251
|
Xiong Y, Xiong Y, Zhang H, Zhao Y, Han K, Zhang J, Zhao D, Yu Z, Geng Z, Wang L, Wang Y, Luan X. hPMSCs-Derived Exosomal miRNA-21 Protects Against Aging-Related Oxidative Damage of CD4 + T Cells by Targeting the PTEN/PI3K-Nrf2 Axis. Front Immunol 2021; 12:780897. [PMID: 34887868 PMCID: PMC8649962 DOI: 10.3389/fimmu.2021.780897] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs)-derived exosomes were considered a novel therapeutic approach in many aging-related diseases. This study aimed to clarify the protective effects of human placenta MSCs-derived exosomes (hPMSC-Exo) in aging-related CD4+ T cell senescence and identified the underlying mechanisms using a D-gal induced mouse aging model. Senescent T cells were detected SA-β-gal stain. The degree of DNA damage was evaluated by detecting the level of 8-OH-dG. The superoxide dismutase (SOD) and total antioxidant capacity (T-AOC) activities were measured. The expression of aging-related proteins and senescence-associated secretory phenotype (SASP) were detected by Western blot and RT-PCR. We found that hPMSC-Exo treatment markedly decreased oxidative stress damage (ROS and 8-OH-dG), SA-β-gal positive cell number, aging-related protein expression (p53 and γ-H2AX), and SASP expression (IL-6 and OPN) in senescent CD4+ T cells. Additionally, hPMSC-Exo containing miR-21 effectively downregulated the expression of PTEN, increased p-PI3K and p-AKT expression, and Nrf2 nuclear translocation and the expression of downstream target genes (NQO1 and HO-1) in senescent CD4+ T cells. Furthermore, in vitro studies uncovered that hPMSC-Exo attenuated CD4+ T cell senescence by improving the PTEN/PI3K-Nrf2 axis by using the PTEN inhibitor bpV (HOpic). We also validated that PTEN was a target of miR-21 by using a luciferase reporter assay. Collectively, the obtained results suggested that hPMSC-Exo attenuates CD4+ T cells senescence via carrying miRNA-21 and activating PTEN/PI3K-Nrf2 axis mediated exogenous antioxidant defenses.
Collapse
Affiliation(s)
- Yanlian Xiong
- Department of Anatomy, School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Yanlei Xiong
- Department of Pathology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Hengchao Zhang
- Department of Immunology, School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Yaxuan Zhao
- Department of Immunology, School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Kaiyue Han
- Department of Immunology, School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Jiashen Zhang
- Department of Immunology, School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Dongmei Zhao
- Department of Immunology, School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Zhenhai Yu
- Department of Anatomy, School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Ziran Geng
- Department of Anatomy, School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Longfei Wang
- Department of Anatomy, School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Yueming Wang
- Department of Immunology, School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Xiying Luan
- Department of Immunology, School of Basic Medicine, Binzhou Medical University, Yantai, China
| |
Collapse
|
252
|
Tamminen T, Koskela A, Toropainen E, Gurubaran IS, Winiarczyk M, Liukkonen M, Paterno JJ, Lackman P, Sadeghi A, Viiri J, Hyttinen JMT, Koskelainen A, Kaarniranta K. Pinosylvin Extract Retinari™ Sustains Electrophysiological Function, Prevents Thinning of Retina, and Enhances Cellular Response to Oxidative Stress in NFE2L2 Knockout Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8028427. [PMID: 34917233 PMCID: PMC8670936 DOI: 10.1155/2021/8028427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/02/2021] [Accepted: 11/16/2021] [Indexed: 12/18/2022]
Abstract
Chronic oxidative stress eventually leads to protein aggregation in combination with impaired autophagy, which has been observed in age-related macular degeneration. We have previously shown an effective age-related macular degeneration disease model in mice with nuclear factor-erythroid 2-related factor-2 (NFE2L2) knockout. We have also shown pinosylvin, a polyphenol abundant in bark waste, to increase human retinal pigment epithelium cell viability in vitro. In this work, the effects of commercial natural pinosylvin extract, Retinari™, were studied on the electroretinogram, optical coherence tomogram, autophagic activity, antioxidant capacity, and inflammation markers. Wild-type and NFE2L2 knockout mice were raised until the age of 14.8 ± 3.8 months. They were fed with either regular or Retinari™ chow (141 ± 17.0 mg/kg/day of pinosylvin) for 10 weeks before the assays. Retinari™ treatment preserved significant retinal function with significantly preserved a- and b-wave amplitudes in the electroretinogram responses. Additionally, the treatment prevented thinning of the retina in the NFE2L2 knockout mice. The NFE2L2 knockout mice showed reduced ubiquitin-tagged protein accumulation in addition to local upregulation of complement factor H and antioxidant enzymes superoxide dismutase 1 and catalase. Therefore, the treatment in the NFE2L2 KO disease model led to reduced chronic oxidative stress and sustained retinal function and morphology. Our results demonstrate that pinosylvin supplementation could potentially lower the risk of age-related macular degeneration onset and slow down its progression.
Collapse
Affiliation(s)
- Toni Tamminen
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Ali Koskela
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Elisa Toropainen
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Iswariyaraja Sridevi Gurubaran
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Mateusz Winiarczyk
- Department of Vitreoretinal Surgery, Medical University of Lublin, Poland
| | - Mikko Liukkonen
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Jussi J. Paterno
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
- Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, FI-70029 KYS Kuopio, Finland
| | | | - Amir Sadeghi
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Johanna Viiri
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Juha M. T. Hyttinen
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Ari Koskelainen
- Department of Neuroscience and Biomedical Engineering, Aalto University, FI-00067 Aalto, Finland
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
- Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, FI-70029 KYS Kuopio, Finland
| |
Collapse
|
253
|
17 β-Estradiol alleviates oxidative damage in osteoblasts by regulating miR-320/RUNX2 signaling pathway. J Biosci 2021. [DOI: 10.1007/s12038-021-00236-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
254
|
Tuli HS, Sak K, Gupta DS, Kaur G, Aggarwal D, Chaturvedi Parashar N, Choudhary R, Yerer MB, Kaur J, Kumar M, Garg VK, Sethi G. Anti-Inflammatory and Anticancer Properties of Birch Bark-Derived Betulin: Recent Developments. PLANTS (BASEL, SWITZERLAND) 2021; 10:2663. [PMID: 34961132 PMCID: PMC8705846 DOI: 10.3390/plants10122663] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 05/03/2023]
Abstract
Birch tree bark-derived betulin has attracted scientific interest already for several centuries, being one of the first natural products identified from plants. However, the cellular events regulated by betulin and precise molecular mechanisms under these processes have been begun to be understood only recently. Today, we know that betulin can exert important anticancer activities through modulation of diverse cellular pathways. In this review article, betulin-regulated molecular signaling is unraveled and presented with a special focus on its participation in anti-inflammatory processes, especially by modulating nuclear factor-κB (NF-κB), prostaglandin/COX, and nuclear factor erythroid2-related factor 2 (Nrf2)-mediated cascades. By regulating these diverse pathways, betulin can not only affect the development and progression of different cancers, but also enhance the antitumor action of traditional therapeutic modalities. It is expected that by overcoming the low bioavailability of betulin by encapsulating it into nanocarriers, this promising natural compound may provide novel possibilities for targeting inflammation-related cancers.
Collapse
Affiliation(s)
- Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, Haryana, India; (D.A.); (N.C.P.); (R.C.)
| | | | - Dhruv Sanjay Gupta
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM’s NMIMS, Mumbai 40056, Maharashtra, India; (D.S.G.); (G.K.)
| | - Ginpreet Kaur
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM’s NMIMS, Mumbai 40056, Maharashtra, India; (D.S.G.); (G.K.)
| | - Diwakar Aggarwal
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, Haryana, India; (D.A.); (N.C.P.); (R.C.)
| | - Nidarshana Chaturvedi Parashar
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, Haryana, India; (D.A.); (N.C.P.); (R.C.)
| | - Renuka Choudhary
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, Haryana, India; (D.A.); (N.C.P.); (R.C.)
| | - Mukerrem Betul Yerer
- Department of Pharmacology, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey;
| | - Jagjit Kaur
- ARC Centre of Excellence in Nanoscale Biophotonics (CNBP), Graduate School of Biomedical Engineering, Faculty of Engineering, The University of New South Wales, Sydney 2052, Australia;
| | - Manoj Kumar
- Department of Chemistry, Maharishi Markandeshwar University, Sadopur 134007, Haryana, India;
| | - Vivek Kumar Garg
- Department of Medical Laboratory Technology, University Institute of Applied Health Sciences, Chandigarh University, Gharuan, Mohali 140413, Punjab, India;
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| |
Collapse
|
255
|
Dyshlyuk LS, Dmitrieva AI, Drozdova MY, Milentyeva IS, Prosekov AY. Relevance of bioassay of biologically active substances (BAS) with geroprotective properties in the model of the nematode Caenorhabditis elegans in experiments in vivo. Curr Aging Sci 2021; 15:121-134. [PMID: 34856917 DOI: 10.2174/1874609814666211202144911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/25/2021] [Accepted: 10/14/2021] [Indexed: 11/22/2022]
Abstract
Aging is a process global in nature. The age of living organisms contributes to the appearance of chronic diseases, which not only reduce the quality of life, but also significantly damage it. Modern medicines can successfully fight multiple diseases and prolong life. At the same time, medications have a large number of side effects. New research indicates that bioactive phytochemicals have great potential for treating even the most severe diseases and can become an alternative to medicines. Despite many studies in this area, the effects of many plant ingredients on living organisms are poorly understood. Analysis of the mechanisms through which herbal preparations influence the aging process helps to select the right active substances, determine the optimal doses to obtain the maximum positive effect. It is preferable to check the effectiveness of plant extracts and biologically active components with geroprotective properties in vivo. For these purposes, live model systems such as Rattus rattus, Mus musculus, Drosophila melanogaster, and Caenorhabditis elegans are used. These models help to comprehensively study the impact of the developed new drugs on the aging process. The model organism C. elegans is gaining increasing popularity in these studies because of its many advantages. This review article discusses the advantages of the nematode C. elegans as a model organism for studying the processes associated with aging. The influence of various BAS and plant extracts on the increase in the life span of the nematode, on the increase in its stress resistance and on other markers of aging is also considered. The review showed that the nematode C. elegans has a number of advantages over other organisms and is a promising model system for studying the geroprotective properties of BAS.
Collapse
Affiliation(s)
- Lyubov S Dyshlyuk
- Natural Nutraceutical Bioassay Laboratory. Kemerovo State University,6 Krasnaya str., Kemerovo, 650043. Russian Federation
| | - Anastasiya I Dmitrieva
- Natural Nutraceutical Bioassay Laboratory. Kemerovo State University,6 Krasnaya str., Kemerovo, 650043. Russian Federation
| | - Margarita Yu Drozdova
- Natural Nutraceutical Bioassay Laboratory. Kemerovo State University,6 Krasnaya str., Kemerovo, 650043. Russian Federation
| | - Irina S Milentyeva
- Natural Nutraceutical Bioassay Laboratory. Kemerovo State University,6 Krasnaya str., Kemerovo, 650043. Russian Federation
| | - Alexander Yu Prosekov
- Natural Nutraceutical Bioassay Laboratory. Kemerovo State University,6 Krasnaya str., Kemerovo, 650043. Russian Federation
| |
Collapse
|
256
|
Petkovic M, Leal EC, Alves I, Bose C, Palade PT, Singh P, Awasthi S, Børsheim E, Dalgaard LT, Singh SP, Carvalho E. Dietary supplementation with sulforaphane ameliorates skin aging through activation of the Keap1-Nrf2 pathway. J Nutr Biochem 2021; 98:108817. [PMID: 34271100 PMCID: PMC10580548 DOI: 10.1016/j.jnutbio.2021.108817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 06/08/2021] [Accepted: 06/29/2021] [Indexed: 12/18/2022]
Abstract
Visible impairments in skin appearance, as well as a subtle decline in its functionality at the molecular level, are hallmarks of skin aging. Activation of the nuclear factor (erythroid-derived 2)-like 2 (Nrf2)-pathway, which is important in controlling inflammation and oxidative stress that occur during aging, can be triggered by sulforaphane (SFN), an isothiocyanate found in plants from the Brassicaceae family. This study aimed to assess the effects of SFN intake on age-related skin alterations. Male C57BL6 young (2 months) and old (21 months) mice were treated for 3 months with SFN diet (442.5 mg per kg) or control diet. The antioxidant capacities of the skin were increased in old SFN-treated animals as measured by mRNA levels of Nrf2 (P<.001) and its target genes NQO1 (P<.001) and HO1 (P<.01). Protein expression for Nrf2 was also increased in old SFN fed animals (P<.01), but not the protein expression of NQO1 or HO1. Additionally, ROS and MMP9 protein levels were significantly decreased (P<.05) in old SFN fed animals. Histopathological analysis confirmed that there was no difference in epidermal thickness in old, when compared to young, SFN treated animals, while the dermal layer thickness was lower in old vs. young, treated animals (P<.05). Moreover, collagen deposition was improved with SFN treatment in young (P<.05) and structurally significantly improved in the old mice (P<.001). SFN dietary supplementation therefore ameliorates skin aging through activation of the Nrf2-pathway.
