251
|
Gerace E, Bakanova SP, Di Corcia D, Salomone A, Vincenti M. Determination of cannabinoids in urine, oral fluid and hair samples after repeated intake of CBD-rich cannabis by smoking. Forensic Sci Int 2020; 318:110561. [PMID: 33172758 DOI: 10.1016/j.forsciint.2020.110561] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/17/2022]
Abstract
Cannabidiol prevalent (CBD-rich) cannabis derivatives are increasingly popular and widely available on the market as replacement of THC, tobacco substitutes or therapeutics for various health conditions. In this paper, we evaluate the impact of a repeated CBD-rich cannabis intake on levels of cannabinoids in biological samples. Urine, oral fluid and hair (pubic and head) samples were obtained from a naive user during a 26-day smoking period of one 250-mg CBD-rich cannabis joint/day containing 6.0% cannabidiol (CBD; 15mg) and 0.2% delta-9-tetrahydrocannabinol (THC; 0.5mg). In total, 35 urine, 8 oral fluid and 4hair sample were collected. Cannabinoids concentrations were quantified by a UHPLC/MSn technique. The results suggested that the repeated exposure to CBD-rich cannabis (containing small amounts of THC) can generate positive results in biological samples. Urinary concentrations of 11-nor-9-carboxy-delta-9-tetrahydrocannabinol (THC-COOH) were quantitatively detected after 8 days from the smoking start and exceeded the 15ng/mL cut-off limit on day-15 even in the urine sample collected 12h after the last intake. In the oral fluid collected on day-26, no cannabinoids were found before the cannabis intake, thus excluding accumulation, while THC was detectable up to 3h after the cannabis intake, at concentrations progressively decreasing from about 18 to 6ng/mL. Hair samples collected one week after the end of the study turned out negative for THC and THC-COOH, suggesting that this matrix is suitable to discriminate the chronic consumption of CBD-rich cannabis from THC-prevalent products. The obtained findings are relevant for the interpretations of cannabinoids levels in biological fluids, also in light of the legal implications of a positive result.
Collapse
Affiliation(s)
- Enrico Gerace
- Centro Regionale Antidoping e di Tossicologia"A. Bertinaria", Regione Gonzole 10/1, 10043 Orbassano, Turin, Italy.
| | | | - Daniele Di Corcia
- Centro Regionale Antidoping e di Tossicologia"A. Bertinaria", Regione Gonzole 10/1, 10043 Orbassano, Turin, Italy
| | - Alberto Salomone
- Centro Regionale Antidoping e di Tossicologia"A. Bertinaria", Regione Gonzole 10/1, 10043 Orbassano, Turin, Italy; Dipartimento di Chimica, Università degli Studi di Torino, via P. Giuria 7, 10125 Turin, Italy
| | - Marco Vincenti
- Centro Regionale Antidoping e di Tossicologia"A. Bertinaria", Regione Gonzole 10/1, 10043 Orbassano, Turin, Italy; Dipartimento di Chimica, Università degli Studi di Torino, via P. Giuria 7, 10125 Turin, Italy
| |
Collapse
|
252
|
Svensson CK. CBD for the treatment of pain: What is the evidence? J Am Pharm Assoc (2003) 2020; 60:e80-e83. [DOI: 10.1016/j.japh.2020.06.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/28/2020] [Accepted: 06/05/2020] [Indexed: 11/16/2022]
|
253
|
Yu Y, Yang Z, Jin B, Qin X, Zhu X, Sun J, Huo L, Wang R, Shi Y, Jia Z, Shi YS, Chu S, Kong D, Zhang W. Cannabidiol inhibits febrile seizure by modulating AMPA receptor kinetics through its interaction with the N-terminal domain of GluA1/GluA2. Pharmacol Res 2020; 161:105128. [DOI: 10.1016/j.phrs.2020.105128] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 07/30/2020] [Accepted: 08/05/2020] [Indexed: 12/15/2022]
|
254
|
Manthey J, Kalke J, Rehm J, Rosenkranz M, Verthein U. Controlled administration of cannabis to mitigate cannabis-attributable harm among recreational users: a quasi-experimental study in Germany. F1000Res 2020; 9:201. [PMID: 32789008 PMCID: PMC7400698 DOI: 10.12688/f1000research.22612.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/25/2020] [Indexed: 12/05/2022] Open
Abstract
Background: New approaches are required to slow down or reverse increasing trends of levels of delta-9-tetrahydrocannabinol (THC) and cannabis-attributable hospitalizations in Germany. Legal access to cannabis may constitute one viable effective policy response; however, available evidence does not suffice to inform a regulation model for Germany. The proposed study aims to reduce harm for cannabis users through legal access to herbal cannabis through pharmacies. Protocol: A quasi-experimental study comparing cannabis users with legal access to herbal cannabis (Berlin, intervention group) to those without legal access (Hamburg, control group) (total N=698). As the primary outcome, we hypothesize that: 1) illegal THC consumption will reduce by at least 50% in the intervention group and 2) total THC exposure in the intervention group will be reduced by at least 10% lower than that of the control group, taking into account baseline values. Secondary outcomes comprise measures of frequency of use, THC-impaired driving, and mode of administration. Paired t-tests and multilevel regression models will be performed for statistical analyses. Discussion: This study proposal is currently being reviewed by the ‘Federal Institute for Drugs and Medical Devices’ – the body responsible for approving research studies on classified substances, including cannabis. Upon approval and prior to the start of the study, a full ethical review will be undertaken. Results may inform a regulation model for Germany and other jurisdictions and are expected to deepen the understanding of the effects of legal access to cannabis. Pre-registration: German Clinical Trials Register (DRKS), DRKS00020829
Collapse
Affiliation(s)
- Jakob Manthey
- Institute of Clinical Psychology and Psychotherapy, Technische Universität Dresden, Dresden, Germany.,Centre for Interdisciplinary Addiction Research, Department of Psychiatry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jens Kalke
- Centre for Interdisciplinary Addiction Research, Department of Psychiatry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jürgen Rehm
- Institute of Clinical Psychology and Psychotherapy, Technische Universität Dresden, Dresden, Germany.,Centre for Interdisciplinary Addiction Research, Department of Psychiatry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Institute for Mental Health Policy Research and Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Dalla Lana School of Public Health and Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Department of International Health Projects, Institute for Leadership and Health Management, I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Moritz Rosenkranz
- Centre for Interdisciplinary Addiction Research, Department of Psychiatry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Uwe Verthein
- Centre for Interdisciplinary Addiction Research, Department of Psychiatry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
255
|
A Simple, Fast, and Green Oil Sample Preparation Method for Determination of Cannabidioloic Acid and Cannabidiol by HPLC-DAD. SEPARATIONS 2020. [DOI: 10.3390/separations7040060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Currently, the medical use of food supplements containing Cannabis sativa has attracted the interest of consumers, as well as the medical and scientific community. With the increasing consumption of these products, there is also a risk of their abuse or discrepancy between the actual and declared contents of active substances by the manufacturer in these products. Thus, the development and elaboration of analytical procedures for determination of appropriate phytocannabinoids seems to be important. This work focuses on the development of a simple, fast and environmentally friendly liquid-liquid extraction method combined with fat freezing from an oil sample to isolate two phytocannabinoids: cannabidiol (CBD) and cannabidiolic acid (CBDA). The extraction method was optimized considering efficacy and repeatability of extraction, as well as minimalizing use of organic reagents and sample amount. Under the optimized conditions, extraction recovery for CBD was 97.3–109% and for CBDA was 69.1–69.5% with precision (RSD, %) 5.0–8.4 and 7.1–10.6, respectively. The evaluated main analytical parameters of the developed high pressure liquid chromatography with diode array detector (HPLC-DAD) method for both studied cannabinoids are satisfactory. The usability of the developed method was checked by analysis of real samples of a food supplement–hemp oil enriched with CBD.
Collapse
|
256
|
Sait LG, Sula A, Ghovanloo MR, Hollingworth D, Ruben PC, Wallace BA. Cannabidiol interactions with voltage-gated sodium channels. eLife 2020; 9:58593. [PMID: 33089780 PMCID: PMC7641581 DOI: 10.7554/elife.58593] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 10/15/2020] [Indexed: 12/19/2022] Open
Abstract
Voltage-gated sodium channels are targets for a range of pharmaceutical drugs developed for the treatment of neurological diseases. Cannabidiol (CBD), the non-psychoactive compound isolated from cannabis plants, was recently approved for treatment of two types of epilepsy associated with sodium channel mutations. This study used high-resolution X-ray crystallography to demonstrate the detailed nature of the interactions between CBD and the NavMs voltage-gated sodium channel, and electrophysiology to show the functional effects of binding CBD to these channels. CBD binds at a novel site at the interface of the fenestrations and the central hydrophobic cavity of the channel. Binding at this site blocks the transmembrane-spanning sodium ion translocation pathway, providing a molecular mechanism for channel inhibition. Modelling studies suggest why the closely-related psychoactive compound tetrahydrocannabinol may not have the same effects on these channels. Finally, comparisons are made with the TRPV2 channel, also recently proposed as a target site for CBD. In summary, this study provides novel insight into a possible mechanism for CBD interactions with sodium channels.
Collapse
Affiliation(s)
- Lily Goodyer Sait
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, United Kingdom
| | - Altin Sula
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, United Kingdom
| | - Mohammad-Reza Ghovanloo
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| | - David Hollingworth
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, United Kingdom
| | - Peter C Ruben
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| | - B A Wallace
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, United Kingdom
| |
Collapse
|
257
|
Involvement of dopamine receptor in the actions of non-psychoactive phytocannabinoids. Biochem Biophys Res Commun 2020; 533:1366-1370. [PMID: 33097185 DOI: 10.1016/j.bbrc.2020.10.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 10/09/2020] [Indexed: 01/06/2023]
Abstract
Nematode Caenorhabditis elegans (C. elegans) exhibited a vigorous swimming behavior in liquid medium. Addition of dopamine inhibited the swimming behavior, causing paralysis in 65% of wild-type nematodes. Interestingly, phytocannabinoids cannabidiol (CBD) or cannabidivarin (CBDV), caused paralysis in 40% of the animals. Knockout of DOP-3, the dopamine D2-like receptor critical for locomotor behavior, eliminated the paralysis induced by dopamine, CBD, and CBDV. In contrast, both CBD and CBDV caused paralysis in animals lacking CAT-2, an enzyme necessary for dopamine synthesis. Co-administration of dopamine with either CBD or CBDV caused paralysis similar to that of either phytocannabinoid treatment alone. These data support the notion that CBD and CBDV act as functional partial agonists on dopamine D2-like receptors in vivo. The discovery that dopamine receptor is involved in the actions of phytocannabinoids moves a significant step toward our understanding of the mechanisms for medical uses of cannabis in the treatment of neurological and psychiatric disorders.
Collapse
|
258
|
Abstract
Autism spectrum disorder (ASD) is a multifactorial, pervasive neurodevelopmental disorder defined by the core symptoms of significant impairment in social interaction and communication as well as restricted, repetitive patterns of behavior. In addition to these core behaviors, persons with ASD frequently have associated noncore behavioral disturbance (ie, self-injury, aggression), as well as several medical comorbidities. Currently, no effective treatment exists for the core symptoms of ASD. This review reports the available preclinical and clinical data regarding the use of cannabis and cannabidiol in the treatment of core symptoms, noncore symptoms and comorbidities associated with ASD. Additionally, we describe our clinical experience working with children and young adults with ASD who have used cannabis or cannabidiol. At present, preclinical and clinical data suggest a potential for therapeutic benefit among some persons with ASD and that it is overall well tolerated. Further research is required to better identify patients who may benefit from treatment without adverse effects.
Collapse
|
259
|
Brighenti V, Protti M, Anceschi L, Zanardi C, Mercolini L, Pellati F. Emerging challenges in the extraction, analysis and bioanalysis of cannabidiol and related compounds. J Pharm Biomed Anal 2020; 192:113633. [PMID: 33039911 DOI: 10.1016/j.jpba.2020.113633] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 02/07/2023]
Abstract
Cannabidiol (CBD) is a bioactive terpenophenolic compound isolated from Cannabis sativa L. It is known to possess several properties of pharmaceutical interest, such as antioxidant, anti-inflammatory, anti-microbial, neuroprotective and anti-convulsant, being it active as a multi-target compound. From a therapeutic point of view, CBD is most commonly used for seizure disorder in children. CBD is present in both medical and fiber-type C. sativa plants, but, unlike Δ9-tetrahydrocannabinol (THC), it is a non-psychoactive compound. Non-psychoactive or fiber-type C. sativa (also known as hemp) differs from the medical one, since it contains only low levels of THC and high levels of CBD and related non-psychoactive cannabinoids. In addition to medical Cannabis, which is used for many different therapeutic purposes, a great expansion of the market of hemp plant material and related products has been observed in recent years, due to its usage in many fields, including food, cosmetics and electronic cigarettes liquids (commonly known as e-liquids). In this view, this work is focused on recent advances on sample preparation strategies and analytical methods for the chemical analysis of CBD and related compounds in both C. sativa plant material, its derived products and biological samples. Since sample preparation is considered to be a crucial step in the development of reliable analytical methods for the determination of natural compounds in complex matrices, different extraction methods are discussed. As regards the analysis of CBD and related compounds, the application of both separation and non-separation methods is discussed in detail. The advantages, disadvantages and applicability of the different methodologies currently available are evaluated. The scientific interest in the development of portable devices for the reliable analysis of CBD in vegetable and biological samples is also highlighted.
