251
|
Hu T, Subbiah V, Wu H, BK A, Rauf A, Alhumaydhi FA, Suleria HAR. Determination and Characterization of Phenolic Compounds from Australia-Grown Sweet Cherries ( Prunus avium L.) and Their Potential Antioxidant Properties. ACS OMEGA 2021; 6:34687-34699. [PMID: 34963952 PMCID: PMC8697386 DOI: 10.1021/acsomega.1c05112] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/01/2021] [Indexed: 05/05/2023]
Abstract
Sweet cherries (Prunus avium L.) are popular fruits around the world with a high nutritional value and abundant phenolic compounds. Phenolic compounds of cherries contribute to positive health benefits. This study aimed at determining the phenolic content and antioxidant activities in four Australian-grown sweet cherry cultivars, including Bing, Ron's, Merchant, and Lapins, as well as the identification of individual phenolic compounds with liquid chromatography-electrospray ionization-quantum time-of-flight-mass spectrometry (LC-ESI-QTOF-MS2). Lapins exhibits the highest total phenolic content (TPC) value (1.73 ± 0.90 mg gallic acid equivalents (GAE)/g) while Ron's exhibits the highest total flavonoid content (TFC) value (0.51 ± 0.02 mg QE/g). In 2,2'-azinobis-(3-ethylbenzo-thiazoline-6-sulfonic acid) (ABTS), reducing power assay (RPA), and total antioxidant content (TAC) assays, Merchant exhibited the highest values (0.51 ± 0.07, 1.74 ± 0.04, and 2.79 ± 0.09 mg AAE/g, respectively) and almost showed the highest antioxidant activity. Ron's presented the highest value (1.21 ± 0.09 mg EDTA/g) in ferrous ion-chelating activity (FICA) assay and exhibits the strongest metal chelating ability. The correlation between phenolic contents and antioxidant assays was observed. In the LC-ESI-QTOF-MS2 analysis, a total of 43 phenolic compounds has been detected in four sweet cherry cultivars, including 11 phenolic acids, 25 flavonoids, 5 other phenolic compounds, 1 lignan, and 1 stilbene. Venn graph showed that Lapins has the greatest number of unique compounds. Our study shows the presence of phenolic acids and provides information to be utilized as an ingredient in food, pharmaceutical, and nutraceutical industries.
Collapse
Affiliation(s)
- Tianyi Hu
- School
of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Vigasini Subbiah
- School
of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Hanjing Wu
- School
of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Amrit BK
- School
of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Abdur Rauf
- Department
of Chemistry, University of Swabi, Anbar, Swabi, 23561 KPK, Pakistan
| | - Fahad A. Alhumaydhi
- Department
of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Hafiz Ansar Rasul Suleria
- School
of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
252
|
Qi Y, Yang Y, Hassane Hamadou A, Shen Q, Xu B. Tempering–preservation treatment inactivated lipase in wheat bran and retained phenolic compounds. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Yajing Qi
- School of Food and Biological Engineering Jiangsu University Zhenjiang 212013 China
| | - Yuying Yang
- School of Food and Biological Engineering Jiangsu University Zhenjiang 212013 China
| | | | - Qiuyun Shen
- School of Food and Biological Engineering Jiangsu University Zhenjiang 212013 China
| | - Bin Xu
- School of Food and Biological Engineering Jiangsu University Zhenjiang 212013 China
| |
Collapse
|
253
|
Huang M, Han Y, Li L, Rakariyatham K, Wu X, Gao Z, Xiao H. Protective effects of non-extractable phenolics from strawberry against inflammation and colon cancer in vitro. Food Chem 2021; 374:131759. [PMID: 34896944 DOI: 10.1016/j.foodchem.2021.131759] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/25/2021] [Accepted: 11/29/2021] [Indexed: 12/26/2022]
Abstract
Strawberry is a rich source of phenolics. However, most studies focused on extractable phenolics (EP) while neglecting non-extractable phenolics (NEP). The aim of this study was to characterize EP and NEP from strawberry (Fragaria × ananassa) and determine their anti-inflammatory and anti-colon cancer potentials in cell culture models. NEP contained flavonols, flavanols and phenolic acids that were released through alkaline hydrolysis. NEP dose-dependently inhibited lipopolysaccharides -induced NO production in RAW 264.7 macrophage. Western blotting showed that NEP reduced the expression levels of pro-inflammatory proteins such as iNOS and c-FOS, but increased the expression level of antioxidative protein, such as HO-1. Moreover, NEP markedly suppressed proliferation of human colon cancer HCT116 cells via inducing G2/M phase cell cycle arrest and apoptosis. Collectively, these findings illustrated preventive effects of strawberry NEP against inflammation and colon cancer, shedding light on potential contribution of NEP from strawberry as a health-promoting agent.
Collapse
Affiliation(s)
- Meigui Huang
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, PR China; Department of Food Science, University of Massachusetts, Amherst, MA 01003, United States
| | - Yanhui Han
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, United States
| | - Lingfei Li
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, United States; College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan 650000, PR China
| | - Kanyasiri Rakariyatham
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, United States
| | - Xian Wu
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, United States; Department of Kinesiology and Health, Miami University, Oxford, OH 45056, USA
| | - Zili Gao
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, United States
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, United States.
| |
Collapse
|
254
|
Pazo-Cepeda M, Aspromonte S, Alonso E. Extraction of ferulic acid and feruloylated arabinoxylo-oligosaccharides from wheat bran using pressurized hot water. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
255
|
Ma D, Wang C, Feng J, Xu B. Wheat grain phenolics: a review on composition, bioactivity, and influencing factors. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:6167-6185. [PMID: 34312865 DOI: 10.1002/jsfa.11428] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/13/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Wheat (Triticum aestivum L.) is a widely cultivated crop and one of the most commonly consumed food grains in the world. It possesses several nutritional elements. Increasing attention to wheat grain phenolics bioactivity is due to the increasing demand for foods with natural antioxidants. To provide a comprehensive understanding of phenolics in wheat grain, this review first summarizes the phenolics' form and distribution and the phenolic components identified in wheat grain. In particular, the biosynthesis path for phenolics is discussed, identifying some candidate genes involved in the biosynthesis of phenolic acids and flavonoids. After discussing the methods for determining antioxidant activity, the effect of genotypes, environmental conditions, and cultivation systems on grain phenolic component content are explored. Finally, the bioavailability of phenolics under different food processing method are reported and discussed. Future research is recommended to increase wheat grain phenolic content by genetic engineering, and to improve its bioavailability through proper food processing. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Dongyun Ma
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, China
- The National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Chenyang Wang
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, China
- The National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Jianchao Feng
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, China
| | - Beiming Xu
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
256
|
Seke F, Manhivi VE, Shoko T, Slabbert RM, Sultanbawa Y, Sivakumar D. Extraction optimisation, hydrolysis, antioxidant properties and bioaccessibility of phenolic compounds in Natal plum fruit (Carissa Macrocarpa). FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
257
|
Shen JL, Zhang BP, Zhou D, Xu ZK, Wan LS. Rapid formation of metal−monophenolic networks on polymer membranes for oil/water separation and dye adsorption. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.05.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
258
|
Kasote D, Tiozon RN, Sartagoda KJD, Itagi H, Roy P, Kohli A, Regina A, Sreenivasulu N. Food Processing Technologies to Develop Functional Foods With Enriched Bioactive Phenolic Compounds in Cereals. FRONTIERS IN PLANT SCIENCE 2021; 12:771276. [PMID: 34917106 PMCID: PMC8670417 DOI: 10.3389/fpls.2021.771276] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/27/2021] [Indexed: 05/13/2023]
Abstract
Cereal grains and products provide calories globally. The health benefits of cereals attributed to their diverse phenolic constituents have not been systematically explored. Post-harvest processing, such as drying, storing, and milling cereals, can alter the phenolic concentration and influence the antioxidant activity. Furthermore, cooking has been shown to degrade thermo-labile compounds. This review covers several methods for retaining and enhancing the phenolic content of cereals to develop functional foods. These include using bioprocesses such as germination, enzymatic, and fermentation treatments designed to enhance the phenolics in cereals. In addition, physical processes like extrusion, nixtamalization, and parboiling are discussed to improve the bioavailability of phenolics. Recent technologies utilizing ultrasound, micro- or nano-capsule polymers, and infrared utilizing processes are also evaluated for their effectiveness in improving the phenolics content and bio-accessibility. We also present contemporary products made from pigmented cereals that contain phenolics.
Collapse
Affiliation(s)
- Deepak Kasote
- Centre of Excellence in Rice Value Addition (CERVA), International Rice Research Institute (IRRI)—South Asia Regional Centre (ISARC), Varanasi, India
| | - Rhowell N. Tiozon
- International Rice Research Institute, Los Baños, Philippines
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | | | - Hameeda Itagi
- Centre of Excellence in Rice Value Addition (CERVA), International Rice Research Institute (IRRI)—South Asia Regional Centre (ISARC), Varanasi, India
| | - Priyabrata Roy
- Centre of Excellence in Rice Value Addition (CERVA), International Rice Research Institute (IRRI)—South Asia Regional Centre (ISARC), Varanasi, India
| | - Ajay Kohli
- International Rice Research Institute, Los Baños, Philippines
| | - Ahmed Regina
- Centre of Excellence in Rice Value Addition (CERVA), International Rice Research Institute (IRRI)—South Asia Regional Centre (ISARC), Varanasi, India
| | - Nese Sreenivasulu
- Centre of Excellence in Rice Value Addition (CERVA), International Rice Research Institute (IRRI)—South Asia Regional Centre (ISARC), Varanasi, India
- International Rice Research Institute, Los Baños, Philippines
| |
Collapse
|
259
|
Liu Y, Liu Y, Zhang J, Hou H. Effects of degree of milling on phenolics and antioxidant activity of cooked rice during in vitro digestion. Cereal Chem 2021. [DOI: 10.1002/cche.10501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yanxiaoxue Liu
- Engineering and Technology Center for Grain Processing of Shandong Province College of Food Science and Engineering Shandong Agricultural University Tai’an China
| | - Yuqian Liu
- Engineering and Technology Center for Grain Processing of Shandong Province College of Food Science and Engineering Shandong Agricultural University Tai’an China
| | - Jinli Zhang
- Engineering and Technology Center for Grain Processing of Shandong Province College of Food Science and Engineering Shandong Agricultural University Tai’an China
| | - Hanxue Hou
- Engineering and Technology Center for Grain Processing of Shandong Province College of Food Science and Engineering Shandong Agricultural University Tai’an China
| |
Collapse
|
260
|
Cortés-Viguri V, Hernández-Rodríguez L, Lobato-Calleros C, Cuevas-Bernardino JC, Hernández-Rodríguez BE, Alvarez-Ramirez J, Vernon-Carter EJ. Annatto (Bixa orellana L.), a potential novel starch source: antioxidant, microstructural, functional, and digestibility properties. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01228-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
261
|
Štreimikytė P, Urbonavičienė D, Balčiūnaitienė A, Viškelis P, Viškelis J. Optimization of the Multienzyme-Assisted Extraction Procedure of Bioactive Compounds Extracts from Common Buckwheat ( Fagopyrum esculentum M.) and Evaluation of Obtained Extracts. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122567. [PMID: 34961038 PMCID: PMC8703388 DOI: 10.3390/plants10122567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 05/28/2023]
Abstract
Optimization of the extraction procedure using a multienzymes cocktail for common buckwheat (Fagopyrum esculentum M.) is important due to the yield, fermentable sugars, oligosaccharides and bioactive compounds for creating higher added value products. This study was undertaken to find out the optimum multienzymes-water extraction on yield and total phenolic compounds for common Buckwheat using response surface methodology (RSM). Three independent variables, time (2, 13, and 24 h), temperature (60 °C, 70 °C, 80 °C), and non-starch polysaccharide (NSP) enzymes mixture (0.10, 0.55, and 1.00 mL), were analyzed to optimize the response variables. NSP hydrolyzing enzymes, cellulase, xylanase, and β-glucanase, were produced by Trichoderma reesei. Estimated optimum conditions for F. esculentum were found: time-2 h, temperature-65 °C, and cellulase activity-8.6 CellG5 Units/mL. Different optimization run samples were collected and lyophilized for further analysis until the hydrophilic property using the water contact angle methodology and rutin content using HPLC was determined. Results indicated NSP enzymes activity did not differ between water contact angles after 13 h of enzymatic water extraction. However, longer fermentation time (24 h) decreased static water contact angle by approximately 3-7° for lyophilized water extract and 2-7° for solid fraction after fermentation. It implies enzymatic hydrolysis during water extraction increased hydrophilic properties in solid fraction and decreased hydrophilicity in water fraction due to the enzymes cleaved glycosidic bonds releasing water-soluble compounds.
