251
|
Serricchio M, Bütikofer P. A Conserved Mitochondrial Chaperone-Protease Complex Involved in Protein Homeostasis. Front Mol Biosci 2021; 8:767088. [PMID: 34859054 PMCID: PMC8630662 DOI: 10.3389/fmolb.2021.767088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/25/2021] [Indexed: 11/29/2022] Open
Abstract
Mitochondria are essential organelles involved in cellular energy production. The inner mitochondrial membrane protein stomatin-like protein 2 (SLP-2) is a member of the SPFH (stomatin, prohibitin, flotilin, and HflK/C) superfamily and binds to the mitochondrial glycerophospholipid cardiolipin, forming cardiolipin-enriched membrane domains to promote the assembly and/or stabilization of protein complexes involved in oxidative phosphorylation. In addition, human SLP-2 anchors a mitochondrial processing complex required for proteolytic regulation of proteins involved in mitochondrial dynamics and quality control. We now show that deletion of the gene encoding the Trypanosoma brucei homolog TbSlp2 has no effect on respiratory protein complex stability and mitochondrial functions under normal culture conditions and is dispensable for growth of T. brucei parasites. In addition, we demonstrate that TbSlp2 binds to the metalloprotease TbYme1 and together they form a large mitochondrial protein complex. The two proteins negatively regulate each other's expression levels by accelerating protein turnover. Furthermore, we show that TbYme1 plays a role in heat-stress resistance, as TbYme1 knock-out parasites displayed mitochondrial fragmentation and loss of viability when cultured at elevated temperatures. Unbiased interaction studies uncovered putative TbYme1 substrates, some of which were differentially affected by the absence of TbYme1. Our results support emerging evidence for the presence of mitochondrial quality control pathways in this ancient eukaryote.
Collapse
Affiliation(s)
- Mauro Serricchio
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | | |
Collapse
|
252
|
Krishna S, Arrojo E Drigo R, Capitanio JS, Ramachandra R, Ellisman M, Hetzer MW. Identification of long-lived proteins in the mitochondria reveals increased stability of the electron transport chain. Dev Cell 2021; 56:2952-2965.e9. [PMID: 34715012 DOI: 10.1016/j.devcel.2021.10.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 07/28/2021] [Accepted: 10/08/2021] [Indexed: 11/17/2022]
Abstract
In order to combat molecular damage, most cellular proteins undergo rapid turnover. We have previously identified large nuclear protein assemblies that can persist for years in post-mitotic tissues and are subject to age-related decline. Here, we report that mitochondria can be long lived in the mouse brain and reveal that specific mitochondrial proteins have half-lives longer than the average proteome. These mitochondrial long-lived proteins (mitoLLPs) are core components of the electron transport chain (ETC) and display increased longevity in respiratory supercomplexes. We find that COX7C, a mitoLLP that forms a stable contact site between complexes I and IV, is required for complex IV and supercomplex assembly. Remarkably, even upon depletion of COX7C transcripts, ETC function is maintained for days, effectively uncoupling mitochondrial function from ongoing transcription of its mitoLLPs. Our results suggest that modulating protein longevity within the ETC is critical for mitochondrial proteome maintenance and the robustness of mitochondrial function.
Collapse
Affiliation(s)
- Shefali Krishna
- Molecular and Cell Biology Laboratory (MCBL), Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Rafael Arrojo E Drigo
- Molecular and Cell Biology Laboratory (MCBL), Salk Institute for Biological Studies, La Jolla, CA 92037, USA; National Center for Microscopy and Imaging Research (NCMIR), University of California, San Diego School of Medicine (UCSD), La Jolla, CA 92093, USA
| | - Juliana S Capitanio
- Molecular and Cell Biology Laboratory (MCBL), Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Ranjan Ramachandra
- National Center for Microscopy and Imaging Research (NCMIR), University of California, San Diego School of Medicine (UCSD), La Jolla, CA 92093, USA; Department of Neurosciences, University of California, San Diego School of Medicine (UCSD), La Jolla, CA 92093, USA
| | - Mark Ellisman
- National Center for Microscopy and Imaging Research (NCMIR), University of California, San Diego School of Medicine (UCSD), La Jolla, CA 92093, USA; Department of Neurosciences, University of California, San Diego School of Medicine (UCSD), La Jolla, CA 92093, USA
| | - Martin W Hetzer
- Molecular and Cell Biology Laboratory (MCBL), Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|
253
|
Bomer N, Pavez-Giani MG, Deiman FE, Linders AN, Hoes MF, Baierl CL, Oberdorf-Maass SU, de Boer RA, Silljé HH, Berezikov E, Simonides WS, Westenbrink BD, van der Meer P. Selenoprotein DIO2 Is a Regulator of Mitochondrial Function, Morphology and UPRmt in Human Cardiomyocytes. Int J Mol Sci 2021; 22:11906. [PMID: 34769334 PMCID: PMC8584701 DOI: 10.3390/ijms222111906] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/13/2022] Open
Abstract
Members of the fetal-gene-program may act as regulatory components to impede deleterious events occurring with cardiac remodeling, and constitute potential novel therapeutic heart failure (HF) targets. Mitochondrial energy derangements occur both during early fetal development and in patients with HF. Here we aim to elucidate the role of DIO2, a member of the fetal-gene-program, in pluripotent stem cell (PSC)-derived human cardiomyocytes and on mitochondrial dynamics and energetics, specifically. RNA sequencing and pathway enrichment analysis was performed on mouse cardiac tissue at different time points during development, adult age, and ischemia-induced HF. To determine the function of DIO2 in cardiomyocytes, a stable human hPSC-line with a DIO2 knockdown was made using a short harpin sequence. Firstly, we showed the selenoprotein, type II deiodinase (DIO2): the enzyme responsible for the tissue-specific conversion of inactive (T4) into active thyroid hormone (T3), to be a member of the fetal-gene-program. Secondly, silencing DIO2 resulted in an increased reactive oxygen species, impaired activation of the mitochondrial unfolded protein response, severely impaired mitochondrial respiration and reduced cellular viability. Microscopical 3D reconstruction of the mitochondrial network displayed substantial mitochondrial fragmentation. Summarizing, we identified DIO2 to be a member of the fetal-gene-program and as a key regulator of mitochondrial performance in human cardiomyocytes. Our results suggest a key position of human DIO2 as a regulator of mitochondrial function in human cardiomyocytes.
