251
|
Gądek-Michalska A, Tadeusz J, Rachwalska P, Spyrka J, Bugajski J. Effect of repeated restraint on homotypic stress-induced nitric oxide synthases expression in brain structures regulating HPA axis. Pharmacol Rep 2012; 64:1381-90. [DOI: 10.1016/s1734-1140(12)70935-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 10/15/2012] [Indexed: 11/30/2022]
|
252
|
Ait-Belgnaoui A, Durand H, Cartier C, Chaumaz G, Eutamene H, Ferrier L, Houdeau E, Fioramonti J, Bueno L, Theodorou V. Prevention of gut leakiness by a probiotic treatment leads to attenuated HPA response to an acute psychological stress in rats. Psychoneuroendocrinology 2012; 37:1885-95. [PMID: 22541937 DOI: 10.1016/j.psyneuen.2012.03.024] [Citation(s) in RCA: 445] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 03/28/2012] [Accepted: 03/29/2012] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIMS Intestinal barrier impairment is incriminated in the pathophysiology of intestinal gut disorders associated with psychiatric comorbidity. Increased intestinal permeability associated with upload of lipopolysaccharides (LPS) translocation induces depressive symptoms. Gut microbiota and probiotics alter behavior and brain neurochemistry. Since Lactobacillus farciminis suppresses stress-induced hyperpermeability, we examined whether (i) L. farciminis affects the HPA axis stress response, (ii) stress induces changes in LPS translocation and central cytokine expression which may be reversed by L. farciminis, (iii) the prevention of "leaky" gut and LPS upload are involved in these effects. METHODS At the end of the following treatments female rats were submitted to a partial restraint stress (PRS) or sham-PRS: (i) oral administration of L. farciminis during 2 weeks, (ii) intraperitoneal administration of ML-7 (a specific myosin light chain kinase inhibitor), (iii) antibiotic administration in drinking water during 12 days. After PRS or sham-PRS session, we evaluated LPS levels in portal blood, plasma corticosterone and adrenocorticotropic hormone (ACTH) levels, hypothalamic corticotropin releasing factor (CRF) and pro-inflammatory cytokine mRNA expression, and colonic paracellular permeability (CPP). RESULTS PRS increased plasma ACTH and corticosterone; hypothalamic CRF and pro-inflammatory cytokine expression; CPP and portal blood concentration of LPS. L. farciminis and ML-7 suppressed stress-induced hyperpermeability, endotoxemia and prevented HPA axis stress response and neuroinflammation. Antibiotic reduction of luminal LPS concentration prevented HPA axis stress response and increased hypothalamic expression of pro-inflammatory cytokines. CONCLUSION The attenuation of the HPA axis response to stress by L. farciminis depends upon the prevention of intestinal barrier impairment and decrease of circulating LPS levels.
Collapse
Affiliation(s)
- Afifa Ait-Belgnaoui
- Neuro-Gastroentérologie and Nutrition Team, TOXALIM, UMR 1331-INRA/INP/UPS, Toulouse, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
253
|
Jones KA, Thomsen C. The role of the innate immune system in psychiatric disorders. Mol Cell Neurosci 2012; 53:52-62. [PMID: 23064447 DOI: 10.1016/j.mcn.2012.10.002] [Citation(s) in RCA: 197] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 10/03/2012] [Accepted: 10/04/2012] [Indexed: 12/13/2022] Open
Abstract
There is by now substantial clinical evidence for an association between specific mood disorders and altered immune function. More recently, a number of hypotheses have been forwarded to explain how components of the innate immune system can regulate brain function at the cellular and systems levels and how these may underlie the pathology of disorders such as depression, PTSD and bipolar disorder. In this review we draw reference to biochemical, cellular and animal disease models, as well as clinical observations to elucidate the role of the innate immune system in psychiatric disorders. Proinflammatory cytokines, such as IL-1β IL-6 and TNFα, which feature prominently in the immune response to pathogen in the periphery, have unique and specific actions on neurons and circuits within the central nervous system. Effects of these signaling molecules on neurotransmission, memory, and glucocorticoid function, as well as animal behaviors such as social withdrawal and fear conditioning relevant to psychiatric disorders are elucidated. Finally, we highlight future directions for studies, including the use of peripheral biomarkers, relevant for developing new therapeutic approaches for treating psychiatric illnesses. This article is part of Special Issue entitled 'neuroinflammation in neurodegeneration and neurodysfunction'.
Collapse
Affiliation(s)
- Kenneth A Jones
- Lundbeck Research USA, Neuroinflammation Drug Biology Unit 215 College Road, Paramus, NJ 07652, USA.
| | | |
Collapse
|
254
|
Spezia Adachi LN, Caumo W, Laste G, Fernandes Medeiros L, Ripoll Rozisky J, de Souza A, Fregni F, Torres ILS. Reversal of chronic stress-induced pain by transcranial direct current stimulation (tDCS) in an animal model. Brain Res 2012; 1489:17-26. [PMID: 23063889 DOI: 10.1016/j.brainres.2012.10.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 10/01/2012] [Accepted: 10/04/2012] [Indexed: 10/27/2022]
Abstract
Transcranial direct current stimulation (tDCS) has been suggested as a therapeutic tool for pain syndromes. Although initial results in human subjects are encouraging, it still remains unclear whether the effects of tDCS can reverse maladaptive plasticity associated with chronic pain. To investigate this question, we tested whether tDCS can reverse the specific behavioral effects of chronic stress in the pain system, and also those indexed by corticosterone and interleukin-1β levels in serum and TNFα levels in the hippocampus, in a well-controlled rat model of chronic restraint stress (CRS). Forty-one adult male Wistar rats were divided into two groups control and stress. The stress group was exposed to CRS for 11 weeks for the establishment of hyperalgesia and mechanical allodynia as shown by the hot plate and von Frey tests, respectively. Rats were then divided into four groups control, stress, stress+sham tDCS and stress+tDCS. Anodal or sham tDCS was applied for 20min/day over 8 days and the tests were repeated. Then, the animals were killed, blood collected and hippocampus removed for ELISA testing. This model of CRS proved effective to induce chronic pain, as the animals exhibited hyperalgesia and mechanical allodynia. The hot plate test showed an analgesic effect, and the von Frey test, an anti-allodynic effect after the last tDCS session, and there was a significant decrease in hippocampal TNFα levels. These results support the notion that tDCS reverses the detrimental effects of chronic stress on the pain system and decreases TNFα levels in the hippocampus.
Collapse
Affiliation(s)
- Lauren Naomi Spezia Adachi
- Pain Pharmacology and Neuromodulation, Animals Models Laboratory, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90050-170, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
255
|
Ludigs K, Parfenov V, Du Pasquier RA, Guarda G. Type I IFN-mediated regulation of IL-1 production in inflammatory disorders. Cell Mol Life Sci 2012; 69:3395-418. [PMID: 22527721 PMCID: PMC11115130 DOI: 10.1007/s00018-012-0989-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 03/14/2012] [Accepted: 04/03/2012] [Indexed: 02/07/2023]
Abstract
Although contributing to inflammatory responses and to the development of certain autoimmune pathologies, type I interferons (IFNs) are used for the treatment of viral, malignant, and even inflammatory diseases. Interleukin-1 (IL-1) is a strongly pyrogenic cytokine and its importance in the development of several inflammatory diseases is clearly established. While the therapeutic use of IL-1 blocking agents is particularly successful in the treatment of innate-driven inflammatory disorders, IFN treatment has mostly been appreciated in the management of multiple sclerosis. Interestingly, type I IFNs exert multifaceted immunomodulatory effects, including the reduction of IL-1 production, an outcome that could contribute to its efficacy in the treatment of inflammatory diseases. In this review, we summarize the current knowledge on IL-1 and IFN effects in different inflammatory disorders, the influence of IFNs on IL-1 production, and discuss possible therapeutic avenues based on these observations.
Collapse
Affiliation(s)
- Kristina Ludigs
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland.
| | | | | | | |
Collapse
|
256
|
Eyre H, Baune BT. Neuroplastic changes in depression: a role for the immune system. Psychoneuroendocrinology 2012; 37:1397-416. [PMID: 22525700 DOI: 10.1016/j.psyneuen.2012.03.019] [Citation(s) in RCA: 210] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 03/15/2012] [Accepted: 03/22/2012] [Indexed: 12/12/2022]
Abstract
Accumulating evidence suggests that there is a rich cross-talk between the neuroimmune system and neuroplasticity mechanisms under both physiological conditions and pathophysiological conditions in depression. Anti-neuroplastic changes which occur in depression include a decrease in proliferation of neural stem cells (NSCs), decreased survival of neuroblasts and immature neurons, impaired neurocircuitry (cortical-striatal-limbic circuits), reduced levels of neurotrophins, reduced spine density and dendritic retraction. Since both humoral and cellular immune factors have been implicated in neuroplastic processes, in this review we present a model suggesting that neuroplastic processes in depression are mediated through various neuroimmune mechanisms. The review puts forward a model in that both humoral and cellular neuroimmune factors are involved with impairing neuroplasticity under pathophysiological conditions such as depression. Specifically, neuroimmune factors including interleukin (IL)-1, IL-6, tumour necrosis factor (TNF)-α, CD4⁺CD25⁺T regulatory cells (T reg), self-specific CD4⁺T cells, monocyte-derived macrophages, microglia and astrocytes are shown to be vital to processes of neuroplasticity such as long-term potentiation (LTP), NSC survival, synaptic branching, neurotrophin regulation and neurogenesis. In rodent models of depression, IL-1, IL-6 and TNF are associated with reduced hippocampal neurogenesis; mechanisms which are associated with this include the stress-activated protein kinase (SAPK)/Janus Kinase (JNK) pathway, hypoxia-inducible factors (HIF)-1α, JAK-Signal Transducer and Activator of Transcription (STAT) pathway, mitogen-activated protein kinase (MAPK)/cAMP responsive element binding protein (CREB) pathway, Ras-MAPK, PI-3 kinase, IKK/nuclear factor (NF)-κB and TGFβ activated kinase-1 (TAK-1). Neuroimmunological mechanisms have an active role in the neuroplastic changes associated with depression. Since therapies in depression, including antidepressants (AD), omega-3 polyunsaturated fatty acids (PUFAs) and physical activity exert neuroplasticity-enhancing effects potentially mediated by neuroimmune mechanisms, the immune system might serve as a promising target for interventions in depression.
