251
|
Rasheed A, Gumus E, Zaki M, Johnson K, Manzoor H, LaForce G, Ross D, McEvoy-Venneri J, Stanley V, Lee S, Virani A, Ben-Omran T, Gleeson JG, Naz S, Schaffer A. Bi-allelic TTC5 variants cause delayed developmental milestones and intellectual disability. J Med Genet 2020; 58:237-246. [PMID: 32439809 DOI: 10.1136/jmedgenet-2020-106849] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/01/2020] [Accepted: 04/17/2020] [Indexed: 11/04/2022]
Abstract
BACKGROUND Intellectual disability syndromes (IDSs) with or without developmental delays affect up to 3% of the world population. We sought to clinically and genetically characterise a novel IDS segregating in five unrelated consanguineous families. METHODS Clinical analyses were performed for eight patients with intellectual disability (ID). Whole-exome sequencing for selected participants followed by Sanger sequencing for all available family members was completed. Identity-by-descent (IBD) mapping was carried out for patients in two Egyptian families harbouring an identical variant. RNA was extracted from blood cells of Turkish participants, followed by cDNA synthesis and real-time PCR for TTC5. RESULTS Phenotype comparisons of patients revealed shared clinical features of moderate-to-severe ID, corpus callosum agenesis, mild ventriculomegaly, simplified gyral pattern, cerebral atrophy, delayed motor and verbal milestones and hypotonia, presenting with an IDS. Four novel homozygous variants in TTC5: c.629A>G;p.(Tyr210Cys), c.692C>T;p.(Ala231Val), c.787C>T;p.(Arg263Ter) and c.1883C>T;p.(Arg395Ter) were identified in the eight patients from participating families. IBD mapping revealed that c.787C>T;p.(Arg263Ter) is a founder variant in Egypt. Missense variants c.629A>G;p.(Tyr210Cys) and c.692C>T;p.(Ala231Val) disrupt highly conserved residues of TTC5 within the fifth and sixth tetratricopeptide repeat motifs which are required for p300 interaction, while the nonsense variants are predicted to decrease TTC5 expression. Functional analysis of variant c.1883C>T;p.(Arg395Ter) showed reduced TTC5 transcript levels in accordance with nonsense-mediated decay. CONCLUSION Combining our clinical and molecular data with a recent case report, we identify the core and variable clinical features associated with TTC5 loss-of-function variants and reveal the requirement for TTC5 in human brain development and health.
Collapse
Affiliation(s)
- Arisha Rasheed
- School of Biological Sciences, University of the Punjab Quaid-i-Azam Campus, Lahore, Pakistan
| | - Evren Gumus
- Medical Genetics, Mugla Sitki Kocman University Faculty of Medicine, Mugla, Turkey.,Medical Genetics, Harran University Faculty of Medicine, Sanliurfa, Turkey
| | - Maha Zaki
- Clinical Genetic Department, National Research Centre, Cairo, Egypt
| | - Katherine Johnson
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Humera Manzoor
- School of Biological Sciences, University of the Punjab Quaid-i-Azam Campus, Lahore, Pakistan
| | - Geneva LaForce
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Danica Ross
- Rady Children's Institute for Genomic Medicine, San Diego, California, USA.,Department of Neuroscience, University of California, San Diego, La Jolla, CA, USA
| | - Jennifer McEvoy-Venneri
- Rady Children's Institute for Genomic Medicine, San Diego, California, USA.,Department of Neuroscience, University of California, San Diego, La Jolla, CA, USA
| | - Valentina Stanley
- Department of Neuroscience, University of California, San Diego, La Jolla, CA, USA
| | - Sangmoon Lee
- Rady Children's Institute for Genomic Medicine, San Diego, California, USA.,Department of Neuroscience, University of California, San Diego, La Jolla, CA, USA
| | - Abbir Virani
- Rady Children's Institute for Genomic Medicine, San Diego, California, USA.,Department of Neuroscience, University of California, San Diego, La Jolla, CA, USA
| | - Tawfeg Ben-Omran
- Clinical and Metabolic Genetics Division, Department of Pediatrics, Weill-Cornell Medical College, Hamad Medical Corporation, Doha, Qatar
| | - Joseph G Gleeson
- Rady Children's Institute for Genomic Medicine, San Diego, California, USA.,Department of Neuroscience and Pediatrics, Howard Hughes Medical Insistute, University of California, San Diego, La Jolla, CA, USA
| | - Sadaf Naz
- School of Biological Sciences, University of the Punjab Quaid-i-Azam Campus, Lahore, Pakistan
| | - Ashleigh Schaffer
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
252
|
Parenti I, Diab F, Gil SR, Mulugeta E, Casa V, Berutti R, Brouwer RWW, Dupé V, Eckhold J, Graf E, Puisac B, Ramos F, Schwarzmayr T, Gines MM, van Staveren T, van IJcken WFJ, Strom TM, Pié J, Watrin E, Kaiser FJ, Wendt KS. MAU2 and NIPBL Variants Impair the Heterodimerization of the Cohesin Loader Subunits and Cause Cornelia de Lange Syndrome. Cell Rep 2020; 31:107647. [PMID: 32433956 DOI: 10.1016/j.celrep.2020.107647] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 09/30/2019] [Accepted: 04/24/2020] [Indexed: 12/26/2022] Open
Abstract
The NIPBL/MAU2 heterodimer loads cohesin onto chromatin. Mutations in NIPBL account for most cases of the rare developmental disorder Cornelia de Lange syndrome (CdLS). Here we report a MAU2 variant causing CdLS, a deletion of seven amino acids that impairs the interaction between MAU2 and the NIPBL N terminus. Investigating this interaction, we discovered that MAU2 and the NIPBL N terminus are largely dispensable for normal cohesin and NIPBL function in cells with a NIPBL early truncating mutation. Despite a predicted fatal outcome of an out-of-frame single nucleotide duplication in NIPBL, engineered in two different cell lines, alternative translation initiation yields a form of NIPBL missing N-terminal residues. This form cannot interact with MAU2, but binds DNA and mediates cohesin loading. Altogether, our work reveals that cohesin loading can occur independently of functional NIPBL/MAU2 complexes and highlights a novel mechanism protective against out-of-frame mutations that is potentially relevant for other genetic conditions.
Collapse
Affiliation(s)
- Ilaria Parenti
- Sektion für Funktionelle Genetik am Institut für Humangenetik Lübeck, Universität zu Lübeck, Lübeck, Germany; Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria
| | - Farah Diab
- Centre National de la Recherche Scientifique, UMR6290, Rennes, France; Institut de Génétique et Développement de Rennes, Université de Rennes, Rennes, France
| | - Sara Ruiz Gil
- Sektion für Funktionelle Genetik am Institut für Humangenetik Lübeck, Universität zu Lübeck, Lübeck, Germany
| | | | - Valentina Casa
- Department of Cell Biology, Erasmus MC, Rotterdam, the Netherlands
| | - Riccardo Berutti
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Rutger W W Brouwer
- Erasmus MC, University Medical Center Rotterdam, Department of Cell Biology, Center for Biomics, the Netherlands
| | - Valerie Dupé
- Centre National de la Recherche Scientifique, UMR6290, Rennes, France; Institut de Génétique et Développement de Rennes, Université de Rennes, Rennes, France
| | - Juliane Eckhold
- Sektion für Funktionelle Genetik am Institut für Humangenetik Lübeck, Universität zu Lübeck, Lübeck, Germany; Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Elisabeth Graf
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Beatriz Puisac
- Unit of Clinical Genetics and Functional Genomics, Department of Pharmacology-Physiology and Paediatrics, School of Medicine, University of Zaragoza, CIBERER-GCV02 and ISS-Aragon, 50009 Zaragoza, Spain
| | - Feliciano Ramos
- Unit of Clinical Genetics and Functional Genomics, Department of Pharmacology-Physiology and Paediatrics, School of Medicine, University of Zaragoza, CIBERER-GCV02 and ISS-Aragon, 50009 Zaragoza, Spain
| | - Thomas Schwarzmayr
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | | | | | - Wilfred F J van IJcken
- Erasmus MC, University Medical Center Rotterdam, Department of Cell Biology, Center for Biomics, the Netherlands
| | - Tim M Strom
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany; Institute of Human Genetics, Technische Universität München, Munich, Germany
| | - Juan Pié
- Unit of Clinical Genetics and Functional Genomics, Department of Pharmacology-Physiology and Paediatrics, School of Medicine, University of Zaragoza, CIBERER-GCV02 and ISS-Aragon, 50009 Zaragoza, Spain
| | - Erwan Watrin
- Centre National de la Recherche Scientifique, UMR6290, Rennes, France; Institut de Génétique et Développement de Rennes, Université de Rennes, Rennes, France
| | - Frank J Kaiser
- Sektion für Funktionelle Genetik am Institut für Humangenetik Lübeck, Universität zu Lübeck, Lübeck, Germany; Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany; DZHK e.V. (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany.
| | - Kerstin S Wendt
- Department of Cell Biology, Erasmus MC, Rotterdam, the Netherlands.
| |
Collapse
|
253
|
Ghinia Tegla MG, Buenaventura DF, Kim DY, Thakurdin C, Gonzalez KC, Emerson MM. OTX2 represses sister cell fate choices in the developing retina to promote photoreceptor specification. eLife 2020; 9:e54279. [PMID: 32347797 PMCID: PMC7237216 DOI: 10.7554/elife.54279] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/28/2020] [Indexed: 12/20/2022] Open
Abstract
During vertebrate retinal development, subsets of progenitor cells generate progeny in a non-stochastic manner, suggesting that these decisions are tightly regulated. However, the gene-regulatory network components that are functionally important in these progenitor cells are largely unknown. Here we identify a functional role for the OTX2 transcription factor in this process. CRISPR/Cas9 gene editing was used to produce somatic mutations of OTX2 in the chick retina and identified similar phenotypes to those observed in human patients. Single cell RNA sequencing was used to determine the functional consequences OTX2 gene editing on the population of cells derived from OTX2-expressing retinal progenitor cells. This confirmed that OTX2 is required for the generation of photoreceptors, but also for repression of specific retinal fates and alternative gene regulatory networks. These include specific subtypes of retinal ganglion and horizontal cells, suggesting that in this context, OTX2 functions to repress sister cell fate choices.
Collapse
Affiliation(s)
| | - Diego F Buenaventura
- Department of Biology, The City College of New York, City University of New York (CUNY)New YorkUnited States
- PhD Program in Biology, The Graduate Center of the City University of New York (CUNY)New YorkUnited States
| | - Diana Y Kim
- Department of Biology, The City College of New York, City University of New York (CUNY)New YorkUnited States
| | - Cassandra Thakurdin
- Department of Biology, The City College of New York, City University of New York (CUNY)New YorkUnited States
| | - Kevin C Gonzalez
- Department of Biology, The City College of New York, City University of New York (CUNY)New YorkUnited States
| | - Mark M Emerson
- Department of Biology, The City College of New York, City University of New York (CUNY)New YorkUnited States
- PhD Program in Biology, The Graduate Center of the City University of New York (CUNY)New YorkUnited States
- PhD Program in Biochemistry, The Graduate Center of the City University of New York (CUNY)New YorkUnited States
| |
Collapse
|
254
|
Willems J, de Jong APH, Scheefhals N, Mertens E, Catsburg LAE, Poorthuis RB, de Winter F, Verhaagen J, Meye FJ, MacGillavry HD. ORANGE: A CRISPR/Cas9-based genome editing toolbox for epitope tagging of endogenous proteins in neurons. PLoS Biol 2020; 18:e3000665. [PMID: 32275651 PMCID: PMC7176289 DOI: 10.1371/journal.pbio.3000665] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 04/22/2020] [Accepted: 03/27/2020] [Indexed: 12/15/2022] Open
Abstract
The correct subcellular distribution of proteins establishes the complex morphology and function of neurons. Fluorescence microscopy techniques are invaluable to investigate subcellular protein distribution, but they suffer from the limited ability to efficiently and reliably label endogenous proteins with fluorescent probes. We developed ORANGE: Open Resource for the Application of Neuronal Genome Editing, which mediates targeted genomic integration of epitope tags in rodent dissociated neuronal culture, in organotypic slices, and in vivo. ORANGE includes a knock-in library for in-depth investigation of endogenous protein distribution, viral vectors, and a detailed two-step cloning protocol to develop knock-ins for novel targets. Using ORANGE with (live-cell) superresolution microscopy, we revealed the dynamic nanoscale organization of endogenous neurotransmitter receptors and synaptic scaffolding proteins, as well as previously uncharacterized proteins. Finally, we developed a mechanism to create multiple knock-ins in neurons, mediating multiplex imaging of endogenous proteins. Thus, ORANGE enables quantification of expression, distribution, and dynamics for virtually any protein in neurons at nanoscale resolution. This study describes the development of a genome editing toolbox (ORANGE) for endogenous tagging of proteins in neurons. This open resource allows the investigation of protein localization and dynamics in neurons using live-cell and super-resolution imaging techniques.
Collapse
Affiliation(s)
- Jelmer Willems
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Arthur P. H. de Jong
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Nicky Scheefhals
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Eline Mertens
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Lisa A. E. Catsburg
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Rogier B. Poorthuis
- Department of Translational Neuroscience, UMC Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Fred de Winter
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Joost Verhaagen
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Frank J. Meye
- Department of Translational Neuroscience, UMC Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Harold D. MacGillavry
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
- * E-mail:
| |
Collapse
|
255
|
A framework for high-resolution phenotyping of candidate male infertility mutants: from human to mouse. Hum Genet 2020; 140:155-182. [PMID: 32248361 DOI: 10.1007/s00439-020-02159-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 03/27/2020] [Indexed: 12/18/2022]
Abstract
Male infertility is a heterogeneous condition of largely unknown etiology that affects at least 7% of men worldwide. Classical genetic approaches and emerging next-generation sequencing studies support genetic variants as a frequent cause of male infertility. Meanwhile, the barriers to transmission of this disease mean that most individual genetic cases will be rare, but because of the large percentage of the genome required for spermatogenesis, the number of distinct causal mutations is potentially large. Identifying bona fide causes of male infertility thus requires advanced filtering techniques to select for high-probability candidates, including the ability to test causality in animal models. The mouse remains the gold standard for defining the genotype-phenotype connection in male fertility. Here, we present a best practice guide consisting of (a) major points to consider when interpreting next-generation sequencing data performed on infertile men, and, (b) a systematic strategy to categorize infertility types and how they relate to human male infertility. Phenotyping infertility in mice can involve investigating the function of multiple cell types across the testis and epididymis, as well as sperm function. These findings will feed into the diagnosis and treatment of male infertility as well as male health broadly.