Collapse
Affiliation(s)
- Nils Bomer
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (M.G.P.-G.); (F.E.D.); (A.N.L.); (M.F.H.); (C.L.J.B.); (S.U.O.-M.); (R.A.d.B.); (H.H.W.S.); (B.D.W.); (P.v.d.M.)
| | - Mario G. Pavez-Giani
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (M.G.P.-G.); (F.E.D.); (A.N.L.); (M.F.H.); (C.L.J.B.); (S.U.O.-M.); (R.A.d.B.); (H.H.W.S.); (B.D.W.); (P.v.d.M.)
| | - Frederik E. Deiman
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (M.G.P.-G.); (F.E.D.); (A.N.L.); (M.F.H.); (C.L.J.B.); (S.U.O.-M.); (R.A.d.B.); (H.H.W.S.); (B.D.W.); (P.v.d.M.)
| | - Annet N. Linders
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (M.G.P.-G.); (F.E.D.); (A.N.L.); (M.F.H.); (C.L.J.B.); (S.U.O.-M.); (R.A.d.B.); (H.H.W.S.); (B.D.W.); (P.v.d.M.)
| | - Martijn F. Hoes
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (M.G.P.-G.); (F.E.D.); (A.N.L.); (M.F.H.); (C.L.J.B.); (S.U.O.-M.); (R.A.d.B.); (H.H.W.S.); (B.D.W.); (P.v.d.M.)
| | - Christiane L.J. Baierl
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (M.G.P.-G.); (F.E.D.); (A.N.L.); (M.F.H.); (C.L.J.B.); (S.U.O.-M.); (R.A.d.B.); (H.H.W.S.); (B.D.W.); (P.v.d.M.)
| | - Silke U. Oberdorf-Maass
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (M.G.P.-G.); (F.E.D.); (A.N.L.); (M.F.H.); (C.L.J.B.); (S.U.O.-M.); (R.A.d.B.); (H.H.W.S.); (B.D.W.); (P.v.d.M.)
| | - Rudolf A. de Boer
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (M.G.P.-G.); (F.E.D.); (A.N.L.); (M.F.H.); (C.L.J.B.); (S.U.O.-M.); (R.A.d.B.); (H.H.W.S.); (B.D.W.); (P.v.d.M.)
| | - Herman H.W. Silljé
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (M.G.P.-G.); (F.E.D.); (A.N.L.); (M.F.H.); (C.L.J.B.); (S.U.O.-M.); (R.A.d.B.); (H.H.W.S.); (B.D.W.); (P.v.d.M.)
| | - Eugene Berezikov
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Centre Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands;
| | - Warner S. Simonides
- Department of Physiology, Amsterdam University Medical Centre, Vrije Unversiteit Amsterdam, 1081 HV Amsterdam, The Netherlands;
| | - B. Daan Westenbrink
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (M.G.P.-G.); (F.E.D.); (A.N.L.); (M.F.H.); (C.L.J.B.); (S.U.O.-M.); (R.A.d.B.); (H.H.W.S.); (B.D.W.); (P.v.d.M.)
| | - Peter van der Meer
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (M.G.P.-G.); (F.E.D.); (A.N.L.); (M.F.H.); (C.L.J.B.); (S.U.O.-M.); (R.A.d.B.); (H.H.W.S.); (B.D.W.); (P.v.d.M.)
| |
Collapse
|
254
|
Kalwat MA, Scheuner D, Rodrigues-dos-Santos K, Eizirik DL, Cobb MH. The Pancreatic ß-cell Response to Secretory Demands and Adaption to Stress. Endocrinology 2021; 162:bqab173. [PMID: 34407177 PMCID: PMC8459449 DOI: 10.1210/endocr/bqab173] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Indexed: 02/06/2023]
Abstract
Pancreatic β cells dedicate much of their protein translation capacity to producing insulin to maintain glucose homeostasis. In response to increased secretory demand, β cells can compensate by increasing insulin production capability even in the face of protracted peripheral insulin resistance. The ability to amplify insulin secretion in response to hyperglycemia is a critical facet of β-cell function, and the exact mechanisms by which this occurs have been studied for decades. To adapt to the constant and fast-changing demands for insulin production, β cells use the unfolded protein response of the endoplasmic reticulum. Failure of these compensatory mechanisms contributes to both type 1 and 2 diabetes. Additionally, studies in which β cells are "rested" by reducing endogenous insulin demand have shown promise as a therapeutic strategy that could be applied more broadly. Here, we review recent findings in β cells pertaining to the metabolic amplifying pathway, the unfolded protein response, and potential advances in therapeutics based on β-cell rest.
Collapse
Affiliation(s)
- Michael A Kalwat
- Indiana Biosciences Research Institute, Indianapolis, IN 46202, USA
| | - Donalyn Scheuner
- Indiana Biosciences Research Institute, Indianapolis, IN 46202, USA
| | | | - Decio L Eizirik
- Indiana Biosciences Research Institute, Indianapolis, IN 46202, USA
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Melanie H Cobb
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| |
Collapse
|
255
|
Keerthiga R, Pei DS, Fu A. Mitochondrial dysfunction, UPR mt signaling, and targeted therapy in metastasis tumor. Cell Biosci 2021; 11:186. [PMID: 34717757 PMCID: PMC8556915 DOI: 10.1186/s13578-021-00696-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 10/02/2021] [Indexed: 12/13/2022] Open
Abstract
In modern research, mitochondria are considered a more crucial energy plant in cells. Mitochondrial dysfunction, including mitochondrial DNA (mtDNA) mutation and denatured protein accumulation, is a common feature of tumors. The dysfunctional mitochondria reprogram molecular metabolism and allow tumor cells to proliferate in the hostile microenvironment. One of the crucial signaling pathways of the mitochondrial dysfunction activation in the tumor cells is the retrograde signaling of mitochondria-nucleus interaction, mitochondrial unfolded protein response (UPRmt), which is initiated by accumulation of denatured protein and excess ROS production. In the process of UPRmt, various components are activitated to enhance the mitochondria-nucleus retrograde signaling to promote carcinoma progression, including hypoxia-inducible factor (HIF), activating transcription factor ATF-4, ATF-5, CHOP, AKT, AMPK. The retrograde signaling molecules of overexpression ATF-5, SIRT3, CREB, SOD1, SOD2, early growth response protein 1 (EGR1), ATF2, CCAAT/enhancer-binding protein-d, and CHOP also involved in the process. Targeted blockage of the UPRmt pathway could obviously inhibit tumor proliferation and metastasis. This review indicates the UPRmt pathways and its crucial role in targeted therapy of metastasis tumors.
Collapse
Affiliation(s)
| | - De-Sheng Pei
- School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China.
| | - Ailing Fu
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China.
| |
Collapse
|
256
|
Soo SK, Van Raamsdonk JM. High confidence ATFS-1 target genes for quantifying activation of the mitochondrial unfolded protein response. MICROPUBLICATION BIOLOGY 2021; 2021. [PMID: 34693215 PMCID: PMC8527333 DOI: 10.17912/micropub.biology.000484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 11/06/2022]
Abstract
The mitochondrial unfolded protein response (mitoUPR) is an evolutionarily conserved pathway that restores homeostasis to the mitochondria after various disturbances. This pathway has roles in both resistance to exogenous stressors and longevity. The mitoUPR is mediated by the transcription factor ATFS-1/ATF-5, which modulates the expression of genes involved in protein folding, metabolism and stress resistance. MitoUPR activation in C. elegans is most commonly evaluated through transcriptional reporter strains for the mitochondrial chaperones HSP-6 and HSP-60. In order to obtain a more comprehensive view of transcriptional changes resulting from activation of the mitoUPR, we compared gene expression changes from three different mitoUPR-activating interventions: mutation of nuo-6, RNA interference (RNAi) knockdown of spg-7,and constitutive activation of ATFS-1. We specifically focused on gene expression changes that are dependent on ATFS-1. From this comparison, we identified 61 high confidence target genes that can be used to monitor mitoUPR activation. Notably, neither hsp-6 nor hsp-60 were significantly upregulated under all three mitoUPR activating conditions. We ranked the 61 genes according to the magnitude of upregulation and identify multiple genes that may serve as robust readouts of mitoUPR activation.
