251
|
Alencar Neto JFD, Oliveira Júnior RR, Dias AJA, Ferreira Neto ODC, Lira ACSD, Bastos BF, Rocha ML, Marques LFF, Queiroga PHM, Lemos NB, Melo Neto FDP, Lopes AAP, Bem Junior LS, Azevedo Filho HRCD. Neurophysiology and neuroanatomy of spinal cord electrode stimulation for the treatment of chronic pain – State of art. INTERDISCIPLINARY NEUROSURGERY 2022. [DOI: 10.1016/j.inat.2022.101660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
252
|
DUSP8/TAK1 signaling mediates neuropathic pain through regulating neuroinflammation and neuron death in a spinal nerve ligation (SNL) rat model. Int Immunopharmacol 2022; 113:109284. [DOI: 10.1016/j.intimp.2022.109284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 09/01/2022] [Accepted: 09/22/2022] [Indexed: 11/05/2022]
|
253
|
Rogers MJ, Daryoush JR, Kazmers NH. Contemporary Review: Targeted Muscle Reinnervation for Foot and Ankle Applications. Foot Ankle Int 2022; 43:1595-1605. [PMID: 36299247 DOI: 10.1177/10711007221129990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Miranda J Rogers
- Department of Orthopaedic Surgery, University of Utah, Salt Lake City, UT, USA
| | - Joshua R Daryoush
- Department of Orthopaedic Surgery, University of Utah, Salt Lake City, UT, USA
| | - Nikolas H Kazmers
- Department of Orthopaedic Surgery, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
254
|
A Review on Autophagy in Orofacial Neuropathic Pain. Cells 2022; 11:cells11233842. [PMID: 36497100 PMCID: PMC9735968 DOI: 10.3390/cells11233842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 12/02/2022] Open
Abstract
Orofacial neuropathic pain indicates pain caused by a lesion or diseases of the somatosensory nervous system. It is challenging for the clinician to diagnose and manage orofacial neuropathic pain conditions due to the considerable variability between individual clinical presentations and a lack of understanding of the mechanisms underlying the etiology and pathogenesis. In the last few decades, researchers have developed diagnostic criteria, questionnaires, and clinical assessment methods for the diagnosis of orofacial neuropathic pain. Recently, researchers have observed the role of autophagy in neuronal dysfunction as well as in the modulation of neuropathic pain. On this basis, in the present review, we highlight the characteristics, classification, and clinical assessment of orofacial neuropathic pain. Additionally, we introduce autophagy and its potential role in the modulation of orofacial neuropathic pain, along with a brief overview of the pathogenesis, which in future may reveal new possible targets for treating this condition.
Collapse
|
255
|
Xiong W, Wei M, Zhang L, Wang J, Liu F, Wang Z. Chronic constriction injury-induced changes in circular RNA expression profiling of the dorsal root ganglion in a rat model of neuropathic pain. BMC Neurosci 2022; 23:64. [PMID: 36376788 PMCID: PMC9664791 DOI: 10.1186/s12868-022-00745-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 10/20/2022] [Indexed: 11/16/2022] Open
Abstract
Background The pathogenesis of neuropathic pain (NP) has not been fully elucidated. Gene changes in dorsal root ganglia (DRG) may contribute to the development of NP. Circular RNAs (circRNAs) are a class of endogenous noncoding RNAs that form covalently closed loop structures and are crucial for genetic and epigenetic regulation. However, little is known about circRNA changes in DRG neurons after peripheral nerve injury. Methods A sciatic nerve chronic constriction injury (CCI) model was established to induce neuropathic pain. We performed genome-wide circRNA analysis of four paired dorsal root ganglion (DRG) samples (L4–L5) from CCI and negative control (NC) rats using next-generation sequencing technology. The differentially expressed circRNAs (DEcircRNAs) were identified by differential expression analysis, and the expression profile of circRNAs was validated by quantitative PCR. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were performed to predict the function of DEcircRNAs. Results A total of 374 DEcircRNAs were identified between CCI and NC rats using circRNA high-throughput sequencing. Among them, 290 were upregulated and 84 were downregulated in the CCI group. The expression levels of nine DEcircRNAs were validated by qPCR. Functional annotation analysis showed that the DEcircRNAs were mainly enriched in pathways and functions, including ‘dopaminergic synapse,’ ‘renin secretion,’ ‘mitogen-activated protein kinase signaling pathway,’ and ‘neurogenesis.’ Competing endogenous RNA analysis showed that the top 50 circRNAs exhibited interactions with four pain-related microRNAs (miRNAs). Circ:chr2:33950934–33955969 was the largest node in the circRNA–miRNA interaction network. Conclusions Peripheral nerve injury-induced neuropathic pain led to changes in the comprehensive expression profile of circRNAs in the DRG of rats. DEcircRNAs may advance our understanding of the molecular mechanisms underlying neuropathic pain. Supplementary Information The online version contains supplementary material available at 10.1186/s12868-022-00745-5.
Collapse
|
256
|
Silva-Cardoso GK, Leite-Panissi CRA. Chronic Pain and Cannabidiol in Animal Models: Behavioral Pharmacology and Future Perspectives. Cannabis Cannabinoid Res 2022; 8:241-253. [PMID: 36355044 DOI: 10.1089/can.2022.0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The incidence of chronic pain is around 8% in the general population, and its impact on quality of life, mood, and sleep exceeds the burden of its causal pathology. Chronic pain is a complex and multifaceted problem with few effective and safe treatment options. It can be associated with neurological diseases, peripheral injuries or central trauma, or some maladaptation to traumatic or emotional events. In this perspective, animal models are used to assess the manifestations of neuropathy, such as allodynia and hyperalgesia, through nociceptive tests, such as von Frey, Hargreaves, hot plate, tail-flick, Randall & Selitto, and others. Cannabidiol (CBD) has been considered a promising strategy for treating chronic pain and diseases that have pain as a consequence of neuropathy. However, despite the growing body of evidence linking the efficacy of CBD on pain management in clinical and basic research, there is a lack of reviews focusing on chronic pain assessments, especially when considering pre-clinical studies, which assess chronic pain as a disease by itself or as a consequence of trauma or peripheral or central disease. Therefore, this review focused only on studies that fit our inclusion criteria: (1) used treatment with CBD extract; (2) used tests to assess mechanical or thermal nociception in at least one of the following most commonly used tests (von Frey, hot plate, acetone, Hargreaves, tail-flick, Randall & Selitto, and others); and (3) studies that assessed pain sensitivity in chronic pain induction models. The current literature points out that CBD is a well-tolerated and safe natural compound that exerts analgesic effects, decreasing hyperalgesia, and mechanical/thermal allodynia in several animal models of pain and patients. In addition, CBD presents several molecular and cellular mechanisms of action involved in its positive effects on chronic pain. In conclusion, using CBD seems to be a promising strategy to overcome the lack of efficacy of conventional treatment for chronic pain.
Collapse
Affiliation(s)
- Gleice Kelli Silva-Cardoso
- Psychology Department, Faculty of Philosophy, Sciences, and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | |
Collapse
|
257
|
Tong J, Chen B, Tan PW, Kurpiewski S, Cai Z. Poly (ADP-ribose) polymerases as PET imaging targets for central nervous system diseases. Front Med (Lausanne) 2022; 9:1062432. [PMID: 36438061 PMCID: PMC9685622 DOI: 10.3389/fmed.2022.1062432] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 10/24/2022] [Indexed: 11/12/2022] Open
Abstract
Poly (ADP-ribose) polymerases (PARPs) constitute of 17 members that are associated with divergent cellular processes and play a crucial role in DNA repair, chromatin organization, genome integrity, apoptosis, and inflammation. Multiple lines of evidence have shown that activated PARP1 is associated with intense DNA damage and irritating inflammatory responses, which are in turn related to etiologies of various neurological disorders. PARP1/2 as plausible therapeutic targets have attracted considerable interests, and multitudes of PARP1/2 inhibitors have emerged for treating cancer, metabolic, inflammatory, and neurological disorders. Furthermore, PARP1/2 as imaging targets have been shown to detect, delineate, and predict therapeutic responses in many diseases by locating and quantifying the expression levels of PARP1/2. PARP1/2-directed noninvasive positron emission tomography (PET) has potential in diagnosing and prognosing neurological diseases. However, quantitative PARP PET imaging in the central nervous system (CNS) has evaded us due to the challenges of developing blood-brain barrier (BBB) penetrable PARP radioligands. Here, we review PARP1/2's relevance in CNS diseases, summarize the recent progress on PARP PET and discuss the possibilities of developing novel PARP radiotracers for CNS diseases.
Collapse
Affiliation(s)
| | | | | | | | - Zhengxin Cai
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
258
|
Roldan CJ, Huh B, Song J, Nieto Y, Osei J, Chai T, Nouri K, Koyyalagunta L, Bruera E. Methylene blue for intractable pain from oral mucositis related to cancer treatment: a randomized phase 2 clinical trial. BMC Med 2022; 20:377. [PMID: 36324139 PMCID: PMC9632023 DOI: 10.1186/s12916-022-02579-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Oral mucositis (OM) in patients receiving cancer therapy is thus far not well managed with standard approaches. We aimed to assess the safety and effectiveness of methylene blue (MB) oral rinse for OM pain in patients receiving cancer therapy. METHODS In this randomized, single-blind phase 2 clinical trial, patients were randomized to one of four arms: MB 0.025%+conventional therapy (CTx) (n = 15), MB 0.05%+CTx (n = 14), MB 0.1%+CTx (n = 15), or CTx alone (n = 16). Intervention groups received MB oral rinse every 6 h for 2 days with outcomes measured at days 1-2; safety was evaluated up to 30 days. The primary outcome measured change in the pain numeric rating scale (0-10) from baseline to day 2. Secondary outcome measured change in oral function burden scores from baseline to day 2, World Health Organization OM grades, morphine equivalent daily doses, and adverse events. The trial was registered with ClinicalTrials.gov ID: NCT03469284. RESULTS Sixty patients (mean age 43, range 22-62 years) completed the study. Compared with those who received CTx alone, those who received MB had a significant reduction of pain scores at day 2 of treatment (mean ± SD); 0.025%: 5.2 ± 2.9, 0.05%: 4.5 ± 2.9, 0.1%: 5.15 ± 2.6) and reduction of oral function burden scores (0.025%: 2.5 ± 1.55, 0.05%: 2.8 ± 1.7, 0.1%: 2.9 ± 1.60). No serious adverse events were noted, but eight patients reported burning sensation of the oral cavity with the first dose, and this caused one patient to discontinue therapy. CONCLUSIONS MB oral rinse showed significant pain reduction and improved oral functioning with minimal adverse effects. TRIAL REGISTRATION ClinicalTrials.gov ID: NCT03469284.
Collapse
Affiliation(s)
- Carlos J Roldan
- Department of Pain Medicine, Unit 409, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA. .,McGovern Medical School at the University of Texas Health Science Center at Houston (UT Health), Houston, TX, USA.
| | - Billy Huh
- Department of Pain Medicine, Unit 409, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Juhee Song
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yago Nieto
- Department of Stem Cell Transplant, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joyce Osei
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Thomas Chai
- Department of Pain Medicine, Unit 409, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Kent Nouri
- Department of Pain Medicine, Unit 409, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Lakshmi Koyyalagunta
- Department of Pain Medicine, Unit 409, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Eduardo Bruera
- Department of Palliative, Rehabilitation, and Integrative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
259
|
New Benzoyl acetohyrazone Based metal complexes with Viral DNA binding and cleavage and antimicrobial treatments: Synthesis and biological activities. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
260
|
Temmermand R, Barrett JE, Fontana ACK. Glutamatergic systems in neuropathic pain and emerging non-opioid therapies. Pharmacol Res 2022; 185:106492. [PMID: 36228868 PMCID: PMC10413816 DOI: 10.1016/j.phrs.2022.106492] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 01/14/2023]
Abstract
Neuropathic pain, a disease of the somatosensory nervous system, afflicts many individuals and adequate management with current pharmacotherapies remains elusive. The glutamatergic system of neurons, receptors and transporters are intimately involved in pain but, to date, there have been few drugs developed that therapeutically modulate this system. Glutamate transporters, or excitatory amino acid transporters (EAATs), remove excess glutamate around pain transmitting neurons to decrease nociception suggesting that the modulation of glutamate transporters may represent a novel approach to the treatment of pain. This review highlights and summarizes (1) the physiology of the glutamatergic system in neuropathic pain, (2) the preclinical evidence for dysregulation of glutamate transport in animal pain models, and (3) emerging novel therapies that modulate glutamate transporters. Successful drug discovery requires continuous focus on basic and translational methods to fully elucidate the etiologies of this disease to enable the development of targeted therapies. Increasing the efficacy of astrocytic EAATs may serve as a new way to successfully treat those suffering from this devastating disease.
