251
|
|
252
|
Polo SE, Jackson SP. Dynamics of DNA damage response proteins at DNA breaks: a focus on protein modifications. Genes Dev 2011; 25:409-33. [PMID: 21363960 DOI: 10.1101/gad.2021311] [Citation(s) in RCA: 859] [Impact Index Per Article: 61.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Genome integrity is constantly monitored by sophisticated cellular networks, collectively termed the DNA damage response (DDR). A common feature of DDR proteins is their mobilization in response to genotoxic stress. Here, we outline how the development of various complementary methodologies has provided valuable insights into the spatiotemporal dynamics of DDR protein assembly/disassembly at sites of DNA strand breaks in eukaryotic cells. Considerable advances have also been made in understanding the underlying molecular mechanisms for these events, with post-translational modifications of DDR factors being shown to play prominent roles in controlling the formation of foci in response to DNA-damaging agents. We review these regulatory mechanisms and discuss their biological significance to the DDR.
Collapse
Affiliation(s)
- Sophie E Polo
- The Gurdon Institute, Department of Biochemistry, University of Cambridge, Cambridge CB21QN, United Kingdom
| | | |
Collapse
|
253
|
Ball AR, Yokomori K. Damage site chromatin: open or closed? Curr Opin Cell Biol 2011; 23:277-83. [PMID: 21489773 DOI: 10.1016/j.ceb.2011.03.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 03/13/2011] [Accepted: 03/20/2011] [Indexed: 11/30/2022]
Abstract
Technical advances in recent years, such as laser microirradiation and chromatin immunoprecipitation, have led to further understanding of DNA damage responses and repair processes as they happen in vivo and have allowed us to better evaluate the activities of new factors at damage sites. Facilitated by these tools, recent studies identified the unexpected roles of heterochromatin factors in DNA damage recognition and repair, which also involves poly(ADP-ribose) polymerases (PARPs). The results suggest that chromatin at damage sites may be quite structurally dynamic during the repair process, with transient intervals of 'closed' configurations before a more 'open' arrangement that allows the repair machinery to access damaged DNA.
Collapse
Affiliation(s)
- Alexander R Ball
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697-1700, USA
| | | |
Collapse
|
254
|
Mendez DL, Kim D, Chruszcz M, Stephens GE, Minor W, Khorasanizadeh S, Elgin SCR. The HP1a disordered C terminus and chromo shadow domain cooperate to select target peptide partners. Chembiochem 2011; 12:1084-96. [PMID: 21472955 DOI: 10.1002/cbic.201000598] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Indexed: 11/09/2022]
Abstract
Drosophila melanogaster heterochromatin protein 1a (HP1a) is essential for compacted heterochromatin structure and the associated gene silencing. Its chromo shadow domain (CSD) is well known for binding to peptides that contain a PXVXL motif. Heterochromatin protein 2 (HP2) is a non-histone chromosomal protein that associates with HP1a in the pericentric heterochromatin, telomeres, and the fourth chromosome. Using NMR spectroscopy, fluorescence polarization, and site-directed mutagenesis, we identified an LCVKI motif in HP2 that binds to the HP1a CSD. The binding affinity of the HP2 fragment is approximately two orders of magnitude higher than that of peptides from PIWI (with a PRVKV motif), AF10 (with a PLVVL motif), or CG15356 (with LYPLL and LSIVA motifs). To delineate differential interactions of the HP1a CSD, we characterized its structure, backbone dynamics, and dimerization constant. We found that the dimerization constant is bracketed by the affinities of HP2 and PIWI, which dock to the same HP1a homodimer surface. This suggests that HP2, but not PIWI, interaction can drive the homodimerization of HP1a. Interestingly, the integrity of the disordered C-terminal extension (CTE) of HP1a is essential for discriminatory binding, whereas swapping the PXVXL motifs does not confer specificity. Serine phosphorylation at the peptide binding surface of the CSD is thought to regulate heterochromatin assembly. Glutamic acid substitution at these sites destabilizes HP1a dimers, but improves the interaction with both binding partners. Our studies underscore the importance of CSD dimerization and cooperation with the CTE in forming distinct complexes of HP1a.
Collapse
Affiliation(s)
- Deanna L Mendez
- Department of Biology, Washington University, St. Louis, MO 63130, USA
| | | | | | | | | | | | | |
Collapse
|
255
|
Kwon SH, Workman JL. The changing faces of HP1: From heterochromatin formation and gene silencing to euchromatic gene expression: HP1 acts as a positive regulator of transcription. Bioessays 2011; 33:280-9. [PMID: 21271610 DOI: 10.1002/bies.201000138] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Heterochromatin protein 1 (HP1) is a positive regulator of active transcription in euchromatin. HP1 was first identified in Drosophila melanogaster as a major component of heterochromatin. Most eukaryotes have at least three isoforms of HP1, which are conserved in overall structure but localize differentially to heterochromatin and euchromatin. Although initial studies revealed a key role for HP1 in heterochromatin formation and gene silencing, recent progress has shed light on additional roles for HP1 in processes such as euchromatic gene expression. Recent studies have highlighted the importance of HP1-mediated gene regulation in euchromatin. Here, we focus on recent advances in understanding the role of HP1 in active transcription in euchromatin and how modification and localization of HP1 can regulate distinct functions for this protein in different contexts.
Collapse
Affiliation(s)
- So Hee Kwon
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | |
Collapse
|
256
|
Stixová L, Bártová E, Matula P, Daněk O, Legartová S, Kozubek S. Heterogeneity in the kinetics of nuclear proteins and trajectories of substructures associated with heterochromatin. Epigenetics Chromatin 2011; 4:5. [PMID: 21418567 PMCID: PMC3068931 DOI: 10.1186/1756-8935-4-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 03/18/2011] [Indexed: 11/17/2022] Open
Abstract
Background Protein exchange kinetics correlate with the level of chromatin condensation and, in many cases, with the level of transcription. We used fluorescence recovery after photobleaching (FRAP) to analyse the kinetics of 18 proteins and determine the relationships between nuclear arrangement, protein molecular weight, global transcription level, and recovery kinetics. In particular, we studied heterochromatin-specific heterochromatin protein 1β (HP1β) B lymphoma Mo-MLV insertion region 1 (BMI1), and telomeric-repeat binding factor 1 (TRF1) proteins, and nucleolus-related proteins, upstream binding factor (UBF) and RNA polymerase I large subunit (RPA194). We considered whether the trajectories and kinetics of particular proteins change in response to histone hyperacetylation by histone deacetylase (HDAC) inhibitors or after suppression of transcription by actinomycin D. Results We show that protein dynamics are influenced by many factors and events, including nuclear pattern and transcription activity. A slower recovery after photobleaching was found when proteins, such as HP1β, BMI1, TRF1, and others accumulated at specific foci. In identical cells, proteins that were evenly dispersed throughout the nucleoplasm recovered more rapidly. Distinct trajectories for HP1β, BMI1, and TRF1 were observed after hyperacetylation or suppression of transcription. The relationship between protein trajectory and transcription level was confirmed for telomeric protein TRF1, but not for HP1β or BMI1 proteins. Moreover, heterogeneity of foci movement was especially observed when we made distinctions between centrally and peripherally positioned foci. Conclusion Based on our results, we propose that protein kinetics are likely influenced by several factors, including chromatin condensation, differentiation, local protein density, protein binding efficiency, and nuclear pattern. These factors and events likely cooperate to dictate the mobility of particular proteins.
Collapse
Affiliation(s)
- Lenka Stixová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic.
| | | | | | | | | | | |
Collapse
|
257
|
Velichko AK, Kantidze OL, Razin SV. HP1α is not necessary for the structural maintenance of centromeric heterochromatin. Epigenetics 2011; 6:380-7. [PMID: 20962594 DOI: 10.4161/epi.6.3.13866] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Heterochromatin protein 1 (HP1) was discovered as a protein essential for maintaining the silent transcriptional status of genes located within or close to centromeric regions of Drosophila chromosomes. Mammals express three variants of HP1; of these, HP1α is a direct homolog of Drosophila HP1. The prevailing view states that HP1 is a structural component of heterochromatin and is essential for compact DNA packaging. HP1 contains a chromodomain that binds to di- and- tri-methylated lysine 9 of histone H3. Additionally, it contains a chromoshadow domain that allows HP1 to dimerize and interact with other proteins. HP1 is thought to form "bridges" between neighboring rows of nucleosomes in heterochromatin. In mammalian cells, a significant portion of HP1α is located in the centromeric regions of chromosomes. In this study, we show that the majority of HP1α is removed from centromeres upon heat shock. This occurs without a loss of H3K9 trimethylation and does not correlate with a decompaction of centromeres. Furthermore, HP1α is not degraded and remains bound to chromatin. Therefore, it is likely that HP1α is simply redistributed to euchromatic regions. We propose that this redistribution is essential for reversal of the transcriptional status of euchromatic and heterochromatic compartments.