Collapse
Affiliation(s)
- Marija Petkovic
- Department of Science and Environment, Roskilde University, Roskilde, Denmark; Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Ermelindo C Leal
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Ines Alves
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Chanda Bose
- Department of Internal Medicine, Division of Hematology and Oncology Texas Tech University Medical Sciences Center, Lubbock, Texas, USA
| | - Philip T Palade
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Preeti Singh
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Sanjay Awasthi
- Department of Internal Medicine, Division of Hematology and Oncology Texas Tech University Medical Sciences Center, Lubbock, Texas, USA
| | - Elisabet Børsheim
- Department of Pediatrics, University of Arkansas for Medical Sciences; Arkansas Children's Research Institute, Little Rock, AR, USA; Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Louise T Dalgaard
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Sharda P Singh
- Department of Internal Medicine, Division of Hematology and Oncology Texas Tech University Medical Sciences Center, Lubbock, Texas, USA; Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - Eugenia Carvalho
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal; Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
257
|
Zhang Y, Liu X, Li Y, Song M, Li Y, Yang A, Zhang Y, Wang D, Hu M. Aucubin slows the development of osteoporosis by inhibiting osteoclast differentiation via the nuclear factor erythroid 2-related factor 2-mediated antioxidation pathway. PHARMACEUTICAL BIOLOGY 2021; 59:1556-1565. [PMID: 34757891 PMCID: PMC8583775 DOI: 10.1080/13880209.2021.1996614] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
CONTEXT Osteoporosis (OP) is a metabolic disease. We have previously demonstrated that aucubin (AU) has anti-OP effects that are due to its promotion of the formation of osteoblasts. OBJECTIVES To investigate the mechanisms of anti-OP effects of AU. MATERIALS AND METHODS C57BL/6 mice were randomly divided into control group, 30 mg/kg Dex-induced OP group (OP model group, 15 μg/kg oestradiol-treated positive control group, 5 or 45 mg/kg AU-treated group), and 45 mg/kg AU-alone-treated group. The administration lasted for 7 weeks. Subsequently, 1, 2.5 and 5 µM AU were incubated with 50 ng/mL RANKL-induced RAW264.7 cells for 7 days to observe osteoclast differentiation. The effect of AU was evaluated by analysing tissue lesions, biochemical factor and protein expression. RESULTS The LD50 of AU was greater than 45 mg/kg. AU increased the number of trabeculae and reduced the loss of chondrocytes in OP mice. Compared to OP mice, AU-treated mice exhibited decreased serum concentrations of TRAP5b (19.6% to 28.4%), IL-1 (12.2% to 12.6%), IL-6 (12.1%) and ROS (5.9% to 10.7%) and increased serum concentrations of SOD (14.6% to 19.4%) and CAT (17.2% to 27.4%). AU treatment of RANKL-exposed RAW264.7 cells decreased the numbers of multi-nuclear TRAP-positive cells, reversed the over-expression of TRAP5, NFATc1 and CTSK. Furthermore, AU increased the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream proteins in RANKL-exposed RAW264.7 cells. CONCLUSIONS AU slows the development of OP via Nrf2-mediated antioxidant pathways, indicating the potential use of AU in OP therapy and other types of OP research.
Collapse
Affiliation(s)
- Yongfeng Zhang
- Department of Orthodontics, School and Hospital of Stomatology, Jilin University, Changchun, China
- School of Life Sciences, Jilin University, Changchun, China
| | - Xin Liu
- School of Life Sciences, Jilin University, Changchun, China
| | - Yangyang Li
- Department of Orthodontics, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Minkai Song
- School of Life Sciences, Jilin University, Changchun, China
| | - Yutong Li
- Department of Orthodontics, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Anhui Yang
- School of Life Sciences, Jilin University, Changchun, China
| | - Yaqin Zhang
- School of Life Sciences, Jilin University, Changchun, China
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun, China
- CONTACT Di Wang School of Life Sciences, Jilin University, Qianjin Street 2699, Changchun, Jilin, P. R. China
| | - Min Hu
- Department of Orthodontics, School and Hospital of Stomatology, Jilin University, Changchun, China
- Min Hu Department of Orthodontics, College of Stomatology, Jilin University, No. 1500, Qinghua Road, Changchun, Jilin, P. R. China
| |
Collapse
|
258
|
Yang ZJ, Wang YX, Zhao S, Hu N, Chen DM, Ma HM. SIRT 3 was involved in Lycium barbarum seed oil protection testis from oxidative stress: in vitro and in vivo analyses. PHARMACEUTICAL BIOLOGY 2021; 59:1314-1325. [PMID: 34569428 PMCID: PMC8475125 DOI: 10.1080/13880209.2021.1961822] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/15/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
CONTEXT Lycium barbarum L. (Solanaceae) seed oil (LBSO) exerts LBSO exerts protective effects in the testis in vivo and in vitro via upregulating SIRT3. OBJECTIVE This study evaluates the effects and mechanism of LBSO in the d-galactose (d-gal)-induced ageing testis. MATERIALS AND METHODS Male Sprague Dawley (SD) rats (n = 30, 8-week-old) were randomly divided into three groups: LBSO group (n = 10) where rats received subcutaneous injection of d-gal at 125 mg/kg/day for 8 weeks and intragastric administration of LBSO at 1000 mg/kg/day for 4 weeks, ageing model group (n = 10) received 8-week-sunbcutaneous injection of d-gal, and control group (n = 10) with same administration of normal saline. Lentivirus had established TM4 cells with SIRT3 overexpression or silencing before LBSO intervened in vitro. RESULTS Treatment with LBSO, the levels of INHB and testosterone both increased, compared to ageing model. In vitro, we found the ED50 of LBSO was 86.72 ± 1.49 and when the concentration of LBSO at 100 μg/mL to intervene TM4 cells, the number of cells increased from 8120 ± 676.2 to 15251 ± 1119, and the expression of SIRT3, HO-1, and SOD upregulated. However, HO-1 and SOD were dysregulated by silencing SIRT3. On the other hand, the expression of AMPK and PGC-1α upregulated as an effect of SIRT3 overexpression by lentivirus, meanwhile the same increasing trend of that being found in cells treated with LBSO, compared to control group. DISCUSSION AND CONCLUSIONS LBSO alleviated oxidative stress in d-gal-induced sub-acutely ageing testis and TM4 cells by suppressing the oxidative stress to mitochondria via SIRT3/AMPK/PGC-1α.
Collapse
Affiliation(s)
- Zhang-Jie Yang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education in Ningxia Medical University, Yinchuan, China
| | - Yu-Xin Wang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education in Ningxia Medical University, Yinchuan, China
| | - Shuai Zhao
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education in Ningxia Medical University, Yinchuan, China
| | - Na Hu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education in Ningxia Medical University, Yinchuan, China
| | - Dong-Mei Chen
- Institute of Human Stem Cell Research, The General Hospital of Ningxia Medical University, Yinchuan, China
| | - Hui-Ming Ma
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education in Ningxia Medical University, Yinchuan, China
- College of Chinese medicine of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
259
|
Abstract
BACKGROUND Photoaging is premature skin aging resulting from oxidative stress generated by exposure to solar radiation. A key clinical feature is solar lentigines, areas of hyperpigmentation on sun-exposed skin. Skin pigmentation is determined by cross-talk between keratinocytes and melanocytes, which is exquisitely sensitive to oxidative stress. Toll-like receptor (TLR) signaling and NF-E2-related factor 2 (NRF2) signaling, an endogenous antioxidant system, serve as a bridge between the oxidative stress response and immune regulation. Moreover, TLR-mediated induction of IL-6 production has been shown to prevent ultraviolet (UV)-induced hyperpigmentation. METHODS Shave biopsies of solar lentigines were obtained from 14 individuals. An additional 7 subjects applied broccoli sprout extract (BSE) containing sulforaphane daily or vehicle on photodamaged skin. Immunofluorescence staining was used to determine total and phosphorylated NRF2 in the lentiginous skin. Dermoscopy and Fontana & Masson staining were used to assess the effect of topical BSE on UV-induced pigmentation. Similar topical treatments were performed in a mouse model of UVB-induced hyperpigmentation utilizing WT, Nrf2-/-, or K14-Cre-ERT2IL-6Rαfl/fl C57BL/6 mice. RESULTS NRF2 expression is altered in solar lentigines, and UV-induced skin pigmentation in humans could be ameliorated with topical BSE. Corresponding mouse models replicated the authors' clinical findings and identified a potential mechanistic link to IL-6Rα signaling in keratinocytes. CONCLUSION The authors' findings suggest that dysregulation of NRF2 signaling is involved in the pathogenesis of UV-induced skin pigmentation and pharmacological activation of NRF2 may represent a potential therapeutic target in photoaging.
Collapse
|
260
|
Kwon DA, Kim YS, Kim SK, Baek SH, Kim HK, Lee HS. Antioxidant and antifatigue effect of a standardized fraction (HemoHIM) from Angelica gigas, Cnidium officinale, and Paeonia lactiflora. PHARMACEUTICAL BIOLOGY 2021; 59:391-400. [PMID: 33813987 PMCID: PMC8023644 DOI: 10.1080/13880209.2021.1900878] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
CONTEXT HemoHIM is an herbal preparation containing Angelica gigas Nakai (Apiaceae), Cnidium officinale Makino (Umbelliferae), and Paeonia lactiflora Pallas (Paeoniaceae) developed for immune regulation. To date, studies on the antifatigue effects of HemoHIM have not been conducted. OBJECTIVE The antifatigue effects of HemoHIM using models of citrinin and exercise-induced chronic fatigue syndrome were investigated. MATERIALS AND METHODS Citrinin-induced L6 skeletal muscle cells were treated with HemoHIM (125, 250, and 500 μg/mL). The antioxidant factors were analysed. ICR mice were divided into four groups (n = 10): control, HemoHIM 250, 500 mg/kg, and creatine 300 mg/kg, respectively. Mice were orally administered HemoHIM or creatine for three weeks; during this time, both rotarod test and forced swimming test (FST) were conducted. The latency time was investigated and antioxidant, antifatigue factors were analysed. RESULTS HemoHIM significantly restored reduced antioxidant enzymes (SOD, CAT, Txn, GPx, GSr, and GCLC in HemoHIM 500 μg/mL) compared to the citrinin group in L6 cells. In vivo, HemoHIM significantly improved the latency time (FST; 279.88 ± 50.32 sec, rotarod test; 552.35 ± 23.50 sec in HemoHIM 500 mg/kg). Moreover, the FST-induced reduction in glucose and glutathione significantly increased by 3-fold (HemoHIM 500 mg/kg) and increase in LDH and MDA were significantly inhibited by 1.6, 2.1-fold in the HemoHIM 500 mg/kg compared to the control group.
Collapse
Affiliation(s)
- Da-Ae Kwon
- Efficacy Evaluation Team, Food Science R&D Center, KolmarBNH CO., LTD, Seoul, Republic of Korea
| | - Yong Sang Kim
- Food Safety Team, Kolmar BNH CO., LTD, Seoul, Republic of Korea
| | - Seul-Ki Kim
- Efficacy Evaluation Team, Food Science R&D Center, KolmarBNH CO., LTD, Seoul, Republic of Korea
| | - Sin Hwa Baek
- Natural Product Research Team, Food Science R&D Center, KolmarBNH CO., LTD, Seoul, Republic of Korea
| | - Hyun Kyu Kim
- Food Science R&D Center, KolmarBNH CO., LTD, Seoul, Republic of Korea
| | - Hak Sung Lee
- Natural Product Research Team, Food Science R&D Center, KolmarBNH CO., LTD, Seoul, Republic of Korea
- CONTACT Hak Sung Lee
| |
Collapse
|
261
|
The KEAP1-NRF2 System in Healthy Aging and Longevity. Antioxidants (Basel) 2021; 10:antiox10121929. [PMID: 34943032 PMCID: PMC8750203 DOI: 10.3390/antiox10121929] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 12/25/2022] Open
Abstract
Aging is inevitable, but the inherently and genetically programmed aging process is markedly influenced by environmental factors. All organisms are constantly exposed to various stresses, either exogenous or endogenous, throughout their lives, and the quality and quantity of the stresses generate diverse impacts on the organismal aging process. In the current oxygenic atmosphere on earth, oxidative stress caused by reactive oxygen species is one of the most common and critical environmental factors for life. The Kelch-like ECH-associated protein 1-NFE2-related factor 2 (KEAP1-NRF2) system is a critical defense mechanism of cells and organisms in response to redox perturbations. In the presence of oxidative and electrophilic insults, the thiol moieties of cysteine in KEAP1 are modified, and consequently NRF2 activates its target genes for detoxification and cytoprotection. A number of studies have clarified the contributions of the KEAP1-NRF2 system to the prevention and attenuation of physiological aging and aging-related diseases. Accumulating knowledge to control stress-induced damage may provide a clue for extending healthspan and treating aging-related diseases. In this review, we focus on the relationships between oxidative stress and aging-related alterations in the sensory, glandular, muscular, and central nervous systems and the roles of the KEAP1-NRF2 system in aging processes.