Collapse
Affiliation(s)
- Virginia Brighenti
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy
| | - Michele Protti
- Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Lisa Anceschi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy; Doctorate School in Clinical and Experimental Medicine (CEM), University of Modena and Reggio Emilia, Via G. Campi 103/287, 41125 Modena, Italy
| | - Chiara Zanardi
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy
| | - Laura Mercolini
- Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy.
| | - Federica Pellati
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy.
| |
Collapse
|
260
|
The Effects of Cannabidiol, a Non-Intoxicating Compound of Cannabis, on the Cardiovascular System in Health and Disease. Int J Mol Sci 2020; 21:ijms21186740. [PMID: 32937917 PMCID: PMC7554803 DOI: 10.3390/ijms21186740] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 12/12/2022] Open
Abstract
Cannabidiol (CBD) is a non-intoxicating and generally well-tolerated constituent of cannabis which exhibits potential beneficial properties in a wide range of diseases, including cardiovascular disorders. Due to its complex mechanism of action, CBD may affect the cardiovascular system in different ways. Thus, we reviewed the influence of CBD on this system in health and disease to determine the potential risk of cardiovascular side effects during CBD use for medical and wellness purposes and to elucidate its therapeutic potential in cardiovascular diseases. Administration of CBD to healthy volunteers or animals usually does not markedly affect hemodynamic parameters. Although CBD has been found to exhibit vasodilatory and antioxidant properties in hypertension, it has not affected blood pressure in hypertensive animals. Hypotensive action of CBD has been mainly revealed under stress conditions. Many positive effects of CBD have been observed in experimental models of heart diseases (myocardial infarction, cardiomyopathy, myocarditis), stroke, neonatal hypoxic ischemic encephalopathy, sepsis-related encephalitis, cardiovascular complications of diabetes, and ischemia/reperfusion injures of liver and kidneys. In these pathological conditions CBD decreased organ damage and dysfunction, oxidative and nitrative stress, inflammatory processes and apoptosis, among others. Nevertheless, further clinical research is needed to recommend the use of CBD in the treatment of cardiovascular diseases.
Collapse
|
261
|
Vape shop owners'/managers' attitudes about CBD, THC, and marijuana legal markets. Prev Med Rep 2020; 20:101208. [PMID: 32995147 PMCID: PMC7516178 DOI: 10.1016/j.pmedr.2020.101208] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 01/09/2023] Open
Abstract
Vape shop owners/managers perceive minimal risk and therapeutic benefits of CBD. They held diverse perspectives regarding marijuana retail and its potential impact. Some owners/merchants do not consider the CBD or THC markets in their business. Others indicated high levels of enthusiasm for the growing retail marijuana market.
Over the past decade in the US there have been marked pivotal changes in the policy and retail environment regarding cannabinoids, particularly cannabidiol (CBD) and delta-9-tetrahydrocannabinol (THC). Many vape shops may carry products relevant to these two markets. This study interviewed vape shop owners/managers to assess their perceptions of consumer interests/behaviors regarding CBD and THC and of the impact of legalized marijuana retail on vape shops. The current study involved phone-based semi-structured interviews of 45 vape shop owners/managers in six metropolitan statistical areas (MSAs; Atlanta, Boston, Minneapolis, Oklahoma City, San Diego, and Seattle) during Summer 2018. Overall, 82.2% of participants were male, 77.8% were non-Hispanic White, 64.4% were managers, 8.9% reported past 30-day smoking, and 95.6% reported past 30-day vaping. Overall, 44.4% sold e-liquids containing CBD. Vape shop owners/managers indicated minimal perceived risk and some beliefs in therapeutic benefits of CBD products; however, there was a broader range of perspectives regarding marijuana retail and selling marijuana for recreational use. Some chose to distance themselves from marijuana products, their use, and the possibility of entering marijuana retail if it were to evolve in their state, while some indicated high levels of enthusiasm for the growing retail marijuana market. Future research should examine how vape shops and other retailers of CBD and marijuana communicate with consumers about products and modes of using such products, as well as how various industry sectors (e.g., vape shops) adapt or evolve with increasing regulation of nicotine and increasing legalization of marijuana retail.
Collapse
|
262
|
McCartney D, Benson MJ, Suraev AS, Irwin C, Arkell TR, Grunstein RR, Hoyos CM, McGregor IS. The effect of cannabidiol on simulated car driving performance: A randomised, double-blind, placebo-controlled, crossover, dose-ranging clinical trial protocol. Hum Psychopharmacol 2020; 35:e2749. [PMID: 32729120 DOI: 10.1002/hup.2749] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/16/2020] [Accepted: 05/28/2020] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Interest in the use of cannabidiol (CBD) is increasing worldwide as its therapeutic effects are established and legal restrictions moderated. Unlike Δ9 -tetrahydrocannabinol (Δ9 -THC), CBD does not appear to cause cognitive or psychomotor impairment. However, further assessment of its effects on cognitively demanding day-to-day activities, such as driving, is warranted. Here, we describe a study investigating the effects of CBD on simulated driving and cognitive performance. METHODS Thirty healthy individuals will be recruited to participate in this randomised, double-blind, placebo-controlled crossover trial. Participants will complete four research sessions each involving two 30-min simulated driving performance tests completed 45 and 210 min following oral ingestion of placebo or 15, 300, or 1,500 mg CBD. Cognitive function and subjective drug effects will be measured, and blood and oral fluid sampled, at regular intervals. Oral fluid drug testing will be performed using the Securetec DrugWipe® 5S and Dräger DrugTest® 5000 devices to determine whether CBD increases the risk of "false-positive" roadside tests to Δ9 -THC. Noninferiority analyses will test the hypothesis that CBD is no more impairing than placebo. CONCLUSION This study will clarify the risks involved in driving following CBD use and assist in ensuring the safe use of CBD by drivers.
Collapse
Affiliation(s)
- Danielle McCartney
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, New South Wales, Australia
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Science, School of Psychology, The University of Sydney, Sydney, New South Wales, Australia
- Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Melissa J Benson
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, New South Wales, Australia
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Science, School of Psychology, The University of Sydney, Sydney, New South Wales, Australia
| | - Anastasia S Suraev
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, New South Wales, Australia
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Science, School of Psychology, The University of Sydney, Sydney, New South Wales, Australia
- Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Christopher Irwin
- School of Allied Health Sciences, Griffith University, Gold Coast, Queensland, Australia
- Menzies Health Institute Queensland, Gold Coast, Queensland, Australia
| | - Thomas R Arkell
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, New South Wales, Australia
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Science, School of Psychology, The University of Sydney, Sydney, New South Wales, Australia
| | - Ronald R Grunstein
- Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia
- Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- University of Sydney, Faculty of Medicine and Health, Central Clinical School, New South Wales, Australia
| | - Camilla M Hoyos
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Science, School of Psychology, The University of Sydney, Sydney, New South Wales, Australia
- Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Iain S McGregor
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, New South Wales, Australia
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Science, School of Psychology, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
263
|
Filho JFA, Dos Santos NA, Borges KB, Lacerda V, Pelição FS, Romão W. Fiber spray ionization mass spectrometry in forensic chemistry: A screening of drugs of abuse and direct determination of cocaine in urine. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34 Suppl 3:e8747. [PMID: 32056289 DOI: 10.1002/rcm.8747] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 01/30/2020] [Accepted: 02/06/2020] [Indexed: 06/10/2023]
Abstract
RATIONALE Ambient mass spectrometry techniques are much required in forensic chemistry to evaluate evidence with low analytical interference, high confidence, and accuracy. However, traditional methodologies, such as paper spray ionization, have been shown to present low sensitivity in the analysis of illicit drugs from biological matrices. METHODS Fiber spray ionization mass spectrometry (FSI-MS) was developed using a capillary polypropylene (PP) hollow fiber. Seized samples of drugs, i.e. a tablet, blotter paper, hashish, and cocaine powder, were analyzed. Cocaine was quantified from whole urine by dipping the fiber directly into solution. FSI-MS was tested for the analysis of a sample of urine obtained from a drug abuse suspect. RESULTS The FSI(+) analysis showed the detection of different types of synthetic drugs in tablet and blotter paper samples, e.g. amphetamine, cathinones, phenethylamines, and opioids, while pure cocaine and different types of coca alkaloids were identified from cocaine powder with good sensitivity and high mass accuracy. The hashish analysis by FSI(-) revealed signals of cannabinoids, cannabinoid acids, and cannabinoid derivatives, detected mainly as [M - H]- ions or chlorine adducts [M + Cl]- . The quantification of cocaine in whole urine showed good sensitivity and precision with limits of detection and quantification of 5.16 and 17.21 ng/mL, respectively, linearity above 0.999, and relative standard deviation below 2.71%. The evaluation of seized sample of urine showed the detection of cocaine with relative ion intensity greater than 36%, as well as the metabolites benzoylecgonine and cocaethylene with a relative intensity of 1.4% and 6%, respectively. CONCLUSIONS The developed FSI-MS method has the potential to be applied to forensic sample evaluation as well as to determine illicit drugs from biological matrices in toxicological analysis. The use of a capillary PP fiber has advantages as an extractor agent and ionizing substrate, and also the feature of it being dipped directly into the sample, thus preserving the integrity of the sample, which makes this a very promising ambient mass spectrometry method and relevant to forensic chemistry.
Collapse
Affiliation(s)
- João Francisco Allochio Filho
- Laboratório de Petroleômica e Química Forense, Departamento de Química, Universidade Federal do Espírito Santo, Vitória, ES, 29075-910, Brazil
- Instituto Federal do Espírito Santo, São Mateus, ES, 29932-540, Brazil
- Instituto Nacional de Ciência e Tecnologia Forense (INCT Forense), Brazil
| | - Nayara A Dos Santos
- Laboratório de Petroleômica e Química Forense, Departamento de Química, Universidade Federal do Espírito Santo, Vitória, ES, 29075-910, Brazil
- Instituto Nacional de Ciência e Tecnologia Forense (INCT Forense), Brazil
| | - Keyller Bastos Borges
- Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, São João del-Rei, MG, 36301-160, Brazil
| | - Valdemar Lacerda
- Laboratório de Petroleômica e Química Forense, Departamento de Química, Universidade Federal do Espírito Santo, Vitória, ES, 29075-910, Brazil
| | - Fabrício Souza Pelição
- Departamento Médico Legal, Polícia Civil do Espírito Santo (PC-ES), Vitória, ES, 29045-402, Brazil
| | - Wanderson Romão
- Laboratório de Petroleômica e Química Forense, Departamento de Química, Universidade Federal do Espírito Santo, Vitória, ES, 29075-910, Brazil
- Instituto Nacional de Ciência e Tecnologia Forense (INCT Forense), Brazil
- Instituto Federal do Espírito Santo, Vila Velha, ES, 29106-010, Brazil
| |
Collapse
|
264
|
Lachenmeier DW, Walch SG. Evidence for side effects of cannabidiol (CBD) products and their non-conformity on the European food market - response to the European Industrial Hemp Association. F1000Res 2020; 9:1051. [PMID: 33082934 PMCID: PMC7542252 DOI: 10.12688/f1000research.26045.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/20/2020] [Indexed: 04/04/2024] Open
Abstract
An interesting and valuable discussion has arisen from our recent article (Lachenmeier et al., 2020) and we are pleased to have the opportunity to expand on the various points we made. Equally important, we wish to correct several important misunderstandings that were made by Kruse and Beitzke (2020) on behalf of the European Industrial Hemp Association (EIHA) that possibly contributed to their concerns about the validity of our data, toxicological assessment and conclusions regarding regulatory status of cannabidiol (CBD) products. First and foremost, our study did only assess the risk of psychotropic Δ 9-tetrahydrocannabinol (THC) without inclusion of non-psychotropic Δ 9-tetrahydrocannabinolic acid (THCA). Secondly, as this article will discuss in more detail, there is ample evidence for side effects of CBD products, not only in paediatric patients, but also in adult users of over-the-counter CBD products (including inadvertent "high" effects). Thirdly, the exposure and risk assessment was conducted using up-to-date guidelines according to the European Food Safety Authority (EFSA) and the German Federal Institute for Risk Assessment (BfR). And finally, the current legal situation in the European Union, without approval of any hemp extract-containing product according to the Novel Food regulation, actually allows blanket statements that all such products are illegal on the market, and this indeed would imply a general ban on the use and marketing of such products as food or food ingredients until such an approval has been granted. We hope that this reassures the F1000Research readership regarding the validity of our results and conclusions. We are pleased, though, that the EIHA has acknowledged the fact that there are non-compliant CBD products available, but according to our data these are a substantial fraction of the market.
