251
|
Meier-Stephenson V, Mrozowich T, Pham M, Patel TR. DEAD-box helicases: the Yin and Yang roles in viral infections. Biotechnol Genet Eng Rev 2018; 34:3-32. [PMID: 29742983 DOI: 10.1080/02648725.2018.1467146] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Viruses hijack the host cell machinery and recruit host proteins to aid their replication. Several host proteins also play vital roles in inhibiting viral replication. Emerging class of host proteins central to both of these processes are the DEAD-box helicases: a highly conserved family of ATP-dependent RNA helicases, bearing a common D-E-A-D (Asp-Glu-Ala-Asp) motif. They play key roles in numerous cellular processes, including transcription, splicing, miRNA biogenesis and translation. Though their sequences are highly conserved, these helicases have quite diverse roles in the cell. Interestingly, often these helicases display contradictory actions in terms of the support and/or clearance of invading viruses. Increasing evidence highlights the importance of these enzymes, however, little is known about the structural basis of viral RNA recognition by the members of the DEAD-box family. This review summarizes the current knowledge in the field for selected DEAD-box helicases and highlights their diverse actions upon viral invasion of the host cell. We anticipate that through a better understanding of how these helicases are being utilized by viral RNAs and proteins to aid viral replication, it will be possible to address the urgent need to develop novel therapeutic approaches to combat viral infections.
Collapse
Affiliation(s)
- Vanessa Meier-Stephenson
- a Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute , University of Lethbridge , Lethbridge , Canada.,b Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine , University of Calgary , Calgary , Canada
| | - Tyler Mrozowich
- a Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute , University of Lethbridge , Lethbridge , Canada
| | - Mimi Pham
- a Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute , University of Lethbridge , Lethbridge , Canada
| | - Trushar R Patel
- a Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute , University of Lethbridge , Lethbridge , Canada.,b Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine , University of Calgary , Calgary , Canada.,c Faculty of Medicine & Dentistry, DiscoveryLab , University of Alberta , Edmonton , Canada
| |
Collapse
|
252
|
Ross EM, Maxwell PH. Low doses of DNA damaging agents extend Saccharomyces cerevisiae chronological lifespan by promoting entry into quiescence. Exp Gerontol 2018; 108:189-200. [PMID: 29705357 PMCID: PMC5994204 DOI: 10.1016/j.exger.2018.04.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 04/13/2018] [Accepted: 04/26/2018] [Indexed: 01/08/2023]
Abstract
A variety of mild stresses have been shown to extend lifespan in diverse species through hormesis, which is a beneficial response to a stress or toxin that would cause a negative response at a higher exposure. Whether particular stresses induce hormesis can vary with genotype for a given species, and the underlying mechanisms of lifespan extension are only partly understood in most cases. We show that low doses of the DNA damaging or replication stress agents hydroxyurea, methyl methanesulfonate, 4-nitroquinoline 1-oxide, or Zeocin (a phleomycin derivative) lengthened chronological lifespan in Saccharomyces cerevisiae if cells were exposed during growth, but not if they were exposed during stationary phase. Treatment with these agents did not change mitochondrial activity, increase resistance to acetic acid, ethanol, or heat stress, and three of four treatments did not increase resistance to hydrogen peroxide. Stationary phase yeast populations consist of both quiescent and nonquiescent cells, and all four treatments increased the proportion of quiescent cells. Several mutant strains with deletions in genes that influence quiescence prevented Zeocin treatment from extending lifespan and from increasing the proportion of quiescent stationary phase cells. These data indicate that mild DNA damage stress can extend lifespan by promoting quiescence in the absence of mitohormesis or improved general stress responses that have been frequently associated with improved longevity in other cases of hormesis. Further study of the underlying mechanism may yield new insights into quiescence regulation that will be relevant to healthy aging.
Collapse
Affiliation(s)
- Emily M Ross
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Patrick H Maxwell
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA; Wadsworth Center, New York State Department of Health, Albany, NY, USA.
| |
Collapse
|
253
|
Santos CMBD, Ludwig A, Kessler RL, Rampazzo RDCP, Inoue AH, Krieger MA, Pavoni DP, Probst CM. Trypanosoma cruzi transcriptome during axenic epimastigote growth curve. Mem Inst Oswaldo Cruz 2018; 113:e170404. [PMID: 29668769 PMCID: PMC5907844 DOI: 10.1590/0074-02760170404] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/29/2018] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Trypanosoma cruzi is an important protozoan parasite and the causative agent of Chagas disease. A critical step in understanding T. cruzi biology is the study of cellular and molecular features exhibited during its growth curve. OBJECTIVES We aimed to acquire a global view of the gene expression profile of T. cruzi during epimastigote growth. METHODS RNA-Seq analysis of total and polysomal/granular RNA fractions was performed along the 10 days T. cruzi epimastigote growth curve in vitro, in addition to cell viability and cell cycle analyses. We also analysed the polysome profile and investigated the presence of granular RNA by FISH and western blotting. FINDINGS We identified 1082 differentially expressed genes (DEGs), of which 220 were modulated in both fractions. According to the modulation pattern, DEGs were grouped into 12 clusters and showed enrichment of important gene ontology (GO) terms. Moreover, we showed that by the sixth day of the growth curve, polysomal content declined greatly and the RNA granules content appeared to increase, suggesting that a portion of mRNAs isolated from the sucrose gradient during late growth stages was associated with RNA granules and not only polyribosomes. Furthermore, we discuss several modulated genes possibly involved in T. cruzi growth, mainly during the stationary phase, such as genes related to cell cycle, pathogenesis, metabolic processes and RNA-binding proteins.
Collapse
Affiliation(s)
| | - Adriana Ludwig
- Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba, PR, Brasil
| | | | | | | | | | | | | |
Collapse
|
254
|
Classification of heterogeneous genetic variations of microRNA regulome in cancer. Cancer Lett 2018; 419:128-138. [DOI: 10.1016/j.canlet.2018.01.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/30/2017] [Accepted: 01/09/2018] [Indexed: 12/12/2022]
|
255
|
Berry J, Brangwynne CP, Haataja M. Physical principles of intracellular organization via active and passive phase transitions. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2018; 81:046601. [PMID: 29313527 DOI: 10.1088/1361-6633/aaa61e] [Citation(s) in RCA: 284] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Exciting recent developments suggest that phase transitions represent an important and ubiquitous mechanism underlying intracellular organization. We describe key experimental findings in this area of study, as well as the application of classical theoretical approaches for quantitatively understanding these data. We also discuss the way in which equilibrium thermodynamic driving forces may interface with the fundamentally out-of-equilibrium nature of living cells. In particular, time and/or space-dependent concentration profiles may modulate the phase behavior of biomolecules in living cells. We suggest future directions for both theoretical and experimental work that will shed light on the way in which biological activity modulates the assembly, properties, and function of viscoelastic states of living matter.
Collapse
Affiliation(s)
- Joel Berry
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, United States of America. Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | | | | |
Collapse
|
256
|
Jiang D, Zou X, Zhang C, Chen J, Li Z, Wang Y, Deng Z, Wang L, Chen S. Gemin5 plays a role in unassembled-U1 snRNA disposal in SMN-deficient cells. FEBS Lett 2018; 592:1400-1411. [PMID: 29537490 DOI: 10.1002/1873-3468.13031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/04/2018] [Accepted: 03/05/2018] [Indexed: 11/07/2022]
Abstract
Gemin5 acts as a U1 small nuclear RNA (snRNA)-binding protein in U1 small nuclear ribonucleic protein (snRNP) biogenesis. Here, we report a role for Gemin5 in unassembled U1 snRNP disposal under survival of motor neuron (SMN) protein-deficient conditions. We demonstrate that non-Sm protein-associated U1 snRNA and U1A are enriched in cytoplasmic granules and colocalize to P bodies in SMN-deficient cells. Immunoprecipitation assays show increased associations of the U1 snRNP component U1A with P body components and Gemin5 in SMN-deficient cells. More importantly, Gemin5 knockdown eliminates the unassembled U1 snRNP granules and rescues U1 snRNA levels in SMN-deficient cells. Taken together, our study provides direct evidence that Gemin5 is involved in unassembled-U1 snRNA disposal under conditions of SMN deficiency.
Collapse
Affiliation(s)
- Dongxu Jiang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, and Brain Center, Zhongnan Hospital, Wuhan University, China
- Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Xuan Zou
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, and Brain Center, Zhongnan Hospital, Wuhan University, China
| | - Cheng Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, and Brain Center, Zhongnan Hospital, Wuhan University, China
| | - Jincao Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, and Brain Center, Zhongnan Hospital, Wuhan University, China
| | - Zhiqiang Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, and Brain Center, Zhongnan Hospital, Wuhan University, China
| | - Yunfu Wang
- Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, and Brain Center, Zhongnan Hospital, Wuhan University, China
| | - Liangrong Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, and Brain Center, Zhongnan Hospital, Wuhan University, China
| | - Shi Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, and Brain Center, Zhongnan Hospital, Wuhan University, China
| |
Collapse
|
257
|
Li Q, Yang H, He L, Wang Q. Characterization of the Es -DDX52 involved in the spermatogonial mitosis and spermatid differentiation in Chinese mitten crab ( Eriocheir sinensis ). Gene 2018; 646:106-119. [DOI: 10.1016/j.gene.2017.12.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 12/14/2017] [Accepted: 12/20/2017] [Indexed: 11/26/2022]
|
258
|
Xiao C, Yu Q, Zhang B, Li J, Zhang D, Li M. The mRNA export factor Sac3 maintains nuclear homeostasis and regulates cytoskeleton organization in Candida albicans. Future Microbiol 2018; 13:283-296. [PMID: 29436239 DOI: 10.2217/fmb-2017-0191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM In eukaryotes, the nuclear export of mRNAs is essential for gene expression and regulations of numerous cellular processes. This study aimed to identify the mRNA export factor Sac3 in Candida albicans. MATERIALS & METHODS A sac3Δ/Δ mutant was obtained using PCR-mediated homologous recombination. RESULTS Disruption of SAC3 caused abnormal accumulation of mRNA in the nuclei. Further investigations revealed that sac3Δ/Δ mutant exhibited a severely growth defect, which was related to abnormal aggregation of microtubules. Moreover, loss of Sac3 caused a defect in hyphal polarized growth, which was associated with depolarization of actin cytoskeleton. In addition, the virulence of sac3Δ/Δ mutant was seriously attenuated. CONCLUSION Our findings provide new insights into the mRNA export factor Sac3 in C. albicans.