Collapse
|
262
|
The Role of NRF2 in Mycobacterial Infection. Antioxidants (Basel) 2021; 10:antiox10121861. [PMID: 34942964 PMCID: PMC8699052 DOI: 10.3390/antiox10121861] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/11/2021] [Accepted: 11/22/2021] [Indexed: 02/04/2023] Open
Abstract
The incidence of pulmonary nontuberculous mycobacterial (NTM) infection is increasing worldwide, and its clinical outcomes with current chemotherapies are unsatisfactory. The incidence of tuberculosis (TB) is still high in Africa, and the existence of drug-resistant tuberculosis is also an important issue for treatment. To discover and develop new efficacious anti-mycobacterial treatments, it is important to understand the host-defense mechanisms against mycobacterial infection. Nuclear erythroid 2 p45-related factor-2 (NRF2) is known to be a major regulator of various antioxidant response element (ARE)-driven cytoprotective gene expressions, and its protective role has been demonstrated in infections. However, there are not many papers or reviews regarding the role of NRF2 in mycobacterial infectious disease. Therefore, this review focuses on the role of NRF2 in the pathogenesis of Mycobacterium tuberculosis and Mycobacterium avium infection.
Collapse
|
263
|
Alam MS, Czajkowsky DM. SARS-CoV-2 infection and oxidative stress: Pathophysiological insight into thrombosis and therapeutic opportunities. Cytokine Growth Factor Rev 2021; 63:44-57. [PMID: 34836751 PMCID: PMC8591899 DOI: 10.1016/j.cytogfr.2021.11.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 01/08/2023]
Abstract
The current coronavirus disease 2019 (COVID-19) pandemic has presented unprecedented challenges to global health. Although the majority of COVID-19 patients exhibit mild-to-no symptoms, many patients develop severe disease and need immediate hospitalization, with most severe infections associated with a dysregulated immune response attributed to a cytokine storm. Epidemiological studies suggest that overall COVID-19 severity and morbidity correlate with underlying comorbidities, including diabetes, obesity, cardiovascular diseases, and immunosuppressive conditions. Patients with such comorbidities exhibit elevated levels of reactive oxygen species (ROS) and oxidative stress caused by an increased accumulation of angiotensin II and by activation of the NADPH oxidase pathway. Moreover, accumulating evidence suggests that oxidative stress coupled with the cytokine storm contribute to COVID-19 pathogenesis and immunopathogenesis by causing endotheliitis and endothelial cell dysfunction and by activating the blood clotting cascade that results in blood coagulation and microvascular thrombosis. In this review, we survey the mechanisms of how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces oxidative stress and the consequences of this stress on patient health. We further shed light on aspects of the host immunity that are crucial to prevent the disease during the early phase of infection. A better understanding of the disease pathophysiology as well as preventive measures aimed at lowering ROS levels may pave the way to mitigate SARS-CoV-2-induced complications and decrease mortality.
Collapse
Affiliation(s)
- Mohammad Shah Alam
- Department of Anatomy and Histology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh.
| | - Daniel M Czajkowsky
- Bio-ID Centre, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
264
|
Schiffers C, Reynaert NL, Wouters EFM, van der Vliet A. Redox Dysregulation in Aging and COPD: Role of NOX Enzymes and Implications for Antioxidant Strategies. Antioxidants (Basel) 2021; 10:antiox10111799. [PMID: 34829671 PMCID: PMC8615131 DOI: 10.3390/antiox10111799] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 12/23/2022] Open
Abstract
With a rapidly growing elderly human population, the incidence of age-related lung diseases such as chronic obstructive pulmonary disease (COPD) continues to rise. It is widely believed that reactive oxygen species (ROS) play an important role in ageing and in age-related disease, and approaches of antioxidant supplementation have been touted as useful strategies to mitigate age-related disease progression, although success of such strategies has been very limited to date. Involvement of ROS in ageing is largely attributed to mitochondrial dysfunction and impaired adaptive antioxidant responses. NADPH oxidase (NOX) enzymes represent an important enzyme family that generates ROS in a regulated fashion for purposes of oxidative host defense and redox-based signalling, however, the associations of NOX enzymes with lung ageing or age-related lung disease have to date only been minimally addressed. The present review will focus on our current understanding of the impact of ageing on NOX biology and its consequences for age-related lung disease, particularly COPD, and will also discuss the implications of altered NOX biology for current and future antioxidant-based strategies aimed at treating these diseases.
Collapse
Affiliation(s)
- Caspar Schiffers
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT 05405, USA; (C.S.); (E.F.M.W.)
- Ludwig Boltzmann Institute for Lung Health, 1140 Vienna, Austria
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, 6211 LK Maastricht, The Netherlands;
| | - Niki L. Reynaert
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, 6211 LK Maastricht, The Netherlands;
| | - Emiel F. M. Wouters
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT 05405, USA; (C.S.); (E.F.M.W.)
- Ludwig Boltzmann Institute for Lung Health, 1140 Vienna, Austria
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, 6211 LK Maastricht, The Netherlands;
| | - Albert van der Vliet
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT 05405, USA; (C.S.); (E.F.M.W.)
- Correspondence:
| |
Collapse
|
265
|
McCord JM, Hybertson BM, Cota-Gomez A, Gao B. Nrf2 activator PB125® as a carnosic acid-based therapeutic agent against respiratory viral diseases, including COVID-19. Free Radic Biol Med 2021; 175:56-64. [PMID: 34058321 PMCID: PMC8413148 DOI: 10.1016/j.freeradbiomed.2021.05.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/06/2021] [Accepted: 05/24/2021] [Indexed: 12/24/2022]
Abstract
PB125® is a phytochemical composition providing potent Nrf2 activation as well as a number of direct actions that do not involve Nrf2. Nrf2 is a transcription actor that helps maintain metabolic balance by providing redox-sensitive expression of numerous genes controlling normal day-to-day metabolic pathways. When ordinary metabolism is upset by extraordinary events such as injury, pathogenic infection, air or water pollution, ingestion of toxins, or simply by the slow but incessant changes brought about by aging and genetic variations, Nrf2 may also be called into action by the redox changes resulting from these events, whether acute or chronic. A complicating factor in all of this is that Nrf2 levels decline with aging, leaving the elderly less able to maintain proper redox balance. The dysregulated gene expression that results can cause or exacerbate a wide variety of pathological conditions, including susceptibility to viral infections. This review examines the characteristics desirable in Nrf2 activators that have therapeutic potential, as well as some of the patterns of dysregulated gene expression commonly observed during pulmonary infections and the normalizing effects possible by judicious use of phytochemicals to increase the activation level of available Nrf2.
Collapse
Affiliation(s)
- Joe M McCord
- Pathways Bioscience, Aurora, CO, 80045, USA; Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| | - Brooks M Hybertson
- Pathways Bioscience, Aurora, CO, 80045, USA; Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| | - Adela Cota-Gomez
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| | - Bifeng Gao
- Pathways Bioscience, Aurora, CO, 80045, USA; Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
266
|
Savio LEB, Leite-Aguiar R, Alves VS, Coutinho-Silva R, Wyse ATS. Purinergic signaling in the modulation of redox biology. Redox Biol 2021; 47:102137. [PMID: 34563872 PMCID: PMC8479832 DOI: 10.1016/j.redox.2021.102137] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 01/07/2023] Open
Abstract
Purinergic signaling is a cell communication pathway mediated by extracellular nucleotides and nucleosides. Tri- and diphosphonucleotides are released in physiological and pathological circumstances activating purinergic type 2 receptors (P2 receptors): P2X ion channels and P2Y G protein-coupled receptors. The activation of these receptors triggers the production of reactive oxygen and nitrogen species and alters antioxidant defenses, modulating the redox biology of cells. The activation of P2 receptors is controlled by ecto-enzymes named ectonucleotidases, E-NTPDase1/CD39 and ecto-5'-nucleotidase/CD73) being the most relevant. The first enzyme hydrolyzes adenosine triphosphate (ATP) and adenosine diphosphate (ADP) into adenosine monophosphate (AMP), and the second catalyzes the hydrolysis of AMP to adenosine. The activity of these enzymes is diminished by oxidative stress. Adenosine actives P1 G-coupled receptors that, in general, promote the maintenance of redox hemostasis by decreasing reactive oxygen species (ROS) production and increase antioxidant enzymes. Intracellular purine metabolism can also contribute to ROS generation via xanthine oxidase activity, which converts hypoxanthine into xanthine, and finally, uric acid. In this review, we describe the mechanisms of redox biology modulated by purinergic signaling and how this signaling may be affected by disturbances in the redox homeostasis of cells.
Collapse
Affiliation(s)
- Luiz Eduardo Baggio Savio
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Raíssa Leite-Aguiar
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vinícius Santos Alves
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Robson Coutinho-Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Angela T S Wyse
- Laboratório de Neuroproteção e Doenças Metabólicas, Departamento de Bioquímica, ICBS, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
267
|
Chen J, Liang JQ, Zhen YF, Chang L, Zhou ZT, Shen XJ. DCAF1-targeting microRNA-3175 activates Nrf2 signaling and inhibits dexamethasone-induced oxidative injury in human osteoblasts. Cell Death Dis 2021; 12:1024. [PMID: 34716304 PMCID: PMC8556244 DOI: 10.1038/s41419-021-04300-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 12/29/2022]
Abstract
Activation of nuclear-factor-E2-related factor 2 (Nrf2) signaling can protect human osteoblasts from dexamethasone-induced oxidative injury. DDB1 and CUL4 associated factor 1 (DCAF1) is a novel ubiquitin E3 ligase for Nrf2 protein degradation. We identified a novel DCAF1-targeting miRNA, miR-3175. RNA pull-down, Argonaute 2 RNA-immunoprecipitation, and RNA fluorescent in situ hybridization results confirmed a direct binding between miR-3175 and DCAF1 mRNA in primary human osteoblasts. DCAF1 3'-untranslated region luciferase activity and its expression were significantly decreased after miR-3175 overexpression but were augmented with miR-3175 inhibition in human osteoblasts and hFOB1.19 osteoblastic cells. miR-3175 overexpression activated Nrf2 signaling, causing Nrf2 protein stabilization, antioxidant response (ARE) activity increase, and transcription activation of Nrf2-dependent genes in human osteoblasts and hFOB1.19 cells. Furthermore, dexamethasone-induced oxidative injury and apoptosis were largely attenuated by miR-3175 overexpression in human osteoblasts and hFOB1.19 cells. Importantly, shRNA-induced silencing or CRISPR/Cas9-mediated Nrf2 knockout abolished miR-3175 overexpression-induced osteoblast cytoprotection against dexamethasone. Conversely, DFAC1 knockout, by the CRISPR/Cas9 method, activated the Nrf2 cascade and inhibited dexamethasone-induced cytotoxicity in hFOB1.19 cells. Importantly, miR-3175 expression was decreased in necrotic femoral head tissues of dexamethasone-taking patients, where DCAF1 mRNA was upregulated. Together, silencing DCAF1 by miR-3175 activated Nrf2 signaling to inhibit dexamethasone-induced oxidative injury and apoptosis in human osteoblasts.
Collapse
Affiliation(s)
- Jing Chen
- Department of Endocrinology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Jin-Qian Liang
- Department of Orthopaedics, Peking Union Medical College Hospital, Beijing, China
| | - Yun-Fang Zhen
- The Center of Diagnosis and Treatment for Children's Bone Diseases, The Children's Hospital of Soochow University, Suzhou, China
| | - Lei Chang
- Department of Spine Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Zhen-Tao Zhou
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| | - Xiong-Jie Shen
- Department of Spine Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China.
| |
Collapse
|
268
|
Wu Y, He Y, Wang R, Zhao X. Preventive Effect of Flavonoid Extract from the Peel of Gonggan (Citrus reticulata Blanco Var. Gonggan) on CCl 4-Induced Acute Liver Injury in Mice. J Inflamm Res 2021; 14:5111-5121. [PMID: 34675591 PMCID: PMC8502066 DOI: 10.2147/jir.s332134] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 09/29/2021] [Indexed: 12/16/2022] Open
Abstract
Objective Citrus peel, a waste product of citrus consumption and processing, is rich in flavonoids. This study aimed to study the protective effect of flavonoid extract from the peel of gonggan (Citrus reticulata Blanco var. gonggan) on acute chemical liver injury. Materials and Methods We established a chemical liver injury model induced by carbon tetrachloride (CCl4) in mice. The flavonoid composition in gonggan (Citrus reticulata Blanco var. gonggan) peel was detected by HPLC. The histopathological sections of liver, related biochemical indicators in serum and liver, and related genes were examined to evaluate the protective effect of gonggan peel flavonoid extract (GPFE). Results The results showed that GPFE contained narirutin, hesperidin, nobiletin, tangeretin, and 5-demethylnobiletin. After 14 days of intragastric administration of GPFE, the result showed GPFE could reduce the increase in liver index, serum alanine aminotransferase (ALT), and aspartate transaminase (AST) levels caused by CCl4. At the same time, pathological sections of liver confirmed that GPFE alleviated the damage to liver tissue. Moreover, biochemical indicator results showed that GPFE increased the activities of superoxide dismutase (SOD) and catalase (CAT) in liver tissue and reduced the content of malondialdehyde (MDA). Also, it reduced the levels of inflammation factors: tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), interleukin (IL)-1β, and IL-6. In addition, q-PCR results showed that GPFE upregulated mRNA expression levels of nuclear factor erythroid 2-related factor 2 (Nrf2), copper/zinc superoxide dismutase (SOD1), manganese superoxide dismutase (SOD2), glutathione peroxidase (GSH-Px), γ-glutamylcysteine synthetase (γ-GCS), CAT, and downregulated IL-6 and TNF-α mRNA expression levels. The mechanism of GPFE may be related to the inhibition of oxidative stress and inflammation. Conclusion The experiment indicates GPFE has a good protective effect on acute chemical liver injury in mice induced by CCl4 via antioxidant and anti-inflammatory pathways.
