2+ = 1:1, pH of 3-4 and reaction time of 30 min. In summary, the work helps to address the general knowledge gap in the textile dyeing industry and provides a reference for further research.
Collapse
Affiliation(s)
- Xiaohui Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Xun-An Ning
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| | - Xiaojun Lai
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Yi Wang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Yaping Zhang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Yao He
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
294
|
Dassanayake RS, Acharya S, Abidi N. Recent Advances in Biopolymer-Based Dye Removal Technologies. Molecules 2021; 26:4697. [PMID: 34361855 PMCID: PMC8347927 DOI: 10.3390/molecules26154697] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/21/2021] [Accepted: 07/29/2021] [Indexed: 12/19/2022] Open
Abstract
Synthetic dyes have become an integral part of many industries such as textiles, tannin and even food and pharmaceuticals. Industrial dye effluents from various dye utilizing industries are considered harmful to the environment and human health due to their intense color, toxicity and carcinogenic nature. To mitigate environmental and public health related issues, different techniques of dye remediation have been widely investigated. However, efficient and cost-effective methods of dye removal have not been fully established yet. This paper highlights and presents a review of recent literature on the utilization of the most widely available biopolymers, specifically, cellulose, chitin and chitosan-based products for dye removal. The focus has been limited to the three most widely explored technologies: adsorption, advanced oxidation processes and membrane filtration. Due to their high efficiency in dye removal coupled with environmental benignity, scalability, low cost and non-toxicity, biopolymer-based dye removal technologies have the potential to become sustainable alternatives for the remediation of industrial dye effluents as well as contaminated water bodies.
Collapse
Affiliation(s)
- Rohan S. Dassanayake
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka;
| | - Sanjit Acharya
- Fiber and Biopolymer Research Institute, Texas Tech University, Lubbock, TX 79409, USA;
| | - Noureddine Abidi
- Fiber and Biopolymer Research Institute, Texas Tech University, Lubbock, TX 79409, USA;
| |
Collapse
|
295
|
Fang Y, Liu Q, Zhu S. Selective biosorption mechanism of methylene blue by a novel and reusable sugar beet pulp cellulose/sodium alginate/iron hydroxide composite hydrogel. Int J Biol Macromol 2021; 188:993-1002. [PMID: 34358601 DOI: 10.1016/j.ijbiomac.2021.07.192] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/25/2021] [Accepted: 07/27/2021] [Indexed: 10/20/2022]
Abstract
A cellulose-based sodium alginate/iron hydroxide (C/SA/Fe) composite hydrogel was fabricated by using epichlorohydrin as cross-linking agent as an effective adsorbent for dye. The physicochemical structure of the C/SA/Fe hydrogel was characterized by SEM, FTIR, XRD and TG. The adsorption performance for the removal of methylene blue (MB) was investigated. In addition, the selective adsorption of cationic dye was also studied. The FTIR analysis revealed that the Fe(OH)3 colloidal particles was successfully combined in the cellulose/sodium alginate hydrogel. The modified hydrogel had better adsorption performance, and the maximum adsorption capacity of C/SA/Fe0.5 for MB was 105.93 mg/g according to the fitting results of adsorption isotherm. The kinetic study showed that MB adsorption of C/SA/Fe was more consistent with the pseudo-second-order model, and the adsorption of MB in C/SA/Fe was dominated by chemisorption mechanism such as ion exchange or electron sharing. The adsorption data fits well with the Langmuir model. Thermodynamics analysis showed that the MB adsorption by C/SA/Fe was exothermic, spontaneous, favorable and feasible. After five adsorption-desorption cycles, the adsorption capacity was almost unchanged. So, the C/SA/Fe hydrogel is a potential material in the field of the recovery of agricultural by-products or other bio-based cellulose, or environmental protection, etc.
Collapse
Affiliation(s)
- Yi Fang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Qiang Liu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Siming Zhu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510641, China; College of Life and Geographic Sciences, Kashi University, Kashi 844000, China.