Collapse
Affiliation(s)
- Artem K Velichko
- Laboratory of Structural and Functional Organization of Chromosomes, Institute of Gene Biology of the Russian Academy of Sciences, Moscow, Russia
| | | | | |
Collapse
|
258
|
Double-strand breaks in heterochromatin move outside of a dynamic HP1a domain to complete recombinational repair. Cell 2011; 144:732-44. [PMID: 21353298 DOI: 10.1016/j.cell.2011.02.012] [Citation(s) in RCA: 417] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 12/15/2010] [Accepted: 02/07/2011] [Indexed: 01/07/2023]
Abstract
Double-strand breaks (DSBs) in heterochromatic repetitive DNAs pose significant threats to genome integrity, but information about how such lesions are processed and repaired is sparse. We observe dramatic expansion and dynamic protrusions of the heterochromatin domain in response to ionizing radiation (IR) in Drosophila cells. We also find that heterochromatic DSBs are repaired by homologous recombination (HR) but with striking differences from euchromatin. Proteins involved in early HR events (resection) are rapidly recruited to DSBs within heterochromatin. In contrast, Rad51, which mediates strand invasion, only associates with DSBs that relocalize outside of the domain. Heterochromatin expansion and relocalization of foci require checkpoint and resection proteins. Finally, the Smc5/6 complex is enriched in heterochromatin and is required to exclude Rad51 from the domain and prevent abnormal recombination. We propose that the spatial and temporal control of DSB repair in heterochromatin safeguards genome stability by preventing aberrant exchanges between repeats.
Collapse
|
259
|
Yap KL, Zhou MM. Structure and mechanisms of lysine methylation recognition by the chromodomain in gene transcription. Biochemistry 2011; 50:1966-80. [PMID: 21288002 DOI: 10.1021/bi101885m] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Histone methylation recognition is accomplished by a number of evolutionarily conserved protein domains, including those belonging to the methylated lysine-binding Royal family of structural folds. One well-known member of the Royal family, the chromodomain, is found in the HP1/chromobox and CHD subfamilies of proteins, in addition to a small number of other proteins that are involved in chromatin remodeling and gene transcriptional silencing. Here we discuss the structure and function of the chromodomain within these proteins as methylated histone lysine binders and how the functions of these chromodomains can be modulated by additional post-translational modifications or binding to nucleic acids.
Collapse
Affiliation(s)
- Kyoko L Yap
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1677, New York, New York 10065, United States
| | | |
Collapse
|
260
|
Zwicker F, Ebert M, Huber PE, Debus J, Weber KJ. A specific inhibitor of protein kinase CK2 delays gamma-H2Ax foci removal and reduces clonogenic survival of irradiated mammalian cells. Radiat Oncol 2011; 6:15. [PMID: 21310046 PMCID: PMC3045342 DOI: 10.1186/1748-717x-6-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 02/10/2011] [Indexed: 11/18/2022] Open
Abstract
Background The protein kinase CK2 sustains multiple pro-survival functions in cellular DNA damage response and its level is tightly regulated in normal cells but elevated in cancers. Because CK2 is thus considered as potential therapeutic target, DNA double-strand break (DSB) formation and rejoining, apoptosis induction and clonogenic survival was assessed in irradiated mammalian cells upon chemical inhibition of CK2. Methods MRC5 human fibroblasts and WIDR human colon carcinoma cells were incubated with highly specific CK2 inhibitor 4,5,6,7-tetrabromobenzotriazole (TBB), or mock-treated, 2 hours prior to irradiation. DSB was measured by pulsed-field electrophoresis (PFGE) as well as gamma-H2AX foci formation and removal. Apoptosis induction was tested by DAPI staining and sub-G1 flow cytometry, survival was quantified by clonogenic assay. Results TBB treatment did not affect initial DNA fragmention (PFGE; up to 80 Gy) or foci formation (1 Gy). While DNA fragment rejoining (PFGE) was not inhibited by the drug, TBB clearly delayed gamma-H2AX foci disappearence during postirradiation incubation. No apoptosis induction could be detected for up to 38 hours for both cell lines and exposure conditions (monotherapies or combination), but TBB treatment at this moderately toxic concentration of 20 μM (about 40% survival) enhanced radiation-induced cell killing in the clonogenic assay. Conclusions The data imply a role of CK2 in gamma-H2AX dephosporylation, most likely through its known ability to stimulate PP2A phosphatase, rather than DSB rejoining. The slight but definite clonogenic radiosensitization by TBB does apparently not result from interference with an apoptosis suppression function of CK2 in these cells but could reflect inhibitor-induced uncoupling of DNA damage response decay from break ligation.
Collapse
Affiliation(s)
- Felix Zwicker
- Department of Radiation Oncology, University of Heidelberg, Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
261
|
Cann KL, Dellaire G. Heterochromatin and the DNA damage response: the need to relaxThis paper is one of a selection of papers in a Special Issue entitled 31st Annual International Asilomar Chromatin and Chromosomes Conference, and has undergone the Journal’s usual peer review process. Biochem Cell Biol 2011; 89:45-60. [DOI: 10.1139/o10-113] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Higher order chromatin structure has an impact on all nuclear functions, including the DNA damage response. Over the past several years, it has become increasingly clear that heterochromatin and euchromatin represent separate entities with respect to both damage sensitivity and repair. The chromatin compaction present in heterochromatin helps to protect this DNA from damage; however, when lesions do occur, the compaction restricts the ability of DNA damage response proteins to access the site, as evidenced by its ability to block the expansion of H2AX phosphorylation. As such, DNA damage in heterochromatin is refractory to repair, which requires the surrounding chromatin structure to be decondensed. In the case of DNA double-strand breaks, this relaxation is at least partially mediated by the ATM kinase phosphorylating and inhibiting the function of the transcriptional repressor KAP1. This review will focus on the functions of KAP1 and other proteins involved in the maintenance or restriction of heterochromatin, including HP1 and TIP60, in the DNA damage response. As heterochromatin is important for maintaining genomic stability, cells must maintain a delicate balance between allowing repair factors access to these regions and ensuring that these regions retain their organization to prevent increased DNA damage and chromosomal mutations.
Collapse
Affiliation(s)
- Kendra L. Cann
- Departments of Pathology and Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | - Graham Dellaire
- Departments of Pathology and Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| |
Collapse
|
262
|
Abstract
The phosphorylation of heterochromatin protein 1 (HP1) has been previously described in studies of mammals, but the biological implications of this modification remain largely elusive. Here, we show that the N-terminal phosphorylation of HP1α plays a central role in its targeting to chromatin. Recombinant HP1α prepared from mammalian cultured cells exhibited a stronger binding affinity for K9-methylated histone H3 (H3K9me) than that produced in Escherichia coli. Biochemical analyses revealed that HP1α was multiply phosphorylated at N-terminal serine residues (S11-14) in human and mouse cells and that this phosphorylation enhanced HP1α's affinity for H3K9me. Importantly, the N-terminal phosphorylation appeared to facilitate the initial binding of HP1α to H3K9me by mediating the interaction between HP1α and a part of the H3 tail that was distinct from the methylated K9. Unphosphorylatable mutant HP1α exhibited severe heterochromatin localization defects in vivo, and its prolonged expression led to increased chromosomal instability. Our results suggest that HP1α's N-terminal phosphorylation is essential for its proper targeting to heterochromatin and that its binding to the methylated histone tail is achieved by the cooperative action of the chromodomain and neighboring posttranslational modifications.
Collapse
|
263
|
Abstract
DNA double-strand breaks (DSBs) arise through both replication errors and from exogenous events such as exposure to ionizing radiation. DSBs are potentially lethal, and cells have evolved a highly conserved mechanism to detect and repair these lesions. This mechanism involves phosphorylation of histone H2AX (γH2AX) and the loading of DNA repair proteins onto the chromatin adjacent to the DSB. It is now clear that the chromatin architecture in the region surrounding the DSB has a critical impact on the ability of cells to mount an effective DNA damage response. DSBs promote the direct the formation of open, relaxed chromatin domains which are spatially confined to the area surrounding the break. These relaxed chromatin structures are created through the coupled action of the p400 SWI/SNF ATPase and histone acetylation by the Tip60 acetyltransferase. The resulting destabilization of nucleosomes at the DSB by Tip60 and p400 is required for ubiquitination of the chromatin by the RNF8 ubiquitin ligase, and for the subsequent recruitment of the brca1 complex. Chromatin dynamics at DSBs can therefore exert a powerful influence on the process of DSB repair. Further, there is emerging evidence that the different chromatin structures in the cell, such as heterochromatin and euchromatin, utilize distinct remodeling complexes and pathways to facilitate DSB. The processing and repair of DSB is therefore critically influenced by the nuclear architecture in which the lesion arises.