Collapse
Affiliation(s)
- Dirk W. Lachenmeier
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Karlsruhe, 76187, Germany
| | - Stephan G. Walch
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Karlsruhe, 76187, Germany
| |
Collapse
|
265
|
Lachenmeier DW, Walch SG. Evidence for adverse effects of cannabidiol (CBD) products and their non-conformity on the European food market - response to the European Industrial Hemp Association. F1000Res 2020; 9:1051. [PMID: 33082934 PMCID: PMC7542252 DOI: 10.12688/f1000research.26045.2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/11/2021] [Indexed: 01/29/2023] Open
Abstract
An interesting and valuable discussion has arisen from our recent article (Lachenmeier et al., 2020) and we are pleased to have the opportunity to expand on the various points we made. Equally important, we wish to correct several important misunderstandings that were made by Kruse and Beitzke (2020) on behalf of the European Industrial Hemp Association (EIHA) that possibly contributed to their concerns about the validity of our data, toxicological assessment and conclusions regarding regulatory status of cannabidiol (CBD) products. First and foremost, our study did only assess the risk of psychotropic Δ 9-tetrahydrocannabinol (THC) without inclusion of non-psychotropic Δ 9-tetrahydrocannabinolic acid (THCA). Secondly, as this article will discuss in more detail, there is ample evidence for adverse effects of CBD products, not only in paediatric patients, but also in adult users of over-the-counter CBD products (including inadvertent "high" effects). Thirdly, the exposure and risk assessment was conducted using up-to-date guidelines according to the European Food Safety Authority (EFSA) and the German Federal Institute for Risk Assessment (BfR). And finally, the current legal situation in the European Union, without approval of any hemp extract-containing product according to the Novel Food regulation, actually allows blanket statements that all such products are illegal on the market, and this indeed would imply a general ban on the use and marketing of such products as food or food ingredients until such an approval has been granted. We hope that this reassures the F1000Research readership regarding the validity of our results and conclusions. We are pleased, though, that the EIHA has acknowledged the fact that there are non-compliant CBD products available, but according to our data these are a substantial fraction of the market.
Collapse
Affiliation(s)
- Dirk W. Lachenmeier
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Karlsruhe, 76187, Germany
| | - Stephan G. Walch
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Karlsruhe, 76187, Germany
| |
Collapse
|
266
|
Bielawiec P, Harasim-Symbor E, Konstantynowicz-Nowicka K, Sztolsztener K, Chabowski A. Chronic Cannabidiol Administration Attenuates Skeletal Muscle De Novo Ceramide Synthesis Pathway and Related Metabolic Effects in a Rat Model of High-Fat Diet-Induced Obesity. Biomolecules 2020; 10:biom10091241. [PMID: 32859125 PMCID: PMC7564398 DOI: 10.3390/biom10091241] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/19/2020] [Accepted: 08/25/2020] [Indexed: 12/15/2022] Open
Abstract
Numerous studies showed that sustained obesity results in accumulation of bioactive lipid derivatives in several tissues, including skeletal muscle, which further contributes to the development of metabolic disturbances and insulin resistance (IR). The latest data indicate that a potential factor regulating lipid and glucose metabolism is a phytocannabinoid—cannabidiol (CBD), a component of medical marijuana (Cannabis). Therefore, we aimed to investigate whether chronic CBD administration influences bioactive lipid content (e.g., ceramide (CER)), as well as glucose metabolism, in the red skeletal muscle (musculus gastrocnemius) with predominant oxidative metabolism. All experiments were conducted on an animal model of obesity, i.e., Wistar rats fed a high-fat diet (HFD) or standard rodent chow, and subsequently injected with CBD in a dose of 10 mg/kg or its solvent for two weeks. The sphingolipid content was assessed using high-performance liquid chromatography (HPLC), while, in order to determine insulin and glucose concentrations, immunoenzymatic and colorimetric methods were used. The protein expression from sphingolipid and insulin signaling pathways, as well as endocannabinoidome components, was evaluated by immunoblotting. Unexpectedly, our experimental model revealed that the significantly intensified intramuscular de novo CER synthesis pathway in the HFD group was attenuated by chronic CBD treatment. Additionally, due to CBD administration, the content of other sphingolipid derivatives, i.e., sphingosine-1-phosphate (S1P) was restored in the high-fat feeding state, which coincided with an improvement in skeletal muscle insulin signal transduction and glycogen recovery.
Collapse
|
267
|
Peyravian N, Deo S, Daunert S, Jimenez JJ. Cannabidiol as a Novel Therapeutic for Immune Modulation. Immunotargets Ther 2020; 9:131-140. [PMID: 32903924 PMCID: PMC7445536 DOI: 10.2147/itt.s263690] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 07/21/2020] [Indexed: 12/18/2022] Open
Abstract
The immune-suppressive effects of cannabidiol (CBD) are attributed to the modulation of essential immunological signaling pathways and receptors. Mechanistic understanding of the pharmacological effects of CBD emphasizes the therapeutic potential of CBD as a novel immune modulator. Studies have observed that the antagonists of CB1 and CB2 receptors and transient receptor potential vanilloid 1 reverse the immunomodulatory effects of CBD. CBD also inhibits critical activators of the Janus kinase/signal transducer and activator of transcription signaling pathway, as well as the nucleotide-binding oligomerization domain-like receptor signaling pathway, in turn decreasing pro-inflammatory cytokine production. Furthermore, CBD protects against cellular damage incurred during immune responses by modulating adenosine signaling. Ultimately, the data overwhelmingly support the immunosuppressive effects of CBD and this timely review draws attention to the prospective development of CBD as an effective immune modulatory therapeutic.
Collapse
Affiliation(s)
- Nadia Peyravian
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA.,Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute of the University of Miami, Miami, FL, USA
| | - Sapna Deo
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA.,Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute of the University of Miami, Miami, FL, USA
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA.,Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute of the University of Miami, Miami, FL, USA.,University of Miami Clinical and Translational Science Institute, Miami, FL, USA
| | - Joaquin J Jimenez
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA.,Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute of the University of Miami, Miami, FL, USA.,Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
268
|
O’Connor CM, Anoushiravani AA, Adams C, Young JR, Richardson K, Rosenbaum AJ. Cannabinoid Use in Musculoskeletal Illness: a Review of the Current Evidence. Curr Rev Musculoskelet Med 2020; 13:379-384. [PMID: 32383037 PMCID: PMC7340702 DOI: 10.1007/s12178-020-09635-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
PURPOSE OF REVIEW The use of cannabinoids has increased since legalization of recreational and medical use in the USA. It is likely that many orthopaedic patients consume cannabinoid products during the traumatic or perioperative period. The purpose of this study was to investigate the pre-clinical data evaluating the mechanism of action of cannabidiol (CBD) and Δ9-Tetrahydrocannabinol (Δ9-THC) and to evaluate the current clinical data on the use of cannabinoids in musculoskeletal illness. RECENT FINDINGS Recent pre-clinical studies have demonstrated that cannabinoid use and the endocannabinoid system (ECS) has an important role in bone healing and bone homeostasis. There is data that suggests that the use of cannabidiol (CBD) may increase bone healing, whereas the use of Δ9-Tetrahydrocannabinol (Δ9-THC), the major psychoactive ingredient in marijuana, likely inhibits bone metabolism and repair. The clinical implications and consumption of marijuana by orthopaedic patients have not been thoroughly evaluated. Studies have demonstrated concern for negative cardiovascular and psychiatric effects caused by marijuana use, but have not yet elucidated outcomes in the orthopaedic literature. With the recent increase in advertising of CBD products and legalization of marijuana, it is likely that many orthopaedic patients are consuming cannabinoid products. The clinical implications and consumption of these products are unclear. We need more robust and well-designed clinical studies prior to making further recommendations to our patients on the consumption of these products.
Collapse
Affiliation(s)
- Casey M. O’Connor
- Department of Orthopaedic Surgery, Albany Medical Center, 43 New Scotland Road, Albany, NY USA
| | - Afshin A. Anoushiravani
- Department of Orthopaedic Surgery, Albany Medical Center, 43 New Scotland Road, Albany, NY USA
| | - Curtis Adams
- Department of Orthopaedic Surgery, Albany Medical Center, 43 New Scotland Road, Albany, NY USA
| | - Joe R. Young
- Department of Orthopaedic Surgery, Albany Medical Center, 43 New Scotland Road, Albany, NY USA
| | - Kyle Richardson
- Department of Orthopaedic Surgery, Albany Medical Center, 43 New Scotland Road, Albany, NY USA
| | - Andrew J. Rosenbaum
- Department of Orthopaedic Surgery, Albany Medical Center, 43 New Scotland Road, Albany, NY USA
| |
Collapse
|
269
|
Perucca E, Bialer M. Critical Aspects Affecting Cannabidiol Oral Bioavailability and Metabolic Elimination, and Related Clinical Implications. CNS Drugs 2020; 34:795-800. [PMID: 32504461 DOI: 10.1007/s40263-020-00741-5] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This article provides a critical appraisal of the available evidence concerning clinical exposure to orally administered cannabidiol (CBD), with special reference to factors affecting gastrointestinal absorption, presystemic elimination, and susceptibility to metabolic drug interactions. Although detailed studies have not been published, the available data suggest that the absolute bioavailability of CBD after oral dosing under fasting conditions is approximately 6%, and increases fourfold when the medication is co-administered with a high-fat meal. Based on measurements of CBD plasma exposure after oral dosing and a 6% absolute oral bioavailability estimate, the actual clearance of CBD in adults can be inferred to be in the order of 67 L/h, which is similar to the value of 74 ± 14 L/h (mean ± standard deviation) determined after intravenous injection of a 20-mg dose of deuterium-labeled CBD in five healthy subjects. Assuming that the CBD blood-to-plasma ratio is about 1, as in the case of tetrahydrocannabinol (THC), and that CBD metabolism takes place virtually entirely in the liver, it can be estimated that about 70 to 75% of an orally absorbed dose of CBD can be removed by hepatic metabolism before reaching the systemic circulation, and additionally CBD gastrointestinal absorption is incomplete. A formulation with improved biopharmaceutical properties could increase the extent of CBD absorption about fourfold (i.e., to the level achieved with the currently available formulations co-administered with a high-fat meal) and minimize the influence of food effects on CBD bioavailability. There is also potential for favoring the absorption of CBD through the enteric lymphatic system, thereby reducing the extent of presystemic hepatic elimination. Evidence that CBD can behave as a high hepatic clearance compound also has implications when predicting the magnitude of drug-drug interactions affecting CBD metabolism. These considerations have important clinical relevance, particularly with respect to the objective of minimizing pharmacokinetic variability and consequent intra- and interindividual differences in therapeutic response and susceptibility to adverse effects.
Collapse
Affiliation(s)
- Emilio Perucca
- Division of Clinical and Experimental Pharmacology, Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy.,IRCCS Mondino Foundation, Pavia, Italy
| | - Meir Bialer
- School of Pharmacy, Faculty of Medicine, Institute of Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel. .,David R. Bloom Center for Pharmacy, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
270
|
Chye Y, Kirkham R, Lorenzetti V, McTavish E, Solowij N, Yücel M. Cannabis, Cannabinoids, and Brain Morphology: A Review of the Evidence. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2020; 6:627-635. [PMID: 32948510 DOI: 10.1016/j.bpsc.2020.07.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/19/2020] [Accepted: 07/10/2020] [Indexed: 11/26/2022]
Abstract
Cannabis and cannabinoid-based products are increasingly being accepted and commodified globally. Yet there is currently limited understanding of the effect of the varied cannabinoid compounds on the brain. Exogenous cannabinoids interact with the endogenous cannabinoid system that underpins vital functions in the brain and body, and they are thought to perturb key brain and cognitive function. However, much neuroimaging research has been confined to observational studies of cannabis users, without examining the specific role of the various cannabinoids (Δ9-tetrahydrocannabinol, cannabidiol, etc.). This review summarizes the brain structural imaging evidence to date associated with cannabis use, its major cannabinoids (e.g., Δ9-tetrahydrocannabinol, cannabidiol), and synthetic cannabinoid products that have emerged as recreational drugs. In doing so, we seek to highlight some of the key issues to consider in understanding cannabinoid-related brain effects, emphasizing the dual neurotoxic and neuroprotective role of cannabinoids, and the need to consider the distinct role of the varied cannabinoids in establishing their effect on the brain.