Collapse
Affiliation(s)
- Chenpeng Xiao
- Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Qilin Yu
- Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Bing Zhang
- Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Jianrong Li
- Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Dan Zhang
- Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Mingchun Li
- Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| |
Collapse
|
259
|
Denis CL, Richardson R, Park S, Zhang C, Xi W, Laue TM, Wang X. Defining the protein complexome of translation termination factor eRF1: Identification of four novel eRF1-containing complexes that range from 20S to 57S in size. Proteins 2018; 86:177-191. [PMID: 29139201 PMCID: PMC5897186 DOI: 10.1002/prot.25422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/09/2017] [Accepted: 11/10/2017] [Indexed: 12/23/2022]
Abstract
The eukaryotic eRF1 translation termination factor plays an important role in recognizing stop codons and initiating the end to translation. However, which exact complexes contain eRF1 and at what abundance is not clear. We have used analytical ultracentrifugation with fluorescent detection system to identify the protein complexome of eRF1 in the yeast Saccharomyces cerevisiae. In addition to eRF1 presence in translating polysomes, we found that eRF1 associated with five other macromolecular complexes: 77S, 57S, 39S, 28S, and 20S in size. Generally equal abundances of each of these complexes were found. The 77S complex primarily contained the free 80S ribosome consistent with in vitro studies and did not appear to contain significant levels of the monosomal translating complex that co-migrates with the free 80S ribosome. The 57S and 39S complexes represented, respectively, free 60S and 40S ribosomal subunits bound to eRF1, associations not previously reported. The novel 28S and 20S complexes (containing minimal masses of 830 KDa and 500 KDa, respectively) lacked significant RNA components and appeared to be oligomeric, as eRF1 has a mass of 49 KDa. The majority of polysomal complexes containing eRF1 were both substantially deadenylated and lacking in closed-loop factors eIF4E and eIF4G. The thirteen percent of such translating polysomes that contained poly(A) tails had equivalent levels of eIF4E and eIF4G, suggesting these complexes were in a closed-loop structure. The identification of eRF1 in these unique and previously unrecognized complexes suggests a variety of new roles for eRF1 in the regulation of cellular processes.
Collapse
Affiliation(s)
- Clyde L. Denis
- Department of Molecular, Cellular, and Biomedical Sciences, 46 College Road, Rudman Hall, University of New Hampshire, Durham, NH 03824, 603-862-2427, FAX: 603-862-4013
| | - Roy Richardson
- Department of Molecular, Cellular, and Biomedical Sciences, 46 College Road, Rudman Hall, University of New Hampshire, Durham, NH 03824, 603-862-2427, FAX: 603-862-4013
| | - Shiwha Park
- Department of Molecular, Cellular, and Biomedical Sciences, 46 College Road, Rudman Hall, University of New Hampshire, Durham, NH 03824, 603-862-2427, FAX: 603-862-4013
| | - Chongxu Zhang
- Department of Molecular, Cellular, and Biomedical Sciences, 46 College Road, Rudman Hall, University of New Hampshire, Durham, NH 03824, 603-862-2427, FAX: 603-862-4013
| | - Wen Xi
- Department of Molecular, Cellular, and Biomedical Sciences, 46 College Road, Rudman Hall, University of New Hampshire, Durham, NH 03824, 603-862-2427, FAX: 603-862-4013
| | - Thomas M. Laue
- Department of Molecular, Cellular, and Biomedical Sciences, 46 College Road, Rudman Hall, University of New Hampshire, Durham, NH 03824, 603-862-2427, FAX: 603-862-4013
| | - Xin Wang
- Department of Molecular, Cellular, and Biomedical Sciences, 46 College Road, Rudman Hall, University of New Hampshire, Durham, NH 03824, 603-862-2427, FAX: 603-862-4013
| |
Collapse
|
260
|
Abstract
Processing bodies (P-bodies) are cytoplasmic ribonucleoprotein (RNP) granules primarily composed of translationally repressed mRNAs and proteins related to mRNA decay, suggesting roles in post-transcriptional regulation. P-bodies are conserved in eukaryotic cells and exhibit properties of liquid droplets. However, the function of P-bodies in translational repression and/or mRNA decay remains contentious. Here we review recent advances in our understanding of the molecular composition of P-bodies, the interactions and processes that regulate P-body liquid-liquid phase separation (LLPS), and the cellular localization of mRNA decay machinery, in the context of how these discoveries refine models of P-body function.
Collapse
Affiliation(s)
- Yang Luo
- Department of Chemistry , Yale University , New Haven , Connecticut 06520 , United States.,Chemical Biology Institute , Yale University , West Haven , Connecticut 06516 , United States
| | - Zhenkun Na
- Department of Chemistry , Yale University , New Haven , Connecticut 06520 , United States.,Chemical Biology Institute , Yale University , West Haven , Connecticut 06516 , United States
| | - Sarah A Slavoff
- Department of Chemistry , Yale University , New Haven , Connecticut 06520 , United States.,Chemical Biology Institute , Yale University , West Haven , Connecticut 06516 , United States.,Department of Molecular Biophysics and Biochemistry , Yale University , New Haven , Connecticut 06529 , United States
| |
Collapse
|
261
|
Youn JY, Dunham WH, Hong SJ, Knight JDR, Bashkurov M, Chen GI, Bagci H, Rathod B, MacLeod G, Eng SWM, Angers S, Morris Q, Fabian M, Côté JF, Gingras AC. High-Density Proximity Mapping Reveals the Subcellular Organization of mRNA-Associated Granules and Bodies. Mol Cell 2018; 69:517-532.e11. [PMID: 29395067 DOI: 10.1016/j.molcel.2017.12.020] [Citation(s) in RCA: 516] [Impact Index Per Article: 73.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 12/02/2017] [Accepted: 12/21/2017] [Indexed: 12/11/2022]
Abstract
mRNA processing, transport, translation, and ultimately degradation involve a series of dedicated protein complexes that often assemble into large membraneless structures such as stress granules (SGs) and processing bodies (PBs). Here, systematic in vivo proximity-dependent biotinylation (BioID) analysis of 119 human proteins associated with different aspects of mRNA biology uncovers 7424 unique proximity interactions with 1,792 proteins. Classical bait-prey analysis reveals connections of hundreds of proteins to distinct mRNA-associated processes or complexes, including the splicing and transcriptional elongation machineries (protein phosphatase 4) and the CCR4-NOT deadenylase complex (CEP85, RNF219, and KIAA0355). Analysis of correlated patterns between endogenous preys uncovers the spatial organization of RNA regulatory structures and enables the definition of 144 core components of SGs and PBs. We report preexisting contacts between most core SG proteins under normal growth conditions and demonstrate that several core SG proteins (UBAP2L, CSDE1, and PRRC2C) are critical for the formation of microscopically visible SGs.
Collapse
Affiliation(s)
- Ji-Young Youn
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Wade H Dunham
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Seo Jung Hong
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - James D R Knight
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Mikhail Bashkurov
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Ginny I Chen
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Halil Bagci
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC, Canada; Department of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada
| | - Bhavisha Rathod
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Graham MacLeod
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Simon W M Eng
- Department of Immunology, University of Toronto, Toronto, ON, Canada; Division of Rheumatology, The Hospital for Sick Children (SickKids), Toronto, ON, Canada
| | - Stéphane Angers
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Quaid Morris
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Donnelly Centre, University of Toronto, Toronto, ON, Canada; Department of Computer Science, University of Toronto, Toronto, ON, Canada; Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| | - Marc Fabian
- Department of Oncology, McGill University, Montréal, QC, Canada; Segal Cancer Centre, Jewish General Hospital, Lady Davis Institute for Medical Research, Montréal, QC, Canada
| | - Jean-François Côté
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC, Canada; Department of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada; Département de Biochimie, Université de Montréal, Montréal, QC, Canada; Département de Médecine (Programmes de Biologie Moléculaire), Université de Montréal, Montréal, QC, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
262
|
Genome-Wide Mapping of Decay Factor-mRNA Interactions in Yeast Identifies Nutrient-Responsive Transcripts as Targets of the Deadenylase Ccr4. G3-GENES GENOMES GENETICS 2018; 8:315-330. [PMID: 29158339 PMCID: PMC5765359 DOI: 10.1534/g3.117.300415] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The Ccr4 (carbon catabolite repression 4)-Not complex is a major regulator of stress responses that controls gene expression at multiple levels, from transcription to mRNA decay. Ccr4, a “core” subunit of the complex, is the main cytoplasmic deadenylase in Saccharomyces cerevisiae; however, its mRNA targets have not been mapped on a genome-wide scale. Here, we describe a genome-wide approach, RNA immunoprecipitation (RIP) high-throughput sequencing (RIP-seq), to identify the RNAs bound to Ccr4, and two proteins that associate with it, Dhh1 and Puf5. All three proteins were preferentially bound to lowly abundant mRNAs, most often at the 3′ end of the transcript. Furthermore, Ccr4, Dhh1, and Puf5 are recruited to mRNAs that are targeted by other RNA-binding proteins that promote decay and mRNA transport, and inhibit translation. Although Ccr4-Not regulates mRNA transcription and decay, Ccr4 recruitment to mRNAs correlates better with decay rates, suggesting it imparts greater control over transcript abundance through decay. Ccr4-enriched mRNAs are refractory to control by the other deadenylase complex in yeast, Pan2/3, suggesting a division of labor between these deadenylation complexes. Finally, Ccr4 and Dhh1 associate with mRNAs whose abundance increases during nutrient starvation, and those that fluctuate during metabolic and oxygen consumption cycles, which explains the known genetic connections between these factors and nutrient utilization and stress pathways.
Collapse
|
263
|
Shenouda M, Zhang AB, Weichert A, Robertson J. Mechanisms Associated with TDP-43 Neurotoxicity in ALS/FTLD. ADVANCES IN NEUROBIOLOGY 2018; 20:239-263. [PMID: 29916022 DOI: 10.1007/978-3-319-89689-2_9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The discovery of TDP-43 as a major disease protein in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) was first made in 2006. Prior to 2006 there were only 11 publications related to TDP-43, now there are over 2000, indicating the importance of TDP-43 to unraveling the complex molecular mechanisms that underpin the pathogenesis of ALS/FTLD. Subsequent to this discovery, TDP-43 pathology was also found in other neurodegenerative diseases, including Alzheimer's disease, the significance of which is still in the early stages of exploration. TDP-43 is a predominantly nuclear DNA/RNA-binding protein, one of a number of RNA-binding proteins that are now known to be linked with ALS/FTLD, including Fused in Sarcoma (FUS), heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1), and heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNP A2/B1). However, what sets TDP-43 apart is the vast number of cases in which TDP-43 pathology is present, providing a point of convergence, the understanding of which could lead to broadly applicable therapeutics. Here we will focus on TDP-43 in ALS/FTLD, its nuclear and cytoplasmic functions, and consequences should these functions go awry.