Collapse
Affiliation(s)
- Ye Xu
- Division of Genomic Stability and DNA Repair, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
264
|
Abstract
Structural changes to DNA severely affect its functions, such as replication and transcription, and play a major role in age-related diseases and cancer. A complicated and entangled network of DNA damage response (DDR) mechanisms, including multiple DNA repair pathways, damage tolerance processes, and cell-cycle checkpoints safeguard genomic integrity. Like transcription and replication, DDR is a chromatin-associated process that is generally tightly controlled in time and space. As DNA damage can occur at any time on any genomic location, a specialized spatio-temporal orchestration of this defense apparatus is required.
Collapse
|
265
|
Abstract
The nucleus is organized and compartmentalized into a highly ordered structure that contains DNA, RNA, chromosomal and histone proteins. The dynamics associated with these various components are responsible for making sure that the DNA is properly duplicated, genes are properly transcribed, and the genome is stabilized. It is no surprise that alterations in these various components are directly associated with pathologies like cancer. This Point of View focuses on the role the chromatin modification landscape, especially histone 3 lysine 9 methylation (H3K9me), and heterochromatin proteins (HP1) play in regulating DNA-templated processes, with a particular focus on their role at non-genic regions and effects on chromatin structure. These observations will be further extended to the role that alterations in chromatin landscape will contribute to diseases. This Point of View emphasizes that alterations in histone modification landscapes are not only relevant to transcription but have broad range implications in chromatin structure, nuclear architecture, cell cycle, genome stability and disease progression.
Collapse
Affiliation(s)
- Joshua C Black
- Department of Medicine, Harvard Medical School, Massachusetts General Hospital Cancer Center, Charlestown, MA, USA
| | | |
Collapse
|
266
|
Double-strand breaks and the concept of short- and long-term epigenetic memory. Chromosoma 2010; 120:129-49. [PMID: 21174214 DOI: 10.1007/s00412-010-0305-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 12/06/2010] [Indexed: 12/17/2022]
Abstract
Double-strand breaks represent an extremely cytolethal form of DNA damage and thus pose a serious threat to the preservation of genetic and epigenetic information. Though it is well-known that double-strand breaks such as those generated by ionising radiation are among the principal causative factors behind mutations, chromosomal aberrations, genetic instability and carcinogenesis, significantly less is known about the epigenetic consequences of double-strand break formation and repair for carcinogenesis. Double-strand break repair is a highly coordinated process that requires the unravelling of the compacted chromatin structure to facilitate repair machinery access and then restoration of the original undamaged chromatin state. Recent experimental findings have pointed to a potential mechanism for double-strand break-induced epigenetic silencing. This review will discuss some of the key epigenetic regulatory processes involved in double-strand break (DSB) repair and how incomplete or incorrect restoration of chromatin structure can leave a DSB-induced epigenetic memory of damage with potentially pathological repercussions.
Collapse
|
267
|
Bensimon A, Schmidt A, Ziv Y, Elkon R, Wang SY, Chen DJ, Aebersold R, Shiloh Y. ATM-dependent and -independent dynamics of the nuclear phosphoproteome after DNA damage. Sci Signal 2010; 3:rs3. [PMID: 21139141 DOI: 10.1126/scisignal.2001034] [Citation(s) in RCA: 236] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The double-strand break (DSB) is a cytotoxic DNA lesion caused by oxygen radicals, ionizing radiation, and radiomimetic chemicals. Cells cope with DNA damage by activating the DNA damage response (DDR), which leads either to damage repair and cellular survival or to programmed cell death. The main transducer of the DSB response is the nuclear protein kinase ataxia telangiectasia mutated (ATM). We applied label-free quantitative mass spectrometry to follow the dynamics of DSB-induced phosphoproteome in nuclear fractions of the human melanoma G361 cells after radiomimetic treatment. We found that these dynamics are complex, including both phosphorylation and dephosphorylation events. In addition to identifying previously unknown ATM-dependent phosphorylation and dephosphorylation events, we found that about 40% of DSB-induced phosphorylations were ATM-independent and that several other kinases are potentially involved. Sustained activity of ATM was required to maintain many ATM-dependent phosphorylations. We identified an ATM-dependent phosphorylation site on ATM itself that played a role in its retention on damaged chromatin. By connecting many of the phosphorylated and dephosphorylated proteins into functional networks, we highlight putative cross talks between proteins pertaining to several cellular biological processes. Our study expands the DDR phosphorylation landscape and identifies previously unknown ATM-dependent and -independent branches. It reveals insights into the breadth and complexity of the cellular responses involved in the coordination of many DDR pathways, which is in line with the critical importance of genomic stability in maintenance of cellular homeostasis.
Collapse
Affiliation(s)
- Ariel Bensimon
- David and Inez Myers Laboratory for Cancer Genetics, Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | | | | | | | |
Collapse
|
268
|
Bhaskara S, Knutson SK, Jiang G, Chandrasekharan MB, Wilson AJ, Zheng S, Yenamandra A, Locke K, Yuan JL, Bonine-Summers AR, Wells CE, Kaiser JF, Washington MK, Zhao Z, Wagner FF, Sun ZW, Xia F, Holson EB, Khabele D, Hiebert SW. Hdac3 is essential for the maintenance of chromatin structure and genome stability. Cancer Cell 2010; 18:436-47. [PMID: 21075309 PMCID: PMC3004468 DOI: 10.1016/j.ccr.2010.10.022] [Citation(s) in RCA: 288] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 06/16/2010] [Accepted: 08/23/2010] [Indexed: 01/10/2023]
Abstract
Hdac3 is essential for efficient DNA replication and DNA damage control. Deletion of Hdac3 impaired DNA repair and greatly reduced chromatin compaction and heterochromatin content. These defects corresponded to increases in histone H3K9,K14ac; H4K5ac; and H4K12ac in late S phase of the cell cycle, and histone deposition marks were retained in quiescent Hdac3-null cells. Liver-specific deletion of Hdac3 culminated in hepatocellular carcinoma. Whereas HDAC3 expression was downregulated in only a small number of human liver cancers, the mRNA levels of the HDAC3 cofactor NCOR1 were reduced in one-third of these cases. siRNA targeting of NCOR1 and SMRT (NCOR2) increased H4K5ac and caused DNA damage, indicating that the HDAC3/NCOR/SMRT axis is critical for maintaining chromatin structure and genomic stability.
Collapse
Affiliation(s)
- Srividya Bhaskara
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232
| | - Sarah K. Knutson
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232
| | - Guochun Jiang
- Department of Radiation Oncology Vanderbilt University Medical Center, Nashville, TN 37212
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37212
| | | | - Andrew J. Wilson
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Vanderbilt University Medical Center, Nashville, TN 37212
| | - Siyuan Zheng
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN 37232
- Bioinformatics Resource Center, Vanderbilt University School of Medicine, Nashville, TN 37232
| | | | | | - Jia-ling Yuan
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232
| | | | | | | | - M. Kay Washington
- Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Zhongming Zhao
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37212
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN 37232
- Bioinformatics Resource Center, Vanderbilt University School of Medicine, Nashville, TN 37232
- Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Florence F. Wagner
- The Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142
| | - Zu-Wen Sun
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232
- Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Fen Xia
- Department of Radiation Oncology Vanderbilt University Medical Center, Nashville, TN 37212
| | - Edward B. Holson
- The Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142
| | - Dineo Khabele
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37212
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Vanderbilt University Medical Center, Nashville, TN 37212
- Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Scott W. Hiebert
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232
- Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232
- To whom correspondence should be sent: Department of Biochemistry, 512 Preston Research Building, Vanderbilt University School of Medicine, 23rd and Pierce Ave., Nashville Tennessee, 37232, Phone: (615) 936-3582; Fax: (615) 936-1790;
| |
Collapse
|
269
|
Aypar U, Morgan WF, Baulch JE. Radiation-induced genomic instability: Are epigenetic mechanisms the missing link? Int J Radiat Biol 2010; 87:179-91. [DOI: 10.3109/09553002.2010.522686] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
270
|
Jäämaa S, Af Hällström TM, Sankila A, Rantanen V, Koistinen H, Stenman UH, Zhang Z, Yang Z, De Marzo AM, Taari K, Ruutu M, Andersson LC, Laiho M. DNA damage recognition via activated ATM and p53 pathway in nonproliferating human prostate tissue. Cancer Res 2010; 70:8630-41. [PMID: 20978201 DOI: 10.1158/0008-5472.can-10-0937] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
DNA damage response (DDR) pathways have been extensively studied in cancer cell lines and mouse models, but little is known about how DNA damage is recognized by different cell types in nonmalignant, slowly replicating human tissues. Here, we assess, using ex vivo cultures of human prostate tissue, DDR caused by cytotoxic drugs (camptothecin, doxorubicin, etoposide, and cisplatin) and ionizing radiation (IR) in the context of normal tissue architecture. Using specific markers for basal and luminal epithelial cells, we determine and quantify cell compartment-specific damage recognition. IR, doxorubicin, and etoposide induced the phosphorylation of H2A.X on Ser(139) (γH2AX) and DNA damage foci formation. Surprisingly, luminal epithelial cells lack the prominent γH2AX response after IR when compared with basal cells, although ATM phosphorylation on Ser(1981) and 53BP1 foci were clearly detectable in both cell types. The attenuated γH2AX response seems to result from low levels of total H2A.X in the luminal cells. Marked increase in p53, a downstream target of the activated ATM pathway, was detected only in response to camptothecin and doxorubicin. These findings emphasize the diversity of pathways activated by DNA damage in slowly replicating tissues and reveal an unexpected deviation in the prostate luminal compartment that may be relevant in prostate tumorigenesis. Detailed mapping of tissue and cell type differences in DDR will provide an outlook of relevant responses to therapeutic strategies.