Collapse
|
256
|
Klück V, van Deuren RC, Cavalli G, Shaukat A, Arts P, Cleophas MC, Crișan TO, Tausche AK, Riches P, Dalbeth N, Stamp LK, Hindmarsh JH, Jansen TLTA, Janssen M, Steehouwer M, Lelieveld S, van de Vorst M, Gilissen C, Dagna L, Van de Veerdonk FL, Eisenmesser EZ, Kim S, Merriman TR, Hoischen A, Netea MG, Dinarello CA, Joosten LA. Rare genetic variants in interleukin-37 link this anti-inflammatory cytokine to the pathogenesis and treatment of gout. Ann Rheum Dis 2020; 79:536-544. [PMID: 32114511 DOI: 10.1136/annrheumdis-2019-216233] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 02/14/2020] [Accepted: 02/14/2020] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Gout is characterised by severe interleukin (IL)-1-mediated joint inflammation induced by monosodium urate crystals. Since IL-37 is a pivotal anti-inflammatory cytokine suppressing the activity of IL-1, we conducted genetic and functional studies aimed at elucidating the role of IL-37 in the pathogenesis and treatment of gout. METHODS Variant identification was performed by DNA sequencing of all coding bases of IL37 using molecular inversion probe-based resequencing (discovery cohort: gout n=675, controls n=520) and TaqMan genotyping (validation cohort: gout n=2202, controls n=2295). Predictive modelling of the effects of rare variants on protein structure was followed by in vitro experiments evaluating the impact on protein function. Treatment with recombinant IL-37 was evaluated in vitro and in vivo in a mouse model of gout. RESULTS We identified four rare variants in IL37 in six of the discovery gout patients; p.(A144P), p.(G174Dfs*16), p.(C181*) and p.(N182S), whereas none emerged in healthy controls (Fisher's exact p-value=0.043). All variants clustered in the functional domain of IL-37 in exon 5 (p-value=5.71×10-5). Predictive modelling and functional studies confirmed loss of anti-inflammatory functions and we substantiated the therapeutic potential of recombinant IL-37 in the treatment of gouty inflammation. Furthermore, the carrier status of p.(N182S)(rs752113534) was associated with increased risk (OR=1.81, p-value=0.031) of developing gout in hyperuricaemic individuals of Polynesian ancestry. CONCLUSION Here, we provide genetic as well as mechanistic evidence for the role of IL-37 in the pathogenesis of gout, and highlight the therapeutic potential of recombinant IL-37 for the treatment of gouty arthritis.
Collapse
Affiliation(s)
- Viola Klück
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rosanne C van Deuren
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Giulio Cavalli
- Internal Medicine and Clinical Immunology, Vita-Salute San Raffaele University, Milan, Italy
- Department of Medicine, University of Colorado Denver, Denver, Colorado, USA
| | - Amara Shaukat
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Peer Arts
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, South Australia, Australia
| | - Maartje C Cleophas
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tania O Crișan
- Department of Medical Genetics, Universitatea de Medicina si Farmacie Iuliu Hatieganu, Cluj-Napoca, Romania
| | - Anne-Kathrin Tausche
- Department of Internal Medicine, Section of Rheumatology, University Clinic Carl Gustav Carus, Dresden, Saxonia, Germany
| | - Philip Riches
- Rheumatology and Bone Disease, University of Edinburgh, Edinburgh, UK
| | - Nicola Dalbeth
- Department of Medicine, University of Auckland, Auckland, New Zealand
| | - Lisa K Stamp
- Department of Medicine, Otago University, Christchurch, Canterbury, New Zealand
| | - Jennie Harré Hindmarsh
- Te Rangawairua o Paratene Ngata Research Centre, Ngāti Porou Hauora Charitable Trust, Te Puia Springs, Tairāwhiti, New Zealand
| | - Tim L Th A Jansen
- Department of Rheumatology, VieCuri Medical Center, Venlo, The Netherlands
| | - Matthijs Janssen
- Department of Rheumatology, VieCuri Medical Center, Venlo, The Netherlands
| | - Marloes Steehouwer
- Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Stefan Lelieveld
- Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Maartje van de Vorst
- Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Christian Gilissen
- Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lorenzo Dagna
- Internal Medicine and Clinical Immunology, Vita-Salute San Raffaele University, Milan, Italy
| | - Frank L Van de Veerdonk
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Elan Z Eisenmesser
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Denver, Colorado, USA
| | - SooHyun Kim
- Laboratory of Cytokine Immunology, Konkuk University, Seoul, Korea (the Republic of)
| | - Tony R Merriman
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Alexander Hoischen
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Genomics and Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Charles A Dinarello
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Medicine, University of Colorado Denver, Denver, Colorado, USA
| | - Leo Ab Joosten
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Medical Genetics, Universitatea de Medicina si Farmacie Iuliu Hatieganu, Cluj-Napoca, Romania
| |
Collapse
|
257
|
Concurrent germline and somatic pathogenic BAP1 variants in a patient with metastatic bladder cancer. NPJ Genom Med 2020; 5:12. [PMID: 32218990 PMCID: PMC7089973 DOI: 10.1038/s41525-020-0121-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/28/2020] [Indexed: 02/06/2023] Open
Abstract
Germline pathogenic variants in the BRCA1-associated protein-1 (BAP1) gene cause the BAP1 tumor predisposition syndrome (TPDS). BAP1 TPDS is associated with an increased risk of uveal and cutaneous melanoma, mesothelioma, renal cell carcinoma, and several other cancer subtypes. Here, we report a germline nonsense BAP1 variant (c.850G>T, p.Glu284Ter) in a patient with bladder cancer and a strong family history of malignancy. Concurrently, we identified a somatic frameshift BAP1 variant, and as expected, immunostaining validated the loss of BAP1 protein in patient-derived tumor specimens. Together, these data provide strong evidence of pathogenicity in this case. With the addition of bladder cancer to the tumor types reported with germline BAP1 mutations, our understanding of the BAP1 TPDS continues to evolve, and may affect future screening and surveillance guidelines.
Collapse
|
258
|
Ritter A, Werner P, Latney B, Krock BL, Santani A, Bedoukian E, Skraban CM, Deardorff MA, Goldmuntz E. NKX2-6 related congenital heart disease: Biallelic homeodomain-disrupting variants and truncus arteriosus. Am J Med Genet A 2020; 182:1454-1459. [PMID: 32198970 DOI: 10.1002/ajmg.a.61550] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 11/11/2022]
Abstract
Congenital heart defects (CHD) are the most common birth defect and are both clinically and genetically heterogeneous. Truncus arteriosus (TA), characterized by a single arterial vessel arising from both ventricles giving rise to the coronary, pulmonary and systemic arteries, is rare and only responsible for 1% of all CHD. Two consanguineous families with TA were previously identified to have homozygous nonsense variants within the gene NKX2-6. NKX2-6 is a known downstream target of TBX1, an important transcriptional regulator implicated in the cardiac phenotype of 22q11.2 microdeletion syndrome. Herein, we report two siblings with TA presumably caused by compound heterozygous NKX2-6 variants without a history of consanguinity. Two in-house cohorts with conotruncal defects (CTD) were sequenced for variants in NKX2-6 and no additional cases of biallelic NKX2-6 variants were identified. The similar phenotype of these cases, and the clustering of variants that likely result in a truncated protein that disrupts the homeobox domain, suggest that biallelic loss of function for NKX2-6 is a rare genetic etiology for TA in particular, and possibly other types of CHD.
Collapse
Affiliation(s)
- Alyssa Ritter
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Pennsylvania, USA.,Divison of Cardiology, Children's Hospital of Philadelphia, Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Pennsylvania, USA
| | - Petra Werner
- Divison of Cardiology, Children's Hospital of Philadelphia, Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Pennsylvania, USA
| | - Brande Latney
- Divison of Cardiology, Children's Hospital of Philadelphia, Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Pennsylvania, USA
| | - Bryon L Krock
- ARUP Institute for Clinical and Experimental Pathology®, ARUP Laboratories, Salt Lake City, Utah, USA.,University of Utah School of Medicine, Department of Pathology, Salt Lake City, Utah, USA
| | - Avni Santani
- Division of Molecular Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Pennsylvania, USA
| | - Emma Bedoukian
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Pennsylvania, USA.,The Roberts Individualized Medical Genetics Center, Children's Hospital of Philadelphia, Pennsylvania, USA
| | - Cara M Skraban
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Pennsylvania, USA.,The Roberts Individualized Medical Genetics Center, Children's Hospital of Philadelphia, Pennsylvania, USA
| | - Matthew A Deardorff
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Pennsylvania, USA.,The Roberts Individualized Medical Genetics Center, Children's Hospital of Philadelphia, Pennsylvania, USA
| | - Elizabeth Goldmuntz
- Divison of Cardiology, Children's Hospital of Philadelphia, Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Pennsylvania, USA
| |
Collapse
|
259
|
The position of the target site for engineered nucleases improves the aberrant mRNA clearance in in vivo genome editing. Sci Rep 2020; 10:4173. [PMID: 32144373 PMCID: PMC7060192 DOI: 10.1038/s41598-020-61154-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 02/18/2020] [Indexed: 11/08/2022] Open
Abstract
Engineered nucleases are widely used for creating frameshift or nonsense mutations in the target genes to eliminate gene functions. The resulting mRNAs carrying premature termination codons can be eliminated by nonsense-mediated mRNA decay. However, it is unclear how effective this process would be in vivo. Here, we found that the nonsense-mediated decay was unable to remove the mutant mRNAs in twelve out of sixteen homozygous mutant mice with frameshift mutations generated using engineered nucleases, which is far beyond what we expected. The frameshift mutant proteins translated by a single nucleotide deletion within the coding region were also detected in the p53 mutant mice. Furthermore, we showed that targeting the exons present downstream of the exons with a start codon or distant from ATG is relatively effective for eliminating mutant mRNAs in vivo, whereas the exons with a start codon are targeted to express the mutant mRNAs. Of the sixteen mutant mice generated, only four mutant mice targeting the downstream exons exhibited over 80% clearance of mutant mRNAs. Since the abnormal products, either mutant RNAs or mutant proteins, expressed by the target alleles might obscure the outcome of genome editing, these findings will provide insights in the improved performance of engineered nucleases when they are applied in vivo.
Collapse
|
260
|
Kurosaki T, Popp MW, Maquat LE. Quality and quantity control of gene expression by nonsense-mediated mRNA decay. Nat Rev Mol Cell Biol 2020; 20:406-420. [PMID: 30992545 DOI: 10.1038/s41580-019-0126-2] [Citation(s) in RCA: 510] [Impact Index Per Article: 102.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nonsense-mediated mRNA decay (NMD) is one of the best characterized and most evolutionarily conserved cellular quality control mechanisms. Although NMD was first found to target one-third of mutated, disease-causing mRNAs, it is now known to also target ~10% of unmutated mammalian mRNAs to facilitate appropriate cellular responses - adaptation, differentiation or death - to environmental changes. Mutations in NMD genes in humans are associated with intellectual disability and cancer. In this Review, we discuss how NMD serves multiple purposes in human cells by degrading both mutated mRNAs to protect the integrity of the transcriptome and normal mRNAs to control the quantities of unmutated transcripts.
Collapse
Affiliation(s)
- Tatsuaki Kurosaki
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA.,Center for RNA Biology, University of Rochester, Rochester, NY, USA
| | - Maximilian W Popp
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA.,Center for RNA Biology, University of Rochester, Rochester, NY, USA
| | - Lynne E Maquat
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA. .,Center for RNA Biology, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
261
|
Arindrarto W, Borràs DM, de Groen RAL, van den Berg RR, Locher IJ, van Diessen SAME, van der Holst R, van der Meijden ED, Honders MW, de Leeuw RH, Verlaat W, Jedema I, Kroes WGM, Knijnenburg J, van Wezel T, Vermaat JSP, Valk PJM, Janssen B, de Knijff P, van Bergen CAM, van den Akker EB, Hoen PAC', Kiełbasa SM, Laros JFJ, Griffioen M, Veelken H. Comprehensive diagnostics of acute myeloid leukemia by whole transcriptome RNA sequencing. Leukemia 2020; 35:47-61. [PMID: 32127641 PMCID: PMC7787979 DOI: 10.1038/s41375-020-0762-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 01/17/2020] [Accepted: 02/12/2020] [Indexed: 01/12/2023]
Abstract
Acute myeloid leukemia (AML) is caused by genetic aberrations that also govern the prognosis of patients and guide risk-adapted and targeted therapy. Genetic aberrations in AML are structurally diverse and currently detected by different diagnostic assays. This study sought to establish whole transcriptome RNA sequencing as single, comprehensive, and flexible platform for AML diagnostics. We developed HAMLET (Human AML Expedited Transcriptomics) as bioinformatics pipeline for simultaneous detection of fusion genes, small variants, tandem duplications, and gene expression with all information assembled in an annotated, user-friendly output file. Whole transcriptome RNA sequencing was performed on 100 AML cases and HAMLET results were validated by reference assays and targeted resequencing. The data showed that HAMLET accurately detected all fusion genes and overexpression of EVI1 irrespective of 3q26 aberrations. In addition, small variants in 13 genes that are often mutated in AML were called with 99.2% sensitivity and 100% specificity, and tandem duplications in FLT3 and KMT2A were detected by a novel algorithm based on soft-clipped reads with 100% sensitivity and 97.1% specificity. In conclusion, HAMLET has the potential to provide accurate comprehensive diagnostic information relevant for AML classification, risk assessment and targeted therapy on a single technology platform.
Collapse
Affiliation(s)
- Wibowo Arindrarto
- Center for Computational Biology, Leiden University Medical Center, 2300RC, Leiden, The Netherlands.,Department of Human Genetics, Leiden University Medical Center, 2300RC, Leiden, The Netherlands
| | - Daniel M Borràs
- GenomeScan B.V, 2333 BZ, Leiden, The Netherlands.,Department of Chemical Cell Biology, Leiden University Medical Center, 2300RC, Leiden, The Netherlands
| | - Ruben A L de Groen
- Department of Hematology, Leiden University Medical Center, 2300RC, Leiden, The Netherlands
| | - Redmar R van den Berg
- Department of Human Genetics, Leiden University Medical Center, 2300RC, Leiden, The Netherlands
| | - Irene J Locher
- Department of Hematology, Leiden University Medical Center, 2300RC, Leiden, The Netherlands
| | | | - Rosalie van der Holst
- Department of Hematology, Leiden University Medical Center, 2300RC, Leiden, The Netherlands
| | | | - M Willy Honders
- Department of Hematology, Leiden University Medical Center, 2300RC, Leiden, The Netherlands
| | - Rick H de Leeuw
- Forensic Laboratory for DNA Research, Department of Human Genetics, Leiden University Medical Center, 2300RC, Leiden, The Netherlands
| | - Wina Verlaat
- Department of Hematology, Leiden University Medical Center, 2300RC, Leiden, The Netherlands
| | - Inge Jedema
- Department of Hematology, Leiden University Medical Center, 2300RC, Leiden, The Netherlands
| | - Wilma G M Kroes
- Department of Clinical Genetics, Leiden University Medical Center, 2300RC, Leiden, The Netherlands
| | - Jeroen Knijnenburg
- Department of Clinical Genetics, Leiden University Medical Center, 2300RC, Leiden, The Netherlands
| | - Tom van Wezel
- Department of Pathology, Leiden University Medical Center, 2300RC, Leiden, The Netherlands
| | - Joost S P Vermaat
- Department of Hematology, Leiden University Medical Center, 2300RC, Leiden, The Netherlands
| | - Peter J M Valk
- Department of Hematology, Erasmus University Medical Center, 3015CN, Rotterdam, The Netherlands
| | - Bart Janssen
- GenomeScan B.V, 2333 BZ, Leiden, The Netherlands
| | - Peter de Knijff
- Forensic Laboratory for DNA Research, Department of Human Genetics, Leiden University Medical Center, 2300RC, Leiden, The Netherlands
| | | | - Erik B van den Akker
- Center for Computational Biology, Leiden University Medical Center, 2300RC, Leiden, The Netherlands.,The Delft Bioinformatics Lab, Delft University of Technology, 2628CD, Delft, The Netherlands.,Section of Molecular Epidemiology, Leiden University Medical Center, 2300RC, Leiden, The Netherlands
| | - Peter A C 't Hoen
- Department of Human Genetics, Leiden University Medical Center, 2300RC, Leiden, The Netherlands.,The Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
| | - Szymon M Kiełbasa
- Center for Computational Biology, Leiden University Medical Center, 2300RC, Leiden, The Netherlands
| | - Jeroen F J Laros
- Department of Human Genetics, Leiden University Medical Center, 2300RC, Leiden, The Netherlands
| | - Marieke Griffioen
- Department of Hematology, Leiden University Medical Center, 2300RC, Leiden, The Netherlands.
| | - Hendrik Veelken
- Department of Hematology, Leiden University Medical Center, 2300RC, Leiden, The Netherlands
| |
Collapse
|
262
|
Przytycki PF, Singh M. Differential Allele-Specific Expression Uncovers Breast Cancer Genes Dysregulated by Cis Noncoding Mutations. Cell Syst 2020; 10:193-203.e4. [PMID: 32078798 PMCID: PMC7457951 DOI: 10.1016/j.cels.2020.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 12/04/2019] [Accepted: 01/22/2020] [Indexed: 01/23/2023]
Abstract
Identifying cancer-relevant mutations in noncoding regions is challenging due to the large numbers of such mutations, their low levels of recurrence, and difficulties in interpreting their functional impact. To uncover genes that are dysregulated due to somatic mutations in cis, we build upon the concept of differential allele-specific expression (ASE) and introduce methods to identify genes within an individual's cancer whose ASE differs from what is found in matched normal tissue. When applied to breast cancer tumor samples, our methods detect the known allele-specific effects of copy number variation and nonsense-mediated decay. Further, genes that are found to recurrently exhibit differential ASE across samples are cancer relevant. Genes with cis mutations are enriched for differential ASE, and we find 147 potentially functional noncoding mutations cis to genes that exhibit significant differential ASE. We conclude that differential ASE is a promising means for discovering gene dysregulation due to cis noncoding mutations.