Collapse
Affiliation(s)
- Rhea Temmermand
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - James E Barrett
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Andréia C K Fontana
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA.
| |
Collapse
|
261
|
Cui CY, Liu X, Peng MH, Liu Q, Zhang Y. Identification of key candidate genes and biological pathways in neuropathic pain. Comput Biol Med 2022; 150:106135. [PMID: 36166989 DOI: 10.1016/j.compbiomed.2022.106135] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/18/2022] [Accepted: 09/18/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Neuropathic pain is a common chronic pain, characterized by spontaneous pain and mechanical allodynia. The incidence of neuropathic pain is on the rise due to infections, higher rates of diabetes and stroke, and increased use of chemotherapy drugs in cancer patients. At present, due to its pathophysiological process and molecular mechanism remaining unclear, there is a lack of effective treatment and prevention methods in clinical practice. Now, we use bioinformatics technology to integrate and filter hub genes that may be related to the pathogenesis of neuropathic pain, and explore their possible molecular mechanism by functional annotation and pathway enrichment analysis. METHODS The expression profiles of GSE24982, GSE2884, GSE2636 and GSE30691 were downloaded from the Gene Expression Omnibus(GEO)database, and these datasets include 93 neuropathic pain Rattus norvegicus and 59 shame controls. After the four datasets were all standardized by quantiles, the differentially expressed genes (DEGs) between NPP Rattus norvegicus and the shame controls were finally identified by the robust rank aggregation (RRA) analysis method. In order to reveal the possible underlying biological function of DEGs, the Gene Ontology (GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway enrichment analysis of DEGs were performed. In addition, a Protein-protein Interaction (PPI) network was also established. At the end of our study, a high throughput sequencing dataset GSE117526 was used to corroborate our calculation results. RESULTS Through RRA analysis of the above four datasets GSE24982, GSE2884, GSE2636, and GSE30691, we finally obtained 231 DEGs, including 183 up-regulated genes and 47 down-regulated genes. Arranging 231 DEGs in descending order according to |log2 fold change (FC)|, we found that the top 20 key genes include 14 up-regulated genes and 6 down-regulated genes. The most down-regulated hub gene abnormal expressed in NPP was Egf17 (P-value = 0.008), Camk2n2 (P-value = 0.002), and Lep (P-value = 0.02), and the most up-regulated hub gene abnormal expressed in NPP was Nefm (P-value = 1.08E-06), Prx (P-value = 2.68E-07), and Stip1 (P-value = 4.40E-07). In GO functional annotation analysis results, regulation of ion transmembrane transport (GO:0034765; P-value = 1.45E-09) was the most remarkable enriched for biological process, synaptic membrane (GO:0097060; P-value = 2.95E-08) was the most significantly enriched for cellular component, channel activity (GO:0015267; P-value = 2.44E-06) was the most prominent enriched for molecular function. In KEGG pathway enrichment analysis results, the top three notable enrichment pathways were Neuroactive ligand-receptor interaction (rno04080; P-value = 3.46E-08), Calcium signaling pathway (rno04020; P-value = 5.37E-05), and Osteoclast differentiation (rno04380; P-value = 0.000459927). Cav1 and Lep appeared in the top 20 genes in both RRA analysis and PPI analysis, while Nefm appeared in RRA analysis and datasets GSE117526 validation analysis, so we finally identified these three genes as hub genes. CONCLUSIONS Our research identified the hub genes and signal pathways of neuropathic pain, enriched the pathophysiological mechanism of neuropathic pain to some extent, and provided a possible basis for the targeted therapy of neuropathic pain.
Collapse
Affiliation(s)
- Chun-Yan Cui
- Department of Pain, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou, 646000, Sichuan, China; Department of Anesthesiology, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Xiao Liu
- Department of Pain, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou, 646000, Sichuan, China; Department of Anesthesiology, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Ming-Hui Peng
- Department of Pain, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou, 646000, Sichuan, China; Department of Anesthesiology, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Qing Liu
- Department of Pain, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou, 646000, Sichuan, China; Department of Anesthesiology, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou, 646000, Sichuan, China; Hejiang Traditional Chinese Medicine Hospital, Luzhou, 646000, Sichuan, China.
| | - Ying Zhang
- Department of Pain, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou, 646000, Sichuan, China; Department of Anesthesiology, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
262
|
Lütolf R, Rosner J, Curt A, Hubli M. Indicators of central sensitization in chronic neuropathic pain after spinal cord injury. Eur J Pain 2022; 26:2162-2175. [PMID: 36008094 PMCID: PMC9826442 DOI: 10.1002/ejp.2028] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 08/01/2022] [Accepted: 08/20/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Central sensitization is considered a key mechanism underlying neuropathic pain (NP) after spinal cord injury (SCI). METHODS Two novel proxies for central sensitization were investigated in thoracic SCI subjects with (SCI-NP) and without NP (SCI-nonNP) compared to healthy controls (HC). Specifically, temporal summation of pain (TSP) was investigated by examining pain ratings during a 2-min tonic heat application to the volar forearm. Additionally, palmar heat-induced sympathetic skin responses (SSR) were recorded in order to reveal changes in pain-autonomic interaction above the lesion level. Pain extent was assessed as the percentage of the body area and the number of body regions being affected by NP. RESULTS Enhanced TSP was observed in SCI-NP (+66%) compared to SCI-nonNP (-75%, p = 0.009) and HC (-59%, p = 0.021). In contrast, no group differences were found (p = 0.685) for SSR habituation. However, pain extent in SCI-NP was positively correlated with deficient SSR habituation (body area: r = 0.561, p = 0.024; body regions: r = 0.564, p = 0.023). CONCLUSIONS These results support the value of TSP and heat-induced SSRs as proxies for central sensitization in widespread neuropathic pain syndromes after SCI. Measures of pain-autonomic interaction emerged as a promising tool for the objective investigation of sensitized neuronal states in chronic pain conditions. SIGNIFICANCE We present two surrogate readouts for central sensitization in neuropathic pain following SCI. On the one hand, temporal summation of tonic heat pain is enhanced in subjects with neuropathic pain. On the other hand, pain-autonomic interaction reveals potential advanced measures in chronic pain, as subjects with a high extent of neuropathic pain showed diminished habituation of pain-induced sympathetic measures. A possible implication for clinical practice is constituted by an improved assessment of neuronal hyperexcitability potentially enabling mechanism-based treatment.
Collapse
Affiliation(s)
- Robin Lütolf
- Spinal Cord Injury CenterBalgrist University Hospital, University of ZurichZurichSwitzerland
| | - Jan Rosner
- Spinal Cord Injury CenterBalgrist University Hospital, University of ZurichZurichSwitzerland,Department of NeurologyUniversity Hospital Bern, Inselspital, University of BernBernSwitzerland
| | - Armin Curt
- Spinal Cord Injury CenterBalgrist University Hospital, University of ZurichZurichSwitzerland
| | - Michèle Hubli
- Spinal Cord Injury CenterBalgrist University Hospital, University of ZurichZurichSwitzerland
| |
Collapse
|
263
|
Ustianowska K, Ustianowski Ł, Machaj F, Gorący A, Rosik J, Szostak B, Szostak J, Pawlik A. The Role of the Human Microbiome in the Pathogenesis of Pain. Int J Mol Sci 2022; 23:13267. [PMID: 36362056 PMCID: PMC9659276 DOI: 10.3390/ijms232113267] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/23/2022] [Accepted: 10/25/2022] [Indexed: 08/22/2023] Open
Abstract
Understanding of the gut microbiome's role in human physiology developed rapidly in recent years. Moreover, any alteration of this microenvironment could lead to a pathophysiological reaction of numerous organs. It results from the bidirectional communication of the gastrointestinal tract with the central nervous system, called the gut-brain axis. The signals in the gut-brain axis are mediated by immunological, hormonal, and neural pathways. However, it is also influenced by microorganisms in the gut. The disturbances in the gut-brain axis are associated with gastrointestinal syndromes, but recently their role in the development of different types of pain was reported. The gut microbiome could be the factor in the central sensitization of chronic pain by regulating microglia, astrocytes, and immune cells. Dysbiosis could lead to incorrect immune responses, resulting in the development of inflammatory pain such as endometriosis. Furthermore, chronic visceral pain, associated with functional gastrointestinal disorders, could result from a disruption in the gut microenvironment. Any alteration in the gut-brain axis could also trigger migraine attacks by affecting cytokine expression. Understanding the gut microbiome's role in pain pathophysiology leads to the development of analgetic therapies targeting microorganisms. Probiotics, FODMAP diet, and fecal microbiota transplantation are reported to be beneficial in treating visceral pain.
Collapse
Affiliation(s)
- Klaudia Ustianowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Łukasz Ustianowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Filip Machaj
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
- Department of Medical Biology, Medical University of Warsaw, 00-575 Warsaw, Poland
| | - Anna Gorący
- Independent Laboratory of Invasive Cardiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Jakub Rosik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Bartosz Szostak
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Joanna Szostak
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| |
Collapse
|
264
|
Katayama Y, Miura A, Sakamoto T, Takanami K, Sakamoto H. Footedness for scratching itchy eyes in rodents. Proc Biol Sci 2022; 289:20221126. [PMID: 36259204 PMCID: PMC9579771 DOI: 10.1098/rspb.2022.1126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/21/2022] [Indexed: 11/12/2022] Open
Abstract
The neural bases of itchy eye transmission remain unclear compared with those involved in body itch. Here, we show in rodents that the gastrin-releasing peptide receptor (GRPR) of the trigeminal sensory system is involved in the transmission of itchy eyes. Interestingly, we further demonstrate a difference in scratching behaviour between the left and right hindfeet in rodents; histamine instillation into the conjunctival sac of both eyes revealed right-foot biased laterality in the scratching movements. Unilateral histamine instillation specifically induced neural activation in the ipsilateral sensory pathway, with no significant difference between the activations following left- and right-eye instillations. Thus, the behavioural laterality is presumably due to right-foot preference in rodents. Genetically modified rats with specific depletion of Grpr-expressing neurons in the trigeminal sensory nucleus caudalis of the medulla oblongata exhibited fewer and shorter histamine-induced scratching movements than controls and eliminated the footedness. These results taken together indicate that the Grpr-expressing neurons are required for the transmission of itch sensation from the eyes, but that foot preference is generated centrally. These findings could open up a new field of research on the mechanisms of the laterality in vertebrates and also offer new potential therapeutic approaches to refractory pruritic eye disorders.
Collapse
Affiliation(s)
- Yukitoshi Katayama
- Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University, Ushimado, Setouchi, Okayama 701-4303, Japan
| | - Ayane Miura
- Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University, Ushimado, Setouchi, Okayama 701-4303, Japan
- Department of Biology, Faculty of Science, Okayama University, 3-1-1 Kita-ku, Tsushimanaka, Okayama 700-8530, Japan
| | - Tatsuya Sakamoto
- Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University, Ushimado, Setouchi, Okayama 701-4303, Japan
| | - Keiko Takanami
- Mouse Genomics Resources Laboratory, National Institute of Genetics, Yata, Mishima, Shizuoka 411-8540, Japan
- Department of Environmental Health, Faculty of Human Life and Environmental Sciences, Nara Women's University, Kitauoya Nishimachi, Nara 630-8506, Japan
| | - Hirotaka Sakamoto
- Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University, Ushimado, Setouchi, Okayama 701-4303, Japan
| |
Collapse
|
265
|
Using Network Pharmacology and Animal Experiment to Investigate the Therapeutic Mechanisms of Polydatin against Vincristine-Induced Neuropathic Pain. Mediators Inflamm 2022; 2022:6010952. [PMID: 36281234 PMCID: PMC9587674 DOI: 10.1155/2022/6010952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/07/2022] [Accepted: 07/14/2022] [Indexed: 12/02/2022] Open
Abstract
Background Polydatin (PD) is the primary active compound in Polygonum cuspidatum Sieb and has been demonstrated to exert anti-inflammatory and neuroprotective activities. In the present study, we aimed to explore the therapeutic mechanisms of PD against chemotherapy-induced neuropathic pain. Methods The putative targets of PD were obtained from the CTD and SwissTargetPrediction databases. Neuropathic pain- and VIN-related targets were collected from the CTD and GeneCards databases. Subsequently, the intersection targets were obtained using the Venn tool, and the protein-protein interaction (PPI) was constructed by the STRING database. GO and KEGG enrichment analyses were performed to investigate the biological functions of the intersection targets. Further, a rat model of VIN-induced neuropathic pain was established to confirm the reliability of the network pharmacology findings. Results A total of 46 intersection targets were identified as potential therapeutic targets, mainly related to neuroinflammation. KEGG pathway analysis indicated that the IL-17 signaling pathway was involved in the mechanism of the antinociceptive effect of PD. PPI network analysis indicated that RELA, IL-6, TP53, MAPK3, and MAPK1 were located at crucial nodes in the network. Additionally, PD exerted an antinociceptive effect by increasing the nociceptive threshold. The results of qRT-PCR, western blot, and immunohisochemistry indicated that PD inhibited the IL-6, TP53, and MAPK1 levels in VIN-induced neuropathic pain rats. Conclusions Overall, this research provided evidence that suppressing inflammatory signaling pathways might be a potential mechanism action of PD's antinociceptive effect against VIN-induced neuropathic pain.