Collapse
Affiliation(s)
- Yann Chye
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia; Monash Biomedical Imaging Facility, Monash University, Melbourne, Victoria, Australia
| | - Rebecca Kirkham
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia; Monash Biomedical Imaging Facility, Monash University, Melbourne, Victoria, Australia
| | - Valentina Lorenzetti
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia; Monash Biomedical Imaging Facility, Monash University, Melbourne, Victoria, Australia; School of Psychology, Faculty of Health Sciences, Australian Catholic University, Melbourne, Victoria, Australia
| | - Eugene McTavish
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia; Monash Biomedical Imaging Facility, Monash University, Melbourne, Victoria, Australia
| | - Nadia Solowij
- School of Psychology, University of Wollongong, Wollongong, New South Wales, Australia; Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, New South Wales, Australia; Australian Centre for Cannabinoid Clinical and Research Excellence, New Lambton Heights, New South Wales, Australia
| | - Murat Yücel
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia; Monash Biomedical Imaging Facility, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
271
|
Fraguas-Sánchez AI, Fernández-Carballido A, Delie F, Cohen M, Martin-Sabroso C, Mezzanzanica D, Figini M, Satta A, Torres-Suárez AI. Enhancing ovarian cancer conventional chemotherapy through the combination with cannabidiol loaded microparticles. Eur J Pharm Biopharm 2020; 154:246-258. [PMID: 32682943 DOI: 10.1016/j.ejpb.2020.07.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 06/25/2020] [Accepted: 07/10/2020] [Indexed: 12/24/2022]
Abstract
In this work, we evaluated, for the first time, the antitumor effect of cannabidiol (CBD) as monotherapy and in combination with conventional chemotherapeutics in ovarian cancer and developed PLGA-microparticles as CBD carriers to optimize its anticancer activity. Spherical microparticles, with a mean particle size around 25 µm and high entrapment efficiency were obtained. Microparticles elaborated with a CBD:polymer ratio of 10:100 were selected due to the most suitable release profile with a zero-order CBD release (14.13 ± 0.17 μg/day/10 mg Mps) for 40 days. The single administration of this formulation showed an in vitro extended antitumor activity for at least 10 days and an in ovo antitumor efficacy comparable to that of CBD in solution after daily topical administration (≈1.5-fold reduction in tumor growth vs control). The use of CBD in combination with paclitaxel (PTX) was really effective. The best treatment schedule was the pre + co-administration of CBD (10 µM) with PTX. Using this protocol, the single administration of microparticles was even more effective than the daily administration of CBD in solution, achieving a ≈10- and 8- fold reduction in PTX IC50 respectively. This protocol was also effective in ovo. While PTX conducted to a 1.5-fold tumor growth inhibition, its combination with both CBD in solution (daily administered) and 10-Mps (single administration) showed a 2-fold decrease. These results show the promising potential of CBD-Mps administered in combination with PTX for ovarian cancer treatment, since it would allow to reduce the administered dose of this antineoplastic drug maintaining the same efficacy and, as a consequence, reducing PTX adverse effects.
Collapse
Affiliation(s)
- A I Fraguas-Sánchez
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Pl Ramón y Cajal s/n., 28040 Madrid, Spain
| | - A Fernández-Carballido
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Pl Ramón y Cajal s/n., 28040 Madrid, Spain; Institute of Industrial Pharmacy, Faculty of Pharmacy, Complutense University of Madrid, Pl Ramón y Cajal s/n., Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - F Delie
- School of Pharmaceutical Sciences, Pharmaceutical Technology, University of Geneva, University of Lausanne, Rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - M Cohen
- Department of Gynecology and Obstetrics, Faculty of Medicine, University of Geneva, Geneva, Rue Michel-Servet 1, Geneva 1211, Switzerland
| | - C Martin-Sabroso
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Pl Ramón y Cajal s/n., 28040 Madrid, Spain; Institute of Industrial Pharmacy, Faculty of Pharmacy, Complutense University of Madrid, Pl Ramón y Cajal s/n., Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - D Mezzanzanica
- Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - M Figini
- Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - A Satta
- Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - A I Torres-Suárez
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Pl Ramón y Cajal s/n., 28040 Madrid, Spain; Institute of Industrial Pharmacy, Faculty of Pharmacy, Complutense University of Madrid, Pl Ramón y Cajal s/n., Universidad Complutense de Madrid, 28040 Madrid, Spain.
| |
Collapse
|
272
|
McCartney D, Benson MJ, Desbrow B, Irwin C, Suraev A, McGregor IS. Cannabidiol and Sports Performance: a Narrative Review of Relevant Evidence and Recommendations for Future Research. SPORTS MEDICINE - OPEN 2020; 6:27. [PMID: 32632671 PMCID: PMC7338332 DOI: 10.1186/s40798-020-00251-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/17/2020] [Indexed: 12/17/2022]
Abstract
Cannabidiol (CBD) is a non-intoxicating cannabinoid derived from Cannabis sativa. CBD initially drew scientific interest due to its anticonvulsant properties but increasing evidence of other therapeutic effects has attracted the attention of additional clinical and non-clinical populations, including athletes. Unlike the intoxicating cannabinoid, Δ9-tetrahydrocannabinol (Δ9-THC), CBD is no longer prohibited by the World Anti-Doping Agency and appears to be safe and well-tolerated in humans. It has also become readily available in many countries with the introduction of over-the-counter "nutraceutical" products. The aim of this narrative review was to explore various physiological and psychological effects of CBD that may be relevant to the sport and/or exercise context and to identify key areas for future research. As direct studies of CBD and sports performance are is currently lacking, evidence for this narrative review was sourced from preclinical studies and a limited number of clinical trials in non-athlete populations. Preclinical studies have observed robust anti-inflammatory, neuroprotective and analgesic effects of CBD in animal models. Preliminary preclinical evidence also suggests that CBD may protect against gastrointestinal damage associated with inflammation and promote healing of traumatic skeletal injuries. However, further research is required to confirm these observations. Early stage clinical studies suggest that CBD may be anxiolytic in "stress-inducing" situations and in individuals with anxiety disorders. While some case reports indicate that CBD improves sleep, robust evidence is currently lacking. Cognitive function and thermoregulation appear to be unaffected by CBD while effects on food intake, metabolic function, cardiovascular function, and infection require further study. CBD may exert a number of physiological, biochemical, and psychological effects with the potential to benefit athletes. However, well controlled, studies in athlete populations are required before definitive conclusions can be reached regarding the utility of CBD in supporting athletic performance.
Collapse
Affiliation(s)
- Danielle McCartney
- The University of Sydney, Faculty of Science, School of Psychology, Sydney, New South Wales, 2050, Australia.
- The University of Sydney, Lambert Initiative for Cannabinoid Therapeutics, Sydney, New South Wales, Australia.
- The University of Sydney, Brain and Mind Centre, Sydney, New South Wales, Australia.
| | - Melissa J Benson
- The University of Sydney, Faculty of Science, School of Psychology, Sydney, New South Wales, 2050, Australia
- The University of Sydney, Lambert Initiative for Cannabinoid Therapeutics, Sydney, New South Wales, Australia
- The University of Sydney, Brain and Mind Centre, Sydney, New South Wales, Australia
| | - Ben Desbrow
- School of Allied Health Sciences, Griffith University, Gold Coast, Queensland, Australia
| | - Christopher Irwin
- School of Allied Health Sciences, Griffith University, Gold Coast, Queensland, Australia
- Menzies Health Institute Queensland, Gold Coast, Queensland, Australia
| | - Anastasia Suraev
- The University of Sydney, Faculty of Science, School of Psychology, Sydney, New South Wales, 2050, Australia
- The University of Sydney, Lambert Initiative for Cannabinoid Therapeutics, Sydney, New South Wales, Australia
- The University of Sydney, Brain and Mind Centre, Sydney, New South Wales, Australia
| | - Iain S McGregor
- The University of Sydney, Faculty of Science, School of Psychology, Sydney, New South Wales, 2050, Australia
- The University of Sydney, Lambert Initiative for Cannabinoid Therapeutics, Sydney, New South Wales, Australia
- The University of Sydney, Brain and Mind Centre, Sydney, New South Wales, Australia
| |
Collapse
|
273
|
Ding S, Tian Y, Cai P, Zhang D, Cheng X, Sun D, Yuan L, Chen J, Tu W, Wei DQ, Hu QN. novoPathFinder: a webserver of designing novel-pathway with integrating GEM-model. Nucleic Acids Res 2020; 48:W477-W487. [PMID: 32313937 PMCID: PMC7319456 DOI: 10.1093/nar/gkaa230] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/16/2020] [Accepted: 03/28/2020] [Indexed: 12/14/2022] Open
Abstract
To increase the number of value-added chemicals that can be produced by metabolic engineering and synthetic biology, constructing metabolic space with novel reactions/pathways is crucial. However, with the large number of reactions that existed in the metabolic space and complicated metabolisms within hosts, identifying novel pathways linking two molecules or heterologous pathways when engineering a host to produce a target molecule is an arduous task. Hence, we built a user-friendly web server, novoPathFinder, which has several features: (i) enumerate novel pathways between two specified molecules without considering hosts; (ii) construct heterologous pathways with known or putative reactions for producing target molecule within Escherichia coli or yeast without giving precursor; (iii) estimate novel pathways with considering several categories, including enzyme promiscuity, Synthetic Complex Score (SCScore) and LD50 of intermediates, overall stoichiometric conversions, pathway length, theoretical yields and thermodynamic feasibility. According to the results, novoPathFinder is more capable to recover experimentally validated pathways when comparing other rule-based web server tools. Besides, more efficient pathways with novel reactions could also be retrieved for further experimental exploration. novoPathFinder is available at http://design.rxnfinder.org/novopathfinder/.
Collapse
Affiliation(s)
- Shaozhen Ding
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
| | - Yu Tian
- School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, Hubei 430023, China
| | - Pengli Cai
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, People's Republic of China
| | - Dachuan Zhang
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
| | - Xingxiang Cheng
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
| | - Dandan Sun
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
| | - Le Yuan
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE412 96 Gothenburg, Sweden
| | - Junni Chen
- Wuhan LifeSynther Science and Technology Co. Limited, Wuhan 430070, People's Republic of China
| | - Weizhong Tu
- Wuhan LifeSynther Science and Technology Co. Limited, Wuhan 430070, People's Republic of China
| | - Dong-Qing Wei
- State Key Laboratory of Microbial Metabolism (Shanghai Jiao Tong University), Shanghai 200240, China
| | - Qian-Nan Hu
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
| |
Collapse
|
274
|
Poyatos L, Pérez-Acevedo AP, Papaseit E, Pérez-Mañá C, Martin S, Hladun O, Siles A, Torrens M, Busardo FP, Farré M. Oral Administration of Cannabis and Δ-9-tetrahydrocannabinol (THC) Preparations: A Systematic Review. MEDICINA (KAUNAS, LITHUANIA) 2020; 56:E309. [PMID: 32585912 PMCID: PMC7353904 DOI: 10.3390/medicina56060309] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/13/2020] [Accepted: 06/17/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND OBJECTIVE Changes in cannabis legalization regimes in several countries have influenced the diversification of cannabis use. There is an ever-increasing number of cannabis forms available, which are gaining popularity for both recreational and therapeutic use. From a therapeutic perspective, oral cannabis containing Δ-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) is a promising route of administration but there is still little information about its pharmacokinetics (PK) effects in humans. The purpose of this systematic review is to provide a general overview of the available PK data on cannabis and THC after oral administration. METHODS A search of the published literature was conducted using the PubMed database to collect available articles describing the PK data of THC after oral administration in humans. RESULTS The literature search yielded 363 results, 26 of which met our inclusion criteria. The PK of oral THC has been studied using capsules (including oil content), tablets, baked goods (brownies and cookies), and oil and tea (decoctions). Capsules and tablets, which mainly correspond to pharmaceutical forms, were found to be the oral formulations most commonly studied. Overall, the results reflect the high variability in the THC absorption of oral formulations, with delayed peak plasma concentrations compared to other routes of administration. CONCLUSIONS Oral THC has a highly variable PK profile that differs between formulations, with seemingly higher variability in baked goods and oil forms. Overall, there is limited information available in this field. Therefore, further investigations are required to unravel the unpredictability of oral THC administration to increase the effectiveness and safety of oral formulations in medicinal use.
Collapse
Affiliation(s)
- Lourdes Poyatos
- Clinical Pharmacology Department, Hospital Universitari Germans Trias i Pujol and Institut de Recerca Germans Trias (HUGTiP-IGTP), 08916 Badalona, Spain; (L.P.); (E.P.); (C.P.-M.); (S.M.); (O.H.); (M.F.)
- Departments of Pharmacology, Therapeutics and Toxicology and Department of Psychiatry, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Spain;
| | - Ana Pilar Pérez-Acevedo
- Clinical Pharmacology Department, Hospital Universitari Germans Trias i Pujol and Institut de Recerca Germans Trias (HUGTiP-IGTP), 08916 Badalona, Spain; (L.P.); (E.P.); (C.P.-M.); (S.M.); (O.H.); (M.F.)
- Departments of Pharmacology, Therapeutics and Toxicology and Department of Psychiatry, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Spain;
| | - Esther Papaseit
- Clinical Pharmacology Department, Hospital Universitari Germans Trias i Pujol and Institut de Recerca Germans Trias (HUGTiP-IGTP), 08916 Badalona, Spain; (L.P.); (E.P.); (C.P.-M.); (S.M.); (O.H.); (M.F.)
- Departments of Pharmacology, Therapeutics and Toxicology and Department of Psychiatry, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Spain;
| | - Clara Pérez-Mañá
- Clinical Pharmacology Department, Hospital Universitari Germans Trias i Pujol and Institut de Recerca Germans Trias (HUGTiP-IGTP), 08916 Badalona, Spain; (L.P.); (E.P.); (C.P.-M.); (S.M.); (O.H.); (M.F.)
- Departments of Pharmacology, Therapeutics and Toxicology and Department of Psychiatry, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Spain;
| | - Soraya Martin
- Clinical Pharmacology Department, Hospital Universitari Germans Trias i Pujol and Institut de Recerca Germans Trias (HUGTiP-IGTP), 08916 Badalona, Spain; (L.P.); (E.P.); (C.P.-M.); (S.M.); (O.H.); (M.F.)
| | - Olga Hladun
- Clinical Pharmacology Department, Hospital Universitari Germans Trias i Pujol and Institut de Recerca Germans Trias (HUGTiP-IGTP), 08916 Badalona, Spain; (L.P.); (E.P.); (C.P.-M.); (S.M.); (O.H.); (M.F.)