Collapse
Affiliation(s)
- Harris Eyre
- Discipline of Psychiatry, School of Medicine, University of Adelaide, North Terrace, Adelaide, South Australia 5005, Australia
| | | |
Collapse
|
257
|
Peripheral innate immune challenge exaggerated microglia activation, increased the number of inflammatory CNS macrophages, and prolonged social withdrawal in socially defeated mice. Psychoneuroendocrinology 2012; 37:1491-505. [PMID: 22386198 PMCID: PMC3368999 DOI: 10.1016/j.psyneuen.2012.02.003] [Citation(s) in RCA: 217] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 01/06/2012] [Accepted: 02/05/2012] [Indexed: 12/24/2022]
Abstract
Repeated social defeat (RSD) activates neuroendocrine pathways that have a significant influence on immunity and behavior. Previous studies from our lab indicate that RSD enhances the inflammatory capacity of CD11b⁺ cells in the brain and promotes anxiety-like behavior in an interleukin (IL)-1 and β-adrenergic receptor-dependent manner. The purpose of this study was to determine the degree to which mice subjected to RSD were more responsive to a secondary immune challenge. Therefore, RSD or control (HCC) mice were injected with saline or lipopolysaccharide (LPS) and activation of brain CD11b⁺ cells and behavioral responses were determined. Peripheral LPS (0.5 mg/kg) injection caused an extended sickness response with exaggerated weight loss and prolonged social withdrawal in socially defeated mice. LPS injection also amplified mRNA expression of IL-1β, tumor necrosis factor (TNF)-α, inducible nitric oxide synthase (iNOS), and CD14 in enriched CD11b⁺ cells isolated from socially defeated mice. In addition, IL-1β mRNA levels in enriched CD11b⁺ cells remained elevated in socially defeated mice 24 h and 72 h after LPS. Moreover, microglia and CNS macrophages isolated from socially defeated mice had the highest CD14 expression after LPS injection. Both social defeat and LPS injection increased the percentage of CD11b⁺/CD45(high) macrophages in the brain and the number of inflammatory macrophages (CD11b⁺/CD45(high)/CCR2⁺) was highest in RSD-LPS mice. Anxiety-like behavior was increased by social defeat, but was not exacerbated by the LPS challenge. Nonetheless, reduced locomotor activity and increased social withdrawal were still present in socially defeated mice 72 h after LPS. Last, LPS-induced microglia activation was most evident in the hippocampus of socially defeated mice. Taken together, these findings demonstrate that repeated social defeat enhanced the neuroinflammatory response and caused prolonged sickness following innate immune challenge.
Collapse
|
258
|
Abstract
INTRODUCTION Depression is associated with inflammation, Th1 and Th17 responses, oxidative and nitrosative stress (O&NS), autoimmune responses against neoantigenic determinants, and neuroprogression (i.e., neurodegeneration, impaired plasticity and reduced neurogenesis). These pathways involve increased monocytic activation and interleukin-1 (IL-1) levels. AREAS COVERED This review will highlight the putative role of IL-1 in depression and the potential use of IL-1 signaling blockade as a treatment of depression. Electronic databases, i.e., Scopus, PUBMED and Google Scholar were employed using keywords: depression, depressive-like, interleukin-1, and interleukin-1 receptor antagonist (IL-1RA). EXPERT OPINION Ample studies show that depression is accompanied by increased levels of IL-1 and IL-1RA, which attenuates the pro-inflammatory activities of IL-1. In some, but not all studies, antidepressant treatment decreased IL-1β levels. In translational models, IL-1β administration elicits depressive-like behaviors, neuroinflammation and neuroprogression, whereas treatment with IL-1RA yields antidepressant-like effects and attenuates neuroprogression. Anakinra, an IL-1RA, targets not only IL-1 signaling, but also Th1, Th17, O&NS and neuroprogressive pathways and therefore may be advanced to clinical Phase-II trials in depression due to medical conditions associated with an elevated IL-1/IL-1RA ratio.
Collapse
|
259
|
Gomes EPP, Aguiar JCA, Fonseca-Silva T, Dias LC, Moura-Boas KP, Roy A, Velloso NA, Rodrigues-Neto JF, De-Paula AMB, Guimarães ALS. Diazepam reverses the alveolar bone loss and hippocampal interleukin-1beta and interleukin-6 enhanced by conditioned fear stress in ligature-induced periodontal disease in rats. J Periodontal Res 2012; 48:151-8. [DOI: 10.1111/j.1600-0765.2012.01515.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2012] [Indexed: 01/10/2023]
Affiliation(s)
- E. P. P. Gomes
- Department of Dentistry; Universidade Estadual de Montes Claros; Montes Claros; MG; Brazil
| | - J. C. A. Aguiar
- Department of Dentistry; Universidade Estadual de Montes Claros; Montes Claros; MG; Brazil
| | - T. Fonseca-Silva
- Department of Dentistry; Universidade Estadual de Montes Claros; Montes Claros; MG; Brazil
| | - L. C. Dias
- Department of Dentistry; Universidade Estadual de Montes Claros; Montes Claros; MG; Brazil
| | - K. P. Moura-Boas
- Faculdades Integradas Pitágoras; School of Psychology; Montes Claros; MG; Brazil
| | - A. Roy
- Department of Physiology and Pharmacology; Schulich School of Medicine & Dentistry, University of Western Ontario; ON; Canada
| | - N. A. Velloso
- School of Pharmacy, Faculdades Santo Agostinho; Montes Claros; MG; Brazil
| | - J. F. Rodrigues-Neto
- Departament of Medicine; Universidade Estadual de Montes Claros; Montes Claros; MG; Brazil
| | - A. M. B. De-Paula
- Department of Dentistry; Universidade Estadual de Montes Claros; Montes Claros; MG; Brazil
| | - A. L. S. Guimarães
- Department of Dentistry; Universidade Estadual de Montes Claros; Montes Claros; MG; Brazil
| |
Collapse
|
260
|
Abstract
Both embryonic and adult neurogenesis involves the self-renewal/proliferation, survival, migration and lineage differentiation of neural stem/progenitor cells. Such dynamic process is tightly regulated by intrinsic and extrinsic factors and complex signaling pathways. Misregulated neurogenesis contributes much to a large range of neurodevelopmental defects and neurodegenerative diseases. The signaling of NFκB regulates many genes important in inflammation, immunity, cell survival and neural plasticity. During neurogenesis, NFκB signaling mediates the effect of numerous niche factors such as cytokines, chemokines, growth factors, extracellular matrix molecules, but also crosstalks with other signaling pathways such as Notch, Shh, Wnt/β-catenin. This review summarizes current progress on the NFκB signaling in all aspects of neurogenesis, focusing on the novel role of NFκB signaling in initiating early neural differentiation of neural stem cells and embryonic stem cells.
Collapse
Affiliation(s)
- Yonggang Zhang
- Department of Neuroscience, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | |
Collapse
|
261
|
Bian Y, Pan Z, Hou Z, Huang C, Li W, Zhao B. Learning, memory, and glial cell changes following recovery from chronic unpredictable stress. Brain Res Bull 2012; 88:471-6. [PMID: 22537595 DOI: 10.1016/j.brainresbull.2012.04.008] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 03/28/2012] [Accepted: 04/09/2012] [Indexed: 12/29/2022]
Abstract
Previous research has indicated that chronic stress induces inflammatory responses, cognitive impairments, and changes in microglia and astrocytes. However, whether stress-induced changes following recovery are reversible is unclear. The present study examined the effects of chronic unpredictable stress (CUS) following recovery on spatial learning and memory impairments, changes in microglia and astrocytes, and interleukine-1β (IL-1β) and glial-derived neurotrophic factor (GDNF) levels. Mice were randomly divided into control, stress, and recovery groups, and CUS was applied to mice in the stress and recovery groups for 40 days. Following the application of CUS, the recovery group was allowed 40 days without stress. The results of the Morris water maze illustrated that CUS-induced spatial learning and memory impairments could be reversed or even improved by a period of recovery. Immunohistochemical tests revealed that CUS-induced alterations in microglia could dissipate with time in the CA3 region of the hippocampus and prelimbic areas. However, CUS-induced activation of astrocytes was sustained in the CA3 area following recovery. Western blot analyses revealed that CUS induced a significant increase of GDNF and a significant decrease in IL-1β. Additionally, increased GDNF levels were sustained in the hippocampus during recovery. In conclusion, this study provides evidence that CUS-induced learning and memory impairments could be reversible following recovery. However, activated astrocytes and increased GDNF levels in the hippocampus remained elevated after recovery, suggesting that activated astrocytes and increased GDNF play important roles in the adaptation of the brain to CUS and in repairing CUS-induced impairments during recovery.
Collapse
Affiliation(s)
- Yanqing Bian
- College of Life Science, Hebei Normal University, Shijiazhuang 050016, PR China
| | | | | | | | | | | |
Collapse
|
262
|
Interleukin-1 receptor accessory protein organizes neuronal synaptogenesis as a cell adhesion molecule. J Neurosci 2012; 32:2588-600. [PMID: 22357843 DOI: 10.1523/jneurosci.4637-11.2012] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Interleukin-1 receptor accessory protein (IL-1RAcP) is the essential component of receptor complexes mediating immune responses to interleukin-1 family cytokines. IL-1RAcP in the brain exists in two isoforms, IL-1RAcP and IL-1RAcPb, differing only in the C-terminal region. Here, we found robust synaptogenic activities of IL-1RAcP in cultured cortical neurons. Knockdown of IL-1RAcP isoforms in cultured cortical neurons suppressed synapse formation as indicated by decreases of active zone protein Bassoon puncta and dendritic protrusions. IL-1RAcP recovered the accumulation of presynaptic Bassoon puncta, while IL-1RAcPb rescued both Bassoon puncta and dendritic protrusions. Consistently, the expression of IL-1RAcP in cortical neurons enhances the accumulation of Bassoon puncta and that of IL-1RAcPb stimulated both Bassoon puncta accumulation and spinogenesis. IL-1RAcP interacted with protein tyrosine phosphatase (PTP) δ through the extracellular domain. Mini-exon peptides in the Ig-like domains of PTPδ splice variants were critical for their efficient binding to IL-1RAcP. The synaptogenic activities of IL-1RAcP isoforms were diminished in cortical neurons from PTPδ knock-out mice. Correspondingly, PTPδ required IL-1RAcPb to induce postsynaptic differentiation. Thus, IL-1RAcPb bidirectionally regulated synapse formation of cortical neurons. Furthermore, the spine densities of cortical and hippocampal pyramidal neurons were reduced in IL-1RAcP knock-out mice lacking both isoforms. These results suggest that IL-1RAcP isoforms function as trans-synaptic cell adhesion molecules in the brain and organize synapse formation. Thus, IL-1RAcP represents an interesting molecular link between immune systems and synapse formation in the brain.