Collapse
|
266
|
Maruta T, Hidaka K, Kouroki S, Koshida T, Kurogi M, Kage Y, Mizuno S, Shirasaka T, Yanagita T, Takahashi S, Takeya R, Tsuneyoshi I. Selective optogenetic activation of NaV1.7-expressing afferents in NaV1.7-ChR2 mice induces nocifensive behavior without affecting responses to mechanical and thermal stimuli. PLoS One 2022; 17:e0275751. [PMID: 36201719 PMCID: PMC9536842 DOI: 10.1371/journal.pone.0275751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 09/22/2022] [Indexed: 11/07/2022] Open
Abstract
In small and large spinal dorsal root ganglion neurons, subtypes of voltage-gated sodium channels, such as NaV1.7, NaV1.8, and NaV1.9 are expressed with characteristically localized and may play different roles in pain transmission and intractable pain development. Selective stimulation of each specific subtype in vivo may elucidate its role of each subtype in pain. So far, this has been difficult with current technology. However, Optogenetics, a recently developed technique, has enabled selective activation or inhibition of specific neural circulation in vivo. Moreover, optogenetics had even been used to selectively excite NaV1.8-expressing dorsal root ganglion neurons to induce nocifensive behavior. In recent years, genetic modification technologies such as CRISPR/Cas9 have advanced, and various knock-in mice can be easily generated using such technology. We aimed to investigate the effects of selective optogenetic activation of NaV1.7-expressing afferents on mouse behavior. We used CRISPR/Cas9-mediated homologous recombination to generate bicistronic NaV1.7-iCre knock-in mice, which express iCre recombinase under the endogenous NaV1.7 gene promoter without disrupting NaV1.7. The Cre-driver mice were crossed with channelrhodopsin-2 (ChR2) Cre-reporter Ai32 mice to obtain NaV1.7iCre/+;Ai32/+, NaV1.7iCre/iCre;Ai32/+, NaV1.7iCre/+;Ai32/Ai32, and NaV1.7iCre/iCre;Ai32/Ai32 mice. Compared with wild-type mice behavior, no differences were observed in the behaviors associated with mechanical and thermal stimuli exhibited by mice of the aforementioned genotypes, indicating that the endogenous NaV1.7 gene was not affected by the targeted insertion of iCre. Blue light irradiation to the hind paw induced paw withdrawal by mice of all genotypes in a light power-dependent manner. The threshold and incidence of paw withdrawal and aversive behavior in a blue-lit room were dependent on ChR2 expression level; the strongest response was observed in NaV1.7iCre/iCre;Ai32/Ai32 mice. Thus, we developed a non-invasive pain model in which peripheral nociceptors were optically activated in free-moving transgenic NaV1.7-ChR2 mice.
Collapse
Affiliation(s)
- Toyoaki Maruta
- Department of Anesthesiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Miyazaki, Japan
- * E-mail:
| | - Kotaro Hidaka
- Department of Anesthesiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Miyazaki, Japan
| | - Satoshi Kouroki
- Department of Anesthesiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Miyazaki, Japan
| | - Tomohiro Koshida
- Department of Anesthesiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Miyazaki, Japan
| | - Mio Kurogi
- Department of Anesthesiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Miyazaki, Japan
| | - Yohko Kage
- Department of Pharmacology, Faculty of Medicine, University of Miyazaki, Miyazaki, Miyazaki, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center in Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Tetsuro Shirasaka
- Department of Anesthesiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Miyazaki, Japan
| | - Toshihiko Yanagita
- Department of Clinical Pharmacology, School of Nursing, Faculty of Medicine, University of Miyazaki, Miyazaki, Miyazaki, Japan
| | - Satoru Takahashi
- Laboratory Animal Resource Center in Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Ryu Takeya
- Department of Pharmacology, Faculty of Medicine, University of Miyazaki, Miyazaki, Miyazaki, Japan
| | - Isao Tsuneyoshi
- Department of Anesthesiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Miyazaki, Japan
| |
Collapse
|
267
|
Wang H, Liu Z, Yu T, Zhang Y, Xu Y, Jiao Y, Guan Q, Liu D. Exploring the mechanism of immediate analgesic effect of 1-time tuina intervention in minor chronic constriction injury rats using RNA-seq. Front Neurosci 2022; 16:1007432. [PMID: 36267229 PMCID: PMC9577287 DOI: 10.3389/fnins.2022.1007432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
Previous studies have proved and investigated the mechanism of the analgesic effect of tuina treatment on neuropathic pain. The purpose of this study was to analyze changes in gene expression in the dorsal root ganglia (DRG) and spinal dorsal horn (SDH) after 1-time tuina intervention to investigate the immediate analgesic mechanism by tuina. An improvement in nociceptive behavior in minor chronic constriction injury (CCI) rats after 1-time tuina was observed. 1-time tuina was more effective in the amelioration of thermal hyperalgesia, but no changes were found in the ultrastructure of DRG and SDH. Sixty-five differentially expressed genes (DEGs) modulated by tuina were detected in the DRG and 123 DEGs were detected in the SDH. Potential immediate analgesic mechanisms of tuina were analyzed by the Kyoto Encyclopedia of Genes and Genomes. DEGs were enriched in 75 pathways in DRG, and 107 pathways in SDH. The immediate analgesic mechanism of tuina is related to the calcium signaling pathway, thermogenesis, and regulation of lipolysis in adipocytes.
Collapse
Affiliation(s)
- Hourong Wang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Zhifeng Liu
- Department of Tuina and Pain Management, Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Tianyuan Yu,
| | - Tianyuan Yu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
- Zhifeng Liu,
| | - Yingqi Zhang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Yajing Xu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Yi Jiao
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Qian Guan
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Di Liu
- Department of Acupuncture, Oriental Hospital of Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
268
|
Eitner L, Maier C, Brinkmann F, Schlegtendal A, Knoke L, Enax-Krumova E, Lücke T. Somatosensory abnormalities after infection with SARS-CoV-2 - A prospective case-control study in children and adolescents. Front Pediatr 2022; 10:977827. [PMID: 36263148 PMCID: PMC9574195 DOI: 10.3389/fped.2022.977827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Background Long-term neurological complaints after SARS-CoV-2 infection occur in 4-66% of children and adolescents. Controlled studies on the integrity of the peripheral nerve system are scarce. Therefore, we examined the somatosensory function in children and adolescents after SARS-CoV-2 infection in a case-control study compared with age-matched individuals. Materials and Methods Eighty-one subjects after SARS-CoV-2 infection (n = 44 female, 11.4 ± 3.5 years, n = 75 SARS-CoV-2 seropositive, n = 6 PCR positive during infection and SARS-CoV-2 seronegative at the time point of study inclusion, n = 47 asymptomatic infection) were compared to 38 controls without SARS-CoV-2 infection (26 female, 10.3 ± 3.4 years, n = 15 with other infection within last 6 months). After standardised interviews and neurological examinations, large fibre (tactile and vibration detection thresholds) and small fibre (cold and warm detection thresholds, paradoxical heat sensation) functions were assessed on both feet following a validated protocol. After z-transformation of all values, all participants were compared to published reference values regarding the number of abnormal results. Additionally, the mean for all sensory parameters values of both study groups were compared to an ideal healthy population (with z-value 0 ± 1), as well as with each other, as previously described. Statistical analyses: t-test, Chi-squared test, and binominal test. Findings None of the controls, but 27 of the 81 patients (33%, p < 0.001) reported persistent complaints 2.7 ± 1.9 (0.8-8.5) months after SARS-CoV-2 infection, most often reduced exercise capacity (16%), fatigue (13%), pain (9%), or paraesthesia (6%). Reflex deficits or paresis were missing, but somatosensory profiles showed significantly increased detection thresholds for thermal (especially warm) and vibration stimuli compared to controls. Approximately 36% of the patients after SARS-CoV-2, but none of the controls revealed an abnormal sensory loss in at least one parameter (p < 0.01). Sensory loss was characterised in 26% by large and 12% by small fibre dysfunction, the latter appearing more frequently in children with prior symptomatic SARS-CoV-2 infection. Myalgia/paraesthesia was indicative of somatosensory dysfunction. In all eight re-examined children, the nerve function recovered after 2-4 months. Interpretation This study provides evidence that in a subgroup of children and adolescents previously infected with SARS-CoV-2, regardless of their complaints, the function of large or small nerve fibres is presumably reversibly impaired.
Collapse
Affiliation(s)
- Lynn Eitner
- Department of Neuropediatrics, University Children’s Hospital, Ruhr University Bochum, Bochum, Germany
- University Children’s Hospital, Ruhr University Bochum, Bochum, Germany
| | - Christoph Maier
- University Children’s Hospital, Ruhr University Bochum, Bochum, Germany
| | - Folke Brinkmann
- University Children’s Hospital, Ruhr University Bochum, Bochum, Germany
| | - Anne Schlegtendal
- University Children’s Hospital, Ruhr University Bochum, Bochum, Germany
| | - Leona Knoke
- University Children’s Hospital, Ruhr University Bochum, Bochum, Germany
| | - Elena Enax-Krumova
- Department of Neurology, BG University Hospital Bergmannsheil gGmbH, Ruhr-University Bochum, Bochum, Germany
| | - Thomas Lücke
- Department of Neuropediatrics, University Children’s Hospital, Ruhr University Bochum, Bochum, Germany
- University Children’s Hospital, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
269
|
Sex Differences in Oxycodone/Naloxone vs. Tapentadol in Chronic Non-Cancer Pain: An Observational Real-World Study. Biomedicines 2022; 10:biomedicines10102468. [PMID: 36289731 PMCID: PMC9598624 DOI: 10.3390/biomedicines10102468] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/16/2022] [Accepted: 09/30/2022] [Indexed: 11/17/2022] Open
Abstract
Despite the large body of research on sex differences in pain, there is a lack of translation to real-world pain management. Our aim was to analyse the sex differences in the analgesic response to oxycodone/naloxone (OXN) and tapentadol (TAP), in comparison with other opioids (OPO) commonly prescribed for chronic non-cancer pain (CNCP). An observational and cross-sectional study was conducted on ambulatory CNCP patients (n = 571). Sociodemographic, clinical (pain intensity, relief, and quality of life), safety (adverse events (AEs), adverse drug reactions), hospital frequentations and pharmacological (morphine equivalent daily dose (MEDD)) variables were collected. Multiple linear regressions were carried out to assess the association between sex and outcomes. Sex differences were observed, with lower female tolerability and higher hospital frequentation, especially in the OXN group (OR AEs report = 2.8 [1.8−4.4], p < 0.001). Here, females showed higher hospital use (23% hospital admission, 30% prescription change, p < 0.05), requiring a higher MEDD (127 ± 103 mg/day, p < 0.05), compared to OXN men. Regardless of the opioid group, CNCP women were significantly older than men (three years), with significantly higher benzodiazepine use (OR = 1.6 [1.1−2.3]), more constipation (OR = 1.34 [0.93−1.90]) and headache (OR = 1.45 [0.99−2.13]) AEs, than men who were more likely to refer sexual dysfunction (OR = 2.77 [1.53−5.01]), and loss of libido (OR = 1.93 [1.22−3.04]). Sex-differences were found related to poorer female drug tolerability and higher hospital resources, even worst in OXN female users. Other differences related to older female ages and benzodiazepine prescription, need to be further analysed from a gender perspective.