- Departments of Pharmacology, Therapeutics and Toxicology and Department of Psychiatry, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Spain;
| | - Adrià Siles
- Pharmacy Department, Hospital Universitari Germans Trias i Pujol and Institut de Recerca Germans Trias (HUGTiP-IGTP), 08916 Badalona, Spain;
| | - Marta Torrens
- Departments of Pharmacology, Therapeutics and Toxicology and Department of Psychiatry, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Spain;
- Drug Addiction Program, Institut de Neuropsiquiatria, Parc de Salut Mar and Institut Hospital del Mar de Recerca Mèdica (PSMAR-IMIM), 08003 Barcelona, Spain
| | - Francesco Paolo Busardo
- Department of Excellence-Biomedical Sciences and Public Health, Università Politecnica delle Marche, 60121 Ancona, Italy;
| | - Magí Farré
- Clinical Pharmacology Department, Hospital Universitari Germans Trias i Pujol and Institut de Recerca Germans Trias (HUGTiP-IGTP), 08916 Badalona, Spain; (L.P.); (E.P.); (C.P.-M.); (S.M.); (O.H.); (M.F.)
- Departments of Pharmacology, Therapeutics and Toxicology and Department of Psychiatry, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Spain;
| |
Collapse
|
275
|
Fiani B, Sarhadi KJ, Soula M, Zafar A, Quadri SA. Current application of cannabidiol (CBD) in the management and treatment of neurological disorders. Neurol Sci 2020; 41:3085-3098. [PMID: 32556748 DOI: 10.1007/s10072-020-04514-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 06/02/2020] [Indexed: 02/07/2023]
Abstract
Cannabidiol (CBD), which is nonintoxicating pharmacologically relevant constituents of Cannabis, demonstrates several beneficial effects. It has been found to have antioxidative, anti-inflammatory, and neuroprotective effects. As the medicinal use of CBD is gaining popularity for treatment of various disorders, the recent flare-up of largely unproven and unregulated cannabis-based preparations on medical therapeutics may have its greatest impact in the field of neurology. Currently, as lot of clinical trials are underway, CBD demonstrates remarkable potential to become a supplemental therapy in various neurological conditions. It has shown promise in the treatment of neurological disorders such as anxiety, chronic pain, trigeminal neuralgia, epilepsy, and essential tremors as well as psychiatric disorders. While recent FDA-approved prescription drugs have demonstrated safety, efficacy, and consistency enough for regulatory approval in spasticity in multiple sclerosis (MS) and in Dravet and Lennox-Gastaut Syndromes (LGS), many therapeutic challenges still remain. In the current review, the authors have shed light on the application of CBD in the management and treatment of various neurological disorders.
Collapse
Affiliation(s)
- Brian Fiani
- Department of Neurosurgery, Desert Regional Medical Center, Palm Springs, CA, USA
| | | | - Marisol Soula
- New York University School of Medicine, New York, NY, USA
| | - Atif Zafar
- Department of Neurology, University of New Mexico, Albuquerque, NM, USA
| | - Syed A Quadri
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
276
|
Charytoniuk T, Zywno H, Konstantynowicz-Nowicka K, Berk K, Bzdega W, Chabowski A. Can Physical Activity Support the Endocannabinoid System in the Preventive and Therapeutic Approach to Neurological Disorders? Int J Mol Sci 2020; 21:E4221. [PMID: 32545780 PMCID: PMC7352563 DOI: 10.3390/ijms21124221] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/07/2020] [Accepted: 06/09/2020] [Indexed: 12/14/2022] Open
Abstract
The worldwide prevalence of neurological and neurodegenerative disorders, such as depression or Alzheimer's disease, has spread extensively throughout the last decades, becoming an enormous health issue. Numerous data indicate a distinct correlation between the altered endocannabinoid signaling and different aspects of brain physiology, such as memory or neurogenesis. Moreover, the endocannabinoid system is widely regarded as a crucial factor in the development of neuropathologies. Thus, targeting those disorders via synthetic cannabinoids, as well as phytocannabinoids, becomes a widespread research issue. Over the last decade, the endocannabinoid system has been extensively studied for its correlation with physical activity. Recent data showed that physical activity correlates with elevated endocannabinoid serum concentrations and increased cannabinoid receptor type 1 (CB1R) expression in the brain, which results in positive neurological effects including antidepressant effect, ameliorated memory, neuroplasticity development, and reduced neuroinflammation. However, none of the prior reviews presented a comprehensive correlation between physical activity, the endocannabinoid system, and neuropathologies. Thus, our review provides a current state of knowledge of the endocannabinoid system, its action in physical activity, as well as neuropathologies and a possible correlation between all those fields. We believe that this might contribute to finding a new preventive and therapeutic approach to both neurological and neurodegenerative disorders.
Collapse
Affiliation(s)
- Tomasz Charytoniuk
- Department of Physiology, Medical University of Bialystok, 15-089 Białystok, Poland; (H.Z.); (K.K.-N.); (K.B.); (W.B.); (A.C.)
| | | | | | | | | | | |
Collapse
|
277
|
Formato M, Crescente G, Scognamiglio M, Fiorentino A, Pecoraro MT, Piccolella S, Catauro M, Pacifico S. (‒)-Cannabidiolic Acid, a Still Overlooked Bioactive Compound: An Introductory Review and Preliminary Research. Molecules 2020; 25:molecules25112638. [PMID: 32517131 PMCID: PMC7321064 DOI: 10.3390/molecules25112638] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/26/2020] [Accepted: 06/04/2020] [Indexed: 12/17/2022] Open
Abstract
Cannabidiolic acid (CBDA) is the main phytocannabinoid in fiber and seed-oil hemp (Cannabis sativa L.) plants, but its potential health-related capabilities have been masked for years by a greater scientific interest towards its neutral derivative cannabidiol (CBD). This review aims to collect from the literature and critically discuss all the information about this molecule, starting from its biosynthesis, and focusing on its bioactivity, as an anti-inflammatory, anti-emetic, anti-convulsant, and anti-cancerogenic drug. Furthermore, in the awareness that, despite its multiple bioactive effects, currently poor efforts have been made to achieve its reliable purification, herein, we propose a relatively simple, fast, and inexpensive procedure for its recovery from pollen of industrial hemp cultivars. Spectroscopic and spectrometric techniques allowed us to unequivocally identify pure isolated CBDA and to distinguish it from the constitutional isomer tetrahydrocannabinolic acid (THCA-A).
Collapse
Affiliation(s)
- Marialuisa Formato
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (M.F.); (G.C.); (M.S.); (A.F.); (M.T.P.); (S.P.)
| | - Giuseppina Crescente
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (M.F.); (G.C.); (M.S.); (A.F.); (M.T.P.); (S.P.)
| | - Monica Scognamiglio
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (M.F.); (G.C.); (M.S.); (A.F.); (M.T.P.); (S.P.)
| | - Antonio Fiorentino
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (M.F.); (G.C.); (M.S.); (A.F.); (M.T.P.); (S.P.)
| | - Maria Tommasina Pecoraro
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (M.F.); (G.C.); (M.S.); (A.F.); (M.T.P.); (S.P.)
| | - Simona Piccolella
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (M.F.); (G.C.); (M.S.); (A.F.); (M.T.P.); (S.P.)
| | - Michelina Catauro
- Department of Engineering, University of Campania “Luigi Vanvitelli”, Via Roma 29, I-81031 Aversa, Italy;
| | - Severina Pacifico
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (M.F.); (G.C.); (M.S.); (A.F.); (M.T.P.); (S.P.)
- Correspondence:
| |
Collapse
|
278
|
Mabou Tagne A, Pacchetti B, Sodergren M, Cosentino M, Marino F. Cannabidiol for Viral Diseases: Hype or Hope? Cannabis Cannabinoid Res 2020; 5:121-131. [PMID: 32656344 DOI: 10.1089/can.2019.0060] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background: The possibility of cannabidiol (CBD) to be used as an antiviral or to treat viral diseases has received limited attention so far, despite the growing number of claims that CBD could be used for the treatment of viral infection-related conditions. Aim and Methods: Therefore, we systematically retrieved and critically evaluated the scientific literature available on PubMed and the claims on the Internet, to assess the current state of knowledge on the use of CBD in viral diseases, and to provide suggestions for future research directions. Results: PubMed search referenced two original articles supporting the use of CBD for the treatment of hepatitis C and Kaposi sarcoma and one article reporting the ability of CBD to reduce neuroinflammation in a virus-induced animal model of multiple sclerosis. Internet search found 25 websites claiming more indications for CBD. Remarkably, those claims were provided mostly by commercial websites and were not supported by appropriate scientific references. Conclusion: Although preclinical studies suggest the potential effectiveness of CBD in viral diseases such as hepatitis C and Kaposi sarcoma, clinical evidence is still lacking. Anecdotal experiences of CBD use retrieved on the Internet, on the other side, lack any support from sound scientific evidence, although they might in some cases provide suggestions for conditions associated with viral infections that may deserve proper assessment in well-designed clinical trials.
Collapse
Affiliation(s)
- Alex Mabou Tagne
- Center for Research in Medical Pharmacology, University of Insubria, Varese, Italy
| | | | - Mikael Sodergren
- Emmac Life Sciences, London, United Kingdom.,Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Marco Cosentino
- Center for Research in Medical Pharmacology, University of Insubria, Varese, Italy
| | - Franca Marino
- Center for Research in Medical Pharmacology, University of Insubria, Varese, Italy
| |
Collapse
|
279
|
Schmitz SM, Lopez HL, Marinotti O. Post Marketing Safety of Plus CBD™ Products, a Full Spectrum Hemp Extract: A 2-Year Experience. J Diet Suppl 2020; 17:587-598. [DOI: 10.1080/19390211.2020.1767255] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
| | - Hector L. Lopez
- Supplement Safety Solutions, Bedford, MA
- The Center for Applied Health Sciences, Stow, OH
| | | |
Collapse
|
280
|
Woo JJ, van Reekum EA, Rosic T, Samaan Z. Children and Youth Who Use Cannabis for Pain Relief: Benefits, Risks, and Perceptions. ADOLESCENT HEALTH MEDICINE AND THERAPEUTICS 2020; 11:53-61. [PMID: 32547283 PMCID: PMC7247732 DOI: 10.2147/ahmt.s254264] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 04/24/2020] [Indexed: 12/16/2022]
Abstract
We provide up-to-date perspectives on the benefits and risks of medical cannabis for pain management in children and youth. To date, only two studies (a case report and a small observational study) have examined the effects of medical cannabis on pain in children and youth. No controlled trial has commented on long-term safety of medical cannabis. Findings from the recreational cannabis literature reveal significant potential short- and long-term risks of regular cannabis use, including impaired driving, depression, suicidality, psychosis, and tolerance. Despite this, many children and youth are self-medicating with cannabis, and perceive regular cannabis use to be safe. There is a need for better education and counselling of patients regarding the benefits and risks of medical cannabis use.
Collapse
Affiliation(s)
- Julia J Woo
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | | | - Tea Rosic
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Zainab Samaan
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
281
|
Prieto JP, López Hill X, Urbanavicius J, Sanchez V, Nadal X, Scorza C. Cannabidiol Prevents the Expression of the Locomotor Sensitization and the Metabolic Changes in the Nucleus Accumbens and Prefrontal Cortex Elicited by the Combined Administration of Cocaine and Caffeine in Rats. Neurotox Res 2020; 38:478-486. [PMID: 32415526 DOI: 10.1007/s12640-020-00218-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 12/15/2022]
Abstract
In the last years, clinical and preclinical researchers have increased their interest in non-psychotomimetic cannabinoids, like cannabidiol (CBD), as a strategy for treating psychostimulant use disorders. However, there are discrepancies in the pharmacological effects and brain targets of CBD. We evaluated if CBD was able to prevent the locomotor sensitization elicited by cocaine and caffeine co-administration. The effect of CBD on putative alterations in the metabolic activity of the medial prefrontal cortex (mPFC) and nucleus accumbens (NAc), and its respective subregions (cingulated, prelimbic, and infralimbic cortices, and NAc core and shell) associated to the behavioral response, was also investigated. Rats were intraperitoneally and repeatedly treated with CBD (20 mg/kg) or its vehicle, followed by the combination of cocaine and caffeine (Coc+Caf; 5 mg/kg and 2.5 mg/kg, respectively) or saline for 3 days. After 5 days of withdrawal, all animals were challenged with Coc+Caf (day 9). Locomotor activity was automatically recorded and analyzed by a video-tracking software. The metabolic activity was determined by measuring cytochrome oxidase-I (CO-I) staining. Locomotion was significantly and similarly increased both in Veh-Coc+Caf- and CBD-Coc+Caf-treated animals during the pretreatment period (3 days); however, on day 9, the expression of the sensitization was blunted in CBD-treated animals. A hypoactive metabolic response and a hyperactive metabolic response in mPFC and NAc subregions respectively were observed after the behavioral sensitization. CBD prevented almost all these changes. Our findings substantially contribute to the understanding of the functional changes associated with cocaine- and caffeine-induced sensitization and the effect of CBD on this process.
