251
|
Cloning, expression and characterization of NAD+-dependent glyceraldehyde-3-phosphate dehydrogenase of adult Haemonchus contortus†. J Helminthol 2010; 85:421-9. [DOI: 10.1017/s0022149x10000763] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractGlyceraldehyde-3-phosphate dehydrogenase (GAPDH) regulates a wide range of biological processes, including pathogen evasion. In the present research, the GAPDH gene of Haemonchus contortus (HcGAPDH) was cloned and characterized. Specific primers for the rapid amplification of cDNA ends (RACE) were designed based on the expressed sequence tag (EST, AW670737) to amplify the 3′ and 5′ ends of HcGAPDH. The full length of cDNA from this gene was obtained by overlapping the sequences of 3′ and 5′ extremities and amplification by reverse transcription polymerase chain reaction (RT-PCR). The biochemical activities of the recombinant protein HcGAPDH, which was expressed in prokaryotic cells and purified by affinity chromatography, were analysed by assays of enzymatic activity, thermal stability and pH. The results showed that the cloned full-length cDNA comprised 1303 bp and encoded a peptide with 341 amino acid residues which showed sequence similarity to several known GAPDHs. The biochemical assay showed that the protein encoded by the HcGAPDH exhibited enzymatic activity with NAD+ as a cofactor. HcGAPDH was stable between pH 5 and 9 and maintained activity at high temperatures of up to 75°C. The natural GAPDH of Haemonchus contortus detected by immunoblot assay was approximately 38 kDa in size, and the recombinant HcGAPDH was recognized strongly by serum from naturally infected goats.
Collapse
|
252
|
Shinya R, Morisaka H, Takeuchi Y, Ueda M, Futai K. Comparison of the surface coat proteins of the pine wood nematode appeared during host pine infection and in vitro culture by a proteomic approach. PHYTOPATHOLOGY 2010; 100:1289-97. [PMID: 21062170 DOI: 10.1094/phyto-04-10-0109] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Pine wilt disease, caused by the pine wood nematode (PWN), Bursaphelenchus xylophilus, has become of worldwide quarantine concern in recent years. Here, we disclosed the surface coat (SC) proteins of the PWN which are thought to be one of the key components in pine wilt development. This is the first report that focused on the SC proteins and thoroughly identified those proteins of a plant-parasitic nematode using the proteomic approach. In this study, SC protein profiles were compared for PWNs grown on the fungus Botrytis cinerea and in host pine seedlings. The results demonstrated that the gross amount of PWN SC proteins drastically increased during infection of the host pine. Thirty-seven protein bands showed significant quantity differences between fungus-grown and host-origin PWNs, and were used for identification by matrix-assisted laser desorption ionization time of flight mass spectrometry analysis. These included several proteins that are presumed to be involved in the host immune response; for example, regulators of reactive oxygen species (ROS) and a ROS scavenger. These results might suggest that the PWN SC proteins are crucial in modulating or evading host immune response. Our data provide a new insight into the mechanism of pine wilt disease and the biological role of the SC proteins of plant-parasitic nematodes.
Collapse
|
253
|
Development of a novel method to detect intrinsic mRNA in a living cell by using a molecular beacon-immobilized nanoneedle. Biosens Bioelectron 2010; 26:1449-54. [DOI: 10.1016/j.bios.2010.07.079] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 07/16/2010] [Accepted: 07/21/2010] [Indexed: 11/15/2022]
|
254
|
Baibai T, Oukhattar L, Mountassif D, Assobhei O, Serrano A, Soukri A. Comparative molecular analysis of evolutionarily distant glyceraldehyde-3-phosphate dehydrogenase from Sardina pilchardus and Octopus vulgaris. Acta Biochim Biophys Sin (Shanghai) 2010; 42:863-72. [PMID: 21106768 DOI: 10.1093/abbs/gmq103] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The NAD(+)-dependent cytosolic glyceraldehyde-3-phosphate dehydrogenase (GAPDH, EC 1.2.1.12), which is recognized as a key to central carbon metabolism in glycolysis and gluconeogenesis and as an important allozymic polymorphic biomarker, was purified from muscles of two marine species: the skeletal muscle of Sardina pilchardus Walbaum (Teleost, Clupeida) and the incompressible arm muscle of Octopus vulgaris (Mollusca, Cephalopoda). Comparative biochemical studies have revealed that they differ in their subunit molecular masses and in pI values. Partial cDNA sequences corresponding to an internal region of the GapC genes from Sardina and Octopus were obtained by polymerase chain reaction using degenerate primers designed from highly conserved protein motifs. Alignments of the deduced amino acid sequences were used to establish the 3D structures of the active site of two enzymes as well as the phylogenetic relationships of the sardine and octopus enzymes. These two enzymes are the first two GAPDHs characterized so far from teleost fish and cephalopod, respectively. Interestingly, phylogenetic analyses indicated that the sardina GAPDH is in a cluster with the archetypical enzymes from other vertebrates, while the octopus GAPDH comes together with other molluscan sequences in a distant basal assembly closer to bacterial and fungal orthologs, thus suggesting their different evolutionary scenarios.
Collapse
Affiliation(s)
- Tarik Baibai
- Université Hassan II, Casablanca B.P., Morrocco.
| | | | | | | | | | | |
Collapse
|
255
|
Ohlendieck K. Proteomics of skeletal muscle glycolysis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:2089-101. [DOI: 10.1016/j.bbapap.2010.08.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 08/01/2010] [Accepted: 08/05/2010] [Indexed: 10/19/2022]
|
256
|
Matta SK, Agarwal S, Bhatnagar R. Surface localized and extracellular Glyceraldehyde-3-phosphate dehydrogenase of Bacillus anthracis is a plasminogen binding protein. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:2111-20. [DOI: 10.1016/j.bbapap.2010.08.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 07/22/2010] [Accepted: 08/11/2010] [Indexed: 10/19/2022]
|
257
|
Su Y, Blake-Palmer KG, Fry AC, Best A, Brown ACN, Hiemstra TF, Horita S, Zhou A, Toye AM, Karet FE. Glyceraldehyde 3-phosphate dehydrogenase is required for band 3 (anion exchanger 1) membrane residency in the mammalian kidney. Am J Physiol Renal Physiol 2010; 300:F157-66. [PMID: 20980406 PMCID: PMC3023227 DOI: 10.1152/ajprenal.00228.2010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The mammalian kidney isoform of the essential chloride-bicarbonate exchanger AE1 differs from its erythrocyte counterpart, being shorter at its N terminus. It has previously been reported that the glycolytic enzyme GAPDH interacts only with erythrocyte AE1, by binding to the portion not found in the kidney isoform. (Chu H, Low PS. Biochem J 400:143–151, 2006). We have identified GAPDH as a candidate binding partner for the C terminus of both AE1 and AE2. We show that full-length AE1 and GAPDH coimmunoprecipitated from both human and rat kidney as well as from Madin-Darby canine kidney (MDCK) cells stably expressing kidney AE1, while in human liver, AE2 coprecipitated with GAPDH. ELISA and glutathione S-transferase (GST) pull-down assays using GST-tagged C-terminal AE1 fusion protein confirmed that the interaction is direct; fluorescence titration revealed saturable binding kinetics with Kd 2.3 ± 0.2 μM. Further GST precipitation assays demonstrated that the D902EY residues in the D902EYDE motif located within the C terminus of AE1 are important for GAPDH binding. In vitro GAPDH activity was unaffected by C-terminal AE1 binding, unlike in erythrocytes. Also, differently from red cell N-terminal binding, GAPDH-AE1 C-terminal binding was not disrupted by phosphorylation of AE1 in kidney AE1-expressing MDCK cells. Importantly, small interfering RNA knockdown of GAPDH in these cells resulted in significant intracellular retention of AE1, with a concomitant reduction in AE1 at the cell membrane. These results indicate differences between kidney and erythrocyte AE1/GAPDH behavior and show that in the kidney, GAPDH is required for kidney AE1 to achieve stable basolateral residency.
Collapse
Affiliation(s)
- Ya Su
- Department of Medical Genetics, University of Cambridge, and Cambridge Institute for Medical Research, Addenbrooke's Hospital, Box 139, Hills Rd., Cambridge CB2 0XY, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
258
|
Jami MS, García-Estrada C, Barreiro C, Cuadrado AA, Salehi-Najafabadi Z, Martín JF. The Penicillium chrysogenum extracellular proteome. Conversion from a food-rotting strain to a versatile cell factory for white biotechnology. Mol Cell Proteomics 2010; 9:2729-44. [PMID: 20823121 DOI: 10.1074/mcp.m110.001412] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The filamentous fungus Penicillium chrysogenum is well-known by its ability to synthesize β-lactam antibiotics as well as other secondary metabolites. Like other filamentous fungi, this microorganism is an excellent host for secretion of extracellular proteins because of the high capacity of its protein secretion machinery. In this work, we have characterized the extracellular proteome reference map of P. chrysogenum Wisconsin 54-1255 by two-dimensional gel electrophoresis. This method allowed the correct identification of 279 spots by peptide mass fingerprinting and tandem MS. These 279 spots included 328 correctly identified proteins, which corresponded to 131 different proteins and their isoforms. One hundred and two proteins out of 131 were predicted to contain either classical or nonclassical secretion signal peptide sequences, providing evidence of the authentic extracellular location of these proteins. Proteins with higher representation in the extracellular proteome were those involved in plant cell wall degradation (polygalacturonase, pectate lyase, and glucan 1,3-β-glucosidase), utilization of nutrients (extracellular acid phosphatases and 6-hydroxy-d-nicotine oxidase), and stress response (catalase R). This filamentous fungus also secretes enzymes specially relevant for food industry, such as sulfydryl oxidase, dihydroxy-acid dehydratase, or glucoamylase. The identification of several antigens in the extracellular proteome also highlights the importance of this microorganism as one of the main indoor allergens. Comparison of the extracellular proteome among three strains of P. chrysogenum, the wild-type NRRL 1951, the Wis 54-1255 (an improved, moderate penicillin producer), and the AS-P-78 (a penicillin high-producer), provided important insights to consider improved strains of this filamentous fungus as versatile cell-factories of interest, beyond antibiotic production, for other aspects of white biotechnology.