Collapse
Affiliation(s)
- Marc Shenouda
- Tanz Centre for Research in Neurodegenerative Diseases and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5T 2S8, Canada
| | - Ashley B Zhang
- Tanz Centre for Research in Neurodegenerative Diseases and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5T 2S8, Canada
| | - Anna Weichert
- Tanz Centre for Research in Neurodegenerative Diseases and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5T 2S8, Canada
| | - Janice Robertson
- Tanz Centre for Research in Neurodegenerative Diseases and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5T 2S8, Canada.
| |
Collapse
|
264
|
Abstract
Ribonucleic acid (RNA) homeostasis is dynamically modulated in response to changing physiological conditions. Tight regulation of RNA abundance through both transcription and degradation determines the amount, timing, and location of protein translation. This balance is of particular importance in neurons, which are among the most metabolically active and morphologically complex cells in the body. As a result, any disruptions in RNA degradation can have dramatic consequences for neuronal health. In this chapter, we will first discuss mechanisms of RNA stabilization and decay. We will then explore how the disruption of these pathways can lead to neurodegenerative disease.
Collapse
|
265
|
O'Brien J, Hayder H, Zayed Y, Peng C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front Endocrinol (Lausanne) 2018; 9:402. [PMID: 30123182 PMCID: PMC6085463 DOI: 10.3389/fendo.2018.00402] [Citation(s) in RCA: 3265] [Impact Index Per Article: 466.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 06/28/2018] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of non-coding RNAs that play important roles in regulating gene expression. The majority of miRNAs are transcribed from DNA sequences into primary miRNAs and processed into precursor miRNAs, and finally mature miRNAs. In most cases, miRNAs interact with the 3' untranslated region (3' UTR) of target mRNAs to induce mRNA degradation and translational repression. However, interaction of miRNAs with other regions, including the 5' UTR, coding sequence, and gene promoters, have also been reported. Under certain conditions, miRNAs can also activate translation or regulate transcription. The interaction of miRNAs with their target genes is dynamic and dependent on many factors, such as subcellular location of miRNAs, the abundancy of miRNAs and target mRNAs, and the affinity of miRNA-mRNA interactions. miRNAs can be secreted into extracellular fluids and transported to target cells via vesicles, such as exosomes, or by binding to proteins, including Argonautes. Extracellular miRNAs function as chemical messengers to mediate cell-cell communication. In this review, we provide an update on canonical and non-canonical miRNA biogenesis pathways and various mechanisms underlying miRNA-mediated gene regulations. We also summarize the current knowledge of the dynamics of miRNA action and of the secretion, transfer, and uptake of extracellular miRNAs.
Collapse
|
266
|
Abstract
MicroRNAs (miRNAs) are a class of non-coding RNAs that play important roles in regulating gene expression. The majority of miRNAs are transcribed from DNA sequences into primary miRNAs and processed into precursor miRNAs, and finally mature miRNAs. In most cases, miRNAs interact with the 3' untranslated region (3' UTR) of target mRNAs to induce mRNA degradation and translational repression. However, interaction of miRNAs with other regions, including the 5' UTR, coding sequence, and gene promoters, have also been reported. Under certain conditions, miRNAs can also activate translation or regulate transcription. The interaction of miRNAs with their target genes is dynamic and dependent on many factors, such as subcellular location of miRNAs, the abundancy of miRNAs and target mRNAs, and the affinity of miRNA-mRNA interactions. miRNAs can be secreted into extracellular fluids and transported to target cells via vesicles, such as exosomes, or by binding to proteins, including Argonautes. Extracellular miRNAs function as chemical messengers to mediate cell-cell communication. In this review, we provide an update on canonical and non-canonical miRNA biogenesis pathways and various mechanisms underlying miRNA-mediated gene regulations. We also summarize the current knowledge of the dynamics of miRNA action and of the secretion, transfer, and uptake of extracellular miRNAs.
Collapse
Affiliation(s)
- Jacob O'Brien
- Department of Biology, York University, Toronto, ON, Canada
| | - Heyam Hayder
- Department of Biology, York University, Toronto, ON, Canada
| | - Yara Zayed
- Department of Biology, York University, Toronto, ON, Canada
| | - Chun Peng
- Department of Biology, York University, Toronto, ON, Canada
| |
Collapse
|
267
|
Abstract
Cellular mRNA levels are determined by the rates of mRNA synthesis and mRNA decay. Typically, mRNA degradation kinetics are measured on a population of cells that are either chemically treated or genetically engineered to inhibit transcription. However, these manipulations can affect the mRNA decay process itself by inhibiting regulatory mechanisms that govern mRNA degradation, especially if they occur on short time-scales. Recently, single molecule fluorescent in situ hybridization (smFISH) approaches have been implemented to quantify mRNA decay rates in single, unperturbed cells. Here, we provide a step-by-step protocol that allows quantification of mRNA decay in single Saccharomyces cerevisiae using smFISH. Our approach relies on fluorescent labeling of single cytoplasmic mRNAs and nascent mRNAs found at active sites of transcription, coupled with mathematical modeling to derive mRNA half-lives. Commercially available, single-stranded smFISH DNA oligonucleotides (smFISH probes) are used to fluorescently label mRNAs followed by the quantification of cellular and nascent mRNAs using freely available spot detection algorithms. Our method enables quantification of mRNA decay of any mRNA in single, unperturbed yeast cells and can be implemented to quantify mRNA turnover in a variety of cell types as well as tissues.
Collapse
Affiliation(s)
- Tatjana Trcek
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, NYU School of Medicine, New York, NY, USA.
| | - Samir Rahman
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada
| | - Daniel Zenklusen
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
268
|
Piserà A, Campo A, Campo S. Structure and functions of the translation initiation factor eIF4E and its role in cancer development and treatment. J Genet Genomics 2018; 45:13-24. [DOI: 10.1016/j.jgg.2018.01.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 01/12/2018] [Accepted: 01/15/2018] [Indexed: 12/22/2022]
|
269
|
Nowotarski SL, Shantz LM. The ODC 3'-Untranslated Region and 5'-Untranslated Region Contain cis-Regulatory Elements: Implications for Carcinogenesis. Med Sci (Basel) 2017; 6:E2. [PMID: 29271923 PMCID: PMC5872159 DOI: 10.3390/medsci6010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/07/2017] [Accepted: 12/15/2017] [Indexed: 11/22/2022] Open
Abstract
It has been hypothesized that both the 3'-untranslated region (3'UTR) and the 5'-untranslated region (5'UTR) of the ornithine decarboxylase (ODC) mRNA influence the expression of the ODC protein. Here, we use luciferase expression constructs to examine the influence of both UTRs in keratinocyte derived cell lines. The ODC 5'UTR or 3'UTR was cloned into the pGL3 control vector upstream or downstream of the luciferase reporter gene, respectively, and luciferase activity was measured in both non-tumorigenic and tumorigenic mouse keratinocyte cell lines. Further analysis of the influence of the 3'UTR on luciferase activity was accomplished through site-directed mutagenesis and distal deletion analysis within this region. Insertion of either the 5'UTR or 3'UTR into a luciferase vector resulted in a decrease in luciferase activity when compared to the control vector. Deletion analysis of the 3'UTR revealed a region between bases 1969 and 2141 that was inhibitory, and mutating residues within that region increased luciferase activity. These data suggest that both the 5'UTR and 3'UTR of ODC contain cis-acting regulatory elements that control intracellular ODC protein levels.
Collapse
Affiliation(s)
- Shannon L Nowotarski
- Division of Science, The Pennsylvania State University Berks Campus, Reading, PA 19610, USA.
| | - Lisa M Shantz
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| |
Collapse
|
270
|
Synthetic mRNA with Superior Properties that Mimics the Intracellular Fates of Natural Histone mRNA. Methods Mol Biol 2017; 1428:93-114. [PMID: 27236794 DOI: 10.1007/978-1-4939-3625-0_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Since DNA and histone levels must be closely balanced for cell survival, histone expressions are highly regulated. The regulation of replication-dependent histone expression is mainly achieved at the mRNA level, as the mRNAs are rapidly removed when DNA replication is inhibited during S-phase. Histone mRNA degradation initiates with addition of multiple uridines (oligouridylation) following the 3' stem-loop (SL) catalyzed by terminal uridyltransferase (TUTase). Previous studies showed that histone mRNA degradation occurs through both 5' → 3' and 3' → 5' processes, but the relative contributions are difficult to dissect due to lack of established protocols. The translational efficiency and stability of synthetic mRNA in both cultured cells and whole animals can be improved by structural modifications at the both 5' and 3' termini. In this chapter, we present methods of utilizing modified cap dinucleotide analogs to block 5' → 3' degradation of a reporter mRNA containing canonical histone mRNA 3' SL and monitoring how oligouridylation and 3' → 5' degradation occur. Protocols are presented for synthesis of reporter mRNA containing the histone 3' SL and modified cap analogs, monitoring mRNA stability and unidirectional degradation either from 5' or 3' termini, and detection of oligo(U) tracts from degradation products by either traditional or deep sequencing.
Collapse
|
271
|
Rodrigues DC, Kim DS, Yang G, Zaslavsky K, Ha KCH, Mok RSF, Ross PJ, Zhao M, Piekna A, Wei W, Blencowe BJ, Morris Q, Ellis J. MECP2 Is Post-transcriptionally Regulated during Human Neurodevelopment by Combinatorial Action of RNA-Binding Proteins and miRNAs. Cell Rep 2017; 17:720-734. [PMID: 27732849 DOI: 10.1016/j.celrep.2016.09.049] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 08/05/2016] [Accepted: 09/15/2016] [Indexed: 12/16/2022] Open
Abstract
A progressive increase in MECP2 protein levels is a crucial and precisely regulated event during neurodevelopment, but the underlying mechanism is unclear. We report that MECP2 is regulated post-transcriptionally during in vitro differentiation of human embryonic stem cells (hESCs) into cortical neurons. Using reporters to identify functional RNA sequences in the MECP2 3' UTR and genetic manipulations to explore the role of interacting factors on endogenous MECP2, we discover combinatorial mechanisms that regulate RNA stability and translation. The RNA-binding protein PUM1 and pluripotent-specific microRNAs destabilize the long MECP2 3' UTR in hESCs. Hence, the 3' UTR appears to lengthen during differentiation as the long isoform becomes stable in neurons. Meanwhile, translation of MECP2 is repressed by TIA1 in hESCs until HuC predominates in neurons, resulting in a switch to translational enhancement. Ultimately, 3' UTR-directed translational fine-tuning differentially modulates MECP2 protein in the two cell types to levels appropriate for normal neurodevelopment.