Collapse
Affiliation(s)
- José Pedro Prieto
- Departamento de Neurofarmacología Experimental, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, 11600, Montevideo, Uruguay
| | - Ximena López Hill
- Departamento de Neurofarmacología Experimental, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, 11600, Montevideo, Uruguay
| | - Jessika Urbanavicius
- Departamento de Neurofarmacología Experimental, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, 11600, Montevideo, Uruguay
| | | | - Xavier Nadal
- Phytoplant Research S.L., Córdoba, Spain.,, Barcelona, Spain
| | - Cecilia Scorza
- Departamento de Neurofarmacología Experimental, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, 11600, Montevideo, Uruguay.
| |
Collapse
|
282
|
Brunetti P, Pichini S, Pacifici R, Busardò FP, del Rio A. Herbal Preparations of Medical Cannabis: A Vademecum for Prescribing Doctors. ACTA ACUST UNITED AC 2020; 56:medicina56050237. [PMID: 32429074 PMCID: PMC7279290 DOI: 10.3390/medicina56050237] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/23/2020] [Accepted: 05/13/2020] [Indexed: 02/07/2023]
Abstract
Cannabis has been used for centuries for therapeutic purposes. In the last century, the plant was demonized due to its high abuse liability and supposedly insufficient health benefits. However, recent decriminalization policies and new scientific evidence have increased the interest in cannabis therapeutic potential of cannabis and paved the way for the release of marketing authorizations for cannabis-based products. Although several synthetic and standardized products are currently available on the market, patients’ preferences lean towards herbal preparations, because they are easy to handle and self-administer. A literature search was conducted on multidisciplinary research databases and international agencies or institutional websites. Despite the growing popularity of medical cannabis, little data is available on the chemical composition and preparation methods of medical cannabis extracts. The authors hereby report the most common cannabis preparations, presenting their medical indications, routes of administration and recommended dosages. A practical and helpful guide for prescribing doctors is provided, including suggested posology, titration strategies and cannabinoid amounts in herbal preparations obtained from different sources of medical cannabis.
Collapse
Affiliation(s)
- Pietro Brunetti
- Department of Excellence of Biomedical Sciences and Public Health, “Politecnica delle Marche” University of Ancona, Via Tronto 71, 60126 Ancona, Italy;
| | - Simona Pichini
- Analytical Pharmacotoxicology Unit Head, National Centre on Addiction and Doping, Istituto Superiore di Sanità V.Le Regina Elena 299, 00161 Rome, Italy; (S.P.); (R.P.)
| | - Roberta Pacifici
- Analytical Pharmacotoxicology Unit Head, National Centre on Addiction and Doping, Istituto Superiore di Sanità V.Le Regina Elena 299, 00161 Rome, Italy; (S.P.); (R.P.)
| | - Francesco Paolo Busardò
- Department of Excellence of Biomedical Sciences and Public Health, “Politecnica delle Marche” University of Ancona, Via Tronto 71, 60126 Ancona, Italy;
- Correspondence: ; Tel.: +39-0715-964-727
| | - Alessandro del Rio
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University, 00161 Rome, Italy;
| |
Collapse
|
283
|
Allende G, Chávez-Reyes J, Guerrero-Alba R, Vázquez-León P, Marichal-Cancino BA. Advances in Neurobiology and Pharmacology of GPR12. Front Pharmacol 2020; 11:628. [PMID: 32457622 PMCID: PMC7226366 DOI: 10.3389/fphar.2020.00628] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/21/2020] [Indexed: 01/19/2023] Open
Abstract
GPR12 is a G protein-coupled orphan receptor genetically related to type 1 and type 2 cannabinoid receptors (CB1 and CB2) which are ancient proteins expressed all over the body. Both cannabinoid receptors, but especially CB1, are involved in neurodevelopment and cognitive processes such as learning, memory, brain reward, coordination, etc. GPR12 shares with CB1 that both are mainly expressed into the brain. Regrettably, very little is known about physiology of GPR12. Concerning its pharmacology, GPR12 seems to be endogenously activated by the lysophospholipids sphingosine-1-phosphate (S1P) and sphingosyl-phosphorylcholine (SPC). Exogenously, GPR12 is a target for the phytocannabinoid cannabidiol (CBD). Functionally, GPR12 seems to be related to neurogenesis and neural inflammation, but its relationship with cognitive functions remains to be characterized. Although GPR12 was initially suggested to be a cannabinoid receptor, it does not meet the five criteria proposed in 2010 by the International Union of Basic and Clinical Pharmacology (IUPHAR). In this review, we analyze all the direct available information in PubMed database about expression, function, and pharmacology of this receptor in central nervous system (CNS) trying to provide a broad overview of its current and prospective neurophysiology. Moreover, in this mini-review we highlight the need to produce more relevant data about the functions of GPR12 in CNS. Hence, this work should motivate further research in this field.
Collapse
Affiliation(s)
- Gonzalo Allende
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Ciudad Universitaria, Aguascalientes, Mexico
| | - Jesús Chávez-Reyes
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Ciudad Universitaria, Aguascalientes, Mexico
| | - Raquel Guerrero-Alba
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Ciudad Universitaria, Aguascalientes, Mexico
| | - Priscila Vázquez-León
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Ciudad Universitaria, Aguascalientes, Mexico
| | - Bruno A Marichal-Cancino
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Ciudad Universitaria, Aguascalientes, Mexico
| |
Collapse
|
284
|
Deville M, Dubois N, Denooz R, Charlier C. Validation of an UHPLC/DAD method for the determination of cannabinoids in seized materials: Analysis of 213 samples sold in Belgian CBD shops. Forensic Sci Int 2020; 310:110234. [DOI: 10.1016/j.forsciint.2020.110234] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 02/14/2020] [Accepted: 02/29/2020] [Indexed: 10/24/2022]
|
285
|
Tan Q, Orsso CE, Deehan EC, Triador L, Field CJ, Tun HM, Han JC, Müller TD, Haqq AM. Current and emerging therapies for managing hyperphagia and obesity in Prader-Willi syndrome: A narrative review. Obes Rev 2020; 21:e12992. [PMID: 31889409 DOI: 10.1111/obr.12992] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/07/2019] [Accepted: 12/09/2019] [Indexed: 12/16/2022]
Abstract
In early childhood, individuals with Prader-Willi syndrome (PWS) experience excess weight gain and severe hyperphagia with food compulsivity, which often leads to early onset morbid obesity. Effective treatments for appetite suppression and weight control are currently unavailable for PWS. Our aim to further understand the pathogenesis of PWS led us to carry out a comprehensive search of the current and emerging therapies for managing hyperphagia and extreme weight gain in PWS. A literature search was performed using PubMed and the following keywords: "PWS" AND "therapy" OR "[drug name]"; reference lists, pharmaceutical websites, and the ClinicalTrials.gov registry were also reviewed. Articles presenting data from current standard treatments in PWS and also clinical trials of pharmacological agents in the pipeline were selected. Current standard treatments include dietary restriction/modifications, exercise, and growth hormone replacement, which appear to have limited efficacy for appetite and weight control in patients with PWS. The long-term safety and effectiveness of bariatric surgery in PWS remains unknown. However, many promising pharmacotherapies are in development and, if approved, will bring much needed choices into the PWS pharmacological armamentarium. With the progress that is currently being made in our understanding of PWS, an effective treatment may not be far off.
Collapse
Affiliation(s)
- Qiming Tan
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Camila E Orsso
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Edward C Deehan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Lucila Triador
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Catherine J Field
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Hein Min Tun
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Joan C Han
- Departments of Pediatrics and Physiology, College of Medicine, University of Tennessee Health Science Center and Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, Tennessee, USA
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, Neuherberg, Germany.,Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls University Hospitals and Clinics, Tübingen, Germany
| | - Andrea M Haqq
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada.,Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
286
|
Cannabidiol and tetrahydrocannabinol concentrations in commercially available CBD E-liquids in Switzerland. Forensic Sci Int 2020; 310:110261. [DOI: 10.1016/j.forsciint.2020.110261] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/11/2020] [Accepted: 03/15/2020] [Indexed: 01/12/2023]
|
287
|
Martínez V, Iriondo De-Hond A, Borrelli F, Capasso R, del Castillo MD, Abalo R. Cannabidiol and Other Non-Psychoactive Cannabinoids for Prevention and Treatment of Gastrointestinal Disorders: Useful Nutraceuticals? Int J Mol Sci 2020; 21:E3067. [PMID: 32357565 PMCID: PMC7246936 DOI: 10.3390/ijms21093067] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 02/06/2023] Open
Abstract
Cannabis sativa is an aromatic annual flowering plant with several botanical varieties, used for different purposes, like the production of fibers, the production of oil from the seeds, and especially for recreational or medical purposes. Phytocannabinoids (terpenophenolic compounds derived from the plant), include the well-known psychoactive cannabinoid Δ9-tetrahydrocannabinol, and many non-psychoactive cannabinoids, like cannabidiol. The endocannabinoid system (ECS) comprises of endocannabinoid ligands, enzymes for synthesis and degradation of such ligands, and receptors. This system is widely distributed in the gastrointestinal tract, where phytocannabinoids exert potent effects, particularly under pathological (i.e., inflammatory) conditions. Herein, we will first look at the hemp plant as a possible source of new functional food ingredients and nutraceuticals that might be eventually useful to treat or even prevent gastrointestinal conditions. Subsequently, we will briefly describe the ECS and the general pharmacology of phytocannabinoids. Finally, we will revise the available data showing that non-psychoactive phytocannabinoids, particularly cannabidiol, may be useful to treat different disorders and diseases of the gastrointestinal tract. With the increasing interest in the development of functional foods for a healthy life, the non-psychoactive phytocannabinoids are hoped to find a place as nutraceuticals and food ingredients also for a healthy gastrointestinal tract function.
Collapse
Affiliation(s)
- Vicente Martínez
- Department of Cell Biology, Physiology and Immunology, Neurosciences Institute, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28049 Madrid, Spain
| | - Amaia Iriondo De-Hond
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (UAM-CSIC), C/Nicolás Cabrera, 9, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain; (A.I.D.-H.); (M.D.d.C.)
| | - Francesca Borrelli
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy;
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici (NA), Italy
| | - María Dolores del Castillo
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (UAM-CSIC), C/Nicolás Cabrera, 9, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain; (A.I.D.-H.); (M.D.d.C.)
| | - Raquel Abalo
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System NeuGut-URJC, Department of Basic Health Sciences, Faculty of Health Sciences, Universidad Rey Juan Carlos (URJC), Campus de Alcorcón, Avda. de Atenas s/n, 28022 Madrid, Spain
- Unidad Asociada I+D+i del Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain;
| |
Collapse
|
288
|
Alves P, Amaral C, Teixeira N, Correia-da-Silva G. Cannabis sativa: Much more beyond Δ 9-tetrahydrocannabinol. Pharmacol Res 2020; 157:104822. [PMID: 32335286 DOI: 10.1016/j.phrs.2020.104822] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 02/06/2023]
Abstract
Cannabis is the most used illicit drug worldwide and its medicinal use is under discussion, being regulated in several countries. However, the psychotropic effects of Δ9-tetrahydrocannabinol (THC), the main psychoactive compound of Cannabis sativa, are of concern. Thus, the interest in the isolated constituents without psychotropic activity, such as cannabidiol (CBD) and cannabidivarin (CBDV) is growing. CBD and CBDV are lipophilic molecules with poor oral bioavailability and are mainly metabolized by cytochrome P450 (CYP450) enzymes. The pharmacodynamics of CBD is the best explored, being able to interact with diverse molecular targets, like cannabinoid receptors, G protein-coupled receptor-55, transient receptor potential vanilloid 1 channel and peroxisome proliferator-activated receptor-γ. Considering the therapeutic potential, several clinical trials are underway to study the efficacy of CBD and CBDV in different pathologies, such as neurodegenerative diseases, epilepsy, autism spectrum disorders and pain conditions. The anti-cancer properties of CBD have also been demonstrated by several pre-clinical studies in different types of tumour cells. Although less studied, CBDV, a structural analogue of CBD, is receiving attention in the last years. CBDV exhibits anticonvulsant properties and, currently, clinical trials are underway for the treatment of autism spectrum disorders. Despite the benefits of these phytocannabinoids, it is important to highlight their potential interference with relevant physiologic mechanisms. In fact, CBD interactions with CYP450 enzymes and with drug efflux transporters may have serious consequences when co-administered with other drugs. This review summarizes the therapeutic advances of CBD and CBDV and explores some aspects of their pharmacokinetics, pharmacodynamics and possible interactions. Moreover, it also highlights the therapeutic potential of CBD and CBDV in several medical conditions and clinical applications.