Collapse
Affiliation(s)
- Mohammad-Saeid Jami
- Área de Microbiología, Departamento de Biología Molecular, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | | | | | | | | | | |
Collapse
|
259
|
Sengupta S, Chandra TS. Sequence analysis and structural characterization of a glyceraldehyde-3-phosphate dehydrogenase gene from the phytopathogenic fungus Eremothecium ashbyi. Mycopathologia 2010; 171:123-31. [PMID: 20820924 DOI: 10.1007/s11046-010-9357-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Accepted: 08/15/2010] [Indexed: 11/25/2022]
Abstract
Eremothecium ashbyi is a phytopathogenic fungus infesting cotton, soybeans and several other plants. This highly flavinogenic fungus has been phylogenetically characterized, but the genetic aspects of its central metabolic and riboflavin biosynthetic pathways are unknown. An ORF of 996 bp was obtained from E. ashbyi by using degenerate primers for glyceraldehyde-3-phosphate dehydrogenase (GPD) through reverse transcriptase polymerase chain reaction (RT-PCR) and 5'-3' rapid amplification of cDNA ends (RACE-PCR). This nucleotide sequence had a high similarity of 88% with GPD sequence of Ashbya gossypii. The putative GPD peptide of 331-aa had a high similarity of 85% with the GPD sequence from other ascomycetes. The ORF had an unusually strong codon bias with 5 amino acids showing strict preference of a single codon. The theoretical molecular weight for the putative peptide was 35.58 kDa with an estimated pI of 5.7. A neighbor-joining tree showed that the putative peptide from E. ashbyi displayed the highest similarity to GPD of A. gossypii. The gene sequence is available at the GenBank, accession number EU717696. Homology modeling done with Kluyveromyces marxianus GPD (PDB: 2I5P) as template indicated high structural similarity.
Collapse
Affiliation(s)
- Sudeshna Sengupta
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, 600 036, India
| | | |
Collapse
|
260
|
Rodacka A, Serafin E, Puchala M. Efficiency of superoxide anions in the inactivation of selected dehydrogenases. Radiat Phys Chem Oxf Engl 1993 2010. [DOI: 10.1016/j.radphyschem.2010.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
261
|
Marchand J, Evrard E, Guinand B, Cachot J, Quiniou L, Laroche J. Genetic polymorphism and its potential relation to environmental stress in five populations of the European flounder Platichthys flesus, along the French Atlantic coast. MARINE ENVIRONMENTAL RESEARCH 2010; 70:201-209. [PMID: 20621770 DOI: 10.1016/j.marenvres.2010.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 05/05/2010] [Accepted: 05/07/2010] [Indexed: 05/29/2023]
Abstract
In this study, new DNA markers were explored for the flounder Platichthys flesus. cDNA and genomic sequences of the genes encoding the glyceraldehyde-3-phosphate-deshydrogenase (GAPDH), the cytosolic creatine kinase (CK), the prostaglandin D synthase (PGDS) and the betaine homocysteine methyltransferase (BHMT) were characterized. The tumour suppressor p53 gene structure was already described. A PCR-SSCP (Single Strand Conformation Polymorphism) analysis was finally conducted to study the genetic polymorphism of different populations of flounders collected along the French Atlantic coast. Four highly contaminated French estuaries (Seine, Vilaine, Loire and Gironde) were sampled and compared to a reference estuary (Ster) to explore possible selective effect of the environment on specific allelic frequencies. Our results showed that two loci p53 and PGDS, could be potential markers of chemical stress: p53A allele frequency increased in contaminated systems compared to the reference system. In the Vilaine estuary, PGDS polymorphism could be related to pesticide stress.
Collapse
Affiliation(s)
- J Marchand
- Université du Maine, EA 2160 Mer, Molécule, Santé, UFR Sciences et Techniques, Le Mans F-72085, France.
| | | | | | | | | | | |
Collapse
|
262
|
Sugden K, Pariante CM, McGuffin P, Aitchison KJ, D'Souza UM. Housekeeping gene expression is affected by antidepressant treatment in a mouse fibroblast cell line. J Psychopharmacol 2010; 24:1253-9. [PMID: 19074533 DOI: 10.1177/0269881108099690] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Quantitative real-time polymerase chain reaction (PCR) is an effective approach in investigating the effects of exogenous compounds on gene expression. This is often achieved by exploiting so-called 'housekeeping' genes as baseline controls to normalise expression levels, which have historically been assumed to have a relatively stable expression pattern. Recent non-in-vitro studies have questioned the validity of this, but previous in-vitro data were lacking following antidepressant treatment. We here investigated the stability of 12 housekeeping genes during treatment of the mouse L929 fibroblast cell line with escitalopram and nortriptyline. Cells were cultured in the presence of antidepressant at 1 microM or 10 microM for 30 min, 24 h or 48 h, and RNA subjected to quantitative PCR (qPCR). Stability of relative transcript expression values was assessed via gene-gene expression ratios and intra- and inter-group variation (using geNorm and NormFinder programs). The three most stable transcripts were adenosine triphosphate (ATP) synthase, H+ transporting mitochondrial F1 complex, beta subunit, beta-2 microglobulin and cytochrome c-1. The least stable were Gapdh, eukaryotic translation initiation factor 4A2 and Calnexin (Canx). In conclusion, care must be taken when choosing reference transcripts for analysis in qPCR. For in-vitro pharmacological studies, it should not be assumed that 'housekeeping' genes are stable.
Collapse
Affiliation(s)
- K Sugden
- MRC Social Genetic and Developmental Psychiatry (SGDP) Centre, Institute of Psychiatry, King's College London, London, UK
| | | | | | | | | |
Collapse
|
263
|
Broniowska KA, Hogg N. Differential mechanisms of inhibition of glyceraldehyde-3-phosphate dehydrogenase by S-nitrosothiols and NO in cellular and cell-free conditions. Am J Physiol Heart Circ Physiol 2010; 299:H1212-9. [PMID: 20675567 DOI: 10.1152/ajpheart.00472.2010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
S-nitrosothiols are nitric oxide (NO)-derived molecules found in biological systems. They have been variously discussed as both NO reservoirs and as major actors in NO-dependent, but cGMP-independent, signal transduction. Although S-nitrosation of specific cysteine residues has been suggested to represent a novel redox-based signaling mechanism, the exact mechanisms of S-nitrosothiol formation under (patho)physiological conditions and the determinants of signaling specificity have not yet been established. Here we examined the sensitivity of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) to inhibition by S-nitrosocysteine (CysNO) and NO both intracellularly and in isolation. Bovine aortic endothelial cells (BAECs) and purified GAPDH preparations were treated with CysNO or NO, and enzymatic activity was monitored. Intracellular GAPDH was irreversibly inhibited upon CysNO administration, whereas treatment with NO resulted in a DTT-reversible inhibition of the enzyme. Purified GAPDH was inhibited by both CysNO and NO, but the inhibition pattern was diametrically opposite to that observed in the cells; CysNO-dependent inhibition was reversed with DTT, whereas NO-dependent inhibition was not. In the presence of GSH, NO inhibited purified GAPDH in a DTT-reversible way. Our data suggest that in response to CysNO treatment, cellular GAPDH undergoes S-nitrosation, which results in an irreversible inhibition of the enzyme under turnover conditions. In contrast, NO inhibits the enzyme via oxidative mechanisms that do not involve S-nitrosation and are reversible. In summary, our data show that GAPDH is a target for CysNO- and NO-dependent inhibition; however, these two agents inhibit the enzyme via different mechanisms both inside the cell and in isolation. Additionally, the differences observed between the cellular system and purified protein strongly imply that the intracellular environment dictates the mechanism of inhibition.
Collapse
|
264
|
Modrego J, Moñux G, Mateos-Cáceres PJ, Martínez-López I, Segura A, Zamorano-León JJ, Rodríguez-Sierra P, Serrano J, Macaya C, López-Farré AJ. Effects of platelets on the protein expression in aortic segments: A proteomic approach. J Cell Biochem 2010; 111:889-98. [DOI: 10.1002/jcb.22777] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
265
|
Mukherjee S, Dutta D, Saha B, Das AK. Crystal structure of glyceraldehyde-3-phosphate dehydrogenase 1 from methicillin-resistant Staphylococcus aureus MRSA252 provides novel insights into substrate binding and catalytic mechanism. J Mol Biol 2010; 401:949-68. [PMID: 20620151 DOI: 10.1016/j.jmb.2010.07.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 07/01/2010] [Accepted: 07/02/2010] [Indexed: 11/29/2022]
Abstract
The dreaded pathogen Staphylococcus aureus is one of the causes of morbidity and mortality worldwide. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), one of the key glycolytic enzymes, is irreversibly oxidized under oxidative stress and is responsible for sustenance of the pathogen inside the host. With an aim to elucidate the catalytic mechanism and identification of intermediates involved, we describe in this study different crystal structures of GAPDH1 from methicillin-resistant S. aureus MRSA252 (SaGAPDH1) in apo and holo forms of wild type, thioacyl intermediate, and ternary complexes of active-site mutants with physiological substrate d-glyceraldehyde-3-phosphate (G3P) and coenzyme NAD(+). A new phosphate recognition site, "new P(i)" site, similar to that observed in GAPDH from Thermotoga maritima, is reported here, which is 3.40 A away from the "classical P(i)" site. Ternary complexes discussed are representatives of noncovalent Michaelis complexes in the ground state. d-G3P is bound to all the four subunits of C151S.NAD and C151G.NAD in more reactive hydrate (gem-di-ol) form. However, in C151S+H178N.NAD, the substrate is bound to two chains in aldehyde form and in gem-di-ol form to the other two. This work reports binding of d-G3P to the C151G mutant in an inverted manner for the very first time. The structure of the thiaocyl complex presented here is formed after the hydride transfer. The C3 phosphate of d-G3P is positioned at the "P(s)" site in the ternary complexes but at the "new P(i)" site in the thioacyl complex and C1-O1 bond points opposite to His178 disrupting the alignment between itself and NE2 of His178. A new conformation (Conformation I) of the 209-215 loop has also been identified, where the interaction between phosphate ion at the "new P(i)" site and conserved Gly212 is lost. Altogether, inferences drawn from the kinetic analyses and crystal structures suggest the "flip-flop" model proposed for the enzyme mechanism.