Collapse
|
270
|
Gao C, Zhu Q, Gao Z, Zhao J, Jia M, Li T. Can noninvasive Brain Stimulation Improve Pain and Depressive Symptoms in Patients With Neuropathic Pain? A Systematic Review and Meta-Analysis. J Pain Symptom Manage 2022; 64:e203-e215. [PMID: 35550165 DOI: 10.1016/j.jpainsymman.2022.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 11/23/2022]
Abstract
CONTEXT Noninvasive brain stimulations (NIBS) have been increasingly applied to the patients with neuropathic pain (NP), while the effectiveness of NIBS in the management of NP is still conflicting. OBJECTIVES To examine the effectiveness of NIBS on pain and depression symptoms of patients with NP. METHODS A comprehensive literature retrieval was performed on MEDLINE, Embase, PsycINFO, PEDro, and CENTRAL from the establishment of the databases to June 2021. Randomized controlled trials comparing NIBS with sham stimulation were included. RESULTS A total of thirteen trials comprising 498 participants met the inclusion criteria. The pooled analysis found a significant effect on the improvement of pain scores at post-treatment, favoring NIBS over sham stimulation (SMD = -0.60; 95% CI: -1.00 to -0.20; P = 0.004). Subgroup analysis showed that only transcranial direct current stimulation (tDCS) (SMD = -0.38; 95% CI: -0.71 to -0.04; P = 0.030) and high-frequency repetitive transcranial magnetic stimulation (H-rTMS) (SMD = -0.95; 95% CI: -1.85 to -0.04; P = 0.040) had positive effects on pain reduction among all types of NIBS. The favorable effects of NIBS remained significant at follow-up visit (SMD = -0.51; 95% CI: -0.79 to -0.23; P = 0.000), while only H-rTMS was found in subgroup analyses to significantly improve pain scales of the patients (SMD = -0.54; 95% CI: -0.85 to -0.24; P = 0.000). Additionally, overall NIBS showed no beneficial effect over sham stimulation in reducing depression symptoms of NP patients either at post-treatment (SMD = -0.19; 95% CI: -0.39 to 0.01; P = 0.061) or at follow-up visit (SMD = -0.18; 95% CI: -0.45 to 0.10; P = 0.202). CONCLUSION This meta-analysis revealed the analgesic effect of NIBS on patients with NP, while no beneficial effect was observed on reducing concomitant depression symptoms. The findings recommended the clinical application of NIBS in patients with NP.
Collapse
Affiliation(s)
- Chengfei Gao
- Department of Rehabilitation Medicine (C.G., Q.Z., Z.G., T.L.), The Affiliated Hospital of Qingdao University, Qingdao, Shandong Provience, China
| | - Qixiu Zhu
- Department of Rehabilitation Medicine (C.G., Q.Z., Z.G., T.L.), The Affiliated Hospital of Qingdao University, Qingdao, Shandong Provience, China
| | - Zhengyu Gao
- Department of Rehabilitation Medicine (C.G., Q.Z., Z.G., T.L.), The Affiliated Hospital of Qingdao University, Qingdao, Shandong Provience, China
| | - Jinpeng Zhao
- Department of Cardiothoracic Surgery (J.Z.), Yantai Municipal Laiyang Central Hospital, Yantai, Shandong Provience, China
| | - Min Jia
- Department of Rehabilitation Medicine (M.J.), Jinan Municipal Hospital of Traditional Chinese Medicine, Jinan, Shandong Provience, China
| | - Tieshan Li
- Department of Rehabilitation Medicine (C.G., Q.Z., Z.G., T.L.), The Affiliated Hospital of Qingdao University, Qingdao, Shandong Provience, China.
| |
Collapse
|
271
|
Baron R, Mick G, Serpell M. The relevance of real-world data for the evaluation of neuropathic pain treatments. Pain Manag 2022; 12:845-857. [DOI: 10.2217/pmt-2022-0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Treatment of neuropathic pain (NP) is challenging. Interest in real-world evidence (RWE) for benefit-risk assessments of NP treatments increases given the paucity of drugs showing efficacy in randomized controlled trials and restricted labels of available medicines. To provide further context, a literature review regarding regulatory use of RWE and a clinical trial registry search for randomized controlled trials over the last 10 years was carried out. Taken together, and especially for available NP treatments, there is increasing support to consider RWE when evaluating their benefit-risk profile. Examples are provided in which RWE could be used effectively for updating the product label and informing treatment recommendations. Collected and analyzed according to state-of-the-art standards, RWE can inform treatment recommendations and product label decisions.
Collapse
Affiliation(s)
- Ralf Baron
- Division of Neurological Pain Research & Therapy, Department of Neurology, Christian-Albrechts University, Kiel, Germany
| | - Gérard Mick
- Pain Center, Voiron Hospital, CHU Grenoble Alpes, Grenoble, France
- Health, System, Process (P2S) Research Unit 4129, University of Lyon, Claude Bernard Lyon I, Lyon, France
| | - Mick Serpell
- Department of Anaesthesia, University of Glasgow, Glasgow, Scotland
| |
Collapse
|
272
|
Low serum uric acid levels are associated with incidence and severity in trigeminal neuralgia. Neurol Sci 2022; 43:6053-6058. [DOI: 10.1007/s10072-022-06223-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/15/2022] [Indexed: 11/26/2022]
|
273
|
Jiang X, Zhou R, Zhang Y, Zhu T, Li Q, Zhang W. Interleukin-17 as a potential therapeutic target for chronic pain. Front Immunol 2022; 13:999407. [PMID: 36248896 PMCID: PMC9556763 DOI: 10.3389/fimmu.2022.999407] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic pain remains to be a clinical challenge and is recognized as a major health problem with varying impacts on quality of life. Currently, the first-line therapy for chronic pain is opioids, which are often accompanied by unwanted psychoactive side effects. Thus, new and effective treatments for chronic pain are urgently needed and eagerly pursued. Inflammatory cytokines, especially interleukin-17 (IL-17), are reportedly potential therapeutic targets owing to their pivotal role in chronic pain from the neuroinflammation perspective. Recently, substantial evidence confirmed that IL-17 and IL-17 receptors (IL-17Rs) were increased in neuropathic, inflammatory, and cancer pain models. Notably, IL-17/IL-17R antibodies also reportedly relieve or cure inflammatory- and pain-related diseases. However, existing studies have reported controversial results regarding IL-17/IL-17Rs as potential therapeutic targets in diverse animal models of chronic pain. In this review, we present a summary of published studies and discuss the evidence, from basic to clinical to research, regarding the role and mechanism of action between IL-17 and diverse kinds of chronic pain in animal models and clinical patients. Furthermore, we evaluated IL-17-based therapy as a potential therapeutic strategy for inflammatory- and pain-related disease. Importantly, we also discussed clinical trials of IL-17/IL-17R targeting monoclonal antibodies. Overall, we found that IL-17 is a potential therapeutic target for chronic pain from the perspective of neuroinflammation.
Collapse
Affiliation(s)
- Xiaojuan Jiang
- Department of Anesthesiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, China
| | - Ruihao Zhou
- Department of Anesthesiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, China
| | - Yujun Zhang
- Department of Anesthesiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Zhu
- Department of Anesthesiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, China
| | - Qian Li
- Department of Anesthesiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Qian Li, ; Weiyi Zhang,
| | - Weiyi Zhang
- Department of Anesthesiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Qian Li, ; Weiyi Zhang,
| |
Collapse
|
274
|
Chen L, Qing A, Zhu T, Yang P, Ye L. Effect and safety of extracorporeal shockwave therapy for postherpetic neuralgia: A randomized single-blind clinical study. Front Neurol 2022; 13:948024. [PMID: 36226089 PMCID: PMC9548589 DOI: 10.3389/fneur.2022.948024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
Objective To evaluate the efficacy and safety of extracorporeal shockwave therapy (ESWT) for postherpetic neuralgia. Design Randomized single-blind clinical study. Patients Patients with postherpetic neuralgia. Methods Patients were randomly divided into the control group and the ESWT group. The control group received conventional treatment while the ESWT group received conventional treatment and ESWT. The primary outcome is pain degree as assessed by the numeric rating scale (NRS), and secondary outcomes include brief pain inventory (BPI), Self-rating Anxiety Scale (SAS), Self-rating Depression Scale (SDS), and Pittsburgh Sleep Quality Index (PSQI). Data were collected at baseline and at weeks 1, 4, and 12. Linear mixed-effects models were applied to repeated measurement data. Results The scores on the NRS, BPI, SAS, SDS, and PSQI decreased over time in both groups. The NRS and SDS scores of the ESWT group were statistically lower than the control group. There was no time × group interaction in the mixed model analysis. Baseline age was correlated with NRS scores and BPI scores, and invasive treatment was related to PSQI scores, with no interaction effect for baseline confounders observed. No adverse events were observed during the process of this trial. Conclusion Extracorporeal shockwave therapy combined with conventional treatment could relieve pain and improve the psychological state in patients with postherpetic neuralgia without serious adverse effects.
Collapse
Affiliation(s)
- Lu Chen
- Department of Pain Management, West China Hospital, Sichuan University, Chengdu, China
| | - Ailing Qing
- Department of Anesthesiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Tao Zhu
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
| | - Pingliang Yang
- Department of Anesthesiology, The First Affiliated Hospital of Chengdu Medical College, Xindu, China
- *Correspondence: Pingliang Yang
| | - Ling Ye
- Department of Pain Management, West China Hospital, Sichuan University, Chengdu, China
- Ling Ye
| |
Collapse
|
275
|
Priya S, Singhvi G. Microneedles-based drug delivery strategies: A breakthrough approach for the management of pain. Biomed Pharmacother 2022; 155:113717. [PMID: 36174381 DOI: 10.1016/j.biopha.2022.113717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/03/2022] [Accepted: 09/19/2022] [Indexed: 11/29/2022] Open
Abstract
Pain is a personalized event or body alarm system that can limit a patient's activities and lead to negative repercussions. The commercially available conventional treatment strategies like oral, parenteral, and topical drug delivery systems for pain management are associated with side effects and poor patient compliance. The transdermal route is eminent for its painless distribution. Among transdermal drug delivery system, microneedles (MNs) are gaining attention for their application with delivery at the deeper dermal layer because it bypasses the major barrier of the skin, easily accesses the skin dermal microcirculation, prevents damage to dermal blood vessels, and can be simply inserted into the skin without utilizing any additional applicator devices. Hence, considered a promising drug delivery strategy with high patient compliance. This review highlights the recent advancements of MNs in pain management. The present work mainly emphasizes all the case studies reported from the past 10 years that utilize MNs containing therapeutics in the treatment of chronic pain-associated diseases like rheumatoid arthritis, neuropathic pain, osteoarthritis, psoriatic arthritis, and atopic dermatitis. These studies have proven the efficacious application of MNs in the management of chronic pain and inflammation. The review also covered the clinical trials, patents, and future goals of pain management by using MNs.
Collapse
Affiliation(s)
- Sakshi Priya
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) - Pilani, Pilani Campus, Rajasthan 333031, India
| | - Gautam Singhvi
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) - Pilani, Pilani Campus, Rajasthan 333031, India.
| |
Collapse
|
276
|
Li L, Zeng Z, Zhang H, Xu L, Lin Y, Zhang Y, Deng M, Fan P. Different Prevalence of Neuropathic Pain and Risk Factors in Patients with Knee Osteoarthritis at Stages of Outpatient, Awaiting and after Total Knee Arthroplasty. Orthop Surg 2022; 14:2871-2877. [PMID: 36125199 PMCID: PMC9627047 DOI: 10.1111/os.13491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 07/24/2022] [Accepted: 08/10/2022] [Indexed: 12/28/2022] Open
Abstract
Objective Neuropathic pain (NP) plays an important role in patients with knee osteoarthritis (KOA). However, the prevalence of NP at different treatment stages including outpatient, awaiting and after total knee arthroplasty (TKA) have not been compared. The understanding of this issue and identify risk factors can help physicians develop individualized strategies to manage the pain of KOA. Therefore, the aim of the study is to investigate the prevalence and risk factors of NP at different treatment stages of KOA. Methods Patients diagnosed as KOA between August 2016 and August 2020 were enrolled in this cross‐sectional study and divided into three groups according to treatment stage, including outpatient stage, awaiting TKA stage (pre‐TKA) and after TKA stage (post‐TKA). A numeric rating scale (NRS) and PainDETECT questionnaire were used to evaluate nociceptive pain and NP. Patient demographics, radiological assessments using Kellgren–Lawrence (K‐L) grade, and Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) scores were analyzed. Data analysis and statistics were processed using SPSS 20.0 and examined by ANOVA with/without Bonferroni correction or Kruskal–Wallis test. A chi‐square test was used to determine cross‐table data and calculate the odds ratio (OR) value. Results Of the 921 patients, the prevalence of possible and likely NP was 17.5% (56/320) and 2.5% (8/320) in the pre‐TKA group compared with 3.4% (8/233) and 0.4% (1/233) in the outpatient group and 1.4% (5/368) and 0.5% (2/368) in the post‐TKA group, respectively. In the pre‐TKA group, higher NRS (NRS >3; OR = 10.65, 95% CI: 3.25–34.92, P < 0.001) and WOMAC pain score (score > 10; OR = 4.88, 95% CI: 2.38–10.01, P < 0.001) conferred an increased risk of unclear pain. Age, gender, BMI and K‐L grade showed no significant differences among the unlikely, possible and likely NP groups. Conclusion Prevalence of NP is different at stages of out‐patient, awaiting and after TKA in patients with KOA. Patients awaiting TKA have the highest prevalence of NP compared with patients in outpatient and post‐TKA groups. In the patients waiting for TKA, higher NRS (NRS >3) and WOMAC pain scores (score > 10) are risk factors of NP.
