251
|
Ramadan R, Romera D, Carrascón R, Cantero M, Aguilera-Correa JJ, García Ruiz JP, Esteban J, Silván MM. Sol-Gel-Deposited Ti-Doped ZnO: Toward Cell Fouling Transparent Conductive Oxides. ACS OMEGA 2019; 4:11354-11363. [PMID: 31460239 PMCID: PMC6682115 DOI: 10.1021/acsomega.9b00646] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/17/2019] [Indexed: 05/31/2023]
Abstract
Ti-doped ZnO thin films were obtained with the aim of tailoring ZnO film bioadhesiveness and making the optoelectronic properties of ZnO materials transferable to biological environments. The films were prepared on silicon substrates by sol-gel spin-coating and subsequent annealing. A Ti-O segregation limits the ZnO crystallite growth and creates a buffer out-layer. Consequently, the Ti-doped ZnO presents slightly increased resistivity, which remains in the order of 10-3 Ω·cm. The strong biochemical interference of Zn2+ ions released from pure ZnO surfaces was evidenced by culturing Staphylococcus epidermidis with and without the Zn2+ coupling agent clioquinol. The Ti-doped ZnO surfaces showed a considerable increase of bacterial viability with respect to pure ZnO. Cell adhesion was assayed with human mesenchymal stem cells (hMSCs). Although hMSCs find difficulties to adhere to the pure ZnO surface, they progressively expand on the surface of ZnO when the Ti doping is increased. A preliminary microdevice has been built on the Si substrate with a ZnO film doped with 5% Ti. A one-dimensional micropattern with a zigzag structure shows the preference of hMSCs for adhesion on Ti-doped ZnO with respect to Si. The induced contrast of surface tension further induces a cell polarization effect on hMSCs. It is suggested that the presence of Ti-O covalent bonding on the doped surfaces provides a much more stable ground for bioadhesion. Such fouling behavior suggests an influence of Ti doping on film bioadhesiveness and sets the starting point for the selection of optimal materials for implantable optoelectronic devices.
Collapse
Affiliation(s)
- Rehab Ramadan
- Departamento
de Física Aplicada and Instituto de Ciencia de
Materiales Nicolás Cabrera, Departamento de Biología Molecular, and Departamento
de Física de la Materia Condensada and Instituto de Ciencia
de Materiales Nicolás Cabrera, Universidad
Autónoma de Madrid, 28049 Madrid, Spain
- Physics
Department, Faculty of Science, Minia University, 61519 Minia, Egypt
| | - David Romera
- Departamento
de Microbiología Clínica, Instituto de Investigación Sanitaria de la Fundación
Jiménez Díaz, Av. Reyes Católicos 2, 28040 Madrid, Spain
| | - Rosalía
Delgado Carrascón
- Departamento
de Física Aplicada and Instituto de Ciencia de
Materiales Nicolás Cabrera, Departamento de Biología Molecular, and Departamento
de Física de la Materia Condensada and Instituto de Ciencia
de Materiales Nicolás Cabrera, Universidad
Autónoma de Madrid, 28049 Madrid, Spain
| | - Miguel Cantero
- Departamento
de Física Aplicada and Instituto de Ciencia de
Materiales Nicolás Cabrera, Departamento de Biología Molecular, and Departamento
de Física de la Materia Condensada and Instituto de Ciencia
de Materiales Nicolás Cabrera, Universidad
Autónoma de Madrid, 28049 Madrid, Spain
| | - John-Jairo Aguilera-Correa
- Departamento
de Microbiología Clínica, Instituto de Investigación Sanitaria de la Fundación
Jiménez Díaz, Av. Reyes Católicos 2, 28040 Madrid, Spain
| | - Josefa P. García Ruiz
- Departamento
de Física Aplicada and Instituto de Ciencia de
Materiales Nicolás Cabrera, Departamento de Biología Molecular, and Departamento
de Física de la Materia Condensada and Instituto de Ciencia
de Materiales Nicolás Cabrera, Universidad
Autónoma de Madrid, 28049 Madrid, Spain
| | - Jaime Esteban
- Departamento
de Microbiología Clínica, Instituto de Investigación Sanitaria de la Fundación
Jiménez Díaz, Av. Reyes Católicos 2, 28040 Madrid, Spain
| | - Miguel Manso Silván
- Departamento
de Física Aplicada and Instituto de Ciencia de
Materiales Nicolás Cabrera, Departamento de Biología Molecular, and Departamento
de Física de la Materia Condensada and Instituto de Ciencia
de Materiales Nicolás Cabrera, Universidad
Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
252
|
Mateus-Vargas RH, Kemper N, Volkmann N, Kietzmann M, Meissner J, Schulz J. Low-frequency electromagnetic fields as an alternative to sanitize water of drinking systems in poultry production? PLoS One 2019; 14:e0220302. [PMID: 31344112 PMCID: PMC6657887 DOI: 10.1371/journal.pone.0220302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 07/13/2019] [Indexed: 11/19/2022] Open
Abstract
Low-frequency electromagnetic fields (LF-EMF) may present an alternative to conventional sanitation methods of water supply lines in animal production. The objective of this study was to evaluate the effect of the application of LF-EMF on bacterial concentrations and biofilms at scale-models of different drinking systems (circulating and non-circulating) conventionally used in poultry holdings. Treated systems were equipped with commercial devices producing pulsed electromagnetic signals of low frequency up to 10,000 Hz; max. 21 mT. Exposure of water to LF-EMF resulted in changes of the culturable bacterial counts, although with high standard deviations. Differing between systems types, LF-EMF treatment seemed to be responsible either for a limitation or for an increase of colony forming unit counts, with partly statistically significant differences, especially in early stages of treatment. In contrast, neither biofilm formation nor counts of cells suspended in water differed between treated and control lines over 28 days of experiment, as determined by fluorescence microscopy. Although this study indicates that LF-EMF may influence culturability of water microorganisms, no clear inhibitory effects on bacterial biofilm formation or on planktonic microbes by LF-EMF treatment were confirmed in the experiments.
Collapse
Affiliation(s)
- Rafael H. Mateus-Vargas
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behavior, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm, Hannover, Germany
- * E-mail:
| | - Nicole Kemper
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behavior, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm, Hannover, Germany
| | - Nina Volkmann
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behavior, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm, Hannover, Germany
| | - Manfred Kietzmann
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Foundation, Buenteweg, Hannover, Germany
| | - Jessica Meissner
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Foundation, Buenteweg, Hannover, Germany
| | - Jochen Schulz
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behavior, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm, Hannover, Germany
| |
Collapse
|
253
|
Polaquini CR, Morão LG, Nazaré AC, Torrezan GS, Dilarri G, Cavalca LB, Campos DL, Silva IC, Pereira JA, Scheffers DJ, Duque C, Pavan FR, Ferreira H, Regasini LO. Antibacterial activity of 3,3'-dihydroxycurcumin (DHC) is associated with membrane perturbation. Bioorg Chem 2019; 90:103031. [PMID: 31238181 DOI: 10.1016/j.bioorg.2019.103031] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/24/2019] [Accepted: 06/03/2019] [Indexed: 12/15/2022]
Abstract
Curcumin is a plant diphenylheptanoid and has been investigated for its antibacterial activity. However, the therapeutic uses of this compound are limited due to its chemical instability. In this work, we evaluated the antimicrobial activity of diphenylheptanoids derived from curcumin against Gram-positive and Gram-negative bacteria, and also against Mycobacterium tuberculosis in terms of MIC (Minimum Inhibitory Concentration) and MBC (Minimum Bactericidal Concentration) values. 3,3'-Dihydroxycurcumin (DHC) displayed activity against Enterococcus faecalis, Staphylococcus aureus and M. tuberculosis, demonstrating MIC values of 78 and 156 µg/mL. In addition, DHC was more stable than curcumin in acetate buffer (pH 5.0) and phosphate buffer (pH 7.4) for 24 h at 37 °C. We proposed that membrane and the cell division protein FtsZ could be the targets for DHC due to that fact that curcumin exhibits this mode of antibacterial action. Fluorescence microscopy of Bacillus subtilis stained with SYTO9 and propidium iodide fluorophores indicated that DHC has the ability to perturb the bacterial membrane. On the other hand, DHC showed a weak inhibition of the GTPase activity of B. subtilis FtsZ. Toxicity assay using human cells indicated that DHC has moderate capacity to reduce viability of liver cells (HepG2 line) and lung cells (MRC-5 and A549 lines) when compared with doxorubicin. Alkaline comet assay indicated that DHC was not able to induce DNA damage in A549 cell line. These results indicated that DHC is promising compound with antibacterial and antitubercular activities.
Collapse
Affiliation(s)
- Carlos R Polaquini
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), São José do Rio Preto 15054-000, Brazil
| | - Luana G Morão
- Department of Biochemistry and Microbiology, Institute of Biosciences, São Paulo State University (Unesp), Rio Claro 13506-900, Brazil
| | - Ana C Nazaré
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), São José do Rio Preto 15054-000, Brazil
| | - Guilherme S Torrezan
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), São José do Rio Preto 15054-000, Brazil
| | - Guilherme Dilarri
- Department of Biochemistry and Microbiology, Institute of Biosciences, São Paulo State University (Unesp), Rio Claro 13506-900, Brazil
| | - Lúcia B Cavalca
- Department of Biochemistry and Microbiology, Institute of Biosciences, São Paulo State University (Unesp), Rio Claro 13506-900, Brazil; Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747, the Netherlands
| | - Débora L Campos
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (Unesp), Araraquara 14800-903, Brazil
| | - Isabel C Silva
- Department of Biochemistry and Microbiology, Institute of Biosciences, São Paulo State University (Unesp), Rio Claro 13506-900, Brazil; Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (Unesp), Araraquara 14800-903, Brazil
| | - Jessé A Pereira
- Department of Pediatric Dentistry and Public Health, School of Dentistry, São Paulo State University (Unesp), Araçatuba 16015-050, Brazil
| | - Dirk-Jan Scheffers
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747, the Netherlands
| | - Cristiane Duque
- Department of Pediatric Dentistry and Public Health, School of Dentistry, São Paulo State University (Unesp), Araçatuba 16015-050, Brazil
| | - Fernando R Pavan
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (Unesp), Araraquara 14800-903, Brazil
| | - Henrique Ferreira
- Department of Biochemistry and Microbiology, Institute of Biosciences, São Paulo State University (Unesp), Rio Claro 13506-900, Brazil.
| | - Luis O Regasini
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), São José do Rio Preto 15054-000, Brazil.
| |
Collapse
|
254
|
Thombre RS, Shivakarthik E, Sivaraman B, Vaishampayan PA, Seuylemezian A, Meka JK, Vijayan S, Kulkarni PP, Pataskar T, Patil BS. Survival of Extremotolerant Bacteria from the Mukundpura Meteorite Impact Crater. ASTROBIOLOGY 2019; 19:785-796. [PMID: 31081685 DOI: 10.1089/ast.2018.1928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Carbonaceous meteorites provide clues with regard to prebiotic chemistry and the origin of life. Geological Survey of India recorded a carbonaceous chondrite meteorite fall in Mukundpura, India, on June 6, 2017. We conducted a study to investigate the microbial community that survived the meteorite impact. 16S rRNA metagenomic sequencing indicates the presence of Actinobacteria, Proteobacteria, and Acidobacteria in meteorite impact soil. Comparative phylogenetic analysis revealed an intriguing abundance of class Bacilli in the impact soil. Bacillus thermocopriae IR-1, a moderately thermotolerant organism, was isolated from a rock, impacted by the Mukundpura meteorite. We investigated the resilience of B. thermocopriae IR-1 to environmental stresses and impact shock in a Reddy shock tube. Bacillus thermocopriae IR-1 survived (28.82% survival) the effect of shock waves at a peak shock pressure of 300 kPa, temperature 400 K, and Mach number of 1.47. This investigation presents the first report on the effect of impact shock on B. thermocopriae IR-1. The study is also the first report on studying the microbial diversity and isolation of bacteria from impact crater soil immediately after meteorite impact event.