Collapse
Affiliation(s)
- Somnath Mukherjee
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, Pin-721302, West Bengal, India
| | | | | | | |
Collapse
|
266
|
Kölln J, Zhang Y, Thai G, Demetriou M, Hermanowicz N, Duquette P, van den Noort S, Qin Y. Inhibition of glyceraldehyde-3-phosphate dehydrogenase activity by antibodies present in the cerebrospinal fluid of patients with multiple sclerosis. THE JOURNAL OF IMMUNOLOGY 2010; 185:1968-75. [PMID: 20610654 DOI: 10.4049/jimmunol.0904083] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have previously shown that B cells and Abs reactive with GAPDH and antitriosephosphate isomerase (TPI) are present in lesions and cerebrospinal fluid (CSF) in multiple sclerosis (MS). In the current study, we studied the effect of anti-GAPDH and anti-TPI CSF IgG on the glycolytic enzyme activity of GAPDH and TPI after exposure to intrathecal IgG from 10 patients with MS and 34 patients with other neurologic diseases. The degree of inhibition of GAPDH activity by CSF anti-GAPDH IgG in the seven MS samples tested varied from 13 to 98%, which seemed to correlate with the percentage of anti-GAPDH IgG in the CSF IgG (1-45%). Inhibition of GAPDH activity (18 and 23%) by CSF IgG was seen in two of the 34 patients with other neurologic diseases, corresponding to the low percentage of CSF anti-GAPDH IgG (1 and 8%). In addition, depletion of anti-GAPDH IgG from CSF IgG, using immobilized GAPDH, removed the inhibitory effect of the IgG on GAPDH. No inhibition of GAPDH activity was seen with CSF samples not containing anti-GAPDH IgG. No inhibition of TPI activity was seen with any purified CSF IgG sample. These findings demonstrate an increased percentage of anti-GAPDH Abs in the CSF of patients with MS that can inhibit GAPDH glycolytic enzyme activity and may contribute to neuroaxonal degeneration.
Collapse
Affiliation(s)
- Johanna Kölln
- Department of Neurology, University of California at Irvine, Irvine, CA 92697, USA
| | | | | | | | | | | | | | | |
Collapse
|
267
|
Gendelman M, Aroyo A, Yavin S, Roth Z. Seasonal effects on gene expression, cleavage timing, and developmental competence of bovine preimplantation embryos. Reproduction 2010; 140:73-82. [DOI: 10.1530/rep-10-0055] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We examined the association between season and expression of genes involved in early embryonic development with an emphasis on cleavage rate and timing of the first embryonic cleavage. In Exp. 1, oocytes were aspirated during the cold (Dec–Apr) and hot (May–Nov) seasons. Matured oocytes were chemically activated and culturedin vitro. The developmental peak to the two- and four-cell stages occurred earlier, with a higher proportion of first-cleaved embryos, during the cold season relative to the hot season (P<0.01). In Exp. 2, a time-lapse system was employed to characterize the delayed cleavage noted for the hot season. Cleavage to the two-cell stage occurred in two distinct waves: early cleavage occurred between 18 and 25 h post activation, and late cleavage occurred between 27 and 40 h post activation. In Exp. 3, oocytes were aspirated during the cold and hot seasons, maturedin vitro, fertilized, and cultured for 8 days. In each season, early- and late-cleaved two-cell stage embryos were collected. Total RNA was isolated, and semi-quantitative and real-time PCRs were carried out with primers forGDF9,POU5F1, andGAPDHusing18S rRNAas the reference gene. In both seasons, the expression of all examined genes was higher (P<0.05) in early- versus late-cleaved embryos.POU5F1expression was higher (P<0.05) in early-cleaved embryos developed in the cold season versus the hot season counterparts. The findings suggest a deleterious seasonal effect on oocyte developmental competence with delayed cleavage and variation in gene expression.
Collapse
|
268
|
Wawer I, Bucholc M, Astier J, Anielska-Mazur A, Dahan J, Kulik A, Wysłouch-Cieszynska A, Zareba-Kozioł M, Krzywinska E, Dadlez M, Dobrowolska G, Wendehenne D. Regulation of Nicotiana tabacum osmotic stress-activated protein kinase and its cellular partner GAPDH by nitric oxide in response to salinity. Biochem J 2010; 429:73-83. [PMID: 20397974 DOI: 10.1042/bj20100492] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Several studies focusing on elucidating the mechanism of NO (nitric oxide) signalling in plant cells have highlighted that its biological effects are partly mediated by protein kinases. The identity of these kinases and details of how NO modulates their activities, however, remain poorly investigated. In the present study, we have attempted to clarify the mechanisms underlying NO action in the regulation of NtOSAK (Nicotiana tabacum osmotic stress-activated protein kinase), a member of the SNF1 (sucrose non-fermenting 1)-related protein kinase 2 family. We found that in tobacco BY-2 (bright-yellow 2) cells exposed to salt stress, NtOSAK is rapidly activated, partly through a NO-dependent process. This activation, as well as the one observed following treatment of BY-2 cells with the NO donor DEA/NO (diethylamine-NONOate), involved the phosphorylation of two residues located in the kinase activation loop, one being identified as Ser158. Our results indicate that NtOSAK does not undergo the direct chemical modifications of its cysteine residues by S-nitrosylation. Using a co-immunoprecipitation-based strategy, we identified several proteins present in immunocomplex with NtOSAK in salt-treated cells including the glycolytic enzyme GAPDH (glyceraldehyde-3-phosphate dehydrogenase). Our results indicate that NtOSAK directly interacts with GAPDH in planta. Furthermore, in response to salt, GAPDH showed a transient increase in its S-nitrosylation level which was correlated with the time course of NtOSAK activation. However, GADPH S-nitrosylation did not influence its interaction with NtOSAK and did not have an impact on the activity of the protein kinase. Taken together, the results support the hypothesis that NtOSAK and GAPDH form a cellular complex and that both proteins are regulated directly or indirectly by NO.
Collapse
Affiliation(s)
- Izabela Wawer
- UMR INRA 1088/CNRS 5184/Université de Bourgogne, Plante-Microbe-Environnement, 17 rue Sully, 21065 Dijon cedex, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
269
|
Leu SJ, Lee YC, Shih NY, Huang IJ, Liu KJ, Lu HF, Huang SY, Yang YY. Generation and characterization of anti-alpha-enolase single-chain antibodies in chicken. Vet Immunol Immunopathol 2010; 137:251-60. [PMID: 20655599 PMCID: PMC7112641 DOI: 10.1016/j.vetimm.2010.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 04/20/2010] [Accepted: 06/02/2010] [Indexed: 11/07/2022]
Abstract
It was previously reported that up-regulation of α-enolase protein was detected in 65% of patients with non-small cell lung cancers (NSCLC). Moreover, a high titer of anti-α-enolase antibodies was developed in a smaller proportion (7.4%) of these patients than in non-tumor-associated patients and healthy subjects. In the present study, we characterized polyclonal and single-chain variable fragment (scFv) anti-α-enolase antibodies from immunized chickens. The E. coli-derived recombinant α-enolase protein was purified to its high homogenicity as verified by SDS-PAGE. After the 4th immunization, a high titer of specific polyclonal anti-α-enolase antibodies was elicited in immunized chickens and specifically recognized the purified human α-enolase antigen as determined by Western blot and ELISA. The expressed heavy and light chain variable genes (VH and VL) were isolated from spleen B cells and amplified to construct phage antibody libraries containing scFv molecules. After four rounds of panning selection, the scFv antibodies of randomly chosen clones were expressed and their binding specificity to α-enolase protein was verified using competitive ELISA, flow cytometry and immunofluorescence staining. Nucleotide sequence analysis from 10 α-enolase binding clones showed that 3 (30%) clones used identical heavy and light genes for scFv antibody expression, as represented by EnL5. Notably, amino acid changes in complementarity-determining regions (CDRs) were more frequently observed than those in framework regions (FRs) in all clones, indicating a strong affinity selection through mutations. All together, it is believed that these polyclonal and scFv IgY antibodies may be helpful in the development of molecular diagnostic and therapeutic agents for lung cancers in the future.
Collapse
Affiliation(s)
- Sy-Jye Leu
- Department of Microbiology and Immunology, School of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
270
|
Han J, Miyamae Y, Shigemori H, Isoda H. Neuroprotective effect of 3,5-di-O-caffeoylquinic acid on SH-SY5Y cells and senescence-accelerated-prone mice 8 through the up-regulation of phosphoglycerate kinase-1. Neuroscience 2010; 169:1039-45. [PMID: 20570715 DOI: 10.1016/j.neuroscience.2010.05.049] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 05/19/2010] [Accepted: 05/21/2010] [Indexed: 02/06/2023]
Abstract
As aged population dramatically increases in these decades, efforts should be made on the intervention for curing age-associated neurologic degenerative diseases such as Alzheimer's disease (AD). Caffeoylquinic acid (CQA), an antioxidant component and its derivatives are natural functional compounds isolated from a variety of plants. In this study, we determined the neuroprotective effect of 3,5-di-O-CQA on Abeta(1-42) treated SH-SY5Y cells using MTT assay. To investigate the possible neuroprotective mechanism of 3,5-di-O-CQA, we performed proteomics analysis, real-time PCR analysis and measurement of the intracellular ATP level. In addition, we carried out the measurement of escape latency time to find the hidden platform in Morris water maze (MWM), real-time PCR using senescence-accelerated-prone mice (SAMP) 8 and senescence-accelerated-resistant mice (SAMR) 1 mice. Results showed that 3,5-di-O-CQA had neuroprotective effect on Abeta (1-42) treated cells. The mRNA expression of glycolytic enzyme (phosphoglycerate kinase-1; PGK1) and intracellular ATP level were increased in 3,5-di-O-CQA treated SH-SY5Y cells. We also found that 3,5-di-O-CQA administration induced the improvement of spatial learning and memory on SAMP8 mice, and the overexpression of PGK1 mRNA. These findings suggest that 3,5-di-O-CQA has a neuroprotective effect on neuron through the upregulation of PGK1 expression and ATP production activation.