Collapse
Affiliation(s)
- Ya Wu
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, 400067, People's Republic of China.,College of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, People's Republic of China
| | - Yongpeng He
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, 400030, People's Republic of China.,Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Rui Wang
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, 400067, People's Republic of China.,College of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, People's Republic of China
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, 400067, People's Republic of China
| |
Collapse
|
269
|
Lavrova AV, Gretskaya NM, Bezuglov VV. Role of Oxidative Stress in the Etiology of Parkinson’s Disease: Advanced Therapeutic Products. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021050307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
270
|
Tong J, Fang J, Zhu T, Xiang P, Shang J, Chen L, Zhao J, Wang Y, Tong L, Sun M. Pentagalloylglucose reduces AGE-induced inflammation by activating Nrf2/HO-1 and inhibiting the JAK2/STAT3 pathway in mesangial cells. J Pharmacol Sci 2021; 147:305-314. [PMID: 34663512 DOI: 10.1016/j.jphs.2021.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 01/18/2023] Open
Abstract
Pentagalloylglucose (PGG), a gallotannin polyphenolic compound, has been found to possess a host of beneficial pharmacologic activities, such as anti-inflammatory and antioxidative activities. We previously demonstrated that PGG is capable of binding to the cell membrane of renal mesangial cells, but the pharmacological effect of PGG on diabetic renal injury and the underlying mechanisms are still not yet clear. In this study, the effects of PGG on Nrf2/HO-1 and JAK2/STAT3 signaling were explored in AGE-stimulated mesangial cells. Furthermore, the Nrf2 transcriptional inhibitor ML385 was used to verify the involvement of Nrf2 in the PGG-mediated inhibition of the JAK2/STAT3 cascade. Our results showed that PGG significantly inhibited AGE-induced ROS generation and activated AGE-inhibited Nrf2/HO-1 signaling. Moreover, AGE-induced inflammatory cytokines (IL-1β and TNF-α) and their signaling through JAK2/STAT3 were blocked by PGG. Furthermore, ML385 suppressed Nrf2/HO-1 signaling, elevated ROS and cytokine production, and activated JAK2/STAT3 cascade were reversed by PGG. These findings indicate that PGG inhibits the JAK2/STAT3 cascade by activating Nrf2/HO-1 signaling.
Collapse
Affiliation(s)
- Jinzhi Tong
- Anhui Provincial Key Laboratory of R&D of Chinese Material Medica, School of Life Science, Anhui University, Hefei, Anhui, China
| | - Jian Fang
- Anhui Provincial Key Laboratory of R&D of Chinese Material Medica, School of Life Science, Anhui University, Hefei, Anhui, China
| | - Tiantian Zhu
- Anhui Provincial Key Laboratory of R&D of Chinese Material Medica, School of Life Science, Anhui University, Hefei, Anhui, China
| | - Pan Xiang
- Anhui Provincial Key Laboratory of R&D of Chinese Material Medica, School of Life Science, Anhui University, Hefei, Anhui, China
| | - Jiaojiao Shang
- Anhui Provincial Key Laboratory of R&D of Chinese Material Medica, School of Life Science, Anhui University, Hefei, Anhui, China
| | - Lei Chen
- Anhui Provincial Key Laboratory of R&D of Chinese Material Medica, School of Life Science, Anhui University, Hefei, Anhui, China
| | - Jindong Zhao
- The First Affiliated Hospital of Anhui University of TCM, Hefei, Anhui, China
| | - Yanxin Wang
- The First Affiliated Hospital of Anhui University of TCM, Hefei, Anhui, China
| | - Li Tong
- Qinghai Provincial Key Laboratory of Traditional Chinese Medicine Research for Glucolipid Metabolic Diseases, Medical College of Qinghai University, Xining, Qinghai, China
| | - Min Sun
- Anhui Provincial Key Laboratory of R&D of Chinese Material Medica, School of Life Science, Anhui University, Hefei, Anhui, China.
| |
Collapse
|
271
|
Liang JQ, Zhou ZT, Bo L, Tan HN, Hu JH, Tan MS. Phosphoglycerate kinase 1 silencing by a novel microRNA microRNA-4523 protects human osteoblasts from dexamethasone through activation of Nrf2 signaling cascade. Cell Death Dis 2021; 12:964. [PMID: 34667156 PMCID: PMC8526604 DOI: 10.1038/s41419-021-04250-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/16/2021] [Accepted: 09/29/2021] [Indexed: 12/26/2022]
Abstract
Nuclear-factor-E2-related factor 2 (Nrf2) cascade activation can ameliorate dexamethasone (DEX)-induced oxidative injury and death in human osteoblasts. Phosphoglycerate kinase 1 (PGK1) depletion is shown to efficiently activate Nrf2 signaling by inducing methylglyoxal modification of Kelch-like ECH-associated protein 1 (Keap1). We here identified a novel PGK1-targeting microRNA: microRNA-4523 (miR-4523). RNA fluorescent in situ hybridization, RNA pull-down, and Argonaute-2 RNA immunoprecipitation results confirmed a direct binding between miR-4523 and PGK1 mRNA in primary human osteoblasts and hFOB1.19 osteoblastic cells. Forced overexpression of miR-4523, using a lentiviral construct, robustly decreased PGK1 3'-UTR (untranslated region) luciferase activity and downregulated its expression in human osteoblasts and hFOB1.19 cells. Furthermore, miR-4523 overexpression activated the Nrf2 signaling cascade, causing Keap1-Nrf2 disassociation, Nrf2 protein stabilization, and its nuclear translocation as well as transcription activation of Nrf2-dependent genes (NQO1, GCLC, and HO1) in human osteoblasts. By expressing a UTR-null PGK1 construct, miR-4523 overexpression-induced Nrf2 cascade activation was however largely inhibited. Importantly, DEX-induced reactive oxygen species production, oxidative injury, and cell apoptosis were significantly attenuated by miR-4523 overexpression in human osteoblasts and hFOB1.19 cells. Such actions by miR-4523 were abolished by Nrf2 shRNA or knockout, but mimicked by PGK1 knockout (using CRISPR/Cas9 method). In PGK1 knockout human osteoblasts, miR-4523 overexpression failed to further increase Nrf2 cascade activation and offer osteoblast cytoprotection against DEX. Significantly, miR-4523 is downregulated in human necrotic femoral head tissues of DEX-taking patients. Together, PGK1 silencing by miR-4523 protected human osteoblasts from DEX through activation of the Nrf2 signaling cascade.
Collapse
Affiliation(s)
- Jin-Qian Liang
- Department of Orthopaedics, Peking Union Medical College Hospital, Beijing, China
| | - Zhen-Tao Zhou
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| | - Lin Bo
- Department of Rheumatology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Hai-Ning Tan
- Department of Orthopaedics, Peking Union Medical College Hospital, Beijing, China
| | - Jian-Hua Hu
- Department of Orthopaedics, Peking Union Medical College Hospital, Beijing, China.
| | - Ming-Sheng Tan
- Spinal Surgery, Sino-Japanese Friendship Hospital, Beijing, China.
| |
Collapse
|
272
|
Audousset C, McGovern T, Martin JG. Role of Nrf2 in Disease: Novel Molecular Mechanisms and Therapeutic Approaches - Pulmonary Disease/Asthma. Front Physiol 2021; 12:727806. [PMID: 34658913 PMCID: PMC8511424 DOI: 10.3389/fphys.2021.727806] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 09/02/2021] [Indexed: 12/14/2022] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a major transcription factor involved in redox homeostasis and in the response induced by oxidative injury. Nrf2 is present in an inactive state in the cytoplasm of cells. Its activation by internal or external stimuli, such as infections or pollution, leads to the transcription of more than 500 elements through its binding to the antioxidant response element. The lungs are particularly susceptible to factors that generate oxidative stress such as infections, allergens and hyperoxia. Nrf2 has a crucial protective role against these ROS. Oxidative stress and subsequent activation of Nrf2 have been demonstrated in many human respiratory diseases affecting the airways, including asthma and chronic obstructive pulmonary disease (COPD), or the pulmonary parenchyma such as acute respiratory distress syndrome (ARDS) and pulmonary fibrosis. Several compounds, both naturally occurring and synthetic, have been identified as Nrf2 inducers and enhance the activation of Nrf2 and expression of Nrf2-dependent genes. These inducers have proven particularly effective at reducing the severity of the oxidative stress-driven lung injury in various animal models. In humans, these compounds offer promise as potential therapeutic strategies for the management of respiratory pathologies associated with oxidative stress but there is thus far little evidence of efficacy through human trials. The purpose of this review is to summarize the involvement of Nrf2 and its inducers in ARDS, COPD, asthma and lung fibrosis in both human and in experimental models.
Collapse
Affiliation(s)
- Camille Audousset
- Meakins-Christie Laboratories, McGill University, Montréal, QC, Canada
| | - Toby McGovern
- Meakins-Christie Laboratories, McGill University, Montréal, QC, Canada
| | - James G Martin
- Meakins-Christie Laboratories, McGill University, Montréal, QC, Canada
| |
Collapse
|
273
|
Bono S, Feligioni M, Corbo M. Impaired antioxidant KEAP1-NRF2 system in amyotrophic lateral sclerosis: NRF2 activation as a potential therapeutic strategy. Mol Neurodegener 2021; 16:71. [PMID: 34663413 PMCID: PMC8521937 DOI: 10.1186/s13024-021-00479-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Oxidative stress (OS) is an imbalance between oxidant and antioxidant species and, together with other numerous pathological mechanisms, leads to the degeneration and death of motor neurons (MNs) in amyotrophic lateral sclerosis (ALS). MAIN BODY Two of the main players in the molecular and cellular response to OS are NRF2, the transcription nuclear factor erythroid 2-related factor 2, and its principal negative regulator, KEAP1, Kelch-like ECH (erythroid cell-derived protein with CNC homology)-associated protein 1. Here we first provide an overview of the structural organization, regulation, and critical role of the KEAP1-NRF2 system in counteracting OS, with a focus on its alteration in ALS. We then examine several compounds capable of promoting NRF2 activity thereby inducing cytoprotective effects, and which are currently in different stages of clinical development for many pathologies, including neurodegenerative diseases. CONCLUSIONS Although challenges associated with some of these compounds remain, important advances have been made in the development of safer and more effective drugs that could actually represent a breakthrough for fatal degenerative diseases such as ALS.
Collapse
Affiliation(s)
- Silvia Bono
- Need Institute, Laboratory of Neurobiology for Translational Medicine, c/o Casa di Cura del Policlinico (CCP), Via Dezza 48, 20144 Milan, Italy
| | - Marco Feligioni
- Need Institute, Laboratory of Neurobiology for Translational Medicine, c/o Casa di Cura del Policlinico (CCP), Via Dezza 48, 20144 Milan, Italy
- Laboratory of Neuronal Cell Signaling, EBRI Rita Levi-Montalcini Foundation, 00161 Rome, Italy
| | - Massimo Corbo
- Department of Neurorehabilitation Sciences, Casa di Cura del Policlinico (CCP), Via Dezza 48, 20144 Milan, Italy
| |
Collapse
|
274
|
Wang Z, Wang L, Jiang R, Li C, Chen X, Xiao H, Hou J, Hu L, Huang C, Wang Y. Ginsenoside Rg1 prevents bone marrow mesenchymal stem cell senescence via NRF2 and PI3K/Akt signaling. Free Radic Biol Med 2021; 174:182-194. [PMID: 34364981 DOI: 10.1016/j.freeradbiomed.2021.08.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 07/18/2021] [Accepted: 08/05/2021] [Indexed: 12/13/2022]
Abstract
Senescence limits the characteristics and functionality of mesenchymal stem cells (MSCs), thereby severely restricting their application in tissue engineering. Here, we investigated ways to prevent MSCs from entering a state of senescence. We found that Rg1, an extract of natural ginseng, can reduce the expression of senescence markers in cultured cells in vitro and in various tissues in vivo. Simultaneously, ginsenoside Rg1 improved the antioxidant capacity of cells, and the senescence-inhibiting and antioxidant effect of Rg1 were associated with the activation of the nuclear factor E2-related factor 2 (NRF2) signaling pathway. Furthermore, Rg1 may activate the NRF2 pathway by increasing the interaction between P62 and KEAP1through P62 upregulation and AKT activation. Taken together, our findings indicate that Rg1 prevents cell senescence via NRF2 and AKT, and activation of AKT or NRF2 may thus represent therapeutic targets for preventing cell senescence.