| |
Collapse
|
296
|
Kong XH, Hu KQ, Mei L, Li A, Liu K, Zeng LW, Wu QY, Chai ZF, Nie CM, Shi WQ. Double-Layer Nitrogen-Rich Two-Dimensional Anionic Uranyl-Organic Framework for Cation Dye Capture and Catalytic Fixation of Carbon Dioxide. Inorg Chem 2021; 60:11485-11495. [PMID: 34263604 DOI: 10.1021/acs.inorgchem.1c01492] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A novel two-dimensional double-layer anionic uranyl-organic framework, U-TBPCA {[NH2(CH3)2][(UO2)(TBPCA)], where H3TBPCA = 4,4',4″-s-triazine-1,3,5-triyltripamino-methylene-cyclohexane-carboxylate}, with abundant active sites and stability was obtained by assembling UO2(NO3)2·6H2O and a triazine tricarboxylate linker, TBPCA3-. Due to the flexibility of the ligand and diverse coordination modes between carboxyl groups and uranyl ions, U-TBPCA exhibits an intriguing topological structure and steric configuration. This double-layer anionic uranyl-organic framework is highly porous and can be used for selective adsorption of cationic dyes. Due to the presence of high-density metal ions and basic -NH- groups, U-TBPCA acts as an effective heterogeneous catalyst for the cycloaddition reaction of carbon dioxide with epoxy compounds. Moreover, the various modes of coordination between the tricarboxylic ligand and uranyl ion were studied by density functional theory calculations, and several simplified models were established to probe the influence of hydrogen bonding between carbon dioxide and U-TBPCA on the ability of U-TBPCA to bind carbon dioxide. This work should aid in improving our understanding of the coordination behavior of uranyl ion as well as the development and utilization of new actinide materials.
Collapse
Affiliation(s)
- Xiang-He Kong
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.,School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Kong-Qiu Hu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Mei
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Ailin Li
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.,School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Kang Liu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Li-Wen Zeng
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Qun-Yan Wu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Fang Chai
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.,Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China
| | - Chang-Ming Nie
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
297
|
Liu Y, Zheng H, Han Y, Wu Y, Wang Y, Liu Y, Feng L. Amphiphilic magnetic copolymer for enhanced removal of anionic dyes: Fabrication, application and adsorption mechanism. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126674] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
298
|
Song G, Li A, Shi Y, Li W, Wang H, Wang C, Li R, Ding G. Sorptive removal of methylene blue from water by magnetic multi-walled carbon nanotube composites. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:41268-41282. [PMID: 33779907 DOI: 10.1007/s11356-021-13543-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
In the present study, five magnetic multi-walled carbon nanotubes (MMWCNTs) with different diameters were prepared and their performance on the sorptive removal of methylene blue (MB) from water was investigated. Transmission electron microscope, scanning electron microscope, Fourier transform infrared spectrometer, X-ray diffraction, and vibrating sample magnetometer confirm that the surface of these MMWCNTs has been decorated by Fe3O4 nanoparticles, which renders the MMWCNTs superparamagnetic. Thus, these MMWCNTs can be easily separated from water after the adsorption. During the adsorption process, pH slightly affected the removal efficiency of MB and the adsorption performed better under weak alkaline conditions. Adsorption kinetics followed the pseudo-second-order kinetic model well, and the Dubinin-Radushkevich model fitted the isotherms best. The maximum adsorption capacity for MB reached 204.2 mg/g, and the values decreased with increasing diameters of MMWCNTs due to decreasing specific surface areas. The thermodynamics parameters indicated the spontaneous and exothermic nature of the adsorption. The reusability test showed that MMWCNTs could be used for 6 cycles without significant loss of the adsorption capacity. And common ions (K+, Na+, Ca2+ and Al3+) and SDS in water did not show greatly effects on the removal efficiency of MB. Hence, MMWCNTs prepared in this study could be promising adsorbents for dyes removal from wastewater.
Collapse
Affiliation(s)
- Guobin Song
- College of Environmental Science and Engineering, Dalian Maritime University, Linghai Road 1, Dalian, 116026, People's Republic of China
| | - Anqi Li
- College of Environmental Science and Engineering, Dalian Maritime University, Linghai Road 1, Dalian, 116026, People's Republic of China
| | - Yawei Shi
- College of Environmental Science and Engineering, Dalian Maritime University, Linghai Road 1, Dalian, 116026, People's Republic of China
| | - Wanran Li
- College of Environmental Science and Engineering, Dalian Maritime University, Linghai Road 1, Dalian, 116026, People's Republic of China
| | - Haonan Wang
- College of Environmental Science and Engineering, Dalian Maritime University, Linghai Road 1, Dalian, 116026, People's Republic of China
| | - Chunchao Wang
- College of Environmental Science and Engineering, Dalian Maritime University, Linghai Road 1, Dalian, 116026, People's Republic of China
| | - Ruijuan Li
- College of Environmental Science and Engineering, Dalian Maritime University, Linghai Road 1, Dalian, 116026, People's Republic of China
| | - Guanghui Ding
- College of Environmental Science and Engineering, Dalian Maritime University, Linghai Road 1, Dalian, 116026, People's Republic of China.