Collapse
Affiliation(s)
- Sari Jäämaa
- Biomedicum Helsinki and Department of Virology, Haartman Institute, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
271
|
Suzuki K, Nakashima M, Yamashita S. Dynamics of ionizing radiation-induced DNA damage response in reconstituted three-dimensional human skin tissue. Radiat Res 2010; 174:415-23. [PMID: 20726705 DOI: 10.1667/rr2007.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The ATM-dependent DNA damage checkpoint plays a pivotal role in cellular response to ionizing radiation. Although amplification of the DNA damage signal through multifactorial protein complex formation of DNA damage checkpoint factors is crucial for proper DNA damage response in two-dimensionally cultured cells, the dynamics of the DNA damage response in three-dimensional tissues or organs remained to be determined. Here we used a model of reconstituted human skin and investigated the spatiotemporal dynamics of focus formation of DNA damage checkpoint factors after X irradiation. We found that DNA damage-induced foci were differentially formed in different layers. All cells in basal layers and approximately 40% of cells in spinous layers displayed foci. In basal cells, the foci showed linear dose relationships, and the number of foci decreased with increasing time after irradiation. We found that the initial foci grew within a few hours after irradiation, and persistent signals developed large foci. Colocalization of phosphorylated ATM, phosphorylated histone H2AX, MDC1 and 53BP1 foci was detected, and all of them showed simultaneous focus growth, indicating amplification of DNA damage signals. These results confirmed a dynamic DNA damage response in three-dimensional tissue, which provides a practical model for studying DNA damage response in vivo.
Collapse
Affiliation(s)
- Keiji Suzuki
- Atomic Bomb Disease Institute, Course of Life Sciences and Radiation Research, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan.
| | | | | |
Collapse
|
272
|
Li Z, Jiao X, Wang C, Shirley LA, Elsaleh H, Dahl O, Wang M, Soutoglou E, Knudsen ES, Pestell RG. Alternative cyclin D1 splice forms differentially regulate the DNA damage response. Cancer Res 2010; 70:8802-11. [PMID: 20940395 DOI: 10.1158/0008-5472.can-10-0312] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The DNA damage response (DDR) activates downstream pathways including cell cycle checkpoints. The cyclin D1 gene is overexpressed or amplified in many human cancers and is required for gastrointestinal, breast, and skin tumors in murine models. A common polymorphism in the human cyclin D1 gene is alternatively spliced, resulting in cyclin D1a and D1b proteins that differ in their carboxyl terminus. Cyclin D1 overexpression enhances DNA damage-induced apoptosis. The role of cyclin D1 and the alternative splice form in regulating the DDR is not well understood. Herein cyclin D1a overexpression enhanced the DDR as characterized by induction of γH2AX phosphorylation, the assembly of DNA repair foci, specific recruitment of DNA repair factors to chromatin, and G(2)-M arrest. Cyclin D1 deletion in fibroblasts or small interfering RNA-mediated reduction of endogenous cyclin D1 in colon cancer cells reduced the 5-fluorouracil-mediated DDR. Mechanistic studies showed that cyclin D1a, like DNA repair factors, elicited the DDR when stably associated with chromatin.
Collapse
Affiliation(s)
- Zhiping Li
- Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
273
|
Martin C, Chen S, Heilos D, Sauer G, Hunt J, Shaw AG, Sims PFG, Jackson DA, Lovrić J. Changed genome heterochromatinization upon prolonged activation of the Raf/ERK signaling pathway. PLoS One 2010; 5:e13322. [PMID: 20967285 PMCID: PMC2953519 DOI: 10.1371/journal.pone.0013322] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Accepted: 09/10/2010] [Indexed: 11/18/2022] Open
Abstract
The Raf/ERK (Extracellular Signal Regulated Kinase) signal transduction pathway controls numerous cellular processes, including growth, differentiation, cellular transformation and senescence. ERK activation is thought to involve complex spatial and temporal regulation, to achieve a high degree of specificity, though precisely how this is achieved remains to be confirmed. We report here that prolonged activation of a conditional form of c-Raf-1 (BXB-ER) leads to profound changes in the level and distribution of a heterochromatic histone mark. In mouse fibroblasts, the heterochromatic trimethylation of lysine 9 in histone H3 (H3K9Me3) is normally confined to pericentromeric regions. However, following ERK activation a genome-wide redistribution of H3K9Me3 correlates with loss of the histone modification from chromocentres and the appearance of numerous punctuate sites throughout the interphase nucleus. These epigenetic changes during interphase correlate with altered chromosome structure during mitosis, where robust H3K9Me3 signals appear within telomeric heterochromatin. This pattern of heterochromatinization is distinct from previously described oncogene induced senescence associated heterochromatin foci (SAHF), which are excluded from telomeres. The H3K9Me3 histone mark is known to bind the major heterochromatin protein HP1 and we show that the alterations in the distribution of this histone epistate correlate with redistribution of HP1β throughout the nucleus. Interestingly while ERK activation is fully reversible, the observed chromatin changes induced by epigenetic modifications are not reversible once established. We describe for the first time a link from prolonged ERK activation to stable changes in genome organization through redistribution of heterochromatic domains involving the telomeres. These epigenetic changes provide a possible mechanism through which prolonged activation of Raf/ERK can lead to growth arrest or the induction of differentiation, senescence and cancer.
Collapse
Affiliation(s)
- Catherine Martin
- Faculty of Life Sciences, Manchester Interdisciplinary Biocentre, The University of Manchester, Manchester, United Kingdom
| | - Songbi Chen
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
| | - Daniela Heilos
- Faculty of Life Sciences, Manchester Interdisciplinary Biocentre, The University of Manchester, Manchester, United Kingdom
| | - Guido Sauer
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Jessica Hunt
- Faculty of Life Sciences, Manchester Interdisciplinary Biocentre, The University of Manchester, Manchester, United Kingdom
| | - Alexander George Shaw
- Faculty of Life Sciences, Manchester Interdisciplinary Biocentre, The University of Manchester, Manchester, United Kingdom
| | - Paul Francis George Sims
- Faculty of Life Sciences, Manchester Interdisciplinary Biocentre, The University of Manchester, Manchester, United Kingdom
| | - Dean Andrew Jackson
- Faculty of Life Sciences, Manchester Interdisciplinary Biocentre, The University of Manchester, Manchester, United Kingdom
| | - Josip Lovrić
- Faculty of Life Sciences, Manchester Interdisciplinary Biocentre, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
274
|
The protein phosphatase 1 regulator PNUTS is a new component of the DNA damage response. EMBO Rep 2010; 11:868-75. [PMID: 20890310 DOI: 10.1038/embor.2010.134] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 08/09/2010] [Accepted: 08/11/2010] [Indexed: 12/17/2022] Open
Abstract
The function of protein phosphatase 1 nuclear-targeting subunit (PNUTS)--one of the most abundant nuclear-targeting subunits of protein phosphatase 1 (PP1c)--remains largely uncharacterized. We show that PNUTS depletion by small interfering RNA activates a G2 checkpoint in unperturbed cells and prolongs G2 checkpoint and Chk1 activation after ionizing-radiation-induced DNA damage. Overexpression of PNUTS-enhanced green fluorescent protein (EGFP)--which is rapidly and transiently recruited at DNA damage sites--inhibits G2 arrest. Finally, γH2AX, p53-binding protein 1, replication protein A and Rad51 foci are present for a prolonged period and clonogenic survival is decreased in PNUTS-depleted cells after ionizing radiation treatment. We identify the PP1c regulatory subunit PNUTS as a new and integral component of the DNA damage response involved in DNA repair.