Collapse
Affiliation(s)
- Rebecca S Thombre
- 1 Department of Biotechnology, Modern College of Arts, Science and Commerce, Pune, India
| | - E Shivakarthik
- 2 Atomic, Molecular and Optical Physics Division, Physical Research Laboratory, Ahmedabad, India
| | - Bhalamurugan Sivaraman
- 2 Atomic, Molecular and Optical Physics Division, Physical Research Laboratory, Ahmedabad, India
| | - Parag A Vaishampayan
- 3 Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - Arman Seuylemezian
- 3 Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - J K Meka
- 2 Atomic, Molecular and Optical Physics Division, Physical Research Laboratory, Ahmedabad, India
| | - S Vijayan
- 2 Atomic, Molecular and Optical Physics Division, Physical Research Laboratory, Ahmedabad, India
| | - P P Kulkarni
- 1 Department of Biotechnology, Modern College of Arts, Science and Commerce, Pune, India
| | - T Pataskar
- 1 Department of Biotechnology, Modern College of Arts, Science and Commerce, Pune, India
| | - B S Patil
- 1 Department of Biotechnology, Modern College of Arts, Science and Commerce, Pune, India
| |
Collapse
|
255
|
Fabrication of antimicrobial curcumin stabilized platinum nanoparticles and their anti-liver fibrosis activity for potential use in nursing care. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 195:27-32. [DOI: 10.1016/j.jphotobiol.2019.03.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 03/25/2019] [Accepted: 03/29/2019] [Indexed: 12/20/2022]
|
256
|
Bédard E, Paranjape K, Lalancette C, Villion M, Quach C, Laferrière C, Faucher SP, Prévost M. Legionella pneumophila levels and sequence-type distribution in hospital hot water samples from faucets to connecting pipes. WATER RESEARCH 2019; 156:277-286. [PMID: 30925374 DOI: 10.1016/j.watres.2019.03.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/08/2019] [Accepted: 03/14/2019] [Indexed: 05/07/2023]
Abstract
Recent studies have reported increased levels of Legionella pneumophila (Lp) at points of use compared to levels in primary and secondary components of hot water systems, suggesting possible selection by environmental conditions. In this study, concentrations of Lp in a hospital hot water system were evaluated by profile sampling, collecting successive water samples to determine the prevalence at the faucet (distal) and upstream piping before and after a system intervention to increase temperature. Lp strain diversity was compared between different points of use and different areas of the hot water system (i.e., tap, intermediate piping and main upflow piping). In total, 47 isolates were recovered from 32 positive hot water samples collected from designated taps, showers and recirculation loops; these isolates were subsequently analyzed by sequence-based typing (SBT). Lp levels were comparable between first draw (500 mL) and flushed (2 and 5 min) samples, whereas a decrease was observed in the amount of culturable cells (1 log). Two sequence types (STs) were identified throughout the system. ST378 (sg4/10) was present in 91% of samples, while ST154-like (sg1) was present in 41%; both STs were simultaneously recovered in 34% of samples. Isolated STs displayed comparable tolerance to copper (0.8-5 mg/L) and temperature (55 °C, 1 h) exposure. The ability to replicate within THP1 cells and Acanthamoeba castellanii was similar between the two STs and a comparative environmental outbreak strain. The low Lp diversity and the detection of both Lp sequence types in repeated subsequent samples collected from positive faucets in a hospital wing suggest a minimal impact of the distal conditions on strain selection for the sampled points, as well as a possible adaptation to stressors present in the system, leading to the predominance of a few strains.
Collapse
Affiliation(s)
- Emilie Bédard
- Department of Civil Engineering, Polytechnique Montréal, Montréal, QC, Canada; Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada.
| | - Kiran Paranjape
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Cindy Lalancette
- Laboratoire de santé publique du Québec, Sainte-Anne-de-Bellevue, QC, Canada
| | - Manuela Villion
- Centre d'expertise en analyse environnementale du Québec, Ministère de l'Environnement et de la Lutte contre les changements climatiques, Québec, Canada
| | - Caroline Quach
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montréal, QC, Canada
| | - Céline Laferrière
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montréal, QC, Canada
| | - Sebastien P Faucher
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Michèle Prévost
- Department of Civil Engineering, Polytechnique Montréal, Montréal, QC, Canada
| |
Collapse
|
257
|
Belbekhouche S, Bousserrhine N, Alphonse V, Le Floch F, Charif Mechiche Y, Menidjel I, Carbonnier B. Chitosan based self-assembled nanocapsules as antibacterial agent. Colloids Surf B Biointerfaces 2019; 181:158-165. [PMID: 31129522 DOI: 10.1016/j.colsurfb.2019.05.028] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/02/2019] [Accepted: 05/14/2019] [Indexed: 02/07/2023]
Abstract
Creating an appropriate antibacterial disinfection system without forming any harmful compounds is still a major challenge and calls for new technologies for efficient disinfection and microbial control. Towards this aim, we report on the elaboration of biodegradable and biocompatible polymeric nanocapsules, also called hollow nanoparticles, for potential applications in antibiotic therapy. These nanomaterials are based on the self-assembly of charged polysaccharides, namely chitosan and alginate, onto gold nanoparticles as a sacrificial matrix (60 nm). Electrostatic interactions between the protonated amine groups of chitosan (+35 mV) and the carboxylate groups of alginate (- 20 mV) are the driving attraction force enabling the elaboration of well-ordered multilayer films onto the spherical substrate. The removal of the colloidal gold, via cyanide-assisted hydrolysis, is evidenced by time-dependent variation of the gold spectroscopic signature (30 min is required). TEM shows the obtention of nanocapsules. An inhibitory effect of these particles has been demonstrated during the growth of two representative bacteria in a liquid medium: Staphylococcus aureus (Gram-positive) (from 4.6% to 16.3% for gold nanomaterials + and from 18.6% to 34.9% for (chi+/alg-)n-chi+ nanocapsules) and Escherichia coli (Gram-negative) (from 5.4% to 20% for gold nanomaterials and from 23.7% to 40% for (chi+/alg-)n-chi+ nanocapsules). Acridine orange staining demonstrated the bactericidal effect of chitosan-based capsules. These findings demonstrate that (chitosan/alginate)n capsules can be exploited as new antibacterial material. Thus, we present a complementary approach to classical nanoparticles prepared by complexation between alginate and chitosan or other materials.
Collapse
Affiliation(s)
- Sabrina Belbekhouche
- Institut de Chimie et des Matériaux Paris-Est, UMR 7182 CNRS-Université Paris-Est Créteil Val-de-Marne, 2 rue Henri Dunant, 94320 Thiais, France.
| | - Noureddine Bousserrhine
- Laboratoire Eau Environnement et Systèmes Urbains (LEESU), Université-Paris-Est Créteil, Créteil cedex, 94010, France
| | - Vanessa Alphonse
- Laboratoire Eau Environnement et Systèmes Urbains (LEESU), Université-Paris-Est Créteil, Créteil cedex, 94010, France
| | - Fannie Le Floch
- Institut de Chimie et des Matériaux Paris-Est, UMR 7182 CNRS-Université Paris-Est Créteil Val-de-Marne, 2 rue Henri Dunant, 94320 Thiais, France
| | - Youcef Charif Mechiche
- Institut de Chimie et des Matériaux Paris-Est, UMR 7182 CNRS-Université Paris-Est Créteil Val-de-Marne, 2 rue Henri Dunant, 94320 Thiais, France
| | - Ilyes Menidjel
- Institut de Chimie et des Matériaux Paris-Est, UMR 7182 CNRS-Université Paris-Est Créteil Val-de-Marne, 2 rue Henri Dunant, 94320 Thiais, France
| | - Benjamin Carbonnier
- Institut de Chimie et des Matériaux Paris-Est, UMR 7182 CNRS-Université Paris-Est Créteil Val-de-Marne, 2 rue Henri Dunant, 94320 Thiais, France
| |
Collapse
|
258
|
Rajapaksha P, Elbourne A, Gangadoo S, Brown R, Cozzolino D, Chapman J. A review of methods for the detection of pathogenic microorganisms. Analyst 2019; 144:396-411. [PMID: 30468217 DOI: 10.1039/c8an01488d] [Citation(s) in RCA: 290] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The testing and rapid detection of pathogenic organisms is a crucial protocol in the prevention and identification of crises related to health, safety and wellbeing. Pathogen detection has become one of the most challenging aspects in the food and water industries, because of the rapid spread of waterborne and foodborne diseases in the community and at significant costs. With the prospect of inevitable population growth, and an influx of tourism to certain water bodies testing will become a requirement to control and prevent possible outbreaks of potentially fatal illnesses. The legislation is already particularly rigorous in the food industry, where failure to detect pathogenic materials represents a catastrophic event, particularly for the elderly, very young or immune-compromised population types. In spite of the need and requirement for rapid analytical testing, conventional and standard bacterial detection assays may take up to seven days to yield a result. Given the advent of new technologies, biosensors, chemical knowledge and miniaturisation of instrumentation this timescale is not acceptable. This review presents an opportunity to fill a knowledge gap for an extremely important research area; discussing the main techniques, biology, chemistry, miniaturisation, sensing and the emerging state-of-the-art research and developments for detection of pathogens in food, water, blood and faecal samples.
Collapse
Affiliation(s)
- P Rajapaksha
- School of Science, RMIT University, La Trobe Street, Melbourne, 3000, Victoria, Australia.
| | | | | | | | | | | |
Collapse
|
259
|
Rosenberg M, Azevedo NF, Ivask A. Propidium iodide staining underestimates viability of adherent bacterial cells. Sci Rep 2019; 9:6483. [PMID: 31019274 PMCID: PMC6482146 DOI: 10.1038/s41598-019-42906-3] [Citation(s) in RCA: 230] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 04/08/2019] [Indexed: 02/07/2023] Open
Abstract
Combining membrane impermeable DNA-binding stain propidium iodide (PI) with membrane-permeable DNA-binding counterstains is a widely used approach for bacterial viability staining. In this paper we show that PI staining of adherent cells in biofilms may significantly underestimate bacterial viability due to the presence of extracellular nucleic acids (eNA). We demonstrate that gram-positive Staphylococcus epidermidis and gram-negative Escherichia coli 24-hour initial biofilms on glass consist of 76 and 96% PI-positive red cells in situ, respectively, even though 68% the cells of either species in these aggregates are metabolically active. Furthermore, 82% of E. coli and 89% S. epidermidis are cultivable after harvesting. Confocal laser scanning microscopy (CLSM) revealed that this false dead layer of red cells is due to a subpopulation of double-stained cells that have green interiors under red coating layer which hints at eNA being stained outside intact membranes. Therefore, viability staining results of adherent cells should always be validated by an alternative method for estimating viability, preferably by cultivation.
Collapse
Affiliation(s)
- Merilin Rosenberg
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618, Tallinn, Estonia. .,Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia.
| | - Nuno F Azevedo
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy; Department of Chemical Engineering; Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Angela Ivask
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618, Tallinn, Estonia
| |
Collapse
|
260
|
Irankhah S, Abdi Ali A, Mallavarapu M, Soudi MR, Subashchandrabose S, Gharavi S, Ayati B. Ecological role of Acinetobacter calcoaceticus GSN3 in natural biofilm formation and its advantages in bioremediation. BIOFOULING 2019; 35:377-391. [PMID: 31119950 DOI: 10.1080/08927014.2019.1597061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 03/10/2019] [Accepted: 03/12/2019] [Indexed: 06/09/2023]
Abstract
This study assessed the role of a new Acinetobacter calcoaceticus strain, GSN3, with biofilm-forming and phenol-degrading abilities. Three biofilm reactors were spiked with activated sludge (R1), green fluorescent plasmid (GFP) tagged GSN3 (R2), and their combination (R3). More than 99% phenol removal was achieved during four weeks in R3 while this efficiency was reached after two and four further operational weeks in R2 and R1, respectively. Confocal scanning electron microscopy revealed that GSN3-gfp strains appeared mostly in the deeper layers of the biofilm in R3. After four weeks, almost 7.07 × 107 more attached sludge cells were counted per carrier in R3 in comparison to R1. Additionally, the higher numbers of GSN3-gfp in R2 were unable to increase the efficiency as much as measured in R3. The presence of GSN3-gfp in R3 conveyed advantages, including enhancement of cell immobilization, population diversity, metabolic cooperation and ultimately treatment efficiency.