Collapse
|
263
|
Pineda EA, Hensler JG, Sankar R, Shin D, Burke TF, Mazarati AM. Interleukin-1β causes fluoxetine resistance in an animal model of epilepsy-associated depression. Neurotherapeutics 2012; 9:477-85. [PMID: 22427156 PMCID: PMC3337012 DOI: 10.1007/s13311-012-0110-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Depression represents a common comorbidity of epilepsy and is frequently resistant to selective serotonin reuptake inhibitors (SSRI). We tested the hypothesis that the SSRI resistance in epilepsy associated depression may be a result of a pathologically enhanced interleukin-1β (IL1-β) signaling, and consequently that the blockade of IL1-β may restore the effectiveness of SSRI. Epilepsy and concurrent depression-like impairments were induced in Wistar rats by pilocarpine status epilepticus (SE). The effects of the 2-week long treatment with fluoxetine, interleukin-1 receptor antagonist (IL-1ra), and their combination were examined using behavioral, biochemical, neuroendocrine, and autoradiographic assays. In post-SE rats, depression-like impairments included behavioral deficits indicative of hopelessness and anhedonia; the hyperactivity of the hypothalamo-pituitary-adrenocortical axis; the diminished serotonin output from raphe nucleus; and the upregulation of presynaptic serotonin 1-A (5-HT1A) receptors. Fluoxetine monotherapy exerted no antidepressant effects, whereas the treatment with IL-1ra led to the complete reversal of anhedonia and to a partial improvement of all other depressive impairments. Combined administration of fluoxetine and IL-1ra completely abolished all hallmarks of epilepsy-associated depressive abnormalities, with the exception of the hyperactivity of the hypothalamo-pituitary-adrenocortical axis, the latter remaining only partially improved. We propose that in certain forms of depression, including but not limited to depression associated with epilepsy, the resistance to SSRI may be driven by the pathologically enhanced interleukin-1β signaling and by the subsequent upregulation of presynaptic 5-HT1A receptors. In such forms of depression, the use of interleukin-1β blockers in conjunction with SSRI may represent an effective therapeutic approach.
Collapse
Affiliation(s)
- Eduardo A. Pineda
- />Department of Pediatrics, Neurology Division, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Julie G. Hensler
- />Department of Pharmacology, University of Texas Health Science Center-San Antonio, San Antonio, TX 78229 USA
| | - Raman Sankar
- />Department of Pediatrics, Neurology Division, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Don Shin
- />Department of Pediatrics, Neurology Division, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Teresa F. Burke
- />Department of Pharmacology, University of Texas Health Science Center-San Antonio, San Antonio, TX 78229 USA
| | - Andréy M. Mazarati
- />Department of Pediatrics, Neurology Division, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
| |
Collapse
|
264
|
The role of immune dysfunction in the pathophysiology of autism. Brain Behav Immun 2012; 26:383-92. [PMID: 21906670 PMCID: PMC3418145 DOI: 10.1016/j.bbi.2011.08.007] [Citation(s) in RCA: 448] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 08/19/2011] [Accepted: 08/22/2011] [Indexed: 12/22/2022] Open
Abstract
Autism spectrum disorders (ASD) are a complex group of neurodevelopmental disorders encompassing impairments in communication, social interactions and restricted stereotypical behaviors. Although a link between altered immune responses and ASD was first recognized nearly 40 years ago, only recently has new evidence started to shed light on the complex multifaceted relationship between immune dysfunction and behavior in ASD. Neurobiological research in ASD has highlighted pathways involved in neural development, synapse plasticity, structural brain abnormalities, cognition and behavior. At the same time, several lines of evidence point to altered immune dysfunction in ASD that directly impacts some or all these neurological processes. Extensive alterations in immune function have now been described in both children and adults with ASD, including ongoing inflammation in brain specimens, elevated pro-inflammatory cytokine profiles in the CSF and blood, increased presence of brain-specific auto-antibodies and altered immune cell function. Furthermore, these dysfunctional immune responses are associated with increased impairments in behaviors characteristic of core features of ASD, in particular, deficits in social interactions and communication. This accumulating evidence suggests that immune processes play a key role in the pathophysiology of ASD. This review will discuss the current state of our knowledge of immune dysfunction in ASD, how these findings may impact on underlying neuro-immune mechanisms and implicate potential areas where the manipulation of the immune response could have an impact on behavior and immunity in ASD.
Collapse
|
265
|
Baker DG, Nievergelt CM, O'Connor DT. Biomarkers of PTSD: Neuropeptides and immune signaling. Neuropharmacology 2012; 62:663-73. [DOI: 10.1016/j.neuropharm.2011.02.027] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 02/23/2011] [Accepted: 02/27/2011] [Indexed: 02/07/2023]
|
266
|
Coller JK, Hutchinson MR. Implications of central immune signaling caused by drugs of abuse: mechanisms, mediators and new therapeutic approaches for prediction and treatment of drug dependence. Pharmacol Ther 2012; 134:219-45. [PMID: 22316499 DOI: 10.1016/j.pharmthera.2012.01.008] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 01/17/2012] [Indexed: 01/12/2023]
Abstract
In the past two decades a trickle of manuscripts examining the non-neuronal central nervous system immune consequences of the drugs of abuse has now swollen to a significant body of work. Initially, these studies reported associative evidence of central nervous system proinflammation resulting from exposure to the drugs of abuse demonstrating key implications for neurotoxicity and disease progression associated with, for example, HIV infection. However, more recently this drug-induced activation of central immune signaling is now understood to contribute substantially to the pharmacodynamic actions of the drugs of abuse, by enhancing the engagement of classical mesolimbic dopamine reward pathways and withdrawal centers. This review will highlight the key in vivo animal, human, biological and molecular evidence of these central immune signaling actions of opioids, alcohol, cocaine, methamphetamine, and 3,4-methylenedioxymethamphetamine (MDMA). Excitingly, this new appreciation of central immune signaling activity of drugs of abuse provides novel therapeutic interventions and opportunities to identify 'at risk' individuals through the use of immunogenetics. Discussion will also cover the evidence of modulation of this signaling by existing clinical and pre-clinical drug candidates, and novel pharmacological targets. Finally, following examination of the breadth of central immune signaling actions of the drugs of abuse highlighted here, the current known common immune signaling components will be outlined and their impact on established addiction neurocircuitry discussed, thereby synthesizing a common neuroimmune hypothesis of addiction.
Collapse
Affiliation(s)
- Janet K Coller
- Discipline of Pharmacology, School of Medical Sciences, University of Adelaide, South Australia 5005, Australia.
| | | |
Collapse
|
267
|
Post-traumatic anxiety associates with failure of the innate immune receptor TLR9 to evade the pro-inflammatory NFκB pathway. Transl Psychiatry 2012; 2:e78. [PMID: 22832815 PMCID: PMC3309554 DOI: 10.1038/tp.2012.4] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Post-traumatic anxiety notably involves inflammation, but its causes and functional significance are yet unclear. Here, we report that failure of the innate immune system Toll-like receptor 9 (TLR9) to limit inflammation is causally involved with anxiety-associated inflammation and that peripheral administration of specific oligonucleotide activators of TLR9 may prevent post-traumatic consequences in stressed mice. Suggesting involvement of NFκB-mediated enhancement of inflammatory reactions in the post-traumatic phenotype, we found association of serum interleukin-1β increases with symptoms severity and volumetric brain changes in post-traumatic stress disorder patients. In predator scent-stressed mice, the moderate NFκB-activating oligonucleotides mEN101 and its human ortholog BL-7040, but not the canonic NFκB activator oligonucleotide ODN1826, induced anxiolytic effects. In stressed mice, peripherally administered mEN101 prevented delayed stress-inducible serum interleukin-1β increases while limiting stress-characteristic hippocampal transcript modifications and the anxiety-induced EGR1-mediated neuronal activation. Attesting to the TLR9 specificity of this response, BL-7040 suppressed NFκB-mediated luciferase in transfected cells co-expressing TLR9, but not other TLRs. Furthermore, TLR9-/- mice were mEN101 and BL-7040 resistant and presented unprovoked anxiety-like behavior and anxiety-characteristic hippocampal transcripts. Our findings demonstrate functional relevance of TLR9 in protecting stressed mammals from overreacting to traumatic experiences and suggest using oligonucleotide-mediated peripheral TLR9 activation to potentiate the innate immune system and prevent post-traumatic inflammation and anxiety.
Collapse
|
268
|
Green HF, Treacy E, Keohane AK, Sullivan AM, O'Keeffe GW, Nolan YM. A role for interleukin-1β in determining the lineage fate of embryonic rat hippocampal neural precursor cells. Mol Cell Neurosci 2012; 49:311-21. [PMID: 22270046 DOI: 10.1016/j.mcn.2012.01.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 12/01/2011] [Accepted: 01/04/2012] [Indexed: 11/26/2022] Open
Abstract
Neurogenesis occurs in the hippocampus of the developing and adult brain due to the presence of multipotent stem cells and restricted precursor cells at different stages of differentiation. It has been proposed that they may be of potential benefit for use in cell transplantation approaches for neurodegenerative disorders and trauma. Prolonged release of interleukin-1β (IL-1β) from activated microglia has a deleterious effect on hippocampal neurons and is implicated in the impaired neurogenesis and cognitive dysfunction associated with aging, Alzheimer's disease and depression. This study assessed the effect of IL-1β on the proliferation and differentiation of embryonic rat hippocampal NPCs in vitro. We show that IL-1R1 is expressed on proliferating NPCs and that IL-1β treatment decreases cell proliferation and neurosphere growth. When NPCs were differentiated in the presence of IL-1β, a significant reduction in the percentages of newly-born neurons and post-mitotic neurons and a significant increase in the percentage of astrocytes was observed in these cultures. These effects were attenuated by IL-1 receptor antagonist. These data reveal that IL-1β exerts an anti-proliferative, anti-neurogenic and pro-gliogenic effect on embryonic hippocampal NPCs, which is mediated by IL-1R1. The present results emphasise the consequences of an inflammatory environment during NPC development, and indicate that strategies to inhibit IL-1β signalling may be necessary to facilitate effective cell transplantation approaches or in conditions where endogenous hippocampal neurogenesis is impaired.