Collapse
Affiliation(s)
- Pawel F Przytycki
- Department of Computer Science, Princeton University, Princeton, NJ 08544, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Mona Singh
- Department of Computer Science, Princeton University, Princeton, NJ 08544, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
263
|
Cohen S, Kramarski L, Levi S, Deshe N, Ben David O, Arbely E. Nonsense mutation-dependent reinitiation of translation in mammalian cells. Nucleic Acids Res 2020; 47:6330-6338. [PMID: 31045216 PMCID: PMC6614817 DOI: 10.1093/nar/gkz319] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 04/16/2019] [Accepted: 04/22/2019] [Indexed: 11/14/2022] Open
Abstract
In-frame stop codons mark the termination of translation. However, post-termination ribosomes can reinitiate translation at downstream AUG codons. In mammals, reinitiation is most efficient when the termination codon is positioned close to the 5′-proximal initiation site and around 78 bases upstream of the reinitiation site. The phenomenon was studied mainly in the context of open reading frames (ORFs) found within the 5′-untranslated region, or polycicstronic viral mRNA. We hypothesized that reinitiation of translation following nonsense mutations within the main ORF of p53 can promote the expression of N-truncated p53 isoforms such as Δ40, Δ133 and Δ160p53. Here, we report that expression of all known N-truncated p53 isoforms by reinitiation is mechanistically feasible, including expression of the previously unidentified variant Δ66p53. Moreover, we found that significant reinitiation of translation can be promoted by nonsense mutations located even 126 codons downstream of the 5′-proximal initiation site, and observed when the reinitiation site is positioned between 6 and 243 bases downstream of the nonsense mutation. We also demonstrate that reinitiation can stabilise p53 mRNA transcripts with a premature termination codon, by allowing such transcripts to evade the nonsense mediated decay pathway. Our data suggest that the expression of N-truncated proteins from alleles carrying a premature termination codon is more prevalent than previously thought.
Collapse
Affiliation(s)
- Sarit Cohen
- Department of Chemistry and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Lior Kramarski
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Shahar Levi
- Department of Chemistry and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Noa Deshe
- Department of Chemistry and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Oshrit Ben David
- Department of Chemistry and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Eyal Arbely
- Department of Chemistry and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.,Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| |
Collapse
|
264
|
Mechanisms and Regulation of Nonsense-Mediated mRNA Decay and Nonsense-Associated Altered Splicing in Lymphocytes. Int J Mol Sci 2020; 21:ijms21041335. [PMID: 32079193 PMCID: PMC7072976 DOI: 10.3390/ijms21041335] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 12/11/2022] Open
Abstract
The presence of premature termination codons (PTCs) in transcripts is dangerous for the cell as they encode potentially deleterious truncated proteins that can act with dominant-negative or gain-of-function effects. To avoid the synthesis of these shortened polypeptides, several RNA surveillance systems can be activated to decrease the level of PTC-containing mRNAs. Nonsense-mediated mRNA decay (NMD) ensures an accelerated degradation of mRNAs harboring PTCs by using several key NMD factors such as up-frameshift (UPF) proteins. Another pathway called nonsense-associated altered splicing (NAS) upregulates transcripts that have skipped disturbing PTCs by alternative splicing. Thus, these RNA quality control processes eliminate abnormal PTC-containing mRNAs from the cells by using positive and negative responses. In this review, we describe the general mechanisms of NMD and NAS and their respective involvement in the decay of aberrant immunoglobulin and TCR transcripts in lymphocytes.
Collapse
|
265
|
PCAWG Transcriptome Core Group CalabreseClaudia2DavidsonNatalie R.34567DemircioğluDeniz89FonsecaNuno A.2HeYao10KahlesAndré3467LehmannKjong-Van3467LiuFenglin10ShiraishiYuichi11SouletteCameron M.12UrbanLara2, Calabrese C, Davidson NR, Demircioğlu D, Fonseca NA, He Y, Kahles A, Lehmann KV, Liu F, Shiraishi Y, Soulette CM, Urban L, Greger L, Li S, Liu D, Perry MD, Xiang Q, Zhang F, Zhang J, Bailey P, Erkek S, Hoadley KA, Hou Y, Huska MR, Kilpinen H, Korbel JO, Marin MG, Markowski J, Nandi T, Pan-Hammarström Q, Pedamallu CS, Siebert R, Stark SG, Su H, Tan P, Waszak SM, Yung C, Zhu S, Awadalla P, Creighton CJ, Meyerson M, Ouellette BFF, Wu K, Yang H, PCAWG Transcriptome Working Group FonsecaNuno A.2KahlesAndré3467LehmannKjong-Van3467UrbanLara2SouletteCameron M.12ShiraishiYuichi11LiuFenglin10HeYao10DemircioğluDeniz89DavidsonNatalie R.34567CalabreseClaudia2ZhangJunjun15PerryMarc D.1516XiangQian15GregerLiliana2LiSiliang1314LiuDongbing1314StarkStefan G.3467ZhangFan10AminSamirkumar B.37BaileyPeter17ChateignerAurélien15Cortés-CirianoIsidro293839CraftBrian12ErkekSerap18Frenkel-MorgensternMilana40GoldmanMary12HoadleyKatherine A.19HouYong1314HuskaMatthew R.20KhuranaEkta5KilpinenHelena21KorbelJan O.18LamazeFabien C.15LiChang1314LiXiaobo1314LiXinyue13LiuXingmin1314MarinMaximillian G.12MarkowskiJulia20NandiTannistha9NielsenMorten M.41OjesinaAkinyemi I.23284243Pan-HammarströmQiang1322ParkPeter J.2938PedamalluChandra Sekhar232829PedersenJakob S.41SiebertReiner24SuHong1314TanPatrick925TehBin Tean31WangJian13WaszakSebastian M.18XiongHeng1314YakneenSergei18YeChen1314YungChristina15ZhangXiuqing13ZhengLiangtao10ZhuJingchun12ZhuShida1314AwadallaPhilip1526CreightonChad J.27MeyersonMatthew232829OuelletteB. F. Francis30WuKui1314YangHuanming13GökeJonathan931SchwarzRoland F.2203233StegleOliver21833ZhangZemin10BrazmaAlvis2RätschGunnar34567BrooksAngela N.122328, Brazma A, Brooks AN, Göke J, Rätsch G, Schwarz RF, Stegle O, Zhang Z, PCAWG Consortium. Genomic basis for RNA alterations in cancer. Nature 2020; 578:129-136. [PMID: 32025019 PMCID: PMC7054216 DOI: 10.1038/s41586-020-1970-0] [Citation(s) in RCA: 289] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 12/11/2019] [Indexed: 01/27/2023]
Abstract
Transcript alterations often result from somatic changes in cancer genomes1. Various forms of RNA alterations have been described in cancer, including overexpression2, altered splicing3 and gene fusions4; however, it is difficult to attribute these to underlying genomic changes owing to heterogeneity among patients and tumour types, and the relatively small cohorts of patients for whom samples have been analysed by both transcriptome and whole-genome sequencing. Here we present, to our knowledge, the most comprehensive catalogue of cancer-associated gene alterations to date, obtained by characterizing tumour transcriptomes from 1,188 donors of the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA)5. Using matched whole-genome sequencing data, we associated several categories of RNA alterations with germline and somatic DNA alterations, and identified probable genetic mechanisms. Somatic copy-number alterations were the major drivers of variations in total gene and allele-specific expression. We identified 649 associations of somatic single-nucleotide variants with gene expression in cis, of which 68.4% involved associations with flanking non-coding regions of the gene. We found 1,900 splicing alterations associated with somatic mutations, including the formation of exons within introns in proximity to Alu elements. In addition, 82% of gene fusions were associated with structural variants, including 75 of a new class, termed 'bridged' fusions, in which a third genomic location bridges two genes. We observed transcriptomic alteration signatures that differ between cancer types and have associations with variations in DNA mutational signatures. This compendium of RNA alterations in the genomic context provides a rich resource for identifying genes and mechanisms that are functionally implicated in cancer.
Collapse
Affiliation(s)
| | - Claudia Calabrese
- 0000 0000 9709 7726grid.225360.0European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - Natalie R. Davidson
- 0000 0001 2156 2780grid.5801.cETH Zurich, Zurich, Switzerland ,0000 0001 2171 9952grid.51462.34Memorial Sloan Kettering Cancer Center, New York, NY USA ,000000041936877Xgrid.5386.8Weill Cornell Medical College, New York, NY USA ,0000 0001 2223 3006grid.419765.8SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland ,0000 0004 0478 9977grid.412004.3University Hospital Zurich, Zurich, Switzerland
| | - Deniz Demircioğlu
- 0000 0001 2180 6431grid.4280.eNational University of Singapore, Singapore, Singapore ,0000 0004 0620 715Xgrid.418377.eGenome Institute of Singapore, Singapore, Singapore
| | - Nuno A. Fonseca
- 0000 0000 9709 7726grid.225360.0European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - Yao He
- 0000 0001 2256 9319grid.11135.37Peking University, Beijing, China
| | - André Kahles
- 0000 0001 2156 2780grid.5801.cETH Zurich, Zurich, Switzerland ,0000 0001 2171 9952grid.51462.34Memorial Sloan Kettering Cancer Center, New York, NY USA ,0000 0001 2223 3006grid.419765.8SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland ,0000 0004 0478 9977grid.412004.3University Hospital Zurich, Zurich, Switzerland
| | - Kjong-Van Lehmann
- 0000 0001 2156 2780grid.5801.cETH Zurich, Zurich, Switzerland ,0000 0001 2171 9952grid.51462.34Memorial Sloan Kettering Cancer Center, New York, NY USA ,0000 0001 2223 3006grid.419765.8SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland ,0000 0004 0478 9977grid.412004.3University Hospital Zurich, Zurich, Switzerland
| | - Fenglin Liu
- 0000 0001 2256 9319grid.11135.37Peking University, Beijing, China
| | - Yuichi Shiraishi
- 0000 0001 2151 536Xgrid.26999.3dThe University of Tokyo, Minato-ku, Japan
| | - Cameron M. Soulette
- 0000 0001 0740 6917grid.205975.cUniversity of California, Santa Cruz, Santa Cruz, CA USA
| | - Lara Urban
- 0000 0000 9709 7726grid.225360.0European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - Liliana Greger
- 0000 0000 9709 7726grid.225360.0European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - Siliang Li
- 0000 0001 2034 1839grid.21155.32BGI-Shenzhen, Shenzhen, China ,China National GeneBank-Shenzhen, Shenzhen, China
| | - Dongbing Liu
- 0000 0001 2034 1839grid.21155.32BGI-Shenzhen, Shenzhen, China ,China National GeneBank-Shenzhen, Shenzhen, China
| | - Marc D. Perry
- 0000 0004 0626 690Xgrid.419890.dOntario Institute for Cancer Research, Toronto, Ontario, Canada ,0000 0001 2297 6811grid.266102.1University of California, San Francisco, San Francisco, CA USA
| | - Qian Xiang
- 0000 0004 0626 690Xgrid.419890.dOntario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Fan Zhang
- 0000 0001 2256 9319grid.11135.37Peking University, Beijing, China
| | - Junjun Zhang
- 0000 0004 0626 690Xgrid.419890.dOntario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Peter Bailey
- 0000 0001 2193 314Xgrid.8756.cUniversity of Glasgow, Glasgow, UK
| | - Serap Erkek
- 0000 0004 0495 846Xgrid.4709.aEuropean Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Katherine A. Hoadley
- 0000000122483208grid.10698.36The University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Yong Hou
- 0000 0001 2034 1839grid.21155.32BGI-Shenzhen, Shenzhen, China ,China National GeneBank-Shenzhen, Shenzhen, China
| | - Matthew R. Huska
- 0000 0001 1014 0849grid.419491.0Berlin Institute for Medical Systems Biology, Max Delbruck Center for Molecular Medicine, Berlin, Germany
| | - Helena Kilpinen
- 0000000121901201grid.83440.3bUniversity College London, London, UK
| | - Jan O. Korbel
- 0000 0004 0495 846Xgrid.4709.aEuropean Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Maximillian G. Marin
- 0000 0001 0740 6917grid.205975.cUniversity of California, Santa Cruz, Santa Cruz, CA USA
| | - Julia Markowski
- 0000 0001 1014 0849grid.419491.0Berlin Institute for Medical Systems Biology, Max Delbruck Center for Molecular Medicine, Berlin, Germany
| | - Tannistha Nandi
- 0000 0004 0620 715Xgrid.418377.eGenome Institute of Singapore, Singapore, Singapore
| | - Qiang Pan-Hammarström
- 0000 0001 2034 1839grid.21155.32BGI-Shenzhen, Shenzhen, China ,0000 0004 1937 0626grid.4714.6Karolinska Institutet, Stockholm, Sweden
| | - Chandra Sekhar Pedamallu
- grid.66859.34Broad Institute, Cambridge, MA USA ,0000 0001 2106 9910grid.65499.37Dana-Farber Cancer Institute, Boston, MA USA ,000000041936754Xgrid.38142.3cHarvard Medical School, Boston, MA USA
| | - Reiner Siebert
- grid.410712.1Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Stefan G. Stark
- 0000 0001 2156 2780grid.5801.cETH Zurich, Zurich, Switzerland ,0000 0001 2171 9952grid.51462.34Memorial Sloan Kettering Cancer Center, New York, NY USA ,0000 0001 2223 3006grid.419765.8SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland ,0000 0004 0478 9977grid.412004.3University Hospital Zurich, Zurich, Switzerland
| | - Hong Su
- 0000 0001 2034 1839grid.21155.32BGI-Shenzhen, Shenzhen, China ,China National GeneBank-Shenzhen, Shenzhen, China
| | - Patrick Tan
- 0000 0004 0620 715Xgrid.418377.eGenome Institute of Singapore, Singapore, Singapore ,0000 0004 0385 0924grid.428397.3Duke-NUS Medical School, Singapore, Singapore
| | - Sebastian M. Waszak
- 0000 0004 0495 846Xgrid.4709.aEuropean Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Christina Yung
- 0000 0004 0626 690Xgrid.419890.dOntario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Shida Zhu
- 0000 0001 2034 1839grid.21155.32BGI-Shenzhen, Shenzhen, China ,China National GeneBank-Shenzhen, Shenzhen, China
| | - Philip Awadalla
- 0000 0004 0626 690Xgrid.419890.dOntario Institute for Cancer Research, Toronto, Ontario, Canada ,0000 0001 2157 2938grid.17063.33University of Toronto, Toronto, Ontario Canada
| | - Chad J. Creighton
- 0000 0001 2160 926Xgrid.39382.33Baylor College of Medicine, Houston, TX USA
| | - Matthew Meyerson
- grid.66859.34Broad Institute, Cambridge, MA USA ,0000 0001 2106 9910grid.65499.37Dana-Farber Cancer Institute, Boston, MA USA ,000000041936754Xgrid.38142.3cHarvard Medical School, Boston, MA USA
| | | | - Kui Wu
- 0000 0001 2034 1839grid.21155.32BGI-Shenzhen, Shenzhen, China ,China National GeneBank-Shenzhen, Shenzhen, China
| | - Huanming Yang
- 0000 0001 2034 1839grid.21155.32BGI-Shenzhen, Shenzhen, China
| | | | - Alvis Brazma
- 0000 0000 9709 7726grid.225360.0European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - Angela N. Brooks
- 0000 0001 0740 6917grid.205975.cUniversity of California, Santa Cruz, Santa Cruz, CA USA ,grid.66859.34Broad Institute, Cambridge, MA USA ,0000 0001 2106 9910grid.65499.37Dana-Farber Cancer Institute, Boston, MA USA
| | - Jonathan Göke
- 0000 0004 0620 715Xgrid.418377.eGenome Institute of Singapore, Singapore, Singapore ,0000 0004 0620 9745grid.410724.4National Cancer Centre Singapore, Singapore, Singapore
| | - Gunnar Rätsch
- 0000 0001 2156 2780grid.5801.cETH Zurich, Zurich, Switzerland ,0000 0001 2171 9952grid.51462.34Memorial Sloan Kettering Cancer Center, New York, NY USA ,000000041936877Xgrid.5386.8Weill Cornell Medical College, New York, NY USA ,0000 0001 2223 3006grid.419765.8SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland ,0000 0004 0478 9977grid.412004.3University Hospital Zurich, Zurich, Switzerland
| | - Roland F. Schwarz
- 0000 0000 9709 7726grid.225360.0European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK ,0000 0001 1014 0849grid.419491.0Berlin Institute for Medical Systems Biology, Max Delbruck Center for Molecular Medicine, Berlin, Germany ,0000 0004 0492 0584grid.7497.dGerman Cancer Consortium (DKTK), partner site Berlin, Germany ,0000 0004 0492 0584grid.7497.dGerman Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Oliver Stegle
- 0000 0000 9709 7726grid.225360.0European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK ,0000 0004 0495 846Xgrid.4709.aEuropean Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany ,0000 0004 0492 0584grid.7497.dGerman Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Zemin Zhang
- 0000 0001 2256 9319grid.11135.37Peking University, Beijing, China
| | | |
Collapse
|
266
|
Clayton EA, Khalid S, Ban D, Wang L, Jordan IK, McDonald JF. Tumor suppressor genes and allele-specific expression: mechanisms and significance. Oncotarget 2020; 11:462-479. [PMID: 32064050 PMCID: PMC6996918 DOI: 10.18632/oncotarget.27468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/13/2020] [Indexed: 12/12/2022] Open
Abstract
Recent findings indicate that allele-specific expression (ASE) at specific cancer driver gene loci may be of importance in onset/progression of the disease. Of particular interest are loss-of-function (LOF) of tumor suppressor gene (TSGs) alleles. While LOF tumor suppressor mutations are typically considered to be recessive, if these mutant alleles can be significantly differentially expressed relative to wild-type alleles in heterozygotes, the clinical consequences could be significant. LOF TSG alleles are shown to be segregating at high frequencies in world-wide populations of normal/healthy individuals. Matched sets of normal and tumor tissues isolated from 233 cancer patients representing four diverse tumor types demonstrate functionally important changes in patterns of ASE in individuals heterozygous for LOF TSG alleles associated with cancer onset/progression. While a variety of molecular mechanisms were identified as potentially contributing to changes in ASE patterns in cancer, changes in DNA copy number and allele-specific alternative splicing possibly mediated by antisense RNA emerged as predominant factors. In conclusion, LOF TSGs are segregating in human populations at significant frequencies indicating that many otherwise healthy individuals are at elevated risk of developing cancer. Changes in ASE between normal and cancer tissues indicates that LOF TSG alleles may contribute to cancer onset/progression even when heterozygous with wild-type functional alleles.