Collapse
Affiliation(s)
- J Han
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | | | | | | |
Collapse
|
271
|
Chen JK, Zhan YJ, Yang CS, Tzeng SF. Oxidative stress-induced attenuation of thrombospondin-1 expression in primary rat astrocytes. J Cell Biochem 2010; 112:59-70. [DOI: 10.1002/jcb.22732] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
272
|
Ouyang H, Luo Y, Zhang L, Li Y, Jin C. Proteome analysis of Aspergillus fumigatus total membrane proteins identifies proteins associated with the glycoconjugates and cell wall biosynthesis using 2D LC-MS/MS. Mol Biotechnol 2010; 44:177-89. [PMID: 19950005 DOI: 10.1007/s12033-009-9224-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We attempted to identify membrane proteins associated with the glycoconjugates and cell wall biosynthesis in the total membrane preparations of Aspergillus fumigatus. The total membrane preparations were first run on 1D gels, and then the stained gels were cut and submitted to in-gel digestion followed by 2D LC-MS/MS and database search. A total of 530 proteins were identified with at least two peptides detected with MS/MS spectra. Seventeen integral membrane proteins were involved in N-, O-glycosylation or GPI anchor biosynthesis. Nine membrane proteins were involved in cell wall biosynthesis. Eight proteins were identified as enzymes involved in sphingolipid synthesis. In addition, the proteins involved in cell wall and ergosterol biosynthesis can potentially be used as antifungal drug targets. Our method, for the first time, clearly provided a global view of the membrane proteins associated with glycoconjugates and cell wall biosynthesis in the total membrane proteome of A. fumigatus.
Collapse
Affiliation(s)
- Haomiao Ouyang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | | | | | | | | |
Collapse
|
273
|
Mukherjee S, Saha B, Dutta D, Das AK. Purification, crystallization and preliminary X-ray analysis of apo glyceraldehyde-3-phosphate dehydrogenase 1 (GAP1) from methicillin-resistant Staphylococcus aureus (MRSA252). Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:506-8. [PMID: 20445245 PMCID: PMC2864678 DOI: 10.1107/s1744309110007980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2010] [Accepted: 03/02/2010] [Indexed: 11/11/2022]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase 1 (GAP1) from methicillin-resistant Staphylococcus aureus (MRSA252) has been purified to homogeneity in the apo form. The protein was crystallized using the hanging-drop vapour-diffusion method. The crystals belonged to space group P2(1), with unit-cell parameters a = 69.95, b = 93.68, c = 89.05 A, beta = 106.84 degrees . X-ray diffraction data have been collected and processed to a maximum resolution of 2.2 A. The presence of one tetramer in the asymmetric unit gives a Matthews coefficient (V(M)) of 1.81 A(3) Da(-1) with a solvent content of 32%. The structure has been solved by molecular replacement and structure refinement is now in progress.
Collapse
Affiliation(s)
- Somnath Mukherjee
- Department of Biotechnology, Indian Institute of Technology, Kharagpur 721 302, India
| | - Baisakhee Saha
- Department of Biotechnology, Indian Institute of Technology, Kharagpur 721 302, India
| | - Debajyoti Dutta
- Department of Biotechnology, Indian Institute of Technology, Kharagpur 721 302, India
| | - Amit Kumar Das
- Department of Biotechnology, Indian Institute of Technology, Kharagpur 721 302, India
| |
Collapse
|
274
|
Kwon HJ, Rhim JH, Jang IS, Kim GE, Park SC, Yeo EJ. Activation of AMP-activated protein kinase stimulates the nuclear localization of glyceraldehyde 3-phosphate dehydrogenase in human diploid fibroblasts. Exp Mol Med 2010; 42:254-69. [PMID: 20177150 PMCID: PMC2859325 DOI: 10.3858/emm.2010.42.4.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2010] [Indexed: 12/12/2022] Open
Abstract
In addition to its well-known glycolytic activity, GAPDH displays multiple functions, such as nuclear RNA export, DNA replication and repair, and apoptotic cell death. This functional diversity depends on its intracellular localization. In this study, we explored the signal transduction pathways involved in the nuclear translocation of GAPDH using confocal laser scanning microscopy of immunostained human diploid fibroblasts (HDFs). GAPDH was present mainly in the cytoplasm when cultured with 10% FBS. Serum depletion by culturing cells in a serum-free medium (SFM) led to a gradual accumulation of GAPDH in the nucleus, and this nuclear accumulation was reversed by the re-addition of serum or growth factors, such as PDGF and lysophosphatidic acid. The nuclear export induced by the re-addition of serum or growth factors was prevented by LY 294002 and SH-5, inhibitors of phosphoinositide 3-kinase (PI3K) and Akt/protein kinase B, respectively, suggesting an involvement of the PI3K signaling pathway in the nuclear export of GAPDH. In addition, 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR), an activator of AMP-activated protein kinase (AMPK), stimulated the nuclear translocation of GAPDH and prevented serum- and growth factor-induced GAPDH export. AMPK inhibition by compound C or AMPK depletion by siRNA treatment partially prevented SFM- and AICAR-induced nuclear translocation of GAPDH. Our data suggest that the nuclear translocation of GAPDH might be regulated by the PI3K signaling pathway acting mainly as a nuclear export signal and the AMPK signaling pathway acting as a nuclear import signal.
Collapse
Affiliation(s)
- Hyun Jin Kwon
- Department of Biochemistry, Gachon University of Medicine and Science, Incheon 406-799, Korea
| | | | | | | | | | | |
Collapse
|
275
|
Yi W, Sun Y, Wei X, Gu C, Dong X, Kang X, Guo S, Dou K. Proteomic profiling of human bone marrow mesenchymal stem cells under shear stress. Mol Cell Biochem 2010; 341:9-16. [PMID: 20407807 DOI: 10.1007/s11010-010-0432-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Accepted: 02/26/2010] [Indexed: 12/11/2022]
Abstract
Mesenchymal stem cells (MSCs) are promising seed cells for tissue engineering of blood vessels. As seed cells, MSCs must endure blood fluid shear stress after transplantation. It has been shown that fluid shear stress can regulate the proliferation and differentiation of MSCs. However, the effects of fluid shear stress on MSCs including the types of proteins modulated are still not well understood. In this study, we exposed human mesenchymal stem cells (HMSCs) to 3 dyn/cm(2) shear stress for 6 h and compared them to a control group using proteomic analysis. Thirteen specific proteins were affected by shear stress, 10 of which were up-regulated. Shear stress especially induced sustained increases in the expression of Annexin A2 and GAPDH, which have been specifically shown to affect HMSCs function. We present here the first comparative proteome analysis of effect of shear stress on HMSCs.
Collapse
Affiliation(s)
- Wei Yi
- Department of Hepatobiliary Surgery, Xijing Hospital, 4th Military Medical University, 127 Changle West Road, Xi'an 710032, Shaanxi, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
276
|
Peña AA, Bols NC, Marshall SH. An evaluation of potential reference genes for stability of expression in two salmonid cell lines after infection with either Piscirickettsia salmonis or IPNV. BMC Res Notes 2010; 3:101. [PMID: 20398263 PMCID: PMC2873344 DOI: 10.1186/1756-0500-3-101] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Accepted: 04/14/2010] [Indexed: 12/19/2022] Open
Abstract
Background Due to the limited number of species specific antibodies against fish proteins, differential gene expression analyses are vital for the study of host immune responses. Quantitative real-time reverse transcription PCR (qRT-PCR) is one of the most powerful tools for this purpose. Nevertheless, the accuracy of the method will depend on the careful selection of genes whose expression are stable and can be used as internal controls for a particular experimental setting. Findings The expression stability of five commonly used housekeeping genes [beta-actin (ACTB), elongation factor 1-alpha (EF1A), ubiquitin (UBQ), glyceraldehyd-3-phosphate dehydrogenase (GAPDH) and tubulin alpha (TUBA)] were monitored in salmonid cell lines CHSE-214 and RTS11 after infection with two of the most fastidious fish pathogens, the facultative bacterium Piscirickettsia salmonis and the aquabirnavirus IPNV (Infectious Pancreatic Necrosis Virus). After geNorm analysis, UBQ and EF1A appeared as the most stable, although EF1A was slightly upregulated at late stages of P. salmonis infection in RTS11. ACTB instead, showed a good performance in each case, being always considered within the three most stable genes of the panel. In contrast, infection-dependent differential regulation of GAPDH and TUBA was also demonstrated. Conclusion Based on the data presented here with the cell culture models CHSE-214 and RTS11, we suggest the initial choice of UBQ, ACTB and EF1A as reference genes in qRT-PCR assays for studying the effect of P. salmonis and IPNV on the host immune response.
Collapse
Affiliation(s)
- Andrea A Peña
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Av, Brasil 2950, Valparaíso, Chile.
| | | | | |
Collapse
|
277
|
Brkljacić J, Tanić N, Milutinović DV, Elaković I, Jovanović SM, Perisić T, Dundjerski J, Matić G. Validation of endogenous controls for gene expression studies in peripheral lymphocytes from war veterans with and without PTSD. BMC Mol Biol 2010; 11:26. [PMID: 20380724 PMCID: PMC2858027 DOI: 10.1186/1471-2199-11-26] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 04/09/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Selection of appropriate endogenous control is a critical step in gene expression analysis. The aim of this study was to evaluate expression stability of four frequently used endogenous controls: beta-actin, glyceraldehyde-3-phosphate dehydrogenase, beta2-microglobulin and RNA polymerase II polypeptide A in peripheral blood mononuclear cells from war veterans with and without posttraumatic stress disorder (PTSD). The study was designed as to identify suitable reference gene(s) for normalization of gene expression in peripheral blood mononuclear cells in response to war trauma and/or PTSD. RESULTS The variability in expression of the four endogenous controls was assessed by TaqMan Real-time RT-PCR in peripheral blood mononuclear cells from: war veterans with current PTSD, those with lifetime PTSD, trauma controls and healthy subjects. Expression stability was analyzed by GeNorm and NormFinder software packages, and by direct comparison of Ct values. Both, GeNorm and NormFinder identified beta-actin and glyceraldehyde-3-phosphate dehydrogenase as a pair of genes with the lowest stability value. CONCLUSIONS The combination of beta-actin and glyceraldehyde-3-phosphate dehydrogenase appeared to be the most suitable reference for studying alterations in gene expression in peripheral blood mononuclear cells related to vulnerability and resilience to PTSD, as well as to trauma-provoked developing of this disorder and recovery from it. Using glyceraldehyde-3-phosphate dehydrogenase, beta-actin and beta2-microglobulin as individual endogenous controls would provide satisfactory data, while RNA polymerase II polypeptide A could not be recommended.