Collapse
Affiliation(s)
- Holly F Green
- Department of Anatomy and Neuroscience, University College Cork, Ireland
| | | | | | | | | | | |
Collapse
|
269
|
Abstract
Autism spectrum disorders (ASD) are complex and heterogeneous with a spectrum of diverse symptoms. Mounting evidence from a number of disciplines suggests a link between immune function and ASD. Although the causes of ASD have yet to be identified, genetic studies have uncovered a host of candidate genes relating to immune regulation that are altered in ASD, while epidemiological studies have shown a relationship with maternal immune disturbances during pregnancy and ASD. Moreover, decades of research have identified numerous systemic and cellular immune abnormalities in individuals with ASD and their families. These include changes in immune cell number, differences in cytokine and chemokine production, and alterations of cellular function at rest and in response to immunological challenge. Many of these changes in immune responses are associated with increasing impairment in behaviors that are core features of ASD. Despite this evidence, much remains to be understood about the precise mechanism by which the immune system alters neurodevelopment and to what extent it is involved in the pathogenesis of ASD. With estimates of ASD as high as 1% of children, ASD is a major public health issue. Improvements in our understanding of the interactions between the nervous and immune system during early neurodevelopment and how this interaction is different in ASD will have important therapeutic implications with wide ranging benefits.
Collapse
Affiliation(s)
- Milo Careaga
- Department of Medical Microbiology and Immunology and the M.I.N.D. Institute, University of California at Davis, Davis, CA, USA
| | | |
Collapse
|
270
|
Zhao H, Yao R, Cao X, Wu G. Neuroimmune modulation following traumatic stress in rats: evidence for an immunoregulatory cascade mediated by c-Src, miRNA222 and PAK1. J Neuroinflammation 2011; 8:159. [PMID: 22078298 PMCID: PMC3256122 DOI: 10.1186/1742-2094-8-159] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 11/14/2011] [Indexed: 11/10/2022] Open
Abstract
Background Neuroimmune modulation following traumatic stress is accompanied by cortical upregulation of c-Src expression, but the mechanistic details of the potential regulatory link between c-Src expression and immunosuppression have not been established. Methods We used a combination of techniques to measure temporal changes in: (i) the parallel expression of c-Src and microRNA222; (ii) levels of PAK1 (p21-activated kinase 1); and (iii) the association between PAK1 and interleukin 1β signaling, both in cortex of rats following traumatic stress and in primary cortical neurons. Techniques included real-time PCR, immunoprecipitation, western blotting and subcellular fractionation by discontinuous centrifugation. We also measured lymphocyte proliferation and natural killer (NK) cell activity. Results We confirm robust upregulation of c-Src expression following traumatic stress. c-Src upregulation was accompanied by marked increases in levels of miRNA222; other studied miRNAs were not affected by stress. We also established that PAK1 is a primary target for miRNA222, and that increased levels of miRNA222 following traumatic stress are accompanied by downregulation of PAK1 expression. PAK1 was shown to mediate the association of IL-1RI with lipid rafts and thereby enhance IL-1 signaling. Detailed analyses in cultured neurons and glial cells revealed that PAK1-mediated enhancement of IL-1RI activation is governed to a large extent by c-Src/miRNA222 signaling; this signaling played a central role in the modulation of lymphocyte proliferation and NK cell activity. Conclusions Our results suggest that neuroimmune modulation following traumatic stress is mediated by a cascade that involves c-Src-mediated enhancement of miRNA222 expression and downregulation of PAK1, which in turn impairs signaling via IL-1β/IL1-RI, leading to immunosuppression. The regulatory networks involving c-Src/miRNA222 and PAK1/IL-1RI signaling have significant potential for the development of therapeutic approaches designed to promote recovery following traumatic injury.
Collapse
Affiliation(s)
- Hui Zhao
- Department of Integrative Medicine and Neurobiology, State Key Lab of Medical Neurobiology, Shanghai Medical College, Brain Research Institute, Fudan University, Shanghai, P R China.
| | | | | | | |
Collapse
|
271
|
Schmidt HD, Shelton RC, Duman RS. Functional biomarkers of depression: diagnosis, treatment, and pathophysiology. Neuropsychopharmacology 2011; 36:2375-94. [PMID: 21814182 PMCID: PMC3194084 DOI: 10.1038/npp.2011.151] [Citation(s) in RCA: 330] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Major depressive disorder (MDD) is a heterogeneous illness for which there are currently no effective methods to objectively assess severity, endophenotypes, or response to treatment. Increasing evidence suggests that circulating levels of peripheral/serum growth factors and cytokines are altered in patients with MDD, and that antidepressant treatments reverse or normalize these effects. Furthermore, there is a large body of literature demonstrating that MDD is associated with changes in endocrine and metabolic factors. Here we provide a brief overview of the evidence that peripheral growth factors, pro-inflammatory cytokines, endocrine factors, and metabolic markers contribute to the pathophysiology of MDD and antidepressant response. Recent preclinical studies demonstrating that peripheral growth factors and cytokines influence brain function and behavior are also discussed along with their implications for diagnosing and treating patients with MDD. Together, these studies highlight the need to develop a biomarker panel for depression that aims to profile diverse peripheral factors that together provide a biological signature of MDD subtypes as well as treatment response.
Collapse
Affiliation(s)
- Heath D Schmidt
- Department of Psychiatry, Center for Neurobiology and Behavior, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| | | | | |
Collapse
|
272
|
Anna GM, Joanna T, Paulina R, Jadwiga S, Jan B. Effect of prior stress on interleukin-1β and HPA axis responses to acute stress. Pharmacol Rep 2011; 63:1393-403. [DOI: 10.1016/s1734-1140(11)70703-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 10/28/2011] [Indexed: 01/08/2023]
|
273
|
Vezzani A, Aronica E, Mazarati A, Pittman QJ. Epilepsy and brain inflammation. Exp Neurol 2011; 244:11-21. [PMID: 21985866 DOI: 10.1016/j.expneurol.2011.09.033] [Citation(s) in RCA: 421] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2011] [Revised: 09/15/2011] [Accepted: 09/26/2011] [Indexed: 02/06/2023]
Abstract
During the last decade, experimental research has demonstrated a prominent role of glial cells, activated in brain by various injuries, in the mechanisms of seizure precipitation and recurrence. In particular, alterations in the phenotype and function of activated astrocytes and microglial cells have been described in experimental and human epileptic tissue, including modifications in potassium and water channels, alterations of glutamine/glutamate cycle, changes in glutamate receptor expression and transporters, release of neuromodulatory molecules (e.g. gliotransmitters, neurotrophic factors), and induction of molecules involved in inflammatory processes (e.g. cytokines, chemokines, prostaglandins, complement factors, cell adhesion molecules) (Seifert et al., 2006; Vezzani et al., 2011; Wetherington et al., 2008). In particular, brain injury or proconvulsant events can activate microglia and astrocytes to release a number of proinflammatory mediators, thus initiating a cascade of inflammatory processes in brain tissue. Proinflammatory molecules can alter neuronal excitability and affect the physiological functions of glia by paracrine or autocrine actions, thus perturbing the glioneuronal communications. In experimental models, these changes contribute to decreasing the threshold to seizures and may compromise neuronal survival (Riazi et al., 2010; Vezzani et al., 2008). In this context, understanding which are the soluble mediators and the molecular mechanisms crucially involved in glio-neuronal interactions is instrumental to shed light on how brain inflammation may contribute to neuronal hyperexcitability in epilepsy. This review will report the clinical observations in drug-resistant human epilepsies and the experimental findings in adult and immature rodents linking brain inflammation to the epileptic process in a causal and reciprocal manner. By confronting the clinical evidence with the experimental findings, we will discuss the role of specific soluble inflammatory mediators in the etiopathogenesis of seizures, reporting evidence for both their acute and long term effects on seizure threshold. The possible contribution of these mediators to co-morbidities often described in epilepsy patients will be also discussed. Finally, we will report on the anti-inflammatory treatments with anticonvulsant actions in experimental models highlighting possible therapeutic options for treating drug-resistant seizures and for prevention of epileptogenesis.
Collapse
Affiliation(s)
- Annamaria Vezzani
- Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Via G. La Masa 19, 20156 Milano, Italy.
| | | | | | | |
Collapse
|
274
|
Tkachenko IV, Jääskeläinen T, Jääskeläinen J, Palvimo JJ, Voutilainen R. Interleukins 1α and 1β as regulators of steroidogenesis in human NCI-H295R adrenocortical cells. Steroids 2011; 76:1103-15. [PMID: 21600230 DOI: 10.1016/j.steroids.2011.04.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 04/23/2011] [Accepted: 04/26/2011] [Indexed: 10/18/2022]
Abstract
Inflammatory cytokines interleukin-1 (IL-1) and tumor necrosis factor-α (TNF-α) regulate the activity of the hypothalamo-pituitary-adrenal (HPA) axis at several levels. Although hypothalamic CRH secretion may be the primary mechanism by which these cytokines activate the HPA axis, IL-1 expression is increased within the adrenal glands in models for systemic inflammation, and IL-1 may augment adrenal glucocorticoid production. Our aim was to investigate the direct effects of IL-1α and IL-1β on adrenal steroidogenesis and expression of three key steroidogenic genes in human adrenocortical cells using the NCI-H295R cell line as a model. mRNAs encoding receptors for IL-1, TNF-α, and leukemia inhibitory factor (LIF) were detectable in the cell line (Affymetrix microarray analysis). Both IL-1α and IL-1β increased cortisol, androstenedione, dehydroepiandrosterone and dehydroepiandrosterone sulfate production, and the accumulation of mRNAs for steroidogenic acute regulatory protein (STAR), 17α-hydroxylase/17,20-lyase (CYP17A1) and 3β-hydroxysteroid dehydrogenase 2 (HSD3B2) in these cells (P<0.05 for all). Both ILs augmented TNF-α- and LIF-induced STAR and CYP17A1 mRNA accumulation, and TNF-α-induced cortisol production (P<0.05 for all). Both ILs also increased the apoptotic index of the cells (P<0.05), which was efficiently neutralized by their specific antibodies. The IL-induced changes in the STAR, HSD3B2, and CYP17A1 protein levels were not as evident as those in the respective mRNA levels. In conclusion, the combined effect of inflammatory cytokines at the adrenal level in acute or chronic inflammatory states could significantly stimulate glucocorticoid production, and thus explain the observed discrepancy between the cortisol and ACTH concentrations sometimes seen in sepsis and chronic inflammatory states.