Collapse
|
262
|
Agatonovic-Kustrin S, Gegechkori V, Petrovich DS, Ilinichna KT, Morton DW. HPTLC and FTIR Fingerprinting of Olive Leaves Extracts and ATR-FTIR Characterisation of Major Flavonoids and Polyphenolics. Molecules 2021; 26:molecules26226892. [PMID: 34833984 PMCID: PMC8621442 DOI: 10.3390/molecules26226892] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/12/2021] [Accepted: 11/12/2021] [Indexed: 12/18/2022] Open
Abstract
The aim of this study was to analyse the effect of spontaneous microbial maceration on the release and extraction of the flavonoids and phenolics from olive leaves. Bioprofiling based on thin-layer chromatography effect-directed detection followed by ATR-FTIR spectroscopy proved to be a reliable and convenient method for simultaneous comparison of the extracts. Results show that fermentation significantly enhances the extraction of phenolic compounds and flavonoids. The polyphenolic content was increased from 6.7 µg GAE (gallic acid equivalents) to 25.5 µg GAE, antioxidants from 10.3 µg GAE to 25.3 µg GAE, and flavonoid content from 42 µg RE (rutin equivalents) to 238 µg RE per 20 µL of extract. Increased antioxidant activity of fermented ethyl acetate extracts was attributed to the higher concentration of extracted flavonoids and phenolic terpenoids, while increased antioxidant activity in fermented ethanol extract was due to increased extraction of flavonoids as extraction of phenolic compounds was not improved. Lactic acid that is released during fermentation and glycine present in the olive leaves form a natural deep eutectic solvent (NADES) with significantly increased solubility for flavonoids.
Collapse
Affiliation(s)
- Snezana Agatonovic-Kustrin
- Department of Pharmaceutical and Toxicological Chemistry Named after Arzamastsev of the Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (V.G.); (D.S.P.); (K.T.I.); (D.W.M.)
- School of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Sciences, La Trobe University, Edwards Rd, Bendigo 3550, Australia
- Correspondence:
| | - Vladimir Gegechkori
- Department of Pharmaceutical and Toxicological Chemistry Named after Arzamastsev of the Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (V.G.); (D.S.P.); (K.T.I.); (D.W.M.)
| | - Dementyev Sergey Petrovich
- Department of Pharmaceutical and Toxicological Chemistry Named after Arzamastsev of the Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (V.G.); (D.S.P.); (K.T.I.); (D.W.M.)
| | - Kobakhidze Tamara Ilinichna
- Department of Pharmaceutical and Toxicological Chemistry Named after Arzamastsev of the Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (V.G.); (D.S.P.); (K.T.I.); (D.W.M.)
| | - David William Morton
- Department of Pharmaceutical and Toxicological Chemistry Named after Arzamastsev of the Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (V.G.); (D.S.P.); (K.T.I.); (D.W.M.)
- School of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Sciences, La Trobe University, Edwards Rd, Bendigo 3550, Australia
| |
Collapse
|
263
|
Wang J, Jiang X, Zheng B, Zhang Y. Structural and physicochemical properties of lotus seed starch-chlorogenic acid complexes prepared by microwave irradiation. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2021; 58:4157-4166. [PMID: 34538900 PMCID: PMC8405777 DOI: 10.1007/s13197-020-04881-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 10/21/2020] [Accepted: 10/28/2020] [Indexed: 06/13/2023]
Abstract
Lotus seed (LS) has a high starch content and possesses many useful functional properties, which are mainly attributed to its phenolic compound content. The objective of this study was to investigate the effect of microwave irradiation (MW) treatment on the structural and physicochemical properties of a lotus seed starch-chlorogenic acid (CA) blend. MW treatment appeared to promote the formation of LS-CA complexes and the modified starch displayed more rougher structures than native starch. The particle size distribution of starch remained approximately constant when the microwave power was 200 W, but increased sharply with further increases in microwave power; a similar trend was observed in the swelling and solubility of starch. XRD and FT-IR spectra show that MW treatment degraded the ordered crystalline structure of starch, facilitating exposure of the starch chains originally buried in the crystalline and amorphous regions within the grains. During this treatment, CA interacted with starch molecules by hydrogen bonding and form a LS-CA complex, which inhibited the self-assembly process of starch chains. These findings demonstrated the potential use of MW treatment in controlling the storage and processing quality of lotus seed, or other starchy foods rich in polyphenols.
Collapse
Affiliation(s)
- Jianyi Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002 People’s Republic of China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Xiangfu Jiang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002 People’s Republic of China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002 People’s Republic of China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Yi Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002 People’s Republic of China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| |
Collapse
|
264
|
Voaides C, Radu N, Birza E, Babeanu N. Medlar—A Comprehensive and Integrative Review. PLANTS 2021; 10:plants10112344. [PMID: 34834707 PMCID: PMC8622783 DOI: 10.3390/plants10112344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 12/02/2022]
Abstract
Among fruit plants belonging to the Rosaceae family, medlar (Mespilus) can be classified as neglected or underutilized. It is a genus of two species of flowering plants: Mespilus germanica (common medlar) and Mespilus canescens. Appreciated for its specific taste and flavor, medlar also possesses biological properties (antioxidant and antimicrobial). Despite the special properties of medlar, there are few research papers on this subject. This review paper includes data not only on medlar fruits but also its leaves, bark, and bud flowers. The main identified components are presented, as well as several biological properties, morphological properties, ethnopharmacological uses, and molecular biology analyses emerging from the scientific papers published in this area.
Collapse
Affiliation(s)
- Catalina Voaides
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd., 011464 Bucharest, Romania; (C.V.); (N.R.); (N.B.)
| | - Nicoleta Radu
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd., 011464 Bucharest, Romania; (C.V.); (N.R.); (N.B.)
- National Institute for R&D in Chemistry and Petrochemistry of Bucharest, 202 Splaiul Independentei, 60021 Bucharest, Romania
| | - Elena Birza
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd., 011464 Bucharest, Romania; (C.V.); (N.R.); (N.B.)
- Correspondence: ; Tel.: +40-374-022-802
| | - Narcisa Babeanu
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd., 011464 Bucharest, Romania; (C.V.); (N.R.); (N.B.)
| |
Collapse
|
265
|
Hussain MI, Farooq M, Syed QA, Ishaq A, Al-Ghamdi AA, Hatamleh AA. Botany, Nutritional Value, Phytochemical Composition and Biological Activities of Quinoa. PLANTS 2021; 10:plants10112258. [PMID: 34834624 PMCID: PMC8624085 DOI: 10.3390/plants10112258] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/11/2021] [Accepted: 10/11/2021] [Indexed: 01/26/2023]
Abstract
Quinoa is a climate-resilient food grain crop that has gained significant importance in the last few years due to its nutritional composition, phytochemical properties and associated health benefits. Quinoa grain is enriched in amino acids, fiber, minerals, phenolics, saponins, phytosterols and vitamins. Quinoa possesses different human-health promoting biological substances and nutraceutical molecules. This review synthesizes and summarizes recent findings regarding the nutrition and phytochemical properties of quinoa grains and discusses the associated biological mechanisms. Quinoa grains and grain-based supplements are useful in treating different biological disorders of the human body. Quinoa is being promoted as an exceptionally healthy food and a gluten-free super grain. Quinoa could be used as a biomedicine due to the presence of functional compounds that may help to prevent various chronic diseases. Future research needs to explore the nutraceutical and pharmaceutical aspects of quinoa that might help to control different chronic diseases and to promote human health.