Collapse
Affiliation(s)
- Evan A. Clayton
- Integrated Cancer Research Center, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Shareef Khalid
- Integrated Cancer Research Center, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Dongjo Ban
- Integrated Cancer Research Center, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Lu Wang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- PanAmerican Bioinformatics Institute, Cali, Colombia
| | - I. King Jordan
- Integrated Cancer Research Center, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- PanAmerican Bioinformatics Institute, Cali, Colombia
- Applied Bioinformatics Laboratory, Atlanta, GA, USA
| | - John F. McDonald
- Integrated Cancer Research Center, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
267
|
Serobyan V, Kontarakis Z, El-Brolosy MA, Welker JM, Tolstenkov O, Saadeldein AM, Retzer N, Gottschalk A, Wehman AM, Stainier DY. Transcriptional adaptation in Caenorhabditis elegans. eLife 2020; 9:50014. [PMID: 31951195 PMCID: PMC6968918 DOI: 10.7554/elife.50014] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 01/02/2020] [Indexed: 02/06/2023] Open
Abstract
Transcriptional adaptation is a recently described phenomenon by which a mutation in one gene leads to the transcriptional modulation of related genes, termed adapting genes. At the molecular level, it has been proposed that the mutant mRNA, rather than the loss of protein function, activates this response. While several examples of transcriptional adaptation have been reported in zebrafish embryos and in mouse cell lines, it is not known whether this phenomenon is observed across metazoans. Here we report transcriptional adaptation in C. elegans, and find that this process requires factors involved in mutant mRNA decay, as in zebrafish and mouse. We further uncover a requirement for Argonaute proteins and Dicer, factors involved in small RNA maturation and transport into the nucleus. Altogether, these results provide evidence for transcriptional adaptation in C. elegans, a powerful model to further investigate underlying molecular mechanisms.
Collapse
Affiliation(s)
- Vahan Serobyan
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Zacharias Kontarakis
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Mohamed A El-Brolosy
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Jordan M Welker
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Oleg Tolstenkov
- Institute for Biophysical Chemistry, Goethe University, Frankfurt Am Main, Germany.,Cluster of Excellence Frankfurt - Macromolecular Complexes (CEF-MC), Goethe University, Frankfurt Am Main, Germany
| | - Amr M Saadeldein
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Nicholas Retzer
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Alexander Gottschalk
- Institute for Biophysical Chemistry, Goethe University, Frankfurt Am Main, Germany.,Cluster of Excellence Frankfurt - Macromolecular Complexes (CEF-MC), Goethe University, Frankfurt Am Main, Germany.,Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Frankfurt Am Main, Germany
| | - Ann M Wehman
- Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Didier Yr Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| |
Collapse
|
268
|
Dyle MC, Kolakada D, Cortazar MA, Jagannathan S. How to get away with nonsense: Mechanisms and consequences of escape from nonsense-mediated RNA decay. WILEY INTERDISCIPLINARY REVIEWS. RNA 2020; 11:e1560. [PMID: 31359616 PMCID: PMC10685860 DOI: 10.1002/wrna.1560] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/25/2019] [Accepted: 07/04/2019] [Indexed: 11/04/2023]
Abstract
Nonsense-mediated RNA decay (NMD) is an evolutionarily conserved RNA quality control process that serves both as a mechanism to eliminate aberrant transcripts carrying premature stop codons, and to regulate expression of some normal transcripts. For a quality control process, NMD exhibits surprising variability in its efficiency across transcripts, cells, tissues, and individuals in both physiological and pathological contexts. Whether an aberrant RNA is spared or degraded, and by what mechanism, could determine the phenotypic outcome of a disease-causing mutation. Hence, understanding the variability in NMD is not only important for clinical interpretation of genetic variants but also may provide clues to identify novel therapeutic approaches to counter genetic disorders caused by nonsense mutations. Here, we discuss the current knowledge of NMD variability and the mechanisms that allow certain transcripts to escape NMD despite the presence of NMD-inducing features. This article is categorized under: RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms RNA in Disease and Development > RNA in Disease RNA Turnover and Surveillance > Regulation of RNA Stability.
Collapse
Affiliation(s)
- Michael C. Dyle
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Divya Kolakada
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Molecular Biology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Michael A. Cortazar
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Sujatha Jagannathan
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
269
|
García-Nieto PE, Morrison AJ, Fraser HB. The somatic mutation landscape of the human body. Genome Biol 2019; 20:298. [PMID: 31874648 PMCID: PMC6930685 DOI: 10.1186/s13059-019-1919-5] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 12/10/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Somatic mutations in healthy tissues contribute to aging, neurodegeneration, and cancer initiation, yet they remain largely uncharacterized. RESULTS To gain a better understanding of the genome-wide distribution and functional impact of somatic mutations, we leverage the genomic information contained in the transcriptome to uniformly call somatic mutations from over 7500 tissue samples, representing 36 distinct tissues. This catalog, containing over 280,000 mutations, reveals a wide diversity of tissue-specific mutation profiles associated with gene expression levels and chromatin states. For example, lung samples with low expression of the mismatch-repair gene MLH1 show a mutation signature of deficient mismatch repair. In addition, we find pervasive negative selection acting on missense and nonsense mutations, except for mutations previously observed in cancer samples, which are under positive selection and are highly enriched in many healthy tissues. CONCLUSIONS These findings reveal fundamental patterns of tissue-specific somatic evolution and shed light on aging and the earliest stages of tumorigenesis.
Collapse
Affiliation(s)
- Pablo E García-Nieto
- Department of Biology, Stanford University, 371 Jane Stanford Way, Stanford, CA, 94305, USA
| | - Ashby J Morrison
- Department of Biology, Stanford University, 371 Jane Stanford Way, Stanford, CA, 94305, USA
| | - Hunter B Fraser
- Department of Biology, Stanford University, 371 Jane Stanford Way, Stanford, CA, 94305, USA.
| |
Collapse
|
270
|
Standardization of Somatic Variant Classifications in Solid and Haematological Tumours by a Two-Level Approach of Biological and Clinical Classes: An Initiative of the Belgian ComPerMed Expert Panel. Cancers (Basel) 2019; 11:cancers11122030. [PMID: 31888289 PMCID: PMC6966529 DOI: 10.3390/cancers11122030] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/03/2019] [Accepted: 12/05/2019] [Indexed: 12/20/2022] Open
Abstract
In most diagnostic laboratories, targeted next-generation sequencing (NGS) is currently the default assay for the detection of somatic variants in solid as well as haematological tumours. Independent of the method, the final outcome is a list of variants that differ from the human genome reference sequence of which some may relate to the establishment of the tumour in the patient. A critical point towards a uniform patient management is the assignment of the biological contribution of each variant to the malignancy and its subsequent clinical impact in a specific malignancy. These so-called biological and clinical classifications of somatic variants are currently not standardized and are vastly dependent on the subjective analysis of each laboratory. This subjectivity can thus result in a different classification and subsequent clinical interpretation of the same variant. Therefore, the ComPerMed panel of Belgian experts in cancer diagnostics set up a working group with the goal to harmonize the biological classification and clinical interpretation of somatic variants detected by NGS. This effort resulted in the establishment of a uniform, two-level classification workflow system that should enable high consistency in diagnosis, prognosis, treatment and follow-up of cancer patients. Variants are first classified into a tumour-independent biological five class system and subsequently in a four tier ACMG clinical classification. Here, we describe the ComPerMed workflow in detail including examples for each step of the pipeline. Moreover, this workflow can be implemented in variant classification software tools enabling automatic reporting of NGS data, independent of panel, method or analysis software.
Collapse
|
271
|
Contribution of a Novel B3GLCT Variant to Peters Plus Syndrome Discovered by a Combination of Next-Generation Sequencing and Automated Text Mining. Int J Mol Sci 2019; 20:ijms20236006. [PMID: 31795264 PMCID: PMC6928627 DOI: 10.3390/ijms20236006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/07/2019] [Accepted: 11/26/2019] [Indexed: 12/30/2022] Open
Abstract
Anterior segment dysgenesis (ASD) encompasses a spectrum of ocular disorders affecting the structures of the anterior eye chamber. Mutations in several genes, involved in eye development, are implicated in this disorder. ASD is often accompanied by diverse multisystemic symptoms and another genetic cause, such as variants in genes encoding collagen type IV. Thus, a wide spectrum of phenotypes and underlying genetic diversity make fast and proper diagnosis challenging. Here, we used AMELIE, an automatic text mining tool that enriches data with the most up-to-date information from literature, and wANNOVAR, which is based on well-documented databases and incorporates variant filtering strategy to identify genetic variants responsible for severely-manifested ASD in a newborn child. This strategy, applied to trio sequencing data in compliance with ACMG 2015 guidelines, helped us find two compound heterozygous variants of the B3GLCT gene, of which c.660+1G>A (rs80338851) was previously associated with the phenotype of Peters plus syndrome (PPS), while the second, NM_194318.3:c.755delC (p.T252fs), in exon 9 of the same gene was noted for the first time. PPS, a very rare subtype of ASD, is a glycosylation disorder, where the dysfunctional B3GLCT gene product, O-fucose-specific β-1,3-glucosyltransferase, is ineffective in providing a noncanonical quality control system for proper protein folding in cells. Our study expands the mutation spectrum of the B3GLCT gene related to PPS. We suggest that the implementation of automatic text mining tools in combination with careful variant filtering could help translate sequencing results into diagnosis, thus, considerably accelerating the diagnostic process and, thereby, improving patient management.
Collapse
|
272
|
van Luttikhuizen JL, Bublitz J, Schubert S, Schmidt G, Hofmann W, Morlot S, Buurman R, Auber B, Schlegelberger B, Steinemann D. From a variant of unknown significance to pathogenic: Reclassification of a large novel duplication in BRCA2 by high-throughput sequencing. Mol Genet Genomic Med 2019; 8:e1045. [PMID: 31724318 PMCID: PMC7506983 DOI: 10.1002/mgg3.1045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/06/2019] [Accepted: 10/22/2019] [Indexed: 12/14/2022] Open
Abstract
Background Germline mutations in BRCA1/2 significantly contribute to hereditary breast and/or ovarian cancer. Here, we report a novel BRCA2 duplication of exons 22–24 in a female patient with bilateral breast cancer at age 35 and 44. The duplicated region was initially detected by gene panel sequencing and multiplex ligation‐dependent probe amplification. However, the location and orientation of the duplicated region was unknown. Therefore, it was initially classified as a variant of unknown significance. Methods The spatial directional characterization of the BRCA2 duplication was achieved by targeted enrichment of the whole‐genomic BRCA2 locus including exons and introns, and subsequent high‐throughput sequencing. Subsequently, bioinformatics tools and a breakpoint‐spanning PCR were used for identification of location and orientation of the duplication. Results The duplicated region was arranged in tandem and direct orientation (Chr13(GRCh37):g.32951579_32960394dup; NM_000059.3 c.8754 + 651_9256+6112dup p.(Ala3088Phefs*3)). It is predicted to result in a frameshift and a premature stop codon likely triggering nonsense‐mediated mRNA decay. Consequently, it is regarded as pathogenic. Conclusion This case study demonstrates that a comprehensive characterization of a structural variant by breakpoint assessment is crucial for its correct classification. Therefore, sequencing strategies including non‐coding regions might be necessary to identify cancer predispositions in affected families.