Collapse
Affiliation(s)
- Sahar Irankhah
- a Department of Microbiology, Faculty of Biological Sciences , Alzahra University , Tehran , Iran
- b Global Centre for Environmental Remediation (GCER), Faculty of Science and Information Technology , University of Newcastle , Callaghan , NSW , Australia
| | - Ahya Abdi Ali
- a Department of Microbiology, Faculty of Biological Sciences , Alzahra University , Tehran , Iran
| | - Megharaj Mallavarapu
- b Global Centre for Environmental Remediation (GCER), Faculty of Science and Information Technology , University of Newcastle , Callaghan , NSW , Australia
- c CRC CARE, Newcastle University LPO , Callaghan , NSW , Australia
| | - Mohammad Reza Soudi
- a Department of Microbiology, Faculty of Biological Sciences , Alzahra University , Tehran , Iran
| | - Suresh Subashchandrabose
- b Global Centre for Environmental Remediation (GCER), Faculty of Science and Information Technology , University of Newcastle , Callaghan , NSW , Australia
- c CRC CARE, Newcastle University LPO , Callaghan , NSW , Australia
| | - Sara Gharavi
- d Department of Biotechnology, Faculty of Biological Sciences , Alzahra University , Tehran , Iran
| | - Bita Ayati
- e Environmental Engineering Division, Civil and Environmental Engineering Faculty , Tarbiat Modares University , Tehran , Iran
| |
Collapse
|
261
|
Synthesis and characterization of antibacterial poly ionic liquid membranes with tunable performance. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.11.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
262
|
Li G, Wang H, Ma D, Xue W, Zhang W. WITHDRAWN: A star copolymer consisting of a β-cyclodextrin core and poly(amidoamine) dendron arms for co-delivering nitric oxide and triclosan for combined antibacterial effect. Acta Biomater 2019:S1742-7061(19)30227-2. [PMID: 30926578 DOI: 10.1016/j.actbio.2019.03.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 03/02/2019] [Accepted: 03/25/2019] [Indexed: 11/20/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Guowei Li
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Haiyang Wang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Dong Ma
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China.
| | - Wei Xue
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Wu Zhang
- The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510632, China; School of Stomatology of Jinan University, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
263
|
Frohlich KM, Weintraub SF, Bell JT, Todd GC, Väre VYP, Schneider R, Kloos ZA, Tabe ES, Cantara WA, Stark CJ, Onwuanaibe UJ, Duffy BC, Basanta-Sanchez M, Kitchen DB, McDonough KA, Agris PF. Discovery of Small-Molecule Antibiotics against a Unique tRNA-Mediated Regulation of Transcription in Gram-Positive Bacteria. ChemMedChem 2019; 14:758-769. [PMID: 30707489 DOI: 10.1002/cmdc.201800744] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/24/2019] [Indexed: 01/24/2023]
Abstract
The emergence of multidrug-resistant bacteria necessitates the identification of unique targets of intervention and compounds that inhibit their function. Gram-positive bacteria use a well-conserved tRNA-responsive transcriptional regulatory element in mRNAs, known as the T-box, to regulate the transcription of multiple operons that control amino acid metabolism. T-box regulatory elements are found only in the 5'-untranslated region (UTR) of mRNAs of Gram-positive bacteria, not Gram-negative bacteria or the human host. Using the structure of the 5'UTR sequence of the Bacillus subtilis tyrosyl-tRNA synthetase mRNA T-box as a model, in silico docking of 305 000 small compounds initially yielded 700 as potential binders that could inhibit the binding of the tRNA ligand. A single family of compounds inhibited the growth of Gram-positive bacteria, but not Gram-negative bacteria, including drug-resistant clinical isolates at minimum inhibitory concentrations (MIC 16-64 μg mL-1 ). Resistance developed at an extremely low mutational frequency (1.21×10-10 ). At 4 μg mL-1 , the parent compound PKZ18 significantly inhibited in vivo transcription of glycyl-tRNA synthetase mRNA. PKZ18 also inhibited in vivo translation of the S. aureus threonyl-tRNA synthetase protein. PKZ18 bound to the Specifier Loop in vitro (Kd ≈24 μm). Its core chemistry necessary for antibacterial activity has been identified. These findings support the T-box regulatory mechanism as a new target for antibiotic discovery that may impede the emergence of resistance.
Collapse
Affiliation(s)
- Kyla M Frohlich
- The RNA Institute and the Department of Biological Sciences, University at Albany - State University of New York, 1400 Washington Avenue, Albany, NY, 12222, USA.,Current address: Regeneron Inc., Rensselaer, NY, USA
| | - Spencer F Weintraub
- The RNA Institute and the Department of Biological Sciences, University at Albany - State University of New York, 1400 Washington Avenue, Albany, NY, 12222, USA.,Current address: New York Medical College, Valhalla, NY, USA
| | - Janeen T Bell
- The RNA Institute and the Department of Biological Sciences, University at Albany - State University of New York, 1400 Washington Avenue, Albany, NY, 12222, USA.,Current address: Albany Medical College, Center for Physician Assistant Studies, Albany, NY, USA
| | - Gabrielle C Todd
- The RNA Institute and the Department of Biological Sciences, University at Albany - State University of New York, 1400 Washington Avenue, Albany, NY, 12222, USA
| | - Ville Y P Väre
- The RNA Institute and the Department of Biological Sciences, University at Albany - State University of New York, 1400 Washington Avenue, Albany, NY, 12222, USA
| | - Ryan Schneider
- Department of Biomedical Sciences, School of Public Health, University at Albany - State University of New York, P.O. Box 22002, Albany, NY, 12201, USA
| | - Zachary A Kloos
- The RNA Institute and the Department of Biological Sciences, University at Albany - State University of New York, 1400 Washington Avenue, Albany, NY, 12222, USA.,Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, P.O. Box 22002, Albany, NY, 12201-2002, USA.,Current address: Molecular, Cellular and Developmental Biology, Yale University, West Haven, CT, USA
| | - Ebot S Tabe
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, P.O. Box 22002, Albany, NY, 12201-2002, USA.,Current address: Albany College of Pharmacy and Health Sciences, Albany, NY, USA
| | - William A Cantara
- The RNA Institute and the Department of Biological Sciences, University at Albany - State University of New York, 1400 Washington Avenue, Albany, NY, 12222, USA.,Current address: Chemistry and Biochemistry, Ohio State University, Columbus, OH, USA
| | - Caren J Stark
- The RNA Institute and the Department of Biological Sciences, University at Albany - State University of New York, 1400 Washington Avenue, Albany, NY, 12222, USA
| | - Urenna J Onwuanaibe
- The RNA Institute and the Department of Biological Sciences, University at Albany - State University of New York, 1400 Washington Avenue, Albany, NY, 12222, USA
| | - Bryan C Duffy
- Albany Molecular Research Incorporated, 26 Corporate Circle, Albany, NY, 12203, USA.,Current address: New York State Department of Health, Albany, NY, USA
| | - Maria Basanta-Sanchez
- The RNA Institute and the Department of Biological Sciences, University at Albany - State University of New York, 1400 Washington Avenue, Albany, NY, 12222, USA.,Current address: Waters Corporation, Pleasanton, CA, USA
| | - Douglas B Kitchen
- Albany Molecular Research Incorporated, 26 Corporate Circle, Albany, NY, 12203, USA
| | - Kathleen A McDonough
- Department of Biomedical Sciences, School of Public Health, University at Albany - State University of New York, P.O. Box 22002, Albany, NY, 12201, USA.,Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, P.O. Box 22002, Albany, NY, 12201-2002, USA
| | - Paul F Agris
- The RNA Institute and the Department of Biological Sciences, University at Albany - State University of New York, 1400 Washington Avenue, Albany, NY, 12222, USA.,Current address: Duke University, Medical School, Durham, NC, USA
| |
Collapse
|
264
|
Bruer GG, Hagedorn P, Kietzmann M, Tohamy AF, Filor V, Schultz E, Mielke-Kuschow S, Meissner J. Histamine H 1 receptor antagonists enhance the efficacy of antibacterials against Escherichia coli. BMC Vet Res 2019; 15:55. [PMID: 30744618 PMCID: PMC6371457 DOI: 10.1186/s12917-019-1797-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/24/2019] [Indexed: 01/03/2023] Open
Abstract
Background H1 receptor antagonists are commonly used for the treatment of allergic diseases. The aim of this study was to find out, if antihistaminic compounds like mepyramine have the ability to influence the activity of antibacterials. Therefore, the checkerboard method was chosen to detect these possible effects in vitro. Studies were performed with two different Escherichia coli (E. coli) strains as test microbes, treated with antibacterials in combination with mepyramine. Results The minimum inhibitory concentration (MIC) of E. coli ATCC® 25922™ and E. coli PIG 01 was reduced by combinations of the tested antibacterials with mepyramine. Conclusions These results have to be confirmed in vivo, before the use of antihistamines should be considered as potential way to minimize the amount of used antibacterials for treatment of E. coli infections.
Collapse
Affiliation(s)
- G G Bruer
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover Foundation, Hannover, Germany.
| | - P Hagedorn
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover Foundation, Hannover, Germany
| | - M Kietzmann
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover Foundation, Hannover, Germany
| | - A F Tohamy
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover Foundation, Hannover, Germany.,Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - V Filor
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover Foundation, Hannover, Germany
| | - E Schultz
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover Foundation, Hannover, Germany
| | - S Mielke-Kuschow
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover Foundation, Hannover, Germany
| | - J Meissner
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover Foundation, Hannover, Germany
| |
Collapse
|
265
|
Jing X, Liu X, Deng C, Chen S, Zhou S. Chemical signals stimulate Geobacter soli biofilm formation and electroactivity. Biosens Bioelectron 2019; 127:1-9. [DOI: 10.1016/j.bios.2018.11.051] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 11/15/2018] [Accepted: 11/22/2018] [Indexed: 11/17/2022]
|
266
|
Vanhauteghem D, Audenaert K, Demeyere K, Hoogendoorn F, Janssens GPJ, Meyer E. Flow cytometry, a powerful novel tool to rapidly assess bacterial viability in metal working fluids: Proof-of-principle. PLoS One 2019; 14:e0211583. [PMID: 30707728 PMCID: PMC6358156 DOI: 10.1371/journal.pone.0211583] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/16/2019] [Indexed: 12/16/2022] Open
Abstract
Metalworking fluids (MWF) are water- or oil-based liquids to cool and lubricate tools, work pieces and machines, inhibit corrosion and remove swarf. One of the major problems in the MWF industry is bacterial growth as bacterial enzymes can cause MWF degradation. In addition, bacteria can form biofilms which hamper the functioning of machines. Last but not least, some bacterial by-products are toxic (e.g. endotoxins) and present potential health risks for metalworking machine operators via the formation of aerosols. Therefore, a novel fast yet accurate analytical method to evaluate and predict the antibacterial capacity of MWF would be an important asset. As such a tool is currently lacking, the present study aimed to develop a protocol based on flow cytometry (FCM) to assess the antibacterial potential of newly developed MWF independent of bacterial growth. Results of this novel method were compared to a biochallenge test currently used in MWF industry and also to traditional plate counts. Our results represent a proof-of-principle that FCM can reliably predict the antibacterial capacity of MWF already within one day of incubation with Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Proteus mirabilis, being substantially faster than the current growth-based methods.
Collapse
Affiliation(s)
- Donna Vanhauteghem
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- Laboratory of Biochemistry, Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- * E-mail:
| | - Kris Audenaert
- Department of Applied Bioscience Engineering, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, Ghent, Belgium
| | - Kristel Demeyere
- Laboratory of Biochemistry, Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | | | - Geert P. J. Janssens
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Evelyne Meyer
- Laboratory of Biochemistry, Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
267
|
Elbourne A, Coyle VE, Truong VK, Sabri YM, Kandjani AE, Bhargava SK, Ivanova EP, Crawford RJ. Multi-directional electrodeposited gold nanospikes for antibacterial surface applications. NANOSCALE ADVANCES 2019; 1:203-212. [PMID: 36132449 PMCID: PMC9473181 DOI: 10.1039/c8na00124c] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 08/08/2018] [Indexed: 05/14/2023]
Abstract
The incorporation of high-aspect-ratio nanostructures across surfaces has been widely reported to impart antibacterial characteristics to a substratum. This occurs because the presence of such nanostructures can induce the mechanical rupture of attaching bacteria, causing cell death. As such, the development of high-efficacy antibacterial nano-architectures fabricated on a variety of biologically relevant materials is critical to the wider acceptance of this technology. In this study, we report the antibacterial behavior of a series of substrata containing multi-directional electrodeposited gold (Au) nanospikes, as both a function of deposition time and precursor concentration. Firstly, the bactericidal efficacy of substrata containing Au nanospikes was assessed as a function of deposition time to elucidate the nanopattern that exhibited the greatest degree of biocidal activity. Here, it was established that multi-directional nanospikes with an average height of ∼302 nm ± 57 nm (formed after a deposition time of 540 s) exhibited the greatest level of biocidal activity, with ∼88% ± 8% of the bacterial cells being inactivated. The deposition time was then kept constant, while the concentration of the HAuCl4 and Pb(CH3COO)2 precursor materials (used for the formation of the Au nanospikes) was varied, resulting in differing nanospike architectures. Altering the Pb(CH3COO)2 precursor concentration produced multi-directional nanostructures with a wider distribution of heights, which increased the average antibacterial efficacy against both Gram-negative Pseudomonas aeruginosa and Gram-positive Staphylococcus aureus bacteria. Importantly, the in situ electrochemical fabrication method used in this work is robust and straightforward, and is able to produce highly reproducible antibacterial surfaces. The results of this research will assist in the wider utilization of mechano-responsive nano-architectures for antimicrobial surface technologies.