| |
Collapse
|
299
|
Kulkarni P, Watwe V, Doltade T, Kulkarni S. Fractal kinetics for sorption of Methylene blue dye at the interface of Alginate Fullers earth composite beads. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116225] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
300
|
Wang T, Sun Y, Wang S, Li X, Yue Y, Gao Q. Effective Adsorption of Methyl Orange on Organo-Silica Nanoparticles Functionalized by a Multi-Hydroxyl-Containing Gemini Surfactant: A Joint Experimental and Theoretical Study. ACS OMEGA 2021; 6:18014-18023. [PMID: 34308036 PMCID: PMC8296568 DOI: 10.1021/acsomega.1c01788] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
A novel multi-hydroxyl-containing gemini surfactant (G16) is first designed for modifying silica precursors (SiNPs), with the purpose of fabricating organic adsorbents targeted at methyl orange (MO). The purity of G16 and structural character of the resultant G16-SiNPs are unveiled through Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetry-derivative thermogravimetry, scanning electron microscopy, and surface analysis (BET). Compared with SiNPs, G16-SiNPs exhibit enhanced hydrophobicity, enlarged interlayer spacing, and increased thermal weight losses with the modifier availability reaching as high as 100%. Enhanced MO adsorption is obtained from the higher adsorption capacity of G16-SiNPs (401.88 mg/g) than SiNPs (64.72 mg/g), which is more effective than most of the existing silica-based adsorbents. Pseudo-second-order and Langmuir models conform to all adsorption processes, indicating that the adsorption mainly relies on the availability of adsorption sites and characterized by a homogeneous adsorption form. By combining the experimental study and theoretical calculation methods, it can be demonstrated that the as-synthesized adsorbent G16-SiNPs own multi-active sites that contribute to multi-adsorption mechanisms. The partition process, electrostatic interactions, and OH-π interactions are all responsible for the adsorption performance of G16-SiNPs. This study throws light on the exploration of the superb MO adsorbent in aspects of not only the novel structured modifier and precursor but also theoretical analysis for gaining insights into the adsorption mechanism.
Collapse
Affiliation(s)
- Tingting Wang
- Department
of Physics, Innovation Center of Materials for Energy and Environment
Technologies, College of Science, Tibet
University, Lhasa 850000, China
- Institute
of Oxygen Supply, Center of Tibetan Studies (Everest Research Institute), Tibet University, Lhasa 850000, China
- Key
Laboratory of Cosmic Rays, Ministry of Education, Tibet University, Lhasa 850000, China
- Hoffmann
Institute of Advanced Materials, Shenzhen
Polytechnic, 7098 Liuxian
Boulevard, Nanshan District, Shenzhen 518055, P. R. China
| | - Yaxun Sun
- Department
of Physics, Innovation Center of Materials for Energy and Environment
Technologies, College of Science, Tibet
University, Lhasa 850000, China
- Institute
of Oxygen Supply, Center of Tibetan Studies (Everest Research Institute), Tibet University, Lhasa 850000, China
- Key
Laboratory of Cosmic Rays, Ministry of Education, Tibet University, Lhasa 850000, China
| | - Shifeng Wang
- Department
of Physics, Innovation Center of Materials for Energy and Environment
Technologies, College of Science, Tibet
University, Lhasa 850000, China
- Institute
of Oxygen Supply, Center of Tibetan Studies (Everest Research Institute), Tibet University, Lhasa 850000, China
- Key
Laboratory of Cosmic Rays, Ministry of Education, Tibet University, Lhasa 850000, China
| | - Xin Li
- Department
of Physics, Innovation Center of Materials for Energy and Environment
Technologies, College of Science, Tibet
University, Lhasa 850000, China
- Institute
of Oxygen Supply, Center of Tibetan Studies (Everest Research Institute), Tibet University, Lhasa 850000, China
- Key
Laboratory of Cosmic Rays, Ministry of Education, Tibet University, Lhasa 850000, China
- Hoffmann
Institute of Advanced Materials, Shenzhen
Polytechnic, 7098 Liuxian
Boulevard, Nanshan District, Shenzhen 518055, P. R. China
| | - Yihang Yue
- Department
of Physics, Innovation Center of Materials for Energy and Environment
Technologies, College of Science, Tibet
University, Lhasa 850000, China
- Institute
of Oxygen Supply, Center of Tibetan Studies (Everest Research Institute), Tibet University, Lhasa 850000, China
- Key
Laboratory of Cosmic Rays, Ministry of Education, Tibet University, Lhasa 850000, China
| | - Qi Gao
- Department
of Physics, Innovation Center of Materials for Energy and Environment
Technologies, College of Science, Tibet
University, Lhasa 850000, China
- Key
Laboratory of Cosmic Rays, Ministry of Education, Tibet University, Lhasa 850000, China
| |
Collapse
|