Collapse
Affiliation(s)
- M. Iftikhar Hussain
- Department of Plant Biology & Soil Science, Universidad de Vigo, As Lagoas, Marcosende, s/n, 36310 Vigo, Spain
- CITACA, Agri-Food Research and Transfer Cluster, Campus da Auga, Universidad de Vigo, 32004 Ourense, Spain
- Correspondence:
| | - Muhammad Farooq
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoudh 123, Oman;
| | - Qamar Abbas Syed
- National Institute of Food Science and Technology, Faculty of Food, Nutrition & Home Sciences University of Agriculture, Faisalabad 38000, Pakistan;
| | - Anum Ishaq
- School of Food and Agricultural Sciences, University of Management & Technology, Johar Town, Lahore 54770, Pakistan;
| | - Abdullah Ahmed Al-Ghamdi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.A.-G.); (A.A.H.)
| | - Ashraf A. Hatamleh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.A.-G.); (A.A.H.)
| |
Collapse
|
266
|
Chumsri P, Chaijan M, Panpipat W. A comparison of nutritional values, physicochemical features and
in vitro
bioactivities of Southern Thai short‐grain brown rice with commercial long‐grain varieties. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15371] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Paramee Chumsri
- Food Technology and Innovation Research Centre of Excellence Department of Food Industry School of Agricultural Technology and Food Industry Walailak University Nakhon Si Thammarat Thailand
| | - Manat Chaijan
- Food Technology and Innovation Research Centre of Excellence Department of Food Industry School of Agricultural Technology and Food Industry Walailak University Nakhon Si Thammarat Thailand
| | - Worawan Panpipat
- Food Technology and Innovation Research Centre of Excellence Department of Food Industry School of Agricultural Technology and Food Industry Walailak University Nakhon Si Thammarat Thailand
| |
Collapse
|
267
|
Influence of green extraction techniques on green coffee: Nutraceutical compositions, antioxidant potential and in vitro bio-accessibility of phenolics. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101284] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
268
|
Roasa J, De Villa R, Mine Y, Tsao R. Phenolics of cereal, pulse and oilseed processing by-products and potential effects of solid-state fermentation on their bioaccessibility, bioavailability and health benefits: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.08.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
269
|
Mattila P, Pap N, Järvenpää E, Kahala M, Mäkinen S. Underutilized Northern plant sources and technological aspects for recovering their polyphenols. ADVANCES IN FOOD AND NUTRITION RESEARCH 2021; 98:125-169. [PMID: 34507641 DOI: 10.1016/bs.afnr.2021.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Consumers worldwide are increasingly interested in the authenticity and naturalness of products. At the same time, the food, agricultural and forest industries generate large quantities of sidestreams that are not effectively utilized. However, these raw materials are rich and inexpensive sources of bioactive compounds such as polyphenols. The exploitation of these raw materials increases income for producers and processors, while reducing transportation and waste management costs. Many Northern sidestreams and other underutilized raw materials are good sources of polyphenols. These include berry, apple, vegetable, softwood, and rapeseed sidestreams, as well as underutilized algae species. Berry sidestreams are especially good sources of various phenolic compounds. This chapter presents the properties of these raw materials, providing an overview of the techniques for refining these materials into functional polyphenol-rich ingredients. The focus is on economically and environmentally sound technologies suitable for the pre-treatment of the raw materials, the modification and recovery of the polyphenols, as well as the formulation and stabilization of the ingredients. For example, sprouting, fermentation, and enzyme technologies, as well as various traditional and novel extraction methods are discussed. Regarding the extraction technologies, this chapter focuses on safe and green technologies that do not use organic solvents. In addition, formulation and stabilization that aim to protect isolated polyphenols during storage and extend shelflife are reviewed. The formulated polyphenol-rich ingredients produced from underutilized renewable resources could be used as sustainable, active ingredients--for example, in food and nutraceutical industries.
Collapse
Affiliation(s)
- Pirjo Mattila
- Natural Resources Institute Finland (Luke), Turku, Finland.
| | - Nora Pap
- Natural Resources Institute Finland (Luke), Jokioinen, Finland
| | - Eila Järvenpää
- Natural Resources Institute Finland (Luke), Jokioinen, Finland
| | - Minna Kahala
- Natural Resources Institute Finland (Luke), Jokioinen, Finland
| | - Sari Mäkinen
- Natural Resources Institute Finland (Luke), Jokioinen, Finland
| |
Collapse
|
270
|
Perez-Hernandez LM, Hernández-Álvarez AJ, Morgan M, Boesch C, Orfila C. Polyphenol bioaccessibility and anti-inflammatory activity of Mexican common beans ( Phaseolus vulgaris L.) with diverse seed colour. CYTA - JOURNAL OF FOOD 2021. [DOI: 10.1080/19476337.2021.1965660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
| | | | - Michael Morgan
- School of Food Science and Nutrition, University of Leeds, Leeds, UK
| | - Christine Boesch
- School of Food Science and Nutrition, University of Leeds, Leeds, UK
| | - Caroline Orfila
- School of Food Science and Nutrition, University of Leeds, Leeds, UK
| |
Collapse
|
271
|
Gao Y, Ping H, Li B, Li Y, Zhao F, Ma Z. Characterization of free, conjugated, and bound phenolics in early and late ripening kiwifruit cultivars. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:4743-4750. [PMID: 33491781 DOI: 10.1002/jsfa.11120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 01/09/2021] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Kiwifruit (Actinidia) has long been called the 'king of fruits' because of its unique flavor and the wide range of bioactive compounds which contains ascorbic acid, phenolics and minerals. These bioactivities are influenced by species and cultivar. However, to date few studies are concerned with the effect of ripening time on fruit quality. Here, early and late ripening kiwifruits were investigated to determine their content of ascorbic acid, organic acid, and phenolic compounds. RESULTS Early ripening cultivars contained higher quinic acid and malic acid, while citric acid were found in large amounts in late ripening kiwifruits. Most of the early ripening cultivars contained higher free phenolic fractions than the late ripening fruits, mainly due to the high levels of epicatechin. However, conjugated phenolics, mainly including caffeic and 2,3,4-trihydroxybenzoic acid, achieved higher levels in the late ripening cultivars. Free phenolics were higher than conjugated phenolics in the early ripening cultivars. Principal component analysis revealed some key compounds that differentiated the kiwifruits, and all the kiwifruits were divided into two subgroups as early and late ripening cultivars. CONCLUSION Ripening time had a great impact on the accumulation of bioactive compounds. The early ripening cultivars, compared to the late ripening ones, were characterized by higher levels of free neochlorogenic acid and epicatechin, while the late ripening kiwifruits contained higher amounts of conjugated phenolics. Results from this study provide further insights into the health-promoting phenolic compounds in kiwifruit, and also provide good evidence to aid consumer selection. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuan Gao
- Beijing Academy of Agriculture and Forestry Sciences, Beijing Research Center for Agricultural Standards and Testing, Beijing, China
- Risk Assessment Laboratory for Agro-Products (Beijing), Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Hua Ping
- Beijing Academy of Agriculture and Forestry Sciences, Beijing Research Center for Agricultural Standards and Testing, Beijing, China
- Risk Assessment Laboratory for Agro-Products (Beijing), Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Bingru Li
- Beijing Academy of Agriculture and Forestry Sciences, Beijing Research Center for Agricultural Standards and Testing, Beijing, China
- Risk Assessment Laboratory for Agro-Products (Beijing), Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yang Li
- Beijing Academy of Agriculture and Forestry Sciences, Beijing Research Center for Agricultural Standards and Testing, Beijing, China
- Risk Assessment Laboratory for Agro-Products (Beijing), Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Fang Zhao
- Beijing Academy of Agriculture and Forestry Sciences, Beijing Research Center for Agricultural Standards and Testing, Beijing, China
- Risk Assessment Laboratory for Agro-Products (Beijing), Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Zhihong Ma
- Beijing Academy of Agriculture and Forestry Sciences, Beijing Research Center for Agricultural Standards and Testing, Beijing, China
- Risk Assessment Laboratory for Agro-Products (Beijing), Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
272
|
Moyo SM, Serem JC, Bester MJ, Mavumengwana V, Kayitesi E. Hydrothermal Processing and In Vitro Simulated Human Digestion Affects the Bioaccessibility and Bioactivity of Phenolic Compounds in African Pumpkin ( Momordica balsamina) Leaves. Molecules 2021; 26:molecules26175201. [PMID: 34500636 PMCID: PMC8434164 DOI: 10.3390/molecules26175201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/16/2021] [Accepted: 08/21/2021] [Indexed: 11/16/2022] Open
Abstract
The African pumpkin (Momordica balsamina) contains bioactive phenolic compounds that may assist in reducing oxidative stress in the human body. The leaves are mainly consumed after boiling in water for a specific time; this hydrothermal process and conditions of the gastrointestinal tract may affect the presence and bioactivity of phenolics either positively or negatively. In this study, the effects of hydrothermal processing (boiling) and in vitro simulated human digestion on the phenolic composition, bioaccessibility and bioactivity in African pumpkin were investigated in comparison with those of spinach (Spinacia oleracea). A high-resolution ultra-performance liquid chromatography, coupled with diode array detection, quadrupole time-of-flight and mass spectrometer (UPLC-DAD-QTOF-MS) was used to profile phenolic metabolites. Metabolites such as 3-caffeoylquinic acid, 5-caffeoylquinic acid, 3,4-dicaffeoylquinic acid, 3,5-dicaffeoylquinic acid and 4,5-dicaffeoylquinic acid were highly concentrated in the boiled vegetable extracts compared to the raw undigested and all digested samples. The majority of African pumpkin and spinach extracts (non-digested and digested) protected Deoxyribonucleic acid (DNA), (mouse fibroblast) L929 and human epithelial colorectal adenocarcinoma (Caco-2) cells from 2,2'-Azobis(2-methylpropionamidine) dihydrochloride (AAPH)-induced oxidative damage. From these results, the consumption of boiled African pumpkin leaves, as well as spinach, could be encouraged, as bioactive metabolites present may reduce oxidative stress in the body.
Collapse
Affiliation(s)
- Siphosanele Mafa Moyo
- Department of Biotechnology and Food Technology, Faculty of Science, Doornfontein Campus, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa
- Department of Consumer and Food Sciences, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa
- Correspondence: (S.M.M.); (E.K.)
| | - June C. Serem
- Department of Anatomy, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Arcadia, Pretoria 0007, South Africa; (J.C.S.); (M.J.B.)
| | - Megan J. Bester
- Department of Anatomy, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Arcadia, Pretoria 0007, South Africa; (J.C.S.); (M.J.B.)
| | - Vuyo Mavumengwana
- Department of Biomedical Sciences, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, P.O. Box 19063, Tygerberg, Cape Town 7505, South Africa;
| | - Eugenie Kayitesi
- Department of Biotechnology and Food Technology, Faculty of Science, Doornfontein Campus, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa
- Department of Consumer and Food Sciences, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa
- Correspondence: (S.M.M.); (E.K.)
| |
Collapse
|
273
|
Li Y, Li M, Liu J, Zheng W, Zhang Y, Xu T, Gao B, Yu L. Chemical Composition Profiling and Biological Activities of Phenolic Compounds in Eleven Red Sorghums. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9407-9418. [PMID: 34369753 DOI: 10.1021/acs.jafc.1c03115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The profiles of soluble and insoluble phenolic compounds in 11 commercial red sorghums (B11, B12, B13, B14, J124, J127, J138, J140, J142, J152, and J158) were investigated using ultraperformance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF-MS) analysis. A total of 48 phenolic compounds including 35 phenolic acids and their derivatives, 12 flavonoids, and 1 proanthocyanidin were identified, and 8 phenolic compounds were reported for the first time in sorghums. Four major 3-deoxyanthocyanidins were also quantified, with their soluble forms accounting for 99.75-99.87% of the total contents. Pearson's correlation analyses indicated that 3-deoxyanthocyanidins significantly contributed to the antioxidant capacities of the red sorghums and that 5-methoxy-luteolinidin showed the strongest correlation. Besides, the soluble phenolic fraction of B13 dose-dependently inhibited the proliferation of Caco-2 cells and the secretion of IL-1β and NO in RAW264.7 macrophages, which might be attributed to its relatively high total phenolic (TPC), flavonoid (TFC), and proanthocyanidin content (TPAC) values and radical scavenging capacities.