Collapse
Affiliation(s)
- Aaron Elbourne
- School of Science, College of Science, Engineering and Health, RMIT University Melbourne VIC 3001 Australia
| | - Victoria E Coyle
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, College of Science, Engineering and Health, RMIT University Melbourne VIC 3001 Australia
| | - Vi Khanh Truong
- School of Science, Faculty of Science, Engineering and Technology, Swinburne University of Technology Haw-thorn VIC 3122 Australia
- ARC Research Hub for Australian Steel Manufacturing Wollongong New South Wales Australia
| | - Ylias M Sabri
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, College of Science, Engineering and Health, RMIT University Melbourne VIC 3001 Australia
| | - Ahmad E Kandjani
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, College of Science, Engineering and Health, RMIT University Melbourne VIC 3001 Australia
| | - Suresh K Bhargava
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, College of Science, Engineering and Health, RMIT University Melbourne VIC 3001 Australia
| | - Elena P Ivanova
- School of Science, College of Science, Engineering and Health, RMIT University Melbourne VIC 3001 Australia
| | - Russell J Crawford
- School of Science, College of Science, Engineering and Health, RMIT University Melbourne VIC 3001 Australia
| |
Collapse
|
268
|
Gomand F, Borges F, Burgain J, Guerin J, Revol-Junelles AM, Gaiani C. Food Matrix Design for Effective Lactic Acid Bacteria Delivery. Annu Rev Food Sci Technol 2019; 10:285-310. [PMID: 30633562 DOI: 10.1146/annurev-food-032818-121140] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The range of foods featuring lactic acid bacteria (LAB) with potential associated health benefits has expanded over the years from traditional dairy products to meat, cereals, vegetables and fruits, chocolate, etc. All these new carriers need to be compared for their efficacy to protect, carry, and deliver LAB, but because of their profusion and the diversity of methods this remains difficult. This review points out the advantages and disadvantages of the main food matrix types, and an additional distinction between dairy and nondairy foods is made. The food matrix impact on LAB viability during food manufacturing, storage, and digestion is also discussed. The authors propose an ideal hypothetical food matrix that includes structural and physicochemical characteristics such as pH, water activity, and buffering capacities, all of which need to be taken into account when performing LAB food matrix design. Guidelines are finally provided to optimize food matrix design in terms of effective LAB delivery.
Collapse
Affiliation(s)
- F Gomand
- LIBio, Université de Lorraine, F-54000 Nancy, France;
| | - F Borges
- LIBio, Université de Lorraine, F-54000 Nancy, France;
| | - J Burgain
- LIBio, Université de Lorraine, F-54000 Nancy, France;
| | - J Guerin
- LIBio, Université de Lorraine, F-54000 Nancy, France;
| | | | - C Gaiani
- LIBio, Université de Lorraine, F-54000 Nancy, France;
| |
Collapse
|
269
|
Microbiological and Cellular Evaluation of a Fluorine-Phosphorus-Doped Titanium Alloy, a Novel Antibacterial and Osteostimulatory Biomaterial with Potential Applications in Orthopedic Surgery. Appl Environ Microbiol 2019; 85:AEM.02271-18. [PMID: 30367003 DOI: 10.1128/aem.02271-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 10/09/2018] [Indexed: 02/08/2023] Open
Abstract
Joint prosthesis failure is mainly related to aseptic loosening and prosthetic joint infections, both of which are associated with high morbidity and substantial costs for patients and health systems. The development of a biomaterial that is capable of stimulating bone growth while minimizing bacterial adhesion would reduce the incidence of prosthetic failure. We report antibacterial and osteostimulatory effects in a novel fluorine-phosphorus (F-P)-doped TiO2 oxide film grown on Ti-6Al-4V alloy with a nanostructure of bottle-shaped nanotubes (bNT) using five bacterial species (Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, Pseudomonas aeruginosa, and Stenotrophomonas maltophilia) and MCT3T3-E1 osteoblastic cells. The interaction between the bacteria and bNT Ti-6Al-4V was complex, as the adhesion of four bacterial species decreased (two staphylococcus species, E. coli, and S. maltophilia), and the viability of staphylococci and S. maltophilia also decreased because of the aluminum (Al) released by bNT Ti-6Al-4V. This released Al can be recruited by the bacteria through siderophores and was retained only by the Gram-negative bacteria tested. P. aeruginosa showed higher adhesion on bNT Ti-6Al-4V than on chemically polished (CP) samples of Ti-6Al-4V alloy and an ability to mobilize Al from bNT Ti-6Al-4V. The cell adhesion and proliferation of MCT3T3-E1 osteoblastic cells significantly increased at 48 and 168 h, as did the matrix mineralization of these cells and the gene expression levels of three of the most important markers related to bone differentiation. According to our results, the bNT Ti-6Al-4V alloy could have clinical application, preventing infection and stimulating bone growth and thus preventing the two main causes of joint prosthesis failure.IMPORTANCE This work evaluates F-P-doped bNT Ti-6Al-4V from microbiological and cellular approaches. The bacterial results highlight that the antibacterial ability of bNT Ti-6Al-4V is the result of a combination of antiadhesive and bactericidal effects exerted by Al released from the alloy. The cell results highlight that F-P bNT Ti-6Al-4V alloy increases osseointegration due to modification of the chemical composition of the alloy resulting from P incorporation and not due to the nanostructure, as reported previously. A key finding was the detection of Al release from inside the bNT Ti-6Al-4V nanostructures, a result of the nanostructure growth during the anodizing process that is in part responsible for its bactericidal effect.
Collapse
|
270
|
Comparison of intraoral biofilm reduction on silver-coated and silver ion-implanted stainless steel bracket material : Biofilm reduction on silver ion-implanted bracket material. J Orofac Orthop 2018; 80:32-43. [PMID: 30535568 PMCID: PMC6334737 DOI: 10.1007/s00056-018-00165-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 11/09/2018] [Indexed: 02/06/2023]
Abstract
PURPOSE The objective of this in situ study was to quantify the intraoral biofilm reduction on bracket material as a result of different surface modifications using silver ions. In addition to galvanic silver coating and physical vapor deposition (PVD), the plasma immersion ion implantation and deposition (PIIID) procedure was investigated for the first time within an orthodontic application. MATERIALS AND METHODS An occlusal splint equipped with differently silver-modified test specimens based on stainless steel bracket material was prepared for a total of 12 periodontally healthy patients and was worn in the mouth for 48 h. The initially formed biofilm was fluorescently stained and a quantitative comparative analysis of biofilm volume, biofilm surface coverage and live/dead distribution of bacteria was performed by confocal laser scanning microscopy (CLSM). RESULTS Compared to untreated stainless steel bracket material, the antibacterial effect of the PIIID silver-modified surface was just as significant with regard to reducing the biofilm volume and the surface coverage as the galvanically applied silver layer and the PVD silver coating. Regarding the live/dead distribution, however, the PIIID modification was the only surface that showed a significant increase in the proportion of dead cells compared to untreated bracket material and the galvanic coating. CONCLUSIONS Orthodontic stainless steel with a silver-modified surface by PIIID procedure showed an effective reduction in the intraoral biofilm formation compared to untreated bracket material, in a similar manner to PVD and galvanic silver coatings applied to the surface. Additionally, the PIIID silver-modified surface has an increased bactericidal effect.
Collapse
|
271
|
Mubin N, Umar MS, Zubair S, Owais M. Selective Targeting of 4SO 4- N-Acetyl-Galactosamine Functionalized Mycobacterium tuberculosis Protein Loaded Chitosan Nanoparticle to Macrophages: Correlation With Activation of Immune System. Front Microbiol 2018; 9:2469. [PMID: 30515134 PMCID: PMC6255963 DOI: 10.3389/fmicb.2018.02469] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 09/26/2018] [Indexed: 12/30/2022] Open
Abstract
In the present study, we investigated potential of chitosan-based nanoparticles (CNPs) to deliver loaded therapeutic molecules to pathogen harboring macrophages. We fabricated stable CNPs employing ionic cross-linking method and evaluated their potential to target RAW 264.7 cells. The physicochemical characterization of as-synthesized CNPs was determined using electron microscopy, infrared microscopy and zeta potential measurement. Next, cellular uptake and intracellular localization studies of CNPs were followed in living RAW264.7 cells using confocal microscopy. We found that both Acr-1 loaded (CNP-A) and 4-SO4-GalNAc ligand harboring (CNP-L) chitosan nanoparticle experience increased cellular uptake by Mycobacterium smegmatis infected RAW cells. Following cellular digestion in model macrophage cell line (RAW), CNPs provide an increased immune response. Further, 4-SO4-GalNAc bearing CNP-L exhibits high binding affinity as well as antibacterial efficacy toward M. smegmatis. The data of the present study suggest that CNP-based nanoparticle offer a promising delivery strategy to target infected macrophages for prevention and eradication of intracellular pathogens such as M. smegmatis.
Collapse
Affiliation(s)
- Nida Mubin
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Mohd Saad Umar
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Swaleha Zubair
- Department of Computer Science, Aligarh Muslim University, Aligarh, India
| | - Mohammad Owais
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
272
|
Govaert M, Smet C, Baka M, Janssens T, Impe JV. Influence of incubation conditions on the formation of model biofilms by Listeria monocytogenes and Salmonella Typhimurium on abiotic surfaces. J Appl Microbiol 2018; 125:1890-1900. [PMID: 30117654 DOI: 10.1111/jam.14071] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/10/2018] [Accepted: 08/14/2018] [Indexed: 01/12/2023]
Abstract
AIMS This research aims to develop strongly adherent and mature model biofilms (on a 20 cm² polystyrene surface) for two pathogenic species, i.e. Listeria monocytogenes and Salmonella Typhimurium. These model biofilms can be used as standards to study biofilms or to study/compare the influence of different inactivation technologies. METHODS AND RESULTS Three influencing factors on the formation of biofilms are investigated, i.e. growth medium, incubation temperature and incubation time, which are three easily controllable environmental factors. Optical density measurement and plate counts were used to evaluate the adherence and the maturity of the biofilms, respectively. Confocal laser scanning microscopy was used to verify most important findings obtained with previously mentioned assays. Results indicated that mature and strongly adherent L. monocytogenes biofilms are obtained following 13 h of incubation at 30°C with BHI as growth medium. For S. Typhimurium, an incubation period of 19 h at 25°C was required with 20-fold diluted TSB as growth medium. CONCLUSIONS Based on previously mentioned assays, a protocol for the formation of reproducible model biofilms was obtained. SIGNIFICANCE AND IMPACT OF THE STUDY The developed model biofilms can be applied as a standard to study biofilms (in different research fields) and their subsequent inactivation by different methods. In addition, the results of this study could be used to control biofilm formation (e.g. by setting a maximum allowed surface temperature).
Collapse
Affiliation(s)
- M Govaert
- CPMF2 - Flemish Cluster Predictive Microbiology in Foods, Ghent, Belgium
- OPTEC - Optimization in Engineering Center-of-Excellence, KU Leuven, Belgium
- BioTeC - Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium
| | - C Smet
- CPMF2 - Flemish Cluster Predictive Microbiology in Foods, Ghent, Belgium
- OPTEC - Optimization in Engineering Center-of-Excellence, KU Leuven, Belgium
- BioTeC - Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium
| | - M Baka
- CPMF2 - Flemish Cluster Predictive Microbiology in Foods, Ghent, Belgium
- OPTEC - Optimization in Engineering Center-of-Excellence, KU Leuven, Belgium
- BioTeC - Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium
| | - T Janssens
- BioTeC - Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium
| | - J Van Impe
- CPMF2 - Flemish Cluster Predictive Microbiology in Foods, Ghent, Belgium
- OPTEC - Optimization in Engineering Center-of-Excellence, KU Leuven, Belgium
- BioTeC - Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium
| |
Collapse
|
273
|
Schottroff F, Fröhling A, Zunabovic-Pichler M, Krottenthaler A, Schlüter O, Jäger H. Sublethal Injury and Viable but Non-culturable (VBNC) State in Microorganisms During Preservation of Food and Biological Materials by Non-thermal Processes. Front Microbiol 2018; 9:2773. [PMID: 30515140 PMCID: PMC6255932 DOI: 10.3389/fmicb.2018.02773] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 10/29/2018] [Indexed: 11/13/2022] Open
Abstract
The viable but non-culturable (VBNC) state, as well as sublethal injury of microorganisms pose a distinct threat to food safety, as the use of traditional, culture-based microbiological analyses might lead to an underestimation or a misinterpretation of the product's microbial status and recovery phenomena of microorganisms may occur. For thermal treatments, a large amount of data and experience is available and processes are designed accordingly. In case of innovative inactivation treatments, however, there are still several open points with relevance for the investigation of inactivation mechanisms as well as for the application and validation of the preservation processes. Thus, this paper presents a comprehensive compilation of non-thermal preservation technologies, i.e., high hydrostatic pressure (HHP), pulsed electric fields (PEFs), pulsed light (PL), and ultraviolet (UV) radiation, as well as cold plasma (CP) treatments. The basic technological principles and the cellular and molecular mechanisms of action are described. Based on this, appropriate analytical methods are outlined, i.e., direct viable count, staining, and molecular biological methods, in order to enable the differentiation between viable and dead cells, as well as the possible occurrence of an intermediate state. Finally, further research needs are outlined.