Collapse
Affiliation(s)
- Jelena Brkljacić
- Department of Biochemistry, Institute for Biological Research Sinisa Stanković, University of Belgrade, 142 Despot Stefan Blvd., Belgrade, 11000, Serbia
| | | | | | | | | | | | | | | |
Collapse
|
278
|
Nagy PD, Pogany J. Global genomics and proteomics approaches to identify host factors as targets to induce resistance against Tomato bushy stunt virus. Adv Virus Res 2010; 76:123-77. [PMID: 20965073 PMCID: PMC7173251 DOI: 10.1016/s0065-3527(10)76004-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The success of RNA viruses as pathogens of plants, animals, and humans depends on their ability to reprogram the host cell metabolism to support the viral infection cycle and to suppress host defense mechanisms. Plus-strand (+)RNA viruses have limited coding potential necessitating that they co-opt an unknown number of host factors to facilitate their replication in host cells. Global genomics and proteomics approaches performed with Tomato bushy stunt virus (TBSV) and yeast (Saccharomyces cerevisiae) as a model host have led to the identification of 250 host factors affecting TBSV RNA replication and recombination or bound to the viral replicase, replication proteins, or the viral RNA. The roles of a dozen host factors involved in various steps of the replication process have been validated in yeast as well as a plant host. Altogether, the large number of host factors identified and the great variety of cellular functions performed by these factors indicate the existence of a truly complex interaction between TBSV and the host cell. This review summarizes the advantages of using a simple plant virus and yeast as a model host to advance our understanding of virus–host interactions at the molecular and cellular levels. The knowledge of host factors gained can potentially be used to inhibit virus replication via gene silencing, expression of dominant negative mutants, or design of specific chemical inhibitors leading to novel specific or broad-range resistance and antiviral tools against (+)RNA plant viruses.
Collapse
Affiliation(s)
- Peter D Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA.
| | | |
Collapse
|
279
|
Zhou L, Wang X, Liu Q, Wang Q, Zhao Y, Zhang Y. A novel multivalent vaccine based on secretary antigen-delivery induces protective immunity against Vibrio anguillarum and Aeromonas hydrophila. J Biotechnol 2010; 146:25-30. [DOI: 10.1016/j.jbiotec.2009.12.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 09/10/2009] [Accepted: 12/09/2009] [Indexed: 10/20/2022]
|
280
|
Del Barco DG, Pérez-Saad H, Rodríguez V, Marín J, Falcón V, Martín J, Cibrian D, Berlanga J. Therapeutic effect of the combined use of growth hormone releasing peptide-6 and epidermal growth factor in an axonopathy model. Neurotox Res 2010; 19:195-209. [PMID: 20169434 DOI: 10.1007/s12640-010-9160-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Revised: 01/13/2010] [Accepted: 02/03/2010] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a disease of the central nervous system characterized by loss of spinal motor neurons, for which no effective treatment exists. Epidermal growth factor (EGF) and growth hormone releasing peptide-6 (GHRP-6) have been considered as good candidates for the treatment of this disease, due to their well documented effects in eliciting pleiotrophic and cell survival mechanisms. The aim of the present work was to evaluate the separate and combined effects of both peptides in an experimental animal model of ALS, the proximal axonopathy induced by 1,2 diacetylbenzene (1,2 DAB) in mice. The evaluations were conducted by means of behavioral tests (trapeze, tail suspension, gait pattern, and open field) and by recording the complex muscle action potential (CMAP) in three different hind limb segments: proximal S1, medial S2, and distal S3. Intraperitoneal daily administration of 1,2 DAB produced significant reduction in body weight, muscle strength, extensor reflex, spontaneous activity, and changes in gait pattern parameters. In parallel 1,2 DAB produced significant prolongation of onset latency and decrease in amplitude of CMAP and in the integrated complex action potential index. Daily administration of the separate compounds did not accelerate the recovery of the affected parameters, except for the gait pattern. The combined treatment produced significant improvement in behavioral parameters, as well as in electrophysiological recovery, particularly in the proximal segment of CMAP. The latter results confirm the proximal character of 1,2 DAB neuropathy, and suggest that combined therapy with EGF and GHRP-6 might be a good therapeutic strategy for the treatment of ALS.
Collapse
Affiliation(s)
- Diana García Del Barco
- Center for Genetic Engineering and Biotechnology, Ave. 31 e/158 & 190, Cubanacan, Playa P.O. Box 6162, 10600 Havana, Cuba.
| | | | | | | | | | | | | | | |
Collapse
|
281
|
Ibarz A, Martín-Pérez M, Blasco J, Bellido D, de Oliveira E, Fernández-Borràs J. Gilthead sea bream liver proteome altered at low temperatures by oxidative stress. Proteomics 2010; 10:963-75. [DOI: 10.1002/pmic.200900528] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
282
|
Yego ECK, Mohr S. siah-1 Protein is necessary for high glucose-induced glyceraldehyde-3-phosphate dehydrogenase nuclear accumulation and cell death in Muller cells. J Biol Chem 2010; 285:3181-90. [PMID: 19940145 PMCID: PMC2823464 DOI: 10.1074/jbc.m109.083907] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Indexed: 11/06/2022] Open
Abstract
The translocation and accumulation of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in the nucleus has closely been associated with cell death induction. However, the mechanism of this process has not been completely understood. The E3 ubiquitin ligase siah-1 (seven in absentia homolog 1) has recently been identified as a potential shuttle protein to transport GAPDH from the cytosol to the nucleus. Previously, we have demonstrated that elevated glucose levels induce GAPDH nuclear accumulation in retinal Müller cells. Therefore, this study investigated the role of siah-1 in high glucose-induced GAPDH nuclear translocation and subsequent cell death in retinal Müller cells. High glucose significantly increased siah-1 expression within 12 h. Under hyperglycemic conditions, siah-1 formed a complex with GAPDH and was predominantly localized in the nucleus of Müller cells. siah-1 knockdown using 50 nm siah-1 small interfering RNA significantly decreased high glucose-induced GAPDH nuclear accumulation at 24 h by 43.8 +/- 4.0%. Further, knockdown of siah-1 prevented high glucose-induced cell death of Müller cells potentially by inhibiting p53 phosphorylation consistent with previous observations, indicating that nuclear GAPDH induces cell death via p53 activation. Therefore, inhibition of GAPDH nuclear translocation and accumulation by targeting siah-1 promotes Müller cell survival under hyperglycemic conditions.
Collapse
Affiliation(s)
- E. Chepchumba K. Yego
- From the Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106 and
| | - Susanne Mohr
- From the Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106 and
- the Department of Physiology, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
283
|
Effects of antemortem and postmortem variables on human brain mRNA quality: a BrainNet Europe study. J Neuropathol Exp Neurol 2010; 69:70-81. [PMID: 20010301 DOI: 10.1097/nen.0b013e3181c7e32f] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Well-characterized and preserved human brain tissue that is prepared and stored in brain banks is an essential resource for research in neurological diseases. This study examined the quality of human brain postmortem tissue from multiple laboratories within the BrainNet Europe brain bank network to identify all possible confounding variables and determine how they may affect RNA quality. Antemortem and postmortem information was retrospectively collected for a large cohort of samples. Total RNA was isolated from anatomically defined brain regions using a standardized procedure; RNA quality was assessed using an Agilent 2100 Bioanalyzer. No significant difference in RNA quality was observed in 6 different brain regions. RNA quality deteriorated with increasing numbers of antemortem events such as hospitalization, coma, respiratory illness, and the use of artificial ventilation; accumulation of such events was associated with elevated hypoxia-inducible factor 1 alpha mRNA expression. Brain pH was found to be a good indicator of RNA quality. There was no correlation of postmortem delay with cerebrospinal fluid pH or RNA quality overall, but some individual RNAs decreased in quality with antemortem events and with postmortem delay. RNA quality did not affect total RNA yield. Determining the factors that are best predictors of RNA quality can help brain banks with selection criteria for storing high-quality brain tissue for research.
Collapse
|
284
|
Chung S, Arrell DK, Faustino RS, Terzic A, Dzeja PP. Glycolytic network restructuring integral to the energetics of embryonic stem cell cardiac differentiation. J Mol Cell Cardiol 2010; 48:725-34. [PMID: 20045004 DOI: 10.1016/j.yjmcc.2009.12.014] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 12/15/2009] [Accepted: 12/16/2009] [Indexed: 11/20/2022]
Abstract
Decoding of the bioenergetic signature underlying embryonic stem cell cardiac differentiation has revealed a mandatory transformation of the metabolic infrastructure with prominent mitochondrial network expansion and a distinctive switch from glycolysis to oxidative phosphorylation. Here, we demonstrate that despite reduction in total glycolytic capacity, stem cell cardiogenesis engages a significant transcriptome, proteome, as well as enzymatic and topological rearrangement in the proximal, medial, and distal modules of the glycolytic pathway. Glycolytic restructuring was manifested by a shift in hexokinase (Hk) isoforms from Hk-2 to cardiac Hk-1, with intracellular and intermyofibrillar localization mapping mitochondrial network arrangement. Moreover, upregulation of cardiac-specific enolase 3, phosphofructokinase, and phosphoglucomutase and a marked increase in glyceraldehyde 3-phosphate dehydrogenase (GAPDH) phosphotransfer activity, along with apparent post-translational modifications of GAPDH and phosphoglycerate kinase, were all distinctive for derived cardiomyocytes compared to the embryonic stem cell source. Lactate dehydrogenase (LDH) isoforms evolved towards LDH-2 and LDH-3, containing higher proportions of heart-specific subunits, and pyruvate dehydrogenase isoforms rearranged between E1alpha and E1beta, transitions favorable for substrate oxidation in mitochondria. Concomitantly, transcript levels of fetal pyruvate kinase isoform M2, aldolase 3, and transketolase, which shunt the glycolytic with pentose phosphate pathways, were reduced. Collectively, changes in glycolytic pathway modules indicate active redeployment, which would facilitate connectivity of the expanding mitochondrial network with ATP utilization sites. Thus, the delineated developmental dynamics of the glycolytic phosphotransfer network is integral to the remodeling of cellular energetic infrastructure underlying stem cell cardiogenesis.