Collapse
Affiliation(s)
| | - Janin Bublitz
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Stephanie Schubert
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Gunnar Schmidt
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Winfried Hofmann
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Susanne Morlot
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Reena Buurman
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Bernd Auber
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | | | - Doris Steinemann
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| |
Collapse
|
273
|
Lindeboom RGH, Vermeulen M, Lehner B, Supek F. The impact of nonsense-mediated mRNA decay on genetic disease, gene editing and cancer immunotherapy. Nat Genet 2019; 51:1645-1651. [PMID: 31659324 PMCID: PMC6858879 DOI: 10.1038/s41588-019-0517-5] [Citation(s) in RCA: 184] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 09/23/2019] [Indexed: 12/21/2022]
Abstract
Premature termination codons (PTCs) can result in the production of truncated proteins or the degradation of messenger RNAs by nonsense-mediated mRNA decay (NMD). Which of these outcomes occurs can alter the effect of a mutation, with the engagement of NMD being dependent on a series of rules. Here, by applying these rules genome-wide to obtain a resource called NMDetective, we explore the impact of NMD on genetic disease and approaches to therapy. First, human genetic diseases differ in whether NMD typically aggravates or alleviates the effects of PTCs. Second, failure to trigger NMD is a cause of ineffective gene inactivation by CRISPR-Cas9 gene editing. Finally, NMD is a determinant of the efficacy of cancer immunotherapy, with only frameshifted transcripts that escape NMD predicting a response. These results demonstrate the importance of incorporating the rules of NMD into clinical decision-making. Moreover, they suggest that inhibiting NMD may be effective in enhancing cancer immunotherapy.
Collapse
Affiliation(s)
- Rik G H Lindeboom
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Ben Lehner
- Systems Biology Program, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain. .,Universitat Pompeu Fabra, Barcelona, Spain. .,Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain.
| | - Fran Supek
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain. .,Institut de Recerca Biomedica Barcelona, The Barcelona Institute of Science and Technology, Barcelona, Spain.
| |
Collapse
|
274
|
Biological plasticity rescues target activity in CRISPR knock outs. Nat Methods 2019; 16:1087-1093. [PMID: 31659326 DOI: 10.1038/s41592-019-0614-5] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 09/11/2019] [Indexed: 12/26/2022]
Abstract
Gene knock outs (KOs) are efficiently engineered through CRISPR-Cas9-induced frameshift mutations. While the efficiency of DNA editing is readily verified by DNA sequencing, a systematic understanding of the efficiency of protein elimination has been lacking. Here we devised an experimental strategy combining RNA sequencing and triple-stage mass spectrometry to characterize 193 genetically verified deletions targeting 136 distinct genes generated by CRISPR-induced frameshifts in HAP1 cells. We observed residual protein expression for about one third of the quantified targets, at variable levels from low to original, and identified two causal mechanisms, translation reinitiation leading to N-terminally truncated target proteins or skipping of the edited exon leading to protein isoforms with internal sequence deletions. Detailed analysis of three truncated targets, BRD4, DNMT1 and NGLY1, revealed partial preservation of protein function. Our results imply that systematic characterization of residual protein expression or function in CRISPR-Cas9-generated KO lines is necessary for phenotype interpretation.
Collapse
|
275
|
Den K, Kudo Y, Kato M, Watanabe K, Doi H, Tanaka F, Oguni H, Miyatake S, Mizuguchi T, Takata A, Miyake N, Mitsuhashi S, Matsumoto N. Recurrent NUS1 canonical splice donor site mutation in two unrelated individuals with epilepsy, myoclonus, ataxia and scoliosis - a case report. BMC Neurol 2019; 19:253. [PMID: 31656175 PMCID: PMC6815447 DOI: 10.1186/s12883-019-1489-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 10/02/2019] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND We encountered two unrelated individuals suffering from neurological disorders, including epilepsy and scoliosis. CASE PRESENTATION Whole-exome sequencing identified the same recurrent, de novo, pathogenic variant in NUS1 [NM_138459.4:c.691 + 1C > A] in both individuals. This variant is located in the conserved cis-prenyltransferase domain of the nuclear undecaprenyl pyrophosphate synthase 1 gene (NUS1), which encodes the Nogo-B receptor, an essential catalyst for protein glycosylation. This variant was confirmed to create a new splice donor site, resulting in aberrant RNA splicing resulting in a 91-bp deletion in exon 3 in both individuals. The mutant mRNA was partially degraded by nonsense mediated mRNA decay. To date, only four de novo variants and one homozygous variant have been reported in NUS1, which cause developmental and epileptic encephalopathy, early onset Parkinson's disease, and a congenital disorder of glycosylation. Seven patients, including our two patients, have presented with epileptic seizures and intellectual disabilities. CONCLUSIONS Our study strongly supports the finding that this recurrent, de novo, variant in NUS1 causes developmental and epileptic encephalopathy with involuntary movement, ataxia and scoliosis.
Collapse
Affiliation(s)
- Kouhei Den
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa, Yokohama, 236-0004, Japan
| | - Yosuke Kudo
- Department of Neurology, Yokohama Brain and Spine Center, Yokohama, 235-0012, Japan
| | - Mitsuhiro Kato
- Department of Pediatrics, Showa University School of Medicine, Tokyo, 142-8555, Japan
| | - Kosuke Watanabe
- Department of Neurology, Yokohama Brain and Spine Center, Yokohama, 235-0012, Japan
| | - Hiroshi Doi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Fumiaki Tanaka
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Hirokazu Oguni
- Department of Pediatrics, Tokyo Women's Medical University, Tokyo, 162-8666, Japan
| | - Satoko Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa, Yokohama, 236-0004, Japan.,Clinical Genetics Department, Yokohama City University Hospital, Yokohama, 236-0004, Japan
| | - Takeshi Mizuguchi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa, Yokohama, 236-0004, Japan
| | - Atsushi Takata
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa, Yokohama, 236-0004, Japan
| | - Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa, Yokohama, 236-0004, Japan
| | - Satomi Mitsuhashi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa, Yokohama, 236-0004, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa, Yokohama, 236-0004, Japan.
| |
Collapse
|
276
|
Mutant GNLY is linked to Stevens-Johnson syndrome and toxic epidermal necrolysis. Hum Genet 2019; 138:1267-1274. [PMID: 31642954 DOI: 10.1007/s00439-019-02066-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/25/2019] [Indexed: 12/19/2022]
Abstract
Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) are rare severe cutaneous adverse reactions to drugs. Granulysin (GNLY) plays a key role in keratinocyte apoptosis during SJS/TEN pathophysiology. To determine if GNLY-encoding mutations might be related to the protein's functional disturbances, contributing to SJS/TEN pathogenesis, we performed direct sequencing of GNLY's coding region in a group of 19 Colombian SJS/TEN patients. A GNLY genetic screening was implemented in a group of 249 healthy individuals. We identified the c.11G > A heterozygous sequence variant in a TEN case, which creates a premature termination codon (PTC) (p.Trp4Ter). We show that a mutant protein is synthesised, possibly due to a PTC-readthrough mechanism. Functional assays demonstrated that the mutant protein was abnormally located in the nuclear compartment, potentially leading to a toxic effect. Our results argue in favour of GNLY non-synonymous sequence variants contributing to SJS/TEN pathophysiology, thereby constituting a promising, clinically useful molecular biomarker.
Collapse
|
277
|
Zhao B, Pritchard JR. Evolution of the nonsense-mediated decay pathway is associated with decreased cytolytic immune infiltration. PLoS Comput Biol 2019; 15:e1007467. [PMID: 31658270 PMCID: PMC6837539 DOI: 10.1371/journal.pcbi.1007467] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 11/07/2019] [Accepted: 10/08/2019] [Indexed: 01/05/2023] Open
Abstract
The somatic co-evolution of tumors and the cellular immune responses that combat them drives the diversity of immune-tumor interactions. This includes tumor mutations that generate neo-antigenic epitopes that elicit cytotoxic T-cell activity and subsequent pressure to select for genetic loss of antigen presentation. Most studies have focused on how tumor missense mutations can drive tumor immunity, but frameshift mutations have the potential to create far greater antigenic diversity. However, expression of this antigenic diversity is potentially regulated by Nonsense Mediated Decay (NMD) and NMD has been shown to be of variable efficiency in cancers. Here we studied how mutational changes influence global NMD and cytolytic immune responses. Using TCGA datasets, we derived novel patient-level metrics of 'NMD burden' and interrogated how different mutation and most importantly NMD burdens influence cytolytic activity using machine learning models and survival outcomes. We find that NMD is a significant and independent predictor of immune cytolytic activity. Different indications exhibited varying dependence on NMD and mutation burden features. We also observed significant co-alteration of genes in the NMD pathway, with a global increase in NMD efficiency in patients with NMD co-alterations. Finally, NMD burden also stratified patient survival in multivariate regression models in subset of cancer types. Our work suggests that beyond selecting for mutations that elicit NMD in tumor suppressors, tumor evolution may react to the selective pressure generated by inflammation to globally enhance NMD through coordinated amplification and/or mutation.
Collapse
Affiliation(s)
- Boyang Zhao
- Department of Biomedical Engineering, College of Engineering, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Quantalarity Research Group LLC, Houston, Texas, United States of America
| | - Justin R. Pritchard
- Department of Biomedical Engineering, College of Engineering, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
278
|
Ho AT, Hurst LD. In eubacteria, unlike eukaryotes, there is no evidence for selection favouring fail-safe 3' additional stop codons. PLoS Genet 2019; 15:e1008386. [PMID: 31527909 PMCID: PMC6764699 DOI: 10.1371/journal.pgen.1008386] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/27/2019] [Accepted: 08/27/2019] [Indexed: 12/23/2022] Open
Abstract
Errors throughout gene expression are likely deleterious, hence genomes are under selection to ameliorate their consequences. Additional stop codons (ASCs) are in-frame nonsense ‘codons’ downstream of the primary stop which may be read by translational machinery should the primary stop have been accidentally read through. Prior evidence in several eukaryotes suggests that ASCs are selected to prevent potentially-deleterious consequences of read-through. We extend this evidence showing that enrichment of ASCs is common but not universal for single cell eukaryotes. By contrast, there is limited evidence as to whether the same is true in other taxa. Here, we provide the first systematic test of the hypothesis that ASCs act as a fail-safe mechanism in eubacteria, a group with high read-through rates. Contra to the predictions of the hypothesis we find: there is paucity, not enrichment, of ASCs downstream; substitutions that degrade stops are more frequent in-frame than out-of-frame in 3’ sequence; highly expressed genes are no more likely to have ASCs than lowly expressed genes; usage of the leakiest primary stop (TGA) in highly expressed genes does not predict ASC enrichment even compared to usage of non-leaky stops (TAA) in lowly expressed genes, beyond downstream codon +1. Any effect at the codon immediately proximal to the primary stop can be accounted for by a preference for a T/U residue immediately following the stop, although if anything, TT- and TC- starting codons are preferred. We conclude that there is no compelling evidence for ASC selection in eubacteria. This presents an unusual case in which the same error could be solved by the same mechanism in eukaryotes and prokaryotes but is not. We discuss two possible explanations: that, owing to the absence of nonsense mediated decay, bacteria may solve read-through via gene truncation and in eukaryotes certain prion states cause raised read-through rates. In all organisms, gene expression is error-prone. One such error, translational read-through, occurs where the primary stop codon of an expressed gene is missed by the translational machinery. Failure to terminate is likely to be costly, hence genomes are under selection to prevent this from happening. One proposed error-proofing strategy involves in-frame proximal additional stop codons (ASCs) which may act as a ‘fail-safe’ mechanism by providing another opportunity for translation to terminate. There is evidence for ASC enrichment in several eukaryotes. We extend this evidence showing it to be common but not universal in single celled eukaryotes. However, the situation in bacteria is poorly understood, despite bacteria having high read-through rates. Here, we test the fail-safe hypothesis within a broad range of bacteria. To our surprise, we find that not only are ASCs not enriched, but they may even be selected against. This provides evidence for an unusual circumstance where eukaryotes and prokaryotes could solve the same problem the same way but don’t. What are we to make of this? We suggest that if read-through is the problem, ASCs are not necessarily the expected solution. Owing to the absence of nonsense-mediated decay, a process that makes gene truncation in eukaryotes less viable, we propose bacteria may rescue a leaky stop by mutation that creates a new stop upstream. Alternatively, raised read-through rates in some particular conditions in eukaryotes might explain the difference.
Collapse
Affiliation(s)
- Alexander T. Ho
- Milner Centre for Evolution, University of Bath, Bath, United Kingdom
- * E-mail:
| | - Laurence D. Hurst
- Milner Centre for Evolution, University of Bath, Bath, United Kingdom
| |
Collapse
|
279
|
CRISPR-Cas9-based mutagenesis frequently provokes on-target mRNA misregulation. Nat Commun 2019; 10:4056. [PMID: 31492834 PMCID: PMC6731291 DOI: 10.1038/s41467-019-12028-5] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 08/14/2019] [Indexed: 12/16/2022] Open
Abstract
The introduction of insertion-deletions (INDELs) by non-homologous end-joining (NHEJ) pathway underlies the mechanistic basis of CRISPR-Cas9-directed genome editing. Selective gene ablation using CRISPR-Cas9 is achieved by installation of a premature termination codon (PTC) from a frameshift-inducing INDEL that elicits nonsense-mediated decay (NMD) of the mutant mRNA. Here, by examining the mRNA and protein products of CRISPR targeted genes in a cell line panel with presumed gene knockouts, we detect the production of foreign mRNAs or proteins in ~50% of the cell lines. We demonstrate that these aberrant protein products stem from the introduction of INDELs that promote internal ribosomal entry, convert pseudo-mRNAs (alternatively spliced mRNAs with a PTC) into protein encoding molecules, or induce exon skipping by disruption of exon splicing enhancers (ESEs). Our results reveal challenges to manipulating gene expression outcomes using INDEL-based mutagenesis and strategies useful in mitigating their impact on intended genome-editing outcomes.
Collapse
|
280
|
Kariv R, Caspi M, Fliss-Isakov N, Shorer Y, Shor Y, Rosner G, Brazowski E, Beer G, Cohen S, Rosin-Arbesfeld R. Resorting the function of the colorectal cancer gatekeeper adenomatous polyposis coli. Int J Cancer 2019; 146:1064-1074. [PMID: 31283021 DOI: 10.1002/ijc.32557] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 07/01/2019] [Indexed: 01/13/2023]
Abstract
As a large number of cancers are caused by nonsense mutations in key genes, read-through of these mutations to restore full-length protein expression is a potential therapeutic strategy. Mutations in the adenomatous polyposis coli (APC) gene initiate the majority of both sporadic and hereditary colorectal cancers (CRC) and around 30% of these mutations are nonsense mutations. Our goal was to test the feasibility and effectiveness of APC nonsense mutation read-through as a potential chemo-preventive therapy in Familial Adenomatous Polyposis (FAP), an inherited CRC syndrome patients. Ten FAP patients harboring APC nonsense mutations were treated with the read-through inducing antibiotic erythromycin for 4 months. Endoscopic assessment of the adenomas was performed at baseline, after 4 and after 12 months. Adenoma burden was documented in terms of adenoma number, maximal polyp size and cumulative polyp size per procedure. Tissue samples were collected and subjected to molecular and genetic analyses. Our results show that in the majority of patients the treatment led to a decrease in cumulative adenoma burden, median reduction in cumulative adenoma size and median reduction in adenoma number. Molecular and genetic analyses of the adenomas revealed that the treatment led to a reduced number of somatic APC mutations, reduced cellular proliferation and restoration of APC tumor-suppressing activity. Together, our findings show that induced read-through of APC nonsense mutations leads to promising clinical results and should be further investigated to establish its therapeutic potential in FAP and sporadic CRCs harboring nonsense APC mutations.