Collapse
|
275
|
Olsen BB, Issinger OG, Guerra B. Regulation of DNA-dependent protein kinase by protein kinase CK2 in human glioblastoma cells. Oncogene 2010; 29:6016-26. [PMID: 20711232 DOI: 10.1038/onc.2010.337] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The DNA-dependent protein kinase (DNA-PK) is a nuclear serine/threonine protein kinase composed of a large catalytic subunit (DNA-PKcs) and a heterodimeric DNA-targeting subunit Ku. DNA-PK is a major component of the nonhomologous end-joining pathway of DNA double-strand breaks repair. Although DNA-PK has been biochemically characterized in vitro, relatively little is known about its functions in the context of DNA repair and how its kinase activity is precisely regulated in vivo. Here, we report that cellular depletion of the individual catalytic subunits of protein kinase CK2 by RNA interference leads to significant cell death in M059K human glioblastoma cells expressing DNA-PKcs, but not in their isogenic counterpart, that is M059J cells, devoid of DNA-PKcs. The lack of CK2 results in enhanced DNA-PKcs activity and strongly inhibits DNA damage-induced autophosphorylation of DNA-PKcs at S2056 as well as repair of DNA double-strand breaks. By the application of the in situ proximity ligation assay, we show that CK2 interacts with DNA-PKcs in normal growing cells and that the association increases upon DNA damage. These results indicate that CK2 has an important role in the modulation of DNA-PKcs activity and its phosphorylation status providing important insights into the mechanisms by which DNA-PKcs is regulated in vivo.
Collapse
Affiliation(s)
- B B Olsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | | | | |
Collapse
|
276
|
Podhorecka M, Skladanowski A, Bozko P. H2AX Phosphorylation: Its Role in DNA Damage Response and Cancer Therapy. J Nucleic Acids 2010; 2010. [PMID: 20811597 PMCID: PMC2929501 DOI: 10.4061/2010/920161] [Citation(s) in RCA: 387] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 06/28/2010] [Accepted: 07/05/2010] [Indexed: 11/20/2022] Open
Abstract
Double-strand breaks (DSBs) are the most deleterious DNA lesions, which, if left unrepaired, may have severe consequences for cell survival, as they lead to chromosome aberrations, genomic instability, or cell death. Various physical, chemical, and biological factors are involved in DSB induction. Cells respond to DNA damage by activating the so-called DNA damage response (DDR), a complex molecular mechanism developed to detect and repair DNA damage. The formation of DSBs triggers activation of many factors, including phosphorylation of the histone variant H2AX, producing gammaH2AX. Phosphorylation of H2AX plays a key role in DDR and is required for the assembly of DNA repair proteins at the sites containing damaged chromatin as well as for activation of checkpoints proteins which arrest the cell cycle progression. In general, analysis of gammaH2AX expression can be used to detect the genotoxic effect of different toxic substances. When applied to clinical samples from cancer patients, evaluation of gammaH2AX levels may allow not only to monitor the efficiency of anticancer treatment but also to predict of tumor cell sensitivity to DNA damaging anticancer agents and toxicity of anticancer treatment toward normal cells.
Collapse
Affiliation(s)
- Monika Podhorecka
- Department of Haematooncology and Bone Marrow Transplantation, Medical University of Lublin, 20081 Lublin, Poland
| | | | | |
Collapse
|
277
|
Abstract
Genomes are organized into complex higher-order structures by folding of the DNA into chromatin fibers, chromosome domains, and ultimately chromosomes. The higher-order organization of genomes is functionally important for gene regulation and control of gene expression programs. Defects in how chromatin is globally organized are relevant for physiological and pathological processes. Mutations and transcriptional misregulation of several global genome organizers are linked to human diseases and global alterations in chromatin structure are emerging as key players in maintenance of genome stability, aging, and the formation of cancer translocations.
Collapse
Affiliation(s)
- Tom Misteli
- National Cancer Institute, NIH, Bethesda, Maryland 20892, USA.
| |
Collapse
|
278
|
Higo S, Asano Y, Kato H, Yamazaki S, Nakano A, Tsukamoto O, Seguchi O, Asai M, Asakura M, Asanuma H, Sanada S, Minamino T, Komuro I, Kitakaze M, Takashima S. Isoform-specific intermolecular disulfide bond formation of heterochromatin protein 1 (HP1). J Biol Chem 2010; 285:31337-47. [PMID: 20675861 DOI: 10.1074/jbc.m110.155788] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Three mammalian isoforms of heterochromatin protein 1 (HP1), α, β, and γ, play diverse roles in gene regulation. Despite their structural similarity, the diverse functions of these isoforms imply that they are additionally regulated by post-translational modifications. Here, we have identified intermolecular disulfide bond formation of HP1 cysteines in an isoform-specific manner. Cysteine 133 in HP1α and cysteine 177 in HP1γ were involved in intermolecular homodimerization. Although both HP1α and HP1γ contain reactive cysteine residues, only HP1γ readily and reversibly formed disulfide homodimers under oxidative conditions. Oxidatively dimerized HP1γ strongly and transiently interacted with TIF1β, a universal transcriptional co-repressor. Under oxidative conditions, HP1γ dimerized and held TIF1β in a chromatin component and inhibited its repression ability. Our results highlight a novel, isoform-specific role for HP1 as a sensor of the cellular redox state.
Collapse
Affiliation(s)
- Shuichiro Higo
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
279
|
Billur M, Bartunik HD, Singh PB. The essential function of HP1 beta: a case of the tail wagging the dog? Trends Biochem Sci 2010; 35:115-23. [PMID: 19836960 DOI: 10.1016/j.tibs.2009.09.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Revised: 08/27/2009] [Accepted: 09/03/2009] [Indexed: 12/25/2022]
Abstract
A large body of work in various organisms has shown that the presence of HP1 structural proteins and methylated lysine 9 of histone H3 (H3K9me) represent the characteristic hallmarks of heterochromatin. We propose that a more critical assessment of the physiological importance of the H3K9me-HP1 interaction is warranted in light of recent studies on the mammalian HP1 beta protein. Based on this new research, we conclude that the essential function of HP1 beta (and perhaps that of its orthologues in other species) lies outside the canonical heterochromatic H3K9me-HP1 interaction. We suggest instead that binding of a small fraction of HP1 beta to the H3 histone fold performs a critical role in heterochromatin function and organismal survival.
Collapse
Affiliation(s)
- Mustafa Billur
- Division of Immunoepigenetics, Department of Immunology and Cell Biology, Forschungszentrum Borstel, D-23845 Borstel, Germany
| | | | | |
Collapse
|
280
|
Sy SM, Chen J, Huen MS. The 53BP1-EXPAND1 connection in chromatin structure regulation. Nucleus 2010; 1:472-4. [PMID: 21327088 DOI: 10.4161/nucl.1.6.13059] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2010] [Revised: 07/14/2010] [Accepted: 07/18/2010] [Indexed: 11/19/2022] Open
Abstract
The mammalian interphase chromatin responds to DNA damages by altering the compactness of its architecture, thereby permitting local access of DNA repair machineries. Adding to the cellular strategies of chromatin remodeling following DNA damage, our recent work identified the 53BP1-EXPAND1 module in promoting chromatin dynamics in response to DNA double-strand breaks. Endowed with a nucleosome-binding PWWP domain, EXPAND1 tethers to the chromatin where it is involved in maintaining basal chromatin accessibility in unperturbed cells. Interestingly, through its direct interaction with the DNA damage mediator protein 53BP1, EXPAND1 accumulates at the damage-modified chromatin and triggers its further decondensation. These observations, together with the fact that EXPAND 1 promotes cell survival following DNA damage, suggest that the chromatin-bound factor may facilitate DNA repair by regulating the organization of chromatin structure.
Collapse
Affiliation(s)
- Shirley Mh Sy
- Genome Stability Research Laboratory, The University of Hong Kong, Hong Kong S.A.R
| | | | | |
Collapse
|
281
|
Mistry H, Tamblyn L, Butt H, Sisgoreo D, Gracias A, Larin M, Gopalakrishnan K, Hande MP, McPherson JP. UHRF1 is a genome caretaker that facilitates the DNA damage response to gamma-irradiation. Genome Integr 2010; 1:7. [PMID: 20678257 PMCID: PMC2914011 DOI: 10.1186/2041-9414-1-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Accepted: 06/08/2010] [Indexed: 11/10/2022] Open
Abstract
Background DNA double-strand breaks (DSBs) caused by ionizing radiation or by the stalling of DNA replication forks are among the most deleterious forms of DNA damage. The ability of cells to recognize and repair DSBs requires post-translational modifications to histones and other proteins that facilitate access to lesions in compacted chromatin, however our understanding of these processes remains incomplete. UHRF1 is an E3 ubiquitin ligase that has previously been linked to events that regulate chromatin remodeling and epigenetic maintenance. Previous studies have demonstrated that loss of UHRF1 increases the sensitivity of cells to DNA damage however the role of UHRF1 in this response is unclear. Results We demonstrate that UHRF1 plays a critical role for facilitating the response to DSB damage caused by γ-irradiation. UHRF1-depleted cells exhibit increased sensitivity to γ-irradiation, suggesting a compromised cellular response to DSBs. UHRF1-depleted cells show impaired cell cycle arrest and an impaired accumulation of histone H2AX phosphorylation (γH2AX) in response to γ-irradiation compared to control cells. We also demonstrate that UHRF1 is required for genome integrity, in that UHRF1-depleted cells displayed an increased frequency of chromosomal aberrations compared to control cells. Conclusions Our findings indicate a critical role for UHRF1 in maintenance of chromosome integrity and an optimal response to DSB damage.