Collapse
Affiliation(s)
- Irina V Tkachenko
- Department of Pediatrics, Kuopio University Hospital and University of Eastern Finland, P.O. Box 1777, FI-70211 Kuopio, Finland
| | | | | | | | | |
Collapse
|
275
|
High-mobility group box-1 impairs memory in mice through both toll-like receptor 4 and Receptor for Advanced Glycation End Products. Exp Neurol 2011; 232:143-8. [PMID: 21884699 DOI: 10.1016/j.expneurol.2011.08.012] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Revised: 07/27/2011] [Accepted: 08/15/2011] [Indexed: 11/22/2022]
Abstract
High-mobility group box-1 (HMGB1) is a nuclear protein with cytokine-type functions upon its extracellular release. HMGB1 activates inflammatory pathways by stimulating multiple receptors, chiefly toll-like receptor 4 (TLR4) and Receptor for Advanced Glycation End Products (RAGE). TLR4 and RAGE activation has been implicated in memory impairments, although the endogenous ligand subserving these effects is unknown. We examined whether HMGB1 induced memory deficits using novel object recognition test, and which of the two receptor pathways was involved in these effects. Non-spatial long-term memory was examined in wild type, TLR4 knockout, and RAGE knockout mice. Recombinant HMGB1 (10μg, intracerebroventricularly, i.c.v.) disrupted memory encoding equipotently in wild type, TLR4 knockout and RAGE knockout animals, but affected neither memory consolidation, nor retrieval. Neither TLR4 knockout nor RAGE knockout mice per se, exhibited memory deficits. Blockade of TLR4 in RAGE knockout mice using Rhodobacter sphaeroides lipopolysaccharide (LPS-Rs; 20 μg, i.c.v.) prevented the detrimental effect of HMGB1 on memory. These data show that elevated brain levels of HMGB1 induce memory abnormalities which may be mediated by either TLR4, or RAGE. This mechanism may contribute to memory deficits under various neurological and psychiatric conditions associated with the increased HMGB1 levels, such as epilepsy, Alzheimer's disease and stroke.
Collapse
|
276
|
Lavin DN, Joesting JJ, Chiu GS, Moon ML, Meng J, Dilger RN, Freund GG. Fasting induces an anti-inflammatory effect on the neuroimmune system which a high-fat diet prevents. Obesity (Silver Spring) 2011; 19:1586-94. [PMID: 21527899 PMCID: PMC3695639 DOI: 10.1038/oby.2011.73] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The neuroimmunological and behavioral consequences of a high-fat diet (HFD) are not well delineated. This is especially true when short term (24 h) fasting is used as a physiologic stressor. In this study, we examined the impact of a HFD on learning and memory and depressive-like behaviors to understand how fasting impacts neuroimmunity and whether obesity modulates the response. Mice were fed diets containing either 10% (low-fat diet (LFD) mice) or 60% (HFD mice) calories from fat for 10-12 weeks. Gene transcripts for 26 pro-/anti-inflammatory cytokines and markers of macrophage activation were examined in adipose tissue and whole brain. Mouse learning and memory (spontaneous alternation, novel object) and depressive-like behaviors (saccharin preference, burrowing, forced swim) were studied in the fed and fasted state as were gene transcripts for F4/80, CD11b, interleukin-1α (IL-1α), IL-1β, IL-1R1, IL-1R2, IL-1RA, IL-6 and tumor necrosis factor-α in cortex, hippocampus and hypothalamus. In the fed state, HFD mice compared to LFD mice had reduced locomotor activity, and were adverse to saccharin and burrowed less. After fasting, LFD mice vs. HFD mice lost 18 vs. 5% of their body weight, respectively. In addition, HFD mice failed to downregulate gene transcripts for the myeloid-cell associated proteins F4/80, CD11b and IL-1α in the brain, failed to appropriately explore a novel object, failed to reduce locomotor activity and had increased saccharin consumption and burrowing. These data indicate that fasting induces an anti-inflammatory effect on the neuroimmune system which a HFD prevents. This breakdown appears linked to the IL-1 system because of the association of this cytokine with memory and learning.
Collapse
Affiliation(s)
- Desiree N. Lavin
- Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA
| | | | - Gabriel S. Chiu
- Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Morgan L. Moon
- Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Jia Meng
- Department of Pathology, University of Illinois, Urbana, IL 61801, USA
| | - Ryan N. Dilger
- Department of Animal Science, University of Illinois, Urbana, IL 61801, USA
| | - Gregory G. Freund
- Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA
- Department of Animal Science, University of Illinois, Urbana, IL 61801, USA
- Department of Pathology, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
277
|
Stasi C, Zignego AL, Laffi G, Rosselli M. The liver-cytokine-brain circuit in interferon-based treatment of patients with chronic viral hepatitis. J Viral Hepat 2011; 18:525-32. [PMID: 21762284 DOI: 10.1111/j.1365-2893.2010.01418.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Psychiatric symptoms are commonly identified in patients with viral hepatitis. They may have been present prior to the onset of disease and may include symptoms related to addiction issues. Furthermore, the virus and antiviral therapy, in particular interferon, may induce or modify psychiatric symptoms. Recent data support chronic hepatitis C replication in the brain and subsequent changes of cerebral metabolite spectra and magnetic resonance alterations. In chronic viral hepatitis and in other chronic inflammatory diseases, an alteration of the neuro-endocrine-immune system response has been observed. Catecholamines and glucocorticoids modulate this immune/inflammatory reaction. Psychiatric assessment and monitoring before, during and after antiviral therapy can identify patients whose psychiatric symptoms preclude therapy, and those who may benefit from psychopharmacological therapy and counselling, thereby improving therapeutic results. This review will discuss current insights into the complex interplay between cytokines, liver and brain in chronic viral hepatitis closely associated with psychiatric issues, especially in the case of antiviral therapy, with the aim of indicating future research and possible treatments.
Collapse
Affiliation(s)
- C Stasi
- Department of Internal Medicine, University of Florence, Florence, Italy.
| | | | | | | |
Collapse
|
278
|
Ben Menachem-Zidon O, Avital A, Ben-Menahem Y, Goshen I, Kreisel T, Shmueli EM, Segal M, Ben Hur T, Yirmiya R. Astrocytes support hippocampal-dependent memory and long-term potentiation via interleukin-1 signaling. Brain Behav Immun 2011; 25:1008-16. [PMID: 21093580 DOI: 10.1016/j.bbi.2010.11.007] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 11/10/2010] [Accepted: 11/11/2010] [Indexed: 02/04/2023] Open
Abstract
Recent studies indicate that astrocytes play an integral role in neural and synaptic functioning. To examine the implications of these findings for neurobehavioral plasticity we investigated the involvement of astrocytes in memory and long-term potentiation (LTP), using a mouse model of impaired learning and synaptic plasticity caused by genetic deletion of the interleukin-1 receptor type I (IL-1RI). Neural precursor cells (NPCs), derived from either wild type (WT) or IL-1 receptor knockout (IL-1rKO) neonatal mice, were labeled with bromodeoxyuridine (BrdU) and transplanted into the hippocampus of either IL-1rKO or WT adult host mice. Transplanted NPCs survived and differentiated into astrocytes (expressing GFAP and S100β), but not to neurons or oligodendrocytes. The NPCs-derived astrocytes from WT but not IL-1rKO mice displayed co-localization of GFAP with the IL-1RI. Four to twelve weeks post-transplantation, memory functioning was examined in the fear-conditioning and the water maze paradigms and LTP of perforant path-dentate gyrus synapses was assessed in anesthetized mice. As expected, IL-1rKO mice transplanted with IL-1rKO cells or sham operated displayed severe memory disturbances in both paradigms as well as a marked impairment in LTP. In contrast, IL-1rKO mice transplanted with WT NPCs displayed a complete rescue of the impaired memory functioning as well as partial restoration of LTP. These findings indicate that astrocytes play a critical role in memory functioning and LTP, and specifically implicate astrocytic IL-1 signaling in these processes. The results suggest novel conceptualization and therapeutic targets for neuropsychiatric disorders characterized by impaired astrocytic functioning concomitantly with disturbed memory and synaptic plasticity.
Collapse
|
279
|
Ron-Harel N, Cardon M, Schwartz M. Brain homeostasis is maintained by "danger" signals stimulating a supportive immune response within the brain's borders. Brain Behav Immun 2011; 25:1036-43. [PMID: 21182929 DOI: 10.1016/j.bbi.2010.12.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 12/09/2010] [Accepted: 12/10/2010] [Indexed: 12/23/2022] Open
Abstract
An organism's behavior is determined by the way it senses and perceives the surrounding environment, and by its responses to these stimuli. The major factors known to affect the behavioral response to an event are genetic background, environmental factors, and past experiences, and their imprinting on the relevant brain circuits. Recently, circulating immune cells were introduced as novel players into this system. It was proposed that the brain and circulating immune cells engage in a continuous dialogue that takes place within the brain's territory, though outside the parenchyma (occurring within the brain's borders - the choroid plexi, the brain meninges and the cerebrospinal fluid (CSF)). The cytokines secreted by activated leukocytes residing at the borders were shown to affect neurotrophic factors production within the parenchyma. Here, we suggest that such a dialogue is stimulated at the brain's borders, upon need, by a "danger" signal that originates in the parenchyma in response to any destabilizing event, and discuss the potential role of reactive oxygen species (ROS) in transmitting this signal. Accordingly, a failure to restore balance is likely to lead to aberrant responses to subsequent events. This view thus supports the contention that circulating immune cells are required to maintain the brain's balanced activity and suggests a novel mechanism whereby the surveying immune cells are sensing the brain's status and needs.