Collapse
Affiliation(s)
- Patrícia Alves
- UCIBIO.REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy of University of Porto, Portugal
| | - Cristina Amaral
- UCIBIO.REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy of University of Porto, Portugal
| | - Natércia Teixeira
- UCIBIO.REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy of University of Porto, Portugal
| | - Georgina Correia-da-Silva
- UCIBIO.REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy of University of Porto, Portugal.
| |
Collapse
|
289
|
Afrin F, Chi M, Eamens AL, Duchatel RJ, Douglas AM, Schneider J, Gedye C, Woldu AS, Dun MD. Can Hemp Help? Low-THC Cannabis and Non-THC Cannabinoids for the Treatment of Cancer. Cancers (Basel) 2020; 12:cancers12041033. [PMID: 32340151 PMCID: PMC7226605 DOI: 10.3390/cancers12041033] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 04/20/2020] [Indexed: 12/21/2022] Open
Abstract
Cannabis has been used to relieve the symptoms of disease for thousands of years. However, social and political biases have limited effective interrogation of the potential benefits of cannabis and polarised public opinion. Further, the medicinal and clinical utility of cannabis is limited by the psychotropic side effects of ∆9-tetrahydrocannabinol (∆9-THC). Evidence is emerging for the therapeutic benefits of cannabis in the treatment of neurological and neurodegenerative diseases, with potential efficacy as an analgesic and antiemetic for the management of cancer-related pain and treatment-related nausea and vomiting, respectively. An increasing number of preclinical studies have established that ∆9-THC can inhibit the growth and proliferation of cancerous cells through the modulation of cannabinoid receptors (CB1R and CB2R), but clinical confirmation remains lacking. In parallel, the anti-cancer properties of non-THC cannabinoids, such as cannabidiol (CBD), are linked to the modulation of non-CB1R/CB2R G-protein-coupled receptors, neurotransmitter receptors, and ligand-regulated transcription factors, which together modulate oncogenic signalling and redox homeostasis. Additional evidence has also demonstrated the anti-inflammatory properties of cannabinoids, and this may prove relevant in the context of peritumoural oedema and the tumour immune microenvironment. This review aims to document the emerging mechanisms of anti-cancer actions of non-THC cannabinoids.
Collapse
Affiliation(s)
- Farjana Afrin
- Cancer Signalling Research Group, Medical Biochemistry, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia; (F.A.); (M.C.); (R.J.D.); (A.M.D.); (C.G.)
- Priority Research Centre for Cancer Research, Innovation & Translation, Faculty of Health and Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia;
| | - Mengna Chi
- Cancer Signalling Research Group, Medical Biochemistry, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia; (F.A.); (M.C.); (R.J.D.); (A.M.D.); (C.G.)
- Priority Research Centre for Cancer Research, Innovation & Translation, Faculty of Health and Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia;
| | - Andrew L. Eamens
- Centre for Plant Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia;
| | - Ryan J. Duchatel
- Cancer Signalling Research Group, Medical Biochemistry, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia; (F.A.); (M.C.); (R.J.D.); (A.M.D.); (C.G.)
- Priority Research Centre for Cancer Research, Innovation & Translation, Faculty of Health and Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia;
| | - Alicia M. Douglas
- Cancer Signalling Research Group, Medical Biochemistry, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia; (F.A.); (M.C.); (R.J.D.); (A.M.D.); (C.G.)
- Priority Research Centre for Cancer Research, Innovation & Translation, Faculty of Health and Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia;
| | - Jennifer Schneider
- Priority Research Centre for Cancer Research, Innovation & Translation, Faculty of Health and Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia;
- Priority Research Centre for Chemical Biology and Clinical Pharmacology, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Craig Gedye
- Cancer Signalling Research Group, Medical Biochemistry, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia; (F.A.); (M.C.); (R.J.D.); (A.M.D.); (C.G.)
- Priority Research Centre for Cancer Research, Innovation & Translation, Faculty of Health and Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia;
- Calvary Mater Newcastle, Waratah, NSW 2298, Australia
| | - Ameha S. Woldu
- Cancer Signalling Research Group, Medical Biochemistry, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia; (F.A.); (M.C.); (R.J.D.); (A.M.D.); (C.G.)
- Priority Research Centre for Cancer Research, Innovation & Translation, Faculty of Health and Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia;
- Correspondence: (A.S.W.); (M.D.D.); Tel.: +61-02-4921-7807 (A.S.W.); +61-02-4921-5693 (M.D.D.)
| | - Matthew D. Dun
- Cancer Signalling Research Group, Medical Biochemistry, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia; (F.A.); (M.C.); (R.J.D.); (A.M.D.); (C.G.)
- Priority Research Centre for Cancer Research, Innovation & Translation, Faculty of Health and Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia;
- Correspondence: (A.S.W.); (M.D.D.); Tel.: +61-02-4921-7807 (A.S.W.); +61-02-4921-5693 (M.D.D.)
| |
Collapse
|
290
|
Abstract
Purpose of Review This review summarizes (1) recent trends in delta-9-tetrahydrocannabionol [THC] and cannabidiol (CBD) content in cannabis products, (2) neurobiological correlates of cannabis use on the developing adolescent brain, (3) effects of cannabis on psychiatric symptoms and daily functioning in youth (i.e., academic performance, cognition, sleep and driving), (4) cannabis products used to relieve or treat medical issues in youth, and (5) available treatments for cannabis use disorder in adolescence. Recent findings Despite marked increases in THC content and availability of cannabis, there has been a decline in perceived risk and an increase in use of THC extract products among youth in the United States. The primary psychiatric symptoms associated with cannabis use in youth are increased risk for addiction, depressive, and psychotic symptoms. Cannabis alters endocannabinoid system function which plays a central role in modulating the neurodevelopment of reward and stress systems. To date, few studies have examined neurobiological mechanisms underlying the psychiatric sequalae of cannabis exposure in youth. Adolescent cannabis exposure results in impaired cognition, sleep, and driving ability. There are very limited FDA-approved cannabinoid medications, none of them supporting their use for the treatment of psychiatric symptoms. Behavioral therapies are currently the mainstay of treating cannabis misuse, with no pharmacotherapies currently approved by the FDA for cannabis use disorder in youth. Summary Here, we summarize the most up-to-date knowledge on the neurobiological psychiatric, and daily function effects of the most commonly used cannabinoids, delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD). We then review FDA approved medical use of cannabinoid treatments as well as pharmacological and psychological treatments for cannabis use disorder in youth. Our current understanding of the effects of cannabis on the developing brain and treatments for cannabis misuse in youth remain limited. Future research aimed at examining the neurobiological effects of cannabis, with objective measures of exposure, over the course of pediatric development and in relation to psychiatric symptoms are needed.
Collapse
|
291
|
|
292
|
Mendonça IP, Duarte-Silva E, Chaves-Filho AJM, Andrade da Costa BLDS, Peixoto CA. Neurobiological findings underlying depressive behavior in Parkinson's disease: A review. Int Immunopharmacol 2020; 83:106434. [PMID: 32224442 DOI: 10.1016/j.intimp.2020.106434] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/19/2020] [Indexed: 12/19/2022]
Abstract
Parkinson's disease (PD) is one of the most prevalent neurodegenerative diseases in the world with a harmful impact on the quality of life. Although its clinical diagnosis is based on motor symptoms such as resting tremor, postural instability, slow gait, and muscle stiffness, this disorder is also characterized by the presence of early emotional impairment, including features such as depression, anxiety, fatigue, and apathy. Depression is the main emotional manifestation associated with PD and the mechanisms involved in its pathophysiology have been extensively investigated however, it is not yet completely elucidated. In addition to monoaminergic imbalance, immunological and gut microbiota changes have been associated with depression in PD. Besides, a patient group appears be refractory to the treatment available currently. This review emphasizes the mainly neuromolecular findings of the PD-associated depression as well as discuss novel and potential pharmacological and non-pharmacological therapeutic strategies.
Collapse
Affiliation(s)
- Ingrid Prata Mendonça
- Laboratory of Ultrastructure, AggeuMagalhães Institute (IAM), Oswaldo Cruz Foundation (FIOCRUZ), PE, Brazil; Postgraduate Program in Biological Sciences (PPGCB), Federal University of Pernambuco (UFPE), Brazil.
| | - Eduardo Duarte-Silva
- Laboratory of Ultrastructure, AggeuMagalhães Institute (IAM), Oswaldo Cruz Foundation (FIOCRUZ), PE, Brazil; Postgraduate Program in Biosciences and Biotechnology for Health (PPGBBS), Oswaldo Cruz Foundation (FIOCRUZ-PE)/AggeuMagalhães Institute (IAM), Recife, PE, Brazil
| | - Adriano José Maia Chaves-Filho
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | | | - Christina Alves Peixoto
- Laboratory of Ultrastructure, AggeuMagalhães Institute (IAM), Oswaldo Cruz Foundation (FIOCRUZ), PE, Brazil; National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.
| |
Collapse
|
293
|
Gugliandolo A, Pollastro F, Bramanti P, Mazzon E. Cannabidiol exerts protective effects in an in vitro model of Parkinson's disease activating AKT/mTOR pathway. Fitoterapia 2020; 143:104553. [PMID: 32184097 DOI: 10.1016/j.fitote.2020.104553] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 01/12/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the degeneration of the nigrostriatal dopaminergic pathway with loss of substantia nigra pars compacta neurons and dopamine depletion. Various natural compounds showed protective actions against PD. In this work, the protective effects of cannabidiol (CBD), obtained from Cannabis sativa, were evaluated in retinoic acid differentiated SH-SY5Y cells exposed to 1-methyl-4-phenylpyridinium (MPP+), an in vitro PD model. In order to evaluate which receptor is involved in CBD actions CB1, CB2 and TRPV1 receptor antagonists were used. CBD counteracted the loss of cell viability caused by MPP+, reducing apoptosis as demonstrated by the reduction of Bax and caspase 3. Moreover, CBD reduced the nuclear levels of PARP-1. The protective effects of CBD seem to be mediated by the activation of ERK and AKT/mTOR pathways. The treatment with AKT1/2 inhibitor and the mTOR inhibitor rapamycin abolished CBD protective effects. The CBD-induced ERK activation may be mediated by CBD interaction with CB2 and TRPV1. We also investigated the protein levels of the autophagic proteins LC3 and beclin 1. CBD reduced the MPP+-induced increase of LC3 by CB2 and TRPV1 receptors. These data suggested the involvement of ERK in the modulation of autophagy. However, beclin 1 levels were not modified neither by MPP+ nor by CBD. These results indicated that CBD may exert preventive and protective actions in PD.
Collapse
Affiliation(s)
- Agnese Gugliandolo
- IRCCS Centro Neurolesi "Bonino Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Federica Pollastro
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Placido Bramanti
- IRCCS Centro Neurolesi "Bonino Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi "Bonino Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy.
| |
Collapse
|
294
|
Romigi A, Bari M, Liguori C, Izzi F, Rapino C, Nuccetelli M, Battista N, Bernardini S, Centonze D, Mercuri NB, Placidi F, Maccarrone M. CSF Levels of the Endocannabinoid Anandamide are Reduced in Patients with Untreated Narcolepsy Type 1: A Pilot Study. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 19:142-147. [PMID: 32148204 DOI: 10.2174/1871527319666200309115602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/13/2020] [Accepted: 01/21/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Endocannabinoids (ECs) modulate both excitatory and inhibitory components in the CNS. There is a growing body of evidence that shows ECs influence both hypothalamic orexinergic and histaminergic neurons involved in narcolepsy physiopathology. Therefore, ECs may influence sleep and sleep-wake cycle. OBJECTIVE To evaluate EC levels in the CSF of untreated narcoleptic patients to test whether ECs are dysregulated in Narcolepsy Type 1 (NT1) and Type 2 (NT2). METHODS We compared CSF Anandamide (AEA), 2-Arachidonoylglycerol (2-AG) and orexin in narcoleptic drug-naïve patients and in a sample of healthy subjects. RESULTS We compared NT1 (n=6), NT2 (n=6), and healthy controls (n=6). We found significantly reduced AEA levels in NT1 patients compared to both NT2 and controls. No differences were found between AEA levels in NT2 versus controls and between 2-AG levels in all groups, although a trend toward a decrease in NT1 was evident. Finally, the CSF AEA level was related to CSF orexin levels in all subjects. CONCLUSION We demonstrated that the EC system is dysregulated in NT1.