Collapse
Affiliation(s)
- Yanfang Li
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ming Li
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiaping Liu
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenhao Zheng
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yaqiong Zhang
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Tongcheng Xu
- Institute of Agro-Food Science and Technology, Shandong Provincial Key Laboratory of Agricultural Products Deep Processing, Shandong Academy of Agricultural Science, Jinan 250100, China
| | - Boyan Gao
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liangli Yu
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
274
|
Properties of Extruded Snacks Prepared from Corn and Carrot Powder with Ascorbic Acid Addition. Processes (Basel) 2021. [DOI: 10.3390/pr9081367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The objective of this research was to investigate the potentiality of carrot powder (CP) utilization at levels 4, 6, or 8% as ingredient of corn snacks and evaluation of the extrusion influence on functionally important ingredients such as carotenoids (color), polyphenols, fiber, fat, and antioxidant activity. The influence of ascorbic acid (AA) as an external source at levels 0.5 and 1% on this particular extrusion was also investigated. A single-screw extruder at two temperature regimes (135/170/170 °C (E1) and 100/150/150 °C (E2)) carried out extrusion. The E1 temperature regime acted favorably on total polyphenol content and crude fiber, but fat preferred the E2 regime. Extrusion, especially the E1 temperature regime, increased the extractability of carotenoids. Ascorbic acid degraded during extrusion, but it still provided protection to carotenoids and color attributes of extrudates. Snacks with increased nutritional and functional value due to carrot powder addition were successfully produced, which is a starting point for production of a new type of extruded snacks.
Collapse
|
275
|
Li N, Jiang H, Yang J, Wang C, Wu L, Hao Y, Liu Y. Characterization of phenolic compounds and anti-acetylcholinase activity of coconut shells. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101204] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
276
|
Alves G, Lobo LA, Domingues RMCP, Monteiro M, Perrone D. Bioaccessibility and Gut Metabolism of Free and Melanoidin-Bound Phenolic Compounds From Coffee and Bread. Front Nutr 2021; 8:708928. [PMID: 34381807 PMCID: PMC8349987 DOI: 10.3389/fnut.2021.708928] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/24/2021] [Indexed: 12/16/2022] Open
Abstract
The aim of this study is to investigate the bioaccessibility and gut metabolism of free and melanoidin-bound phenolic compounds from coffee and bread. Phenolics from coffee were predominantly found in free forms (68%, mainly chlorogenic acids), whereas those from bread were mostly bound to melanoidins (61%, mainly ferulic acid). Bioacessibility of coffee total free phenolics slightly decreased during simulated digestion (87, 86, and 82% after the oral, gastric, and intestinal steps, respectively), with caffeoylquinic acids being isomerized and chlorogenic acids being partially hydrolyzed to the corresponding hydroxycinnamic acids. Bioacessibility of bread total free phenolics decreased during simulated digestion (91, 85, and 67% after the oral, gastric, and intestinal steps, respectively), probably related to complexation with the proteins in simulated gastric and intestinal fluids. Upon gut fermentation, the bioaccessibility of total free phenolics from both coffee and bread decreased, mainly after the first 4 h (56 and 50%, respectively). Caffeic and ferulic acids were the predominant metabolites found during coffee and bread gut fermentation, respectively. Melanoidin-bound phenolics from coffee and bread were progressively released after the gastric and intestinal steps, probably due to hydrolysis caused by the acidic conditions of the stomach and the action of pancreatin from the intestinal fluid. The bioaccessibilities of all phenolics from coffee and bread melanoidins after the gastric and intestinal steps were, on average, 11 and 26%, respectively. During gut fermentation, phenolics bound to both coffee and bread melanoidins were further released by the gut microbiota, whereas those from coffee were also metabolized. This difference could be related to the action of proteases on melanoproteins during gastrointestinal digestion, probably anticipating phenolics release. Nevertheless, bioaccessibilities of melanoidin-bound phenolics reached maximum values after gut fermentation for 24 h (50% for coffee and 51% for bread). In conclusion, the bioaccessibilities of coffee and bread free phenolics during simulated digestion and gut fermentation were remarkably similar, and so were the bioaccessibilities of coffee and bread melanoidin-bound phenolics.
Collapse
Affiliation(s)
- Genilton Alves
- Laboratório de Bioquímica Nutricional e de Alimentos, Biochemistry Department, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leandro Araújo Lobo
- Laboratório de Biologia de Anaeróbios, Medical Microbiology Department, Paulo de Goés Microbiology Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Regina Maria Cavalcanti Pilotto Domingues
- Laboratório de Biologia de Anaeróbios, Medical Microbiology Department, Paulo de Goés Microbiology Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mariana Monteiro
- Laboratório de Alimentos Funcionais, Nutrition Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniel Perrone
- Laboratório de Bioquímica Nutricional e de Alimentos, Biochemistry Department, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
277
|
Sapna I, Jayadeep A. Role of endoxylanase and its concentrations in enhancing the nutraceutical components and bioactivities of red rice bran. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
278
|
The addition of yerba mate leaves on bread dough has influences on fermentation time and the availability of phenolic compounds? Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111442] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
279
|
Examining the Performance of Two Extraction Solvent Systems on Phenolic Constituents from U.S. Southeastern Blackberries. Molecules 2021; 26:molecules26134001. [PMID: 34208968 PMCID: PMC8271949 DOI: 10.3390/molecules26134001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 12/04/2022] Open
Abstract
Two common extraction solvent systems, namely acidified aqueous methanol and acidified aqueous acetone, were used to extract blackberry phenolics, and the antioxidant properties of the recovered extracts were compared. The crude extracts were fractionated into low- and high-molecular-weight phenolics by Sephadex LH-20 column chromatography. The hydrophilic-oxygen radical absorbance capacity (H-ORACFL), ferric reducing antioxidant power (FRAP), and the cellular antioxidant activity (CAA) assays were employed as indices to assess antioxidant capacity of the extracts and their respective fractions. The methanolic solvent system displayed a greater efficiency at extracting anthocyanin and flavonol constituents from the blackberries, while the acetonic solvent system was better at extracting flavan-3-ols and tannins. Anthocyanins were the dominant phenolic class found in the blackberries with 138.7 ± 9.8 mg C3G eq./100 g f.w. when using methanol as the extractant and 114.6 ± 3.4 mg C3G eq./100 g f.w. when using acetone. In terms of overall antioxidant capacity of blackberry phenolics, the acetonic solvent system was superior. Though present only as a small percentage of the total phenolics in each crude extract, the flavan-3-ols (42.37 ± 2.44 and 51.44 ± 3.15 mg/100 g f.w. in MLF and ALF, respectively) and ellagitannins (5.15 ± 0.78 and 9.31 ± 0.63 mg/100 g f.w. in MHF and AHF, respectively) appear to account for the differences in the observed antioxidant activity between the two solvent systems.
Collapse
|
280
|
Possibility of Reinforcement the Functional Potential of Vegetable Juices with the use of Novel Strain Lactiplantibacillus Plantarum EK11 Isolated from an Unconventional Fermented Food Matrix. ACTA UNIVERSITATIS CIBINIENSIS. SERIES E: FOOD TECHNOLOGY 2021. [DOI: 10.2478/aucft-2021-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The study investigated the suitability of a novel strain Lactiplantibacillus plantarum EK11 for obtaining fermented tomato and beetroot juices with improved functional potential. EK11 had the capability of dynamic acidification of pasteurized vegetable beverages. The lowest values of pH were noted in juices after 48 h of fermentation with the probiotic L. plantarum 299v (pH=3.72±0.01 in beet juice and pH=3.43±.0.01 in tomato juice). The fermentation increased the lycopene content in tomato juices from 27.90±0.31µg mL−1 (after 24-h fermentation by strain EK11) to 116.86 ±0.19 µg mL−1 (final products obtained using strain 299v after 7-day cold storage). The process contributed to changes in the betanin and vulgaxanthin-I concentration in beetroot beverages. All fermented products exhibited antioxidative activity, i.e. 50% inhibition of 1,1-diphenyl-2-picrylhydrazyl free radicals. Moreover, three genes involved in the biosynthesis of bacteriocins were detected in the novel strain EK11, which exhibits functional and technological potential for the production of fermented foods.
Collapse
|
281
|
Inada KOP, Leite IB, Martins ABN, Fialho E, Tomás-Barberán FA, Perrone D, Monteiro M. Jaboticaba berry: A comprehensive review on its polyphenol composition, health effects, metabolism, and the development of food products. Food Res Int 2021; 147:110518. [PMID: 34399496 DOI: 10.1016/j.foodres.2021.110518] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/04/2021] [Accepted: 06/10/2021] [Indexed: 12/12/2022]
Abstract
Jaboticaba, a popular Brazilian berry, has been studied due to its relevant polyphenol composition, health benefits and potential use for the development of derived food products. Considering that around 200 articles have been published in recent years, this review aims to provide comprehensive and updated information, as well as a critical discussion on: (i) jaboticaba polyphenolic composition and extraction methods for their accurate determination; (ii) jaboticaba polyphenol's metabolism; (iii) biological effects of the fruit and the relationship with its polyphenols and their metabolites; (iv) challenges in the development of jaboticaba derived products. The determination of jaboticaba polyphenols should employ hydrolysis procedures during extraction, followed by liquid chromatographic analysis. Jaboticaba polyphenols, mainly anthocyanins and ellagitannins, are extensively metabolized, and their metabolites are probably the most important contributors to the relevant health effects associated with the fruit, such as antioxidant, anti-inflammatory, antidiabetic, hepatoprotective and hypolipidemic. Most of the technological processing of jaboticaba fruit and its residues is related to their application as a colorant, antioxidant, antimicrobial and source of polyphenols. The scientific literature still lacks studies on the metabolism and bioactivity of polyphenols from jaboticaba in humans, as well as the effect of technological processes on these issues.