Collapse
Affiliation(s)
- Deivid C Rodrigues
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada
| | - Dae-Sung Kim
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada
| | - Guang Yang
- Program in Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada
| | - Kirill Zaslavsky
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S1A8, Canada
| | - Kevin C H Ha
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S1A8, Canada; Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S3E1, Canada
| | - Rebecca S F Mok
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S1A8, Canada
| | - P Joel Ross
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada
| | - Melody Zhao
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S1A8, Canada
| | - Alina Piekna
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada
| | - Wei Wei
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada
| | - Benjamin J Blencowe
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S1A8, Canada; Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S3E1, Canada
| | - Quaid Morris
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S1A8, Canada; Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S3E1, Canada
| | - James Ellis
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S1A8, Canada.
| |
Collapse
|
272
|
Visscher M, De Henau S, Wildschut MHE, van Es RM, Dhondt I, Michels H, Kemmeren P, Nollen EA, Braeckman BP, Burgering BMT, Vos HR, Dansen TB. Proteome-wide Changes in Protein Turnover Rates in C. elegans Models of Longevity and Age-Related Disease. Cell Rep 2017; 16:3041-3051. [PMID: 27626671 DOI: 10.1016/j.celrep.2016.08.025] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 05/10/2016] [Accepted: 08/05/2016] [Indexed: 11/16/2022] Open
Abstract
The balance between protein synthesis and protein breakdown is a major determinant of protein homeostasis, and loss of protein homeostasis is one of the hallmarks of aging. Here we describe pulsed SILAC-based experiments to estimate proteome-wide turnover rates of individual proteins. We applied this method to determine protein turnover rates in Caenorhabditis elegans models of longevity and Parkinson's disease, using both developing and adult animals. Whereas protein turnover in developing, long-lived daf-2(e1370) worms is about 30% slower than in controls, the opposite was observed in day 5 adult worms, in which protein turnover in the daf-2(e1370) mutant is twice as fast as in controls. In the Parkinson's model, protein turnover is reduced proportionally over the entire proteome, suggesting that the protein homeostasis network has a strong ability to adapt. The findings shed light on the relationship between protein turnover and healthy aging.
Collapse
Affiliation(s)
- Marieke Visscher
- Center for Molecular Medicine, Molecular Cancer Research Section, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Sasha De Henau
- Center for Molecular Medicine, Molecular Cancer Research Section, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Mattheus H E Wildschut
- Center for Molecular Medicine, Molecular Cancer Research Section, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Robert M van Es
- Center for Molecular Medicine, Molecular Cancer Research Section, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Ineke Dhondt
- Laboratory for Aging Physiology and Molecular Evolution, Biology Department, Ghent University, Proeftuinstraat 86 N1, 9000 Ghent, Belgium
| | - Helen Michels
- European Research Institute for the Biology of Aging, University Medical Centre Groningen, University of Groningen, 9700 AD Groningen, the Netherlands
| | - Patrick Kemmeren
- Center for Molecular Medicine, Molecular Cancer Research Section, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Ellen A Nollen
- European Research Institute for the Biology of Aging, University Medical Centre Groningen, University of Groningen, 9700 AD Groningen, the Netherlands
| | - Bart P Braeckman
- Laboratory for Aging Physiology and Molecular Evolution, Biology Department, Ghent University, Proeftuinstraat 86 N1, 9000 Ghent, Belgium
| | - Boudewijn M T Burgering
- Center for Molecular Medicine, Molecular Cancer Research Section, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Harmjan R Vos
- Center for Molecular Medicine, Molecular Cancer Research Section, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands.
| | - Tobias B Dansen
- Center for Molecular Medicine, Molecular Cancer Research Section, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands.
| |
Collapse
|
273
|
Nizhnikov AA, Antonets KS, Bondarev SA, Inge-Vechtomov SG, Derkatch IL. Prions, amyloids, and RNA: Pieces of a puzzle. Prion 2017; 10:182-206. [PMID: 27248002 DOI: 10.1080/19336896.2016.1181253] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Amyloids are protein aggregates consisting of fibrils rich in β-sheets. Growth of amyloid fibrils occurs by the addition of protein molecules to the tip of an aggregate with a concurrent change of a conformation. Thus, amyloids are self-propagating protein conformations. In certain cases these conformations are transmissible / infectious; they are known as prions. Initially, amyloids were discovered as pathological extracellular deposits occurring in different tissues and organs. To date, amyloids and prions have been associated with over 30 incurable diseases in humans and animals. However, a number of recent studies demonstrate that amyloids are also functionally involved in a variety of biological processes, from biofilm formation by bacteria, to long-term memory in animals. Interestingly, amyloid-forming proteins are highly overrepresented among cellular factors engaged in all stages of mRNA life cycle: from transcription and translation, to storage and degradation. Here we review rapidly accumulating data on functional and pathogenic amyloids associated with mRNA processing, and discuss possible significance of prion and amyloid networks in the modulation of key cellular functions.
Collapse
Affiliation(s)
- Anton A Nizhnikov
- a Dept. of Genetics and Biotechnology , St. Petersburg State University , St. Petersburg , Russia.,b Vavilov Institute of General Genetics of the Russian Academy of Sciences, St. Petersburg Branch , St. Petersburg , Russia.,c All-Russia Research Institute for Agricultural Microbiology , St. Petersburg , Russia
| | - Kirill S Antonets
- a Dept. of Genetics and Biotechnology , St. Petersburg State University , St. Petersburg , Russia.,b Vavilov Institute of General Genetics of the Russian Academy of Sciences, St. Petersburg Branch , St. Petersburg , Russia
| | - Stanislav A Bondarev
- a Dept. of Genetics and Biotechnology , St. Petersburg State University , St. Petersburg , Russia
| | - Sergey G Inge-Vechtomov
- a Dept. of Genetics and Biotechnology , St. Petersburg State University , St. Petersburg , Russia.,b Vavilov Institute of General Genetics of the Russian Academy of Sciences, St. Petersburg Branch , St. Petersburg , Russia
| | - Irina L Derkatch
- d Department of Neuroscience , College of Physicians and Surgeons of Columbia University, Columbia University , New York , NY , USA
| |
Collapse
|
274
|
Schütz S, Nöldeke ER, Sprangers R. A synergistic network of interactions promotes the formation of in vitro processing bodies and protects mRNA against decapping. Nucleic Acids Res 2017; 45:6911-6922. [PMID: 28472520 PMCID: PMC5499654 DOI: 10.1093/nar/gkx353] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 04/20/2017] [Indexed: 01/25/2023] Open
Abstract
Cellular liquid-liquid phase separation (LLPS) results in the formation of dynamic granules that play an important role in many biological processes. On a molecular level, the clustering of proteins into a confined space results from an indefinite network of intermolecular interactions. Here, we introduce and exploit a novel high-throughput bottom-up approach to study how the interactions between RNA, the Dcp1:Dcp2 mRNA decapping complex and the scaffolding proteins Edc3 and Pdc1 result in the formation of processing bodies. We find that the LLPS boundaries are close to physiological concentrations upon inclusion of multiple proteins and RNA. Within in vitro processing bodies the RNA is protected against endonucleolytic cleavage and the mRNA decapping activity is reduced, which argues for a role of processing bodies in temporary mRNA storage. Interestingly, the intrinsically disordered region (IDR) in the Edc3 protein emerges as a central hub for interactions with both RNA and mRNA decapping factors. In addition, the Edc3 IDR plays a role in the formation of irreversible protein aggregates that are potentially detrimental for cellular homeostasis. In summary, our data reveal insights into the mechanisms that lead to cellular LLPS and into the way this influences enzymatic activity.
Collapse
Affiliation(s)
- Stefan Schütz
- Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany
| | - Erik R Nöldeke
- Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany
| | - Remco Sprangers
- Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany
| |
Collapse
|
275
|
Kashiwabara SI, Tsuruta S, Yamaoka Y, Oyama K, Iwazaki C, Baba T. PAPOLB/TPAP regulates spermiogenesis independently of chromatoid body-associated factors. J Reprod Dev 2017; 64:25-31. [PMID: 29109362 PMCID: PMC5830355 DOI: 10.1262/jrd.2017-106] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mutant mice lacking a testis-specific cytoplasmic poly(A) polymerase, PAPOLB/TPAP, exhibit spermiogenesis arrest and male infertility. However, the mechanism by which PAPOLB regulates spermiogenesis remains unclear. In
this study, we examined the relationships between PAPOLB and other spermiogenesis regulators present in the chromatoid body (CB). The loss of PAPOLB had no impact either on the abundance of CB components such as PIWIL1,
TDRD6, YBX2, and piRNAs, or on retrotransposon expression. In addition, localization of CB proteins and CB architecture were both normal in PAPOLB-null mice. No interactions were observed between PAPOLB and PIWIL1 or
YBX2. While PIWIL1 and YBX2 were associated with translationally inactive messenger ribonucleoproteins and translating polyribosomes, PAPOLB was present almost exclusively in the mRNA-free fractions of sucrose gradients.
These results suggest that PAPOLB may regulate spermiogenesis through a pathway distinct from that mediated by CB-associated factors.
Collapse
Affiliation(s)
- Shin-Ichi Kashiwabara
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8572, Japan.,PhD Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Ibaraki 305-8572, Japan.,Life Science Center, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Ibaraki 305-8577, Japan
| | - Satsuki Tsuruta
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8572, Japan
| | - Yutaro Yamaoka
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8572, Japan
| | - Kanako Oyama
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8572, Japan.,PhD Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Ibaraki 305-8572, Japan
| | - Chieko Iwazaki
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8572, Japan
| | - Tadashi Baba
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8572, Japan.,PhD Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Ibaraki 305-8572, Japan.,Life Science Center, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
276
|
Regulation of epithelial-mesenchymal transition and metastasis by TGF-β, P-bodies, and autophagy. Oncotarget 2017; 8:103302-103314. [PMID: 29262563 PMCID: PMC5732729 DOI: 10.18632/oncotarget.21871] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 09/29/2017] [Indexed: 12/19/2022] Open
Abstract
Processing bodies (P-bodies) are ribonucleoprotein complexes involved in post-transcriptional mRNA metabolism that accumulate in cells exposed to various stress stimuli. The treatment of mammary epithelial cells with transforming growth factor-beta (TGF-β), triggers epithelial-mesenchymal transition (EMT), and induces the formation of P-bodies. Ectopic expression of the transcription factor TWIST, which stimulates EMT downstream of the TGF-β receptor, also promotes P-body formation. Removal of TGF-β from treated cells results in the clearance of P-bodies by a process that is blocked by inhibitors of autophagy. Activators of autophagy enhance P-body clearance and block EMT. Blockage of P-body formation by disruption of the gene for DDX6, a protein essential for P-body assembly, blocks EMT and prevents tumor cell metastasis in vivo. These studies suggest critical roles for P-body formation and autophagy in transitions of cancer cells between epithelial and mesenchymal phenotypes and help explain how autophagy functions to promote or suppress tumor cell growth during different stages of tumorigenesis.