Collapse
Affiliation(s)
- Revital Kariv
- Department of Gastroenterology, Tel Aviv Medical Center, Tel Aviv, Israel.,Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Michal Caspi
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Naomi Fliss-Isakov
- Department of Gastroenterology, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Yamit Shorer
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yarden Shor
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Guy Rosner
- Department of Gastroenterology, Tel Aviv Medical Center, Tel Aviv, Israel.,Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eli Brazowski
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Pathology, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Gil Beer
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Tel Aviv Sourasky Medical Center, Pediatric Cardiology Unit, "Dana-Dwek" Children's Hospital, Tel Aviv, Israel
| | - Shlomi Cohen
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Tel Aviv Sourasky Medical Center, Pediatric Cardiology Unit, "Dana-Dwek" Children's Hospital, Tel Aviv, Israel
| | - Rina Rosin-Arbesfeld
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
281
|
Pan-cancer analysis of clinical relevance of alternative splicing events in 31 human cancers. Oncogene 2019; 38:6678-6695. [PMID: 31391553 DOI: 10.1038/s41388-019-0910-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 06/21/2019] [Accepted: 07/10/2019] [Indexed: 01/16/2023]
Abstract
Alternative splicing represents a critical posttranscriptional regulation of gene expression, which contributes to the protein complexity and mRNA processing. Defects of alternative splicing including genetic alteration and/or altered expression of both pre-mRNA and trans-acting factors give rise to many cancers. By integrally analyzing clinical data and splicing data from TCGA and SpliceSeq databases, a number of splicing events were found clinically relevant in tumor samples. Alternative splicing of KLK2 (KLK2_51239) was found as a potential inducement of nonsense-mediated mRNA decay and associated with poor survival in prostate cancer. Consensus K-means clustering analysis indicated that alternative splicing events could be potentially used for molecular subtype classification of cancers. By random forest survival algorithm, prognostic prediction signatures with well performances were constructed for 31 cancers by using survival-associated alternative splicing events. Furthermore, an online tool for visualization of Kaplan-Meier plots of splicing events in 31 cancers was explored. Briefly, alternative splicing was found of significant clinical relevance with cancers.
Collapse
|
282
|
Hoek TA, Khuperkar D, Lindeboom RGH, Sonneveld S, Verhagen BMP, Boersma S, Vermeulen M, Tanenbaum ME. Single-Molecule Imaging Uncovers Rules Governing Nonsense-Mediated mRNA Decay. Mol Cell 2019; 75:324-339.e11. [PMID: 31155380 PMCID: PMC6675935 DOI: 10.1016/j.molcel.2019.05.008] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 03/15/2019] [Accepted: 05/07/2019] [Indexed: 01/09/2023]
Abstract
Nonsense-mediated decay (NMD) is a surveillance system that degrades mRNAs containing a premature termination codon (PTC) and plays important roles in protein homeostasis and disease. The efficiency of NMD is variable, impacting the clinical outcome of genetic mutations. However, limited resolution of bulk analyses has hampered the study of NMD efficiency. Here, we develop an assay to visualize NMD of individual mRNA molecules in real time. We find that NMD occurs with equal probability during each round of translation of an mRNA molecule. However, this probability is variable and depends on the exon sequence downstream of the PTC, the PTC-to-intron distance, and the number of introns both upstream and downstream of the PTC. Additionally, a subpopulation of mRNAs can escape NMD, further contributing to variation in NMD efficiency. Our study uncovers real-time dynamics of NMD, reveals key mechanisms that influence NMD efficiency, and provides a powerful method to study NMD.
Collapse
Affiliation(s)
- Tim A Hoek
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Deepak Khuperkar
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Rik G H Lindeboom
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen 6500 HB, the Netherlands
| | - Stijn Sonneveld
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Bram M P Verhagen
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Sanne Boersma
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen 6500 HB, the Netherlands
| | - Marvin E Tanenbaum
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
283
|
Lloyd JPB, Lang D, Zimmer AD, Causier B, Reski R, Davies B. The loss of SMG1 causes defects in quality control pathways in Physcomitrella patens. Nucleic Acids Res 2019; 46:5822-5836. [PMID: 29596649 PMCID: PMC6009662 DOI: 10.1093/nar/gky225] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 03/16/2018] [Indexed: 12/16/2022] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is important for RNA quality control and gene regulation in eukaryotes. NMD targets aberrant transcripts for decay and also directly influences the abundance of non-aberrant transcripts. In animals, the SMG1 kinase plays an essential role in NMD by phosphorylating the core NMD factor UPF1. Despite SMG1 being ubiquitous throughout the plant kingdom, little is known about its function, probably because SMG1 is atypically absent from the genome of the model plant, Arabidopsis thaliana. By combining our previously established SMG1 knockout in moss with transcriptome-wide analysis, we reveal the range of processes involving SMG1 in plants. Machine learning assisted analysis suggests that 32% of multi-isoform genes produce NMD-targeted transcripts and that splice junctions downstream of a stop codon act as the major determinant of NMD targeting. Furthermore, we suggest that SMG1 is involved in other quality control pathways, affecting DNA repair and the unfolded protein response, in addition to its role in mRNA quality control. Consistent with this, smg1 plants have increased susceptibility to DNA damage, but increased tolerance to unfolded protein inducing agents. The potential involvement of SMG1 in RNA, DNA and protein quality control has major implications for the study of these processes in plants.
Collapse
Affiliation(s)
- James P B Lloyd
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, UK
| | - Daniel Lang
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Andreas D Zimmer
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Barry Causier
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, UK
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.,BIOSS - Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Brendan Davies
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, UK
| |
Collapse
|
284
|
The Liberfarb syndrome, a multisystem disorder affecting eye, ear, bone, and brain development, is caused by a founder pathogenic variant in thePISD gene. Genet Med 2019; 21:2734-2743. [PMID: 31263216 PMCID: PMC6892740 DOI: 10.1038/s41436-019-0595-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/17/2019] [Indexed: 01/24/2023] Open
Abstract
Purpose We observed four individuals in two unrelated but consanguineous
families from Portugal and Brazil affected by early-onset retinal degeneration,
sensorineural hearing loss, microcephaly, intellectual disability, and skeletal
dysplasia with scoliosis and short stature. The phenotype precisely matched that
of an individual of Azorean descent published in 1986 by Liberfarb and
coworkers. Methods Patients underwent specialized clinical examinations (including
ophthalmological, audiological, orthopedic, radiological, and developmental
assessment). Exome and targeted sequencing was performed on selected
individuals. Minigene constructs were assessed by quantitative polymerase chain
reaction (qPCR) and Sanger sequencing. Results Affected individuals shared a 3.36-Mb region of autozygosity on
chromosome 22q12.2, including a 10-bp deletion
(NM_014338.3:c.904-12_904-3delCTATCACCAC), immediately upstream of the last exon
of the PISD (phosphatidylserine
decarboxylase) gene. Sequencing of PISD from
paraffin-embedded tissue from the 1986 case revealed the identical homozygous
variant. In HEK293T cells, this variant led to aberrant splicing of PISD transcripts. Conclusion We have identified the genetic etiology of the Liberfarb syndrome,
affecting brain, eye, ear, bone, and connective tissue. Our work documents the
migration of a rare Portuguese founder variant to two continents and highlights
the link between phospholipid metabolism and bone formation, sensory defects,
and cerebral development, while raising the possibility of therapeutic
phospholipid replacement.
Collapse
|
285
|
Sarkar H, Mitsios A, Smart M, Skinner J, Welch AA, Kalatzis V, Coffey PJ, Dubis AM, Webster AR, Moosajee M. Nonsense-mediated mRNA decay efficiency varies in choroideremia providing a target to boost small molecule therapeutics. Hum Mol Genet 2019; 28:1865-1871. [PMID: 30689859 PMCID: PMC6522067 DOI: 10.1093/hmg/ddz028] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/18/2019] [Accepted: 01/21/2019] [Indexed: 12/15/2022] Open
Abstract
Choroideremia (CHM) is an x-linked recessive chorioretinal dystrophy, with 30% caused by nonsense mutations in the CHM gene resulting in an in-frame premature termination codon (PTC). Nonsense-mediated mRNA decay (NMD) is the cell's natural surveillance mechanism that detects and destroys PTC-containing transcripts, with UPF1 being the central NMD modulator. NMD efficiency can be variable amongst individuals with some transcripts escaping destruction, leading to the production of a truncated non-functional or partially functional protein. Nonsense suppression drugs, such as ataluren, target these transcripts and read-through the PTC, leading to the production of a full length functional protein. Patients with higher transcript levels are considered to respond better to these drugs, as more substrate is available for read-through. Using Quantitative reverse transcription PCR (RT-qPCR), we show that CHM mRNA expression in blood from nonsense mutation CHM patients is 2.8-fold lower than controls, and varies widely amongst patients, with 40% variation between those carrying the same UGA mutation [c.715 C>T; p.(R239*)]. These results indicate that although NMD machinery is at work, efficiency is highly variable and not wholly dependent on mutation position. No significant difference in CHM mRNA levels was seen between two patients' fibroblasts and their induced pluripotent stem cell-derived retinal pigment epithelium. There was no correlation between CHM mRNA expression and genotype, phenotype or UPF1 transcript levels. NMD inhibition with caffeine was shown to restore CHM mRNA transcripts to near wild-type levels. Baseline mRNA levels may provide a prognostic indicator for response to nonsense suppression therapy, and caffeine may be a useful adjunct to enhance treatment efficacy where indicated.
Collapse
Affiliation(s)
- Hajrah Sarkar
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London, UK
| | - Andreas Mitsios
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London, UK
- Department of Genetics, Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Matthew Smart
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London, UK
| | - Jane Skinner
- Department of Public Health & Primary Care, Norwich Medical School, University of East Anglia, Norwich, UK
| | - Ailsa A Welch
- Department of Public Health & Primary Care, Norwich Medical School, University of East Anglia, Norwich, UK
| | - Vasiliki Kalatzis
- Inserm U1051, Institute for Neurosciences of Montpellier, Montpellier, Montpellier Cedex, France
| | - Peter J Coffey
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London, UK
| | - Adam M Dubis
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London, UK
- Department of Genetics, Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Andrew R Webster
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London, UK
- Department of Genetics, Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Mariya Moosajee
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London, UK
- Department of Genetics, Moorfields Eye Hospital NHS Foundation Trust, London, UK
- Department of Ophthalmology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| |
Collapse
|
286
|
Beiki H, Liu H, Huang J, Manchanda N, Nonneman D, Smith TPL, Reecy JM, Tuggle CK. Improved annotation of the domestic pig genome through integration of Iso-Seq and RNA-seq data. BMC Genomics 2019; 20:344. [PMID: 31064321 PMCID: PMC6505119 DOI: 10.1186/s12864-019-5709-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/17/2019] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Our understanding of the pig transcriptome is limited. RNA transcript diversity among nine tissues was assessed using poly(A) selected single-molecule long-read isoform sequencing (Iso-seq) and Illumina RNA sequencing (RNA-seq) from a single White cross-bred pig. RESULTS Across tissues, a total of 67,746 unique transcripts were observed, including 60.5% predicted protein-coding, 36.2% long non-coding RNA and 3.3% nonsense-mediated decay transcripts. On average, 90% of the splice junctions were supported by RNA-seq within tissue. A large proportion (80%) represented novel transcripts, mostly produced by known protein-coding genes (70%), while 17% corresponded to novel genes. On average, four transcripts per known gene (tpg) were identified; an increase over current EBI (1.9 tpg) and NCBI (2.9 tpg) annotations and closer to the number reported in human genome (4.2 tpg). Our new pig genome annotation extended more than 6000 known gene borders (5' end extension, 3' end extension, or both) compared to EBI or NCBI annotations. We validated a large proportion of these extensions by independent pig poly(A) selected 3'-RNA-seq data, or human FANTOM5 Cap Analysis of Gene Expression data. Further, we detected 10,465 novel genes (81% non-coding) not reported in current pig genome annotations. More than 80% of these novel genes had transcripts detected in > 1 tissue. In addition, more than 80% of novel intergenic genes with at least one transcript detected in liver tissue had H3K4me3 or H3K36me3 peaks mapping to their promoter and gene body, respectively, in independent liver chromatin immunoprecipitation data. CONCLUSIONS These validated results show significant improvement over current pig genome annotations.
Collapse
Affiliation(s)
- H Beiki
- Department of Animal Science, Iowa State University, 2255 Kildee Hall, Ames, IA, 50011, USA
| | - H Liu
- Department of Animal Science, Iowa State University, 2255 Kildee Hall, Ames, IA, 50011, USA
| | - J Huang
- Department of Animal Science, Iowa State University, 2255 Kildee Hall, Ames, IA, 50011, USA.,College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, People's Republic of China
| | - N Manchanda
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, 819 Wallace Road, Ames, IA, 50011, USA
| | - D Nonneman
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE, 68933, USA
| | - T P L Smith
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE, 68933, USA
| | - J M Reecy
- Department of Animal Science, Iowa State University, 2255 Kildee Hall, Ames, IA, 50011, USA
| | - C K Tuggle
- Department of Animal Science, Iowa State University, 2255 Kildee Hall, Ames, IA, 50011, USA.
| |
Collapse
|
287
|
Khan K, Zech M, Morgan AT, Amor DJ, Skorvanek M, Khan TN, Hildebrand MS, Jackson VE, Scerri TS, Coleman M, Rigbye KA, Scheffer IE, Bahlo M, Wagner M, Lam DD, Berutti R, Havránková P, Fečíková A, Strom TM, Han V, Dosekova P, Gdovinova Z, Laccone F, Jameel M, Mooney MR, Baig SM, Jech R, Davis EE, Katsanis N, Winkelmann J. Recessive variants in ZNF142 cause a complex neurodevelopmental disorder with intellectual disability, speech impairment, seizures, and dystonia. Genet Med 2019; 21:2532-2542. [PMID: 31036918 PMCID: PMC6821592 DOI: 10.1038/s41436-019-0523-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 04/15/2019] [Indexed: 12/14/2022] Open
Abstract
PURPOSE The purpose of this study was to expand the genetic architecture of neurodevelopmental disorders, and to characterize the clinical features of a novel cohort of affected individuals with variants in ZNF142, a C2H2 domain-containing transcription factor. METHODS Four independent research centers used exome sequencing to elucidate the genetic basis of neurodevelopmental phenotypes in four unrelated families. Following bioinformatic filtering, query of control data sets, and secondary variant confirmation, we aggregated findings using an online data sharing platform. We performed in-depth clinical phenotyping in all affected individuals. RESULTS We identified seven affected females in four pedigrees with likely pathogenic variants in ZNF142 that segregate with recessive disease. Affected cases in three families harbor either nonsense or frameshifting likely pathogenic variants predicted to undergo nonsense mediated decay. One additional trio bears ultrarare missense variants in conserved regions of ZNF142 that are predicted to be damaging to protein function. We performed clinical comparisons across our cohort and noted consistent presence of intellectual disability and speech impairment, with variable manifestation of seizures, tremor, and dystonia. CONCLUSION Our aggregate data support a role for ZNF142 in nervous system development and add to the emergent list of zinc finger proteins that contribute to neurocognitive disorders.