Collapse
Affiliation(s)
- Ziling Wang
- Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing, 400016, China
| | - Lu Wang
- Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing, 400016, China
| | - Rong Jiang
- Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing, 400016, China
| | - Chang Li
- Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Institute of Life Science, Chongqing Medical University, Chongqing, 400016, China
| | - Xiongbin Chen
- Department of Anatomy and Histology and Embryology, Basic Medical College, Chengdu University of Traditional Chinese Medicine, Sichuan, 610075, China
| | - Hanxianzhi Xiao
- Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing, 400016, China
| | - Jiying Hou
- Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing, 400016, China
| | - Ling Hu
- Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing, 400016, China
| | - Caihong Huang
- Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing, 400016, China
| | - Yaping Wang
- Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
275
|
Abstract
Significance: During aging, excessive production of reactive species in the liver leads to redox imbalance with consequent oxidative damage and impaired organ homeostasis. Nevertheless, slight amounts of reactive species may modulate several transcription factors, acting as second messengers and regulating specific signaling pathways. These redox-dependent alterations may impact the age-associated decline in liver regeneration. Recent Advances: In the last few decades, relevant findings related to redox alterations in the aging liver were investigated. Consistently, recent research broadened understanding of redox modifications and signaling related to liver regeneration. Other than reporting the effect of oxidative stress, epigenetic and post-translational modifications, as well as modulation of specific redox-sensitive cellular signaling, were described. Among them, the present review focuses on Wnt/β-catenin, the nuclear factor (erythroid-derived 2)-like 2 (NRF2), members of the Forkhead box O (FoxO) family, and the p53 tumor suppressor. Critical Issues: Even though alteration in redox homeostasis occurs both in aging and in impaired liver regeneration, the associative mechanisms are not clearly defined. Of note, antioxidants are not effective in slowing hepatic senescence, and do not clearly improve liver repopulation after hepatectomy or transplant in humans. Future Directions: Further investigations are needed to define mutual redox-dependent molecular pathways involved both in aging and in the decline of liver regeneration. Preclinical studies aimed at the characterization of these pathways would define possible therapeutic targets for human trials. Antioxid. Redox Signal. 35, 832-847.
Collapse
Affiliation(s)
- Francesco Bellanti
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Gianluigi Vendemiale
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
276
|
Ertuglu LA, Afsar B, Yildiz AB, Demiray A, Ortiz A, Covic A, Kanbay M. Substitution of Sugar-Sweetened Beverages for Other Beverages: Can It Be the Next Step Towards Healthy Aging? Curr Nutr Rep 2021; 10:399-412. [PMID: 34595722 DOI: 10.1007/s13668-021-00372-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2021] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW With the prolongation of life expectancy, the gap between lifespan and "health span," the disease-free lifespan, has been widening due to the massive burden of age-related chronic diseases and research on healthy aging has been gaining momentum. A growing body of evidence suggests that diet is a strong determinant of healthy aging and consumption of sugar-sweetened beverages (SSB), a major source of added sugars, predicts poor health outcomes in the aging population, including cardiovascular disease, diabetes, and cancer. Evidence further supports a link between sugar-sweetened beverages-triggered pathological processes and biologic factors of aging, including inflammaging, oxidative stress, and alterations in intestinal microbiota. At present, substitution of sugar-sweetened beverages with healthier alternative beverage remains the most robust strategy to limit the deleterious effects of sugar-sweetened beverages on health worldwide and may help achieve healthy longevity. The purpose of this review is to provide an overview of mechanisms by which sugar-sweetened beverages consumption may impact the physiological aging process and how a simple intervention of beverage replacement may promote healthy aging. RECENT FINDINGS Recent findings indicate that SSB are associated with accelerated aging phenotype and activate various adverse biological processes such as chronic inflammation, oxidative stress, insulin resistance, and gut dysbiosis. Replacing SSB with healthier beverages may be a reasonable option to reduce the burden of chronic disease in the aging population and even prolong life and healthspan.
Collapse
Affiliation(s)
- Lale A Ertuglu
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Baris Afsar
- Division of Nephrology, Department of Internal Medicine, Suleyman Demirel University School of Medicine, Isparta, Turkey.
| | - Abdullah B Yildiz
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Atalay Demiray
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Alberto Ortiz
- Department of Medicine, School of Medicine, IIS-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Madrid, Spain
| | - Adrian Covic
- Department of Nephrology, Grigore T. Popa' University of Medicine, Iasi, Romania
| | - Mehmet Kanbay
- Division of Nephrology, Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| |
Collapse
|
277
|
Aging disrupts the temporal organization of antioxidant defenses in the heart of male rats and phase shifts circadian rhythms of systolic blood pressure. Biogerontology 2021; 22:603-621. [PMID: 34554336 DOI: 10.1007/s10522-021-09938-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/14/2021] [Indexed: 12/26/2022]
Abstract
Aging is one of the main risk factors for cardiovascular diseases, and oxidative stress is a key element responsible for the development of age-related pathologies. In addition, the alteration of circadian rhythms also contributes to cardiovascular pathology, but the underlying mechanisms are not well defined. We investigated the aging consequences on the temporal patterns of antioxidant defenses, the molecular clock machinery, and the blood pressure, in the heart of male rats maintained under constant darkness (free running) conditions. Male Holtzman rats from young adult (3-month-old) and older (22-month-old) groups were maintained under constant darkness (12-h dark:12-h dark, DD) condition during fifteen days before the experiment. After the DD period, heart ventricle samples were isolated every 4-h throughout a 24-h period. We observed circadian rhythms of catalase (CAT) and glutathione peroxidase (GPx) mRNA expression, as well as ultradian rhythms of Nrf2 mRNA levels, in the heart of young adult rats. We also found circadian oscillations of CAT and GPx enzymatic activities, reduced glutathione (GSH) and BMAL1 protein in the same group. Interestingly, aging abolished the rhythms of CAT and GPx enzymatic activities, phase-shifted the rhythm's acrophases of GSH and BMAL1 protein levels and turned circadian the ultradian oscillation of Nrf2 expression. Moreover, aging phase-shifted the circadian pattern of systolic blood pressure. In conclusion, aging modifies the temporal organization of antioxidant defenses and blood pressure, probably, as a consequence of a disruption in the circadian rhythm of the clock's transcriptional regulator, BMAL1, in heart.
Collapse
|
278
|
Zhou X, Du HH, Jiang M, Zhou C, Deng Y, Long X, Zhao X. Antioxidant Effect of Lactobacillus fermentum CQPC04-Fermented Soy Milk on D-Galactose-Induced Oxidative Aging Mice. Front Nutr 2021; 8:727467. [PMID: 34513906 PMCID: PMC8429822 DOI: 10.3389/fnut.2021.727467] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/09/2021] [Indexed: 01/11/2023] Open
Abstract
The aim of this study is to evaluate the changes in soy isoflavones and peptides in soy milk after lactic acid bacterial fermentation, and explore the positive effects of fermented soy milk on an oxidative aging mouse model induced with D-galactose. We found that free soybean isoflavones and peptides increased after soy milk was fermented by Lactobacillus fermentum CQPC04. The in vivo results indicated that L. fermentum CQPC04-fermented soy milk enhanced the organ index of the liver and spleen, and improved the pathological morphology of the liver, spleen, and skin. L. fermentum CQPC04-fermented soy milk increased the enzymatic activity of glutathione peroxidase (GSH-Px), total superoxide dismutase (T-SOD), and catalase (CAT), increased glutathione (GSH), but decreased the levels of nitric oxide (NO) and malondialdehyde (MDA) in serum, liver, and brain tissues of oxidative aging mice. The above mentioned fermented soy milk also increased the levels of collagen I (Col I), hyaluronic acid (HA), and collagen III (Col III), and decreased the levels of advanced glycation End products (AGEs) and hydrogen peroxide (H2O2). The RT-qPCR results showed that L. fermentum CQPC04-fermented soy milk upregulated the mRNA expression of nuclear factor erythroid 2?related factor (Nrf2), heme oxygenase-1 (HMOX1), quinone oxido-reductase 1 (Nqo1), neuronal nitric oxide synthase (NOS1), endothelial nitric oxide synthase (NOS3), Cu/Zn–superoxide dismutase (Cu/Zn-SOD), Mn–superoxide dismutase (Mn-SOD), and CAT, but downregulated the expression of inducible nitric oxide synthase (NOS2) and glutamate cysteine ligase modifier subunit (Gclm) in liver and spleen tissues. Lastly, the fermented soy milk also increased the gene expression of Cu/Zn-SOD, Mn-SOD, CAT, GSH-Px, matrix metalloproteinases 1 (TIMP1), and matrix metalloproteinases 2 (TIMP2), and decreased the expression of matrix metalloproteinase 2 (MMP2) and matrix metalloproteinase 9 (MMP9) in skin tissue. In conclusion, L. fermentum CQPC04-fermented soy milk was able to satisfactorily delay oxidative aging effects, and its mechanism may be related to the increase in free soy isoflavones and peptides.
Collapse
Affiliation(s)
- Xianrong Zhou
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China.,Department of Food and Nutrition, College of Medical and Life Sciences, Silla University, Busan, South Korea
| | - Hang-Hang Du
- Department of Plastic Surgery, Chongqing Huamei Plastic Surgery Hospital, Chongqing, China
| | - Meiqing Jiang
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Chaolekang Zhou
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Yuhan Deng
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Xingyao Long
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| |
Collapse
|
279
|
Dela Justina V, Miguez JSG, Priviero F, Sullivan JC, Giachini FR, Webb RC. Sex Differences in Molecular Mechanisms of Cardiovascular Aging. FRONTIERS IN AGING 2021; 2:725884. [PMID: 35822017 PMCID: PMC9261391 DOI: 10.3389/fragi.2021.725884] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/25/2021] [Indexed: 12/12/2022]
Abstract
Cardiovascular disease (CVD) is still the leading cause of illness and death in the Western world. Cardiovascular aging is a progressive modification occurring in cardiac and vascular morphology and physiology where increased endothelial dysfunction and arterial stiffness are observed, generally accompanied by increased systolic blood pressure and augmented pulse pressure. The effects of biological sex on cardiovascular pathophysiology have long been known. The incidence of hypertension is higher in men, and it increases in postmenopausal women. Premenopausal women are protected from CVD compared with age-matched men and this protective effect is lost with menopause, suggesting that sex-hormones influence blood pressure regulation. In parallel, the heart progressively remodels over the course of life and the pattern of cardiac remodeling also differs between the sexes. Lower autonomic tone, reduced baroreceptor response, and greater vascular function are observed in premenopausal women than men of similar age. However, postmenopausal women have stiffer arteries than their male counterparts. The biological mechanisms responsible for sex-related differences observed in cardiovascular aging are being unraveled over the last several decades. This review focuses on molecular mechanisms underlying the sex-differences of CVD in aging.
Collapse
Affiliation(s)
- Vanessa Dela Justina
- Graduate Program in Biological Sciences, Federal University of Goiás, Goiânia, Brazil
| | | | - Fernanda Priviero
- Cardiovascular Translational Research Center, University of South Carolina, Columbia, SC, United States
| | - Jennifer C. Sullivan
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Fernanda R. Giachini
- Graduate Program in Biological Sciences, Federal University of Goiás, Goiânia, Brazil
- Institute of Biological Sciences and Health, Federal University of Mato Grosso, Barra do Garças, Brazil
| | - R. Clinton Webb
- Cardiovascular Translational Research Center, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
280
|
Menshikov M, Zubkova E, Stafeev I, Parfyonova Y. Autophagy, Mesenchymal Stem Cell Differentiation, and Secretion. Biomedicines 2021; 9:biomedicines9091178. [PMID: 34572364 PMCID: PMC8467641 DOI: 10.3390/biomedicines9091178] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/01/2021] [Accepted: 09/04/2021] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem cells (MSC) are multipotent cells capable to differentiate into adipogenic, osteogenic, and chondrogenic directions, possessing immunomodulatory activity and a capability to stimulate angiogenesis. A scope of these features and capabilities makes MSC a significant factor of tissue homeostasis and repair. Among factors determining the fate of MSC, a prominent place belongs to autophagy, which is activated under different conditions including cell starvation, inflammation, oxidative stress, and some others. In addition to supporting cell homeostasis by elimination of protein aggregates, and non-functional and damaged proteins, autophagy is a necessary factor of change in cell phenotype on the process of cell differentiation. In present review, some mechanisms providing participation of autophagy in cell differentiation are discussed
Collapse
|
281
|
Shengchen W, Jing L, Yujie Y, Yue W, Shiwen X. Polystyrene microplastics-induced ROS overproduction disrupts the skeletal muscle regeneration by converting myoblasts into adipocytes. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:125962. [PMID: 33979708 DOI: 10.1016/j.jhazmat.2021.125962] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/29/2021] [Accepted: 04/20/2021] [Indexed: 05/23/2023]
Abstract
The environmental problem of Microplastics (MPs) pollution poses a great threat to human and animal health, which has attracted global attention. The physiological integrity of skeletal muscle is extremely important for the survival of animals. Here, we investigated the effect of two size polystyrene microplastics (PS-MPs, 1-10 µm and 50-100 µm) on the growth of anterior tibial (TA) muscle and repair after injury in mice. Results showed that the regeneration of skeletal muscle was delayed by PS-MPs exposure and was negatively correlated with particle size. H&E staining and Oil red O staining showed that PS-MPs exposure reduced the average cross-sectional area (CSA) and diameter of the muscle fibers, increased lipid deposition. Further mechanistic research displayed that though PS-MPs treatment did not affect cell viability of myoblast, it aggravated intracellular ROS generation and oxidative stress, inhibited myogenic differentiation by decreasing the phosphorylation of p38 MAPK, and promote adipogenic differentiation by increasing the expression of NF-κB, which could be alleviated by NAC. In brief, our data demonstrated that the ROS overproduction caused by PS-MPs disturbed the regeneration of skeletal muscle and directed the fate of satellite cells in mice.