Collapse
Affiliation(s)
- Sonja K Soo
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada.,Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Jeremy M Van Raamsdonk
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada.,Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.,Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada.,Department of Genetics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
257
|
Lin YF, Sam J, Evans T. Sirt1 promotes tissue regeneration in zebrafish through regulating the mitochondrial unfolded protein response. iScience 2021; 24:103118. [PMID: 34622167 PMCID: PMC8479786 DOI: 10.1016/j.isci.2021.103118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 08/12/2021] [Accepted: 09/09/2021] [Indexed: 11/16/2022] Open
Abstract
The mitochondrial unfolded protein response (UPRmt) is an organellar stress signaling pathway that functions to detect and restore disruption of mitochondrial proteostasis. The UPRmt is involved in a wide range of physiological and disease conditions, including aging, stem cell maintenance, innate immunity, neurodegeneration, and cancer. Here we report that the UPRmt is integral to zebrafish fin regeneration. Taking advantage of a novel zebrafish UPRmt reporter, we observed that UPRmt activation occurs in regenerating fin tissue shortly after injury. Through chemical and genetic approaches, we discovered that the Sirt1-UPRmt pathway, best known for its role in promoting lifespan extension, is crucial for fin regeneration. The metabolism of NAD+ is an important contributor to Sirt1 activity in this context. We propose that Sirt1 activation induces mitochondrial biogenesis in injured fin tissue, which leads to UPRmt activation and promotes tissue regeneration.
Collapse
Affiliation(s)
- Yi-Fan Lin
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, LC-708, New York, NY 10065, USA
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Department of Life Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Jessica Sam
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, LC-708, New York, NY 10065, USA
| | - Todd Evans
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, LC-708, New York, NY 10065, USA
| |
Collapse
|
258
|
Zhao F, Zou MH. Role of the Mitochondrial Protein Import Machinery and Protein Processing in Heart Disease. Front Cardiovasc Med 2021; 8:749756. [PMID: 34651031 PMCID: PMC8505727 DOI: 10.3389/fcvm.2021.749756] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 08/26/2021] [Indexed: 12/12/2022] Open
Abstract
Mitochondria are essential organelles for cellular energy production, metabolic homeostasis, calcium homeostasis, cell proliferation, and apoptosis. About 99% of mammalian mitochondrial proteins are encoded by the nuclear genome, synthesized as precursors in the cytosol, and imported into mitochondria by mitochondrial protein import machinery. Mitochondrial protein import systems function not only as independent units for protein translocation, but also are deeply integrated into a functional network of mitochondrial bioenergetics, protein quality control, mitochondrial dynamics and morphology, and interaction with other organelles. Mitochondrial protein import deficiency is linked to various diseases, including cardiovascular disease. In this review, we describe an emerging class of protein or genetic variations of components of the mitochondrial import machinery involved in heart disease. The major protein import pathways, including the presequence pathway (TIM23 pathway), the carrier pathway (TIM22 pathway), and the mitochondrial intermembrane space import and assembly machinery, related translocases, proteinases, and chaperones, are discussed here. This review highlights the importance of mitochondrial import machinery in heart disease, which deserves considerable attention, and further studies are urgently needed. Ultimately, this knowledge may be critical for the development of therapeutic strategies in heart disease.
Collapse
Affiliation(s)
| | - Ming-Hui Zou
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
259
|
Sun ML, Chen XY, Cao JJ, Cui XH, Wang HB. Polygonum multiflorum Thunb extract extended the lifespan and healthspan of Caenorhabditis elegans via DAF-16/SIR-2.1/SKN-1. Food Funct 2021; 12:8774-8786. [PMID: 34374387 DOI: 10.1039/d1fo01908b] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polygonum multiflorum Thunb (PMT), as a traditional Chinese herbal medicine, has been widely used in the prevention and treatment of aging-related diseases, including Alzheimer's disease, Parkinson's disease, hyperlipidemia, atherosclerosis and inflammation. However, the effect of PMT on the lifespan and its molecular mechanisms are still unclear. Here we found that 60% ethanol refined fraction (PMT-E) of Polygonum multiflorum Thunb at 50 μg mL-1, which contained two main bioactive compounds, 2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucoside (TSG) and emodin-8-O-β-D-glucoside (EG), could significantly increase the mean lifespan by 19.82%, delay the age-related decline of phenotypes, enhance stress resistance and reduce ROS accumulation in Caenorhabditis elegans. Moreover, we also found that the mitochondrial membrane potential (ΔΨ) and ATP content of worms treated with 50 μg mL-1 PMT-E were obviously improved. Further mechanistic studies revealed that DAF-16, SIR-2.1 and SKN-1 transcription factors were required for PMT-E-mediated lifespan extension. Finally, we found that PMT-E could significantly inhibit the toxicity induced by β-amyloid (Aβ) in Aβ transgenic worms. Altogether, these findings laid the foundation for the use of Polygonum multiflorum Thunb to treat aging and age-related diseases.
Collapse
Affiliation(s)
- Meng-Lu Sun
- Putuo People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| | - Xin-Yan Chen
- Putuo People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| | - Jin-Jin Cao
- Putuo People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| | - Xiang-Huan Cui
- Putuo People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| | - Hong-Bing Wang
- Putuo People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| |
Collapse
|
260
|
Berry BJ, Nieves TO, Wojtovich AP. Decreased Mitochondrial Membrane Potential Activates the Mitochondrial Unfolded Protein Response. MICROPUBLICATION BIOLOGY 2021; 2021. [PMID: 34532702 PMCID: PMC8438586 DOI: 10.17912/micropub.biology.000445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/09/2021] [Accepted: 08/21/2021] [Indexed: 11/22/2022]
Abstract
Mitochondria are ATP-producing organelles that also signal throughout the cell. Mitochondrial protein homeostasis is regulated through membrane potential-dependent protein import and quality control signaling. The mitochondrial unfolded protein response (UPRmt) is a specific program that responds to imbalances in nuclear and mitochondrial gene expression. Mounting evidence suggests that the electrochemical gradient that powers mitochondrial function, the mitochondrial membrane potential (Δψm), is a core regulator of the UPRmt. Here we tested this notion directly by pharmacologically dissipating Δψm and monitoring UPRmt activation. We found that chemical dissipation of Δψm using FCCP indeed activated UPRmt dose-dependently in C. elegans assayed by the HSP-60::GFP reporter strain.