Collapse
Affiliation(s)
- Susan Chung
- Marriott Heart Disease Research Program, Division of Cardiovascular Diseases, Departments of Medicine, Molecular Pharmacology and Experimental Therapeutics, and Medical Genetics, Mayo Clinic College of Medicine, Mayo Clinic, 200 First Street SW, Stabile 5, Rochester, MN 55905, USA
| | | | | | | | | |
Collapse
|
285
|
Lee BY, Jethwaney D, Schilling B, Clemens DL, Gibson BW, Horwitz MA. The Mycobacterium bovis bacille Calmette-Guerin phagosome proteome. Mol Cell Proteomics 2010; 9:32-53. [PMID: 19815536 PMCID: PMC2808266 DOI: 10.1074/mcp.m900396-mcp200] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Indexed: 11/06/2022] Open
Abstract
Mycobacterium tuberculosis and Mycobacterium bovis bacille Calmette-Guérin (BCG) alter the maturation of their phagosomes and reside within a compartment that resists acidification and fusion with lysosomes. To define the molecular composition of this compartment, we developed a novel method for obtaining highly purified phagosomes from BCG-infected human macrophages and analyzed the phagosomes by Western immunoblotting and mass spectrometry-based proteomics. Our purification procedure revealed that BCG grown on artificial medium becomes less dense after growth in macrophages. By Western immunoblotting, LAMP-2, Niemann-Pick protein C1, and syntaxin 3 were readily detectable on the BCG phagosome but at levels that were lower than on the latex bead phagosome; flotillin-1 and the vacuolar ATPase were barely detectable on the BCG phagosome but highly enriched on the latex bead phagosome. Immunofluorescence studies confirmed the scarcity of flotillin on BCG phagosomes and demonstrated an inverse correlation between bacterial metabolic activity and flotillin on M. tuberculosis phagosomes. By mass spectrometry, 447 human host proteins were identified on BCG phagosomes, and a partially overlapping set of 289 human proteins on latex bead phagosomes was identified. Interestingly, the majority of the proteins identified consistently on BCG phagosome preparations were also identified on latex bead phagosomes, indicating a high degree of overlap in protein composition of these two compartments. It is likely that many differences in protein composition are quantitative rather than qualitative in nature. Despite the remarkable overlap in protein composition, we consistently identified a number of proteins on the BCG phagosomes that were not identified in any of our latex bead phagosome preparations, including proteins involved in membrane trafficking and signal transduction, such as Ras GTPase-activating-like protein IQGAP1, and proteins of unknown function, such as FAM3C. Our phagosome purification procedure and initial proteomics analyses set the stage for a quantitative comparative analysis of mycobacterial and latex bead phagosome proteomes.
Collapse
Affiliation(s)
- Bai-Yu Lee
- From the ‡Division of Infectious Diseases, Department of Medicine, Center for Health Sciences, University of California-Los Angeles School of Medicine, Los Angeles, California 90095-1688
| | - Deepa Jethwaney
- §Buck Institute for Age Research, Novato, California 94945, and
| | | | - Daniel L. Clemens
- From the ‡Division of Infectious Diseases, Department of Medicine, Center for Health Sciences, University of California-Los Angeles School of Medicine, Los Angeles, California 90095-1688
| | - Bradford W. Gibson
- §Buck Institute for Age Research, Novato, California 94945, and
- **Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143
| | - Marcus A. Horwitz
- From the ‡Division of Infectious Diseases, Department of Medicine, Center for Health Sciences, University of California-Los Angeles School of Medicine, Los Angeles, California 90095-1688
| |
Collapse
|
286
|
Butterfield DA, Hardas SS, Lange MLB. Oxidatively modified glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and Alzheimer's disease: many pathways to neurodegeneration. J Alzheimers Dis 2010; 20:369-93. [PMID: 20164570 PMCID: PMC2922983 DOI: 10.3233/jad-2010-1375] [Citation(s) in RCA: 199] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Recently, the oxidoreductase, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), has become a subject of interest as more and more studies reveal a surfeit of diverse GAPDH functions, extending beyond traditional aerobic metabolism of glucose. As a result of multiple isoforms and cellular locales, GAPDH is able to come in contact with a variety of small molecules, proteins, membranes, etc., that play important roles in normal and pathologic cell function. Specifically, GAPDH has been shown to interact with neurodegenerative disease-associated proteins, including the amyloid-beta protein precursor (AbetaPP). Studies from our laboratory have shown significant inhibition of GAPDH dehydrogenase activity in Alzheimer's disease (AD) brain due to oxidative modification. Although oxidative stress and damage is a common phenomenon in the AD brain, it would seem that inhibition of glycolytic enzyme activity is merely one avenue in which AD pathology affects neuronal cell development and survival, as oxidative modification can also impart a toxic gain-of-function to many proteins, including GAPDH. In this review, we examine the many functions of GAPDH with respect to AD brain; in particular, the apparent role(s) of GAPDH in AD-related apoptotic cell death is emphasized.
Collapse
Affiliation(s)
- D Allan Butterfield
- Department of Chemistry, University of Kentucky, Center of Membrane Sciences, Lexington, KY40506-0055, USA.
| | | | | |
Collapse
|
287
|
Lyahyai J, Serrano C, Ranera B, Badiola JJ, Zaragoza P, Martin-Burriel I. Effect of Scrapie on the Stability of Housekeeping Genes. Anim Biotechnol 2009; 21:1-13. [DOI: 10.1080/10495390903323851] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
288
|
Cortez LM, Avila CL, Bugeau CMT, Farías RN, Morero RD, Chehín RN. Glyceraldehyde-3-phosphate dehydrogenase tetramer dissociation and amyloid fibril formation induced by negatively charged membranes. FEBS Lett 2009; 584:625-30. [PMID: 20006611 DOI: 10.1016/j.febslet.2009.12.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 12/02/2009] [Accepted: 12/09/2009] [Indexed: 10/20/2022]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a multifunctional enzyme related with Huntington's, Parkinson's and Alzheimer's diseases. The ability of negatively charged membranes to induce a rapid formation of GAPDH amyloid fibrils has been demonstrated, but the mechanisms by which GAPDH reaches the fibrillar state remains unclear. In this report, we describe the structural changes undergone by GAPDH at physiological pH and temperature conditions right from its interaction with acidic membranes until the amyloid fibril is formed. According to our results, the GAPDH-membrane binding induces a beta-structuring process along with a loss of quaternary structure in the enzyme. In this way, experimental evidences on the initial steps of GAPDH amyloid fibrils formation pathway are provided.
Collapse
Affiliation(s)
- Leonardo M Cortez
- Departamento Bioquímica de la Nutrición, Instituto Superior de Investigaciones Biológicas (CONICET-UNT), Tucumán, Argentina
| | | | | | | | | | | |
Collapse
|
289
|
Malay AD, Bessho Y, Ellis MJ, Antonyuk SV, Strange RW, Hasnain SS, Shinkai A, Padmanabhan B, Yokoyama S. Structure of glyceraldehyde-3-phosphate dehydrogenase from the archaeal hyperthermophile Methanocaldococcus jannaschii. Acta Crystallogr Sect F Struct Biol Cryst Commun 2009; 65:1227-33. [PMID: 20054117 DOI: 10.1107/s1744309109047046] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Accepted: 11/07/2009] [Indexed: 11/10/2022]
Abstract
The X-ray crystal structure of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from the hyperthermophilic archaeon Methanocaldococcus jannaschii (Mj-GAPDH) was determined to 1.81 A resolution. The crystal belonged to space group C222(1), with unit-cell parameters a = 83.4, b = 152.0, c = 118.6 A. The structure was solved by molecular replacement and was refined to a final R factor of 17.1% (R(free) = 19.8%). The final structure included the cofactor NADP(+) at the nucleotide-binding site and featured unoccupied inorganic and substrate phosphate-binding sites. A comparison with GAPDH structures from mesophilic sources suggested that Mj-GAPDH is stabilized by extensive electrostatic interactions between the C-terminal alpha-helices and various distal loop regions, which are likely to contribute to thermal stability. The key phosphate-binding residues in the active site of Mj-GAPDH are conserved in other archaeal GAPDH proteins. These residues undergo a conformational shift in response to occupancy of the inorganic phosphate site.