Collapse
Affiliation(s)
- Felix Schottroff
- Institute of Food Technology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Antje Fröhling
- Quality and Safety of Food and Feed, Leibniz Institute for Agricultural Engineering and Bioeconomy, Potsdam, Germany
| | | | - Anna Krottenthaler
- Institute of Food Technology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Oliver Schlüter
- Quality and Safety of Food and Feed, Leibniz Institute for Agricultural Engineering and Bioeconomy, Potsdam, Germany
| | - Henry Jäger
- Institute of Food Technology, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
274
|
Uyguner Demirel CS, Birben NC, Bekbolet M. A comprehensive review on the use of second generation TiO 2 photocatalysts: Microorganism inactivation. CHEMOSPHERE 2018; 211:420-448. [PMID: 30077938 DOI: 10.1016/j.chemosphere.2018.07.121] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 07/04/2018] [Accepted: 07/21/2018] [Indexed: 05/12/2023]
Abstract
Photocatalytic disinfection practices have been applied for decades and attract current interest along with the developments in synthesis of novel photocatalysts. A survey based investigation was performed for elucidation of photocatalytic treatment details as well as disinfection mechanism of microorganisms. The present work brings significant information on the utilization of second generation TiO2 photocatalysts for inactivation of microorganisms typically using E. coli as the model microorganism. Special interest was devoted to the role of organic matrix either generated during treatment or as a natural component. Studies on photocatalytic disinfection were extensively reviewed and evaluated with respect to basic operational parameters related to photocatalysis, and types and properties of microorganisms investigated. Degradation mechanism and behavior of microorganisms towards reactive oxygen species during disinfection and organic matrix effects were also addressed. For successful utilization and effective assessment of visible light active photocatalysts, standard protocols for disinfection activity testing have to be set. Further improvement of the efficiency of these materials would be promising for future applications in water treatment processes.
Collapse
Affiliation(s)
| | - Nazmiye Cemre Birben
- Bogazici University, Institute of Environmental Sciences, 34342, Bebek, Istanbul, Turkey.
| | - Miray Bekbolet
- Bogazici University, Institute of Environmental Sciences, 34342, Bebek, Istanbul, Turkey.
| |
Collapse
|
275
|
Hanczarek I, Kenna AJ, Lindensmith C, Nadeau J. Performance of Fluorescent Cell-Labeling Dyes under Simulated Europa Mission Radiation Doses. Radiat Res 2018; 190:634. [PMID: 30325265 DOI: 10.1667/rr15187.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We investigated the performance of several commonly used fluorescent dyes after exposure to a simulated Europa mission total ionizing radiation dose of 300 krad (3 kGy) applied using a 60Co source. Dyes irradiated in aqueous solution or as lyophilized powders were evaluated for absorbance and emission spectra, quantum yield, and where appropriate, ability to label cells or nucleic acids. Although some dyes showed significant increase or decrease in quantum yield with the dose, their spectra and cell-labeling properties remained essentially unchanged after irradiation in powder form. Irradiation in aqueous solution led to significantly greater changes, including a large blue shift in the DNA intercalator propidium iodide. These results suggest that many fluorescent probes are appropriate for use in astrobiological missions to Europa, but that SYTO9 and propidium iodide should be used with caution or not mixed with each other, as is commonly done in "Live/Dead" labeling applications.
Collapse
Affiliation(s)
- Iulia Hanczarek
- a Department of Physics, Portland State University, Portland, Oregon 97201
| | - Aaron J Kenna
- b Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109
| | - Chris Lindensmith
- b Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109
| | - Jay Nadeau
- a Department of Physics, Portland State University, Portland, Oregon 97201
| |
Collapse
|
276
|
Wu ZC, Isley NA, Boger DL. N-Terminus Alkylation of Vancomycin: Ligand Binding Affinity, Antimicrobial Activity, and Site-Specific Nature of Quaternary Trimethylammonium Salt Modification. ACS Infect Dis 2018; 4:1468-1474. [PMID: 30067012 DOI: 10.1021/acsinfecdis.8b00152] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A series of vancomycin derivatives alkylated at the N-terminus amine were synthesized, including those that contain quaternary trimethylammonium salts either directly at the terminal amine site or with an intervening three-carbon spacer. The examination of their properties provides important comparisons with a C-terminus trimethylammonium salt modification that we recently found to improve the antimicrobial potency of vancomycin analogues through an added mechanism of action. The N-terminus modifications disclosed herein were well-tolerated, minimally altering model ligand binding affinities (d-Ala-d-Ala) and antimicrobial activity, but did not induce membrane permeabilization that was observed with a similar C-terminus modification. The results indicate that our earlier observations with the C-terminus modification are sensitive to the site as well as structure of the trimethylammonium salt modification and are not simply the result of nonspecific effects derived from introduction of a cationic charge.
Collapse
Affiliation(s)
- Zhi-Chen Wu
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Nicholas A. Isley
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Dale L. Boger
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
277
|
Tavakolian M, Okshevsky M, van de Ven TGM, Tufenkji N. Developing Antibacterial Nanocrystalline Cellulose Using Natural Antibacterial Agents. ACS APPLIED MATERIALS & INTERFACES 2018; 10:33827-33838. [PMID: 30207684 DOI: 10.1021/acsami.8b08770] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We used hairy nanocrystalline cellulose functionalized with aldehyde groups, otherwise known as sterically stabilized nanocrystalline cellulose (SNCC), to facilitate the attachment of the antibacterial agents lysozyme and nisin. Immobilization was achieved using a simple, green process that does not require any linker or activator. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy analyses showed successful attachment of both nisin and lysozyme onto the SNCC. The efficacy of the conjugated nanocellulose against the model bacteria Bacillus subtilis and Staphylococcus aureus was tested in terms of bacterial growth, cell viability, and biofilm formation/removal. The results show that the minimum inhibitory concentration of the conjugated nanocellulose is higher than that of lysozyme and nisin in free form, which was expected given that immobilization reduces the possible spatial orientations of these proteins. We observed that free nisin is not active against S. aureus after 24 h of exposure due to either deactivation of free nisin or development of resistance in S. aureus against free nisin. Interestingly, we did not observe this phenomenon when the bacteria were exposed to antibacterials immobilized on nanocellulose, suggesting that immobilization of antibacterial agents onto SNCC effectively retains their activity over long time periods. We suggest that antibacterial SNCC is a promising candidate for the development of antibacterial wound dressings.
Collapse
Affiliation(s)
- Mandana Tavakolian
- Department of Chemical Engineering , McGill University , Montréal , Québec , Canada H3A 0C5
- Quebec Centre for Advanced Materials, Canada (QCAM/CQMF), Montréal , Québec , Canada H3A 2K6
| | - Mira Okshevsky
- Department of Chemical Engineering , McGill University , Montréal , Québec , Canada H3A 0C5
- Quebec Centre for Advanced Materials, Canada (QCAM/CQMF), Montréal , Québec , Canada H3A 2K6
| | - Theo G M van de Ven
- Department of Chemistry , McGill University , Montréal , Québec , Canada H3A 2K6
- Quebec Centre for Advanced Materials, Canada (QCAM/CQMF), Montréal , Québec , Canada H3A 2K6
| | - Nathalie Tufenkji
- Department of Chemical Engineering , McGill University , Montréal , Québec , Canada H3A 0C5
- Quebec Centre for Advanced Materials, Canada (QCAM/CQMF), Montréal , Québec , Canada H3A 2K6
| |
Collapse
|
278
|
Gao G, Jiang YW, Jia HR, Wu FG. Near-infrared light-controllable on-demand antibiotics release using thermo-sensitive hydrogel-based drug reservoir for combating bacterial infection. Biomaterials 2018; 188:83-95. [PMID: 30339942 DOI: 10.1016/j.biomaterials.2018.09.045] [Citation(s) in RCA: 290] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 09/16/2018] [Accepted: 09/30/2018] [Indexed: 02/07/2023]
Abstract
A near-infrared (NIR) light-triggerable thermo-sensitive hydrogel-based drug reservoir that can realize on-demand antibiotics release and hyperthermia-assisted bacterial inactivation was prepared to combat bacterial infection and promote wound healing. The drug reservoir was fabricated by mixing ciprofloxacin (Cip, a potent antibiotic)-loaded polydopamine (PDA) nanoparticles (NPs) and glycol chitosan (GC) to form an injectable hydrogel (PDA NP-Cip/GC hydrogel, abbreviated as Gel-Cip). On the one hand, the positive charge of GC and the adsorbability of PDA NPs made bacteria be readily trapped on the surface of Gel-Cip. On the other hand, the Gel-Cip exhibited minimal leakage under physiological conditions, but could boost Cip release upon NIR light irradiation. Meanwhile, NIR light irradiation could activate the photothermal PDA NPs, and the generated local hyperthermia induced the destruction of the bacterial integrity, leading to bacterial inactivation in a synergistic way. Moreover, the exceptional bacterial killing activity and outstanding wound healing ability of the system were also verified by the S. aureus-infected mouse skin defect model. Taken together, the light-activatable hydrogel-based platform allows us to release antibiotics more precisely, eliminate bacteria more effectively, and inhibit bacteria-induced infections more persistently, which will advance the development of novel antibacterial agents and strategies.
Collapse
Affiliation(s)
- Ge Gao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, PR China
| | - Yao-Wen Jiang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, PR China
| | - Hao-Ran Jia
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, PR China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, PR China.
| |
Collapse
|
279
|
Gupta A, Landis RF, Li CH, Schnurr M, Das R, Lee YW, Yazdani M, Liu Y, Kozlova A, Rotello VM. Engineered Polymer Nanoparticles with Unprecedented Antimicrobial Efficacy and Therapeutic Indices against Multidrug-Resistant Bacteria and Biofilms. J Am Chem Soc 2018; 140:12137-12143. [PMID: 30169023 DOI: 10.1021/jacs.8b06961] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The rapid emergence of antibiotic-resistant bacterial "superbugs" with concomitant treatment failure and high mortality rates presents a severe threat to global health. The superbug risk is further exacerbated by chronic infections generated from antibiotic-resistant biofilms that render them refractory to available treatments. We hypothesized that efficient antimicrobial agents could be generated through careful engineering of hydrophobic and cationic domains in a synthetic semirigid polymer scaffold, mirroring and amplifying attributes of antimicrobial peptides. We report the creation of polymeric nanoparticles with highly efficient antimicrobial properties. These nanoparticles eradicate biofilms with low toxicity to mammalian cells and feature unprecedented therapeutic indices against red blood cells. Most notably, bacterial resistance toward these nanoparticles was not observed after 20 serial passages, in stark contrast to clinically relevant antibiotics where significant resistance occurred after only a few passages.
Collapse
Affiliation(s)
- Akash Gupta
- Department of Chemistry , University of Massachusetts Amherst , 710 North Pleasant Street , Amherst , Massachusetts 01003 , United States
| | - Ryan F Landis
- Department of Chemistry , University of Massachusetts Amherst , 710 North Pleasant Street , Amherst , Massachusetts 01003 , United States
| | - Cheng-Hsuan Li
- Department of Chemistry , University of Massachusetts Amherst , 710 North Pleasant Street , Amherst , Massachusetts 01003 , United States
| | - Martin Schnurr
- Department of Chemistry , University of Massachusetts Amherst , 710 North Pleasant Street , Amherst , Massachusetts 01003 , United States.,Faculty of Chemistry and Geoscience , Ruprecht-Karls-University , Im Neuenheimer Feld 234 , 69120 Heidelberg , Germany
| | - Riddha Das
- Department of Chemistry , University of Massachusetts Amherst , 710 North Pleasant Street , Amherst , Massachusetts 01003 , United States
| | - Yi-Wei Lee
- Department of Chemistry , University of Massachusetts Amherst , 710 North Pleasant Street , Amherst , Massachusetts 01003 , United States
| | - Mahdieh Yazdani
- Department of Chemistry , University of Massachusetts Amherst , 710 North Pleasant Street , Amherst , Massachusetts 01003 , United States
| | - Yuanchang Liu
- Department of Chemistry , University of Massachusetts Amherst , 710 North Pleasant Street , Amherst , Massachusetts 01003 , United States
| | - Anastasia Kozlova
- Department of Chemistry , University of Massachusetts Amherst , 710 North Pleasant Street , Amherst , Massachusetts 01003 , United States
| | - Vincent M Rotello
- Department of Chemistry , University of Massachusetts Amherst , 710 North Pleasant Street , Amherst , Massachusetts 01003 , United States
| |
Collapse
|
280
|
Alhede M, Stavnsbjerg C, Bjarnsholt T. The use of fluorescent staining techniques for microscopic investigation of polymorphonuclear leukocytes and bacteria. APMIS 2018; 126:779-794. [DOI: 10.1111/apm.12888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 08/14/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Maria Alhede
- Costerton Biofilm Center; Department of International Health, Immunology and Microbiology; University of Copenhagen; Copenhagen Denmark
| | - Camilla Stavnsbjerg
- Costerton Biofilm Center; Department of International Health, Immunology and Microbiology; University of Copenhagen; Copenhagen Denmark
| | - Thomas Bjarnsholt
- Costerton Biofilm Center; Department of International Health, Immunology and Microbiology; University of Copenhagen; Copenhagen Denmark
- Department of Immunology and Microbiology; Rigshospitalet; Copenhagen Denmark
| |
Collapse
|
281
|
Feng W, McCarthy DT, Wang Z, Zhang X, Deletic A. Stormwater disinfection using electrochemical oxidation: A feasibility investigation. WATER RESEARCH 2018; 140:301-310. [PMID: 29730562 DOI: 10.1016/j.watres.2018.04.059] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 04/05/2018] [Accepted: 04/25/2018] [Indexed: 06/08/2023]
Abstract
Electrochemical oxidation (ECO) has shown good potential for disinfection of wastewater discharges but has not been tested for stormwater. Due to far lower salinity and chloride levels present in stormwater than in wastewaters, the knowledge so far on the ECO disinfection performance cannot simply be used for stormwater applications. This paper presents the first study on the feasibility of ECO technology for disinfection of pre-treated stormwater. Disinfection performance of E. coli was tested using a dimensional stable anode (DSA) in a series of batch experiments with synthetic stormwater of 'typical' chemical and microbial composition. The results showed that effective disinfection could be achieved with very low energy consumption; e.g. the current density of 1.74 mA/cm2 achieved total disinfection in 1.3 min, using only 0.018 kWh per ton of stormwater treatment. Chlorination was found to be the key disinfection mechanism, despite the synthetic stormwater containing only 9 mg/L of chloride. Real stormwater collected from three stormwater treatment systems in Melbourne was then used to validate the findings for indigenous microbe species. Disinfection below the detection limit was achieved for stormwater from the two sites where chloride levels were 9 and 200 mg/l, respectively, but not for the third site where stormwater contained only 2 mg/L chloride. Unfortunately, deterioration of the DSA anode was observed after only 8-10 h of its cumulative operation time, very likely due to high voltage that had to be applied to low saline stormwater to achieve the required current density. In conclusion, ECO was found to be a very promising low energy disinfection technology for stormwater, but far more work is needed to optimise the technology for unique stormwater conditions.