Collapse
Affiliation(s)
- Li Li
- Zhejiang Provincial Key Laboratory of Anesthesiology, Wenzhou Medical University Second Affiliated Hospital, Zhejiang, China
| | - Zhaohui Zeng
- Tangdu Hospital Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Hanle Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Linghui Xu
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Yuanyuan Lin
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Yu Zhang
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Ming Deng
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Pei Fan
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| |
Collapse
|
277
|
Karri J, Nagpal AS, Li S. Editorial: Translational research in neuropathic pain: Current status and future directions. FRONTIERS IN PAIN RESEARCH 2022; 3:1024013. [PMID: 36158702 PMCID: PMC9501693 DOI: 10.3389/fpain.2022.1024013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jay Karri
- Department of Orthopedic Surgery and Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD, United States
- Correspondence: Jay Karri
| | - Ameet S. Nagpal
- Department of Orthopedics and Physical Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Sheng Li
- Department of Physical Medicine and Rehabilitation, McGovern Medical School, University of Texas HSC at Houston, Houston, TX, United States
| |
Collapse
|
278
|
Zhang YN, Xing XX, Chen L, Dong X, Pan HT, Hua XY, Wang K. Modification of the resting-state network involved at different stages of neuropathic pain. Neurosci Lett 2022; 789:136866. [PMID: 36075318 DOI: 10.1016/j.neulet.2022.136866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/20/2022] [Accepted: 09/02/2022] [Indexed: 10/14/2022]
Abstract
Neuropathic pain (NeuP) is shown to be associated with abnormal changes in several specific brain regions. However, the large-scale interactivity of neuronal networks underlying the sensory and emotional abnormalities during NeuP remains unexplored. The present study aimed to explore the alterations in the relevant functional resting-state networks (RSNs) and their intra-networks at the different stages of NeuP based on resting-state functional magnetic resonance imaging (rs-fMRI). A NeuP rat model was established by chronic constriction injury (CCI). Three RSNs were identified to be associated with the NeuP, including the default mode network (DMN), sensorimotor network (SMN), and interoceptive network (IN). The functional connectivity (FC) of the left caudate putamen (CPu) within the DMN and the right piriform cortex within the IN were significantly reduced at the early stage of NeuP, when the maximum allodynia was apparent early, which reflected the suppressed function of the DMN and IN. At 4 weeks post-CCI, when negative emotions were present, the FC of the right insular cortex in the SMN and left visual cortex in the IN were significantly elevated, representing the increased excitability of both SMN and IN. Our study revealed the characteristic functional organization at the network level induced by NeuP and emphasized the role of SMN, DMN, and IN in the pathological mechanisms of NeuP.
Collapse
Affiliation(s)
- Ya-Nan Zhang
- Acupuncture Anesthesia Clinical Research Institute, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Xiang-Xin Xing
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China; Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai 201203, China
| | - Liu Chen
- Acupuncture Anesthesia Clinical Research Institute, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Xin Dong
- Acupuncture Anesthesia Clinical Research Institute, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Hao-Tian Pan
- Acupuncture Anesthesia Clinical Research Institute, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Xu-Yun Hua
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China; Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai 201203, China.
| | - Ke Wang
- Acupuncture Anesthesia Clinical Research Institute, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China.
| |
Collapse
|
279
|
Cai L, Zeng R, Huang Q, Liu X, Cao Z, Guo Q. Paeonol inhibits chronic constriction injury-induced astrocytic activation and neuroinflammation in rats via the HDAC/miR-15a pathway. Drug Dev Res 2022; 83:1758-1765. [PMID: 36063531 DOI: 10.1002/ddr.21993] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/08/2022] [Accepted: 08/19/2022] [Indexed: 11/07/2022]
Abstract
Neuropathic pain affects millions of people in the worldwide, but the major therapeutics perform limited effectiveness. Paeonol (PAE) is widely distributed in Paeonis albiflora, and has manifested anti-inflammatory and antioxidative effects in multiple diseases. The present study aims to elucidate the effect of Paeonol (PAE) on neuropathic pain (NP) and the potential targets. Chronic constriction injury model was established to mimic NP in vivo in rats. The expression of GFAP, HDAC2, AHDAC3, Ac-H3K9, Histone-H3, Ac-H4K12, Histone-H4, TNF-α, IL-1β, and IL-6 was assessed by real-time polymerase chain reaction, western blot, and/or enzyme-linked immunosorbent assay kits. Ultimately, results indicated that intervention of PAE significantly blocked neuroinflammation and astrocytic activation via blocking HDAC/miR-15a signaling in CCI rats. These data revealed PAE is a novel therapeutic target for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Longxue Cai
- Department of Emergency, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Renqing Zeng
- Department of Emergency, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Qi Huang
- Department of Emergency, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xianfa Liu
- Department of Emergency, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Zuohong Cao
- Department of Emergency, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Qicai Guo
- Department of Emergency, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
280
|
Nishi Y, Ikuno K, Minamikawa Y, Igawa Y, Osumi M, Morioka S. A novel form of transcutaneous electrical nerve stimulation for the reduction of dysesthesias caused by spinal nerve dysfunction: A case series. Front Hum Neurosci 2022; 16:937319. [PMID: 36092646 PMCID: PMC9449584 DOI: 10.3389/fnhum.2022.937319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/11/2022] [Indexed: 11/18/2022] Open
Abstract
Background Current therapeutic interventions for dysesthesias caused by spinal cord dysfunctions are ineffective. We propose a novel intervention using transcutaneous electrical nerve stimulation (TENS) for dysesthesias, and we present an in-depth case series. Patients and methods Conventional high-frequency TENS and the novel dysesthesia-matched TENS (DM-TENS) were applied to 16 hands of nine patients with spinal cord dysfunction. The dysesthesia-matched TENS’ stimulus intensity and frequency matched the intensity and somatosensory profile of the patients’ dysesthesias. The Short-Form McGill Pain Questionnaire version-2 (SF-MPQ2) and quantitative sensory testing (QST) were applied during electrical stimulation/no stimulation. We determined intraclass correlation coefficients (ICCs) to evaluate the reliability of the setting and the effects on the dysesthesias and the change in subjective dysesthesia between each patient’s baseline without TENS and DM-TENS. Results We were able to apply electrical stimulation matching the patients’ subjective dysesthesia for 14 hands (eight patients). TENS could not be applied for the remaining patient due to severe sensory deficits. Compared to the patients’ baseline and high-frequency TENS, the DM-TENS provided significant decreases in tingling/pins-and-needles and numbness on the SF-MPQ2, and it significantly improved the dynamic and static mechanical detection on QST. Regarding the reliability of the dysesthesia-matched TENS settings, the ICCs (1,5) were intensity, 0.95; frequency, 1.00; and effect on dysesthesia, 0.98. Conclusion DM-TENS improved the dysesthesias and mechanical hypoesthesia caused by spinal cord dysfunction. The effectiveness of DM-TENS particularly for tingling and numbness was clearly higher and was reliable within the patients. These results may suggest an effective treatment of dysesthesias in patients with spinal cord dysfunction. Clinical trial registration [https://rctportal.niph.go.jp/s/detail/um?trial_id=UMIN000045332], identifier [UMIN000045332].
Collapse
Affiliation(s)
- Yuki Nishi
- Institute of Biomedical Sciences (Health Sciences), Nagasaki University, Nagasaki, Japan
- Neurorehabilitation Research Center, Kio University, Nara, Japan
- *Correspondence: Yuki Nishi,
| | - Koki Ikuno
- Department of Rehabilitation Medicine, Nishiyamato Rehabilitation Hospital, Nara, Japan
- Graduate School of Health Science, Kio University, Nara, Japan
| | - Yuji Minamikawa
- Department of Rehabilitation Medicine, Nishiyamato Rehabilitation Hospital, Nara, Japan
- Graduate School of Health Science, Kio University, Nara, Japan
| | - Yuki Igawa
- Department of Rehabilitation Medicine, Nishiyamato Rehabilitation Hospital, Nara, Japan
- Graduate School of Health Science, Kio University, Nara, Japan
| | - Michihiro Osumi
- Neurorehabilitation Research Center, Kio University, Nara, Japan
- Graduate School of Health Science, Kio University, Nara, Japan
| | - Shu Morioka
- Neurorehabilitation Research Center, Kio University, Nara, Japan
- Graduate School of Health Science, Kio University, Nara, Japan
- Shu Morioka,
| |
Collapse
|
281
|
The Effectiveness of High-Frequency Repetitive Transcranial Magnetic Stimulation on Patients with Neuropathic Orofacial Pain: A Systematic Review of Randomized Controlled Trials. Neural Plast 2022; 2022:6131696. [PMID: 36061584 PMCID: PMC9433245 DOI: 10.1155/2022/6131696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/23/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022] Open
Abstract
Background Repetitive transcranial magnetic stimulation (rTMS) has been widely used in the treatment of neuropathic orofacial pain (NOP). The consistency of its therapeutic efficacy with the optimal protocol is highly debatable. Objective To assess the effectiveness of rTMS on pain intensity, psychological conditions, and quality of life (QOL) in individuals with NOP based on randomized controlled trials (RCTs). Methods We carefully screened and browsed 5 medical databases from inception to January 1, 2022. The study will be included that use of rTMS as the intervention for patients with NOP. Two researchers independently completed record retrieval, data processing, and evaluation of methodological quality. Quality and evidence were assessed using the PEDro scores and the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) system. Results Six RCTs with 214 participants were included in this systematic review: 2 studies were considered level 1 evidence, and 4 were considered level 2 evidence. Six studies found that high-frequency rTMS had a pain-relieving effect, while 4 studies found no improvement in psychological conditions and QOL. Quality of evidence (GRADE system) ranged from moderate to high. No significant side effects were found. Conclusions There is moderate-to-high evidence to prove that high-frequency rTMS is effective in reducing pain in individuals with NOP, but it has no significant positive effect on psychological conditions and QOL. High-frequency rTMS can be used as an alternative treatment for pain in individuals with NOP, but further studies will be conducted to unify treatment parameters, and the sample size will be expanded to explore its influence on psychological conditions and QOL.
Collapse
|
282
|
Robayo LE, Govind V, Vastano R, Felix ER, Fleming L, Cherup NP, Widerström-Noga E. Multidimensional pain phenotypes after Traumatic Brain Injury. FRONTIERS IN PAIN RESEARCH 2022; 3:947562. [PMID: 36061413 PMCID: PMC9437424 DOI: 10.3389/fpain.2022.947562] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/02/2022] [Indexed: 12/04/2022] Open
Abstract
More than 50% of individuals develop chronic pain following traumatic brain injury (TBI). Research suggests that a significant portion of post-TBI chronic pain conditions is neuropathic in nature, yet the relationship between neuropathic pain, psychological distress, and somatosensory function following TBI is not fully understood. This study evaluated neuropathic pain symptoms, psychological and somatosensory function, and psychosocial factors in individuals with TBI (TBI, N = 38). A two-step cluster analysis was used to identify phenotypes based on the Neuropathic Pain Symptom Inventory and Beck's Anxiety Inventory scores. Phenotypes were then compared on pain characteristics, psychological and somatosensory function, and psychosocial factors. Our analyses resulted in two different neuropathic pain phenotypes: (1) Moderate neuropathic pain severity and anxiety scores (MNP-AS, N = 11); and (2) mild or no neuropathic pain symptoms and anxiety scores (LNP-AS, N = 27). Furthermore, the MNP-AS group exhibited greater depression, PTSD, pain severity, and affective distress scores than the LNP-AS group. In addition, thermal somatosensory function (difference between thermal pain and perception thresholds) was significantly lower in the MNP-AS compared to the LNP-AS group. Our findings suggest that neuropathic pain symptoms are relatively common after TBI and are not only associated with greater psychosocial distress but also with abnormal function of central pain processing pathways.