Collapse
Affiliation(s)
- Helena Mistry
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, M5 S 1A8, Canada
| | - Laura Tamblyn
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, M5 S 1A8, Canada
| | - Hussein Butt
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, M5 S 1A8, Canada
| | - Daniel Sisgoreo
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, M5 S 1A8, Canada
| | - Aileen Gracias
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, M5 S 1A8, Canada
| | - Meghan Larin
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, M5 S 1A8, Canada
| | - Kalpana Gopalakrishnan
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
| | - Manoor Prakash Hande
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
| | - John Peter McPherson
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, M5 S 1A8, Canada
| |
Collapse
|
282
|
Suzuki K, Takahashi M, Oka Y, Yamauchi M, Suzuki M, Yamashita S. Requirement of ATM-dependent pathway for the repair of a subset of DNA double strand breaks created by restriction endonucleases. Genome Integr 2010; 1:4. [PMID: 20678255 PMCID: PMC2907562 DOI: 10.1186/2041-9414-1-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Accepted: 05/26/2010] [Indexed: 12/23/2022] Open
Abstract
Background DNA double strand breaks induced by DNA damaging agents, such ionizing radiation, are repaired by multiple DNA repair pathways including non-homologous end-joining (NHEJ) repair and homologous recombination (HR) repair. ATM-dependent DNA damage checkpoint regulates a part of DNA repair pathways, however, the exact role of ATM activity remains to be elucidated. In order to define the molecular structure of DNA double strand breaks requiring ATM activity we examined repair of DNA double strand breaks induced by different restriction endonucleases in normal human diploid cells treated with or without ATM-specific inhibitor. Results Synchronized G1 cells were treated with various restriction endonucleases. DNA double strand breaks were detected by the foci of phosphorylated ATM at serine 1981 and 53BP1. DNA damage was detectable 2 hours after the treatment, and the number of foci decreased thereafter. Repair of the 3'-protruding ends created by Pst I and Sph I was efficient irrespective of ATM function, whereas the repair of a part of the blunt ends caused by Pvu II and Rsa I, and 5'-protruding ends created by Eco RI and Bam HI, respectively, were compromised by ATM inhibition. Conclusions Our results indicate that ATM-dependent pathway plays a pivotal role in the repair of a subset of DNA double strand breaks with specific end structures.
Collapse
Affiliation(s)
- Keiji Suzuki
- Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Maiko Takahashi
- Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Yasuyoshi Oka
- Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Motohiro Yamauchi
- Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Masatoshi Suzuki
- Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Shunichi Yamashita
- Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| |
Collapse
|
283
|
Hatano A, Matsumoto M, Higashinakagawa T, Nakayama KI. Phosphorylation of the chromodomain changes the binding specificity of Cbx2 for methylated histone H3. Biochem Biophys Res Commun 2010; 397:93-9. [PMID: 20493168 DOI: 10.1016/j.bbrc.2010.05.074] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2010] [Accepted: 05/13/2010] [Indexed: 01/12/2023]
Abstract
The chromatin organizer modifier domain (chromodomain) is present in proteins that contribute to chromatin organization and mediates their binding to methylated histone H3. Despite a high level of sequence conservation, individual chromodomains manifest substantial differences in binding preference for methylated forms of histone H3, suggesting that posttranslational modification of the chromodomain might be an important determinant of binding specificity. We now show that mouse Cbx2 (also known as M33), a homolog of Drosophila Polycomb protein, is highly phosphorylated in some cell lines. A low-mobility band of Cbx2 observed on SDS-polyacrylamide gel electrophoresis was thus converted to a higher-mobility band by treatment with alkaline phosphatase. Mass spectrometric analysis revealed serine-42, a conserved amino acid in the chromodomain, as a phosphorylation site of Cbx2. Phosphorylation of the chromodomain of Cbx2 on this residue in vitro resulted in a reduced level of binding to an H3 peptide containing trimethylated lysine-9 as well as an increase in the extent of binding to an H3 peptide containing trimethylated lysine-27, suggesting that such phosphorylation changes the binding specificity of Cbx2 for modified histone H3. Phosphorylation of the chromodomain of Cbx2 may therefore serve as a molecular switch that affects the reading of the histone modification code and thereby controls epigenetic cellular memory.
Collapse
Affiliation(s)
- Atsushi Hatano
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka, Japan
| | | | | | | |
Collapse
|
284
|
Abstract
Heterochromatin Protein 1 (HP1) is a transcriptional repressor that directly binds to the methylated lysine 9 residue of histone H3 (H3K9me), which is a hallmark histone modification for transcriptionally silenced heterochromatin. Studies of homologs in different organisms have provided significant insight into the function of HP1 and the role of H3K9me. Initially discovered to be a major constituent of heterochromatin important for gene silencing, HP1 is now known to be a dynamic protein that also functions in transcriptional elongation, centromeric sister chromatid cohesion, telomere maintenance and DNA repair. Furthermore, recent studies have begun to uncover functional differences between HP1 variants and their H3K9me-independent mode of action. As our understanding of HP1 expands, however, conflicting data has also been reported that requires further reconciliation. Here we focus on some of the recent findings and controversies concerning HP1 functions in mammalian cells in comparison to studies in other organisms.
Collapse
Affiliation(s)
- Weihua Zeng
- Department of Biological Chemistry; School of Medicine; University of California; Irvine, CA USA
| | - Alexander R. Ball
- Department of Biological Chemistry; School of Medicine; University of California; Irvine, CA USA
| | - Kyoko Yokomori
- Department of Biological Chemistry; School of Medicine; University of California; Irvine, CA USA
| |
Collapse
|
285
|
Chaturvedi P, Parnaik VK. Lamin A rod domain mutants target heterochromatin protein 1alpha and beta for proteasomal degradation by activation of F-box protein, FBXW10. PLoS One 2010; 5:e10620. [PMID: 20498703 PMCID: PMC2869352 DOI: 10.1371/journal.pone.0010620] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2010] [Accepted: 04/20/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Lamins are major structural proteins of the nucleus and contribute to the organization of various nuclear functions. Mutations in the human lamin A gene cause a number of highly degenerative diseases, collectively termed as laminopathies. Cells expressing lamin mutations exhibit abnormal nuclear morphology and altered heterochromatin organization; however, the mechanisms responsible for these defects are not well understood. METHODOLOGY AND PRINCIPAL FINDINGS The lamin A rod domain mutants G232E, Q294P and R386K are either diffusely distributed or form large aggregates in the nucleoplasm, resulting in aberrant nuclear morphology in various cell types. We examined the effects of these lamin mutants on the distribution of heterochromatin protein 1 (HP1) isoforms. HeLa cells expressing these mutants showed a heterogeneous pattern of HP1alpha and beta depletion but without altering HP1gamma levels. Changes in HP1alpha and beta were not observed in cells expressing wild-type lamin A or mutant R482L, which assembled normally at the nuclear rim. Treatment with proteasomal inhibitors led to restoration of levels of HP1 isoforms and also resulted in stable association of lamin mutants with the nuclear periphery, rim localization of the inner nuclear membrane lamin-binding protein emerin and partial improvement of nuclear morphology. A comparison of the stability of HP1 isoforms indicated that HP1alpha and beta displayed increased turnover and higher basal levels of ubiquitination than HP1gamma. Transcript analysis of components of the ubiquitination pathway showed that a specific F-box protein, FBXW10 was induced several-fold in cells expressing lamin mutants. Importantly, ectopic expression of FBXW10 in HeLa cells led to depletion of HP1alpha and beta without alteration of HP1gamma levels. CONCLUSIONS Mislocalized lamins can induce ubiquitin-mediated proteasomal degradation of certain HP1 isoforms by activation of FBXW10, a member of the F-box family of proteins that is involved in E3 ubiquitin ligase activity.
Collapse
Affiliation(s)
| | - Veena K. Parnaik
- Centre for Cellular and Molecular Biology (CSIR), Hyderabad, India
- * E-mail:
| |
Collapse
|
286
|
Venkitaraman AR. Modifying chromatin architecture during the response to DNA breakage. Crit Rev Biochem Mol Biol 2010; 45:2-13. [PMID: 19874211 DOI: 10.3109/10409230903325446] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The human genome is compacted in a dynamic macromolecular complex, chromatin, whose structure presents a considerable barrier to the cellular machinery which responds to DNA double-strand breaks. This review discusses current understanding of the processes that modify chromatin architecture to enable, first, the sensing of DNA breakage, next, the assembly of the protein complexes that resolve the lesion, and finally, the restoration of epigenetic marks after its repair. The importance of these fundamental biological processes is underscored by the growing appreciation that they are aberrant in human diseases, and that their modulation could provide new approaches to disease therapy.