Collapse
Affiliation(s)
- Kim Ohanna Pimenta Inada
- Laboratório de Alimentos Funcionais, Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, CCS, Bloco J, 2° andar, sala 16, 21941-902 Rio de Janeiro, Brazil; Laboratório de Bioquímica Nutricional e de Alimentos, Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149, CT, Bloco A, sala 528A, 21941-909 Rio de Janeiro, Brazil; Instituto de Nutrição, Universidade Estadual do Rio de Janeiro, R. São Francisco Xavier, 524, Pavilhão João Lyra Filho, 12° andar, Bloco D, sala 12.002, 20550-900 Rio de Janeiro, Brazil.
| | - Iris Batista Leite
- Laboratório de Alimentos Funcionais, Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, CCS, Bloco J, 2° andar, sala 16, 21941-902 Rio de Janeiro, Brazil
| | - Ana Beatriz Neves Martins
- Laboratório de Bioquímica Nutricional e de Alimentos, Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149, CT, Bloco A, sala 528A, 21941-909 Rio de Janeiro, Brazil
| | - Eliane Fialho
- Laboratório de Alimentos Funcionais, Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, CCS, Bloco J, 2° andar, sala 16, 21941-902 Rio de Janeiro, Brazil.
| | - Francisco A Tomás-Barberán
- Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, P.O. Box 164, 30100 Campus de Espinardo, Murcia, Spain.
| | - Daniel Perrone
- Laboratório de Bioquímica Nutricional e de Alimentos, Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149, CT, Bloco A, sala 528A, 21941-909 Rio de Janeiro, Brazil.
| | - Mariana Monteiro
- Laboratório de Alimentos Funcionais, Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, CCS, Bloco J, 2° andar, sala 16, 21941-902 Rio de Janeiro, Brazil.
| |
Collapse
|
282
|
Zhu C, Guan Q, Song C, Zhong L, Ding X, Zeng H, Nie P, Song L. Regulatory effects of Lactobacillus fermented black barley on intestinal microbiota of NAFLD rats. Food Res Int 2021; 147:110467. [PMID: 34399465 DOI: 10.1016/j.foodres.2021.110467] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 05/20/2021] [Accepted: 05/23/2021] [Indexed: 02/07/2023]
Abstract
Gut microbiota dysbiosis and oxidative stress may play important roles in the progression of nonalcoholic fatty liver disease (NAFLD). Fermented foods contain probiotics and other bioactive components that may improve gastrointestinal health and provide other health benefits. Here, we investigated the effect of Lactobacillus-fermented black barley on NAFLD rats. Adult Sprague Dawley rats were randomized into four groups: normal chow diet (NC), high-fat diet (HF), HF + fermented black barley treatment (HB) and HF + Lactobacillus treatment (HL). The rats in the HB and HL groups were continuously administered fermented black barley or Lactobacillus, respectively, for 12 weeks (1 mL/100 g·BW, containing 1 × 108 CFU/mL Lactobacillus). Compared with the HF treatment, HB treatment effectively inhibited the increase in body weight, liver and abdominal fat indexes and hepatic lipids (p < 0.01), increased hepatic SOD activity (p < 0.05), decreased thiobarbituric acid reactive substances (TBARSs) (p < 0.01) and improved liver function. Moreover, Lactobacillus-fermented black barley exhibited regulatory effect on high-fat diet-induced intestinal microbiota dysbiosis by increasing the relative microbiota abundance and diversity, increasing the relative abundance of Bacteroidetes, decreasing the Firmicutes/Bacteroidetes ratio, increasing the abundances of some intestinal probiotics (such as Akkermansia and Lactococcus), and influencing some of the fecal metabolites related to hormones and lipid metabolism. The supplementation of fermented cereal food might be a new effective and safe preventive dietary strategy against NAFLD.
Collapse
Affiliation(s)
- Chuang Zhu
- Department of Food Science and Engineer, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qi Guan
- Department of Food Science and Engineer, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chenwei Song
- Department of Food Science and Engineer, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lingyue Zhong
- Department of Food Science and Engineer, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinwen Ding
- Department of Food Science and Engineer, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hui Zeng
- Department of Food Science and Engineer, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pan Nie
- Department of Food Science and Engineer, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lihua Song
- Department of Food Science and Engineer, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
283
|
Echegaray N, Gullón B, Pateiro M, Amarowicz R, Misihairabgwi JM, Lorenzo JM. Date Fruit and Its By-products as Promising Source of Bioactive Components: A Review. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1934003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Noemí Echegaray
- Centro Tecnológico De La Carne De Galicia, Parque Tecnológico De Galicia, Ourense, Spain
| | - Beatriz Gullón
- Department of Chemical Engineering, Faculty of Science, University of Vigo (Campus Ourense), Ourense, Spain
| | - Mirian Pateiro
- Centro Tecnológico De La Carne De Galicia, Parque Tecnológico De Galicia, Ourense, Spain
| | - Ryszard Amarowicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Jane M. Misihairabgwi
- Department of Biochemistry and Microbiology, School of Medicine, Faculty of Health Sciences, University of Namibia, Windhoek, Namibia
| | - José M. Lorenzo
- Centro Tecnológico De La Carne De Galicia, Parque Tecnológico De Galicia, Ourense, Spain
- Área De Tecnología De Los Alimentos, Facultad De Ciencias De Ourense, Universidad De Vigo, Ourense, Spain
| |
Collapse
|
284
|
|
285
|
Tang W, Li W, Yang Y, Lin X, Wang L, Li C, Yang R. Phenolic Compounds Profile and Antioxidant Capacity of Pitahaya Fruit Peel from Two Red-Skinned Species ( Hylocereus polyrhizus and Hylocereus undatus). Foods 2021; 10:foods10061183. [PMID: 34070235 PMCID: PMC8225021 DOI: 10.3390/foods10061183] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/16/2021] [Accepted: 05/21/2021] [Indexed: 11/25/2022] Open
Abstract
Pitahaya peel is a good source of bioactive polyphenols. However, the bound phenolics and their antioxidant activity remain unclear. The bound phenolics of pitahaya peel from two red-skinned species with red pulp (RP) and white pulp (WP) were released with different methods (acid, base, and composite enzymes hydrolysis). The results revealed that base hydrolysis was the most efficient method for releasing the bound phenolics from RP (11.6 mg GAE/g DW) and WP (10.5 mg GAE/g DW), which was 13.04-fold and 8.18-fold for RP and 75.07-fold and 10.94-fold for WP compared with acid hydrolysis and enzymatic hydrolysis, respectively. A total of 37 phenolic compounds were identified by UPLC-TOF/MS with most chlorogenic acid, caffeic acid, ferulic acid and p-coumaric acid in RP, whereas chlorogenic acid, caffeic acid, ferulic acid, rutin and isoquercitrin were the main compounds in WP. Regardless of the hydrolysis method, the extracts having the highest phenolic content showed the strongest antioxidant activities. The work shows that hydrolysis methods have a significant effect on the release of phenolics, and the contents of major characteristic bound phenolic compounds are related to the ecological type of pitahaya.
Collapse
Affiliation(s)
- Wanpei Tang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, College of Food Science and Engineering, Hainan University, Haikou 570228, China; (W.T.); (W.L.); (L.W.); (C.L.)
| | - Wu Li
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, College of Food Science and Engineering, Hainan University, Haikou 570228, China; (W.T.); (W.L.); (L.W.); (C.L.)
| | - Yuzhe Yang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China;
| | - Xue Lin
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, College of Food Science and Engineering, Hainan University, Haikou 570228, China; (W.T.); (W.L.); (L.W.); (C.L.)
- Correspondence: (X.L.); (R.Y.); Tel.: +86-898-6619-8861 (X.L.); +86-20-8528-3448 (R.Y.)
| | - Lu Wang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, College of Food Science and Engineering, Hainan University, Haikou 570228, China; (W.T.); (W.L.); (L.W.); (C.L.)
| | - Congfa Li
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, College of Food Science and Engineering, Hainan University, Haikou 570228, China; (W.T.); (W.L.); (L.W.); (C.L.)
| | - Ruili Yang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China;
- Correspondence: (X.L.); (R.Y.); Tel.: +86-898-6619-8861 (X.L.); +86-20-8528-3448 (R.Y.)
| |
Collapse
|
286
|
Teixeira L, Pinto CFD, Machado GS, Kessler ADM, Trevizan L. Partial Substitution of Maize for Sorghum With or Without Supplemental Hydrolysable Tannins on Digestibility and Postprandial Glycemia in Adult Dogs. Front Vet Sci 2021; 8:667411. [PMID: 34095278 PMCID: PMC8175667 DOI: 10.3389/fvets.2021.667411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 04/07/2021] [Indexed: 11/13/2022] Open
Abstract
The effect of partial substitution of maize for sorghum, containing condensed tannins (CT), with or without the addition of a purified hydrolysable tannin extract (HT), on dog apparent digestibility and glycemic response were evaluated. The trial was conducted with eight adult dogs distributed in four treatments: (M) 50% maize; (MS) 25% maize + 25% sorghum; (MHT) 50% maize + 0.10% HT; (MSHT) 25% maize + 25% sorghum + 0.10% HT; in a balanced incomplete Latin square design in three periods, with two dogs per diet, per period. Data were analyzed by ANOVA procedure and glycemic response by repeated measures ANOVA over time (P < 0.05). The phenolic compounds analyzed were not detected after extrusion process, with a reduction mainly in diets containing sorghum. There were no differences in the digestibility coefficients of nutrients and energy between the dietary treatments (P > 0.05). Fecal and urinary characteristics were not changed by the addition of sorghum and HT (P > 0.05). The fecal score remained within the ideal classification as hard, dry, firm stools. A moderate increase in fecal pH was observed on dogs fed diets containing sorghum (P = 0.0948). Additionally, the partial replacement of maize for sorghum associated or not with HT do not alter the glycemic aspects evaluated among dietary treatments (P > 0.05). Availability of nutrients from maize and sorghum were similar. Tannins did not interfere in the nutritional capacity of the ingredients.
Collapse
Affiliation(s)
- Liege Teixeira
- Laboratório de Ensino Zootécnico, Department of Animal Science, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Caroline Fredrich Dourado Pinto
- Laboratório de Ensino Zootécnico, Department of Animal Science, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Geruza Silveira Machado
- Laboratório de Ensino Zootécnico, Department of Animal Science, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Alexandre de Mello Kessler
- Laboratório de Ensino Zootécnico, Department of Animal Science, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Luciano Trevizan
- Laboratório de Ensino Zootécnico, Department of Animal Science, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| |
Collapse
|
287
|
Yin L, Zhang Y, Azi F, Tekliye M, Zhou J, Liu X, Dong M, Xia X. Neuroprotective Potency of Tofu Bio-Processed Using Actinomucor elegans against Hypoxic Injury Induced by Cobalt Chloride in PC12 Cells. Molecules 2021; 26:molecules26102983. [PMID: 34069784 PMCID: PMC8157283 DOI: 10.3390/molecules26102983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 01/14/2023] Open
Abstract
Fermented soybean products have attracted great attention due to their health benefits. In the present study, the hypoxia-injured PC12 cells induced by cobalt chloride (CoCl2) were used to evaluate the neuroprotective potency of tofu fermented by Actinomucor elegans (FT). Results indicated that FT exhibited higher phenolic content and antioxidant activity than tofu. Moreover, most soybean isoflavone glycosides were hydrolyzed into their corresponding aglycones during fermentation. FT demonstrated a significant protective effect on PC12 cells against hypoxic injury by maintaining cell viability, reducing lactic dehydrogenase leakage, and inhibiting oxidative stress. The cell apoptosis was significantly attenuated by the FT through down-regulation of caspase-3, caspases-8, caspase-9, and Bax, and up-regulation of Bcl-2 and Bcl-xL. S-phase cell arrest was significantly inhibited by the FT through increasing cyclin A and decreasing the p21 protein level. Furthermore, treatment with the FT activated autophagy, indicating that autophagy possibly acted as a survival mechanism against CoCl2-induced injury. Overall, FT offered a potential protective effect on nerve cells in vitro against hypoxic damage.