Collapse
Affiliation(s)
- Linda E. Robayo
- Neuroscience Graduate Program, University of Miami Miller School of Medicine, Miami, FL, United States
- Christine E. Lynn Rehabilitation Center, Miami Project to Cure Paralysis at UHealth/Jackson Memorial, Miami, FL, United States
| | - Varan Govind
- Department of Radiology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Roberta Vastano
- Christine E. Lynn Rehabilitation Center, Miami Project to Cure Paralysis at UHealth/Jackson Memorial, Miami, FL, United States
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Elizabeth R. Felix
- Department of Physical Medicine and Rehabilitation, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Loriann Fleming
- Christine E. Lynn Rehabilitation Center, Miami Project to Cure Paralysis at UHealth/Jackson Memorial, Miami, FL, United States
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Nicholas P. Cherup
- Christine E. Lynn Rehabilitation Center, Miami Project to Cure Paralysis at UHealth/Jackson Memorial, Miami, FL, United States
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Eva Widerström-Noga
- Neuroscience Graduate Program, University of Miami Miller School of Medicine, Miami, FL, United States
- Christine E. Lynn Rehabilitation Center, Miami Project to Cure Paralysis at UHealth/Jackson Memorial, Miami, FL, United States
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
- *Correspondence: Eva Widerström-Noga
| |
Collapse
|
283
|
Pharmacotherapies for Central Post-Stroke Pain: A Systematic Review and Network Meta-Analysis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3511385. [PMID: 36035203 PMCID: PMC9410833 DOI: 10.1155/2022/3511385] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/28/2022] [Accepted: 07/27/2022] [Indexed: 11/29/2022]
Abstract
Background Central post-stroke pain (CPSP) is a common condition. Several pharmacotherapies have been applied in practice. However, the comparative effectiveness among these pharmacotherapies is unknown. Aim The aim of this study is to study the comparative effectiveness among differential pharmacotherapies for CPSP through a network meta-analysis. Methods We searched MEDLINE, EMBASE, Cochrane Central Register of Controlled Trials (CENTRAL), and Web of Science from inception to 30 March 2022, without any language restriction. Two reviewers independently screened the retrieved articles, extracted data, and evaluated the risk of bias (RoB). The outcome of interest of the study was the change in the scores of pain intensity scales. We estimated standard mean differences (SMDs) between treatments and calculated corresponding 95% CIs. Results Thirteen randomized controlled trials (529 participants) were included after a screen of 1774 articles. Compared with placebo, pamidronate (SMD -2.43, 95% CI -3.54 to -1.31; P − score = 0.93), prednisone (SMD -2.38, 95% CI -3.09 to -1.67; P − score = 0.92), levetiracetam (SMD -2.11, 95% CI -2.97 to -1.26; P − score = 0.87), lamotrigine (SMD -1.39, 95% CI -2.21 to -0.58; P − score = 0.73), etanercept (SMD -0.92, 95% CI -1.8 to -0.03; P − score = 0.59), and pregabalin (SMD -0.46, 95% CI -0.71 to -0.22; P − score = 0.41) had significantly better treatment effect. Pamidronate, prednisone, and levetiracetam ranked as the first three most effective treatments. In subgroup analyses, prednisone, levetiracetam, lamotrigine, and pregabalin were more effective than placebo as oral pharmacotherapies, while etanercept was more effective than placebo as injectable pharmacotherapy. Conclusions Our study confirmed that pamidronate, prednisone, and guideline-recommended anticonvulsants were effective for reducing pain intensity for CPSP. Pamidronate and prednisone showed better effect than other pharmacotherapies, which warrants further investigation.
Collapse
|
284
|
Androschuk AM, Tam TH, Mahou R, Lo C, Salter MW, Sefton MV. Methacrylic acid-based biomaterials promote peripheral innervation in the subcutaneous space of mice. Biomaterials 2022; 289:121764. [DOI: 10.1016/j.biomaterials.2022.121764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022]
|
285
|
Wheeler PC. Nearly half of patients with chronic tendinopathy may have a neuropathic pain component, with significant differences seen between different tendon sites: a prospective cohort of more than 300 patients. BMJ Open Sport Exerc Med 2022; 8:e001297. [PMID: 35965784 PMCID: PMC9301817 DOI: 10.1136/bmjsem-2021-001297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2022] [Indexed: 11/04/2022] Open
Abstract
Objectives Identifying the prevalence of neuropathic pain components in patients with chronic tendinopathy conditions using the Self-Administered Leeds Assessment of Neuropathic Symptoms and Signs (S-LANSS) questionnaire. Methods Patients with chronic tendinopathy and 'tendon-like' conditions treated within a single hospital outpatient clinic specialising in tendinopathy were identified. Pain scores, plus global function patient-reported outcome measures (5-Level version of EuroQol-5 Dimension and Musculoskeletal Health Questionnaire (MSK-HQ)), were completed and compared with the S-LANSS questionnaire. Results 341 suitable patients with chronic tendinopathy and potentially similar conditions were identified. Numbers: lateral elbow tendinopathy (39), greater trochanteric pain syndrome (GTPS; 112), patellar tendinopathy (11), non-insertional Achilles tendinopathy (40), insertional Achilles tendinopathy (39), plantar fasciopathy (100). 68% were female, with a mean age of 54.0±11.3 years and a mean symptom duration of 38.1±33.7 months.There was a mean S-LANSS score of 11.4±6.4. Overall, 47% of patients scored 12 or greater points on S-LANSS, indicating the possible presence of neuropathic pain. The highest proportion was in patients with plantar fasciopathy (61%), the lowest in those with GTPS (33%). Weak correlations were found between the S-LANSS score and MSK-HQ score, the numerical rating scale (0-10) values for 'average pain' and for 'worst pain', but not with the MSK-HQ %health value. Conclusion S-LANSS identified nearly half of patients with chronic tendinopathy as possibly having a neuropathic pain component. This is of unclear clinical significance but worth further study to see if/how this may relate to treatment outcomes. These results are from a single hospital clinic dealing with patients with chronic tendinopathy, without a control group or those with shorter symptom duration. However, this reinforces the probability of neuropathic pain components in at least some patients with chronic tendinopathy.
Collapse
Affiliation(s)
- Patrick C Wheeler
- Department of Sport and Exercise Medicine, University Hospitals of Leicester NHS Trust, Leicester, UK
- SSEHS, Loughborough University, Loughborough, UK
| |
Collapse
|
286
|
Busch C, Smith O, Weaver T, Vallabh J, Abd-Elsayed A. Peripheral Nerve Stimulation for Lower Extremity Pain. Biomedicines 2022; 10:1666. [PMID: 35884969 PMCID: PMC9313008 DOI: 10.3390/biomedicines10071666] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 11/22/2022] Open
Abstract
Peripheral nerve stimulation (PNS) is rapidly increasing in use. This interventional pain treatment modality involves modulating peripheral nerves for a variety of chronic pain conditions. This review evaluated its use specifically in the context of chronic lower extremity pain. Studies continue to elucidate the utility of PNS and better define indications, contraindications, as well as short- and long-term benefits of the procedure for the lower extremity. While large, prospective evidence is still lacking, the best available evidence suggests that improvements may be seen in pain scores, functionality, and opioid consumption. Overall, evidence synthesis suggests that PNS for the lower extremities may be a viable option for patients with chronic lower extremity pain.
Collapse
Affiliation(s)
- Clayton Busch
- Department of Anesthesiology, The Ohio State University Wexner Medical Center, Columbus, OH 43214, USA; (C.B.); (T.W.); (J.V.)
| | - Olivia Smith
- Wright State University Boonshoft School of Medicine, Dayton, OH 45324, USA;
| | - Tristan Weaver
- Department of Anesthesiology, The Ohio State University Wexner Medical Center, Columbus, OH 43214, USA; (C.B.); (T.W.); (J.V.)
| | - Jayesh Vallabh
- Department of Anesthesiology, The Ohio State University Wexner Medical Center, Columbus, OH 43214, USA; (C.B.); (T.W.); (J.V.)
| | - Alaa Abd-Elsayed
- Department of Anesthesiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| |
Collapse
|
287
|
Jia Y, Wang Z, Ma Y, Wang T, Feng K, Feng G, Wang T. Efficacy and safety of high-voltage versus standard-voltage pulsed radiofrequency ablation for patients with neuropathic pain: protocol for a systematic review and meta-analysis. BMJ Open 2022; 12:e063385. [PMID: 35803629 PMCID: PMC9272125 DOI: 10.1136/bmjopen-2022-063385] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/21/2022] [Indexed: 11/24/2022] Open
Abstract
INTRODUCTION Pulsed radiofrequency (PRF) ablation is commonly used for the treatment of neuropathic pain (NP). However, it is unclear whether increasing the output voltage of PRF can safely improve its efficacy. This study aims to compare the efficacy and safety of high-voltage PRF ablation and standard-voltage PRF ablation for the treatment of patients with NP. METHODS AND ANALYSIS We will search PubMed/MEDLINE, EMBASE, Web of Science, the Cochrane Library, conference proceedings for relevant abstracts, clinical trials registers (ClinicalTrials.gov) and the WHO's International Clinical Trial Registry Platform (from the date of inception until 15 March 2022). Only randomised controlled trials will be included. Two reviewers (YJ and GF) will independently perform study screening and selection, data extraction, risk-of-bias assessment and quality-of-evidence assessment. The primary outcome of this meta-analysis will be the efficiency rate in patients with NP. The secondary outcomes will include numeric rating scale score, visual analogue scale score, time to take effect, rescue drug dosage, quality of life using the health questionnaire (SF-36) and the incidence of adverse events. Meta-analyses will be conducted using standard meta-analysis software (RevMan V.5.3, The Nordic Cochrane Center, The Cochrane Collaboration, Copenhagen, Denmark). ETHICS AND DISSEMINATION The requirement for ethical approval was waived as our systematic review will be based on the published literature. The results of this study will be submitted to a peer-reviewed journal. PROSPERO REGISTRATION NUMBER CRD42022297804.
Collapse
Affiliation(s)
- Yitong Jia
- Department of Anesthesiology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Zheng Wang
- Department of General Surgery, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Yanhui Ma
- Department of Anesthesiology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Tengteng Wang
- Department of Thoracic Surgery, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Kunpeng Feng
- Department of Anesthesiology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Guang Feng
- Department of Anesthesiology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Tianlong Wang
- Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
288
|
Chung G, Yun YC, Kim CY, Kim SK, Kim SJ. Metabotropic Glutamate Receptor 5 in the Dysgranular Zone of Primary Somatosensory Cortex Mediates Neuropathic Pain in Rats. Biomedicines 2022; 10:1633. [PMID: 35884938 PMCID: PMC9313034 DOI: 10.3390/biomedicines10071633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 11/16/2022] Open
Abstract
The primary somatosensory cortex (S1) plays a key role in the discrimination of somatic sensations. Among subdivisions in S1, the dysgranular zone of rodent S1 (S1DZ) is homologous to Brodmann's area 3a of primate S1, which is involved in the processing of noxious signals from the body. However, molecular changes in this region and their role in the pathological pain state have never been studied. In this study, we identified molecular alteration of the S1DZ in a rat model of neuropathic pain induced by right L5 spinal nerve ligation (SNL) surgery and investigated its functional role in pain symptoms. Brain images acquired from SNL group and control group in our previous study were analyzed, and behaviors were measured using the von Frey test, acetone test, and conditioned place preference test. We found that metabotropic glutamate receptor 5 (mGluR5) levels were significantly upregulated in the S1DZ contralateral to the nerve injury in the SNL group compared to the sham group. Pharmacological deactivation of mGluR5 in S1DZ ameliorated symptoms of neuropathic allodynia, which was shown by a significant increase in the mechanical paw withdrawal threshold and a decrease in the behavioral response to cold stimuli. We further confirmed that this treatment induced relief from the tonic-aversive state of chronic neuropathic pain, as a place preference memory associated with the treatment-paired chamber was formed in rats with neuropathic pain. Our data provide evidence that mGluR5 in the S1DZ is involved in the manifestation of abnormal pain sensations in the neuropathic pain state.
Collapse
Affiliation(s)
- Geehoon Chung
- Department of Physiology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea; (G.C.); (S.K.K.)
- Department of Physiology, College of Medicine, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul 03080, Korea; (Y.-C.Y.); (C.Y.K.)
| | - Yeong-Chan Yun
- Department of Physiology, College of Medicine, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul 03080, Korea; (Y.-C.Y.); (C.Y.K.)
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| | - Chae Young Kim
- Department of Physiology, College of Medicine, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul 03080, Korea; (Y.-C.Y.); (C.Y.K.)
- Department of Biomedical Sciences, College of Medicine, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul 03080, Korea
- Institut du Cerveau—Paris Brain Institute—ICM, INSERM, Sorbonne Université, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, F-75013 Paris, France
| | - Sun Kwang Kim
- Department of Physiology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea; (G.C.); (S.K.K.)
| | - Sang Jeong Kim
- Department of Physiology, College of Medicine, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul 03080, Korea; (Y.-C.Y.); (C.Y.K.)