Collapse
Affiliation(s)
- Brandon J Berry
- University of Rochester Medical Center, Department of Anesthesiology and Perioperative Medicine, 575 Elmwood Ave., Rochester NY, 14642 Box 711/604
| | - Tyrone O Nieves
- University of Rochester Medical Center, Department of Anesthesiology and Perioperative Medicine, 575 Elmwood Ave., Rochester NY, 14642 Box 711/604
| | - Andrew P Wojtovich
- University of Rochester Medical Center, Department of Anesthesiology and Perioperative Medicine, 575 Elmwood Ave., Rochester NY, 14642 Box 711/604
| |
Collapse
|
261
|
Luciani A, Denley MCS, Govers LP, Sorrentino V, Froese DS. Mitochondrial disease, mitophagy, and cellular distress in methylmalonic acidemia. Cell Mol Life Sci 2021; 78:6851-6867. [PMID: 34524466 PMCID: PMC8558192 DOI: 10.1007/s00018-021-03934-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/18/2021] [Accepted: 08/30/2021] [Indexed: 01/09/2023]
Abstract
Mitochondria—the intracellular powerhouse in which nutrients are converted into energy in the form of ATP or heat—are highly dynamic, double-membraned organelles that harness a plethora of cellular functions that sustain energy metabolism and homeostasis. Exciting new discoveries now indicate that the maintenance of this ever changing and functionally pleiotropic organelle is particularly relevant in terminally differentiated cells that are highly dependent on aerobic metabolism. Given the central role in maintaining metabolic and physiological homeostasis, dysregulation of the mitochondrial network might therefore confer a potentially devastating vulnerability to high-energy requiring cell types, contributing to a broad variety of hereditary and acquired diseases. In this Review, we highlight the biological functions of mitochondria-localized enzymes from the perspective of understanding—and potentially reversing—the pathophysiology of inherited disorders affecting the homeostasis of the mitochondrial network and cellular metabolism. Using methylmalonic acidemia as a paradigm of complex mitochondrial dysfunction, we discuss how mitochondrial directed-signaling circuitries govern the homeostasis and physiology of specialized cell types and how these may be disturbed in disease. This Review also provides a critical analysis of affected tissues, potential molecular mechanisms, and novel cellular and animal models of methylmalonic acidemia which are being used to develop new therapeutic options for this disease. These insights might ultimately lead to new therapeutics, not only for methylmalonic acidemia, but also for other currently intractable mitochondrial diseases, potentially transforming our ability to regulate homeostasis and health.
Collapse
Affiliation(s)
- Alessandro Luciani
- Mechanisms of Inherited Kidney Diseases Group, Institute of Physiology, University of Zurich, 8032, Zurich, Switzerland.
| | - Matthew C S Denley
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, University of Zurich, 8032, Zurich, Switzerland
| | - Larissa P Govers
- Mechanisms of Inherited Kidney Diseases Group, Institute of Physiology, University of Zurich, 8032, Zurich, Switzerland
| | - Vincenzo Sorrentino
- Department of Musculo-Skeletal Health, Nestlé Institute of Health Sciences, Nestlé Research, 1015, Lausanne, Switzerland.
| | - D Sean Froese
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, University of Zurich, 8032, Zurich, Switzerland.
| |
Collapse
|
262
|
Proteomic analysis demonstrates the role of the quality control protease LONP1 in mitochondrial protein aggregation. J Biol Chem 2021; 297:101134. [PMID: 34461102 PMCID: PMC8503632 DOI: 10.1016/j.jbc.2021.101134] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 11/20/2022] Open
Abstract
The mitochondrial matrix protease LONP1 is an essential part of the organellar protein quality control system. LONP1 has been shown to be involved in respiration control and apoptosis. Furthermore, a reduction in LONP1 level correlates with aging. Up to now, the effects of a LONP1 defect were mostly studied by utilizing transient, siRNA-mediated knockdown approaches. We generated a new cellular model system for studying the impact of LONP1 on mitochondrial protein homeostasis by a CRISPR/Cas-mediated genetic knockdown (gKD). These cells showed a stable reduction of LONP1 along with a mild phenotype characterized by absent morphological differences and only small negative effects on mitochondrial functions under normal culture conditions. To assess the consequences of a permanent LONP1 depletion on the mitochondrial proteome, we analyzed the alterations of protein levels by quantitative mass spectrometry, demonstrating small adaptive changes, in particular with respect to mitochondrial protein biogenesis. In an additional proteomic analysis, we determined the temperature-dependent aggregation behavior of mitochondrial proteins and its dependence on a reduction of LONP1 activity, demonstrating the important role of the protease for mitochondrial protein homeostasis in mammalian cells. We identified a significant number of mitochondrial proteins that are affected by a reduced LONP1 activity especially with respect to their stress-induced solubility. Taken together, our results suggest a very good applicability of the LONP1 gKD cell line as a model system for human aging processes.
Collapse
|
263
|
Dabravolski SA, Bezsonov EE, Orekhov AN. The role of mitochondria dysfunction and hepatic senescence in NAFLD development and progression. Biomed Pharmacother 2021; 142:112041. [PMID: 34411916 DOI: 10.1016/j.biopha.2021.112041] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/29/2021] [Accepted: 08/09/2021] [Indexed: 02/07/2023] Open
Abstract
Senescence is a crucial player in several metabolic disorders and chronic inflammatory diseases. Recent data prove the involvement of hepatocyte senescence in the development of NAFLD (non-alcoholic fatty liver disease). As the main energy and ROS (reactive oxygen species) producing organelle, mitochondria play the central role in accelerated senescence and diseases development. In this review, we focus on the role of regulation of mitochondrial Ca2+ homeostasis, NAD+/NADH ratio, UPRmt (mitochondrial unfolded protein response), phospholipids and fatty acid oxidation in hepatic senescence, lifespan and NAFLD disease susceptibility. Additionally, the involvement of mitochondrial and nuclear mutations in lifespan-modulation and NAFLD development is discussed. While nuclear and mitochondria DNA mutations and SNPs (single nucleotide polymorphisms) can be used as effective diagnostic markers and targets for treatments, advanced age should be considered as an independent risk factor for NAFLD development.
Collapse
Affiliation(s)
- Siarhei A Dabravolski
- Department of Clinical Diagnostics, Vitebsk State Academy of Veterinary Medicine [UO VGAVM], 7/11 Dovatora str., 210026 Vitebsk, Belarus.
| | - Evgeny E Bezsonov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia; Laboratory of Angiopathology, The Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, 125315 Moscow, Russia.
| | - Alexander N Orekhov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia; Laboratory of Angiopathology, The Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, 125315 Moscow, Russia; Department of Basic Research, Institute for Atherosclerosis Research, Moscow 121609, Russia.