Collapse
Affiliation(s)
- Andrea Romigi
- IRCCS Neuromed Sleep Medicine Center, Via Atinense, 18 Pozzilli (IS), Italy
| | - Monica Bari
- Department of Experimental Medicine, University of Rome 'Tor Vergata', Rome, Italy
| | - Claudio Liguori
- Department of Systems Medicine, University of Rome 'Tor Vergata', Rome, Italy
| | - Francesca Izzi
- Department of Systems Medicine, University of Rome 'Tor Vergata', Rome, Italy
| | - Cinzia Rapino
- Faculty of Bioscience and Technology for Food, University of Teramo, Agriculture and Environment, Teramo, Italy
| | - Marzia Nuccetelli
- Department of Experimental Medicine, University of Rome 'Tor Vergata', Rome, Italy
| | - Natalia Battista
- Faculty of Bioscience and Technology for Food, University of Teramo, Agriculture and Environment, Teramo, Italy
| | - Sergio Bernardini
- Department of Experimental Medicine, University of Rome 'Tor Vergata', Rome, Italy
| | - Diego Centonze
- IRCCS Neuromed Sleep Medicine Center, Via Atinense, 18 Pozzilli (IS), Italy
| | | | - Fabio Placidi
- Department of Systems Medicine, University of Rome 'Tor Vergata', Rome, Italy
| | - Mauro Maccarrone
- Campus Bio-Medico University of Rome, Italy.,European Center for Brain Research, IRCCS Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
295
|
Larsen C, Shahinas J. Dosage, Efficacy and Safety of Cannabidiol Administration in Adults: A Systematic Review of Human Trials. J Clin Med Res 2020; 12:129-141. [PMID: 32231748 PMCID: PMC7092763 DOI: 10.14740/jocmr4090] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 02/05/2020] [Indexed: 12/22/2022] Open
Abstract
Considering data from in vitro and in vivo studies, cannabidiol (CBD) seems to be a promising candidate for the treatment of both somatic and psychiatric disorders. The aim of this review was to collect dose(s), dosage schemes, efficacy and safety reports of CBD use in adults from clinical studies. A systematic search was performed in PubMed, Embase and Cochrane library for articles published in English between January 1, 2000 and October 25, 2019. The search terms used were related to cannabis and CBD in adults. We identified 25 studies (927 patients; 538 men and 389 women), of which 22 studies were controlled clinical trials (833 patients) and three were observational designs (94 patients) from five countries. Formulations, dose and dosage schemes varied significantly between studies. Varying effects were identified from the randomized controlled trials (RCTs), more apparent effects from non-RCTs and minor safety issues in general. From the controlled trials, we identified anxiolytic effects with acute CBD administration, and therapeutic effects for social anxiety disorder, psychotic disorder and substance use disorders. In general, studies were heterogeneous and showed substantial risks of bias. Although promising results have been identified, considerable variation in dosage schemes and route of administration were employed across studies. There was evidence to support single dose positive effect on social anxiety disorder, short medium-term effects on symptomatic improvement in schizophrenia and lack of effect in the short medium-term on cognitive functioning in psychotic disorders. Overall, the administration was well tolerated with mild side effects.
Collapse
|
296
|
Bifulco M, Navarra G, Laezza C, Pagano C. Novel role for cannabidiol in circadian clock function. Addict Biol 2020; 25:e12772. [PMID: 31132803 DOI: 10.1111/adb.12772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/10/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Maurizio Bifulco
- Dipartimento di Medicina molecolare e Biotecnologie medicheUniversity of Naples Federico II Naples Italy
| | - Giovanna Navarra
- Dipartimento di Medicina molecolare e Biotecnologie medicheUniversity of Naples Federico II Naples Italy
| | | | - Cristina Pagano
- Dipartimento di Medicina molecolare e Biotecnologie medicheUniversity of Naples Federico II Naples Italy
| |
Collapse
|
297
|
Cannabinoids and Hormone Receptor-Positive Breast Cancer Treatment. Cancers (Basel) 2020; 12:cancers12030525. [PMID: 32106399 PMCID: PMC7139952 DOI: 10.3390/cancers12030525] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 12/17/2022] Open
Abstract
Breast cancer (BC) is the most common cancer in women worldwide. Approximately 70–80% of BCs express estrogen receptors (ER), which predict the response to endocrine therapy (ET), and are therefore hormone receptor-positive (HR+). Endogenous cannabinoids together with cannabinoid receptor 1 and 2 (CB1, CB2) constitute the basis of the endocannabinoid system. Interactions of cannabinoids with hypothalamic–pituitary–gonadal axis hormones are well documented, and two studies found a positive correlation between peak plasma endogenous cannabinoid anandamide with peak plasma 17β-estradiol, luteinizing hormone and follicle-stimulating hormone levels at ovulation in healthy premenopausal women. Do cannabinoids have an effect on HR+ BC? In this paper we review known and possible interactions between cannabinoids and specific HR+ BC treatments. In preclinical studies, CB1 and CB2 agonists (i.e., anandamide, THC) have been shown to inhibit the proliferation of ER positive BC cell lines. There is less evidence for antitumor cannabinoid action in HR+ BC in animal models and there are no clinical trials exploring the effects of cannabinoids on HR+ BC treatment outcomes. Two studies have shown that tamoxifen and several other selective estrogen receptor modulators (SERM) can act as inverse agonists on CB1 and CB2, an interaction with possible clinical consequences. In addition, cannabinoid action could interact with other commonly used endocrine and targeted therapies used in the treatment of HR+ BC.
Collapse
|
298
|
McIver VC, Tsang AS, Symonds NE, Perkins NR, Uquillas E, Dart CM, Jeffcott LB, Dart AJ. Effects of topical treatment of cannabidiol extract in a unique manuka factor 5 manuka honey carrier on second intention wound healing on equine distal limb wounds: a preliminary study. Aust Vet J 2020; 98:250-255. [PMID: 32096215 DOI: 10.1111/avj.12932] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/28/2020] [Accepted: 01/30/2020] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Evaluate the effect of topical 1% cannabidiol on second intention wound healing in distal limb wounds of horses. DESIGN Experimental. ANIMALS Six Standardbred horses. METHODS A total of five 2.5 cm × 2.5 cm full thickness skin wounds were created on the dorsomedial aspect of the metacarpi of 6 horses. Wounds were contaminated with faeces on the day of wound creation. Each wound was then assigned to a treatment group; compounded 1% cannabidiol in unique manuka factor (UMF) 5 manuka honey, UMF 5 manuka honey, UMF 20 manuka honey or saline. Each treatment was applied topically daily for a total of 42 days. Legs were bandaged and bandages were changed, daily, for 13 days postoperatively. Digital photographs of each wound were taken on day 1 then weekly for 6 weeks. Wound size, daily healing rate and total time to healing were recorded and compared statistically. RESULTS Irrespective of the treatment, wounds did not retract as expected in the first 7 days after wound creation. There was no difference in wound area, daily healing rate, days to complete healing between treatment groups. CONCLUSIONS This preliminary study failed to demonstrate any difference in wound healing variables between treatment groups in this model of second intention wound healing. This was unexpected due to the established effects of UMF 20 manuka honey on wound healing using the same model. This may be due to systemic effects of cannabidiol and study design. Further research into the use of cannabidiol in equine wounds is warranted.
Collapse
Affiliation(s)
- V C McIver
- Research and Clinical Training Unit, University Veterinary Teaching Hospital, The University of Sydney, Camden, New South Wales, Australia
| | - A S Tsang
- Research and Clinical Training Unit, University Veterinary Teaching Hospital, The University of Sydney, Camden, New South Wales, Australia
| | - N E Symonds
- Research and Clinical Training Unit, University Veterinary Teaching Hospital, The University of Sydney, Camden, New South Wales, Australia
| | - N R Perkins
- School of Veterinary Science, The University of Queensland, Gatton Campus, Gatton, Queensland, Australia
| | - E Uquillas
- Research and Clinical Training Unit, University Veterinary Teaching Hospital, The University of Sydney, Camden, New South Wales, Australia
| | - C M Dart
- Research and Clinical Training Unit, University Veterinary Teaching Hospital, The University of Sydney, Camden, New South Wales, Australia
| | - L B Jeffcott
- Research and Clinical Training Unit, University Veterinary Teaching Hospital, The University of Sydney, Camden, New South Wales, Australia
| | - A J Dart
- Research and Clinical Training Unit, University Veterinary Teaching Hospital, The University of Sydney, Camden, New South Wales, Australia
| |
Collapse
|
299
|
Ghabrash MF, Coronado-Montoya S, Aoun J, Gagné AA, Mansour F, Ouellet-Plamondon C, Trépanier A, Jutras-Aswad D. Cannabidiol for the treatment of psychosis among patients with schizophrenia and other primary psychotic disorders: A systematic review with a risk of bias assessment. Psychiatry Res 2020; 286:112890. [PMID: 32126328 DOI: 10.1016/j.psychres.2020.112890] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 11/20/2022]
Abstract
Current treatments for primary psychotic disorders include antipsychotics, some of which have significant side effects or suboptimal efficacy. Cannabidiol is a cannabinoid with potential antipsychotic properties. This systematic review examines the use of cannabidiol as an antipsychotic treatment for primary psychotic disorders. CINAHL, EBM, EMBASE, MEDLINE and PubMed databases were searched from 1970 to 2019 for experimental and observational studies evaluating the antipsychotic and cognitive modulation properties of cannabidiol in individuals with psychotic disorders. There were eight eligible studies evaluating the antipsychotic potential of cannabidiol, involving a total of 210 participants. Due to study heterogeneity, we present the extracted data on general psychopathology, positive and negative symptoms, cognition and functioning outcomes as a narrative synthesis. We found limited evidence supporting antipsychotic efficacy for cannabidiol and none supporting its benefits for cognition or functioning. Cannabidiol treatment had an advantageous side effect profile compared to other antipsychotics and was well tolerated across studies. Observational studies had a higher risk of bias than experimental studies. Factors potentially contributing to variability in outcome results included cannabidiol dosage, treatment duration, use as an adjunctive treatment and participant inclusion criteria, which warrant further investigation to determine whether cannabidiol can be effective as a treatment for psychosis.
Collapse
Affiliation(s)
- Maykel Farag Ghabrash
- Research Center, Centre Hospitalier de l'Université de Montréal (CHUM), 900 St-Denis Street, Montréal, QC, Canada, H2X0A9; Department of Psychiatry and Addiction, Faculty of Medicine, Université de Montréal, 2900 Édouard-Montpetit Boulevard, Room S-750, Montréal, QC, Canada, H3T 1J4
| | - Stephanie Coronado-Montoya
- Research Center, Centre Hospitalier de l'Université de Montréal (CHUM), 900 St-Denis Street, Montréal, QC, Canada, H2X0A9; Department of Psychiatry and Addiction, Faculty of Medicine, Université de Montréal, 2900 Édouard-Montpetit Boulevard, Room S-750, Montréal, QC, Canada, H3T 1J4.
| | - John Aoun
- Research Center, Centre Hospitalier de l'Université de Montréal (CHUM), 900 St-Denis Street, Montréal, QC, Canada, H2X0A9; Department of Psychiatry and Addiction, Faculty of Medicine, Université de Montréal, 2900 Édouard-Montpetit Boulevard, Room S-750, Montréal, QC, Canada, H3T 1J4
| | - Andrée-Anne Gagné
- Research Center, Centre Hospitalier de l'Université de Montréal (CHUM), 900 St-Denis Street, Montréal, QC, Canada, H2X0A9; Department of Psychiatry and Addiction, Faculty of Medicine, Université de Montréal, 2900 Édouard-Montpetit Boulevard, Room S-750, Montréal, QC, Canada, H3T 1J4
| | - Flavi Mansour
- Research Center, Centre Hospitalier de l'Université de Montréal (CHUM), 900 St-Denis Street, Montréal, QC, Canada, H2X0A9; Department of Psychiatry and Addiction, Faculty of Medicine, Université de Montréal, 2900 Édouard-Montpetit Boulevard, Room S-750, Montréal, QC, Canada, H3T 1J4
| | - Clairélaine Ouellet-Plamondon
- Research Center, Centre Hospitalier de l'Université de Montréal (CHUM), 900 St-Denis Street, Montréal, QC, Canada, H2X0A9; Department of Psychiatry and Addiction, Faculty of Medicine, Université de Montréal, 2900 Édouard-Montpetit Boulevard, Room S-750, Montréal, QC, Canada, H3T 1J4
| | - Annie Trépanier
- Research Center, Centre Hospitalier de l'Université de Montréal (CHUM), 900 St-Denis Street, Montréal, QC, Canada, H2X0A9
| | - Didier Jutras-Aswad
- Research Center, Centre Hospitalier de l'Université de Montréal (CHUM), 900 St-Denis Street, Montréal, QC, Canada, H2X0A9; Department of Psychiatry and Addiction, Faculty of Medicine, Université de Montréal, 2900 Édouard-Montpetit Boulevard, Room S-750, Montréal, QC, Canada, H3T 1J4.
| |
Collapse
|
300
|
Chronic Cannabidiol Administration Fails to Diminish Blood Pressure in Rats with Primary and Secondary Hypertension Despite Its Effects on Cardiac and Plasma Endocannabinoid System, Oxidative Stress and Lipid Metabolism. Int J Mol Sci 2020; 21:ijms21041295. [PMID: 32075117 PMCID: PMC7072941 DOI: 10.3390/ijms21041295] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/13/2020] [Accepted: 02/13/2020] [Indexed: 12/12/2022] Open
Abstract
We investigated the influence of cannabidiol (CBD) on blood pressure (BP) and heart rate (HR) in spontaneously (SHR) and deoxycorticosterone (DOCA-salt) hypertensive rats. Hypertension was connected with increases in cardiac and plasma markers of lipid peroxidation in both models, whereas cardiac endocannabinoid levels decreased in SHR and increased in DOCA-salt. CBD (10 mg/kg once a day for 2 weeks) did not modify BP and HR in hypertension but counteracted pro-oxidant effects. Moreover, it decreased cardiac or plasma levels of anandamide, 2-arachidonoylglycerol and oleoyl ethanolamide in DOCA-salt and inhibited the activity of fatty acid amide hydrolase (FAAH) in both models. In the respective normotensive control rats, CBD increased lipid peroxidation, free fatty acid levels and FAAH activity. In conclusion, chronic CBD administration does not possess antihypertensive activity in a model of primary and secondary (DOCA-salt) hypertension, despite its antioxidant effect. The latter may be direct rather than based on the endocannabinoid system. The unexpected CBD-related increase in lipid peroxidation in normotensive controls may lead to untoward effects; thus, caution should be kept if CBD is used therapeutically.
Collapse
|