- Department of Biomedical Sciences, College of Medicine, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul 03080, Korea
| |
Collapse
|
289
|
McMullin PR, Hynes AT, Arefin MA, Saeed M, Gandhavadi S, Arefin N, Eckmann MS. Infusion Therapy in the Treatment of Neuropathic Pain. Curr Pain Headache Rep 2022; 26:693-699. [PMID: 35794449 DOI: 10.1007/s11916-022-01071-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE OF REVIEW Neuropathic pain is a prevalent and burdensome condition. While oral medical therapies are the first-line treatment for refractory neuropathic pain, in some cases, infusion therapy may be employed. This article is a systematic review of recent publications regarding epidemiologic, pathophysiologic, diagnostic, and therapeutic advancements in the treatment of neuropathic pain using intravenous infusion therapy. Special consideration will be given to relevant and practically used agents and available information on outcomes. RECENT FINDINGS Individuals with neuropathic pain from various etiologies (e.g. trigeminal neuralgia, post-herpetic neuralgia, diabetic neuropathy) often find short-term relief from infusion therapies. However, it is difficult to generalize the findings of these studies to form a standard treatment regimen. The purpose of this paper is to provide clinicians an up-to-date summary of recent literature regarding several infusion therapies in treating neuropathic pain.
Collapse
Affiliation(s)
- Preston R McMullin
- Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, USA
| | - Alexander Thomas Hynes
- Department of Anesthesiology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, USA
| | - Mohammed Ahnaf Arefin
- Department of Anesthesiology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, USA
| | - Moawiz Saeed
- Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, USA
| | - Sarvani Gandhavadi
- Department of Anesthesiology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, USA
| | - Nuha Arefin
- University of Texas at Dallas, 800 W Campbell Road, Richardson, TX, USA
| | - Maxim S Eckmann
- Department of Anesthesiology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, USA.
| |
Collapse
|
290
|
Zhang ZR, Wu Y, Wang WJ, Wang FY. The Effect of GABAergic Cells Transplantation on Allodynia and Hyperalgesia in Neuropathic Animals: A Systematic Review With Meta-Analysis. Front Neurol 2022; 13:900436. [PMID: 35860495 PMCID: PMC9289294 DOI: 10.3389/fneur.2022.900436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 06/13/2022] [Indexed: 12/09/2022] Open
Abstract
The role of GABAergic cell transplantation in improving neuropathic pain is controversial. We comprehensively searched the relevant literature to identify animal studies of GABAergic cell transplantation that recorded pain behaviors as an outcome according to the Cochrane Handbook 5.0.2. Controlled studies assessing the administration of GABAergic neurons or GABAergic neuronal progenitor cells to rat or mouse neuropathic pain animal models were included. Basic design information and mechanical allodynia thresholds and heat hyperalgesia thresholds data were collected. The risk of bias for the animal experiments was assessed according to the SYRCLE's tool. This study included 10 full-text articles. GABAergic cells transplantation leads to a statistically significant improvement of allodynia (SMD = 5.26; 95% confidence interval: 3.02-7.51; P < 0.001) and hyperalgesia (SMD: 4.10; 95% confidence interval: 1.84-6.35; P < 0.001). Differentiated GABAergic cells and without antibiotics using may have a better effect for improving neuropathic pain. GABAergic cell transplantation is a promising treatment for improving neuropathic pain. This systematic review and meta-analysis evaluated the effects of GABAergic cell transplantation on neuropathic pain, which can guide future clinical trials and possible clinical treatments, and better attenuate neuropathic pain caused by abnormal circuit hyperexcitability.
Collapse
Affiliation(s)
- Zhen-Rong Zhang
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spine Surgery, China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, China
| | - Yao Wu
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spine Surgery, China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, China
| | - Wen-Jing Wang
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Occupational Therapy, China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, China
| | - Fang-Yong Wang
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spine Surgery, China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, China
| |
Collapse
|
291
|
Sihvonen AJ, Pitkäniemi A, Särkämö T, Soinila S. Isn't There Room for Music in Chronic Pain Management? THE JOURNAL OF PAIN 2022; 23:1143-1150. [PMID: 35124251 DOI: 10.1016/j.jpain.2022.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 01/01/2022] [Accepted: 01/11/2022] [Indexed: 02/07/2023]
Abstract
Chronic pain with its comorbidities, such as depression, insomnia, and social deprivation, is a major cause of disability and health-economic burden. Insufficient response to pain medication and potentially serious adverse effects have led the majority of chronic pain patients to seek relief from non-pharmacological remedies. Along with this trend, pain research has paid increasing interest in critical evaluation of various complementary treatments. Music-based treatments have emerged as an efficacious and safe means to enhance the management of acute and chronic pain. We review the current position of music-based interventions in the treatment of chronic pain and present explanations for the analgesic effects of music through modulation of the primary nociception and discuss the contribution of the mesolimbic dopaminergic system to the affective component of pain perception. We propose ways to translate the novel theoretical understanding into clinical practice in different health care settings, primary health care in particular, and discuss the preconditions of successful implementation. We argue that music interventions provide low-cost, easily applicable complementary pain treatments not requiring heavy utilization of health care resources. Finally, we provide research and quality improvement frameworks and make suggestions to cover the gaps of existing evidence. PERSPECTIVE: This article addresses the current evidence for analgesic effects of music interventions, discusses its neurobiological basis and evaluates potential use of music in treating chronic pain patients in different health care settings. We also propose directions for future research to cover shortages in the currently published data.
Collapse
Affiliation(s)
- Aleksi J Sihvonen
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Finland; Centre for Clinical Research, The University of Queensland, Australia.
| | - Anni Pitkäniemi
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Finland
| | - Teppo Särkämö
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Finland
| | - Seppo Soinila
- Neurocenter, Turku University Hospital and Division of Clinical Neurosciences, University of Turku, Finland
| |
Collapse
|
292
|
Mbrah AK, Nunes AP, Hume AL, Zhao D, Jesdale BM, Bova C, Lapane KL. Prevalence and treatment of neuropathic pain diagnoses among U.S. nursing home residents. Pain 2022; 163:1370-1377. [PMID: 34711763 PMCID: PMC11519976 DOI: 10.1097/j.pain.0000000000002525] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 10/18/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT Neuropathic pain is a common condition experienced by older adults. Prevalence estimates of neuropathic pain and descriptive data of pharmacologic management among nursing home residents are unavailable. We estimated the prevalence of neuropathic pain diagnoses and described the use of pain medications among nursing home residents with possible neuropathic pain. Using the Minimum Data Set 3.0 linked to Medicare claims for residents living in a nursing home on November 30, 2016, we included 473,815 residents. ICD-10 codes were used to identify neuropathic pain diagnoses. Identification of prescription analgesics/adjuvants was based on claims for the supply of medications that overlapped with the index date over a 3-month look-back period. The prevalence of neuropathic pain was 14.6%. Among those with neuropathic pain, 19.7% had diabetic neuropathy, 27.3% had back and neck pain with neuropathic involvement, and 25.1% had hereditary or idiopathic neuropathy. Among residents with neuropathic pain, 49.9% received anticonvulsants, 28.6% received antidepressants, 19.0% received opioids, and 28.2% had no claims for analgesics or adjuvants. Resident characteristics associated with lack of medications included advanced age, dependency in activities of daily living, cognitive impairment, and diagnoses of comorbid conditions. A diagnosis of neuropathic pain is common among nursing home residents, yet many lack pharmacologic treatment for their pain. Future epidemiologic studies can help develop a more standard approach to identifying and managing neuropathic pain among nursing home residents.
Collapse
Affiliation(s)
- Attah K Mbrah
- Division of Epidemiology, Department of Population and Quantitative Health Sciences, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Anthony P Nunes
- Division of Epidemiology, Department of Population and Quantitative Health Sciences, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Anne L Hume
- College of Pharmacy, University of Rhode Island, Kingston, RI, United States
| | - Danni Zhao
- Division of Epidemiology, Department of Population and Quantitative Health Sciences, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Bill M Jesdale
- Division of Epidemiology, Department of Population and Quantitative Health Sciences, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Carol Bova
- Tan Chingfen Graduate School of Nursing, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Kate L Lapane
- Division of Epidemiology, Department of Population and Quantitative Health Sciences, University of Massachusetts Chan Medical School, Worcester, MA, United States
| |
Collapse
|
293
|
Fundaun J, Kolski M, Baskozos G, Dilley A, Sterling M, Schmid AB. Nerve pathology and neuropathic pain after whiplash injury: a systematic review and meta-analysis. Pain 2022; 163:e789-e811. [PMID: 35050963 PMCID: PMC7612893 DOI: 10.1097/j.pain.0000000000002509] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/29/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT There is no clear understanding of the mechanisms causing persistent pain in patients with whiplash-associated disorder (WAD). The aim of this systematic review was to assess the evidence for nerve pathology and neuropathic pain in patients with WAD. EMBASE, PubMed, CINAHL (EBSCO), and MEDLINE were searched from inception to September 1, 2020. Study quality and risk of bias were assessed using the Newcastle-Ottawa Quality Assessment Scales. Fifty-four studies reporting on 390,644 patients and 918 controls were included. Clinical questionnaires suggested symptoms of predominant neuropathic characteristic in 34% of patients (range 25%-75%). The mean prevalence of nerve pathology detected with neurological examination was 13% (0%-100%) and 32% (10%-100%) with electrodiagnostic testing. Patients independent of WAD severity (Quebec Task Force grades I-IV) demonstrated significantly impaired sensory detection thresholds of the index finger compared with controls, including mechanical (SMD 0.65 [0.30; 1.00] P < 0.005), current (SMD 0.82 [0.25; 1.39] P = 0.0165), cold (SMD -0.43 [-0.73; -0.13] P = 0.0204), and warm detection (SMD 0.84 [0.25; 1.42] P = 0.0200). Patients with WAD had significantly heightened nerve mechanosensitivity compared with controls on median nerve pressure pain thresholds (SMD -1.10 [-1.50; -0.70], P < 0.0001) and neurodynamic tests (SMD 1.68 [0.92; 2.44], P = 0.0004). Similar sensory dysfunction and nerve mechanosensitivity was seen in WAD grade II, which contradicts its traditional definition of absent nerve involvement. Our findings strongly suggest a subset of patients with WAD demonstrate signs of peripheral nerve pathology and neuropathic pain. Although there was heterogeneity among some studies, typical WAD classifications may need to be reconsidered and include detailed clinical assessments for nerve integrity.
Collapse
Affiliation(s)
- Joel Fundaun
- Nuffield Department of Clinical Neurosciences, The University of Oxford, Oxford, United Kingdom
| | - Melissa Kolski
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States
- Musculoskeletal Outpatient Department, Shirley Ryan AbilityLab, Chicago, IL, United States
| | - Georgios Baskozos
- Nuffield Department of Clinical Neurosciences, The University of Oxford, Oxford, United Kingdom
| | - Andrew Dilley
- Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | - Michele Sterling
- RECOVER Injury Research Centre, NHMRC Centre of Research Excellence in Recovery Following Road Traffic Injuries, The University of Queensland, Brisbane, Queensland, Australia
| | - Annina B Schmid
- Nuffield Department of Clinical Neurosciences, The University of Oxford, Oxford, United Kingdom
| |
Collapse
|
294
|
Neuroimmune Mechanisms Underlying Neuropathic Pain: The Potential Role of TNF-α-Necroptosis Pathway. Int J Mol Sci 2022; 23:ijms23137191. [PMID: 35806192 PMCID: PMC9266916 DOI: 10.3390/ijms23137191] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 02/05/2023] Open
Abstract
The neuroimmune mechanism underlying neuropathic pain has been extensively studied. Tumor necrosis factor-alpha (TNF-α), a key pro-inflammatory cytokine that drives cytokine storm and stimulates a cascade of other cytokines in pain-related pathways, induces and modulates neuropathic pain by facilitating peripheral (primary afferents) and central (spinal cord) sensitization. Functionally, TNF-α controls the balance between cell survival and death by inducing an inflammatory response and two programmed cell death mechanisms (apoptosis and necroptosis). Necroptosis, a novel form of programmed cell death, is receiving increasing attraction and may trigger neuroinflammation to promote neuropathic pain. Chronic pain is often accompanied by adverse pain-associated emotional reactions and cognitive disorders. Overproduction of TNF-α in supraspinal structures such as the anterior cingulate cortex (ACC) and hippocampus plays an important role in pain-associated emotional disorders and memory deficits and also participates in the modulation of pain transduction. At present, studies reporting on the role of the TNF-α–necroptosis pathway in pain-related disorders are lacking. This review indicates the important research prospects of this pathway in pain modulation based on its role in anxiety, depression and memory deficits associated with other neurodegenerative diseases. In addition, we have summarized studies related to the underlying mechanisms of neuropathic pain mediated by TNF-α and discussed the role of the TNF-α–necroptosis pathway in detail, which may represent an avenue for future therapeutic intervention.