Collapse
Affiliation(s)
- Wang Shengchen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Liu Jing
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yao Yujie
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Wang Yue
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xu Shiwen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
282
|
Napoli E, Flores A, Mansuri Y, Hagerman RJ, Giulivi C. Sulforaphane improves mitochondrial metabolism in fibroblasts from patients with fragile X-associated tremor and ataxia syndrome. Neurobiol Dis 2021; 157:105427. [PMID: 34153466 PMCID: PMC8475276 DOI: 10.1016/j.nbd.2021.105427] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/10/2021] [Accepted: 06/16/2021] [Indexed: 02/09/2023] Open
Abstract
CGG expansions between 55 and 200 in the 5'-untranslated region of the fragile-X mental retardation gene (FMR1) increase the risk of developing the late-onset debilitating neuromuscular disease Fragile X-Associated Tremor/Ataxia Syndrome (FXTAS). While the science behind this mutation, as a paradigm for RNA-mediated nucleotide triplet repeat expansion diseases, has progressed rapidly, no treatment has proven effective at delaying the onset or decreasing morbidity, especially at later stages of the disease. Here, we demonstrated the beneficial effect of the phytochemical sulforaphane (SFN), exerted through NRF2-dependent and independent manner, on pathways relevant to brain function, bioenergetics, unfolded protein response, proteosome, antioxidant defenses, and iron metabolism in fibroblasts from FXTAS-affected subjects at all disease stages. This study paves the way for future clinical studies with SFN in the treatment of FXTAS, substantiated by the established use of this agent in clinical trials of diseases with NRF2 dysregulation and in which age is the leading risk factor.
Collapse
Affiliation(s)
- Eleonora Napoli
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616
| | - Amanda Flores
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616;,Department of Biochemistry, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico
| | - Yasmeen Mansuri
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616
| | - Randi J. Hagerman
- Department of Pediatrics, University of California Davis Medical Center, Sacramento, CA;,Medical Investigations of Neurodevelopmental Disorders (M.I.N.D.) Institute, University of California Davis, CA 95817
| | - Cecilia Giulivi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, United States of America; Medical Investigations of Neurodevelopmental Disorders (M.I.N.D.) Institute, University of California Davis, CA 95817, USA.
| |
Collapse
|
283
|
Forman HJ, Zhang H. Targeting oxidative stress in disease: promise and limitations of antioxidant therapy. Nat Rev Drug Discov 2021; 20:689-709. [PMID: 34194012 PMCID: PMC8243062 DOI: 10.1038/s41573-021-00233-1] [Citation(s) in RCA: 1339] [Impact Index Per Article: 334.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2021] [Indexed: 02/06/2023]
Abstract
Oxidative stress is a component of many diseases, including atherosclerosis, chronic obstructive pulmonary disease, Alzheimer disease and cancer. Although numerous small molecules evaluated as antioxidants have exhibited therapeutic potential in preclinical studies, clinical trial results have been disappointing. A greater understanding of the mechanisms through which antioxidants act and where and when they are effective may provide a rational approach that leads to greater pharmacological success. Here, we review the relationships between oxidative stress, redox signalling and disease, the mechanisms through which oxidative stress can contribute to pathology, how antioxidant defences work, what limits their effectiveness and how antioxidant defences can be increased through physiological signalling, dietary components and potential pharmaceutical intervention.
Collapse
Affiliation(s)
- Henry Jay Forman
- University of California Merced, Merced, CA, USA.
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.
| | - Hongqiao Zhang
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
284
|
Mok DZL, Chan CYY, Ooi EE, Chan KR. The effects of aging on host resistance and disease tolerance to SARS-CoV-2 infection. FEBS J 2021; 288:5055-5070. [PMID: 33124149 PMCID: PMC8518758 DOI: 10.1111/febs.15613] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/22/2020] [Accepted: 10/24/2020] [Indexed: 01/08/2023]
Abstract
The ongoing coronavirus disease 2019 (COVID-19) crisis caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has triggered a large-scale pandemic that is afflicting millions of individuals in over 200 countries. The clinical spectrum caused by SARS-CoV-2 infections can range from asymptomatic infection to mild undifferentiated febrile illness to severe respiratory disease with multiple complications. Elderly patients (aged 60 and above) with comorbidities such as cardiovascular diseases and diabetes mellitus appear to be at highest risk of a severe disease outcome. To protect against pulmonary immunopathology caused by SARS-CoV-2 infection, the host primarily depends on two distinct defense strategies: resistance and disease tolerance. Resistance is the ability of the host to suppress and eliminate incoming viruses. By contrast, disease tolerance refers to host responses that promote host health regardless of their impact on viral replication. Disruption of either resistance or disease tolerance mechanisms or both could underpin predisposition to elevated risk of severe disease during viral infection. Aging can disrupt host resistance and disease tolerance by compromising immune functions, weakening of the unfolded protein response, progressive mitochondrial dysfunction, and altering metabolic processes. A comprehensive understanding of the molecular mechanisms underlying declining host defense in elderly individuals could thus pave the way to provide new opportunities and approaches for the treatment of severe COVID-19.
Collapse
Affiliation(s)
- Darren Z. L. Mok
- Emerging Infectious Diseases ProgramDuke‐NUS Medical SchoolSingaporeSingapore
| | | | - Eng Eong Ooi
- Emerging Infectious Diseases ProgramDuke‐NUS Medical SchoolSingaporeSingapore
- Viral Research & Experimental Medicine Center @ SingHealth/Duke‐NUS (ViREMiCS)SingaporeSingapore
- Singapore‐MIT Alliance in Research and TechnologyAntimicrobial Resistance Interdisciplinary Research GroupSingaporeSingapore
- Saw Swee Hock School of Public HealthNational University of SingaporeSingapore
- Department of Microbiology and ImmunologyYong Loo Lin School of MedicineNational University of SingaporeSingapore
| | - Kuan Rong Chan
- Emerging Infectious Diseases ProgramDuke‐NUS Medical SchoolSingaporeSingapore
| |
Collapse
|
285
|
Yu H, Jiang X, Dong F, Zhang F, Ji X, Xue M, Yang F, Chen J, Hu X, Bao Z. Lipid accumulation-induced hepatocyte senescence regulates the activation of hepatic stellate cells through the Nrf2-antioxidant response element pathway. Exp Cell Res 2021; 405:112689. [PMID: 34107274 DOI: 10.1016/j.yexcr.2021.112689] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/12/2021] [Accepted: 06/03/2021] [Indexed: 12/12/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become the most prevalent chronic liver disease globally. Elderly individuals are at a higher risk of developing NAFLD with severe clinical outcomes. Although NAFLD is closely related to liver aging, the role of hepatocyte senescence in the progression of NAFLD, especially in the development of fibrosis, is still unclear. The early stage of NAFLD is mainly characterized by lipid accumulation in hepatocytes, which could lead to severe oxidative stress, causing cellular senescence. In the present study, hepatocytes cultured in the presence of free fatty acids to induce lipid deposition were used as a hepatocyte senescence model in vitro. Senescent hepatocytes significantly increased the activation of co-cultured primary hepatic stellate cells (HSCs) and the expression of pro-fibrosis molecules. Moreover, the antioxidant regulator nuclear factor erythroid 2-related factor 2 (Nrf2) that was upregulated in senescent hepatocytes was found to be related to the activation of co-cultured HSCs. The Nrf2 agonist sulforaphane, which upregulated the transcriptional activity of the Nrf2-antioxidant response element (ARE) pathway, remarkably inhibited hepatocyte senescence and its activation effect on HSCs. However, the liver tissue obtained from non-alcoholic steatohepatitis (NASH) mice with Nrf2 knockdown showed decreased antioxidation and significant liver senescence and fibrosis. In conclusion, this study confirmed that lipid accumulation induces hepatocyte senescence, which leads to HSC activation and development of hepatic fibrosis. Increasing the activity of the Nrf2-ARE antioxidant pathway in senescent hepatocytes elicited the opposite effect, suggesting that targeting Nrf2 may prevent or delay the progression of aging-related liver fibrosis in NASH.
Collapse
Affiliation(s)
- Huiyuan Yu
- Department of Gastroenterology, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China; Research Center on Aging and Medicine, Fudan University, Shanghai, China
| | - Xin Jiang
- Department of Gerontology, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China; Research Center on Aging and Medicine, Fudan University, Shanghai, China
| | - Fangyuan Dong
- Department of Gastroenterology, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China; Research Center on Aging and Medicine, Fudan University, Shanghai, China
| | - Fan Zhang
- Department of Gerontology, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China; Research Center on Aging and Medicine, Fudan University, Shanghai, China
| | - Xueying Ji
- Department of Gerontology, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China; Research Center on Aging and Medicine, Fudan University, Shanghai, China
| | - Mengjuan Xue
- Department of Gerontology, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China; Research Center on Aging and Medicine, Fudan University, Shanghai, China
| | - Fan Yang
- Department of Gerontology, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China; Research Center on Aging and Medicine, Fudan University, Shanghai, China
| | - Jie Chen
- Department of Gastroenterology, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China; Research Center on Aging and Medicine, Fudan University, Shanghai, China.
| | - Xiaona Hu
- Department of Gastroenterology, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai, China; Department of Gerontology, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China; Research Center on Aging and Medicine, Fudan University, Shanghai, China.
| | - Zhijun Bao
- Department of Gastroenterology, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai, China; Department of Gerontology, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China; Research Center on Aging and Medicine, Fudan University, Shanghai, China.
| |
Collapse
|
286
|
The Impact of Melatonin Supplementation and NLRP3 Inflammasome Deletion on Age-Accompanied Cardiac Damage. Antioxidants (Basel) 2021; 10:antiox10081269. [PMID: 34439517 PMCID: PMC8389221 DOI: 10.3390/antiox10081269] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/29/2021] [Accepted: 08/06/2021] [Indexed: 12/16/2022] Open
Abstract
To investigate the role of NLRP3 inflammasome in cardiac aging, we evaluate here morphological and ultrastructural age-related changes of cardiac muscles fibers in wild-type and NLRP3-knockout mice, as well as studying the beneficial effect of melatonin therapy. The results clarified the beginning of the cardiac sarcopenia at the age of 12 months, with hypertrophy of cardiac myocytes, increased expression of β-MHC, appearance of small necrotic fibers, decline of cadiomyocyte number, destruction of mitochondrial cristae, appearance of small-sized residual bodies, and increased apoptotic nuclei ratio. These changes were progressed in the cardiac myocytes of 24 old mice, accompanied by excessive collagen deposition, higher expressions of IL-1α, IL-6, and TNFα, complete mitochondrial vacuolation and damage, myofibrils disorganization, multivesicular bodies formation, and nuclear fragmentation. Interestingly, cardiac myocytes of NLRP3-/- mice showed less detectable age-related changes compared with WT mice. Oral melatonin therapy preserved the normal cardiomyocytes structure, restored cardiomyocytes number, and reduced β-MHC expression of cardiac hypertrophy. In addition, melatonin recovered mitochondrial architecture, reduced apoptosis and multivesicular bodies' formation, and decreased expressions of β-MHC, IL-1α, and IL-6. Fewer cardiac sarcopenic changes and highly remarkable protective effects of melatonin treatment detected in aged cardiomyocytes of NLRP3-/- mice compared with aged WT animals, confirming implication of the NLRP3 inflammasome in cardiac aging. Thus, NLRP3 suppression and melatonin therapy may be therapeutic approaches for age-related cardiac sarcopenia.
Collapse
|
287
|
Plasma redox and inflammatory patterns during major depressive episodes: a cross-sectional investigation in elderly patients with mood disorders. CNS Spectr 2021; 26:416-426. [PMID: 32423495 DOI: 10.1017/s1092852920001443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND While both depression and aging have been associated with oxidative stress and impaired immune response, little is known about redox patterns in elderly depressed subjects. This study investigates the relationship between redox/inflammatory patterns and depression in a sample of elderly adults. METHODS The plasma levels of the advanced products of protein oxidation (AOPP), catalase (CAT), ferric reducing antioxidant power (FRAP), glutathione transferase (GST), interleukin 6 (IL-6), superoxide dismutase (SOD), total thiols (TT), and uric acid (UA) were evaluated in 30 patients with mood disorders with a current depressive episode (depressed patients, DP) as well as in 30 healthy controls (HC) aged 65 years and over. Subjects were assessed with the Hamilton Depression Rating Scale (HAM-D), the Hamilton Rating Scale for Anxiety (HAM-A), the Geriatric Depression Rating Scale (GDS), the Scale for Suicide Ideation (SSI), the Reason for Living Inventory (RFL), the Activities of Daily Living (ADL), and the Instrumental Activity of Daily Living (IADL). RESULTS DP showed higher levels than HC of AOPP and IL-6, while displaying lower levels of FRAP, TT, and CAT. In the DP group, specific correlations were found among biochemical parameters. SOD, FRAP, UA, and TT levels were also significantly related to psychometric scale scores. CONCLUSION Specific alterations of redox systems are detectable among elderly DP.