Collapse
|
277
|
Affiliation(s)
- Allyson M Rice
- Department of Biophysics and Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Michael K Rosen
- Department of Biophysics and Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
278
|
Maddirevula S, Coskun S, Alhassan S, Elnour A, Alsaif HS, Ibrahim N, Abdulwahab F, Arold ST, Alkuraya FS. Female Infertility Caused by Mutations in the Oocyte-Specific Translational Repressor PATL2. Am J Hum Genet 2017; 101:603-608. [PMID: 28965844 DOI: 10.1016/j.ajhg.2017.08.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 08/11/2017] [Indexed: 12/23/2022] Open
Abstract
Infertility is a relatively common disorder of the reproductive system and remains unexplained in many cases. In vitro fertilization techniques have uncovered previously unrecognized infertility phenotypes, including oocyte maturation arrest, the molecular etiology of which remains largely unknown. We report two families affected by female-limited infertility caused by oocyte maturation failure. Positional mapping and whole-exome sequencing revealed two homozygous, likely deleterious variants in PATL2, each of which fully segregates with the phenotype within the respective family. PATL2 encodes a highly conserved oocyte-specific mRNP repressor of translation. Previous data have shown the strict requirement for PATL2 in oocyte-maturation in model organisms. Data gathered from the families in this study suggest that the role of PATL2 is conserved in humans and expand our knowledge of the factors that are necessary for female meiosis.
Collapse
Affiliation(s)
- Sateesh Maddirevula
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Serdar Coskun
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Saad Alhassan
- Department of Obstetrics and Gynecology, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Atif Elnour
- Dr. Sulaiman Al Habib Medical Group, Olaya Complex, Riyadh 11643, Saudi Arabia
| | - Hessa S Alsaif
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Niema Ibrahim
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Firdous Abdulwahab
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Stefan T Arold
- King Abdullah University of Science and Technology, Computational Bioscience Research Center, Division of Biological and Environmental Sciences and Engineering, Thuwal 23955-6900, Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia; Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia.
| |
Collapse
|
279
|
Cheng MH, Jansen RP. A jack of all trades: the RNA-binding protein vigilin. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 8. [PMID: 28975734 DOI: 10.1002/wrna.1448] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/21/2017] [Accepted: 08/17/2017] [Indexed: 12/25/2022]
Abstract
The vigilin family of proteins is evolutionarily conserved from yeast to humans and characterized by the proteins' 14 or 15 hnRNP K homology (KH) domains, typically associated with RNA-binding. Vigilin is the largest RNA-binding protein (RBP) in the KH domain-containing family and one of the largest RBP known to date. Since its identification 30 years ago, vigilin has been shown to bind over 700 mRNAs and has been associated with cancer progression and cardiovascular disease. We provide a brief historic overview of vigilin research and outline the proteins' different functions, focusing on maintenance of genome ploidy, heterochromatin formation, RNA export, as well as regulation of translation, mRNA transport, and mRNA stability. The multitude of associated functions is reflected by the large number of identified interaction partners, ranging from tRNAs, mRNAs, ribosomes and ribosome-associated proteins, to histone methyltransferases and DNA-dependent protein kinases. Most of these partners bind to vigilin's carboxyterminus, and the two most C-terminal KH domains of the protein, KH13 and KH14, represent the main mRNA-binding interface. Since the nuclear functions of vigilins in particular are not conserved, we outline a model for the basal functions of vigilins, as well as those which were acquired during the transition from unicellular organisms to metazoa. WIREs RNA 2017, 8:e1448. doi: 10.1002/wrna.1448 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Matthew Hk Cheng
- International Max Planck Research School, Tuebingen, Germany.,Interfaculty Institute of Biochemistry, Tuebingen, Germany
| | | |
Collapse
|
280
|
Wong JT, Akhbar F, Ng AYE, Tay MLI, Loi GJE, Pek JW. DIP1 modulates stem cell homeostasis in Drosophila through regulation of sisR-1. Nat Commun 2017; 8:759. [PMID: 28970471 PMCID: PMC5624886 DOI: 10.1038/s41467-017-00684-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 07/19/2017] [Indexed: 01/09/2023] Open
Abstract
Stable intronic sequence RNAs (sisRNAs) are by-products of splicing and regulate gene expression. How sisRNAs are regulated is unclear. Here we report that a double-stranded RNA binding protein, Disco-interacting protein 1 (DIP1) regulates sisRNAs in Drosophila. DIP1 negatively regulates the abundance of sisR-1 and INE-1 sisRNAs. Fine-tuning of sisR-1 by DIP1 is important to maintain female germline stem cell homeostasis by modulating germline stem cell differentiation and niche adhesion. Drosophila DIP1 localizes to a nuclear body (satellite body) and associates with the fourth chromosome, which contains a very high density of INE-1 transposable element sequences that are processed into sisRNAs. DIP1 presumably acts outside the satellite bodies to regulate sisR-1, which is not on the fourth chromosome. Thus, our study identifies DIP1 as a sisRNA regulatory protein that controls germline stem cell self-renewal in Drosophila. Stable intronic sequence RNAs (sisRNAs) are by-products of splicing from introns with roles in embryonic development in Drosophila. Here, the authors show that the RNA binding protein DIP1 regulates sisRNAs in Drosophila, which is necessary for germline stem cell homeostasis.
Collapse
Affiliation(s)
- Jing Ting Wong
- Ngee Ann Polytechnic, 535 Clementi Road, Singapore, 599489, Singapore
| | - Farzanah Akhbar
- Temasek Polytechnic, 21 Tampines Avenue 1, Singapore, 529757, Singapore
| | - Amanda Yunn Ee Ng
- Temasek Life Sciences Laboratory, 1 Research Link National University of Singapore, Singapore, 117604, Singapore
| | - Mandy Li-Ian Tay
- Temasek Life Sciences Laboratory, 1 Research Link National University of Singapore, Singapore, 117604, Singapore
| | - Gladys Jing En Loi
- National University of Singapore, 21 Lower Kent Ridge Road, Singapore, 119077, Singapore
| | - Jun Wei Pek
- Temasek Life Sciences Laboratory, 1 Research Link National University of Singapore, Singapore, 117604, Singapore.
| |
Collapse
|
281
|
Díaz-Muñoz MD, Kiselev VY, Le Novère N, Curk T, Ule J, Turner M. Tia1 dependent regulation of mRNA subcellular location and translation controls p53 expression in B cells. Nat Commun 2017; 8:530. [PMID: 28904350 PMCID: PMC5597594 DOI: 10.1038/s41467-017-00454-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 06/30/2017] [Indexed: 11/24/2022] Open
Abstract
Post-transcriptional regulation of cellular mRNA is essential for protein synthesis. Here we describe the importance of mRNA translational repression and mRNA subcellular location for protein expression during B lymphocyte activation and the DNA damage response. Cytoplasmic RNA granules are formed upon cell activation with mitogens, including stress granules that contain the RNA binding protein Tia1. Tia1 binds to a subset of transcripts involved in cell stress, including p53 mRNA, and controls translational silencing and RNA granule localization. DNA damage promotes mRNA relocation and translation in part due to dissociation of Tia1 from its mRNA targets. Upon DNA damage, p53 mRNA is released from stress granules and associates with polyribosomes to increase protein synthesis in a CAP-independent manner. Global analysis of cellular mRNA abundance and translation indicates that this is an extended ATM-dependent mechanism to increase protein expression of key modulators of the DNA damage response.Sequestering mRNA in cytoplasmic stress granules is a mechanism for translational repression. Here the authors find that p53 mRNA, present in stress granules in activated B lymphocytes, is released upon DNA damage and is translated in a CAP-independent manner.
Collapse
Affiliation(s)
- Manuel D Díaz-Muñoz
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, CB22 3AT, UK.
- Centre de Physiopathologie Toulouse-Purpan, INSERM UMR1043 / CNRS U5282, Toulouse, 31300, France.
| | - Vladimir Yu Kiselev
- Laboratory of Signalling, The Babraham Institute, Cambridge, CB22 3AT, UK
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, CB10 1SA, UK
| | - Nicolas Le Novère
- Laboratory of Signalling, The Babraham Institute, Cambridge, CB22 3AT, UK
| | - Tomaz Curk
- University of Ljubljana, Faculty of Computer and Information Science, Ljubljana, Slovenia
| | - Jernej Ule
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- The Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Martin Turner
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, CB22 3AT, UK
| |
Collapse
|
282
|
Li MQ, Luo AL, Zhao PW, Li TT, Geng SS, Liang XW, Xu HY, Lu YQ, Lu SS, Yang XG, Lu KH. Nanos2 is a molecular marker of inchoate buffalo spermatogonia. Anim Reprod Sci 2017; 186:44-51. [PMID: 28982519 DOI: 10.1016/j.anireprosci.2017.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 08/25/2017] [Accepted: 09/02/2017] [Indexed: 10/18/2022]
Abstract
Nanos2 belongs to the Nanos gene-coding family and is an important RNA-binding protein that has been shown to have essential roles in male germline stem cells development and self-renewal in mouse. However, little is known about Nanos2 in inchoate buffalo spermatogonia. Here, rapid-amplification of cDNA ends (RACE) was used to obtain the full-length buffalo Nanos2 sequence and bioinformatic analysis revealed a highly conserved Nanos2 sequence between buffalo and other mammalian species. Although Nanos2 was expressed in various tissues, the highest mRNA expression levels were found in testes tissue. Moreover, Nanos2 mRNA was abundant in fetal and pre-puberal testes but markedly decreased in the testes of adults. At the protein level, immunohistochemistry in pre-puberal testes revealed a pattern of NANOS2 expression similar to that for the undifferentiated type A spermatogonia marker PGP9.5. Furthermore, NANOS2 expression was low in adult testes and restricted to elongating spermatids. Altogether, our data suggest that Nanos2 is a potential preliminary molecular marker of inchoate buffalo spermatogonia, and may play an important role in buffalo spermatogonial stem cells (SSCs) development and self-renewal, as has been observed in other model animals.