Collapse
|
295
|
Role of the nucleoside-metabolizing enzymes on pain responses in zebrafish larvae. Neurotoxicol Teratol 2022; 93:107109. [PMID: 35777679 DOI: 10.1016/j.ntt.2022.107109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 06/16/2022] [Accepted: 06/22/2022] [Indexed: 11/23/2022]
Abstract
Purinergic signaling is a pathway related to pain underlying mechanisms. Adenosine is a neuromodulator responsible for the regulation of multiple physiological and pathological conditions. Extensive advances have been made to understand the role of adenosine in pain regulation. Here we investigated the effects of purinergic compounds able to modulate adenosine production or catabolism on pain responses induced by Acetic Acid (AA) in zebrafish larvae. We investigated the preventive role of the ecto-5'-nucleotidase inhibitor adenosine 5'-(α,β-methylene)diphosphate (AMPCP) and adenosine deaminase inhibitor erythro-9-(2-Hydroxy-3-nonyl)-adenine (EHNA) on the AA-pain induced model. The pain responses were evaluated through exploratory and aversive behaviors in zebrafish larvae. The exploratory behavior showed a reduction in the distance covered by animals exposed to 0.0025% and 0.050% AA. The movement and acceleration were reduced when compared to control. The treatment with AMPCP or EHNA followed by AA exposure did not prevent behavioral changes induced by AA for any parameter tested. There were no changes in aversive behavior after the AA-induced pain model. After AA-induced pain, the AMP hydrolysis increased on zebrafish larvae. However, the AMPCP or EHNA exposure did not prevent changes in AMP hydrolysis induced by the AA-induced pain model in zebrafish larvae. Although AMPCP or EHNA did not show differences in the AA-induced pain model, our results revealed changes in AMP hydrolysis, suggesting the involvement of the purinergic system in zebrafish larvae pain responses.
Collapse
|
296
|
A Überall M, Bösl I, Hollanders E, Sabatschus I, Eerdekens M. Postsurgical neuropathic pain: lidocaine 700 mg medicated plaster or oral treatments in clinical practice. Pain Manag 2022; 12:725-735. [PMID: 35713406 DOI: 10.2217/pmt-2022-0041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Aim: To compare the effectiveness and tolerability of the lidocaine 700 mg medicated plaster (LMP) and oral first-line medications (OM) for the treatment of postsurgical neuropathic pain (PSNP) in routine clinical practice. Patients & methods: Data from a noninterventional, retrospective 24-week cohort study in patients with localized peripheral NP refractory to at least one recommended OM using anonymized German Pain eRegistry data were retrieved. A subgroup analysis was conducted on 531 datasets of PSNP patients. Results: Pain relief, improvements in pain-related impairments of daily living and quality of life, and tolerability were significantly greater under LMP than under OM (p < 0.001 for all parameters). Conclusion: These real-world data show the effectiveness and good tolerability of LMP for PSNP treatment in routine clinical practice.
Collapse
|
297
|
Barrachina J, Margarit C, Muriel J, López-Gil S, López-Gil V, Vara-González A, Planelles B, Inda MDM, Morales D, Peiró AM. Oxycodone/naloxone versus tapentadol in real-world chronic non-cancer pain management: an observational and pharmacogenetic study. Sci Rep 2022; 12:10126. [PMID: 35710811 PMCID: PMC9203709 DOI: 10.1038/s41598-022-13085-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 05/20/2022] [Indexed: 12/25/2022] Open
Abstract
Tapentadol (TAP) and oxycodone/naloxone (OXN) potentially offer an improved opioid tolerability. However, real-world studies in chronic non-cancer pain (CNCP) remain scarce. Our aim was to compare effectiveness and security in daily pain practice, together with the influence of pharmacogenetic markers. An observational study was developed with ambulatory test cases under TAP (n = 194) or OXN (n = 175) prescription with controls (prescribed with other opioids (control), n = 216) CNCP patients. Pain intensity and relief, quality of life, morphine equivalent daily doses (MEDD), concomitant analgesic drugs, adverse events (AEs), hospital frequentation and genetic variants of OPRM1 (rs1799971, A118G) and COMT (rs4680, G472A) genes, were analysed. Test CNCP cases evidenced a significantly higher pain relief predictable due to pain intensity and quality of life (R2 = 0.3), in front of controls. Here, OXN achieved the greatest pain relief under a 28% higher MEDD, 8-13% higher use of pregabalin and duloxetine, and 23% more prescription change due to pain, compared to TAP. Whilst, TAP yielded a better tolerability due the lower number of 4 [0-6] AEs/patient, in front of OXN. Furthermore, OXN COMT-AA homozygotes evidenced higher rates of erythema and vomiting, especially in females. CNCP real-world patients achieved higher pain relief than other traditional opioids with a better tolerability for TAP. Further research is necessary to clarify the potential influence of COMT and sex on OXN side-effects.
Collapse
Affiliation(s)
- Jordi Barrachina
- Neuropharmacology on Pain (NED), Alicante Institute for Health and Biomedical Research (ISABIAL-FISABIO Foundation), Alicante, Spain
| | - Cesar Margarit
- Neuropharmacology on Pain (NED), Alicante Institute for Health and Biomedical Research (ISABIAL-FISABIO Foundation), Alicante, Spain
- Pain Unit, Department of Health of Alicante - General Hospital, Alicante, Spain
| | - Javier Muriel
- Neuropharmacology on Pain (NED), Alicante Institute for Health and Biomedical Research (ISABIAL-FISABIO Foundation), Alicante, Spain
- Pain Unit, Department of Health of Alicante - General Hospital, Alicante, Spain
| | - Santiago López-Gil
- Occupational Observatory, Miguel Hernández University of Elche, Alicante, Spain
| | - Vicente López-Gil
- Occupational Observatory, Miguel Hernández University of Elche, Alicante, Spain
| | - Amaya Vara-González
- Occupational Observatory, Miguel Hernández University of Elche, Alicante, Spain
| | - Beatriz Planelles
- Neuropharmacology on Pain (NED), Alicante Institute for Health and Biomedical Research (ISABIAL-FISABIO Foundation), Alicante, Spain
- Department of Pharmacology, Paediatrics and Organic Chemistry, Miguel Hernández University of Elche, Elche, Spain
| | - María-Del-Mar Inda
- Neuropharmacology on Pain (NED), Alicante Institute for Health and Biomedical Research (ISABIAL-FISABIO Foundation), Alicante, Spain
| | - Domingo Morales
- Operations Research Centre, Miguel Hernández University of Elche, Elche, Spain
| | - Ana M Peiró
- Neuropharmacology on Pain (NED), Alicante Institute for Health and Biomedical Research (ISABIAL-FISABIO Foundation), Alicante, Spain.
- Department of Pharmacology, Paediatrics and Organic Chemistry, Miguel Hernández University of Elche, Elche, Spain.
- Clinical Pharmacology Unit, Department of Health of Alicante - General Hospital, Alicante, Spain.
- Neuropharmacology on Pain (NED) Research Group, Hospital General Universitario de Alicante, C/Pintor Baeza, 12, 03010, Alicante, Spain.
| |
Collapse
|
298
|
Abstract
This is a protocol for a Cochrane Review (intervention). The objectives are as follows: To assess the effects (benefits and harms) of different interventions aimed at controlling pain associated with panretinal photocoagulation, in people with severe non‐proliferative diabetic retinopathy and proliferative diabetic retinopathy, according to the classification of ETDRS 1991 .
Collapse
|
299
|
Park Y, Watkins BA. Dietary PUFAs and Exercise Dynamic Actions on Endocannabinoids in Brain: Consequences for Neural Plasticity and Neuroinflammation. Adv Nutr 2022; 13:1989-2001. [PMID: 35675221 PMCID: PMC9526838 DOI: 10.1093/advances/nmac064] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 10/15/2021] [Accepted: 06/02/2022] [Indexed: 01/28/2023] Open
Abstract
The brain and peripheral nervous system provide oversight to muscle physiology and metabolism. Muscle is the largest organ in the body and critical for glucose sensitivity, prevention of diabetes, and control of obesity. The central nervous system produces endocannabinoids (eCBs) that play a role in brain neurobiology, such as inflammation and pain. Interestingly, studies in humans and rodents show that a moderate duration of exercise increases eCBs in the brain and blood and influences cannabinoid receptors. Cannabinoid actions in the nervous system have advanced our understanding of pain, well-being, and disease. Nutrition is an important aspect of brain and eCB physiology because eCBs are biosynthesized from PUFAs. The primary eCB metabolites are derived from arachidonic acid, a 20:4n-6 (ω-6) PUFA, and the n-3 (ω-3) PUFAs, EPA and DHA. The eCBs bind to cannabinoid receptors CB1 and CB2 to exert a wide range of activities, such as stimulating appetite, influencing energy metabolism, supporting the immune system, and facilitating neuroplasticity. A diet containing different essential n-6 and n-3 PUFAs will dominate the formation of specific eCBs, and subsequently their actions as ligands for CB1 and CB2. The eCBs also function as substrates for cyclooxygenase enzymes, including potential substrates for the oxylipins (OxLs), which can be proinflammatory. Together, the eCBs and OxLs act as modulators of neuroinflammation. Thus, dietary PUFAs have implications for exercise responses via synthesis of eCBs and their effects on neuroinflammation. Neurotrophins also participate in interactions between diet and the eCBs, specifically brain-derived neurotrophic factor (BDNF). BDNF supports neuroplasticity in cooperation with the endocannabinoid system (ECS). This review will describe the role of PUFAs in eCB biosynthesis, discuss the ECS and OxLs in neuroinflammation, highlight the evidence for exercise effects on eCBs, and describe eCB and BDNF actions on neuroplasticity.
Collapse
|
300
|
Chen JM, Chen QF, Wang ZY, Ni GX. Quantitative and Fiber-Selective Evaluation for Central Poststroke Pain. Neural Plast 2022; 2022:1507291. [PMID: 35707518 PMCID: PMC9192306 DOI: 10.1155/2022/1507291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 04/24/2022] [Accepted: 05/13/2022] [Indexed: 11/18/2022] Open
Abstract
The electrophysiological recording can be used to quantify the clinical features of central poststroke pain (CPSP) caused by different lesion locations. We aimed to explore the relationship between clinical features and lesion location in patients with CPSP using the current perception threshold (CPT) approach. Here, patients underwent the standardized CPT measure at five detection sites on both the contralesional and ipsilesional sides, using a constant alternating-current sinusoid waveform stimulus at three frequencies: 2000 Hz, 250 Hz, and 5 Hz. 57 CPSP patients were recruited in this cross-sectional study, including 13 patients with thalamic lesions and 44 patients with internal capsule lesions. Patients with a thalamic lesion had more frequent abnormal Aδ and C fibers than those with an internal capsule lesion (69.2% versus 36.4%, p value = 0.038; 53.8% versus 63.6%, p value = 0.038). The patients with internal capsule lesions had more frequent abnormal Aβ fibers than those with thalamic lesions (53.8% versus 63.6%, p value < 0.001). The sensory dysfunction in the patients with thalamic lesions was more likely to occur in the upper limbs (i.e., the shoulder (p value = 0.027) and the finger (p value = 0.040)). The lower limbs (i.e., the knee (p value = 0.040) and the toe (p value = 0.005)) were more likely to experience sensory dysfunction in the patients with internal capsule lesions. Hyperesthesia was more likely to occur in the thalamic patients, and hypoesthesia was more likely to occur in the patients with internal capsule lesions (p value < 0.001). In patients with thalamic lesions, Visual Analogue Scale (VAS) had a positive correlation with 5 Hz CPT on the shoulder (r = 0.010, p value = 0.005), 250 Hz CPT on the finger (r = 0.690, p value = 0.009) from the contralesional side, and 2000 Hz CPT on the knee (r = 0.690, p value = 0.009). In patients with internal capsule lesions, VAS had a positive correlation with 2000 Hz CPT on the knee (r = 0.312, p value = 0.039) and foot (r = 0.538, p value < 0.001). In conclusion, the abnormal fiber types, sensory dysfunction territory, and clinical signs of CPSP in thalamic stroke differ from those in internal capsule stroke. Implementation of the portable and convenient CPT protocol may help clarify the locations of different stroke lesions in various clinical settings.
Collapse
Affiliation(s)
- Jian-Min Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Fujian Medical University, Fujian, China
| | - Qing-Fa Chen
- Department of Rehabilitation, Fujian Medical University Union Hospital, Fujian, China
| | - Zhi-Yong Wang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Fujian Medical University, Fujian, China
| | - Guo-Xin Ni
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Fujian Medical University, Fujian, China
| |
Collapse
|