Collapse
|
288
|
do Prado CCA, Queiroz LG, da Silva FT, de Paiva TCB. Ecotoxicological effect of ketoconazole on the antioxidant system of Daphnia similis. Comp Biochem Physiol C Toxicol Pharmacol 2021; 246:109080. [PMID: 34015536 DOI: 10.1016/j.cbpc.2021.109080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/29/2021] [Accepted: 05/13/2021] [Indexed: 11/24/2022]
Abstract
The occurrence of emerging pharmaceutical pollutants (i.e. small drugs, antibiotics) present in aquatic environments shown to be a current environmental problem still without apparent solution. In this regard, the use of ecotoxicological techniques has been shown fundamental for the appraisal of damage to affected living organisms. Herein, ecotoxicological tests were conducted, focusing on the evaluation of the effects of ketoconazole (KTZ) on the antioxidant system of the model body Daphnia similis. In order to study the biochemical changes caused by KTZ in the antioxidant system, the enzymatic biomarkers glutathione S-transferase (GST), catalase (CAT), and ascorbate peroxidase (APX) were monitored. Toxicological tests were conducted using KTZ concentrations (0-10 μg·L-1). Prolonged exposure to KTZ (336 h) caused changes upon the expression of antioxidant enzymes and simultaneously affected the reproductive system in those organisms. Moreover, a decrease in GST and APX activity was observed caused by KTZ exposure, respectively 79.2% (3.53 μmol min-1 mg-1 protein) and 24.4% (0.88 μmol min-1 mg-1 protein). On the other hand, it was observed an increase of 27% (0.17 μmol min-1 mg-1 protein) in CAT activity. Through this study, it was possible to observe the toxicological effects of KTZ, which proves its action as an oxidative stress-inducing agent and endocrine modifier in daphnids organisms.
Collapse
Affiliation(s)
- Caio César Achiles do Prado
- Engineering School of Lorena, University of Sao Paulo, Department of Biotechnology, Lorena 12602-810, Brazil.
| | - Lucas Gonçalves Queiroz
- Engineering School of Lorena, University of Sao Paulo, Department of Biotechnology, Lorena 12602-810, Brazil.
| | - Flávio Teixeira da Silva
- Engineering School of Lorena, University of Sao Paulo, Department of Biotechnology, Lorena 12602-810, Brazil.
| | - Teresa Cristina Brazil de Paiva
- Engineering School of Lorena, University de Sao Paulo, Department of Basic and Environmental Sciences, Lorena 12602-810, Brazil.
| |
Collapse
|
289
|
Emanuele S, Celesia A, D’Anneo A, Lauricella M, Carlisi D, De Blasio A, Giuliano M. The Good and Bad of Nrf2: An Update in Cancer and New Perspectives in COVID-19. Int J Mol Sci 2021; 22:7963. [PMID: 34360732 PMCID: PMC8348506 DOI: 10.3390/ijms22157963] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 01/08/2023] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a well-known transcription factor best recognised as one of the main regulators of the oxidative stress response. Beyond playing a crucial role in cell defence by transactivating cytoprotective genes encoding antioxidant and detoxifying enzymes, Nrf2 is also implicated in a wide network regulating anti-inflammatory response and metabolic reprogramming. Such a broad spectrum of actions renders the factor a key regulator of cell fate and a strategic player in the control of cell transformation and response to viral infections. The Nrf2 protective roles in normal cells account for its anti-tumour and anti-viral functions. However, Nrf2 overstimulation often occurs in tumour cells and a complex correlation of Nrf2 with cancer initiation and progression has been widely described. Therefore, if on one hand, Nrf2 has a dual role in cancer, on the other hand, the factor seems to display a univocal function in preventing inflammation and cytokine storm that occur under viral infections, specifically in coronavirus disease 19 (COVID-19). In such a variegate context, the present review aims to dissect the roles of Nrf2 in both cancer and COVID-19, two widespread diseases that represent a cause of major concern today. In particular, the review describes the molecular aspects of Nrf2 signalling in both pathological situations and the most recent findings about the advantages of Nrf2 inhibition or activation as possible strategies for cancer and COVID-19 treatment respectively.
Collapse
Affiliation(s)
- Sonia Emanuele
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, Via del Vespro 129, 90127 Palermo, Italy; (A.C.); (M.L.); (D.C.)
| | - Adriana Celesia
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, Via del Vespro 129, 90127 Palermo, Italy; (A.C.); (M.L.); (D.C.)
| | - Antonella D’Anneo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Biochemistry Building, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy; (A.D.); (A.D.B.); (M.G.)
| | - Marianna Lauricella
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, Via del Vespro 129, 90127 Palermo, Italy; (A.C.); (M.L.); (D.C.)
| | - Daniela Carlisi
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, Via del Vespro 129, 90127 Palermo, Italy; (A.C.); (M.L.); (D.C.)
| | - Anna De Blasio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Biochemistry Building, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy; (A.D.); (A.D.B.); (M.G.)
| | - Michela Giuliano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Biochemistry Building, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy; (A.D.); (A.D.B.); (M.G.)
| |
Collapse
|
290
|
Li YC, Zheng J, Wang XZ, Wang X, Liu WJ, Gao JL. Mesenchymal stem cell-derived exosomes protect trabecular meshwork from oxidative stress. Sci Rep 2021; 11:14863. [PMID: 34290351 PMCID: PMC8295363 DOI: 10.1038/s41598-021-94365-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 07/09/2021] [Indexed: 12/22/2022] Open
Abstract
This study aims to investigate the beneficial effects of exosomes derived from bone marrow mesenchymal stem cells (BMSCs) on trabecular meshwork cells under oxidative stress and predict candidate genes associated with this process. Trabecular meshwork cells were pretreated with BMSC-derived exosomes for 24 h, and exposed to 0.1 mM H2O2 for 6 h. Survival rate of trabecular meshwork cells was measured with CCK-8 assay. Production of intracellular reactive oxygen species (iROS) was measured using a flow cytometer. RT-PCR and ELISA were used to detect mRNA and protein levels of inflammatory cytokines and matrix metalloproteinases (MMPs). Sequencing of RNA and miRNA for trabecular meshwork cells from Exo and control groups was performed on BGISEQ500 platform. Phenotypically, pretreatment of BMSC-derived exosomes improves survival rate of trabecular meshwork cells exposed to H2O2, reduces production of iROS, and inhibits expression of inflammatory cytokines, whereas increases expression of MMPs. There were 23 miRNAs, 307 lncRNAs, and 367 mRNAs differentially expressed between Exo and control groups. Exosomes derived from BMSCs may protect trabecular meshwork cells from oxidative stress. Candidate genes responsible for beneficial effects, such as DIO2 and HMOX1, were predicted.
Collapse
Affiliation(s)
- Ying-Chao Li
- Department of Ophthalmology, Liaocheng People's Hospital, Cheeloo College of Medicine, Shandong University, Liaocheng, 252000, Shandong, China
- Department of Ophthalmology, Taian City Central Hospital, Taian, 271000, Shandong, China
| | - Juan Zheng
- Joint Laboratory for Translational Medicine Research, Beijing Institute of Genomics, Chinese Academy of Sciences & Liaocheng People's Hospital, Liaocheng, 252000, Shandong, China
| | - Xi-Zi Wang
- Joint Laboratory for Translational Medicine Research, Beijing Institute of Genomics, Chinese Academy of Sciences & Liaocheng People's Hospital, Liaocheng, 252000, Shandong, China
| | - Xin Wang
- Department of Ophthalmology, Liaocheng People's Hospital, Liaocheng, 252000, Shandong, China
| | - Wen-Jing Liu
- Department of Ophthalmology, Taian City Central Hospital, Taian, 271000, Shandong, China
| | - Jian-Lu Gao
- Department of Ophthalmology, Liaocheng People's Hospital, Cheeloo College of Medicine, Shandong University, Liaocheng, 252000, Shandong, China.
- Department of Ophthalmology, Liaocheng People's Hospital, Liaocheng, 252000, Shandong, China.
| |
Collapse
|
291
|
Saito Y, Kimura W. Roles of Phase Separation for Cellular Redox Maintenance. Front Genet 2021; 12:691946. [PMID: 34306032 PMCID: PMC8299301 DOI: 10.3389/fgene.2021.691946] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/04/2021] [Indexed: 12/12/2022] Open
Abstract
The oxidation reaction greatly alters characteristics of various cellular components. In exchange for efficient energy production, mitochondrial aerobic respiration substantially increases the risk of excess oxidation of cellular biomolecules such as lipids, proteins, nucleic acids, and numerous small molecules. To maintain a physiologically balanced cellular reduction-oxidation (redox) state, cells utilize a variety of molecular machineries including cellular antioxidants and protein degradation complexes such as the ubiquitin-proteasome system or autophagy. In the past decade, biomolecular liquid-liquid phase separation (LLPS) has emerged as a subject of great interest in the biomedical field, as it plays versatile roles in the maintenance of cellular homeostasis. With regard to redox homeostasis, LLPS arose as a major player in both well-characterized and newly emerging redox pathways. LLPS is involved in direct redox imbalance sensing, signal transduction, and transcriptional regulation. Also, LLPS is at play when cells resist redox imbalance through metabolic switching, translational remodeling, activating the DNA damage response, and segregation of vulnerable lipids and proteins. On the other hand, chronic accumulation of phase-separated molecular condensates such as lipid droplets and amyloid causes neurotoxic outcomes. In this review we enumerate recent progress on understanding how cells utilize LLPS to deal with oxidative stress, especially related to cell survival or pathogenesis, and we discuss future research directions for understanding biological phase separation in cellular redox regulation.
Collapse
Affiliation(s)
| | - Wataru Kimura
- Laboratory for Heart Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| |
Collapse
|
292
|
Zheng YH, Yang JJ, Tang PJ, Zhu Y, Chen Z, She C, Chen G, Cao P, Xu XY. A novel Keap1 inhibitor iKeap1 activates Nrf2 signaling and ameliorates hydrogen peroxide-induced oxidative injury and apoptosis in osteoblasts. Cell Death Dis 2021; 12:679. [PMID: 34226516 PMCID: PMC8257690 DOI: 10.1038/s41419-021-03962-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/16/2021] [Accepted: 06/22/2021] [Indexed: 02/08/2023]
Abstract
An ultra-large structure-based virtual screening has discovered iKeap1 as a direct Keap1 inhibitor that can efficiently activate Nrf2 signaling. We here tested its potential effect against hydrogen peroxide (H2O2)-induced oxidative injury in osteoblasts. In primary murine and human osteoblasts, iKeap1 robustly activated Nrf2 signaling at micromole concentrations. iKeap1 disrupted Keap1-Nrf2 association, causing Nrf2 protein stabilization, cytosol accumulation and nuclear translocation in murine and human osteoblasts. The anti-oxidant response elements (ARE) activity and transcription of Nrf2-ARE-dependent genes (including HO1, NQO1 and GCLC) were increased as well. Significantly, iKeap1 pretreatment largely ameliorated H2O2-induced reactive oxygen species production, lipid peroxidation and DNA damage as well as cell apoptosis and programmed necrosis in osteoblasts. Moreover, dexamethasone- and nicotine-induced oxidative injury and apoptosis were alleviated by iKeap1. Importantly, Nrf2 shRNA or CRISPR/Cas9-induced Nrf2 knockout completely abolished iKeap1-induced osteoblast cytoprotection against H2O2. Conversely, CRISPR/Cas9-induced Keap1 knockout induced Nrf2 cascade activation and mimicked iKeap1-induced cytoprotective actions in murine osteoblasts. iKeap1 was ineffective against H2O2 in the Keap1-knockout murine osteoblasts. Collectively, iKeap1 activated Nrf2 signaling cascade to inhibit H2O2-induced oxidative injury and death of osteoblasts.
Collapse
Affiliation(s)
- Yue-huan Zheng
- grid.16821.3c0000 0004 0368 8293Department of Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian-jun Yang
- grid.412538.90000 0004 0527 0050Department of Orthopedics, Tenth People’s Hospital of Tongji University, Shanghai, China
| | - Pei-jun Tang
- grid.490559.4Department of Pulmonary, The Affiliated Infectious Diseases Hospital of Soochow University, The Fifth People’s Hospital of Suzhou, Suzhou, China
| | - Yuan Zhu
- grid.16821.3c0000 0004 0368 8293Department of Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhe Chen
- grid.16821.3c0000 0004 0368 8293Department of Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chang She
- grid.452666.50000 0004 1762 8363Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Gang Chen
- grid.16821.3c0000 0004 0368 8293Department of Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng Cao
- grid.16821.3c0000 0004 0368 8293Department of Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiang-yang Xu
- grid.16821.3c0000 0004 0368 8293Department of Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
293
|
Zhu Z, Zheng Z, Liu J. Comparison of COVID-19 and Lung Cancer via Reactive Oxygen Species Signaling. Front Oncol 2021; 11:708263. [PMID: 34277453 PMCID: PMC8283805 DOI: 10.3389/fonc.2021.708263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/10/2021] [Indexed: 12/17/2022] Open
Abstract
COVID-19 and lung cancer are two severe pulmonary diseases that cause millions of deaths globally each year. Understanding the dysregulated signaling pathways between them can benefit treating the related patients. Recent studies suggest the critical role of reactive oxygen species (ROS) in both diseases, indicating an interplay between them. Here we reviewed references showing that ROS and ROS-associated signaling pathways, specifically via NRF2, HIF-1, and Nf-κB pathways, may bridge mutual impact between COVID-19 and lung cancer. As expected, typical ROS-associated inflammation pathways (HIF-1 and Nf-κB) are activated in both diseases. The activation of both pathways in immune cells leads to an overloading immune response and exacerbates inflammation in COVID-19. In lung cancer, HIF-1 activation facilitates immune escape, while Nf-κB activation in T cells suppresses tumor growth. However, the altered NRF2 pathway show opposite trends between them, NRF2 pathways exert immunosuppressive effects in both diseases, as it represses the immune response in COVID-19 patients while facilitates the immune escape of tumor cells. Furthermore, we summarized the therapeutic targets (e.g., phytochemicals) on these ROS pathways. In sum, our review focus on the understanding of ROS Signaling in COVID-19 and lung cancer, showing that modulating ROS signaling pathways may alleviate the potentially mutual impacts between COVID-19 and lung cancer patients.