Collapse
Affiliation(s)
- Wenjun Feng
- Environmental and Public Health Microbiology Laboratory (EPHM Lab), Monash Infrastructure Research Institute, Department of Civil Engineering, Monash University, VIC 3800, Australia
| | - David T McCarthy
- Environmental and Public Health Microbiology Laboratory (EPHM Lab), Monash Infrastructure Research Institute, Department of Civil Engineering, Monash University, VIC 3800, Australia
| | - Zhouyou Wang
- Department of Chemical Engineering, Monash University, VIC 3800, Australia
| | - Xiwang Zhang
- Department of Chemical Engineering, Monash University, VIC 3800, Australia
| | - Ana Deletic
- Environmental and Public Health Microbiology Laboratory (EPHM Lab), Monash Infrastructure Research Institute, Department of Civil Engineering, Monash University, VIC 3800, Australia; School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
282
|
González-Rivas F, Ripolles-Avila C, Fontecha-Umaña F, Ríos-Castillo AG, Rodríguez-Jerez JJ. Biofilms in the Spotlight: Detection, Quantification, and Removal Methods. Compr Rev Food Sci Food Saf 2018; 17:1261-1276. [DOI: 10.1111/1541-4337.12378] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/07/2018] [Accepted: 06/14/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Fabián González-Rivas
- Faculty of Health Sciences at Manresa; Univ. of Vic Central Univ. of Catalonia; Manresa Spain
| | - Carolina Ripolles-Avila
- Hygiene and Food Inspection Unit, Faculty of Veterinary Sciences; Dept. of Food and Animal Science, Univ. Autònoma de Barcelona; CP 08193 Barcelona Spain
| | - Fabio Fontecha-Umaña
- Hygiene and Food Inspection Unit, Faculty of Veterinary Sciences; Dept. of Food and Animal Science, Univ. Autònoma de Barcelona; CP 08193 Barcelona Spain
| | - Abel Guillermo Ríos-Castillo
- Hygiene and Food Inspection Unit, Faculty of Veterinary Sciences; Dept. of Food and Animal Science, Univ. Autònoma de Barcelona; CP 08193 Barcelona Spain
| | - José Juan Rodríguez-Jerez
- Hygiene and Food Inspection Unit, Faculty of Veterinary Sciences; Dept. of Food and Animal Science, Univ. Autònoma de Barcelona; CP 08193 Barcelona Spain
| |
Collapse
|
283
|
EmPis-1L, an Effective Antimicrobial Peptide Against the Antibiotic-Resistant VBNC State Cells of Pathogenic Bacteria. Probiotics Antimicrob Proteins 2018; 11:667-675. [PMID: 30032476 DOI: 10.1007/s12602-018-9446-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The antibiotic-resistant viable but non-culturable (VBNC) pathogenic bacteria are considered as a new threat to public health. Antimicrobial peptides (AMPs), possessing bactericidal effects in a rapid membrane attacking mode, are supposed to be effective against bacteria entering the VBNC state. In the current study, the activity of grouper AMP piscidin killing the VBNC state cells of pathogenic bacteria Escherichia coli O157, Staphylococcus aureus, and Vibrio parahaemolyticus OS4 was studied. After entering the VBNC state, cells of E. coli O157, S. aureus, and V. parahaemolyticus OS4 developed resistance to the antibiotics Ampicillin and Kanamycin. Rather than truncated form of Malabar grouper piscidin 1 (EmPis-1S), full-length Malabar grouper piscidin 1 (EmPis-1L) showed strong activity to kill the above VBNC bacteria. The VBNC state cells (1 × 105 CFU/mL) of the three species of bacteria could be totally lysed by 10 μmol/L of EmPis-1L in 1 h. The VBNC state cells of S. aureus were most susceptible to EmPis-1L, which killed the cells by 100% in 30 min at the low concentration of 2.0 μmol/L. In addition, EmPis-1L at the concentration of no more than 10 μmol/L showed no observed toxicity to human lung carcinoma epithelial cells (A549) and mouse neuroblastoma cells (N2a). Accordingly, EmPis-1L could be a promisingly safe and efficient agent for eliminating the traditional antibiotic-resistant VBNC state cells of pathogenic bacteria, E. coli, S. aureus, and V. parahaemolyticus.
Collapse
|
284
|
Nyström L, Strömstedt AA, Schmidtchen A, Malmsten M. Peptide-Loaded Microgels as Antimicrobial and Anti-Inflammatory Surface Coatings. Biomacromolecules 2018; 19:3456-3466. [DOI: 10.1021/acs.biomac.8b00776] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
| | | | - Artur Schmidtchen
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, SE-22184 Lund, Sweden
| | | |
Collapse
|
285
|
Magana M, Sereti C, Ioannidis A, Mitchell CA, Ball AR, Magiorkinis E, Chatzipanagiotou S, Hamblin MR, Hadjifrangiskou M, Tegos GP. Options and Limitations in Clinical Investigation of Bacterial Biofilms. Clin Microbiol Rev 2018; 31:e00084-16. [PMID: 29618576 PMCID: PMC6056845 DOI: 10.1128/cmr.00084-16] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bacteria can form single- and multispecies biofilms exhibiting diverse features based upon the microbial composition of their community and microenvironment. The study of bacterial biofilm development has received great interest in the past 20 years and is motivated by the elegant complexity characteristic of these multicellular communities and their role in infectious diseases. Biofilms can thrive on virtually any surface and can be beneficial or detrimental based upon the community's interplay and the surface. Advances in the understanding of structural and functional variations and the roles that biofilms play in disease and host-pathogen interactions have been addressed through comprehensive literature searches. In this review article, a synopsis of the methodological landscape of biofilm analysis is provided, including an evaluation of the current trends in methodological research. We deem this worthwhile because a keyword-oriented bibliographical search reveals that less than 5% of the biofilm literature is devoted to methodology. In this report, we (i) summarize current methodologies for biofilm characterization, monitoring, and quantification; (ii) discuss advances in the discovery of effective imaging and sensing tools and modalities; (iii) provide an overview of tailored animal models that assess features of biofilm infections; and (iv) make recommendations defining the most appropriate methodological tools for clinical settings.
Collapse
Affiliation(s)
- Maria Magana
- Department of Clinical Microbiology, Athens Medical School, Aeginition Hospital, Athens, Greece
| | - Christina Sereti
- Department of Clinical Microbiology, Athens Medical School, Aeginition Hospital, Athens, Greece
- Department of Microbiology, Thriassio General Hospital, Attiki, Greece
| | - Anastasios Ioannidis
- Department of Clinical Microbiology, Athens Medical School, Aeginition Hospital, Athens, Greece
- Department of Nursing, Faculty of Human Movement and Quality of Life Sciences, University of Peloponnese, Sparta, Greece
| | - Courtney A Mitchell
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Anthony R Ball
- Gliese 623b, Mendon, Massachusetts, USA
- GAMA Therapeutics LLC, Pepperell, Massachusetts, USA
| | - Emmanouil Magiorkinis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, University of Athens, Athens-Goudi, Greece
| | | | - Michael R Hamblin
- Harvard-MIT Division of Health Science and Technology, Cambridge, Massachusetts, USA
- Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Maria Hadjifrangiskou
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - George P Tegos
- Gliese 623b, Mendon, Massachusetts, USA
- GAMA Therapeutics LLC, Pepperell, Massachusetts, USA
| |
Collapse
|
286
|
Liu B, Terashima M, Quan NT, Ha NT, Van Chieu L, Goel R, Yasui H. High nitrite concentration accelerates nitrite oxidising organism's death. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2018; 77:2812-2822. [PMID: 30065133 DOI: 10.2166/wst.2018.272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
High nitrite is a known operation parameter to inhibit the biological oxidation of nitrite to nitrate. The phenomenon is traditionally expressed using a Monod-type equation with non-competitive inhibition, in which the reaction associated with the biomass growth is reduced when high nitrite is present. On the other hand, very high nitrite is also known to slay nitrifiers. To clarify the difference between the growth inhibition and the poisoning, cell counting for living microorganisms in the nitrite oxidiser-enriched activated sludge was conducted in batch conditions under various nitrite concentrations together with measurements of biomass chemical oxygen demand (COD) concentration and oxygen uptake rate. The experiments demonstrated that these measureable parameters were all decayed when nitrite concentration exceeded 100-500 mgN/L at pH 7.0 in the system, indicating that nitrite poisoning took place. Biomass growth was recognised in lower range of nitrite which was expressed with growth inhibition only. Based on the response, a kinetic model for the biological nitrite oxidation was developed with a modification of IWA ASM1. The model was further utilised to calculate a possibility to wash out nitrite oxidiser in the aeration tank where a part of the return activated sludge was exposed to high nitrite liquor in a side-stream partial nitritation reactor.
Collapse
Affiliation(s)
- Bing Liu
- Faculty of Environmental Engineering, The University of Kitakyushu, 1-1, Hibikino Wakamatsu, Kitakyushu, Japan E-mail:
| | - Mitsuharu Terashima
- Faculty of Environmental Engineering, The University of Kitakyushu, 1-1, Hibikino Wakamatsu, Kitakyushu, Japan E-mail:
| | - Nguyen Truong Quan
- Department of Environmental Technology, VNU University of Science, 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam
| | - Nguyen Thi Ha
- Department of Environmental Technology, VNU University of Science, 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam
| | - Le Van Chieu
- Department of Environmental Technology, VNU University of Science, 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam
| | - Rajeev Goel
- Hydromantis Environmental Software Solutions, Inc., 407 King Street West, Hamilton, Ontario, Canada
| | - Hidenari Yasui
- Faculty of Environmental Engineering, The University of Kitakyushu, 1-1, Hibikino Wakamatsu, Kitakyushu, Japan E-mail:
| |
Collapse
|
287
|
Bhattacharya G, Giri RP, Dubey A, Mitra S, Priyadarshini R, Gupta A, Mukhopadhyay MK, Ghosh SK. Structural changes in cellular membranes induced by ionic liquids: From model to bacterial membranes. Chem Phys Lipids 2018; 215:1-10. [PMID: 29944866 DOI: 10.1016/j.chemphyslip.2018.06.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/16/2018] [Accepted: 06/18/2018] [Indexed: 12/19/2022]
Abstract
Ionic liquids (ILs) have generated considerable attention recently because of their cytotoxicity and application as antibiotics. However, the mechanism of how they damage cell membranes is not currently well understood. In this paper, the antibacterial activities of two imidazolium-based ILs, namely 1-butyl- 3-methylimidazolium tetrafluroborate ([BMIM][BF4]) and 1-ethyl- 3-methylimidazolium tetrafluroborate ([EMIM][BF4]) have been investigated. The activity of [BMIM][BF4] on gram negative bacteria E. coli is observed to be stronger compared with the short chained [EMIM][BF4]. To explain this observation, the effects of these ILs on the self-assembled structures of model cellular membranes have been investigated. The in-plane elasticity of a monolayer formed at air-water interface by 1,2-dipalmitoyl- sn-glycero- 3-phosphocholine (DPPC) lipids was reduced in the presence of the ILs. The x-ray reflectivity studies on polymer supported lipid bilayer have shown the bilayer to shrink and correspondingly exhibit an increase in electron density. The presence of a certain mol% of negatively charged lipid, 1,2-dipalmitoyl-rac-glycero-3-phospho-L-serine (DPPS), in DPPC mono- and bi-layers enhances the effect considerably.