| |
Collapse
|
264
|
Gokhale A, Lee CE, Zlatic SA, Freeman AAH, Shearing N, Hartwig C, Ogunbona O, Bassell JL, Wynne ME, Werner E, Xu C, Wen Z, Duong D, Seyfried NT, Bearden CE, Oláh VJ, Rowan MJM, Glausier JR, Lewis DA, Faundez V. Mitochondrial Proteostasis Requires Genes Encoded in a Neurodevelopmental Syndrome Locus. J Neurosci 2021; 41:6596-6616. [PMID: 34261699 PMCID: PMC8336702 DOI: 10.1523/jneurosci.2197-20.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 06/23/2021] [Accepted: 06/26/2021] [Indexed: 02/08/2023] Open
Abstract
Eukaryotic cells maintain proteostasis through mechanisms that require cytoplasmic and mitochondrial translation. Genetic defects affecting cytoplasmic translation perturb synapse development, neurotransmission, and are causative of neurodevelopmental disorders, such as Fragile X syndrome. In contrast, there is little indication that mitochondrial proteostasis, either in the form of mitochondrial protein translation and/or degradation, is required for synapse development and function. Here we focus on two genes deleted in a recurrent copy number variation causing neurodevelopmental disorders, the 22q11.2 microdeletion syndrome. We demonstrate that SLC25A1 and MRPL40, two genes present in the microdeleted segment and whose products localize to mitochondria, interact and are necessary for mitochondrial ribosomal integrity and proteostasis. Our Drosophila studies show that mitochondrial ribosome function is necessary for synapse neurodevelopment, function, and behavior. We propose that mitochondrial proteostasis perturbations, either by genetic or environmental factors, are a pathogenic mechanism for neurodevelopmental disorders.SIGNIFICANCE STATEMENT The balance between cytoplasmic protein synthesis and degradation, or cytoplasmic proteostasis, is required for normal synapse function and neurodevelopment. Cytoplasmic and mitochondrial ribosomes are necessary for two compartmentalized, yet interdependent, forms of proteostasis. Proteostasis dependent on cytoplasmic ribosomes is a well-established target of genetic defects that cause neurodevelopmental disorders, such as autism. Here we show that the mitochondrial ribosome is a neurodevelopmentally regulated organelle whose function is required for synapse development and function. We propose that defective mitochondrial proteostasis is a mechanism with the potential to contribute to neurodevelopmental disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Zhexing Wen
- Departments of Cell Biology
- Psychiatry and Behavioral Sciences
| | - Duc Duong
- and Biochemistry, Emory University, Atlanta, Georgia 30322
| | | | - Carrie E Bearden
- Semel Institute for Neuroscience and Human Behavior Department of Psychology, UCLA, Los Angeles, California 90095
| | | | | | - Jill R Glausier
- Departments of Psychiatry and Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - David A Lewis
- Departments of Psychiatry and Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | | |
Collapse
|
265
|
Mitochondrial UPR through generations. Nat Cell Biol 2021; 23:820-821. [PMID: 34341530 DOI: 10.1038/s41556-021-00729-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
266
|
SIRT3-mediated mitochondrial unfolded protein response weakens breast cancer sensitivity to cisplatin. Genes Genomics 2021; 43:1433-1444. [PMID: 34338986 DOI: 10.1007/s13258-021-01145-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/26/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Mitochondrial unfolded protein response plays an important role in the occurrence and development of breast cancer. However, the role of mitochondrial unfolded protein response (UPRmt) in the sensitivity of breast cancer to cisplatin chemotherapy has not yet been cleared. OBJECTIVES The purpose of this study is to explore the role of mitochondrial unfolded protein response in breast cancer sensitivity to cisplatin. METHODS In this study, qRT-PCR, Western blotting, Immunofluorescence, CCK-8, Colony formation, Transwell assay and TUNEL staining assay were used to confirm the role of UPRmt in breast cancer cells treated with cisplatin. RESULTS Cisplatin increased the levels of UPRmt including CLPP, HSP60, LONP1 in MCF7 and MDA-MB-231 cells. UPRmt inducer Nicotinamide ribose (NR) could promote the proliferation and invasion of breast cancer cells treated with cisplatin. Importantly, SIRT3 was discovered to increase UPRmt in breast cancer cells and silencing of SIRT3 could inhibit the effect of NR in breast cancer. CONCLUSIONS UPRmt regulated by SIRT3 could protect breast cancer cell from cisplatin. Controlling SIRT3-induced UPR may be a potential therapeutic target to increase the sensitivity of breast cancer chemotherapy.
Collapse
|
267
|
The memory of neuronal mitochondrial stress is inherited transgenerationally via elevated mitochondrial DNA levels. Nat Cell Biol 2021; 23:870-880. [PMID: 34341532 DOI: 10.1038/s41556-021-00724-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 06/29/2021] [Indexed: 02/06/2023]
Abstract
The memory of stresses experienced by parents can be passed on to descendants as a forecast of the challenges to come. Here, we discovered that the neuronal mitochondrial perturbation-induced systemic mitochondrial unfolded protein response (UPRmt) in Caenorhabditis elegans can be transmitted to offspring over multiple generations. The transgenerational activation of UPRmt is mediated by maternal inheritance of elevated levels of mitochondrial DNA (mtDNA), which causes the proteostasis stress within mitochondria. Furthermore, results from intercrossing studies using wild C. elegans strains further support that maternal inheritance of higher levels of mtDNA can induce the UPRmt in descendants. The mitokine Wnt signalling pathway is required for the transmission of elevated mtDNA levels across generations, thereby conferring lifespan extension and stress resistance to offspring. Collectively, our results reveal that the nervous system can transmit stress signals across generations by increasing mtDNA in the germline, enabling descendants to better cope with anticipated challenges.
Collapse
|
268
|
Xie B, Song X. The impaired unfolded protein-premelanosome protein and transient receptor potential channels-autophagy axes in apoptotic melanocytes in vitiligo. Pigment Cell Melanoma Res 2021; 35:6-17. [PMID: 34333860 DOI: 10.1111/pcmr.13006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 12/30/2022]
Abstract
Vitiligo is an autoimmune skin disease, characterized by depigmentation and epidermal melanocytes loss. The specific mechanisms underlying vitiligo have not been fully understood. As a result, treating vitiligo is a dermatological challenge. Recently, much attention has been paid to the dysfunction and interaction of organelles under environmental stress. The impaired organelles could generate misfolded proteins, particularly accumulated toxic premelanosome protein (PMEL) amyloid oligomers, activating the autoimmune system and cause melanocyte damage. Unfolded protein response (UPR) dysfunction accelerates toxic PMEL accumulation. Herein, we presented a narrative review on UPR's role in vitiligo, the misfolded PMEL-induced attack of the autoimmune system under autophagy dysfunction caused by abnormal activation of transient receptor potential (TRP) channels and the background of UPR system defects in melanocytes. All of these mechanisms were integrated to form UPR/PMEL-TRP channels/autophagy axis, providing a new understanding of vitiligo pathogenesis.