Collapse
Affiliation(s)
- Ali D Malay
- Systems and Structural Biology Center, Yokohama Institute, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama 230-0045, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
290
|
Reyes-Hernández OD, Mejía-García A, Sánchez-Ocampo EM, Castro-Muñozledo F, Hernández-Muñoz R, Elizondo G. Aromatic hydrocarbons upregulate glyceraldehyde-3-phosphate dehydrogenase and induce changes in actin cytoskeleton. Role of the aryl hydrocarbon receptor (AhR). Toxicology 2009; 266:30-7. [PMID: 19850099 DOI: 10.1016/j.tox.2009.10.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 10/01/2009] [Accepted: 10/09/2009] [Indexed: 10/20/2022]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a multifunctional enzyme involved in several cellular functions including glycolysis, membrane transport, microtubule assembly, DNA replication and repair, nuclear RNA export, apoptosis, and the detection of nitric oxide stress. Therefore, modifications in the regulatory ability and function of GAPDH may alter cellular homeostasis. We report here that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and beta-naphthoflavone, which are well-known ligands for the aryl hydrocarbon receptor (AhR), increase GAPDH mRNA levels in vivo and in vitro, respectively. These compounds fail to induce GAPDH transcription in an AhR-null mouse model, suggesting that the increase in GAPDH level is dependent upon AhR activation. To analyse the consequences of AhR ligands on GAPDH function, mice were treated with TCDD and the level of liver activity of GAPDH was determined. The results showed that TCDD treatment increased GAPDH activity. On the other hand, treatment of Hepa-1 cells with beta-naphthoflavone leads to an increase in microfilament density when compared to untreated cultures. Collectively, these results suggest that AhR ligands, such as polycyclic hydrocarbons, can modify GAPDH expression and, therefore, have the potential to alter the multiple functions of this enzyme.
Collapse
Affiliation(s)
- O D Reyes-Hernández
- Sección Externa de Toxicología, CINVESTAV-IPN, Zacatenco, México, D.F., C.P. 07360, Mexico
| | | | | | | | | | | |
Collapse
|
291
|
Liu YJ, Zheng D, Balasubramanian S, Carriero N, Khurana E, Robilotto R, Gerstein MB. Comprehensive analysis of the pseudogenes of glycolytic enzymes in vertebrates: the anomalously high number of GAPDH pseudogenes highlights a recent burst of retrotrans-positional activity. BMC Genomics 2009; 10:480. [PMID: 19835609 PMCID: PMC2770531 DOI: 10.1186/1471-2164-10-480] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 10/16/2009] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Pseudogenes provide a record of the molecular evolution of genes. As glycolysis is such a highly conserved and fundamental metabolic pathway, the pseudogenes of glycolytic enzymes comprise a standardized genomic measuring stick and an ideal platform for studying molecular evolution. One of the glycolytic enzymes, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), has already been noted to have one of the largest numbers of associated pseudogenes, among all proteins. RESULTS We assembled the first comprehensive catalog of the processed and duplicated pseudogenes of glycolytic enzymes in many vertebrate model-organism genomes, including human, chimpanzee, mouse, rat, chicken, zebrafish, pufferfish, fruitfly, and worm (available at http://pseudogene.org/glycolysis/). We found that glycolytic pseudogenes are predominantly processed, i.e. retrotransposed from the mRNA of their parent genes. Although each glycolytic enzyme plays a unique role, GAPDH has by far the most pseudogenes, perhaps reflecting its large number of non-glycolytic functions or its possession of a particularly retrotranspositionally active sub-sequence. Furthermore, the number of GAPDH pseudogenes varies significantly among the genomes we studied: none in zebrafish, pufferfish, fruitfly, and worm, 1 in chicken, 50 in chimpanzee, 62 in human, 331 in mouse, and 364 in rat. Next, we developed a simple method of identifying conserved syntenic blocks (consistently applicable to the wide range of organisms in the study) by using orthologous genes as anchors delimiting a conserved block between a pair of genomes. This approach showed that few glycolytic pseudogenes are shared between primate and rodent lineages. Finally, by estimating pseudogene ages using Kimura's two-parameter model of nucleotide substitution, we found evidence for bursts of retrotranspositional activity approximately 42, 36, and 26 million years ago in the human, mouse, and rat lineages, respectively. CONCLUSION Overall, we performed a consistent analysis of one group of pseudogenes across multiple genomes, finding evidence that most of them were created within the last 50 million years, subsequent to the divergence of rodent and primate lineages.
Collapse
Affiliation(s)
- Yuen-Jong Liu
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Boston, MA, USA
- Department of Molecular Biophysics and Biochemistry, P.O. Box 208114, Yale University, New Haven, CT 06520, USA
| | - Deyou Zheng
- Albert Einstein College of Medicine of Yeshiva University, Department of Neurology, Rose F. Kennedy Center, 1410 Pelham Parkway South, Room 915B, Bronx, NY 10461, USA
| | - Suganthi Balasubramanian
- Department of Molecular Biophysics and Biochemistry, P.O. Box 208114, Yale University, New Haven, CT 06520, USA
| | - Nicholas Carriero
- Department of Molecular Biophysics and Biochemistry, P.O. Box 208114, Yale University, New Haven, CT 06520, USA
| | - Ekta Khurana
- Department of Molecular Biophysics and Biochemistry, P.O. Box 208114, Yale University, New Haven, CT 06520, USA
| | - Rebecca Robilotto
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
| | - Mark B Gerstein
- Department of Molecular Biophysics and Biochemistry, P.O. Box 208114, Yale University, New Haven, CT 06520, USA
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Computer Science, Yale University, Bass 432, 266 Whitney Avenue, New Haven, CT 06520, USA
| |
Collapse
|
292
|
Demarse NA, Ponnusamy S, Spicer EK, Apohan E, Baatz JE, Ogretmen B, Davies C. Direct binding of glyceraldehyde 3-phosphate dehydrogenase to telomeric DNA protects telomeres against chemotherapy-induced rapid degradation. J Mol Biol 2009; 394:789-803. [PMID: 19800890 DOI: 10.1016/j.jmb.2009.09.062] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 09/24/2009] [Accepted: 09/25/2009] [Indexed: 01/01/2023]
Abstract
Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is a glycolytic enzyme that displays several non-glycolytic activities, including the maintenance and/or protection of telomeres. In this study, we determined the molecular mechanism and biological role of the interaction between GAPDH and human telomeric DNA. Using gel-shift assays, we show that recombinant GAPDH binds directly with high affinity (K(d)=45 nM) to a single-stranded oligonucleotide comprising three telomeric DNA repeats, and that nucleotides T1, G5, and G6 of the TTAGGG repeat are essential for binding. The stoichiometry of the interaction is 2:1 (DNA:GAPDH), and GAPDH appears to form a high-molecular-weight complex when bound to the oligonucleotide. Mutation of Asp32 and Cys149, which are localized to the NAD-binding site and the active-site center of GAPDH, respectively, produced mutants that almost completely lost their telomere-binding functions both in vitro and in situ (in A549 human lung cancer cells). Treatment of A549 cells with the chemotherapeutic agents gemcitabine and doxorubicin resulted in increased nuclear localization of expressed wild-type GAPDH, where it protected telomeres against rapid degradation, concomitant with increased resistance to the growth-inhibitory effects of these drugs. The non-DNA-binding mutants of GAPDH also localized to the nucleus when expressed in A549 cells, but did not confer any significant protection of telomeres against chemotherapy-induced degradation or growth inhibition; this occurred without the involvement of caspase activation or apoptosis regulation. Overall, these data demonstrate that GAPDH binds telomeric DNA directly in vitro and may have a biological role in the protection of telomeres against rapid degradation in response to chemotherapeutic agents in A549 human lung cancer cells.
Collapse
Affiliation(s)
- Neil A Demarse
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | | | | | | | |
Collapse
|
293
|
Desclos M, Etienne P, Coquet L, Jouenne T, Bonnefoy J, Segura R, Reze S, Ourry A, Avice JC. A combined 15N tracing/proteomics study in Brassica napus reveals the chronology of proteomics events associated with N remobilisation during leaf senescence induced by nitrate limitation or starvation. Proteomics 2009; 9:3580-608. [PMID: 19609964 DOI: 10.1002/pmic.200800984] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Our goal was to identify the leaf proteomic changes which appeared during N remobilisation that were associated or not associated with senescence of oilseed rape in response to contrasting nitrate availability. Remobilisation of N and leaf senescence status were followed using (15)N tracing, patterns of chlorophyll level, total protein content and a molecular indicator based on expression of senescence-associated gene 12/Cab genes. Three phases associated with N remobilisation were distinguished. Proteomics revealed that 55 proteins involved in metabolism, energy, detoxification, stress response, proteolysis and protein folding, were significantly induced during N remobilisation. Four proteases were specifically identified. FtsH, a chloroplastic protease, was induced transiently during the early stages of N remobilisation. Considering the dynamics of N remobilisation, chlorophyll and protein content, the pattern of FtsH expression indicated that this protease could be involved in the degradation of chloroplastic proteins. Aspartic protease increased at the beginning of senescence and was maintained at a high level, implicating this protease in proteolysis during the course of leaf senescence. Two proteases, proteasome beta subunit A1 and senescence-associated gene 12, were induced and continued to increase during the later phase of senescence, suggesting that these proteases are more specifically involved in the proteolysis processes occurring at the final stages of leaf senescence.
Collapse
Affiliation(s)
- Marie Desclos
- INRA, UMR INRA/UCBN 950 Ecophysiologie Végétale, Agronomie et nutritions N C S, IFR 146 ICORE, Institut de Biologie Fondamentale et Appliquée, Université de CAEN Basse-Normandie, Caen, France
| | | | | | | | | | | | | | | | | |
Collapse
|
294
|
Oxidative modifications of glyceraldehyde-3-phosphate dehydrogenase play a key role in its multiple cellular functions. Biochem J 2009; 423:253-64. [DOI: 10.1042/bj20090854] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Knowledge of the cellular targets of ROS (reactive oxygen species) and their regulation is an essential prerequisite for understanding ROS-mediated signalling. GAPDH (glyceraldehyde-3-phosphate dehydrogenase) is known as a major target protein in oxidative stresses and becomes thiolated in its active site. However, the molecular and functional changes of oxidized GAPDH, the inactive form, have not yet been characterized. To examine the modifications of GAPDH under oxidative stress, we separated the oxidation products by two-dimensional gel electrophoresis and identified them using nanoLC-ESI-q-TOF MS/MS (nano column liquid chromatography coupled to electrospray ionization quadrupole time-of-flight tandem MS). Intracellular GAPDH subjected to oxidative stress separated into multiple acidic spots on two-dimensional gel electrophoresis and were identified as cysteine disulfide and cysteic acids on Cys152 in the active site. We identified the interacting proteins of oxidized inactive GAPDH as p54nrb (54 kDa nuclear RNA-binding protein) and PSF (polypyrimidine tract-binding protein-associated splicing factor), both of which are known to exist as heterodimers and bind to RNA and DNA. Interaction between oxidized GAPDH and p54nrb was abolished upon expression of the GAPDH active site mutant C152S. The C-terminal of p54nrb binds to GAPDH in the cytosol in a manner dependent on the dose of hydrogen peroxide. The GAPDH–p54nrb complex enhances the intrinsic topoisomerase I activation by p54nrb–PSF binding. These results suggest that GAPDH exerts other functions beyond glycolysis, and that oxidatively modified GAPDH regulates its cellular functions by changing its interacting proteins, i.e. the RNA splicing by interacting with the p54nrb–PSF complex.