Collapse
Affiliation(s)
- Zilan Zhu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Ziyi Zheng
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Jian Liu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining, China
| |
Collapse
|
294
|
Timóteo-Ferreira F, Abreu D, Mendes S, Matos L, Rodrigues A, Almeida H, Silva E. Redox imbalance in age-related ovarian dysfunction and perspectives for its prevention. Ageing Res Rev 2021; 68:101345. [PMID: 33894395 DOI: 10.1016/j.arr.2021.101345] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/07/2021] [Accepted: 04/16/2021] [Indexed: 12/17/2022]
Abstract
The age at which women have their first child is increasing. This change represents a major health problem to society because advanced maternal age is related with a decay in fertility and an increase in the incidence of a variety of pregnancy complications and offspring health issues. The ovary stands as the main contributor for female reproductive ageing because of the progressive age-related decrease in follicle number and oocyte quality. Loss of redox homeostasis and establishment of an ovarian oxidative microenvironment are seen as major underlying causes for such downfall and impairment of ovarian function. Thus, the use of antioxidants to preserve fertility became an important field of research. In this review, new insights on mechanisms underlying the establishment of oxidative stress and its repercussions on ovarian ageing are addressed, along with the current state of knowledge on antioxidant supplementation and its contribution for healthy ageing and extension of ovarian lifespan.
Collapse
|
295
|
Yu C, Chen H, Du D, Lv W, Li S, Li D, Xu Z, Gao M, Hu H, Liu D. β-Glucan from Saccharomyces cerevisiae alleviates oxidative stress in LPS-stimulated RAW264.7 cells via Dectin-1/Nrf2/HO-1 signaling pathway. Cell Stress Chaperones 2021; 26:629-637. [PMID: 33880723 PMCID: PMC8275741 DOI: 10.1007/s12192-021-01205-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
β-Glucan from Saccharomyces cerevisiae has been described to be effective antioxidants, but the specific antioxidation mechanism of β-glucan is unclear. The objectives of this research were to determine whether the β-glucan from Saccharomyces cerevisiae could regulate oxidative stress through the Dectin-1/Nrf2/HO-1 signaling pathway in lipopolysaccharides (LPS)-stimulated RAW264.7 cells. In this study, we examined the effects of β-glucan on the enzyme activity or production of oxidative stress indicators in LPS-stimulated RAW264.7 cells by biochemical analysis and the protein expression of key factors of Dectin-1/Nrf2/HO-1 signaling pathway by immunofluorescence and western blot. The biochemical analysis results showed that β-glucan increased the LPS-induced downregulation of enzyme activity of intracellular heme oxygenase (HO), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) while decreasing the production of reactive oxygen species (ROS) and malondialdehyde (MDA). Furthermore, immunofluorescence results showed that β-glucan can activate the nuclear factor erythroid 2-related factor 2 (Nrf2). The antioxidant mechanism study indicated that β-glucan activated dendritic-cell-associated C-type lectin 1 (Dectin-1) receptors mediated Nrf2/HO-1 signaling pathway, thereby downregulating the production of ROS and thus produced the antioxidant effects in LPS-stimulated RAW 264.7 cells. In conclusion, these results indicate that β-glucan potently alleviated oxidative stress via Dectin-1/Nrf2/HO-1 in LPS-stimulated RAW 264.7 cells.
Collapse
Affiliation(s)
- Chunwei Yu
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Hui Chen
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Donghua Du
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Wenting Lv
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Songjian Li
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Dongfang Li
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Zixuan Xu
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Min Gao
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, 010018, China
| | - Honglian Hu
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, 010018, China
| | - Dacheng Liu
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, China.
| |
Collapse
|
296
|
Ni X, Wang Z, Gao D, Yuan H, Sun L, Zhu X, Zhou Q, Yang Z. A description of the relationship in healthy longevity and aging-related disease: from gene to protein. Immun Ageing 2021; 18:30. [PMID: 34172062 PMCID: PMC8229348 DOI: 10.1186/s12979-021-00241-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/14/2021] [Indexed: 11/22/2022]
Abstract
Human longevity is a complex phenotype influenced by both genetic and environmental factors. It is also known to be associated with various types of age-related diseases, such as Alzheimer's disease (AD) and cardiovascular disease (CVD). The central dogma of molecular biology demonstrates the conversion of DNA to RNA to the encoded protein. These proteins interact to form complex cell signaling pathways, which perform various biological functions. With prolonged exposure to the environment, the in vivo homeostasis adapts to the changes, and finally, humans adopt the phenotype of longevity or aging-related diseases. In this review, we focus on two different states: longevity and aging-related diseases, including CVD and AD, to discuss the relationship between genetic characteristics, including gene variation, the level of gene expression, regulation of gene expression, the level of protein expression, both genetic and environmental influences and homeostasis based on these phenotypes shown in organisms.
Collapse
Affiliation(s)
- Xiaolin Ni
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, P.R. China
- Graduate School of Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100001, P.R. China
| | - Zhaoping Wang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, P.R. China
| | - Danni Gao
- Peking University Fifth School of Clinical Medicine, Beijing Hospital, Beijing, P.R. China
| | - Huiping Yuan
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, P.R. China
| | - Liang Sun
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, P.R. China
| | - Xiaoquan Zhu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, P.R. China
| | - Qi Zhou
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, P.R. China
| | - Ze Yang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, P.R. China.
- Graduate School of Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100001, P.R. China.
| |
Collapse
|
297
|
Eroglu B, Genova E, Zhang Q, Su Y, Shi X, Isales C, Eroglu A. Photobiomodulation has rejuvenating effects on aged bone marrow mesenchymal stem cells. Sci Rep 2021; 11:13067. [PMID: 34158600 PMCID: PMC8219765 DOI: 10.1038/s41598-021-92584-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 06/08/2021] [Indexed: 01/06/2023] Open
Abstract
The plasticity and proliferative capacity of stem cells decrease with aging, compromising their tissue regenerative potential and therapeutic applications. This decline is directly linked to mitochondrial dysfunction. Here, we present an effective strategy to reverse aging of mouse bone marrow mesenchymal stem cells (BM-MSCs) by restoring their mitochondrial functionality using photobiomodulation (PBM) therapy. Following the characterization of young and aged MSCs, our results show that a near-infrared PBM treatment delivering 3 J/cm2 is the most effective modality for improving mitochondrial functionality and aging markers. Furthermore, our results unveil that young and aged MSCs respond differently to the same modality of PBM: whereas the beneficial effect of a single PBM treatment dissipates within 7 h in aged stem cells, it is lasting in young ones. Nevertheless, by applying three consecutive treatments at 24-h intervals, we were able to obtain a lasting rejuvenating effect on aged MSCs. Our findings are of particular significance for improving autologous stem cell transplantation in older individuals who need such therapies most.
Collapse
Affiliation(s)
- Binnur Eroglu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, CA-2004, Augusta, GA, 30912, USA
| | - Evan Genova
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, CA-2004, Augusta, GA, 30912, USA
| | - Quanguang Zhang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, CA-2004, Augusta, GA, 30912, USA
| | - Yun Su
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, CA-2004, Augusta, GA, 30912, USA
| | - Xingming Shi
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, CA-2004, Augusta, GA, 30912, USA
| | - Carlos Isales
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, CA-2004, Augusta, GA, 30912, USA
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Ali Eroglu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, CA-2004, Augusta, GA, 30912, USA.
- Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
298
|
Dodson M, Anandhan A, Zhang DD, Madhavan L. An NRF2 Perspective on Stem Cells and Ageing. FRONTIERS IN AGING 2021; 2:690686. [PMID: 36213179 PMCID: PMC9536878 DOI: 10.3389/fragi.2021.690686] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/03/2021] [Indexed: 04/24/2023]
Abstract
Redox and metabolic mechanisms lie at the heart of stem cell survival and regenerative activity. NRF2 is a major transcriptional controller of cellular redox and metabolic homeostasis, which has also been implicated in ageing and lifespan regulation. However, NRF2's role in stem cells and their functioning with age is only just emerging. Here, focusing mainly on neural stem cells, which are core to adult brain plasticity and function, we review recent findings that identify NRF2 as a fundamental player in stem cell biology and ageing. We also discuss NRF2-based molecular programs that may govern stem cell state and function with age, and implications of this for age-related pathologies.
Collapse
Affiliation(s)
- Matthew Dodson
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, United States
| | - Annadurai Anandhan
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, United States
- Department of Neurology, University of Arizona, Tucson, AZ, United States
| | - Donna D. Zhang
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, United States
| | - Lalitha Madhavan
- Department of Neurology, University of Arizona, Tucson, AZ, United States
- Evelyn F. McKnight Brain Institute and Bio5 Institute, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
299
|
Nutritional quality variation in dried Pacific Oyster ( Crassostrea gigas) using hybrid-pump dryer under different heating treatment. Food Sci Biotechnol 2021; 30:643-652. [PMID: 34123461 DOI: 10.1007/s10068-021-00907-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 03/11/2021] [Accepted: 03/23/2021] [Indexed: 01/07/2023] Open
Abstract
This study explored the potential of using hybrid pump dryer (HPD) to utilize overproduction in aquaculture of oysters, especially during winter. HPD-dried oysters maybe used as amendments for kimchi, a traditional Korean side dish, for possible nutrient source and flavor enhancer. Oysters were subjected to different heating treatments and evaluated for proximate composition, quality characteristics, and antioxidant activities. Lower lipid and higher glycogen content were observed in HPD-dried oysters processed than the samples dried with hot air (HAD). HPD-dried oysters also exhibited lesser browning activity, better surface color, and higher antioxidant activities. Ash, protein, and water activity were slightly affected by heating treatment. VBN and TBARS were found to be higher in HAD-dried oysters, indicating faster spoilage. Applying heat pattern in drying resulted to improved quality characteristics and antioxidant activities and slower degradation of dried oyster products compared to their single-temperature-drying counterparts, especially those dried at high temperatures.
Collapse
|
300
|
Ou C, Jiang P, Tian Y, Yao Z, Yang Y, Peng J, Zeng M, Song H, Peng Q. Fructus Lycii and Salvia miltiorrhiza Bunge extract alleviate retinitis pigmentosa through Nrf2/HO-1 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2021; 273:113993. [PMID: 33684515 DOI: 10.1016/j.jep.2021.113993] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/26/2021] [Accepted: 02/27/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fructus Lycii and Salvia miltiorrhiza Bunge (FS) are popular Chinese herbs for the treatment of retinitis pigmentosa (RP). AIM OF THE STUDY This study was to evaluate protective effects of FS extract on RP and to explore whether FS extract exerts its protective effects via oxidative stress by regulating Nrf2/HO-1 signaling pathway. MATERIAL AND METHODS FS extract were identified by UPLC chromatographic analysis. Rd10 mice as the model of RP, followed by a 4-week FS extract treatment by intragastric administration. After the animal sacrifice, histopathological examination and Scotopic electroretinography (ERG) analysis were assessed. The oxidative stress markers were determined and the expression levels of Nrf2 and HO-1 mRNA were evaluated by qRT-PCR. The expression and distribution of Nrf2 and HO-1 protein were determined by Western blot and immunohistochemistry. RESULTS The morphological changes of Outer nuclear layer (ONL) thickness and number of the ONL were observed with a significant increased, and the functional changes of a-amplitude and b-wave amplitude were measured with a markedly increased. Treatment with FS extract remarkably increased levels of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), and decreased level of malondialdehyde (MDA). Moreover, FS extract up-regulated mRNA and protein expression of Nrf2 and HO-1. CONCLUSIONS This study indicated that FS extract can improve retinal morphology and function, which may have occurred through the regulation of the Nrf2/HO-1 pathway to inhibit the oxidative reaction.
Collapse
Affiliation(s)
- Chen Ou
- Hunan Provincial Key Laboratory for the Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China; Hunan Provincial Key Laboratory of Diagnostic Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| | - Pengfei Jiang
- Hunan Provincial Key Laboratory for the Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China; Hunan Provincial Key Laboratory of Diagnostic Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| | - Ye Tian
- Hunan Provincial Key Laboratory for the Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| | - Zhen Yao
- Hunan Provincial Key Laboratory for the Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| | - Yijing Yang
- Hunan Provincial Key Laboratory for the Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| | - Jun Peng
- Department of Ophthalmology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, China.
| | - Meiyan Zeng
- Hunan Provincial Key Laboratory of Diagnostic Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| | - Houpan Song
- Hunan Provincial Key Laboratory for the Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China; Hunan Provincial Key Laboratory of Diagnostic Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| | - Qinghua Peng
- Hunan Provincial Key Laboratory for the Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China; Department of Ophthalmology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, China; Hunan Provincial Key Laboratory of Diagnostic Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| |
Collapse
|