Collapse
Affiliation(s)
- Liqing Yin
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Road, Nanjing 210095, China; (L.Y.); (F.A.); (M.T.); (J.Z.); (X.L.)
- Institute of Agricultural Product Processing, Jiangsu Academy of Agricultural Sciences, No. 50 Zhongling Street, Nanjing 210014, China
| | - Yongzhu Zhang
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, No. 50 Zhongling Street, Nanjing 210014, China;
| | - Fidelis Azi
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Road, Nanjing 210095, China; (L.Y.); (F.A.); (M.T.); (J.Z.); (X.L.)
| | - Mekonen Tekliye
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Road, Nanjing 210095, China; (L.Y.); (F.A.); (M.T.); (J.Z.); (X.L.)
| | - Jianzhong Zhou
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Road, Nanjing 210095, China; (L.Y.); (F.A.); (M.T.); (J.Z.); (X.L.)
- Institute of Agricultural Product Processing, Jiangsu Academy of Agricultural Sciences, No. 50 Zhongling Street, Nanjing 210014, China
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Xiaoli Liu
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Road, Nanjing 210095, China; (L.Y.); (F.A.); (M.T.); (J.Z.); (X.L.)
- Institute of Agricultural Product Processing, Jiangsu Academy of Agricultural Sciences, No. 50 Zhongling Street, Nanjing 210014, China
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Mingsheng Dong
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Road, Nanjing 210095, China; (L.Y.); (F.A.); (M.T.); (J.Z.); (X.L.)
- Correspondence: (M.D.); (X.X.); Tel.: +86-25-8439-6989 (M.D.); +86-25-8439-1577 (X.X.)
| | - Xiudong Xia
- Institute of Agricultural Product Processing, Jiangsu Academy of Agricultural Sciences, No. 50 Zhongling Street, Nanjing 210014, China
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
- Correspondence: (M.D.); (X.X.); Tel.: +86-25-8439-6989 (M.D.); +86-25-8439-1577 (X.X.)
| |
Collapse
|
288
|
de Carvalho Martins V, França LP, da Silva Ferreira Y, Pires DC, de Souza Cardoso B, Pessanha de Araújo Santiago MC, Pacheco S, da Costa Souza M, Riger CJ, de Oliveira Godoy RL, Geraldo de Carvalho M. Determination of the Phytochemical Composition and Antioxidant Potential of Eugenia copacabanensis and Myrciaria tenella Leaves (Myrtaceae) Using a Saccharomyces cerevisiae Model. Chem Biodivers 2021; 18:e2100054. [PMID: 33915032 DOI: 10.1002/cbdv.202100054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/29/2021] [Indexed: 11/08/2022]
Abstract
Eugenia copacabanensis and Myrciaria tenella are present in restingas of the Atlantic Forest, but little information is available about their chemical and biological potential. In this context, the hexane, dichloromethane, ethyl acetate and butanol fractions from the leaves of methanolic extract were analyzed by GC/MS and HPLC-DAD and the antioxidant potential was determined by DPPH and ABTS assays and using a Saccharomyces cerevisiae model. Dereplication allowed the identification of 68 compounds, 42 and 41 of which, respectively, are first reported here for E. copacabanensis and M. tenella. In vivo results revealed that the ethyl acetate and butanol fractions showed expressive antioxidant protection in the BY4741 and Δgsh1 strains, with greater impact on glutathione-deficient cells. With a high diversity of phenolic compounds, these polar fractions of E. copacabanensis and M. tenella leaves are potential protectors against intracellular oxidative stress.
Collapse
Affiliation(s)
- Víctor de Carvalho Martins
- Laboratório de Química de Produtos Naturais, Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 23897-000, Brasil.,Laboratório de Cromatografia Líquida, Embrapa Agroindústria de Alimentos, Rio de Janeiro, RJ, 23020-470, Brasil
| | - Liliana Princisval França
- Laboratório de Química de Produtos Naturais, Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 23897-000, Brasil
| | - Yasmim da Silva Ferreira
- Laboratório de Química de Produtos Naturais, Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 23897-000, Brasil
| | - Daniele Cabral Pires
- Laboratório de Estresse Oxidativo em Microrganismos, Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 23897-000, Brasil
| | - Bárbara de Souza Cardoso
- Laboratório de Estresse Oxidativo em Microrganismos, Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 23897-000, Brasil
| | | | - Sidney Pacheco
- Laboratório de Cromatografia Líquida, Embrapa Agroindústria de Alimentos, Rio de Janeiro, RJ, 23020-470, Brasil
| | - Marcelo da Costa Souza
- Herbário RBR, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 23897-000, Brasil
| | - Cristiano Jorge Riger
- Laboratório de Estresse Oxidativo em Microrganismos, Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 23897-000, Brasil
| | | | - Mario Geraldo de Carvalho
- Laboratório de Química de Produtos Naturais, Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 23897-000, Brasil
| |
Collapse
|
289
|
Valorization of Bilberry ( Vaccinium myrtillus L.) Pomace by Enzyme-Assisted Extraction: Process Optimization and Comparison with Conventional Solid-Liquid Extraction. Antioxidants (Basel) 2021; 10:antiox10050773. [PMID: 34068178 PMCID: PMC8152979 DOI: 10.3390/antiox10050773] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 02/06/2023] Open
Abstract
Bilberry (Vaccinium myrtillus L.) pomace contains a significant amount of polyphenols and can serve as a basis for food additives, nutraceuticals, and functional foods. Although various techniques can be employed to recover bioactive fractions from berry pomaces, data on enzyme-assisted extraction (EAE) of bilberry pomace are rather scarce. This study aimed to optimize critical EAE parameters using Viscozyme L to obtain a high-yield extract with enhanced antioxidant capacity. Central composite design and response surface methodology evaluating the effect of four independent variables, namely, pH, temperature, extraction time, and enzyme concentration on three responses, were employed to define optimal EAE conditions. Under the optimal conditions (pH: 4.5, temperature 46 °C, 1 h of extraction, and 2 active units (AU) of Viscozyme L/g of pomace), EAE yielded 56.15 g/100 g DW of the water-soluble fraction. Comparison with conventional maceration indicated that EAE, besides the yield, significantly increased the in vitro antioxidant capacity measured by the total phenolic content, ABTS, ORAC, and CUPRAC assays. Moreover, an increase was observed for the measured mono- and disaccharide as well as anthocyanin content. Overall, this study demonstrates the improved efficiency of EAE over conventional solid–liquid extraction to recover fractions with a higher yield and enhanced functional properties in a fast and sustainable manner.
Collapse
|
290
|
Wang J, Tang J, Ruan S, Lv R, Zhou J, Tian J, Cheng H, Xu E, Liu D. A comprehensive review of cereal germ and its lipids: Chemical composition, multi-objective process and functional application. Food Chem 2021; 362:130066. [PMID: 34098434 DOI: 10.1016/j.foodchem.2021.130066] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/15/2021] [Accepted: 05/09/2021] [Indexed: 12/14/2022]
Abstract
Cereal germ (CG), a by-product of grain milling, has drawn much attention in the food industry because of its nutritional and functional advantages. Nowadays, the utilization of cereal germ from animal feeds to foodstuff is a popular trend. CGs have high content of polyunsaturated fatty acids in their lipids (43.9-64.9% of total fatty acids), but they are also induced to oxidative rancidity under the catalytic reaction of enzymes. Chemical and structural properties of lipids in CGs are affected by different treatments. Thermal and non-thermal effects prevent lipid oxidation or promote lipid combination with starch/protein in CG. Thus, the functional properties and final quality of CG are directly changed. In this review, the chemical composition and application of CGs especially the endogenous lipids are summarized and the effects of various processes on CG lipids/matrices are discussed for CG future development.
Collapse
Affiliation(s)
- Jingyi Wang
- College of Biosystems Engineering and Food Science, National Local Joint Engineering Laboratory for Intelligent Food Processing Technology and Equipment, Zhejiang Key Laboratory of Agricultural Products Processing Technology, Zhejiang Food Processing Technology and Equipment Engineering Laboratory, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Junyu Tang
- College of Biosystems Engineering and Food Science, National Local Joint Engineering Laboratory for Intelligent Food Processing Technology and Equipment, Zhejiang Key Laboratory of Agricultural Products Processing Technology, Zhejiang Food Processing Technology and Equipment Engineering Laboratory, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; School of Mechanical and Energy Engineering, Ningbotech University, Ningbo 315100, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Shaolong Ruan
- College of Biosystems Engineering and Food Science, National Local Joint Engineering Laboratory for Intelligent Food Processing Technology and Equipment, Zhejiang Key Laboratory of Agricultural Products Processing Technology, Zhejiang Food Processing Technology and Equipment Engineering Laboratory, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; School of Mechanical and Energy Engineering, Ningbotech University, Ningbo 315100, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Ruiling Lv
- School of Mechanical and Energy Engineering, Ningbotech University, Ningbo 315100, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Jianwei Zhou
- School of Mechanical and Energy Engineering, Ningbotech University, Ningbo 315100, China
| | - Jinhu Tian
- College of Biosystems Engineering and Food Science, National Local Joint Engineering Laboratory for Intelligent Food Processing Technology and Equipment, Zhejiang Key Laboratory of Agricultural Products Processing Technology, Zhejiang Food Processing Technology and Equipment Engineering Laboratory, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Huan Cheng
- College of Biosystems Engineering and Food Science, National Local Joint Engineering Laboratory for Intelligent Food Processing Technology and Equipment, Zhejiang Key Laboratory of Agricultural Products Processing Technology, Zhejiang Food Processing Technology and Equipment Engineering Laboratory, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Enbo Xu
- College of Biosystems Engineering and Food Science, National Local Joint Engineering Laboratory for Intelligent Food Processing Technology and Equipment, Zhejiang Key Laboratory of Agricultural Products Processing Technology, Zhejiang Food Processing Technology and Equipment Engineering Laboratory, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National Local Joint Engineering Laboratory for Intelligent Food Processing Technology and Equipment, Zhejiang Key Laboratory of Agricultural Products Processing Technology, Zhejiang Food Processing Technology and Equipment Engineering Laboratory, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China.
| |
Collapse
|
291
|
Effects of Fermentation on the Quality, Structure, and Nonnutritive Contents of Lentil (Lens culinaris) Proteins. J FOOD QUALITY 2021. [DOI: 10.1155/2021/5556450] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Protein digestibility, secondary protein structure components, sugars, and phenolic compounds were analysed to investigate the effect of fermentation on the quality, structure, digestibility, and nonnutritive contents of lentil (Lens culinaris) proteins (LPs). Fermentation was carried out using water kefir seed. The initial pH of the unfermented LPs (6.8) decreased to pH 3.4 at the end of the fermentation on day 5. Protein digestibility increased from 76.4 to 84.1% over the 5 days of fermentation. Total phenolic content increased from 443.4 to 792.6 mg of GAE/100 g after 2 days of fermentation, with the sums of the detected phenolic compounds from HPLC analysis reaching almost 500 mg/100 g. The predominant phenolic compounds detected in fermented LPs include chlorogenic and epicatechin, while traces of rutin, ferulic acid, and sinapic acid were observed. Fermentation played a major role in the changes of the components in the secondary protein structure, especially the percentage of
-helices and random coils. In addition, the reduction in
-helix:
-sheet ratio with the increase in protein digestibility was related to the prolongation of the fermentation time. The model used in this research could be a robust tool for improving protein quality, protein degradation, and nonnutritive nutrients using water kefir seed fermentation.