Collapse
|
295
|
Colell A, Green DR, Ricci JE. Novel roles for GAPDH in cell death and carcinogenesis. Cell Death Differ 2009; 16:1573-81. [PMID: 19779498 DOI: 10.1038/cdd.2009.137] [Citation(s) in RCA: 209] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Growing evidence points to the fact that glucose metabolism has a central role in carcinogenesis. Among the enzymes controlling this energy production pathway, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is of particular interest. Initially identified as a glycolytic enzyme and considered as a housekeeping gene, this enzyme is actually tightly regulated and is involved in numerous cellular functions. Particularly intriguing are recent reports describing GAPDH as a regulator of cell death. However, its role in cell death is unclear; whereas some studies point toward a proapoptotic function, others describe a protective role and suggest its participation in tumor progression. In this study, we highlight recent findings and discuss potential mechanisms through which cells regulate GAPDH to fulfill its diverse functions to influence cell fate.
Collapse
Affiliation(s)
- A Colell
- Department of Cell Death and Proliferation, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas and Liver Unit, Hospital Clinic i Provincial, Centro de Investigaciones Biomédicas Esther Koplowitz, and CIBEREHD, IDIBAPS, 08036-Barcelona, Spain.
| | | | | |
Collapse
|
296
|
Schlüter H, Apweiler R, Holzhütter HG, Jungblut PR. Finding one's way in proteomics: a protein species nomenclature. Chem Cent J 2009; 3:11. [PMID: 19740416 PMCID: PMC2758878 DOI: 10.1186/1752-153x-3-11] [Citation(s) in RCA: 213] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Accepted: 09/09/2009] [Indexed: 01/23/2023] Open
Abstract
Our knowledge of proteins has greatly improved in recent years, driven by new technologies in the fields of molecular biology and proteome research. It has become clear that from a single gene not only one single gene product but many different ones - termed protein species - are generated, all of which may be associated with different functions. Nonetheless, an unambiguous nomenclature for describing individual protein species is still lacking. With the present paper we therefore propose a systematic nomenclature for the comprehensive description of protein species. The protein species nomenclature is flexible and adaptable to every level of knowledge and of experimental data in accordance with the exact chemical composition of individual protein species. As a minimum description the entry name (gene name + species according to the UniProt knowledgebase) can be used, if no analytical data about the target protein species are available.
Collapse
|
297
|
Identification of the binding domain of Streptococcus oralis glyceraldehyde-3-phosphate dehydrogenase for Porphyromonas gingivalis major fimbriae. Infect Immun 2009; 77:5130-8. [PMID: 19737900 DOI: 10.1128/iai.00439-09] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Porphyromonas gingivalis forms communities with antecedent oral biofilm constituent streptococci. P. gingivalis major fimbriae bind to glyceraldehyde-3-phosphate dehydrogenase (GAPDH) present on the streptococcal surface, and this interaction plays an important role in P. gingivalis colonization. This study identified the binding domain of Streptococcus oralis GAPDH for P. gingivalis fimbriae. S. oralis recombinant GAPDH (rGAPDH) was digested with lysyl endopeptidase. Cleaved fragments of rGAPDH were applied to a reverse-phase high-pressure liquid chromatograph equipped with a C18 column. Each peak was collected; the binding activity toward P. gingivalis recombinant fimbrillin (rFimA) was analyzed with a biomolecular interaction analysis system. The fragment displaying the strongest binding activity was further digested with various proteinases, after which the binding activity of each fragment was measured. The amino acid sequence of each fragment was determined by direct sequencing, mass spectrometric analysis, and amino acid analysis. Amino acid residues 166 to 183 of S. oralis GAPDH exhibited the strongest binding activity toward rFimA; confocal laser scanning microscopy revealed that the synthetic peptide corresponding to amino acid residues 166 to 183 of S. oralis GAPDH (pep166-183, DNFGVVEGLMTTIHAYTG) inhibits S. oralis-P. gingivalis biofilm formation in a dose-dependent manner. Moreover, pep166-183 inhibited interbacterial biofilm formation by several oral streptococci and P. gingivalis strains with different types of FimA. These results indicate that the binding domain of S. oralis GAPDH for P. gingivalis fimbriae exists within the region encompassing amino acid residues 166 to 183 of GAPDH and that pep166-183 may be a potent inhibitor of P. gingivalis colonization in the oral cavity.
Collapse
|
298
|
Kim JJ, Kim YH, Lee MY. Proteomic characterization of differentially expressed proteins associated with no stress in retinal ganglion cells. BMB Rep 2009; 42:456-61. [PMID: 19643045 DOI: 10.5483/bmbrep.2009.42.7.456] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Proteomic analyses of differentially expressed proteins in rat retinal ganglion cells (RGC-5) following S-nitrosoglutathione (GSNO), an NO donor, treatment were conducted. Of the approximately 314 protein spots that were detected, 19 were differentially expressed in response to treatment with GSNO. Of these, 14 proteins were up-regulated and 5 were down- regulated. Notably, an increase in GAPDH expression following GSNO treatment was detected in RGC-5 cells through Western blotting as well as proteomics. The increased GAPDH expression in response to GSNO treatment was accompanied by an increase in Herc6 protein, an E3 ubiquitin ligase. Moreover, GSNO treatment resulted in the translocation of GADPH from the cytosol to the nucleus and its subsequent accumulation. These results suggest that NO stress-induced apoptosis may be associated with the nuclear translocation and accumulation of GAPDH in RGC-5 cells.
Collapse
Affiliation(s)
- Jum-Ji Kim
- Department of Medical Biotechnology, Soonchunhyang University, Asan 336-600, Korea
| | | | | |
Collapse
|
299
|
Mukherjee S, Maity S, Roy S, Ghorai S, Chakrabarti M, Agarwal R, Dutta D, Ghosh AK, Das AK. Cloning, overexpression, purification, crystallization and preliminary X-ray diffraction analysis of glyceraldehyde-3-phosphate dehydrogenase from Antheraea mylitta. Acta Crystallogr Sect F Struct Biol Cryst Commun 2009; 65:937-40. [PMID: 19724138 PMCID: PMC2795606 DOI: 10.1107/s174430910903214x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Accepted: 08/13/2009] [Indexed: 11/10/2022]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase from Antheraea mylitta (AmGAPDH) was cloned in pQE30 vector, overexpressed in Escherichia coli M15 (pREP4) cells and purified to homogeneity. The protein was crystallized using the hanging-drop vapour-diffusion method. The crystals belonged to the orthorhombic space group I222, with unit-cell parameters a = 85.81, b = 133.72, c = 220.37 A. X-ray diffraction data were collected and processed to a maximum resolution of 2.2 A. The presence of three molecules in the asymmetric unit gave a Matthews coefficient (V(M)) of 2.80 A(3) Da(-1), with a solvent content of 56.08%.
Collapse
Affiliation(s)
- Somnath Mukherjee
- Department of Biotechnology, Indian Institute of Technology, Kharagpur 721302, India
| | - Samita Maity
- Department of Biotechnology, Indian Institute of Technology, Kharagpur 721302, India
| | - Sobhan Roy
- Department of Biotechnology, Indian Institute of Technology, Kharagpur 721302, India
| | - Suvankar Ghorai
- Department of Biotechnology, Indian Institute of Technology, Kharagpur 721302, India
| | - Mrinmay Chakrabarti
- Department of Biotechnology, Indian Institute of Technology, Kharagpur 721302, India
| | - Rachit Agarwal
- Department of Biotechnology, Indian Institute of Technology, Kharagpur 721302, India
| | - Debajyoti Dutta
- Department of Biotechnology, Indian Institute of Technology, Kharagpur 721302, India
| | - Ananta Kumar Ghosh
- Department of Biotechnology, Indian Institute of Technology, Kharagpur 721302, India
| | - Amit Kumar Das
- Department of Biotechnology, Indian Institute of Technology, Kharagpur 721302, India
| |
Collapse
|
300
|
Sun B, Li S, Yang L, Damodaran T, Desai D, Diehl AM, Alzate O, Koeberl DD. Activation of glycolysis and apoptosis in glycogen storage disease type Ia. Mol Genet Metab 2009; 97:267-71. [PMID: 19419892 DOI: 10.1016/j.ymgme.2009.04.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Accepted: 04/02/2009] [Indexed: 10/20/2022]
Abstract
The deficiency of glucose-6-phosphatase (G6Pase) underlies glycogen storage disease type Ia (GSD-Ia, von Gierke disease; MIM 232200), an autosomal recessive disorder of metabolism associated with life-threatening hypoglycemia, growth retardation, renal failure, hepatic adenomas, and hepatocellular carcinoma. Liver involvement includes the massive accumulation of glycogen and lipids due to accumulated glucose-6-phosphate and glycolytic intermediates. Proteomic analysis revealed elevations in glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and other enzymes involved in glycolysis. GAPDH was markedly increased in murine G6Pase-deficient hepatocytes. The moonlighting role of GAPDH includes increasing apoptosis, which was demonstrated by increased TUNEL assay positivity and caspase 3 activation in the murine GSD-Ia liver. These analyses of hepatic involvement in GSD-Ia mice have implicated the induction of apoptosis in the pathobiology of GSD-Ia.
Collapse
Affiliation(s)
- Baodong Sun
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | |
Collapse
|