Collapse
Affiliation(s)
- Noga Ron-Harel
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|
280
|
Maher P, Dargusch R, Ehren JL, Okada S, Sharma K, Schubert D. Fisetin lowers methylglyoxal dependent protein glycation and limits the complications of diabetes. PLoS One 2011; 6:e21226. [PMID: 21738623 PMCID: PMC3124487 DOI: 10.1371/journal.pone.0021226] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 05/23/2011] [Indexed: 12/21/2022] Open
Abstract
The elevated glycation of macromolecules by the reactive dicarbonyl and α-oxoaldehyde methylglyoxal (MG) has been associated with diabetes and its complications. We have identified a rare flavone, fisetin, which increases the level and activity of glyoxalase 1, the enzyme required for the removal of MG, as well as the synthesis of its essential co-factor, glutathione. It is shown that fisetin reduces two major complications of diabetes in Akita mice, a model of type 1 diabetes. Although fisetin had no effect on the elevation of blood sugar, it reduced kidney hypertrophy and albuminuria and maintained normal levels of locomotion in the open field test. This correlated with a reduction in proteins glycated by MG in the blood, kidney and brain of fisetin-treated animals along with an increase in glyoxalase 1 enzyme activity and an elevation in the expression of the rate-limiting enzyme for the synthesis of glutathione, a co-factor for glyoxalase 1. The expression of the receptor for advanced glycation end products (RAGE), serum amyloid A and serum C-reactive protein, markers of protein oxidation, glycation and inflammation, were also increased in diabetic Akita mice and reduced by fisetin. It is concluded that fisetin lowers the elevation of MG-protein glycation that is associated with diabetes and ameliorates multiple complications of the disease. Therefore, fisetin or a synthetic derivative may have potential therapeutic use for the treatment of diabetic complications.
Collapse
Affiliation(s)
- Pamela Maher
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, United States of America.
| | | | | | | | | | | |
Collapse
|
281
|
Pascual M, Baliño P, Alfonso-Loeches S, Aragón CMG, Guerri C. Impact of TLR4 on behavioral and cognitive dysfunctions associated with alcohol-induced neuroinflammatory damage. Brain Behav Immun 2011; 25 Suppl 1:S80-91. [PMID: 21352907 DOI: 10.1016/j.bbi.2011.02.012] [Citation(s) in RCA: 160] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 02/16/2011] [Accepted: 02/17/2011] [Indexed: 12/16/2022] Open
Abstract
Toll-like receptors (TLRs) play an important role in the innate immune response, and emerging evidence indicates their role in brain injury and neurodegeneration. Our recent results have demonstrated that ethanol is capable of activating glial TLR4 receptors and that the elimination of these receptors in mice protects against ethanol-induced glial activation, induction of inflammatory mediators and apoptosis. This study was designed to assess whether ethanol-induced inflammatory damage causes behavioral and cognitive consequences, and if behavioral alterations are dependent of TLR4 functions. Here we show in mice drinking alcohol for 5months, followed by a 15-day withdrawal period, that activation of the astroglial and microglial cells in frontal cortex and striatum is maintained and that these events are associated with cognitive and anxiety-related behavioral impairments in wild-type (WT) mice, as demonstrated by testing the animals with object memory recognition, conditioned taste aversion and dark and light box anxiety tasks. Mice lacking TLR4 receptors are protected against ethanol-induced inflammatory damage, and behavioral associated effects. We further assess the possibility of the epigenetic modifications participating in short- or long-term behavioral effects associated with neuroinflammatory damage. We show that chronic alcohol treatment decreases H4 histone acetylation and histone acetyltransferases activity in frontal cortex, striatum and hippocampus of WT mice. Alterations in chromatin structure were not observed in TLR4(-/-) mice. These results provide the first evidence of the role that TLR4 functions play in the behavioral consequences of alcohol-induced inflammatory damage and suggest that the epigenetic modifications mediated by TLR4 could contribute to short- or long-term alcohol-induced behavioral or cognitive dysfunctions.
Collapse
Affiliation(s)
- María Pascual
- Department of Cell Pathology, Príncipe Felipe Research Center, Avda. Autopista del Saler 16, 46012 Valencia, Spain
| | | | | | | | | |
Collapse
|
282
|
Immune function and HPA axis activity in free-ranging rhesus macaques. Physiol Behav 2011; 104:507-14. [PMID: 21635909 DOI: 10.1016/j.physbeh.2011.05.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 04/15/2011] [Accepted: 05/18/2011] [Indexed: 11/20/2022]
Abstract
In mammals, the hypothalamic-pituitary-adrenal (HPA) axis and immune system play an important role in the maintenance of homeostasis. Dysregulation of either system resulting, for example, from psychosocial or reproductive stress increases susceptibility to disease and mortality risk, especially in aging individuals. In a study of free-ranging rhesus macaques, we examined how female age, reproductive state, social rank, and body condition influence (i) aspects of cytokine biology (plasma concentrations of interleukin-1 receptor antagonist (IL-1ra), IL-6 and IL-8), and (ii) HPA axis activity (plasma and fecal glucocorticoid levels). We also assessed individual differences in cytokine and hormone concentrations over time to determine their consistency and to investigate relations between these two indicators of physiological regulation and demand. Female monkeys showed marked increases in HPA axis activity during pregnancy and lactation, and increased circulating levels of IL-1ra with advancing age. Inter-individual differences in IL-1ra and IL-8 were consistent over successive years, suggesting that both are stable, trait-like characteristics. Furthermore, the concentrations of fecal glucocorticoid hormones in non-pregnant, non-lactating females were correlated with their plasma cortisol and IL-8 concentrations. Some individuals showed permanently elevated cytokine levels or HPA axis activity, or a combination of the two, suggesting chronic stress or disease. Our results enhance our understanding of within- and between-individual variation in cytokine levels and their relationship with glucocorticoid hormones in free-ranging primates. These findings can provide the basis for future research on stress and allostatic load in primates.
Collapse
|
283
|
Porterfield VM, Zimomra ZR, Caldwell EA, Camp RM, Gabella KM, Johnson JD. Rat strain differences in restraint stress-induced brain cytokines. Neuroscience 2011; 188:48-54. [PMID: 21605631 DOI: 10.1016/j.neuroscience.2011.05.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 04/18/2011] [Accepted: 05/10/2011] [Indexed: 12/12/2022]
Abstract
Induction of brain cytokines during times of stress has potent effects on altering behavior, mood, and cognitive functioning. Currently, it is unknown why exposure to some stressors such as tailshock and footshock elevate brain cytokines, while exposure to swim, predator odor, and restraint stress do not. Recent data indicate that brain noradrenergic signaling mediates brain cytokine production suggests magnitude of norepinephrine release during stress may be critical in initiating brain cytokine production. The aim of the current study was to investigate stress-induced brain cytokines between rat strains that differ in their magnitude of stress responsiveness as measured by brain norepinephrine and HPA responses. Sprague-Dawley and Fischer rats were placed in a restraint bag for 1 h or 2 h and sacrificed immediately following stressor termination. Exposure to restraint significantly elevated hypothalamic interleukin (IL)-1β and IL-1 receptor type (R) 2 mRNA after 1 h and IL-1β protein after 2 h in the high stress responsive Fischer rats, but not in Sprague-Dawley rats. IL-6, IL-1R1, Il-1 receptor antagonist (RA), and cyclooxygenase (Cox)-2 mRNA were not altered and neither there was expression of any cytokines in the hippocampus or circulating cytokines in either strain. Administration of desipramine (a norepinephrine reuptake inhibitor) to Sprague-Dawley rats was sufficient either alone or in combination with stress to increase IL-1β mRNA in the hypothalamus and desipramine combined with stress was sufficient to increase IL-1R2 mRNA in the hypothalamus. These data support our hypothesis that there is a critical threshold of brain norepinephrine necessary to stimulate brain cytokines, which may help to explain why severe stressors are more commonly reported to induce brain cytokines. These data also suggest an organisms' susceptibility to stress-induced brain cytokine production, depends on responsiveness and regulation of noradrenergic neurons.
Collapse
Affiliation(s)
- V M Porterfield
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | | | | | | | | | | |
Collapse
|
284
|
Kubera M, Obuchowicz E, Goehler L, Brzeszcz J, Maes M. In animal models, psychosocial stress-induced (neuro)inflammation, apoptosis and reduced neurogenesis are associated to the onset of depression. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:744-59. [PMID: 20828592 DOI: 10.1016/j.pnpbp.2010.08.026] [Citation(s) in RCA: 332] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 08/28/2010] [Accepted: 08/29/2010] [Indexed: 12/13/2022]
Abstract
Recently, the inflammatory and neurodegenerative (I&ND) hypothesis of depression was formulated (Maes et al., 2009), i.e. the neurodegeneration and reduced neurogenesis that characterize depression are caused by inflammation, cell-mediated immune activation and their long-term sequels. The aim of this paper is to review the body of evidence that external stressors may induce (neuro)inflammation, neurodegeneration and reduced neurogenesis; and that antidepressive treatments may impact on these pathways. The chronic mild stress (CMS) and learned helplessness (LH) models show that depression-like behaviors are accompanied by peripheral and central inflammation, neuronal cell damage, decreased neurogenesis and apoptosis in the hippocampus. External stress-induced depression-like behaviors are associated with a) increased interleukin-(IL)1β, tumor necrosis factor-α, IL-6, nuclear factor κB, cyclooxygenase-2, expression of Toll-like receptors and lipid peroxidation; b) antineurogenic effects and reduced brain-derived neurotrophic factor (BDNF) levels; and c) apoptosis with reduced levels of Bcl-2 and BAG1 (Bcl-2 associated athanogene 1), and increased levels of caspase-3. Stress-induced inflammation, e.g. increased IL-1β, but not reduced neurogenesis, is sufficient to cause depression. Antidepressants a) reduce peripheral and central inflammatory pathways by decreasing IL-1β, TNFα and IL-6 levels; b) stimulate neuronal differentiation, synaptic plasticity, axonal growth and regeneration through stimulatory effects on the expression of different neurotrophic factors, e.g. trkB, the receptor for brain-derived neurotrophic factor; and c) attenuate apoptotic pathways by activating Bcl-2 and Bcl-xl proteins, and suppressing caspase-3. It is concluded that external stressors may provoke depression-like behaviors through activation of inflammatory, oxidative, apoptotic and antineurogenic mechanisms. The clinical efficacity of antidepressants may be ascribed to their ability to reverse these different pathways.