Collapse
Affiliation(s)
- Ashok R Venkitaraman
- University of Cambridge, Department of Oncology & The Medical Research Council Cancer Cell Unit, Hutchison/MRC Research Centre, UK
| |
Collapse
|
287
|
Huen MSY, Huang J, Leung JWC, Sy SMH, Leung KM, Ching YP, Tsao SW, Chen J. Regulation of chromatin architecture by the PWWP domain-containing DNA damage-responsive factor EXPAND1/MUM1. Mol Cell 2010; 37:854-64. [PMID: 20347427 DOI: 10.1016/j.molcel.2009.12.040] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 10/22/2009] [Accepted: 12/31/2009] [Indexed: 11/18/2022]
Abstract
Dynamic changes of chromatin structure facilitate diverse biological events, including DNA replication, repair, recombination, and gene transcription. Recent evidence revealed that DNA damage elicits alterations to the chromatin to facilitate proper checkpoint activation and DNA repair. Here we report the identification of the PWWP domain-containing protein EXPAND1/MUM1 as an architectural component of the chromatin, which in response to DNA damage serves as an accessory factor to promote cell survival. Depletion of EXPAND1/MUM1 or inactivation of its PWWP domain resulted in chromatin compaction. Upon DNA damage, EXPAND1/MUM1 rapidly concentrates at the vicinity of DNA damage sites via its direct interaction with 53BP1. Ablation of this interaction impaired damage-induced chromatin decondensation, which is accompanied by sustained DNA damage and hypersensitivity to genotoxic stress. Collectively, our study uncovers a chromatin-bound factor that serves an accessory role in coupling damage signaling with chromatin changes in response to DNA damage.
Collapse
Affiliation(s)
- Michael S Y Huen
- Department of Anatomy, The University of Hong Kong, L1, Laboratory Block, 21 Sassoon Road, Hong Kong SAR.
| | | | | | | | | | | | | | | |
Collapse
|
288
|
Buonomo SBC. Heterochromatin DNA replication and Rif1. Exp Cell Res 2010; 316:1907-13. [PMID: 20347809 DOI: 10.1016/j.yexcr.2010.03.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 03/16/2010] [Accepted: 03/17/2010] [Indexed: 10/19/2022]
Abstract
Constitutive heterochromatin is essential for chromosome maintenance in all eukaryotes. However, the repetitive nature of the underlying DNA, the presence of very stable protein-DNA complexes and the highly compacted nature of this type of chromatin represent a challenge for the DNA replication machinery. Data collected from different model organisms suggest that at least some of the components of the DNA replication checkpoint could be essential for ensuring the completion of DNA replication in the context of heterochromatin. I review and discuss the literature that directly or indirectly contributes to the formulation of this hypothesis. In particular, I focus my attention on Rif1, a newly discovered member of the DNA replication checkpoint. Recent data generated in mammalian cells highlight the spatial and temporal relation between Rif1, pericentromeric heterochromatin and S-phase. I review these recent and the previous data coming from studies performed in yeast in order to highlight the possible evolutionary conserved links and propose a molecular model for Rif1 role in heterochromatin replication.
Collapse
Affiliation(s)
- S B C Buonomo
- EMBL Mouse Biology Unit, Via Ramarini 32, Monteorotondo, Rome, Italy.
| |
Collapse
|
289
|
Khobta A, Anderhub S, Kitsera N, Epe B. Gene silencing induced by oxidative DNA base damage: association with local decrease of histone H4 acetylation in the promoter region. Nucleic Acids Res 2010; 38:4285-95. [PMID: 20338881 PMCID: PMC2910050 DOI: 10.1093/nar/gkq170] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Oxidized DNA bases, particularly 7,8-dihydro-8-oxoguanine (8-oxoG), are endogenously generated in cells, being a cause of carcinogenic mutations and possibly interfering with gene expression. We found that expression of an oxidatively damaged plasmid DNA is impaired after delivery into human host cells not only due to decreased retention in the transfected cells, but also due to selective silencing of the damaged reporter gene. To test whether the gene silencing was associated with a specific change of the chromatin structure, we determined the levels of histone modifications related to transcriptional activation (acetylated histones H3 and H4) or repression (methylated K9 and K27 of the histone H3, and histone H1) in the promoter region and in the downstream transcribed DNA. Acetylation of histone H4 was found to be specifically decreased by 25% in the proximal promoter region of the damaged gene, while minor quantitative changes in other tested chromatin components could not be proven as significant. Treatment with an inhibitor of histone deacetylases, trichostatin A, partially restored expression of the damaged DNA, suggesting a causal connection between the changes of histone acetylation and persistent gene repression. Based on these findings, we propose that silencing of the oxidatively damaged DNA may occur in a chromatin-mediated mechanism.
Collapse
Affiliation(s)
- Andriy Khobta
- Johannes Gutenberg University of Mainz, Institute of Pharmacy, Staudingerweg 5, 55128 Mainz, Germany.
| | | | | | | |
Collapse
|
290
|
Abstract
Cells are constantly exposed to genotoxic events that can damage DNA. To counter this, cells have evolved a series of highly conserved DNA repair pathways to maintain genomic integrity. The ATM protein kinase is a master regulator of the DNA double-strand break (DSB) repair pathway. DSBs activate ATM's kinase activity, promoting the phosphorylation of proteins involved in both checkpoint activation and DNA repair. Recent work has revealed that two DNA damage response proteins, the Tip60 acetyltransferase and the mre11- rad50-nbs1 (MRN) complex, co-operate in the activation of ATM in response to DSBs. MRN functions to target ATM and the Tip60 acetyltransferase to DSBs. Tip60's chromodomain then interacts with histone H3 trimethylated on lysine 9, activating Tip60's acetyltransferase activity and stimulating the subsequent acetylation and activation of ATM's kinase activity. These results underscore the importance of chromatin structure in regulating DNA damage signaling and emphasize how histone modifications co-ordinate DNA repair. In addition, human tumors frequently exhibit altered patterns of histone methylation. This rewriting of the histone methylation code in tumor cells may impact the efficiency of DSB repair, increasing genomic instability and contributing to the initiation and progression of cancer.
Collapse
Affiliation(s)
- Yingli Sun
- Division of Genomic Stability and DNA Repair, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
291
|
Asakawa H, Koizumi H, Koike A, Takahashi M, Wu W, Iwase H, Fukuda M, Ohta T. Prediction of breast cancer sensitivity to neoadjuvant chemotherapy based on status of DNA damage repair proteins. Breast Cancer Res 2010; 12:R17. [PMID: 20205718 PMCID: PMC2879561 DOI: 10.1186/bcr2486] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 01/07/2010] [Accepted: 03/05/2010] [Indexed: 12/31/2022] Open
Abstract
Introduction Various agents used in breast cancer chemotherapy provoke DNA double-strand breaks (DSBs). DSB repair competence determines the sensitivity of cells to these agents whereby aberrations in the repair machinery leads to apoptosis. Proteins required for this pathway can be detected as nuclear foci at sites of DNA damage when the pathway is intact. Here we investigate whether focus formation of repair proteins can predict chemosensitivity of breast cancer. Methods Core needle biopsy specimens were obtained from sixty cases of primary breast cancer before and 18-24 hours after the first cycle of neoadjuvant epirubicin plus cyclophosphamide (EC) treatment. Nuclear focus formation of DNA damage repair proteins was immunohistochemically analyzed and compared with tumor response to chemotherapy. Results EC treatment induced nuclear foci of γH2AX, conjugated ubiquitin, and Rad51 in a substantial amount of cases. In contrast, BRCA1 foci were observed before treatment in the majority of the cases and only decreased after EC in thirteen cases. The presence of BRCA1-, γH2AX-, or Rad51-foci before treatment or the presence of Rad51-foci after treatment was inversely correlated with tumor response to chemotherapy. DNA damage response (DDR) competence was further evaluated by considering all four repair indicators together. A high DDR score significantly correlated with low tumor response to EC and EC + docetaxel whereas other clinicopathological factors analyzed did not. Conclusions High performing DDR focus formation resulted in tumor resistance to DNA damage-inducing chemotherapy. Our results suggested an importance of evaluation of DDR competence to predict breast cancer chemosensitivity, and merits further studying into its usefulness in exclusion of non-responder patients.