Collapse
Affiliation(s)
- G Bhattacharya
- Department of Physics, School of Natural Sciences, Shiv Nadar University, NH-91, Tehsil Dadri, G. B. Nagar, Uttar Pradesh, 201314, India
| | - R P Giri
- Surface Physics and Material Science Division, Saha Institute of Nuclear Physics, Bidhannagar, Kolkata, 700064, India
| | - A Dubey
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, NH-91, Tehsil Dadri, G. B. Nagar, Uttar Pradesh, 201314, India
| | - S Mitra
- Department of Physics, School of Natural Sciences, Shiv Nadar University, NH-91, Tehsil Dadri, G. B. Nagar, Uttar Pradesh, 201314, India
| | - R Priyadarshini
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, NH-91, Tehsil Dadri, G. B. Nagar, Uttar Pradesh, 201314, India
| | - A Gupta
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, NH-91, Tehsil Dadri, G. B. Nagar, Uttar Pradesh, 201314, India
| | - M K Mukhopadhyay
- Surface Physics and Material Science Division, Saha Institute of Nuclear Physics, Bidhannagar, Kolkata, 700064, India
| | - S K Ghosh
- Department of Physics, School of Natural Sciences, Shiv Nadar University, NH-91, Tehsil Dadri, G. B. Nagar, Uttar Pradesh, 201314, India.
| |
Collapse
|
288
|
Bédard E, Laferrière C, Déziel E, Prévost M. Impact of stagnation and sampling volume on water microbial quality monitoring in large buildings. PLoS One 2018; 13:e0199429. [PMID: 29928013 PMCID: PMC6013212 DOI: 10.1371/journal.pone.0199429] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 06/07/2018] [Indexed: 01/22/2023] Open
Abstract
Microbial drinking water quality can be altered in large buildings, especially after stagnation. In this study, bacterial profiles were generated according to the stagnation time and the volume of water collected at the tap. Successive volumes of cold and hot water were sampled after controlled stagnation periods. Bacterial profiles revealed an important decline (> 2 log) in culturable cells in the first 500 mL sampled from the hot and cold water systems, with a steep decline in the first 15 mL. The strong exponential correlation (R2 ≥ 0.97) between the culturable cell counts in water and the pipe surface-to-volume ratio suggests the biofilm as the main contributor to the rapid increase in suspended culturable cells measured after a short stagnation of one-hour. Results evidence the contribution of the high surface-to-volume ratio at the point of use and the impact of short stagnation times on the increased bacterial load observed. Simple faucets with minimal internal surface area should be preferred to minimize surface area. Sampling protocol, including sampling volume and prior stagnation, was also shown to impact the resulting culturable cell concentration by more than 1000-fold. Sampling a smaller volume on first draw after stagnation will help maximize recovery of bacteria.
Collapse
Affiliation(s)
- Emilie Bédard
- Department of Civil Engineering, Polytechnique Montréal, Montréal, QC, Canada
- INRS-Institut Armand-Frappier, Laval, QC, Canada
- * E-mail:
| | - Céline Laferrière
- Department of Microbiology and Immunology (Infection control), CHU Ste-Justine, Université de Montréal, Montréal, QC, Canada
| | - Eric Déziel
- INRS-Institut Armand-Frappier, Laval, QC, Canada
| | - Michèle Prévost
- Department of Civil Engineering, Polytechnique Montréal, Montréal, QC, Canada
| |
Collapse
|
289
|
de Paula AB, Taparelli JR, Alonso RCB, Innocentini-Mei LH, Puppin-Rontani RM. Synthesis and application of triclosan methacrylate monomer in resin composites. Clin Oral Investig 2018; 23:965-974. [DOI: 10.1007/s00784-018-2521-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 06/07/2018] [Indexed: 11/28/2022]
|
290
|
Zhu Y, Huang X, Xie X, Bahnemann J, Lin X, Wu X, Wang S, Hoffmann MR. Propidium monoazide pretreatment on a 3D-printed microfluidic device for efficient PCR determination of live versus dead'microbial cells. ENVIRONMENTAL SCIENCE : WATER RESEARCH & TECHNOLOGY 2018; 4:956-964. [PMID: 33365136 PMCID: PMC7705123 DOI: 10.1039/c8ew00058a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/11/2018] [Indexed: 06/12/2023]
Abstract
Waterborne microbial pathogen detection via nucleic acid analysis on portable microfluidic devices is a growing area of research, development, and application. Traditional polymerase chain reaction (PCR)-based nucleic acid analysis detects total extracted DNA, but cannot differentiate live and dead cells. A propidium monoazide (PMA) pretreatment step before PCR can effectively exclude DNA from nonviable cells, as PMA can selectively diffuse through compromised cell membranes and intercalate with DNA to form DNA-PMA complex upon light exposure. The complex strongly inhibits the amplification of the bound DNA in PCR, and thus, only cells with intact cell membranes are detected. Herein, this study reports the development of a microfluidic device to carry out PMA pretreatment 'on-chip'. Chip design was guided by computer simu-lations, and prototypes were fabricated using a high-resolution 3D printer. The optimized design utilizes split and recombine mixers for initial PMA-sample mixing and a serpentine flow channel containing her-ringbone structures for dark and light incubation. On-chip PMA pretreatment to differentiate live and dead bacterial cells in buffer and natural pond water samples was successfully demonstrated.
Collapse
Affiliation(s)
- Yanzhe Zhu
- Linde + Robinson Laboratories, California Institute of Technology, Pasadena, California 91125, USA
| | - Xiao Huang
- Linde + Robinson Laboratories, California Institute of Technology, Pasadena, California 91125, USA
| | - Xing Xie
- Linde + Robinson Laboratories, California Institute of Technology, Pasadena, California 91125, USA
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Janina Bahnemann
- Linde + Robinson Laboratories, California Institute of Technology, Pasadena, California 91125, USA
- Institute of Technical Chemistry, Leibniz University, Hannover, Germany
| | - Xingyu Lin
- Linde + Robinson Laboratories, California Institute of Technology, Pasadena, California 91125, USA
| | - Xunyi Wu
- Linde + Robinson Laboratories, California Institute of Technology, Pasadena, California 91125, USA
| | - Siwen Wang
- Linde + Robinson Laboratories, California Institute of Technology, Pasadena, California 91125, USA
| | - Michael R. Hoffmann
- Linde + Robinson Laboratories, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
291
|
Tomoshige S, Dik DA, Akabane-Nakata M, Madukoma CS, Fisher JF, Shrout JD, Mobashery S. Total Syntheses of Bulgecins A, B, and C and Their Bactericidal Potentiation of the β-Lactam Antibiotics. ACS Infect Dis 2018; 4:860-867. [PMID: 29716193 PMCID: PMC5996343 DOI: 10.1021/acsinfecdis.8b00105] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Indexed: 12/15/2022]
Abstract
The bulgecins are iminosaccharide secondary metabolites of the Gram-negative bacterium Paraburkholderia acidophila and inhibitors of lytic transglycosylases of bacterial cell-wall biosynthesis and remodeling. The activities of the bulgecins are intimately intertwined with the mechanism of a cobiosynthesized β-lactam antibiotic. β-Lactams inhibit the penicillin-binding proteins, enzymes also critical to cell-wall biosynthesis. The simultaneous loss of the lytic transglycosylase (by bulgecin) and penicillin-binding protein (by β-lactams) activities results in deformation of the septal cell wall, observed microscopically as a bulge preceding bacterial cell lysis. We describe a practical synthesis of the three naturally occurring bulgecin iminosaccharides and their mechanistic evaluation in a series of microbiological studies. These studies identify potentiation by the bulgecin at subminimum inhibitory concentrations of the β-lactam against three pathogenic Gram-negative bacteria and establish for the first time that this potentiation results in a significant increase in the bactericidal efficacy of a clinical β-lactam.
Collapse
Affiliation(s)
- Shusuke Tomoshige
- Department of Chemistry
& Biochemistry, University of Notre
Dame, 352 McCourtney
Hall, Notre Dame, Indiana 46556, United States
| | - David A. Dik
- Department of Chemistry
& Biochemistry, University of Notre
Dame, 352 McCourtney
Hall, Notre Dame, Indiana 46556, United States
| | - Masaaki Akabane-Nakata
- Department of Chemistry
& Biochemistry, University of Notre
Dame, 352 McCourtney
Hall, Notre Dame, Indiana 46556, United States
| | - Chinedu S. Madukoma
- Department of Civil & Environmental Engineering & Earth Sciences, University of Notre Dame, 156 Fitzpatrick Hall, Notre
Dame, Indiana 46556, United States
| | - Jed F. Fisher
- Department of Chemistry
& Biochemistry, University of Notre
Dame, 352 McCourtney
Hall, Notre Dame, Indiana 46556, United States
| | - Joshua D. Shrout
- Department of Civil & Environmental Engineering & Earth Sciences, University of Notre Dame, 156 Fitzpatrick Hall, Notre
Dame, Indiana 46556, United States
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Shahriar Mobashery
- Department of Chemistry
& Biochemistry, University of Notre
Dame, 352 McCourtney
Hall, Notre Dame, Indiana 46556, United States
| |
Collapse
|
292
|
Jebur M, Sengupta A, Chiao YH, Kamaz M, Qian X, Wickramasinghe R. Pi electron cloud mediated separation of aromatics using supported ionic liquid (SIL) membrane having antibacterial activity. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.03.064] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
293
|
Kang M, Kwok RTK, Wang J, Zhang H, Lam JWY, Li Y, Zhang P, Zou H, Gu X, Li F, Tang BZ. A multifunctional luminogen with aggregation-induced emission characteristics for selective imaging and photodynamic killing of both cancer cells and Gram-positive bacteria. J Mater Chem B 2018; 6:3894-3903. [PMID: 32254317 DOI: 10.1039/c8tb00572a] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The increasing impact of bacteria on cancer progression and treatments has been witnessed in recent years. Insufficient attention to cancer-related bacteria may lead to distant metastasis, poor therapeutic efficiency and low survival rates for cancers. Exploiting new approaches that enable selective imaging and effective killing of cancer cells and bacteria are thus of great value for the battle against cancers. Herein, we report an aggregation-induced emission (AIE) luminogen, namely TPPCN, with intense emission and efficient reactive oxygen species production for fluorescence imaging and killing cancer cells and Gram-positive bacteria. This work not only demonstrates the potential of AIE luminogens in comprehensive cancer treatments but also stimulates the enthusiasm of scientists to design more multifunctional AIE systems for both cancer and bacteria theranostics.
Collapse
Affiliation(s)
- Miaomiao Kang
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
294
|
Farrell C, Hassard F, Jefferson B, Leziart T, Nocker A, Jarvis P. Turbidity composition and the relationship with microbial attachment and UV inactivation efficacy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 624:638-647. [PMID: 29272833 DOI: 10.1016/j.scitotenv.2017.12.173] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/14/2017] [Accepted: 12/15/2017] [Indexed: 06/07/2023]
Abstract
Turbidity in water can be caused by a range of different turbidity causing materials (TCM). Here the characteristics and attachment of bacteria to TCMs was assessed and the resultant impact on UV disinfection determined. TCMs represent potential vehicles for bacterial penetration of water treatment barriers, contamination of potable supplies and impact on subsequent human health. The TCMs under investigation were representative of those that may be present in surface and ground waters, both from the source and formed in the treatment process. The TCMs were chalk, Fe (III) hydroxide precipitate, kaolin clay, manganese dioxide and humic acids, at different turbidity levels representative of source waters (0, 0.1, 0.2, 0.4, 1, 2, and 5 NTU). Escherichia coli and Enterococcus faecalis attachment followed the order of Fe(III)>chalk, with little to no attachment seen for MnO2, humic acids and clay. The attachment was postulated to be due to chalk and Fe(III) particles having a more neutral surface charge resulting in elevated aggregation with bacteria compared to other TCMs. The humic acids and Fe(III) were the TCMs which influenced inactivation of E. coli and E. faecalis due to decreasing UV transmittance (UVT) with increasing TCM concentration. The presence of the Fe(III) TCM at 0.2 NTU resulted in the poorest E. coli inactivation, with 2.5 log10 reduction at UV dose of 10mJcm-2 (kd of -0.23cm2mJ-1) compared to a 3.9 log10 reduction in the absence of TCMs. E. faecalis had a greater resistance to UV irradiation than E. coli for all TCMs. Effective disinfection of drinking water is a priority for ensuring high public health standards. Uniform regulations for turbidity levels for waters pre-disinfection by UV light set by regulators may not always be appropriate and efficacy is dependent on the type, as well as the amount, of turbidity present in the water.