Collapse
Affiliation(s)
- Marta Kubera
- Department of Experimental Endocrinology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, PL 31-343 Kraków, Poland.
| | | | | | | | | |
Collapse
|
285
|
Maroso M, Balosso S, Ravizza T, Iori V, Wright CI, French J, Vezzani A. Interleukin-1β biosynthesis inhibition reduces acute seizures and drug resistant chronic epileptic activity in mice. Neurotherapeutics 2011; 8:304-15. [PMID: 21431948 PMCID: PMC3101825 DOI: 10.1007/s13311-011-0039-z] [Citation(s) in RCA: 232] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Experimental evidence and clinical observations indicate that brain inflammation is an important factor in epilepsy. In particular, induction of interleukin-converting enzyme (ICE)/caspase-1 and activation of interleukin (IL)-1β/IL-1 receptor type 1 axis both occur in human epilepsy, and contribute to experimentally induced acute seizures. In this study, the anticonvulsant activity of VX-765 (a selective ICE/caspase-1 inhibitor) was examined in a mouse model of chronic epilepsy with spontaneous recurrent epileptic activity refractory to some common anticonvulsant drugs. Moreover, the effects of this drug were studied in one acute model of seizures in mice, previously shown to involve activation of ICE/caspase-1. Quantitative analysis of electroencephalogram activity was done in mice exposed to acute seizures or those developing chronic epileptic activity after status epilepticus to assess the anticonvulsant effects of systemic administration of VX-765. Histological and immunohistochemical analysis of brain tissue was carried out at the end of pharmacological experiments in epileptic mice to evaluate neuropathology, glia activation and IL-1β expression, and the effect of treatment. Repeated systemic administration of VX-765 significantly reduced chronic epileptic activity in mice in a dose-dependent fashion (12.5-200 mg/kg). This effect was observed at doses ≥ 50 mg/kg, and was reversible with discontinuation of the drug. Maximal drug effect was associated with inhibition of IL-1β synthesis in activated astrocytes. The same dose regimen of VX-765 also reduced acute seizures in mice and delayed their onset time. These results support a new target system for anticonvulsant pharmacological intervention to control epileptic activity that does not respond to some common anticonvulsant drugs.
Collapse
Affiliation(s)
- Mattia Maroso
- Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Milano, 20156 Italy
| | - Silvia Balosso
- Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Milano, 20156 Italy
| | - Teresa Ravizza
- Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Milano, 20156 Italy
| | - Valentina Iori
- Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Milano, 20156 Italy
| | | | - Jacqueline French
- New York University Comprehensive Epilepsy Center, New York, New York 10016 USA
| | - Annamaria Vezzani
- Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Milano, 20156 Italy
| |
Collapse
|
286
|
Hueston CM, Barnum CJ, Eberle JA, Ferraioli FJ, Buck HM, Deak T. Stress-dependent changes in neuroinflammatory markers observed after common laboratory stressors are not seen following acute social defeat of the Sprague Dawley rat. Physiol Behav 2011; 104:187-98. [PMID: 21406198 DOI: 10.1016/j.physbeh.2011.03.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 01/20/2011] [Accepted: 03/09/2011] [Indexed: 12/26/2022]
Abstract
Exposure to acute stress has been shown to increase the expression of pro-inflammatory cytokines in brain, blood and peripheral organs. However, the nature of the inflammatory response evoked by acute stress varies depending on the stressor used and species examined. The goal of the following series of studies was to characterize the consequences of social defeat in the Sprague Dawley (SD) rat using three different social defeat paradigms. In Experiments 1 and 2, adult male SD rats were exposed to a typical acute resident-intruder paradigm of social defeat (60 min) by placement into the home cage of a larger, aggressive Long Evans rat and brain tissue was collected at multiple time points for analysis of IL-1β protein and gene expression changes in the PVN, BNST and adrenal glands. In subsequent experiments, rats were exposed to once daily social defeat for 7 or 21 days (Experiment 3) or housed continuously with an aggressive partner (separated by a partition) for 7 days (Experiment 4) to assess the impact of chronic social stress on inflammatory measures. Despite the fact that social defeat produced a comparable corticosterone response as other stressors (restraint, forced swim and footshock; Experiment 5), acute social defeat did not affect inflammatory measures. A small but reliable increase in IL-1 gene expression was observed immediately after the 7th exposure to social defeat, while other inflammatory measures were unaffected. In contrast, restraint, forced swim and footshock all significantly increased IL-1 gene expression in the PVN; other inflammatory factors (IL-6, cox-2) were unaffected in this structure. These findings provide a comprehensive evaluation of stress-dependent inflammatory changes in the SD rat, raising intriguing questions regarding the features of the stress challenge that may be predictive of stress-dependent neuroinflammation.
Collapse
Affiliation(s)
- Cara M Hueston
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, USA
| | | | | | | | | | | |
Collapse
|
287
|
Douglas SA, Sreenivasan D, Carman FH, Bunn SJ. Cytokine interactions with adrenal medullary chromaffin cells. Cell Mol Neurobiol 2010; 30:1467-75. [PMID: 21088883 PMCID: PMC11498763 DOI: 10.1007/s10571-010-9593-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 09/02/2010] [Indexed: 12/19/2022]
Abstract
It is generally accepted that a bi-directional or reciprocal interaction occurs between the immune and neuroendocrine systems, and that this relationship is important for the appropriate physiological functioning of both systems. Similarly, an imbalance in this relationship may contribute to a number of pathologies, most notably those relating to stress. The aim of this article is to consider the interaction of cytokines with the adrenal medulla, a potentially important player in this relationship. The chromaffin cells of the adrenal medulla release catecholamines and a range of biologically active peptides in response to a wide variety of stress-related signals. A growing body of evidence indicates that this stress response is influenced by, and in turn has influence upon, immune signalling. This brief review will focus primarily on the best-described adrenal medullary active cytokines, namely interferon-α, interleukin-6, interleukin-1α/β and tumour necrosis factor-α. In each case, three key issues will be addressed: the physiologically relevant source of the cytokine; the intracellular signalling events arising from activation of its receptor and finally the cellular consequences of such activation in terms of modulation of gene expression and the secretory output of the chromaffin cells.
Collapse
Affiliation(s)
- Shirley A. Douglas
- Department of Anatomy and Structural Biology, Centre for Neuroendocrinology, School of Medical Sciences, University of Otago, PO Box 913, Dunedin, New Zealand
| | - Dharshini Sreenivasan
- Department of Anatomy and Structural Biology, Centre for Neuroendocrinology, School of Medical Sciences, University of Otago, PO Box 913, Dunedin, New Zealand
| | - Fiona H. Carman
- Department of Anatomy and Structural Biology, Centre for Neuroendocrinology, School of Medical Sciences, University of Otago, PO Box 913, Dunedin, New Zealand
| | - Stephen J. Bunn
- Department of Anatomy and Structural Biology, Centre for Neuroendocrinology, School of Medical Sciences, University of Otago, PO Box 913, Dunedin, New Zealand
| |
Collapse
|
288
|
Gądek-Michalska A, Bugajski J. Interleukin-1 (IL-1) in stress-induced activation of limbic-hypothalamic-pituitary adrenal axis. Pharmacol Rep 2010; 62:969-82. [DOI: 10.1016/s1734-1140(10)70359-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 10/26/2010] [Indexed: 01/07/2023]
|
289
|
Moclobemide exerts anti-inflammatory effect in lipopolysaccharide-activated primary mixed glial cell culture. Naunyn Schmiedebergs Arch Pharmacol 2010; 382:409-17. [DOI: 10.1007/s00210-010-0535-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Accepted: 06/26/2010] [Indexed: 12/30/2022]
|
290
|
Kang DH, Rice M, Park NJ, Turner-Henson A, Downs C. Stress and inflammation: a biobehavioral approach for nursing research. West J Nurs Res 2010; 32:730-60. [PMID: 20624936 DOI: 10.1177/0193945909356556] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Despite known advantages, the use of biobehavioral approaches in nursing research remains limited. The purposes of this article are to (1) present applications of stress and inflammation in various health conditions as examples of biobehavioral concepts and (2) stimulate similar applications of biobehavioral concepts in future nursing research. Under a biobehavioral conceptual framework, studies on stress and selective inflammatory biomarkers in cardiovascular, cancer, and pulmonary health are reviewed and summarized. Inflammation underlies many diseases, and stress is a significant source of increased inflammation. Biobehavioral concepts of stress and inflammation are highly relevant to nursing research concerned with health-related issues. Diverse biobehavioral concepts are readily applicable and should be utilized in nursing research with children and adults. To stimulate further biobehavioral research, more training and resources for nurse scientists, more unified conceptual definitions and biobehavioral conceptual frameworks, rigorous and expanded methodologies, and more collaboration are essential.
Collapse
Affiliation(s)
- Duck-Hee Kang
- University of Texas Health Science Center, Houston, TX 77030, USA.
| | | | | | | | | |
Collapse
|
291
|
Molina-Holgado E, Molina-Holgado F. Mending the broken brain: neuroimmune interactions in neurogenesis. J Neurochem 2010; 114:1277-90. [PMID: 20534007 DOI: 10.1111/j.1471-4159.2010.06849.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Neuroimmune networks and the brain endocannabinoid system contribute to the maintenance of neurogenesis. Cytokines and chemokines are important neuroinflammatory mediators that are involved in the pathological processes resulting from brain trauma, ischemia and chronic neurodegenerative diseases. However, they are also involved in brain repair and recovery. Compelling evidence obtained, in vivo and in vitro, establish a dynamic interplay between the endocannabinoid system, the immune system and neural stem/progenitor cells (NSC) in order to promote brain self-repair. Cross-talk between inflammatory mediators and NSC might have important consequences for neural development and brain repair. In addition, brain immune cells (microglia) support NSC renewal, migration and lineage specification. The proliferation and differentiation of multipotent NSC must be precisely controlled during the development of the CNS, as well as for adult brain repair. Although signalling through neuroimmune networks has been implicated in many aspects of neural development, how it affects NSC remains unclear. However, recent findings have clearly demonstrated that there is bi-directional cross-talk between NSC, and the neuroimmune network to control the signals involved in self-renewal and differentiation of NSC. Specifically, there is evidence emerging that neuroimmune interactions control the generation of new functional neurones from adult NSC. Here, we review the evidence that neuroimmune networks contribute to neurogenesis, focusing on the regulatory mechanisms that favour the immune system (immune cells and immune molecules) as a novel element in the coordination of the self-renewal, migration and differentiation of NSC in the CNS. In conjunction, these data suggest a novel mode of action for the immune system in neurogenesis that may be of therapeutic interest in the emerging field of brain repair.