Collapse
Affiliation(s)
- Kamal Khan
- Center for Human Disease Modeling, Duke University Medical Center, Durham, NC, USA.,Human Molecular Genetics Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan.,Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Michael Zech
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany.,Institut für Humangenetik, Technische Universität München, Munich, Germany
| | - Angela T Morgan
- Murdoch Children's Research Institute and University of Melbourne Department of Paediatrics, Royal Children's Hospital, Parkville, Australia
| | - David J Amor
- Murdoch Children's Research Institute and University of Melbourne Department of Paediatrics, Royal Children's Hospital, Parkville, Australia
| | - Matej Skorvanek
- Department of Neurology, P.J. Safarik University, Kosice, Slovak Republic.,Department of Neurology, University Hospital of L. Pasteur, Kosice, Slovak Republic
| | - Tahir N Khan
- Center for Human Disease Modeling, Duke University Medical Center, Durham, NC, USA.,Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Michael S Hildebrand
- Murdoch Children's Research Institute and University of Melbourne Department of Paediatrics, Royal Children's Hospital, Parkville, Australia.,Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, VIC, Australia
| | - Victoria E Jackson
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, and University of Melbourne Department of Medical Biology and School of Mathematics and Statistics, Parkville, VIC, Australia
| | - Thomas S Scerri
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, and University of Melbourne Department of Medical Biology and School of Mathematics and Statistics, Parkville, VIC, Australia
| | - Matthew Coleman
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, VIC, Australia
| | - Kristin A Rigbye
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, VIC, Australia
| | - Ingrid E Scheffer
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, VIC, Australia.,University of Melbourne Department of Paediatrics, Royal Children's Hospital, and Florey and Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Melanie Bahlo
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, and University of Melbourne Department of Medical Biology and School of Mathematics and Statistics, Parkville, VIC, Australia
| | - Matias Wagner
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany.,Institut für Humangenetik, Technische Universität München, Munich, Germany
| | - Daniel D Lam
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
| | - Riccardo Berutti
- Institut für Humangenetik, Helmholtz Zentrum München, Munich, Germany
| | - Petra Havránková
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General Faculty Hospital, Prague, Czech Republic
| | - Anna Fečíková
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General Faculty Hospital, Prague, Czech Republic
| | - Tim M Strom
- Institut für Humangenetik, Technische Universität München, Munich, Germany.,Institut für Humangenetik, Helmholtz Zentrum München, Munich, Germany
| | - Vladimir Han
- Department of Neurology, P.J. Safarik University, Kosice, Slovak Republic.,Department of Neurology, University Hospital of L. Pasteur, Kosice, Slovak Republic
| | - Petra Dosekova
- Department of Neurology, P.J. Safarik University, Kosice, Slovak Republic.,Department of Neurology, University Hospital of L. Pasteur, Kosice, Slovak Republic
| | - Zuzana Gdovinova
- Department of Neurology, P.J. Safarik University, Kosice, Slovak Republic.,Department of Neurology, University Hospital of L. Pasteur, Kosice, Slovak Republic
| | - Franco Laccone
- Institute of Medical Genetics, Medical School of Vienna, Vienna, Austria
| | - Muhammad Jameel
- Human Molecular Genetics Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Marie R Mooney
- Center for Human Disease Modeling, Duke University Medical Center, Durham, NC, USA
| | - Shahid M Baig
- Human Molecular Genetics Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan.,Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Robert Jech
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General Faculty Hospital, Prague, Czech Republic
| | - Erica E Davis
- Center for Human Disease Modeling, Duke University Medical Center, Durham, NC, USA
| | - Nicholas Katsanis
- Center for Human Disease Modeling, Duke University Medical Center, Durham, NC, USA.
| | - Juliane Winkelmann
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany. .,Institut für Humangenetik, Technische Universität München, Munich, Germany. .,Lehrstuhl für Neurogenetik, Technische Universität München, Munich, Germany. .,Munich Cluster for Systems Neurology, SyNergy, Munich, Germany.
| |
Collapse
|
288
|
Koster J, Plasterk RHA. A library of Neo Open Reading Frame peptides (NOPs) as a sustainable resource of common neoantigens in up to 50% of cancer patients. Sci Rep 2019; 9:6577. [PMID: 31036835 PMCID: PMC6488612 DOI: 10.1038/s41598-019-42729-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 02/14/2019] [Indexed: 02/08/2023] Open
Abstract
Somatic mutations in cancer can result in neoantigens against which patients can be vaccinated. The quest for tumor specific neoantigens has yielded no targets that are common to all tumors, yet foreign to healthy cells. Single base pair substitutions (SNVs) at best can alter 1 amino acid which can result in a neoantigen; with the exception of rare site-specific oncogenic driver mutations (such as RAS) such mutations are private. Here, we describe a source of common neoantigens induced by frame shift mutations, based on analysis of 10,186 TCGA tumor samples. We find that these frame shift mutations can produce long neoantigens. These are completely new to the body, and indeed recent evidence suggests that frame shifts can be highly immunogenic. We report that many different frame shift mutations converge to the same small set of 3' neo open reading frame peptides (NOPs), all encoded by the Neo-ORFeome. We find that a fixed set of only 1,244 neo-peptides in as much as 30% of all TCGA cancer patients. For some tumor classes this is higher; e.g. for colon and cervical cancer, peptides derived from only ten genes (saturated at 90 peptides) can be applied to 39% of all patients. 50% of all TCGA patients can be achieved at saturation (using all those peptides in the library found more than once). A pre-fabricated library of vaccines (peptide, RNA or DNA) based on this set can provide off the shelf, quality certified, 'personalized' vaccines within hours, saving months of vaccine preparation. This is crucial for critically ill cancer patients with short average survival expectancy after diagnosis.
Collapse
Affiliation(s)
- Jan Koster
- Amsterdam UMC, University of Amsterdam, Department of Oncogenomics, Meibergdreef 9, Amsterdam, The Netherlands.
| | - Ronald H A Plasterk
- myTomorrows, Antoni Fokkerweg 61, Amsterdam, The Netherlands.
- Founder/CEO, Frame Cancer Therapeutics, Science Park 106, Amsterdam, 1098 XG, The Netherlands.
- Amsterdam UMC, Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam, The Netherlands.
| |
Collapse
|
289
|
Tsai KL, Evans JM, Noorai RE, Starr-Moss AN, Clark LA. Novel Y Chromosome Retrocopies in Canids Revealed through a Genome-Wide Association Study for Sex. Genes (Basel) 2019; 10:genes10040320. [PMID: 31027231 PMCID: PMC6523286 DOI: 10.3390/genes10040320] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 12/12/2022] Open
Abstract
The lack of an annotated reference sequence for the canine Y chromosome has limited evolutionary studies, as well as our understanding of the role of Y-linked sequences in phenotypes with a sex bias. In genome-wide association studies (GWASs), we observed spurious associations with autosomal SNPs when sex was unbalanced in case-control cohorts and hypothesized that a subset of SNPs mapped to autosomes are in fact sex-linked. Using the Illumina 230K CanineHD array in a GWAS for sex, we identified SNPs that amplify in both sexes but possess significant allele frequency differences between males and females. We found 48 SNPs mapping to 14 regions of eight autosomes and the X chromosome that are Y-linked, appearing heterozygous in males and monomorphic in females. Within these 14 regions are eight genes: three autosomal and five X-linked. We investigated the autosomal genes (MITF, PPP2CB, and WNK1) and determined that the SNPs are diverged nucleotides in retrocopies that have transposed to the Y chromosome. MITFY and WNK1Y are expressed and appeared recently in the Canidae lineage, whereas PPP2CBY represents a much older insertion with no evidence of expression in the dog. This work reveals novel canid Y chromosome sequences and provides evidence for gene transposition to the Y from autosomes and the X.
Collapse
Affiliation(s)
- Kate L Tsai
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA.
| | - Jacquelyn M Evans
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA.
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-2152, USA.
| | - Rooksana E Noorai
- Clemson University Genomics and Bioinformatics Facility, Clemson University, Clemson, SC 29634, USA.
| | - Alison N Starr-Moss
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA.
| | - Leigh Anne Clark
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA.
| |
Collapse
|
290
|
Lin H, Zhang Z, Iomini C, Dutcher SK. Identifying RNA splicing factors using IFT genes in Chlamydomonas reinhardtii. Open Biol 2019. [PMID: 29514868 PMCID: PMC5881031 DOI: 10.1098/rsob.170211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Intraflagellar transport moves proteins in and out of flagella/cilia and it is essential for the assembly of these organelles. Using whole-genome sequencing, we identified splice site mutations in two IFT genes, IFT81 (fla9) and IFT121 (ift121-2), which lead to flagellar assembly defects in the unicellular green alga Chlamydomonas reinhardtii. The splicing defects in these ift mutants are partially corrected by mutations in two conserved spliceosome proteins, DGR14 and FRA10. We identified a dgr14 deletion mutant, which suppresses the 3′ splice site mutation in IFT81, and a frameshift mutant of FRA10, which suppresses the 5′ splice site mutation in IFT121. Surprisingly, we found dgr14-1 and fra10 mutations suppress both splice site mutations. We suggest these two proteins are involved in facilitating splice site recognition/interaction; in their absence some splice site mutations are tolerated. Nonsense mutations in SMG1, which is involved in nonsense-mediated decay, lead to accumulation of aberrant transcripts and partial restoration of flagellar assembly in the ift mutants. The high density of introns and the conservation of noncore splicing factors, together with the ease of scoring the ift mutant phenotype, make Chlamydomonas an attractive organism to identify new proteins involved in splicing through suppressor screening.
Collapse
Affiliation(s)
- Huawen Lin
- Department of Genetics, Washington University School of Medicine, 4523 Clayton Avenue, St Louis, MO 63110, USA
| | - Zhengyan Zhang
- Department of Genetics, Washington University School of Medicine, 4523 Clayton Avenue, St Louis, MO 63110, USA
| | - Carlo Iomini
- Department of Ophthalmology, Mount Sinai School of Medicine, New York, NY, USA
| | - Susan K Dutcher
- Department of Genetics, Washington University School of Medicine, 4523 Clayton Avenue, St Louis, MO 63110, USA
| |
Collapse
|
291
|
Abstract
OBJECTIVES DAXX immunohistochemistry (IHC) is often used as a surrogate for sequencing. We aimed to elucidate the sensitivity of IHC for DAXX mutation. METHODS All pancreatic neuroendocrine tumors (PanNETs) with DAXX mutations detected by sequencing and a subset of DAXX wild-type PanNETs were analyzed for DAXX expression by IHC. RESULTS Of 154 PanNETs with MSK-IMPACT testing, 36 (30%) harbored DAXX mutations. DAXX mutations were associated with TSC2 mutations (46% vs 10%, P < 0.0001), tended to co-occur with MEN1 mutations (63% vs 49%, P = 0.11), and tended to be mutually exclusive with ATRX mutations (11% vs 25%, P = 0.053). Of 27 available DAXX mutant PanNETs, 23 lost DAXX expression (85.2%). All 4 DAXX mutants with retained expression harbored DAXX mutations within the SUMO-interacting motif of the last exon. Telomere-specific fluorescence in situ hybridization demonstrated alternative lengthening of telomeres in all 4 cases. Of 20 PanNETs with wild-type DAXX, 19 retained DAXX IHC expression (95%). CONCLUSIONS The sensitivity and specificity of IHC for DAXX mutation are 85% and 95%, respectively. Last exon DAXX mutant PanNETs often show alternative lengthening of telomeres despite retained DAXX expression, likely due to escape of nonmediated decay.
Collapse
|
292
|
Koparir A, Karatas OF, Yilmaz SS, Suer I, Ozer B, Yuceturk B, Ozen M. Revealing the functions of novel mutations in RAB3GAP1
in Martsolf and Warburg micro syndromes. Am J Med Genet A 2019; 179:579-587. [DOI: 10.1002/ajmg.a.61065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/17/2019] [Accepted: 01/17/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Asuman Koparir
- Department of Internal Medicine, Division of Medical Genetics; Istanbul University; Istanbul Turkey
| | - Omer Faruk Karatas
- Molecular Biology and Genetics Department; Erzurum Technical University; Erzurum Turkey
| | - Seda Salman Yilmaz
- Department of Medical Genetics; Istanbul University, Cerrahpasa Medical School; Istanbul Turkey
| | - Ilknur Suer
- Department of Internal Medicine, Division of Medical Genetics; Istanbul University; Istanbul Turkey
| | - Bugra Ozer
- Advanced Genomics and Bioinformatics Research Center; The Scientific and Technological Research Council of Turkey (TUBITAK-BILGEM); Kocaeli Turkey
| | - Betul Yuceturk
- Advanced Genomics and Bioinformatics Research Center; The Scientific and Technological Research Council of Turkey (TUBITAK-BILGEM); Kocaeli Turkey
| | - Mustafa Ozen
- Department of Medical Genetics; Istanbul University, Cerrahpasa Medical School; Istanbul Turkey
- Department of Pathology and Immunology; Baylor College of Medicine; Houston Texas
| |
Collapse
|
293
|
Stalke A, Pfister ED, Baumann U, Eilers M, Schäffer V, Illig T, Auber B, Schlegelberger B, Brackmann R, Prokisch H, Krooss S, Bohne J, Skawran B. Homozygous frame shift variant in ATP7B exon 1 leads to bypass of nonsense-mediated mRNA decay and to a protein capable of copper export. Eur J Hum Genet 2019; 27:879-887. [PMID: 30723317 DOI: 10.1038/s41431-019-0345-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/06/2018] [Accepted: 01/05/2019] [Indexed: 12/13/2022] Open
Abstract
Wilson disease (WD) is an autosomal recessive disease of copper excess due to pathogenic variants in the ATP7B gene coding for a copper-transporting ATPase. We present a 5-year-old girl with the homozygous frame shift variant NM_000053.3: c.19_20del in exon 1 of ATP7B (consecutive exon numbering with c.1 as first nucleotide of exon 1), detected by whole-exome sequencing as a secondary finding. The variant leads to a premature termination codon in exon 2. The girl exhibited no WD symptoms and no abnormalities in liver biopsy. ATP7B liver mRNA expression was comparable to healthy controls suggesting that nonsense-mediated mRNA decay (NMD) could be bypassed by the mechanism of translation reinitiation. To verify this hypothesis, a CMV-driven ATP7B minigene (pcDNA3) was equipped with the authentic ATP7B 5' untranslated region and a truncated intron 2. We introduced c.19_20del by site-directed mutagenesis and overexpressed the constructs in HEK293T cells. We analyzed ATP7B expression by qRT-PCR, northern and western blot, and examined protein function by copper export capacity assays. Northern blot, qRT-PCR, and western blot revealed that c.19_20del ATP7B mRNA and protein is expressed in size and amount comparable to wild-type. Copper export capacity was also comparable to wild-type. Our results indicate that c.19_20del in ATP7B is able to bypass NMD by translation reinitiation, demonstrating that the classification of truncating variants as pathogenic without additional investigations should be done carefully.
Collapse
Affiliation(s)
- Amelie Stalke
- Department of Human Genetics, Hannover Medical School, Hannover, Germany. .,Division of Pediatric Gastroenterology and Hepatology, Department of Kidney, Liver and Metabolic Disease, Hannover Medical School, Hannover, Germany.
| | - Eva-Doreen Pfister
- Division of Pediatric Gastroenterology and Hepatology, Department of Kidney, Liver and Metabolic Disease, Hannover Medical School, Hannover, Germany
| | - Ulrich Baumann
- Division of Pediatric Gastroenterology and Hepatology, Department of Kidney, Liver and Metabolic Disease, Hannover Medical School, Hannover, Germany
| | - Marlies Eilers
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Vera Schäffer
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Thomas Illig
- Department of Human Genetics, Hannover Medical School, Hannover, Germany.,Hannover Unified Biobank, Hannover Medical School, Hannover, Germany
| | - Bernd Auber
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | | | - Renate Brackmann
- Department of Child and Adolescent Medicine, Klinikum Herford, Herford, Germany
| | - Holger Prokisch
- Institute of Human Genetics, Helmholtz Center Munich, Neuherberg, Germany.,Institute of Human Genetics, Technical University Munich, Munich, Germany
| | - Simon Krooss
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Jens Bohne
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Britta Skawran
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| |
Collapse
|
294
|
Montalban G, Bonache S, Moles-Fernández A, Gisbert-Beamud A, Tenés A, Bach V, Carrasco E, López-Fernández A, Stjepanovic N, Balmaña J, Diez O, Gutiérrez-Enríquez S. Screening of BRCA1/2 deep intronic regions by targeted gene sequencing identifies the first germline BRCA1 variant causing pseudoexon activation in a patient with breast/ovarian cancer. J Med Genet 2019; 56:63-74. [PMID: 30472649 DOI: 10.1136/jmedgenet-2018-105606] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 10/16/2018] [Accepted: 10/28/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND Genetic analysis of BRCA1 and BRCA2 for the diagnosis of hereditary breast and ovarian cancer (HBOC) is commonly restricted to coding regions and exon-intron boundaries. Although germline pathogenic variants in these regions explain about ~20% of HBOC cases, there is still an important fraction that remains undiagnosed. We have screened BRCA1/2 deep intronic regions to identify potential spliceogenic variants that could explain part of the missing HBOC susceptibility. METHODS We analysed BRCA1/2 deep intronic regions by targeted gene sequencing in 192 high-risk HBOC families testing negative for BRCA1/2 during conventional analysis. Rare variants (MAF <0.005) predicted to create/activate splice sites were selected for further characterisation in patient RNA. The splicing outcome was analysed by RT-PCR and Sanger sequencing, and allelic imbalance was also determined when heterozygous exonic loci were present. RESULTS A novel transcript was detected in BRCA1 c.4185+4105C>T variant carrier. This variant promotes the inclusion of a pseudoexon in mature mRNA, generating an aberrant transcript predicted to encode for a non-functional protein. Quantitative and allele-specific assays determined haploinsufficiency in the variant carrier, supporting a pathogenic effect for this variant. Genotyping of 1030 HBOC cases and 327 controls did not identify additional carriers in Spanish population. CONCLUSION Screening of BRCA1/2 intronic regions has identified the first BRCA1 deep intronic variant associated with HBOC by pseudoexon activation. Although the frequency of deleterious variants in these regions appears to be low, our study highlights the importance of studying non-coding regions and performing comprehensive RNA assays to complement genetic diagnosis.