Collapse
|
292
|
Perez-Perez LM, Huerta-Ocampo JÁ, Ruiz-Cruz S, Cinco-Moroyoqui FJ, Wong-Corral FJ, Rascón-Valenzuela LA, Robles-García MA, González-Vega RI, Rosas-Burgos EC, Corella-Madueño MAG, Del-Toro-Sánchez CL. Evaluation of Quality, Antioxidant Capacity, and Digestibility of Chickpea ( Cicer arietinum L. cv Blanoro) Stored under N 2 and CO 2 Atmospheres. Molecules 2021; 26:molecules26092773. [PMID: 34066776 PMCID: PMC8125957 DOI: 10.3390/molecules26092773] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/02/2021] [Accepted: 05/05/2021] [Indexed: 11/16/2022] Open
Abstract
The aim of this work was to monitor the quality, antioxidant capacity and digestibility of chickpea exposed to different modified atmospheres. Chickpea quality (proximal analysis, color, texture, and water absorption) and the antioxidant capacity of free, conjugated, and bound phenol fractions obtained from raw and cooked chickpea, were determined. Cooked chickpea was exposed to N2 and CO2 atmospheres for 0, 25, and 50 days, and the antioxidant capacity was analyzed by DPPH (2,2'-diphenyl-1-picrylhydrazyl), ABTS (2,2'-azino-bis-[3ethylbenzothiazoline-6-sulfonic acid]), and total phenols. After in vitro digestion, the antioxidant capacity was measured by DPPH, ABTS, FRAP (ferric reducing antioxidant power), and AAPH (2,2'-Azobis [2-methylpropionamidine]). Additionally, quantification of total phenols, and UPLC-MS profile were determined. The results indicated that this grain contain high quality and high protein (18.38%). Bound phenolic compounds showed the highest amount (105.6 mg GAE/100 g) and the highest antioxidant capacity in all techniques. Cooked chickpeas maintained their quality and antioxidant capacity during 50 days of storage at 4 and -20 °C under a nitrogen atmosphere. Free and conjugated phenolic compounds could be hydrolyzed by digestive enzymes, increasing their bioaccessibility and their antioxidant capacity during each step of digestion. The majority compound in all samples was enterodiol, prevailing the flavonoid type in the rest of the identified compounds. Chickpea contains biological interest compounds with antioxidant potential suggesting that this legume can be exploited for various technologies.
Collapse
Affiliation(s)
- Liliana Maribel Perez-Perez
- Department of Research and Postgraduate Studies in Food, University of Sonora, Rosales and Niños Heroes Avenue S/N, Hermosillo 83000, Sonora, Mexico; (L.M.P.-P.); (S.R.-C.); (F.J.C.-M.); (F.J.W.-C.); (R.I.G.-V.); (E.C.R.-B.)
| | - José Ángel Huerta-Ocampo
- CONACYT-Research Center for Food and Development, Gustavo Enrique Astiazaran Rosas Road 46, Hermosillo 83304, Sonora, Mexico;
| | - Saúl Ruiz-Cruz
- Department of Research and Postgraduate Studies in Food, University of Sonora, Rosales and Niños Heroes Avenue S/N, Hermosillo 83000, Sonora, Mexico; (L.M.P.-P.); (S.R.-C.); (F.J.C.-M.); (F.J.W.-C.); (R.I.G.-V.); (E.C.R.-B.)
| | - Francisco Javier Cinco-Moroyoqui
- Department of Research and Postgraduate Studies in Food, University of Sonora, Rosales and Niños Heroes Avenue S/N, Hermosillo 83000, Sonora, Mexico; (L.M.P.-P.); (S.R.-C.); (F.J.C.-M.); (F.J.W.-C.); (R.I.G.-V.); (E.C.R.-B.)
| | - Francisco Javier Wong-Corral
- Department of Research and Postgraduate Studies in Food, University of Sonora, Rosales and Niños Heroes Avenue S/N, Hermosillo 83000, Sonora, Mexico; (L.M.P.-P.); (S.R.-C.); (F.J.C.-M.); (F.J.W.-C.); (R.I.G.-V.); (E.C.R.-B.)
| | - Luisa Alondra Rascón-Valenzuela
- Department of Chemical Biological Sciences, University of Sonora, Rosales and Niños Heroes Avenue S/N, Hermosillo 83000, Sonora, Mexico; (L.A.R.-V.); (M.A.G.C.-M.)
| | - Miguel Angel Robles-García
- Cienega University Center, University of Guadalajara, University Avenue 1115, Ocotlan 47820, Jalisco, Mexico;
| | - Ricardo Iván González-Vega
- Department of Research and Postgraduate Studies in Food, University of Sonora, Rosales and Niños Heroes Avenue S/N, Hermosillo 83000, Sonora, Mexico; (L.M.P.-P.); (S.R.-C.); (F.J.C.-M.); (F.J.W.-C.); (R.I.G.-V.); (E.C.R.-B.)
| | - Ema Carina Rosas-Burgos
- Department of Research and Postgraduate Studies in Food, University of Sonora, Rosales and Niños Heroes Avenue S/N, Hermosillo 83000, Sonora, Mexico; (L.M.P.-P.); (S.R.-C.); (F.J.C.-M.); (F.J.W.-C.); (R.I.G.-V.); (E.C.R.-B.)
| | - María Alba Guadalupe Corella-Madueño
- Department of Chemical Biological Sciences, University of Sonora, Rosales and Niños Heroes Avenue S/N, Hermosillo 83000, Sonora, Mexico; (L.A.R.-V.); (M.A.G.C.-M.)
| | - Carmen Lizette Del-Toro-Sánchez
- Department of Research and Postgraduate Studies in Food, University of Sonora, Rosales and Niños Heroes Avenue S/N, Hermosillo 83000, Sonora, Mexico; (L.M.P.-P.); (S.R.-C.); (F.J.C.-M.); (F.J.W.-C.); (R.I.G.-V.); (E.C.R.-B.)
- Correspondence:
| |
Collapse
|
293
|
Schettino R, Verni M, Acin-Albiac M, Vincentini O, Krona A, Knaapila A, Cagno RD, Gobbetti M, Rizzello CG, Coda R. Bioprocessed Brewers' Spent Grain Improves Nutritional and Antioxidant Properties of Pasta. Antioxidants (Basel) 2021; 10:742. [PMID: 34067199 PMCID: PMC8151577 DOI: 10.3390/antiox10050742] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 12/19/2022] Open
Abstract
Brewers' spent grain (BSG), the by-product of brewing, was subjected to a xylanase treatment followed by fermentation with Lactiplantibacillus plantarum PU1. Bioprocessed BSG has been used as ingredient to obtain a fortified semolina pasta which can be labeled as "high fiber" and "source of protein" according to the European Community Regulation No. 1924/2006. Compared to native BSG, the use of bioprocessed BSG led to higher protein digestibility and quality indices (essential amino acid index, biological value, protein efficiency ratio, nutritional index), as well as lower predicted glycemic index. Bioprocessing also improved the technological properties of fortified pasta. Indeed, brightfield and confocal laser scanning microscopy revealed the formation of a more homogeneous protein network, resulting from the degradation of the arabinoxylan structure of BSG, and the release of the components entrapped into the cellular compartments. The extensive cell wall disruption contributed to the release of phenols, and conferred enhanced antioxidant activity to the fortified pasta. The persistence of the activity was demonstrated after in vitro-mimicked digestion, evaluating the protective effects of the digested pasta towards induced oxidative stress in Caco-2 cells cultures. The fortified pasta showed a peculiar sensory profile, markedly improved by the pre-treatment, thus confirming the great potential of bioprocessed BSG as health-promoting food ingredient.
Collapse
Affiliation(s)
- Rosa Schettino
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy; (R.S.); (M.V.)
| | - Michela Verni
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy; (R.S.); (M.V.)
| | - Marta Acin-Albiac
- Faculty of Science and Technology, Libera Universitá di Bolzano, 39100 Bolzano, Italy; (M.A.-A.); (R.D.C.); (M.G.)
| | - Olimpia Vincentini
- Unit of Human Nutrition and Health, Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Annika Krona
- RISE Research Institutes of Sweden, Agriculture and Food, Box 5401, 402 29 Gothenburg, Sweden;
| | - Antti Knaapila
- Department of Food and Nutrition, University of Helsinki, 00014 Helsinki, Finland; (A.K.); (R.C.)
| | - Raffaella Di Cagno
- Faculty of Science and Technology, Libera Universitá di Bolzano, 39100 Bolzano, Italy; (M.A.-A.); (R.D.C.); (M.G.)
| | - Marco Gobbetti
- Faculty of Science and Technology, Libera Universitá di Bolzano, 39100 Bolzano, Italy; (M.A.-A.); (R.D.C.); (M.G.)
| | | | - Rossana Coda
- Department of Food and Nutrition, University of Helsinki, 00014 Helsinki, Finland; (A.K.); (R.C.)
- Department of Food and Nutrition, Helsinki Institute of Sustainability, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
294
|
Co-microbiological regulation of phenolic release through solid-state fermentation of corn kernels (Zea mays L.) to improve their antioxidant activity. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
295
|
Evaluation of Innovative Dried Purée from Jerusalem Artichoke-In Vitro Studies of Its Physicochemical and Health-Promoting Properties. Molecules 2021; 26:molecules26092644. [PMID: 33946573 PMCID: PMC8125012 DOI: 10.3390/molecules26092644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/11/2022] Open
Abstract
The present study aimed to evaluate the effect of Jerusalem artichoke processing methods and drying methods (freeze drying, sublimation drying, vacuum drying) on the basic physicochemical parameters, profiles and contents of sugars and polyphenolic compounds, and health-promoting properties (antioxidant activity, inhibition of the activities of α-amylase, α-glucosidase, and pancreatic lipase) of the produced purée. A total of 25 polyphenolic compounds belonging to hydroxycinnamic phenolic acids (LC-PDA-MS-QTof) were detected in Jerusalem artichoke purée. Their average content in the raw material was at 820 mg/100 g dm (UPLC-PDA-FL) and was 2.7 times higher than in the cooked material. The chemical composition and the health-promoting value of the purées were affected by the drying method, with the most beneficial values of the evaluated parameters obtained upon freeze drying. Vacuum drying could offer an alternative to freeze drying, as both methods ensured relatively comparable values of the assessed parameters.