Collapse
Affiliation(s)
- Bo Xie
- Departement of Dermatology, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiuzu Song
- Departement of Dermatology, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
269
|
Liu M, Wu N, Xu K, Saaoud F, Vasilopoulos E, Shao Y, Zhang R, Wang J, Shen H, Yang WY, Lu Y, Sun Y, Drummer C, Liu L, Li L, Hu W, Yu J, Praticò D, Sun J, Jiang X, Wang H, Yang X. Organelle Crosstalk Regulators Are Regulated in Diseases, Tumors, and Regulatory T Cells: Novel Classification of Organelle Crosstalk Regulators. Front Cardiovasc Med 2021; 8:713170. [PMID: 34368262 PMCID: PMC8339352 DOI: 10.3389/fcvm.2021.713170] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/14/2021] [Indexed: 12/15/2022] Open
Abstract
To examine whether the expressions of 260 organelle crosstalk regulators (OCRGs) in 16 functional groups are modulated in 23 diseases and 28 tumors, we performed extensive -omics data mining analyses and made a set of significant findings: (1) the ratios of upregulated vs. downregulated OCRGs are 1:2.8 in acute inflammations, 1:1 in metabolic diseases, 1:1.2 in autoimmune diseases, and 1:3.8 in organ failures; (2) sepsis and trauma-upregulated OCRG groups such as vesicle, mitochondrial (MT) fission, and mitophagy but not others, are termed as the cell crisis-handling OCRGs. Similarly, sepsis and trauma plus organ failures upregulated seven OCRG groups including vesicle, MT fission, mitophagy, sarcoplasmic reticulum–MT, MT fusion, autophagosome–lysosome fusion, and autophagosome/endosome–lysosome fusion, classified as the cell failure-handling OCRGs; (3) suppression of autophagosome–lysosome fusion in endothelial and epithelial cells is required for viral replications, which classify this decreased group as the viral replication-suppressed OCRGs; (4) pro-atherogenic damage-associated molecular patterns (DAMPs) such as oxidized low-density lipoprotein (oxLDL), lipopolysaccharide (LPS), oxidized-1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (oxPAPC), and interferons (IFNs) totally upregulated 33 OCRGs in endothelial cells (ECs) including vesicle, MT fission, mitophagy, MT fusion, endoplasmic reticulum (ER)–MT contact, ER– plasma membrane (PM) junction, autophagosome/endosome–lysosome fusion, sarcoplasmic reticulum–MT, autophagosome–endosome/lysosome fusion, and ER–Golgi complex (GC) interaction as the 10 EC-activation/inflammation-promoting OCRG groups; (5) the expression of OCRGs is upregulated more than downregulated in regulatory T cells (Tregs) from the lymph nodes, spleen, peripheral blood, intestine, and brown adipose tissue in comparison with that of CD4+CD25− T effector controls; (6) toll-like receptors (TLRs), reactive oxygen species (ROS) regulator nuclear factor erythroid 2-related factor 2 (Nrf2), and inflammasome-activated regulator caspase-1 regulated the expressions of OCRGs in diseases, virus-infected cells, and pro-atherogenic DAMP-treated ECs; (7) OCRG expressions are significantly modulated in all the 28 cancer datasets, and the upregulated OCRGs are correlated with tumor immune infiltrates in some tumors; (8) tumor promoter factor IKK2 and tumor suppressor Tp53 significantly modulate the expressions of OCRGs. Our findings provide novel insights on the roles of upregulated OCRGs in the pathogenesis of inflammatory diseases and cancers, and novel pathways for the future therapeutic interventions for inflammations, sepsis, trauma, organ failures, autoimmune diseases, metabolic cardiovascular diseases (CVDs), and cancers.
Collapse
Affiliation(s)
- Ming Liu
- Centers for Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Department of Cell Biology and Genetics, School of Basic Medical Science, Shanxi Medical University, Taiyuan, China
| | - Na Wu
- Departments of Endocrinology and Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Keman Xu
- Centers for Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Fatma Saaoud
- Centers for Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Eleni Vasilopoulos
- Centers for Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Ying Shao
- Centers for Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Ruijing Zhang
- Centers for Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Department of Nephrology, The Affiliated People's Hospital of Shanxi Medical University, Taiyuan, China
| | - Jirong Wang
- Centers for Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Department of Cardiology, The Affiliated People's Hospital of Shanxi Medical University, Taiyuan, China
| | - Haitao Shen
- Departments of Endocrinology and Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | | | - Yifan Lu
- Centers for Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Yu Sun
- Centers for Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Charles Drummer
- Centers for Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Lu Liu
- Metabolic Disease Research, Inflammation, Translational & Clinical Lung Research, Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Li Li
- Department of Cell Biology and Genetics, School of Basic Medical Science, Shanxi Medical University, Taiyuan, China
| | - Wenhui Hu
- Metabolic Disease Research, Inflammation, Translational & Clinical Lung Research, Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Jun Yu
- Metabolic Disease Research, Inflammation, Translational & Clinical Lung Research, Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Domenico Praticò
- Alzheimer's Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Jianxin Sun
- Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, United States
| | - Xiaohua Jiang
- Centers for Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Metabolic Disease Research, Inflammation, Translational & Clinical Lung Research, Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Hong Wang
- Metabolic Disease Research, Inflammation, Translational & Clinical Lung Research, Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Xiaofeng Yang
- Centers for Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Metabolic Disease Research, Inflammation, Translational & Clinical Lung Research, Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
270
|
Forst AL, Reichold M, Kleta R, Warth R. Distinct Mitochondrial Pathologies Caused by Mutations of the Proximal Tubular Enzymes EHHADH and GATM. Front Physiol 2021; 12:715485. [PMID: 34349672 PMCID: PMC8326905 DOI: 10.3389/fphys.2021.715485] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 06/28/2021] [Indexed: 12/18/2022] Open
Abstract
The mitochondria of the proximal tubule are essential for providing energy in this nephron segment, whose ATP generation is almost exclusively oxygen dependent. In addition, mitochondria are involved in a variety of metabolic processes and complex signaling networks. Proximal tubular mitochondrial dysfunction can therefore affect renal function in very different ways. Two autosomal dominantly inherited forms of renal Fanconi syndrome illustrate how multifaceted mitochondrial pathology can be: Mutation of EHHADH, an enzyme in fatty acid metabolism, results in decreased ATP synthesis and a consecutive transport defect. In contrast, mutations of GATM, an enzyme in the creatine biosynthetic pathway, leave ATP synthesis unaffected but do lead to mitochondrial protein aggregates, inflammasome activation, and renal fibrosis with progressive renal failure. In this review article, the distinct pathophysiological mechanisms of these two diseases are presented, which are examples of the spectrum of proximal tubular mitochondrial diseases.
Collapse
Affiliation(s)
- Anna-Lena Forst
- Medical Cell Biology, Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Markus Reichold
- Medical Cell Biology, Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Robert Kleta
- Centre for Nephrology, University College London, London, United Kingdom
| | - Richard Warth
- Medical Cell Biology, Institute of Physiology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
271
|
Mitochondria and Antibiotics: For Good or for Evil? Biomolecules 2021; 11:biom11071050. [PMID: 34356674 PMCID: PMC8301944 DOI: 10.3390/biom11071050] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 01/16/2023] Open
Abstract
The discovery and application of antibiotics in the common clinical practice has undeniably been one of the major medical advances in our times. Their use meant a drastic drop in infectious diseases-related mortality and contributed to prolonging human life expectancy worldwide. Nevertheless, antibiotics are considered by many a double-edged sword. Their extensive use in the past few years has given rise to a global problem: antibiotic resistance. This factor and the increasing evidence that a wide range of antibiotics can damage mammalian mitochondria, have driven a significant sector of the medical and scientific communities to advise against the use of antibiotics for purposes other to treating severe infections. Notwithstanding, a notorious number of recent studies support the use of these drugs to treat very diverse conditions, ranging from cancer to neurodegenerative or mitochondrial diseases. In this context, there is great controversy on whether the risks associated to antibiotics outweigh their promising beneficial features. The aim of this review is to provide insight in the topic, purpose for which the most relevant findings regarding antibiotic therapies have been discussed.