Collapse
Affiliation(s)
- Eduardo Molina-Holgado
- Laboratorio de Neuroinflamación, Unidad de Neurología Experimental, Hospital Nacional de Parapléjicos-SESCAM, Finca La Peraleda, Toledo, Spain.
| | | |
Collapse
|
292
|
Piser TM. Linking the cytokine and neurocircuitry hypotheses of depression: a translational framework for discovery and development of novel anti-depressants. Brain Behav Immun 2010; 24:515-24. [PMID: 20193757 DOI: 10.1016/j.bbi.2010.02.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 02/19/2010] [Accepted: 02/21/2010] [Indexed: 02/06/2023] Open
Abstract
Recent studies suggest a model of depression that links the cytokine hypothesis from the field of psychoneuroimmunology with the neurocircuitry hypothesis derived from burgeoning insight into neurophysiological changes observed in depressed patients. According to the neurocircuitry hypothesis of depression, failure of homeostatic synaptic plasticity in cortical-striatal-limbic nodes of a distributed network of neural circuits involving the sub-genual anterior cingulate cortex is responsible for core symptoms of depression: loss of interest or pleasure (anhedonia) and depressed mood (sadness). According to the cytokine hypothesis of depression, inflammatory cytokines act on neural circuits to evoke the behavioral and physiological changes observed in depression. Synthesis of these hypotheses implicates cytokines released during injury, infection, illness, or psychological stress as a cause of dysregulated synaptic plasticity in cortical-striatal-limbic circuits implicated in depression. These neural circuits process affective and reward-based information for optimal cost-benefit decision-making, a function that may link cytokine-evoked changes in synaptic plasticity to translatable measures of specific behavioral impairments observed in depressed patients. This viewpoint outlines evidence linking the cytokine and neurocircuitry hypotheses of depression to offer a translational model of major depressive disorder suitable for novel drug discovery and development.
Collapse
Affiliation(s)
- Timothy M Piser
- CNS Discovery Research, AstraZeneca Pharmaceuticals, Wilmington, DE, USA.
| |
Collapse
|
293
|
Gaiteri C, Guilloux JP, Lewis DA, Sibille E. Altered gene synchrony suggests a combined hormone-mediated dysregulated state in major depression. PLoS One 2010; 5:e9970. [PMID: 20376317 PMCID: PMC2848620 DOI: 10.1371/journal.pone.0009970] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Accepted: 03/05/2010] [Indexed: 11/28/2022] Open
Abstract
Coordinated gene transcript levels across tissues (denoted “gene synchrony”) reflect converging influences of genetic, biochemical and environmental factors; hence they are informative of the biological state of an individual. So could brain gene synchrony also integrate the multiple factors engaged in neuropsychiatric disorders and reveal underlying pathologies? Using bootstrapped Pearson correlation for transcript levels for the same genes across distinct brain areas, we report robust gene transcript synchrony between the amygdala and cingulate cortex in the human postmortem brain of normal control subjects (n = 14; Control/Permutated data, p<0.000001). Coordinated expression was confirmed across distinct prefrontal cortex areas in a separate cohort (n = 19 subjects) and affected different gene sets, potentially reflecting regional network- and function-dependent transcriptional programs. Genewise regional transcript coordination was independent of age-related changes and array technical parameters. Robust shifts in amygdala-cingulate gene synchrony were observed in subjects with major depressive disorder (MDD, denoted here “depression”) (n = 14; MDD/Permutated data, p<0.000001), significantly affecting between 100 and 250 individual genes (10–30% false discovery rate). Biological networks and signal transduction pathways corresponding to the identified gene set suggested putative dysregulated functions for several hormone-type factors previously implicated in depression (insulin, interleukin-1, thyroid hormone, estradiol and glucocorticoids; p<0.01 for association with depression-related networks). In summary, we showed that coordinated gene expression across brain areas may represent a novel molecular probe for brain structure/function that is sensitive to disease condition, suggesting the presence of a distinct and integrated hormone-mediated corticolimbic homeostatic, although maladaptive and pathological, state in major depression.
Collapse
Affiliation(s)
- Chris Gaiteri
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jean-Philippe Guilloux
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Faculté de Pharmacie, Université Paris-Sud EA 3544, Châtenay-Malabry, France
| | - David A. Lewis
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Etienne Sibille
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
294
|
Abstract
Cognitive aging describes the changes in mental abilities that occur with increasing age. Although experts disagree on the core underlying processes involved, one factor that links many factors associated with cognitive aging is neuroinflammation. Markers of inflammation are associated directly with deficits in cognitive function and with diseases that are risk factors for cognitive decline. Neuroinflammation is also associated with depression and may account for the complex interaction of depression and cognition in older adults. Interventions that reduce inflammation may improve cognition. Understanding how neuroinflammation affects cognition may provide directions for useful interventions to prevent or treat cognitive decline in older adults.
Collapse
Affiliation(s)
- Raymond L Ownby
- Nova Southeastern University, 3200 South University Drive, Room 1477, Fort Lauderdale, FL 33314, USA.
| |
Collapse
|
295
|
Lynch MA. Age-related neuroinflammatory changes negatively impact on neuronal function. Front Aging Neurosci 2010; 1:6. [PMID: 20552057 PMCID: PMC2874409 DOI: 10.3389/neuro.24.006.2009] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Accepted: 12/08/2009] [Indexed: 12/25/2022] Open
Abstract
Neuroinflammatory changes, characterized by an increase in microglial activation and often accompanied by upregulation of inflammatory cytokines like interleukin-1β (IL-1β), are common to many, if not all, neurodegenerative diseases. Similar, though less dramatic neuroinflammatory changes, are also known to occur with age. Among the consequences of these changes is an impairment in synaptic function and the evidence suggests that inflammatory cytokines may be the primary contributory factor responsible for the deficits in synaptic plasticity which have been identified in aged rodents. Specifically a decrease in the ability of aged rats to sustain long-term potentiation (LTP) in perforant path-granule cells of the hippocampus is associated with increased microglial activation. This review considers the evidence which suggests a causal relationship between these changes and the factors which contribute to the age-related microglial activation, and reflects on data which demonstrate that agents which inhibit microglial activation also improve ability of rats to sustain LTP.
Collapse
Affiliation(s)
- Marina A Lynch
- Trinity College Institute of Neuroscience, Trinity College Dublin, Ireland
| |
Collapse
|
296
|
Kornhuber J, Reichel M, Tripal P, Groemer TW, Henkel AW, Mühle C, Gulbins E. The role of ceramide in major depressive disorder. Eur Arch Psychiatry Clin Neurosci 2009; 259 Suppl 2:S199-204. [PMID: 19876679 DOI: 10.1007/s00406-009-0061-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Major depression is a severe mood disorder with a lifetime prevalence of more than 10%. The pharmacokinetic hypothesis claims that a slow accumulation of antidepressant drugs by acid trapping mainly into lysosomes is responsible for the therapeutic latency and that a lysosomal target mediates the antidepressant effects. The lysosomal lipid metabolizing enzyme acid sphingomyelinase (ASM) cleaves sphingomyelin into ceramide and phosphorylcholine. In a pilot study, the activity of this enzyme was increased in peripheral blood cells of patients with major depressive disorder (MDD), making the ASM an interesting molecular target of antidepressant drugs. Indeed, several antidepressant drugs functionally inhibit ASM. The ASM/ceramide pathway might be a missing link unifying independent findings in neurobiology and the treatment of MDD such as therapeutic latency, oxidative stress, immune activation and increased risk of cardiovascular disease.
Collapse
Affiliation(s)
- Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University of Erlangen, Schwabachanlage 6, 91054 Erlangen, Germany.
| | | | | | | | | | | | | |
Collapse
|
297
|
Yirmiya R, Bab I. Major depression is a risk factor for low bone mineral density: a meta-analysis. Biol Psychiatry 2009; 66:423-32. [PMID: 19446797 DOI: 10.1016/j.biopsych.2009.03.016] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Revised: 02/25/2009] [Accepted: 03/13/2009] [Indexed: 01/18/2023]
Abstract
BACKGROUND The role of depression as a risk factor for low bone mineral density (BMD) and osteoporosis is not fully acknowledged, mainly because the relevant literature is inconsistent and because information on the mechanisms mediating brain-to-bone signals is rather scanty. METHODS Searching databases and reviewing citations in relevant articles, we identified 23 studies that quantitatively address the relationship between depression and skeletal status, comparing 2327 depressed with 21,141 nondepressed individuals. We subjected these studies to meta-analysis, assessing the association between depression and BMD as well as between depression and bone turnover markers. RESULTS Overall, depressed individuals displayed lower BMD than nondepressed subjects, with a composite weighted mean effect size (d) of -.23 (95% confidence interval: -.33 to -.13; p < .001). The association between depression and BMD was similar in the spine, hip, and forearm. It was stronger in women (d = -.24) than men (d = -.12) and in premenopausal (d = -.31) than postmenopausal (d = -.12) women. Only women individually diagnosed for major depression by a psychiatrist with DSM criteria displayed significantly low BMD (d = -.36); women diagnosed by self-rating questionnaires did not (d = -.06). Depressed subjects had increased urinary levels of bone resorption markers (d = .52). CONCLUSIONS The present findings portray depression as a significant risk factor for low BMD. Premenopausal women who are psychiatrically diagnosed with major depression are particularly at high-risk for depression-associated low BMD. Hence, periodic BMD measurements and antiosteoporotic prophylactic and curative measures are strongly advocated for these patients.
Collapse
Affiliation(s)
- Raz Yirmiya
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem 91905, Israel.
| | | |
Collapse
|
298
|
Verburg‐Van Kemenade BL, Stolte EH, Metz JR, Chadzinska M. Chapter 7 Neuroendocrine–Immune Interactions in Teleost Fish. FISH PHYSIOLOGY 2009. [DOI: 10.1016/s1546-5098(09)28007-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|