Collapse
|
296
|
Arruda HS, Silva EK, Peixoto Araujo NM, Pereira GA, Pastore GM, Marostica Junior MR. Anthocyanins Recovered from Agri-Food By-Products Using Innovative Processes: Trends, Challenges, and Perspectives for Their Application in Food Systems. Molecules 2021; 26:2632. [PMID: 33946376 PMCID: PMC8125576 DOI: 10.3390/molecules26092632] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/23/2021] [Accepted: 04/29/2021] [Indexed: 12/15/2022] Open
Abstract
Anthocyanins are naturally occurring phytochemicals that have attracted growing interest from consumers and the food industry due to their multiple biological properties and technological applications. Nevertheless, conventional extraction techniques based on thermal technologies can compromise both the recovery and stability of anthocyanins, reducing their global yield and/or limiting their application in food systems. The current review provides an overview of the main innovative processes (e.g., pulsed electric field, microwave, and ultrasound) used to recover anthocyanins from agri-food waste/by-products and the mechanisms involved in anthocyanin extraction and their impacts on the stability of these compounds. Moreover, trends and perspectives of anthocyanins' applications in food systems, such as antioxidants, natural colorants, preservatives, and active and smart packaging components, are addressed. Challenges behind anthocyanin implementation in food systems are displayed and potential solutions to overcome these drawbacks are proposed.
Collapse
Affiliation(s)
- Henrique Silvano Arruda
- Department of Food and Nutrition, School of Food Engineering, University of Campinas, Monteiro Lobato Street 80, Campinas 13083-862, Brazil;
- Department of Food Science, School of Food Engineering, University of Campinas, Monteiro Lobato Street 80, Campinas 13083-862, Brazil; (N.M.P.A.); (G.M.P.)
| | - Eric Keven Silva
- Department of Food Engineering, School of Food Engineering, University of Campinas, Monteiro Lobato Street 80, Campinas 13083-862, Brazil;
| | - Nayara Macêdo Peixoto Araujo
- Department of Food Science, School of Food Engineering, University of Campinas, Monteiro Lobato Street 80, Campinas 13083-862, Brazil; (N.M.P.A.); (G.M.P.)
| | - Gustavo Araujo Pereira
- School of Food Engineering, Institute of Technology, Federal University of Pará, Augusto Corrêa Street S/N, Belém 66075-110, Brazil;
| | - Glaucia Maria Pastore
- Department of Food Science, School of Food Engineering, University of Campinas, Monteiro Lobato Street 80, Campinas 13083-862, Brazil; (N.M.P.A.); (G.M.P.)
| | - Mario Roberto Marostica Junior
- Department of Food and Nutrition, School of Food Engineering, University of Campinas, Monteiro Lobato Street 80, Campinas 13083-862, Brazil;
| |
Collapse
|
297
|
Wang W, Gao YT, Wei JW, Chen YF, Liu QL, Liu HM. Optimization of Ultrasonic Cellulase-Assisted Extraction and Antioxidant Activity of Natural Polyphenols from Passion Fruit. Molecules 2021; 26:molecules26092494. [PMID: 33923350 PMCID: PMC8123174 DOI: 10.3390/molecules26092494] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/18/2021] [Accepted: 04/22/2021] [Indexed: 12/02/2022] Open
Abstract
In this paper, ultrasonic cellulase extraction (UCE) was applied to extract polyphenols from passion fruit. The extraction conditions for total phenol content (TPC) and antioxidant activity were optimized using response surface methodology (RSM) coupled with a Box-Behnken design (BBD). The results showed that the liquid-to-solid ratio (X2) was the most significant single factor and had a positive effect on all responses. The ANOVA analysis indicated quadratic models fitted well as TPC with R2 = 0.903, DPPH scavenging activity with R2 = 0.979, and ABTS scavenging activity with R2 = 0.981. The optimal extraction parameters of passion fruit were as follows: pH value of 5 at 30 °C for extraction temperature, 50:1 (w/v) liquid-to-solid ratio with extraction time for 47 min, the experimental values were found matched with those predicted. Infrared spectroscopy suggested that the extract contained the structure of polyphenols. Furthermore, three main polyphenols were identified and quantified by HPLC. The results showed the content of phenolic compounds and antioxidant activity of the optimized UCE were 1.5~2 times higher than that determined by the single extraction method and the Soxhlet extraction method, which indicates UCE is a competitive and effective extraction technique for natural passion fruit polyphenols.
Collapse
Affiliation(s)
- Wei Wang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; (W.W.); (Y.-T.G.); (Y.-F.C.); (Q.-L.L.)
- Engineering Research Center of Perfume & Aroma and Cosmetics, Ministry of Education, Shanghai 201418, China;
| | - Yu-Ting Gao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; (W.W.); (Y.-T.G.); (Y.-F.C.); (Q.-L.L.)
- Engineering Research Center of Perfume & Aroma and Cosmetics, Ministry of Education, Shanghai 201418, China;
| | - Ji-Wen Wei
- Engineering Research Center of Perfume & Aroma and Cosmetics, Ministry of Education, Shanghai 201418, China;
| | - Yin-Feng Chen
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; (W.W.); (Y.-T.G.); (Y.-F.C.); (Q.-L.L.)
- Engineering Research Center of Perfume & Aroma and Cosmetics, Ministry of Education, Shanghai 201418, China;
| | - Qing-Lei Liu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; (W.W.); (Y.-T.G.); (Y.-F.C.); (Q.-L.L.)
- Engineering Research Center of Perfume & Aroma and Cosmetics, Ministry of Education, Shanghai 201418, China;
| | - Hui-Min Liu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; (W.W.); (Y.-T.G.); (Y.-F.C.); (Q.-L.L.)
- Engineering Research Center of Perfume & Aroma and Cosmetics, Ministry of Education, Shanghai 201418, China;
- Correspondence: ; Tel.: +86-186-1677-8997
| |
Collapse
|
298
|
Gluten-Free Breadsticks Fortified with Phenolic-Rich Extracts from Olive Leaves and Olive Mill Wastewater. Foods 2021; 10:foods10050923. [PMID: 33922194 PMCID: PMC8146876 DOI: 10.3390/foods10050923] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 12/17/2022] Open
Abstract
Nowadays, food processing by-products, which have long raised serious environmental concerns, are recognized to be a cheap source of valuable compounds. In the present study, incorporation of phenolic-rich extracts (500 and 1000 mg kg−1) from olive leaves (OL) and olive mill wastewater (OMW) into conventional gluten-free formulations has been exploited as a potential strategy for developing nutritious and healthy breadsticks with extended shelf-life. To this end, moisture, water activity (aw), visual and textural properties, the composition of biologically active compounds (soluble, insoluble, and bio-accessible polyphenols), antioxidant activity, oxidation stability, and consumer preference of the resulting breadsticks were investigated. Fortified breadsticks had higher moisture and aw, lower hardness, and similar color in comparison to the control, especially in the case of OL extract supplementation. All enriched formulations significantly affected the phenolic composition, as evidenced by the decrease in insoluble/soluble polyphenols ratio (from 7 in the control up to 3.1 and 4.5 in OL and OMW, respectively), and a concomitant increase in polyphenol bio-accessibility (OL: 14.5–23% and OMW: 10.4–15% rise) and antioxidant activity (OL: 20–36% and OMW: 11–16% rise). Moreover, a significant shelf-life extension was observed in all fortified breadsticks (especially in case of OMW supplementation). Sensory evaluation evidenced that 61% of the assessors showed a marked, but not significant, tendency to consider the sample supplemented with high levels of OL as a more palatable choice.
Collapse
|
299
|
Structural elucidation, distribution and antioxidant activity of bound phenolics from whole grain brown rice. Food Chem 2021; 358:129872. [PMID: 33965743 DOI: 10.1016/j.foodchem.2021.129872] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/14/2021] [Accepted: 04/14/2021] [Indexed: 01/31/2023]
Abstract
Chemical profiles, distribution, and antioxidant activity of bound phenolics from brown rice were investigated. Four new dehydrodiferulic acid dimers (DFA) along with eighteen known phenolics were isolated from brown rice bound phenolic extracts and their structures were determined by multiple spectroscopic methods. Among them, ferulic acid and 8-5' DFA were the most abundant monomeric and dimeric bound phenolics in brown rice, rice bran and polished rice. In whole brown rice, polished rice contributed more than 50% of three phenolic monomers and six phenolic dimers, while rice bran contributed more than half of the other thirteen phenolics including eight monomers, four dimers, and one trimer. All the isolated compounds exhibited oxygen radical absorbance capacity. Thomasidioic acid, caffeic acid, methyl caffeate, and 8-5' DC DFA displayed potent peroxyl radical scavenging capacity, and the last three compounds also showed moderate cellular antioxidant activity.
Collapse
|
300
|
Samtiya M, Aluko RE, Dhewa T, Moreno-Rojas JM. Potential Health Benefits of Plant Food-Derived Bioactive Components: An Overview. Foods 2021; 10:foods10040839. [PMID: 33921351 PMCID: PMC8068854 DOI: 10.3390/foods10040839] [Citation(s) in RCA: 217] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/28/2021] [Accepted: 04/06/2021] [Indexed: 12/22/2022] Open
Abstract
Plant foods are consumed worldwide due to their immense energy density and nutritive value. Their consumption has been following an increasing trend due to several metabolic disorders linked to non-vegetarian diets. In addition to their nutritive value, plant foods contain several bioactive constituents that have been shown to possess health-promoting properties. Plant-derived bioactive compounds, such as biologically active proteins, polyphenols, phytosterols, biogenic amines, carotenoids, etc., have been reported to be beneficial for human health, for instance in cases of cancer, cardiovascular diseases, and diabetes, as well as for people with gut, immune function, and neurodegenerative disorders. Previous studies have reported that bioactive components possess antioxidative, anti-inflammatory, and immunomodulatory properties, in addition to improving intestinal barrier functioning etc., which contribute to their ability to mitigate the pathological impact of various human diseases. This review describes the bioactive components derived from fruit, vegetables, cereals, and other plant sources with health promoting attributes, and the mechanisms responsible for the bioactive properties of some of these plant components. This review mainly compiles the potential of food derived bioactive compounds, providing information for researchers that may be valuable for devising future strategies such as choosing promising bioactive ingredients to make functional foods for various non-communicable disorders.
Collapse
Affiliation(s)
- Mrinal Samtiya
- Department of Nutrition Biology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, Haryana 123031, India;
| | - Rotimi E. Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| | - Tejpal Dhewa
- Department of Nutrition Biology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, Haryana 123031, India;
- Correspondence: (T.D.); (J.M.M.-R.)
| | - José Manuel Moreno-Rojas
- Department of Food Science and Health, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo, Avda. Menéndez Pidal, SN, 14004 Córdoba, Spain
- Correspondence: (T.D.); (J.M.M.-R.)
| |
Collapse
|