Collapse
|
272
|
ATF5, a putative therapeutic target for the mitochondrial DNA 3243A > G mutation-related disease. Cell Death Dis 2021; 12:701. [PMID: 34262025 PMCID: PMC8280182 DOI: 10.1038/s41419-021-03993-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 12/29/2022]
Abstract
The mitochondrial DNA m.3243A > G mutation is well-known to cause a variety of clinical phenotypes, including diabetes, deafness, and osteoporosis. Here, we report isolation and expansion of urine-derived stem cells (USCs) from patients carrying the m.3243A > G mutation, which demonstrate bimodal heteroplasmy. USCs with high levels of m.3243A > G mutation displayed abnormal mitochondrial morphology and function, as well as elevated ATF5-dependent mitochondrial unfolded protein response (UPRmt), together with reduced Wnt/β-catenin signaling and osteogenic potentials. Knockdown of ATF5 in mutant USCs suppressed UPRmt, improved mitochondrial function, restored expression of GSK3B and WNT7B, and rescued osteogenic potentials. These results suggest that ATF5-dependent UPRmt could be a core disease mechanism underlying mitochondrial dysfunction and osteoporosis related to the m.3243A > G mutation, and therefore could be a novel putative therapeutic target for this genetic disorder.
Collapse
|
273
|
Joy J, Barrio L, Santos-Tapia C, Romão D, Giakoumakis NN, Clemente-Ruiz M, Milán M. Proteostasis failure and mitochondrial dysfunction leads to aneuploidy-induced senescence. Dev Cell 2021; 56:2043-2058.e7. [PMID: 34216545 DOI: 10.1016/j.devcel.2021.06.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 03/03/2021] [Accepted: 06/11/2021] [Indexed: 01/10/2023]
Abstract
Aneuploidy, an unbalanced number of chromosomes, is highly deleterious at the cellular level and leads to senescence, a stress-induced response characterized by permanent cell-cycle arrest and a well-defined associated secretory phenotype. Here, we use a Drosophila epithelial model to delineate the pathway that leads to the induction of senescence as a consequence of the acquisition of an aneuploid karyotype. Whereas aneuploidy induces, as a result of gene dosage imbalance, proteotoxic stress and activation of the major protein quality control mechanisms, near-saturation functioning of autophagy leads to compromised mitophagy, accumulation of dysfunctional mitochondria, and the production of radical oxygen species (ROS). We uncovered a role of c-Jun N-terminal kinase (JNK) in driving senescence as a consequence of dysfunctional mitochondria and ROS. We show that activation of the major protein quality control mechanisms and mitophagy dampens the deleterious effects of aneuploidy, and we identify a role of senescence in proteostasis and compensatory proliferation for tissue repair.
Collapse
Affiliation(s)
- Jery Joy
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Lara Barrio
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Celia Santos-Tapia
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Daniela Romão
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Nikolaos Nikiforos Giakoumakis
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Marta Clemente-Ruiz
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Marco Milán
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain.
| |
Collapse
|
274
|
Shen Z, Liu P, Sun Q, Li Y, Acharya R, Li X, Sun C. FTO inhibits UPR mt-induced apoptosis by activating JAK2/STAT3 pathway and reducing m6A level in adipocytes. Apoptosis 2021; 26:474-487. [PMID: 34212271 DOI: 10.1007/s10495-021-01683-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2021] [Indexed: 02/07/2023]
Abstract
As a nucleic acid demethylase, Fat and obesity associated gene (FTO) plays a vital role in modulating adipose metabolism. However, it is still unknown how FTO affects apoptosis in adipocytes. In this study, we found that overexpression of FTO inhibited the expression of pro-apoptosis factors Caspase-3, Caspase-9 and Bax and mitochondrial unfolded protein response (UPRmt) markers HSP60 and ClpP in vivo and in vitro. Particularly, overexpression of FTO inhibited mitochondria-dependent apoptosis in adipocytes. Further studies revealed that FTO suppressed UPRmt by reducing HSP60 mRNA N6-methyladenosine (m6A) modification. Moreover, FTO inhibited the activation of Caspase-3 via JAK2/STAT3 signaling pathway in adipocytes. Further experiments showed that pro-apoptosis gene Bax was upregulated by UPRmt-activated PKR/eIF2α/ATF5 axis in adipocytes. In summary, this study confirms that FTO reduces adipocytes apoptosis by activiting JAK2/STAT3 signaling pathway and inhibiting UPRmt, revealing a novel mechanism of FTO on adipocytes apoptosis, which provides some new potential therapy for treating obesity and related metabolic syndromes.
Collapse
Affiliation(s)
- Zhentong Shen
- College of Animal Science and Technology, Northwest A&F University, NO.22 Xinong Road, Yangling, 712100, Shaanxi, China.,College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450000, Henan, China
| | - Ping Liu
- College of Animal Science and Technology, Northwest A&F University, NO.22 Xinong Road, Yangling, 712100, Shaanxi, China.,College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450000, Henan, China
| | - Qian Sun
- College of Animal Science and Technology, Northwest A&F University, NO.22 Xinong Road, Yangling, 712100, Shaanxi, China.,College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450000, Henan, China
| | - Yizhou Li
- College of Animal Science and Technology, Northwest A&F University, NO.22 Xinong Road, Yangling, 712100, Shaanxi, China.,College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450000, Henan, China
| | - Rabin Acharya
- College of Animal Science and Technology, Northwest A&F University, NO.22 Xinong Road, Yangling, 712100, Shaanxi, China.,College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450000, Henan, China
| | - Xinjian Li
- College of Animal Science and Technology, Northwest A&F University, NO.22 Xinong Road, Yangling, 712100, Shaanxi, China.,College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450000, Henan, China
| | - Chao Sun
- College of Animal Science and Technology, Northwest A&F University, NO.22 Xinong Road, Yangling, 712100, Shaanxi, China. .,College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450000, Henan, China. .,Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, NO.22 Xinong Road, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
275
|
Park JH, Nakamura Y, Li W, Hamanaka G, Arai K, Lo EH, Hayakawa K. Effects of O-GlcNAcylation on functional mitochondrial transfer from astrocytes. J Cereb Blood Flow Metab 2021; 41:1523-1535. [PMID: 33153373 PMCID: PMC8221762 DOI: 10.1177/0271678x20969588] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mitochondria may be transferred from cell to cell in the central nervous system and this process may help defend neurons against injury and disease. But how mitochondria maintain their functionality during the process of release into extracellular space remains unknown. Here, we report that mitochondrial protein O-GlcNAcylation is a critical process to support extracellular mitochondrial functionality. Activation of CD38-cADPR signaling in astrocytes robustly induced protein O-GlcNAcylation in mitochondria, while oxygen-glucose deprivation and reoxygenation showed transient and mild protein modification. Blocking the endoplasmic reticulum - Golgi trafficking with Brefeldin A or slc35B4 siRNA reduced O-GlcNAcylation, and resulted in the secretion of mitochondria with decreased membrane potential and mtDNA. Finally, loss-of-function studies verified that O-GlcNAc-modified mitochondria demonstrated higher levels of neuroprotection after astrocyte-to-neuron mitochondrial transfer. Collectively, these findings suggest that post-translational modification by O-GlcNAc may be required for supporting the functionality and neuroprotective properties of mitochondria released from astrocytes.