Collapse
Affiliation(s)
- Gemma Montalban
- Oncogenetics Group, Vall d'Hebron Institut d'Oncologia, Barcelona, Spain
| | - Sandra Bonache
- Oncogenetics Group, Vall d'Hebron Institut d'Oncologia, Barcelona, Spain
| | | | | | - Anna Tenés
- Area of Clinical and Molecular Genetics, University Hospital of Vall d'Hebron, Barcelona, Spain
| | - Vanessa Bach
- Oncogenetics Group, Vall d'Hebron Institut d'Oncologia, Barcelona, Spain
| | - Estela Carrasco
- High Risk and Cancer Prevention Group, Vall d'Hebron Institut d'Oncologia, Barcelona, Spain
| | - Adrià López-Fernández
- High Risk and Cancer Prevention Group, Vall d'Hebron Institut d'Oncologia, Barcelona, Spain
| | - Neda Stjepanovic
- High Risk and Cancer Prevention Group, Vall d'Hebron Institut d'Oncologia, Barcelona, Spain
- Medical Oncology Department, University Hospital of Vall d'Hebron, Barcelona, Spain
| | - Judith Balmaña
- High Risk and Cancer Prevention Group, Vall d'Hebron Institut d'Oncologia, Barcelona, Spain
- Medical Oncology Department, University Hospital of Vall d'Hebron, Barcelona, Spain
| | - Orland Diez
- Oncogenetics Group, Vall d'Hebron Institut d'Oncologia, Barcelona, Spain
- Area of Clinical and Molecular Genetics, University Hospital of Vall d'Hebron, Barcelona, Spain
| | | |
Collapse
|
295
|
San B, Rougeot J, Voeltzke K, van Vegchel G, Aben M, Andralojc KM, Flik G, Kamminga LM. The ezh2(sa1199) mutant zebrafish display no distinct phenotype. PLoS One 2019; 14:e0210217. [PMID: 30677064 PMCID: PMC6345456 DOI: 10.1371/journal.pone.0210217] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 12/18/2018] [Indexed: 12/27/2022] Open
Abstract
Polycomb group (PcG) proteins are essential regulators of epigenetic gene silencing and development. The PcG protein enhancer of zeste homolog 2 (Ezh2) is a key component of the Polycomb Repressive Complex 2 and is responsible for placing the histone H3 lysine 27 trimethylation (H3K27me3) repressive mark on the genome through its methyltransferase domain. Ezh2 is highly conserved in vertebrates. We studied the role of ezh2 during development of zebrafish with the use of a mutant allele (ezh2(sa1199), R18STOP), which has a stop mutation in the second exon of the ezh2 gene. Two versions of the same line were used during this study. The first and original version of zygotic ezh2(sa1199) mutants unexpectedly retained ezh2 expression in brain, gut, branchial arches, and eyes at 3 days post-fertilization (dpf), as revealed by in-situ hybridization. Moreover, the expression pattern in homozygous mutants was identical to that of wild types, indicating that mutant ezh2 mRNA is not subject to nonsense mediated decay (NMD) as predicted. Both wild type and ezh2 mutant embryos presented edemas at 2 and 3 dpf. The line was renewed by selective breeding to counter select the non-specific phenotypes and survival was assessed. In contrast to earlier studies on ezh2 mutant zebrafish, ezh2(sa1199) mutants survived until adulthood. Interestingly, the ezh2 mRNA and Ezh2 protein were present during adulthood (70 dpf) in both wild type and ezh2(sa1199) mutant zebrafish. We conclude that the ezh2(sa1199) allele does not exhibit an ezh2 loss-of-function phenotype.
Collapse
Affiliation(s)
- Bilge San
- Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Julien Rougeot
- Radboud University, Faculty of Science, Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Kai Voeltzke
- Radboud University, Faculty of Science, Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Gertie van Vegchel
- Radboud University, Faculty of Science, Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Marco Aben
- Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
- Radboud University, Faculty of Science, Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Karolina M. Andralojc
- Radboud University, Faculty of Science, Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Gert Flik
- Department of Animal Ecology and Physiology, Radboud University, Nijmegen, The Netherlands
| | - Leonie M. Kamminga
- Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
- Radboud University, Faculty of Science, Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| |
Collapse
|
296
|
Fernandes R, Nogueira G, da Costa PJ, Pinto F, Romão L. Nonsense-Mediated mRNA Decay in Development, Stress and Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1157:41-83. [DOI: 10.1007/978-3-030-19966-1_3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
297
|
Grabowski P, Rappsilber J. A Primer on Data Analytics in Functional Genomics: How to Move from Data to Insight? Trends Biochem Sci 2019; 44:21-32. [PMID: 30522862 PMCID: PMC6318833 DOI: 10.1016/j.tibs.2018.10.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/19/2018] [Accepted: 10/25/2018] [Indexed: 02/06/2023]
Abstract
High-throughput methodologies and machine learning have been central in developing systems-level perspectives in molecular biology. Unfortunately, performing such integrative analyses has traditionally been reserved for bioinformaticians. This is now changing with the appearance of resources to help bench-side biologists become skilled at computational data analysis and handling large omics data sets. Here, we show an entry route into the field of omics data analytics. We provide information about easily accessible data sources and suggest some first steps for aspiring computational data analysts. Moreover, we highlight how machine learning is transforming the field and how it can help make sense of biological data. Finally, we suggest good starting points for self-learning and hope to convince readers that computational data analysis and programming are not intimidating.
Collapse
Affiliation(s)
- Piotr Grabowski
- Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany
| | - Juri Rappsilber
- Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany; Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK.
| |
Collapse
|
298
|
Zech M, Lam DD, Weber S, Berutti R, Poláková K, Havránková P, Fečíková A, Strom TM, Růžička E, Jech R, Winkelmann J. A unique de novo gain-of-function variant in CAMK4 associated with intellectual disability and hyperkinetic movement disorder. Cold Spring Harb Mol Case Stud 2018; 4:mcs.a003293. [PMID: 30262571 PMCID: PMC6318768 DOI: 10.1101/mcs.a003293] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 09/04/2018] [Indexed: 01/12/2023] Open
Abstract
Calcium/calmodulin-dependent protein kinases (CaMKs) are key mediators of calcium signaling and underpin neuronal health. Although widely studied, the contribution of CaMKs to Mendelian disease is rather enigmatic. Here, we describe an unusual neurodevelopmental phenotype, characterized by milestone delay, intellectual disability, autism, ataxia, and mixed hyperkinetic movement disorder including severe generalized dystonia, in a proband who remained etiologically undiagnosed despite exhaustive testing. We performed trio whole-exome sequencing to identify a de novo essential splice-site variant (c.981+1G>A) in CAMK4, encoding CaMKIV. Through in silico evaluation and cDNA analyses, we demonstrated that c.981+1G>A alters CAMK4 pre-mRNA processing and results in a stable mRNA transcript containing a 77-nt out-of-frame deletion and a premature termination codon within the last exon. The expected protein, p.Lys303Serfs*28, exhibits selective loss of the carboxy-terminal regulatory domain of CaMKIV and bears striking structural resemblance to previously reported synthetic mutants that confer constitutive CaMKIV activity. Biochemical studies in proband-derived cells confirmed an activating effect of c.981+1G>A and indicated that variant-induced excessive CaMKIV signaling is sensitive to pharmacological manipulation. Additionally, we found that variants predicted to cause selective depletion of CaMKIV's regulatory domain are unobserved in diverse catalogs of human variation, thus revealing that c.981+1G>A is a unique molecular event. We propose that our proband's phenotype is explainable by a dominant CAMK4 splice-disrupting mutation that acts through a gain-of-function mechanism. Our findings highlight the importance of CAMK4 in human neurodevelopment, provide a foundation for future clinical research of CAMK4, and suggest the CaMKIV signaling pathway as a potential drug target in neurological disease.
Collapse
Affiliation(s)
- Michael Zech
- Institut für Neurogenomik, Helmholtz Zentrum München, Munich, 85764, Germany.,Klinik und Poliklinik für Neurologie, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany
| | - Daniel D Lam
- Institut für Neurogenomik, Helmholtz Zentrum München, Munich, 85764, Germany
| | - Sandrina Weber
- Institut für Neurogenomik, Helmholtz Zentrum München, Munich, 85764, Germany
| | - Riccardo Berutti
- Institut für Humangenetik, Helmholtz Zentrum München, Munich, 85764, Germany
| | - Kamila Poláková
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General Faculty Hospital, Prague, 120 00, Czech Republic
| | - Petra Havránková
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General Faculty Hospital, Prague, 120 00, Czech Republic
| | - Anna Fečíková
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General Faculty Hospital, Prague, 120 00, Czech Republic
| | - Tim M Strom
- Institut für Humangenetik, Helmholtz Zentrum München, Munich, 85764, Germany.,Institut für Humangenetik, Technische Universität München, Munich, 81675, Germany
| | - Evžen Růžička
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General Faculty Hospital, Prague, 120 00, Czech Republic
| | - Robert Jech
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General Faculty Hospital, Prague, 120 00, Czech Republic
| | - Juliane Winkelmann
- Institut für Neurogenomik, Helmholtz Zentrum München, Munich, 85764, Germany.,Institut für Humangenetik, Technische Universität München, Munich, 81675, Germany.,Lehrstuhl für Neurogenetik, Technische Universität München, Munich, 80333, Germany.,Munich Cluster for Systems Neurology, SyNergy, Munich, 81377, Germany
| |
Collapse
|
299
|
Mégarbané A, Hmaimess G, Bizzari S, El-Bazzal L, Al-Ali MT, Stora S, Delague V, El-Hayek S. A novel PDE6D mutation in a patient with Joubert syndrome type 22 (JBTS22). Eur J Med Genet 2018; 62:103576. [PMID: 30423442 DOI: 10.1016/j.ejmg.2018.11.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 10/02/2018] [Accepted: 11/09/2018] [Indexed: 10/27/2022]
Abstract
Joubert syndrome (JS) is an autosomal or X-linked recessive syndrome principally characterized by hypotonia, ataxia, cognitive impairment, and a specific finding on brain imaging called a "molar tooth sign" (MTS), which can be isolated or in conjunction with variable organ involvement. The genetic basis of JS is heterogeneous, with over 35 ciliary genes being implicated in its pathogenesis. However, some of these genes (such as PDE6D) have been associated to JS only in single families, seeking confirmation. Here we report a boy, born to first cousin parents, presenting with developmental delay, hypotonia, microcephaly, post axial polydactyly, oculomotor apraxia, and MTS. Whole exome sequencing revealed the presence of a novel homozygous truncating variant in the PDE6D gene: NM_002601.3:c.367_368insG [p.(Leu123Cysfs*13)]. The variant was confirmed by Sanger sequencing and found at the heterozygous state in both parents. A review of the literature pertaining to the role of PDE6D in JS is discussed.
Collapse
Affiliation(s)
| | | | - Sami Bizzari
- Centre for Arab Genomic Studies, Dubai, United Arab Emirates
| | - Lara El-Bazzal
- Aix Marseille Univ, Inserm, MMG, U 1251, Marseille, France
| | | | | | | | | |
Collapse
|
300
|
Sharma N, Evans TA, Pellicore MJ, Davis E, Aksit MA, McCague AF, Joynt AT, Lu Z, Han ST, Anzmann AF, Lam ATN, Thaxton A, West N, Merlo C, Gottschalk LB, Raraigh KS, Sosnay PR, Cotton CU, Cutting GR. Capitalizing on the heterogeneous effects of CFTR nonsense and frameshift variants to inform therapeutic strategy for cystic fibrosis. PLoS Genet 2018; 14:e1007723. [PMID: 30444886 PMCID: PMC6267994 DOI: 10.1371/journal.pgen.1007723] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 11/30/2018] [Accepted: 09/28/2018] [Indexed: 12/18/2022] Open
Abstract
CFTR modulators have revolutionized the treatment of individuals with cystic fibrosis (CF) by improving the function of existing protein. Unfortunately, almost half of the disease-causing variants in CFTR are predicted to introduce premature termination codons (PTC) thereby causing absence of full-length CFTR protein. We hypothesized that a subset of nonsense and frameshift variants in CFTR allow expression of truncated protein that might respond to FDA-approved CFTR modulators. To address this concept, we selected 26 PTC-generating variants from four regions of CFTR and determined their consequences on CFTR mRNA, protein and function using intron-containing minigenes expressed in 3 cell lines (HEK293, MDCK and CFBE41o-) and patient-derived conditionally reprogrammed primary nasal epithelial cells. The PTC-generating variants fell into five groups based on RNA and protein effects. Group A (reduced mRNA, immature (core glycosylated) protein, function <1% (n = 5)) and Group B (normal mRNA, immature protein, function <1% (n = 10)) variants were unresponsive to modulator treatment. However, Group C (normal mRNA, mature (fully glycosylated) protein, function >1% (n = 5)), Group D (reduced mRNA, mature protein, function >1% (n = 5)) and Group E (aberrant RNA splicing, mature protein, function > 1% (n = 1)) variants responded to modulators. Increasing mRNA level by inhibition of NMD led to a significant amplification of modulator effect upon a Group D variant while response of a Group A variant was unaltered. Our work shows that PTC-generating variants should not be generalized as genetic 'nulls' as some may allow generation of protein that can be targeted to achieve clinical benefit.
Collapse
Affiliation(s)
- Neeraj Sharma
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Taylor A. Evans
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Matthew J. Pellicore
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Emily Davis
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Melis A. Aksit
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Allison F. McCague
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Anya T. Joynt
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Zhongzhu Lu
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Sangwoo T. Han
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Arianna F. Anzmann
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Anh-Thu N. Lam
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Abigail Thaxton
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins Hospital, Baltimore, Maryland, United States of America
| | - Natalie West
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins Hospital, Baltimore, Maryland, United States of America
| | - Christian Merlo
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins Hospital, Baltimore, Maryland, United States of America
| | - Laura B. Gottschalk
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Karen S. Raraigh
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Patrick R. Sosnay
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins Hospital, Baltimore, Maryland, United States of America
| | - Calvin U. Cotton
- Departments of Pediatrics, Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Garry R. Cutting
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|