Collapse
Affiliation(s)
- Meng-Qi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, 530004, China; Guangxi High Education Laboratory for Animal Reproduction and Biotechnology, Guangxi University, Nanning, Guangxi, 530004, China; Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, Guangxi, China
| | - Ao-Lin Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, 530004, China; Guangxi High Education Laboratory for Animal Reproduction and Biotechnology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Peng-Wei Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, 530004, China; Guangxi High Education Laboratory for Animal Reproduction and Biotechnology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Ting-Ting Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, 530004, China; Guangxi High Education Laboratory for Animal Reproduction and Biotechnology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Shuang-Shuang Geng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, 530004, China; Guangxi High Education Laboratory for Animal Reproduction and Biotechnology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Xing-Wei Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, 530004, China; Guangxi High Education Laboratory for Animal Reproduction and Biotechnology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Hui-Yan Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, 530004, China; Guangxi High Education Laboratory for Animal Reproduction and Biotechnology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Yang-Qing Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, 530004, China; Guangxi High Education Laboratory for Animal Reproduction and Biotechnology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Sheng-Sheng Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, 530004, China; Guangxi High Education Laboratory for Animal Reproduction and Biotechnology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Xiao-Gan Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, 530004, China; Guangxi High Education Laboratory for Animal Reproduction and Biotechnology, Guangxi University, Nanning, Guangxi, 530004, China.
| | - Ke-Huan Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, 530004, China; Guangxi High Education Laboratory for Animal Reproduction and Biotechnology, Guangxi University, Nanning, Guangxi, 530004, China.
| |
Collapse
|
283
|
Vaškovičová K, Awadová T, Veselá P, Balážová M, Opekarová M, Malinsky J. mRNA decay is regulated via sequestration of the conserved 5′-3′ exoribonuclease Xrn1 at eisosome in yeast. Eur J Cell Biol 2017; 96:591-599. [DOI: 10.1016/j.ejcb.2017.05.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/07/2017] [Accepted: 05/02/2017] [Indexed: 01/08/2023] Open
|
284
|
Lin J, Xu R, Wu X, Shen Y, Li QQ. Role of cleavage and polyadenylation specificity factor 100: anchoring poly(A) sites and modulating transcription termination. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:829-839. [PMID: 28621907 DOI: 10.1111/tpj.13611] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 05/17/2017] [Accepted: 05/22/2017] [Indexed: 05/28/2023]
Abstract
CPSF100 is a core component of the cleavage and polyadenylation specificity factor (CPSF) complex for 3'-end formation of mRNA, but it still has no clear functional assignment. CPSF100 was reported to play a role in RNA silencing and promote flowering in Arabidopsis. However, the molecular mechanisms underlying these phenomena are not fully understood. Our genetics analyses indicate that plants with a hypomorphic mutant of CPSF100 (esp5) show defects in embryogenesis, reduced seed production or altered root morphology. To unravel this puzzle, we employed a poly(A) tag sequencing protocol and uncovered a different poly(A) profile in esp5. This transcriptome-wide analysis revealed alternative polyadenylation of thousands of genes, most of which result in transcriptional read-through in protein-coding genes. AtCPSF100 also affects poly(A) signal recognition on the far-upstream elements; in particular it prefers less U-rich sequences. Importantly, AtCPSF100 was found to exert its functions through the change of poly(A) sites on genes encoding binding proteins, such as nucleotide-binding, RNA-binding and poly(U)-binding proteins. In addition, through its interaction with RNA Polymerase II C-terminal domain (CTD) and affecting the expression level of CTD phosphatase-like 3 (CPL3), AtCPSF100 is shown to potentially ensure transcriptional termination by dephosphorylation of Ser2 on the CTD. These data suggest a key role for CPSF100 in locating poly(A) sites and affecting transcription termination.
Collapse
Affiliation(s)
- Juncheng Lin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, China
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, 91766, USA
| | - Ruqiang Xu
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Xiaohui Wu
- Department of Automation, Xiamen University, Xiamen, Fujian, 361005, China
| | - Yingjia Shen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, China
| | - Qingshun Q Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, China
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, 91766, USA
| |
Collapse
|
285
|
Chen CYA, Zhang Y, Xiang Y, Han L, Chang JT, Shyu AB. Antagonistic actions of two human Pan3 isoforms on global mRNA turnover. RNA (NEW YORK, N.Y.) 2017; 23:1404-1418. [PMID: 28559491 PMCID: PMC5558910 DOI: 10.1261/rna.061556.117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/25/2017] [Indexed: 05/03/2023]
Abstract
Deadenylation is a fundamental process that regulates eukaryotic gene expression. Mammalian deadenylation exhibits biphasic kinetics, with the Pan2-Pan3 and Ccr4-Caf1 deadenylase complexes mediating the first and second phase, respectively; however, the significance of the biphasic nature of deadenylation in mRNA turnover remains unclear. In this study, we discovered that two distinct isoforms of human Pan3 display opposing properties necessary for coordinating the two phases of deadenylation. The shorter isoform (Pan3S) interacts more strongly with PABP than the longer isoform (Pan3L) does. Pan2 deadenylase activity is enhanced by Pan3S but suppressed by Pan3L. Knocking down individual Pan3 isoforms has opposing effects on the global poly(A) tail length profile, P-body formation, and different mRNA decay pathways. Transcriptome-wide analysis of Pan3 knockdown effects on mRNA turnover shows that depleting either Pan3 isoform causes profound and extensive changes in mRNA stability globally. These results reveal a new fundamental step governing mammalian mRNA metabolism. We propose that the first phase of deadenylation, coordinated through the interplay among the two Pan3 isoforms, Pan2, and PABP, represents a cytoplasmic mRNA maturation step important for proper mRNA turnover.
Collapse
Affiliation(s)
- Chyi-Ying A Chen
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Yueqiang Zhang
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Yu Xiang
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Leng Han
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Jeffrey T Chang
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Ann-Bin Shyu
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| |
Collapse
|
286
|
Hollensen AK, Thomsen R, Bak RO, Petersen CC, Ermegaard ER, Aagaard L, Damgaard CK, Mikkelsen JG. Improved microRNA suppression by WPRE-linked tough decoy microRNA sponges. RNA (NEW YORK, N.Y.) 2017; 23:1247-1258. [PMID: 28487381 PMCID: PMC5513069 DOI: 10.1261/rna.061192.117] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 04/26/2017] [Indexed: 05/02/2023]
Abstract
Our genes are post-transcriptionally regulated by microRNAs (miRNAs) inducing translational suppression and degradation of targeted mRNAs. Strategies to inhibit miRNAs in a spatiotemporal manner in a desired cell type or tissue, or at a desired developmental stage, can be crucial for understanding miRNA function and for pushing forward miRNA suppression as a feasible rationale for genetic treatment of disease. For such purposes, RNA polymerase II (RNA Pol II)-transcribed tough decoy (TuD) miRNA inhibitors are particularly attractive. Here, we demonstrate augmented miRNA suppression capacity of TuD RNA hairpins linked to the Woodchuck hepatitis virus post-transcriptional regulatory element (WPRE). This effect is position-dependent and evident only when the WPRE is positioned upstream of the TuD. In accordance, inclusion of the WPRE does not change nuclear export, translation, total levels of TuD-containing RNA transcripts, or cytoplasmic P-body localization, suggesting that previously reported WPRE functions are negligible for improved TuD function. Notably, deletion analysis of TuD-fused WPRE unveils truncated WPRE variants resulting in optimized miRNA suppression. Together, our findings add to the guidelines for production of WPRE-supported anti-miRNA TuDs.
Collapse
Affiliation(s)
- Anne Kruse Hollensen
- Department of Biomedicine, HEALTH, Aarhus University, DK-8000 Aarhus C, Denmark
- Department of Molecular Biology and Genetics, Science and Technology, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Rune Thomsen
- Department of Molecular Biology and Genetics, Science and Technology, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Rasmus O Bak
- Department of Biomedicine, HEALTH, Aarhus University, DK-8000 Aarhus C, Denmark
- Department of Pediatrics, Stanford University, Stanford, California 94305, USA
| | | | - Eva R Ermegaard
- Department of Biomedicine, HEALTH, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Lars Aagaard
- Department of Biomedicine, HEALTH, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Christian Kroun Damgaard
- Department of Molecular Biology and Genetics, Science and Technology, Aarhus University, DK-8000 Aarhus C, Denmark
| | | |
Collapse
|
287
|
The roles of the exoribonucleases DIS3L2 and XRN1 in human disease. Biochem Soc Trans 2017; 44:1377-1384. [PMID: 27911720 DOI: 10.1042/bst20160107] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 05/23/2016] [Accepted: 05/26/2016] [Indexed: 12/19/2022]
Abstract
RNA degradation is a vital post-transcriptional process which ensures that transcripts are maintained at the correct level within the cell. DIS3L2 and XRN1 are conserved exoribonucleases that are critical for the degradation of cytoplasmic RNAs. Although the molecular mechanisms of RNA degradation by DIS3L2 and XRN1 have been well studied, less is known about their specific roles in the development of multicellular organisms or human disease. This review focusses on the roles of DIS3L2 and XRN1 in the pathogenesis of human disease, particularly in relation to phenotypes seen in model organisms. The known diseases associated with loss of activity of DIS3L2 and XRN1 are discussed, together with possible mechanisms and cellular pathways leading to these disease conditions.
Collapse
|
288
|
Ribonucleoprotein bodies are phased in. Biochem Soc Trans 2017; 44:1411-1416. [PMID: 27911723 DOI: 10.1042/bst20160117] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 07/12/2016] [Accepted: 07/13/2016] [Indexed: 12/26/2022]
Abstract
Intracellular compartments are necessary for the regulation of many biochemical processes that ensure cell survival, growth and proliferation. Compartmentalisation is commonly achieved in organelles with defined lipid membranes, such as mitochondria, endoplasmic reticulum or the Golgi apparatus. While these organelles are responsible for many localised biochemical processes, recent evidence points to another class of compartments that lack membrane boundaries. The structure and content of these bodies depend on their function and subcellular localisation, but they mainly incorporate proteins and RNA. Examples of these ribonucleoprotein bodies (RNPBs) include eukaryotic mRNA processing bodies (P-bodies) and stress granules (SGs). While most of these structures have been widely studied for their capacity to bind, store and process mRNAs under different conditions, their biological functions and physical properties are poorly understood. Recent intriguing data suggest that liquid-liquid phase separation (LLPS) represents an important mechanism seeding the formation and defining the function of RNPBs. In this review, we discuss how LLPS is transforming our ideas about the biological functions of SGs and P-bodies and their link to diseases.