Collapse
Affiliation(s)
- Charlotte Farrell
- Cranfield Water Science Institute, Cranfield University, Bedfordshire MK43 0AL, UK
| | - Francis Hassard
- Cranfield Water Science Institute, Cranfield University, Bedfordshire MK43 0AL, UK
| | - Bruce Jefferson
- Cranfield Water Science Institute, Cranfield University, Bedfordshire MK43 0AL, UK
| | - Tangui Leziart
- Cranfield Water Science Institute, Cranfield University, Bedfordshire MK43 0AL, UK
| | | | - Peter Jarvis
- Cranfield Water Science Institute, Cranfield University, Bedfordshire MK43 0AL, UK.
| |
Collapse
|
295
|
Varnava KG, Reynisson J, Raghothama S, Sarojini V. Synthesis, antibacterial, and antibiofilm potential of human autophagy 16 polypeptide and analogues. Pept Sci (Hoboken) 2018. [DOI: 10.1002/pep2.24076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | - Jóhannes Reynisson
- School of Chemical SciencesThe University of AucklandAuckland New Zealand
| | | | | |
Collapse
|
296
|
Secondary caries formation with a two-species biofilm artificial mouth. Dent Mater 2018; 34:786-796. [DOI: 10.1016/j.dental.2018.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 01/31/2018] [Accepted: 02/11/2018] [Indexed: 12/28/2022]
|
297
|
Lemos ASO, Campos LM, Melo L, Guedes MCMR, Oliveira LG, Silva TP, Melo RCN, Rocha VN, Aguiar JAK, Apolônio ACM, Scio E, Fabri RL. Antibacterial and Antibiofilm Activities of Psychorubrin, a Pyranonaphthoquinone Isolated From Mitracarpus frigidus (Rubiaceae). Front Microbiol 2018; 9:724. [PMID: 29706943 PMCID: PMC5908958 DOI: 10.3389/fmicb.2018.00724] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/28/2018] [Indexed: 02/02/2023] Open
Abstract
Psychorubrin, a natural pyranonaphthoquinone found in different plants, has become an interesting compound in the search for new antimicrobial therapeutic agents. Here, we investigated the potential antagonistic activity of psychorubrin against planktonic and biofilm bacteria. First, psychorubrin was tested against several Gram-positive and Gram-negative bacteria strains by a broth microdilution susceptibility method. Second, bacterial killing assay, bacterial abundance, and membrane viability were evaluated. The nucleotide leakage assay was used to verify membrane destabilization while antibiofilm activities were analyzed by the effect on established biofilm, static biofilm formation, isolation of biofilm matrix assay and scanning electron microscopy. In parallel, the combinatorial effect of psychorubrin and chloramphenicol was evaluated by the checkerboard method. Psychorubrin was active against Gram-positive bacteria, showing rapid time-dependent kinetics of bacterial killing, amplified nucleotide leakage, and greater activity against the methicillin-resistant species (MRSA) Staphylococcus aureus 33591 and 33592 and Staphylococcus pyogenes 10096. Psychorubrin also interfered with the composition of the biofilm matrix by reducing the total content of carbohydrates and proteins. A synergic effect between psychorubrin and chloramphenicol was observed for S. aureus 33592 and S. pyogenes 10096 while an additive effect was detected for S. aureus 33591. Our findings demonstrate, for the first time, an antagonistic activity of psychorubrin against bacteria not only in their planktonic forms but also in biofilms, and identify bacterial membranes as primary targets for this compound. Based on these observations, psychorubrin has a good potential for the design of novel antimicrobial agents.
Collapse
Affiliation(s)
- Ari S O Lemos
- Bioactive Natural Products Laboratory, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Lara M Campos
- Bioactive Natural Products Laboratory, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Lívia Melo
- Bioactive Natural Products Laboratory, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Maria C M R Guedes
- Bioactive Natural Products Laboratory, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Luiz G Oliveira
- Laboratory of Glycoconjugate Analysis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Thiago P Silva
- Laboratory of Cellular Biology, Department of Biology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Rossana C N Melo
- Laboratory of Cellular Biology, Department of Biology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Vinícius N Rocha
- Department of Veterinary Medicine, Faculty of Medicine, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Jair A K Aguiar
- Laboratory of Glycoconjugate Analysis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Ana C M Apolônio
- Laboratory of Bacterial Physiology and Molecular Genetics, Department of Parasitology, Microbiology and Immunology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Elita Scio
- Bioactive Natural Products Laboratory, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Rodrigo L Fabri
- Bioactive Natural Products Laboratory, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| |
Collapse
|
298
|
Sjollema J, Zaat SAJ, Fontaine V, Ramstedt M, Luginbuehl R, Thevissen K, Li J, van der Mei HC, Busscher HJ. In vitro methods for the evaluation of antimicrobial surface designs. Acta Biomater 2018; 70:12-24. [PMID: 29432983 DOI: 10.1016/j.actbio.2018.02.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/12/2018] [Accepted: 02/01/2018] [Indexed: 11/16/2022]
Abstract
Bacterial adhesion and subsequent biofilm formation on biomedical implants and devices are a major cause of their failure. As systemic antibiotic treatment is often ineffective, there is an urgent need for antimicrobial biomaterials and coatings. The term "antimicrobial" can encompass different mechanisms of action (here termed "antimicrobial surface designs"), such as antimicrobial-releasing, contact-killing or non-adhesivity. Biomaterials equipped with antimicrobial surface designs based on different mechanisms of action require different in vitro evaluation methods. Available industrial standard evaluation tests do not address the specific mechanisms of different antimicrobial surface designs and have therefore been modified over the past years, adding to the myriad of methods available in the literature to evaluate antimicrobial surface designs. The aim of this review is to categorize fourteen presently available methods including industrial standard tests for the in vitro evaluation of antimicrobial surface designs according to their suitability with respect to their antimicrobial mechanism of action. There is no single method or industrial test that allows to distinguish antimicrobial designs according to all three mechanisms identified here. However, critical consideration of each method clearly relates the different methods to a specific mechanism of antimicrobial action. It is anticipated that use of the provided table with the fourteen methods will avoid the use of wrong methods for evaluating new antimicrobial designs and therewith facilitate translation of novel antimicrobial biomaterials and coatings to clinical use. The need for more and better updated industrial standard tests is emphasized. STATEMENT OF SIGNIFICANCE European COST-action TD1305, IPROMEDAI aims to provide better understanding of mechanisms of antimicrobial surface designs of biomaterial implants and devices. Current industrial evaluation standard tests do not sufficiently account for different, advanced antimicrobial surface designs, yet are urgently needed to obtain convincing in vitro data for approval of animal experiments and clinical trials. This review aims to provide an innovative and clear guide to choose appropriate evaluation methods for three distinctly different mechanisms of antimicrobial design: (1) antimicrobial-releasing, (2) contact-killing and (3) non-adhesivity. Use of antimicrobial evaluation methods and definition of industrial standard tests, tailored toward the antimicrobial mechanism of the design, as identified here, fulfill a missing link in the translation of novel antimicrobial surface designs to clinical use.
Collapse
Affiliation(s)
- Jelmer Sjollema
- University of Groningen, University Medical Center Groningen, Department of BioMedical Engineering, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands.
| | - Sebastian A J Zaat
- Department of Medical Microbiology, CINIMA (Center for Infection and Immunity Amsterdam), Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Veronique Fontaine
- Unit of Pharmaceutical Microbiology and Hygiene, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Campus Plaine, Boulevard du Triomphe, 1050 Brussels, Belgium
| | | | - Reto Luginbuehl
- RMS Foundation, Bischmattstrasse 12, 2544 Bettlach, Switzerland
| | - Karin Thevissen
- Centre for Microbial and Plant Genetics, CMPG, University of Leuven, Kasteelpark Arenberg 20, 3001 Heverlee, Belgium
| | - Jiuyi Li
- School of Civil Engineering, Beijing Jiaotong University, 3 Shangyuancun, Xizhimenwai, Beijing 100044, China
| | - Henny C van der Mei
- University of Groningen, University Medical Center Groningen, Department of BioMedical Engineering, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Henk J Busscher
- University of Groningen, University Medical Center Groningen, Department of BioMedical Engineering, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| |
Collapse
|
299
|
Sathicq MB, Gómez N. Effects of hexavalent chromium on phytoplankton and bacterioplankton of the Río de la Plata estuary: an ex-situ assay. ENVIRONMENTAL MONITORING AND ASSESSMENT 2018; 190:229. [PMID: 29550888 DOI: 10.1007/s10661-018-6619-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 03/12/2018] [Indexed: 06/08/2023]
Abstract
We examined the responses of the phytoplankton and the bacterioplankton of the freshwater zone of the Río de la Plata estuary when exposed to an addition of hexavalent chromium (Cr+6). The planktonic community from a coastal site was exposed to a chromium increase of 80 μg L-1 for 72 h in laboratory conditions. The results showed a decrease in the concentration of Cr+6 by 33% in the treatments, along with significant decreases in chlorophyll-a (63%), the chlorophyll-a:pheophytin-a ratio (33%), oxygen production (37%), and in the total density of the phytoplankton (15%). The relative abundance of chlorophytes and diatoms decreased, while the cyanobacteria thrived. Finally, the total bacterial density and the density of viable bacteria decreased. These results show that even small increments in Cr+6 can cause significant effects on the phytoplankton and bacterioplankton, which could potentially affect other trophic levels of the community, risking alterations of the entire ecosystem.
Collapse
Affiliation(s)
- María Belén Sathicq
- Instituto de Limnología "Dr. Raúl A. Ringuelet", Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Buenos Aires, Argentina.
- CONICET-Consejo Nacional de Investigaciones Científicas y Tecnológicas, Santa Fe, Argentina.
| | - Nora Gómez
- Instituto de Limnología "Dr. Raúl A. Ringuelet", Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Buenos Aires, Argentina
- CONICET-Consejo Nacional de Investigaciones Científicas y Tecnológicas, Santa Fe, Argentina
| |
Collapse
|
300
|
Tashiro Y, Kanda K, Asakura Y, Kii T, Cheng H, Poudel P, Okugawa Y, Tashiro K, Sakai K. A Unique Autothermal Thermophilic Aerobic Digestion Process Showing a Dynamic Transition of Physicochemical and Bacterial Characteristics from the Mesophilic to the Thermophilic Phase. Appl Environ Microbiol 2018; 84:e02537-17. [PMID: 29305505 PMCID: PMC5835747 DOI: 10.1128/aem.02537-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 12/20/2017] [Indexed: 01/01/2023] Open
Abstract
A unique autothermal thermophilic aerobic digestion (ATAD) process has been used to convert human excreta to liquid fertilizer in Japan. This study investigated the changes in physicochemical and bacterial community characteristics during the full-scale ATAD process operated for approximately 3 weeks in 2 different years. After initiating simultaneous aeration and mixing using an air-inducing circulator (aerator), the temperature autothermally increased rapidly in the first 1 to 2 days with exhaustive oxygen consumption, leading to a drastic decrease and gradual increase in oxidation-reduction potential in the first 2 days, reached >50°C in the middle 4 to 6 days, and remained steady in the final phase. Volatile fatty acids were rapidly consumed and diminished in the first 2 days, whereas the ammonia nitrogen concentration was relatively stable during the process, despite a gradual pH increase to 9.3. Principal-coordinate analysis of 16S rRNA gene amplicons using next-generation sequencing divided the bacterial community structures into distinct clusters corresponding to three phases, and they were similar in the final phase in both years despite different transitions in the middle phase. The predominant phyla (closest species, dominancy) in the initial, middle, and final phases were Proteobacteria (Arcobacter trophiarum, 19 to 43%; Acinetobacter towneri, 6.3 to 30%), Bacteroidetes (Moheibacter sediminis, 43 to 54%), and Firmicutes (Thermaerobacter composti, 11 to 28%; Heliorestis baculata, 2.1 to 16%), respectively. Two predominant operational taxonomic units (OTUs) in the final phase showed very low similarities to the closest species, indicating that the process is unique compared with previously published ones. This unique process with three distinctive phases would be caused by the aerator with complete aeration.IMPORTANCE Although the autothermal thermophilic aerobic digestion (ATAD) process has several advantages, such as a high degradation capacity, a short treatment period, and inactivation of pathogens, one of the factors limiting its broad application is the high electric power consumption for aerators with a full-scale bioreactor. We elucidated the dynamics of the bacterial community structures, as well as the physicochemical characteristics, in the ATAD process with a full-scale bioreactor from human excreta for 3 weeks. Our results indicated that this unique process can be divided into three distinguishable phases by an aerator with complete aeration and showed a possibility of shortening the digestion period to approximately 10 days. This research not only helps to identify which bacteria play significant roles and how the process can be improved and controlled but also demonstrates an efficient ATAD process with less electric power consumption for worldwide application.
Collapse
Affiliation(s)
- Yukihiro Tashiro
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
- Laboratory of Microbial Environmental Protection, Tropical Microbiology Unit, Center for International Education and Research of Agriculture, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Kosuke Kanda
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Yuya Asakura
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Toshihiko Kii
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Huijun Cheng
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Pramod Poudel
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Yuki Okugawa
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Kosuke Tashiro
- Laboratory of Molecular Gene Technology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka, Japan
| | - Kenji Sakai
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
- Laboratory of Microbial Environmental Protection, Tropical Microbiology Unit, Center for International Education and Research of Agriculture, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| |
Collapse
|