Collapse
Affiliation(s)
- Hideki Asakawa
- Division of Breast and Endocrine Surgery, Department of Surgery, St, Marianna University School of Medicine, Kawasaki, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
292
|
De Koning L, Savignoni A, Boumendil C, Rehman H, Asselain B, Sastre-Garau X, Almouzni G. Heterochromatin protein 1alpha: a hallmark of cell proliferation relevant to clinical oncology. EMBO Mol Med 2010; 1:178-91. [PMID: 20049717 PMCID: PMC3378125 DOI: 10.1002/emmm.200900022] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mammalian cells contain three closely related heterochromatin protein 1 (HP1) isoforms, HP1α, β and γ, which, by analogy to their unique counterpart in Schizosaccharomyces pombe, have been implicated in gene silencing, genome stability and chromosome segregation. However, the individual importance of each isoform during normal cell cycle and disease has remained an unresolved issue. Here, we reveal that HP1α shows a proliferation-dependent regulation, which neither HP1β nor γ display. During transient cell cycle exit, the HP1α mRNA and protein levels diminish. Transient depletion of HP1α, but not HP1β or γ, in tumoural and primary human cells leads to defects in chromosome segregation. Notably, analysis of an annotated collection of samples derived from carcinomas reveals an overexpression of HP1α mRNA and protein, which correlates with clinical data and disease outcome. Our results unveil a specific expression pattern for the HP1α isoform, suggesting a unique function related to cell division and tumour growth. The overexpression of HP1α constitutes a new example of a potential epigenetic contribution to tumourigenesis that is of clinical interest for cancer prognosis.
Collapse
Affiliation(s)
- Leanne De Koning
- Laboratory of Nuclear Dynamics and Genome Plasticity (UMR218), Institut Curie/CNRS/UPMC, 26 Rue d'Ulm, 75248 Paris Cedex 05, France
| | | | | | | | | | | | | |
Collapse
|
293
|
Tanaka S, Mogushi K, Yasen M, Noguchi N, Kudo A, Nakamura N, Ito K, Miki Y, Inazawa J, Tanaka H, Arii S. Gene-expression phenotypes for vascular invasiveness of hepatocellular carcinomas. Surgery 2010; 147:405-14. [PMID: 19945130 DOI: 10.1016/j.surg.2009.09.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Accepted: 09/29/2009] [Indexed: 01/16/2023]
|
294
|
Lilley CE, Chaurushiya MS, Weitzman MD. Chromatin at the intersection of viral infection and DNA damage. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1799:319-27. [PMID: 19616655 PMCID: PMC2838936 DOI: 10.1016/j.bbagrm.2009.06.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Accepted: 06/25/2009] [Indexed: 11/18/2022]
Abstract
During infection, viruses cause global disruption to nuclear architecture in their attempt to take over the cell. In turn, the host responds with various defenses, which include chromatin-mediated silencing of the viral genome and activation of DNA damage signaling pathways. Dynamic exchanges at chromatin, and specific post-translational modifications on histones have recently emerged as master controllers of DNA damage signaling and repair. Studying viral control of chromatin modifications is identifying histones as important players in the battle between host and virus for control of cell cycle and gene expression. These studies are revealing new complexities of the virus-host interaction, uncovering the potential of chromatin as an anti-viral defense mechanism, and also providing unique insights into the role of chromatin in DNA repair.
Collapse
Affiliation(s)
- Caroline E Lilley
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
295
|
|
296
|
Costes SV, Chiolo I, Pluth JM, Barcellos-Hoff MH, Jakob B. Spatiotemporal characterization of ionizing radiation induced DNA damage foci and their relation to chromatin organization. Mutat Res 2010; 704:78-87. [PMID: 20060491 DOI: 10.1016/j.mrrev.2009.12.006] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 12/17/2009] [Accepted: 12/22/2009] [Indexed: 11/28/2022]
Abstract
DNA damage sensing proteins have been shown to localize to the sites of DNA double strand breaks (DSB) within seconds to minutes following ionizing radiation (IR) exposure, resulting in the formation of microscopically visible nuclear domains referred to as radiation-induced foci (RIF). This review characterizes the spatiotemporal properties of RIF at physiological doses, minutes to hours following exposure to ionizing radiation, and it proposes a model describing RIF formation and resolution as a function of radiation quality and chromatin territories. Discussion is limited to RIF formed by three interrelated proteins ATM (Ataxia telangiectasia mutated), 53BP1 (p53 binding protein 1) and gammaH2AX (phosphorylated variant histone H2AX), with an emphasis on the later. This review discusses the importance of not equating RIF with DSB in all situations and shows how dose and time dependence of RIF frequency is inconsistent with a one to one equivalence. Instead, we propose that RIF mark regions of the chromatin that would serve as scaffolds rigid enough to keep broken DNA from diffusing away, but open enough to allow the repair machinery to access the damage site. We review data indicating clear kinetic and physical differences between RIF emerging from dense and uncondensed regions of the nucleus. We suggest that persistent RIF observed days following exposure to ionizing radiation are nuclear marks of permanent rearrangement of the chromatin architecture. Such chromatin alterations may not always lead to growth arrest as cells have been shown to replicate these in progeny. Thus, heritable persistent RIF spanning over tens of Mbp may reflect persistent changes in the transcriptome of a large progeny of cells. Such model opens the door to a "non-DNA-centric view" of radiation-induced phenotypes.
Collapse
Affiliation(s)
- S V Costes
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | | | | | | | | |
Collapse
|
297
|
Abstract
The stability of the genome is constantly under attack from both endogenous and exogenous DNA damaging agents. These agents, as well as naturally occurring processes such as DNA replication and recombination can result in DNA double-strand breaks (DSBs). DSBs are potentially lethal and so eukaryotic cells have evolved an elaborate pathway, the DNA damage response, which detects the damage, recruits proteins to the DSBs, activates checkpoints to stall cell cycle progression and ultimately mediates repair of the damaged DNA. As the DSBs occur in the context of chromatin, execution of this response is partly orchestrated through the modification of the DNA-bound histone proteins. These histone modifications include the addition or removal of various chemical groups or small peptides and function to change the chromatin structure or to attract factors involved in the DNA damage response, and as such, are particularly important in the early stages of the DNA damage response. This review will focus on such modifications, the enzymes responsible and also highlights their importance by reporting known roles for these modifications in genome stability and disease.
Collapse
Affiliation(s)
- Jennifer E Chubb
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland, Galway, Galway, Ireland
| | | |
Collapse
|
298
|
Abstract
Histone H2AX is a histone variant found in almost all eukaryotes. It makes a central contribution to genome stability through its role in the signaling of DNA damage events and by acting as a foundation for the assembly of repair foci. The H2AX protein sequence is highly similar and in some cases overlapping with replication-dependent canonical H2A, yet the H2AX gene and protein structures exhibit a number of features specific to the role of this histone in DNA repair. The most well known of these is a specific serine at the extreme C-terminus of H2AX which is phosphorylated by Phosphoinositide-3-Kinase-related protein Kinases (PIKKs) to generate the gammaH2AX mark. However, recent studies have demonstrated that phosphorylation, ubiquitylation and other post-translational modifications are also crucial for function. H2AX transcript properties suggest a capability to respond to damage events. Furthermore, the biochemical properties of H2AX protein within the nucleosome structure and its distribution within chromatin also point to features linked to its role in the DNA damage response. In particular, the theoretical inter-nucleosomal spacing of H2AX and the potential implications of amino acid residues distinguishing H2AX from canonical H2A in structure and dynamics are considered in detail. This review summarises current understanding of H2AX from a structure-function perspective.
Collapse
Affiliation(s)
- David Miguel Susano Pinto
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland, Galway, Galway, Ireland
| | | |
Collapse
|
299
|
Gerlitz G. HMGNs, DNA repair and cancer. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2009; 1799:80-5. [PMID: 20004154 DOI: 10.1016/j.bbagrm.2009.10.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Revised: 10/21/2009] [Accepted: 10/26/2009] [Indexed: 12/28/2022]
Abstract
DNA lesions threaten the integrity of the genome and are a major factor in cancer formation and progression. Eukaryotic DNA is organized in nucleosome-based higher order structures, which form the chromatin fiber. In recent years, considerable knowledge has been gained on the importance of chromatin dynamics for the cellular response to DNA damage and for the ability to repair DNA lesions. High Mobility Group N1 (HMGN1) protein is an emerging factor that is important for chromatin alterations in response to DNA damage originated from both ultra violet light (UV) and ionizing irradiation (IR). HMGN1 is a member in the HMGN family of chromatin architectural proteins. HMGNs bind directly to nucleosomes and modulate the structure of the chromatin fiber in a highly dynamic manner. This review focuses mainly on the roles of HMGN1 in the cellular response pathways to different types of DNA lesions and in transcriptional regulation of cancer-related genes. In addition, emerging roles for HMGN5 in cancer progression and for HMGN2 as a potential tool in cancer therapy will be discussed.
Collapse
Affiliation(s)
- Gabi Gerlitz
- Protein Section, Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Building 37/ Room 3122, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| |
Collapse
|
300
|
|