Collapse
|
289
|
Zhang X, Lin Y, Eschmann NA, Zhou H, Rauch JN, Hernandez I, Guzman E, Kosik KS, Han S. RNA stores tau reversibly in complex coacervates. PLoS Biol 2017; 15:e2002183. [PMID: 28683104 PMCID: PMC5500003 DOI: 10.1371/journal.pbio.2002183] [Citation(s) in RCA: 221] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 05/24/2017] [Indexed: 12/17/2022] Open
Abstract
Nonmembrane-bound organelles that behave like liquid droplets are widespread among eukaryotic cells. Their dysregulation appears to be a critical step in several neurodegenerative conditions. Here, we report that tau protein, the primary constituent of Alzheimer neurofibrillary tangles, can form liquid droplets and therefore has the necessary biophysical properties to undergo liquid-liquid phase separation (LLPS) in cells. Consonant with the factors that induce LLPS, tau is an intrinsically disordered protein that complexes with RNA to form droplets. Uniquely, the pool of RNAs to which tau binds in living cells are tRNAs. This phase state of tau is held in an approximately 1:1 charge balance across the protein and the nucleic acid constituents, and can thus be maximal at different RNA:tau mass ratios, depending on the biopolymer constituents involved. This feature is characteristic of complex coacervation. We furthermore show that the LLPS process is directly and sensitively tuned by salt concentration and temperature, implying it is modulated by both electrostatic interactions between the involved protein and nucleic acid constituents, as well as net changes in entropy. Despite the high protein concentration within the complex coacervate phase, tau is locally freely tumbling and capable of diffusing through the droplet interior. In fact, tau in the condensed phase state does not reveal any immediate changes in local protein packing, local conformations and local protein dynamics from that of tau in the dilute solution state. In contrast, the population of aggregation-prone tau as induced by the complexation with heparin is accompanied by large changes in local tau conformations and irreversible aggregation. However, prolonged residency within the droplet state eventually results in the emergence of detectable β-sheet structures according to thioflavin-T assay. These findings suggest that the droplet state can incubate tau and predispose the protein toward the formation of insoluble fibrils. Tau is a common neuronal protein that, under circumstances and conditions not well understood to date, self-assembles into intracellular aggregates in several neurodegenerative diseases including Alzheimer disease. These aggregates are formed of fibrous polymers. The mechanism by which this critical transition from a soluble protein to insoluble fibrous material occurs is unknown. We have discovered a novel state in which many tau molecules become compacted into a protein-rich droplet while maintaining their solubility and native-like protein conformations. Chemists refer to this dense liquid droplet state as a complex coacervate phase, and it is held together by the opposite charges of their constituents, ions, and water. In the case of the tau protein, the oppositely charged constituent is RNA. Indeed, we found that in human neuronal cell culture, tau selectively binds to a category of RNA known as tRNA. Interestingly, tau and RNA favorably condense to a complex coacervate phase when the charges between them are matched and at elevated temperatures, such that tau-RNA droplets could be observed at physiologically viable protein concentrations simply by increasing the temperature from room to physiological temperatures. When the tau-RNA–dense droplets are incubated together over time, tau transitions to a conformation similar to that found in pathological fibers. Our experiments therefore demonstrate physicochemical properties of tau that may predispose it to undergo changes associated with neurodegenerative disease.
Collapse
Affiliation(s)
- Xuemei Zhang
- Molecular, Cell and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Yanxian Lin
- Biomolecular Science and Engineering, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Neil A. Eschmann
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Hongjun Zhou
- Molecular, Cell and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Jennifer N. Rauch
- Molecular, Cell and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Israel Hernandez
- Molecular, Cell and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Elmer Guzman
- Molecular, Cell and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Kenneth S. Kosik
- Molecular, Cell and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, United States of America
- * E-mail: (KSK); (SH)
| | - Songi Han
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California, United States of America
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California, United States of America
- * E-mail: (KSK); (SH)
| |
Collapse
|
290
|
Bhullar DS, Sheahan MB, Rose RJ. RNA processing body (P-body) dynamics in mesophyll protoplasts re-initiating cell division. PROTOPLASMA 2017; 254:1627-1637. [PMID: 27928633 PMCID: PMC5487831 DOI: 10.1007/s00709-016-1053-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 11/23/2016] [Indexed: 05/18/2023]
Abstract
The ability of plants to regenerate lies in the capacity of differentiated cells to reprogram and re-enter the cell cycle. Reprogramming of cells requires changes in chromatin organisation and gene expression. However, there has been less focus on changes at the post transcription level. We have investigated P-bodies, sites of post transcriptional gene regulation, in plant cell reprogramming in cultured mesophyll protoplasts; by using a YFP-VARICOSE (YFP-VCSc) translational fusion. We showed an early increase in P-body number and volume, followed by a decline, then a subsequent continued increase in P-body number and volume as cell division was initiated and cell proliferation continued. We infer that plant P-bodies have a role to play in reprogramming the mature cell and re-initiating the cell division cycle. The timing of the first phase is consistent with the degredation of messages no longer required, as the cell transits to the division state, and may also be linked to the stress response associated with division induction in cultured cells. The subsequent increase in P-body formation, with partitioning to the daughter cells during the division process, suggests a role in the cell cycle and its re-initiation in daughter cells. P-bodies were shown to be mobile in the cytoplasm and show actin-based motility which facilitates their post-transcriptional role and partitioning to daughter cells.
Collapse
Affiliation(s)
- Dilbag S Bhullar
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
| | - Michael B Sheahan
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
| | - Ray J Rose
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia.
| |
Collapse
|
291
|
Wang X, Chang L, Wang H, Su A, Wu Z. Dcp1a and GW182 Induce Distinct Cellular Aggregates and Have Different Effects on microRNA Pathway. DNA Cell Biol 2017; 36:565-570. [DOI: 10.1089/dna.2017.3633] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Xiaohui Wang
- Department of Hematology, Affiliated Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, People's Republic of China
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, People's Republic of China
| | - Liang Chang
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, People's Republic of China
| | - Huanru Wang
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, People's Republic of China
| | - Airong Su
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, People's Republic of China
| | - Zhiwei Wu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, People's Republic of China
- State Key Lab of Analytical Chemistry for Life Science, Nanjing University, Nanjing, People's Republic of China
- Jiangsu Laboratory for Molecular Medicines, Nanjing University, Nanjing, People's Republic of China
| |
Collapse
|
292
|
Shattuck JE, Waechter AC, Ross ED. The effects of glutamine/asparagine content on aggregation and heterologous prion induction by yeast prion-like domains. Prion 2017; 11:249-264. [PMID: 28665753 DOI: 10.1080/19336896.2017.1344806] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Prion-like domains are low complexity, intrinsically disordered domains that compositionally resemble yeast prion domains. Many prion-like domains are involved in the formation of either functional or pathogenic protein aggregates. These aggregates range from highly dynamic liquid droplets to highly ordered detergent-insoluble amyloid-like aggregates. To better understand the amino acid sequence features that promote conversion to stable, detergent-insoluble aggregates, we used the prediction algorithm PAPA to identify predicted aggregation-prone prion-like domains with a range of compositions. While almost all of the predicted aggregation-prone domains formed foci when expressed in cells, the ability to form the detergent-insoluble aggregates was highly correlated with glutamine/asparagine (Q/N) content, suggesting that high Q/N content may specifically promote conversion to the amyloid state in vivo. We then used this data set to examine cross-seeding between prion-like proteins. The prion protein Sup35 requires the presence of a second prion, [PIN+], to efficiently form prions, but this requirement can be circumvented by the expression of various Q/N-rich protein fragments. Interestingly, almost all of the Q/N-rich domains that formed SDS-insoluble aggregates were able to promote prion formation by Sup35, highlighting the highly promiscuous nature of these interactions.
Collapse
Affiliation(s)
- Jenifer E Shattuck
- a Department of Biochemistry and Molecular Biology , Colorado State University , Fort Collins , CO , USA
| | - Aubrey C Waechter
- a Department of Biochemistry and Molecular Biology , Colorado State University , Fort Collins , CO , USA
| | - Eric D Ross
- a Department of Biochemistry and Molecular Biology , Colorado State University , Fort Collins , CO , USA
| |
Collapse
|
293
|
Park J, Park Y, Ryu I, Choi MH, Lee HJ, Oh N, Kim K, Kim KM, Choe J, Lee C, Baik JH, Kim YK. Misfolded polypeptides are selectively recognized and transported toward aggresomes by a CED complex. Nat Commun 2017; 8:15730. [PMID: 28589942 PMCID: PMC5467238 DOI: 10.1038/ncomms15730] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 04/24/2017] [Indexed: 11/29/2022] Open
Abstract
Misfolded polypeptides are rapidly cleared from cells via the ubiquitin–proteasome system (UPS). However, when the UPS is impaired, misfolded polypeptides form small cytoplasmic aggregates, which are sequestered into an aggresome and ultimately degraded by aggrephagy. Despite the relevance of the aggresome to neurodegenerative proteinopathies, the molecular mechanisms underlying aggresome formation remain unclear. Here we show that the CTIF–eEF1A1–DCTN1 (CED) complex functions in the surveillance of either pre-existing or newly synthesized polypeptides by linking two molecular events: selective recognition and aggresomal targeting of misfolded polypeptides. These events are accompanied by CTIF sequestration into the aggresome, preventing the additional synthesis of misfolded polypeptides from mRNAs bound by nuclear cap-binding complex. These events render cells more resistant to apoptosis induced by proteotoxic stresses. Collectively, our data provide compelling evidence for a previously unappreciated protein surveillance pathway and a regulatory gene expression network for coping with misfolded polypeptides. Misfolded polypeptide aggregates are actively transported to aggresomes, where they are degraded through aggrephagy. Here the authors show that these aggregates are selectively recognized by the CTIF–eEF1A1–DCTN1 (CED) complex and transported to aggresomes through the interactions of DCTN1 with dynein motors.
Collapse
Affiliation(s)
- Joori Park
- Creative Research Initiatives Center for Molecular Biology of Translation, Korea University, Seoul 02841, Republic of Korea.,Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Yeonkyoung Park
- Creative Research Initiatives Center for Molecular Biology of Translation, Korea University, Seoul 02841, Republic of Korea.,Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Incheol Ryu
- Creative Research Initiatives Center for Molecular Biology of Translation, Korea University, Seoul 02841, Republic of Korea.,Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Mi-Hyun Choi
- Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Hyo Jin Lee
- Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Nara Oh
- Creative Research Initiatives Center for Molecular Biology of Translation, Korea University, Seoul 02841, Republic of Korea.,Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Kyutae Kim
- Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea.,BRI, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Kyoung Mi Kim
- Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Junho Choe
- Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Cheolju Lee
- BRI, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Ja-Hyun Baik
- Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Yoon Ki Kim
- Creative Research Initiatives Center for Molecular Biology of Translation, Korea University, Seoul 02841, Republic of Korea.,Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
294
|
Simon JR, Carroll NJ, Rubinstein M, Chilkoti A, López GP. Programming molecular self-assembly of intrinsically disordered proteins containing sequences of low complexity. Nat Chem 2017; 9:509-515. [PMID: 28537592 PMCID: PMC5597244 DOI: 10.1038/nchem.2715] [Citation(s) in RCA: 241] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 11/17/2016] [Indexed: 12/22/2022]
Abstract
Dynamic protein-rich intracellular structures that contain phase-separated intrinsically disordered proteins (IDPs) composed of sequences of low complexity (SLC) have been shown to serve a variety of important cellular functions, which include signalling, compartmentalization and stabilization. However, our understanding of these structures and our ability to synthesize models of them have been limited. We present design rules for IDPs possessing SLCs that phase separate into diverse assemblies within droplet microenvironments. Using theoretical analyses, we interpret the phase behaviour of archetypal IDP sequences and demonstrate the rational design of a vast library of multicomponent protein-rich structures that ranges from uniform nano-, meso- and microscale puncta (distinct protein droplets) to multilayered orthogonally phase-separated granular structures. The ability to predict and program IDP-rich assemblies in this fashion offers new insights into (1) genetic-to-molecular-to-macroscale relationships that encode hierarchical IDP assemblies, (2) design rules of such assemblies in cell biology and (3) molecular-level engineering of self-assembled recombinant IDP-rich materials.
Collapse
Affiliation(s)
- Joseph R. Simon
- NSF Research Triangle Materials Research Science and Engineering Center, Duke University, Durham, North Carolina 27708, USA
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | - Nick J. Carroll
- NSF Research Triangle Materials Research Science and Engineering Center, Duke University, Durham, North Carolina 27708, USA
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Michael Rubinstein
- NSF Research Triangle Materials Research Science and Engineering Center, Duke University, Durham, North Carolina 27708, USA
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Ashutosh Chilkoti
- NSF Research Triangle Materials Research Science and Engineering Center, Duke University, Durham, North Carolina 27708, USA
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | - Gabriel P. López
- NSF Research Triangle Materials Research Science and Engineering Center, Duke University, Durham, North Carolina 27708, USA
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, New Mexico 87131, USA
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, USA
| |
Collapse
|
295
|
Tumor protein D52 expression is post-transcriptionally regulated by T-cell intercellular antigen (TIA) 1 and TIA-related protein via mRNA stability. Biochem J 2017; 474:1669-1687. [PMID: 28298474 DOI: 10.1042/bcj20160942] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 03/09/2017] [Accepted: 03/15/2017] [Indexed: 12/13/2022]
Abstract
Although tumor protein D52 (TPD52) family proteins were first identified nearly 20 years ago, their molecular regulatory mechanisms remain unclear. Therefore, we investigated the post-transcriptional regulation of TPD52 family genes. An RNA immunoprecipitation (RIP) assay showed the potential binding ability of TPD52 family mRNAs to several RNA-binding proteins, and an RNA degradation assay revealed that TPD52 is subject to more prominent post-transcriptional regulation than are TPD53 and TPD54. We subsequently focused on the 3'-untranslated region (3'-UTR) of TPD52 as a cis-acting element in post-transcriptional gene regulation. Several deletion mutants of the 3'-UTR of TPD52 mRNA were constructed and ligated to the 3'-end of a reporter green fluorescence protein gene. An RNA degradation assay revealed that a minimal cis-acting region, located in the 78-280 region of the 5'-proximal region of the 3'-UTR, stabilized the reporter mRNA. Biotin pull-down and RIP assays revealed specific binding of the region to T-cell intracellular antigen 1 (TIA-1) and TIA-1-related protein (TIAR). Knockdown of TIA-1/TIAR decreased not only the expression, but also the stability of TPD52 mRNA; it also decreased the expression and stability of the reporter gene ligated to the 3'-end of the 78-280 fragment. Stimulation of transforming growth factor-β and epidermal growth factor decreased the binding ability of these factors, resulting in decreased mRNA stability. These results indicate that the 78-280 fragment and TIA-1/TIAR concordantly contribute to mRNA stability as a cis-acting element and trans-acting factor(s), respectively. Thus, we here report the specific interactions between these elements in the post-transcriptional regulation of the TPD52 gene.
Collapse
|
296
|
Rayman JB, Kandel ER. TIA-1 Is a Functional Prion-Like Protein. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a030718. [PMID: 28003185 DOI: 10.1101/cshperspect.a030718] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Prions are self-propagating protein conformations that are traditionally regarded as agents of neurodegenerative disease in animals. However, it has become evident that prion-like aggregation of endogenous proteins can also occur under normal physiological conditions (e.g., during memory storage or activation of the immune response). In this review, we focus on the functional prion-related protein TIA-1, an RNA-binding protein that is involved in multiple aspects of RNA metabolism but is best understood in terms of its role in stress granule assembly during the cellular stress response. We propose that stress granule formation provides a useful conceptual framework with which to address the positive role of TIA-1 prion-like aggregation. Elucidating the function of TIA-1 prion-like aggregation will advance our understanding of how prion-based molecular switches are used in normal physiological settings.
Collapse
Affiliation(s)
- Joseph B Rayman
- Department of Neuroscience, College of Physicians and Surgeons of Columbia University, New York, New York 10032
| | - Eric R Kandel
- Department of Neuroscience, College of Physicians and Surgeons of Columbia University, New York, New York 10032.,Department of Psychiatry, College of Physicians and Surgeons of Columbia University, New York, New York 10032.,Howard Hughes Medical Institute at Columbia University, New York, New York 10032.,Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York 10032.,Kavli Institute for Brain Science, Columbia University, New York, New York 10032
| |
Collapse
|
297
|
Zhang T, Li Y, Li H, Ma XS, Ouyang YC, Hou Y, Schatten H, Sun QY. RNA-associated protein LSM family member 14 controls oocyte meiotic maturation through regulating mRNA pools. J Reprod Dev 2017; 63:383-388. [PMID: 28458300 PMCID: PMC5593090 DOI: 10.1262/jrd.2017-018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
LSM family member 14 (LSM14) belongs to the RNA-associated protein (RAP) family that is widely expressed in different species, and whose functions include associating and storing mRNAs. In the present study, we found that LSM14b was essential for oocyte meiotic maturation. Lack of LSM14b caused oocyte meiotic arrest at metaphase, and misalignment of chromosomes, as well as abnormal spindle assembly checkpoint (SAC) and maturation promoting factor (MPF) activation. Cyclin B1 and Cdc20 mRNAs, whose contents changed with LSM14b expression, were likely direct targets of LSM14b. We conclude that LSM14b, by functioning as a container of mRNAs, controls protein expression, and thus regulates the oocyte meiotic maturation process.
Collapse
Affiliation(s)
- Teng Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100101, China
| | - Yuanyuan Li
- College of Animal Science, Guangxi University, Nanning 530003, China
| | - Hui Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100101, China
| | - Xue-Shan Ma
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ying-Chun Ouyang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi Hou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Qing-Yuan Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
298
|
Predicted RNA Binding Proteins Pes4 and Mip6 Regulate mRNA Levels, Translation, and Localization during Sporulation in Budding Yeast. Mol Cell Biol 2017; 37:MCB.00408-16. [PMID: 28193845 DOI: 10.1128/mcb.00408-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 02/05/2017] [Indexed: 02/05/2023] Open
Abstract
In response to starvation, diploid cells of Saccharomyces cerevisiae undergo meiosis and form haploid spores, a process collectively referred to as sporulation. The differentiation into spores requires extensive changes in gene expression. The transcriptional activator Ndt80 is a central regulator of this process, which controls many genes essential for sporulation. Ndt80 induces ∼300 genes coordinately during meiotic prophase, but different mRNAs within the NDT80 regulon are translated at different times during sporulation. The protein kinase Ime2 and RNA binding protein Rim4 are general regulators of meiotic translational delay, but how differential timing of individual transcripts is achieved was not known. This report describes the characterization of two related NDT80-induced genes, PES4 and MIP6, encoding predicted RNA binding proteins. These genes are necessary to regulate the steady-state expression, translational timing, and localization of a set of mRNAs that are transcribed by NDT80 but not translated until the end of meiosis II. Mutations in the predicted RNA binding domains within PES4 alter the stability of target mRNAs. PES4 and MIP6 affect only a small portion of the NDT80 regulon, indicating that they act as modulators of the general Ime2/Rim4 pathway for specific transcripts.
Collapse
|
299
|
Aguilera-Gomez A, Rabouille C. Membrane-bound organelles versus membrane-less compartments and their control of anabolic pathways in Drosophila. Dev Biol 2017; 428:310-317. [PMID: 28377034 DOI: 10.1016/j.ydbio.2017.03.029] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/27/2017] [Accepted: 03/27/2017] [Indexed: 12/29/2022]
Abstract
Classically, we think of cell compartmentalization as being achieved by membrane-bound organelles. It has nevertheless emerged that membrane-less assemblies also largely contribute to this compartmentalization. Here, we compare the characteristics of both types of compartmentalization in term of maintenance of functional identities. Furthermore, membrane less-compartments are critical for sustaining developmental and cell biological events as they control major metabolic pathways. We describe two examples related to this issue in Drosophila, the role of P-bodies in the translational control of gurken in the Drosophila oocyte, and the formation of Sec bodies upon amino-acid starvation in Drosophila cells.
Collapse
Affiliation(s)
| | - Catherine Rabouille
- Hubrecht Institute of the KNAW & UMC Utrecht, 3584 CT Utrecht, The Netherlands; Department of Cell Biology, UMC Utrecht, The Netherlands; Department of Cell Biology, UMC Groningen, The Netherlands.
| |
Collapse
|
300
|
Scott EY, Penedo MCT, Murray JD, Finno CJ. Defining Trends in Global Gene Expression in Arabian Horses with Cerebellar Abiotrophy. CEREBELLUM (LONDON, ENGLAND) 2017; 16:462-472. [PMID: 27709457 PMCID: PMC5336519 DOI: 10.1007/s12311-016-0823-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Equine cerebellar abiotrophy (CA) is a hereditary neurodegenerative disease that affects the Purkinje neurons of the cerebellum and causes ataxia in Arabian foals. Signs of CA are typically first recognized either at birth to any time up to 6 months of age. CA is inherited as an autosomal recessive trait and is associated with a single nucleotide polymorphism (SNP) on equine chromosome 2 (13074277G>A), located in the fourth exon of TOE1 and in proximity to MUTYH on the antisense strand. We hypothesize that unraveling the functional consequences of the CA SNP using RNA-seq will elucidate the molecular pathways underlying the CA phenotype. RNA-seq (100 bp PE strand-specific) was performed in cerebellar tissue from four CA-affected and five age-matched unaffected horses. Three pipelines for differential gene expression (DE) analysis were used (Tophat2/Cuffdiff2, Kallisto/EdgeR, and Kallisto/Sleuth) with 151 significant DE genes identified by all three pipelines in CA-affected horses. TOE1 (Log2(foldchange) = 0.92, p = 0.66) and MUTYH (Log2(foldchange) = 1.13, p = 0.66) were not differentially expressed. Among the major pathways that were differentially expressed, genes associated with calcium homeostasis and specifically expressed in Purkinje neurons, CALB1 (Log2(foldchange) = -1.7, p < 0.01) and CA8 (Log2(foldchange) = -0.97, p < 0.01), were significantly down-regulated, confirming loss of Purkinje neurons. There was also a significant up-regulation of markers for microglial phagocytosis, TYROBP (Log2(foldchange) = 1.99, p < 0.01) and TREM2 (Log2(foldchange) = 2.02, p < 0.01). These findings reaffirm a loss of Purkinje neurons in CA-affected horses along with a potential secondary loss of granular neurons and activation of microglial cells.
Collapse
Affiliation(s)
- E Y Scott
- Department of Animal Science, University of California, Davis, USA
| | - M C T Penedo
- Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, USA
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, USA
| | - J D Murray
- Department of Animal Science, University of California, Davis, USA.
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, USA.
| | - C J Finno
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, USA.
| |
Collapse
|