Collapse
Affiliation(s)
- Ji-Hyun Park
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Yoshihiko Nakamura
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Wenlu Li
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Gen Hamanaka
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Ken Arai
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Eng H Lo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Kazuhide Hayakawa
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
276
|
Sladowska M, Turek M, Kim MJ, Drabikowski K, Mussulini BHM, Mohanraj K, Serwa RA, Topf U, Chacinska A. Proteasome activity contributes to pro-survival response upon mild mitochondrial stress in Caenorhabditis elegans. PLoS Biol 2021; 19:e3001302. [PMID: 34252079 PMCID: PMC8274918 DOI: 10.1371/journal.pbio.3001302] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/27/2021] [Indexed: 12/15/2022] Open
Abstract
Defects in mitochondrial function activate compensatory responses in the cell. Mitochondrial stress that is caused by unfolded proteins inside the organelle induces a transcriptional response (termed the "mitochondrial unfolded protein response" [UPRmt]) that is mediated by activating transcription factor associated with stress 1 (ATFS-1). The UPRmt increases mitochondrial protein quality control. Mitochondrial dysfunction frequently causes defects in the import of proteins, resulting in the accumulation of mitochondrial proteins outside the organelle. In yeast, cells respond to mistargeted mitochondrial proteins by increasing activity of the proteasome in the cytosol (termed the "unfolded protein response activated by mistargeting of proteins" [UPRam]). The presence and relevance of this response in higher eukaryotes is unclear. Here, we demonstrate that defects in mitochondrial protein import in Caenorhabditis elegans lead to proteasome activation and life span extension. Both proteasome activation and life span prolongation partially depend on ATFS-1, despite its lack of influence on proteasomal gene transcription. Importantly, life span prolongation depends on the fully assembled proteasome. Our data provide a link between mitochondrial dysfunction and proteasomal activity and demonstrate its direct relevance to mechanisms that promote longevity.
Collapse
Affiliation(s)
- Maria Sladowska
- ReMedy International Research Agenda Unit, University of Warsaw, Warsaw, Poland
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Michał Turek
- ReMedy International Research Agenda Unit, University of Warsaw, Warsaw, Poland
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Min-Ji Kim
- ReMedy International Research Agenda Unit, University of Warsaw, Warsaw, Poland
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Krzysztof Drabikowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | - Karthik Mohanraj
- ReMedy International Research Agenda Unit, University of Warsaw, Warsaw, Poland
| | - Remigiusz A. Serwa
- ReMedy International Research Agenda Unit, University of Warsaw, Warsaw, Poland
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Ulrike Topf
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Agnieszka Chacinska
- ReMedy International Research Agenda Unit, University of Warsaw, Warsaw, Poland
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
- IMol Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
277
|
UPR mt activation protects against MPP +-induced toxicity in a cell culture model of Parkinson's disease. Biochem Biophys Res Commun 2021; 569:17-22. [PMID: 34216993 DOI: 10.1016/j.bbrc.2021.06.079] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 01/02/2023]
Abstract
The pathogenesis of Parkinson's disease (PD) remains elusive, but mitochondrial dysfunction is believed to be one crucial step in its pathogenesis. The mitochondrial unfolded protein response (UPRmt) is an important mitochondrial quality control strategy that maintains mitochondrial function in response to disturbances of mitochondrial protein homeostasis. Activation of the UPRmt and the beneficial effect of rescuing mitochondrial proteostasis have been reported in several genetic models of PD. However, the pathogenic relevance of the UPRmt in idiopathic PD is unknown. The present study examined the link between the UPRmt and mitochondrial dysfunction in 1-methyl-4-phenylpyridinium (MPP+)-treated SH-SY5Y cells. Treatment with MPP + induced activation of the UPRmt, reflected by an increase in the expression of UPRmt-related chaperones, proteases, and transcription mediators. UPRmt activation that was induced by overexpressing mutant ornithine transcarbamylase significantly reduced the production of mitochondrial reactive oxygen species (ROS) and improved cell survival in SH-SY5Y cells following MPP+ treatment. Moreover, the overexpression of activating transcription factor 5 (mammalian UPRmt transcription factor) conferred protection against MPP+-induced ROS production and against cell death in SH-SY5Y cells. Overall, our results demonstrate the beneficial effect of UPRmt activation in MPP + -treated cells, shedding new light on the mechanism of mitochondrial dysfunction in the pathogenesis of PD.
Collapse
|
278
|
Kuzuoglu-Ozturk D, Hu Z, Rama M, Devericks E, Weiss J, Chiang GG, Worland ST, Brenner SE, Goodarzi H, Gilbert LA, Ruggero D. Revealing molecular pathways for cancer cell fitness through a genetic screen of the cancer translatome. Cell Rep 2021; 35:109321. [PMID: 34192540 PMCID: PMC8323864 DOI: 10.1016/j.celrep.2021.109321] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 03/18/2021] [Accepted: 06/07/2021] [Indexed: 12/24/2022] Open
Abstract
The major cap-binding protein eukaryotic translation initiation factor 4E (eIF4E), an ancient protein required for translation of all eukaryotic genomes, is a surprising yet potent oncogenic driver. The genetic interactions that maintain the oncogenic activity of this key translation factor remain unknown. In this study, we carry out a genome-wide CRISPRi screen wherein we identify more than 600 genetic interactions that sustain eIF4E oncogenic activity. Our data show that eIF4E controls the translation of Tfeb, a key executer of the autophagy response. This autophagy survival response is triggered by mitochondrial proteotoxic stress, which allows cancer cell survival. Our screen also reveals a functional interaction between eIF4E and a single anti-apoptotic factor, Bcl-xL, in tumor growth. Furthermore, we show that eIF4E and the exon-junction complex (EJC), which is involved in many steps of RNA metabolism, interact to control the migratory properties of cancer cells. Overall, we uncover several cancer-specific vulnerabilities that provide further resolution of the cancer translatome.
Collapse
Affiliation(s)
- Duygu Kuzuoglu-Ozturk
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Zhiqiang Hu
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Martina Rama
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Emily Devericks
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jacob Weiss
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | | | - Steven E Brenner
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Hani Goodarzi
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Biochemistry and Biophysics and Department of Urology, University of California, San Francisco, San Francisco CA, 94158, USA
| | - Luke A Gilbert
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Davide Ruggero
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
279
|
Inflammation, epigenetics, and metabolism converge to cell senescence and ageing: the regulation and intervention. Signal Transduct Target Ther 2021; 6:245. [PMID: 34176928 PMCID: PMC8236488 DOI: 10.1038/s41392-021-00646-9] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 05/09/2021] [Accepted: 05/13/2021] [Indexed: 02/05/2023] Open
Abstract
Remarkable progress in ageing research has been achieved over the past decades. General perceptions and experimental evidence pinpoint that the decline of physical function often initiates by cell senescence and organ ageing. Epigenetic dynamics and immunometabolic reprogramming link to the alterations of cellular response to intrinsic and extrinsic stimuli, representing current hotspots as they not only (re-)shape the individual cell identity, but also involve in cell fate decision. This review focuses on the present findings and emerging concepts in epigenetic, inflammatory, and metabolic regulations and the consequences of the ageing process. Potential therapeutic interventions targeting cell senescence and regulatory mechanisms, using state-of-the-art techniques are also discussed.
Collapse
|
280
|
Lopez-Crisosto C, Díaz-Vegas A, Castro PF, Rothermel BA, Bravo-Sagua R, Lavandero S. Endoplasmic reticulum-mitochondria coupling increases during doxycycline-induced mitochondrial stress in HeLa cells. Cell Death Dis 2021; 12:657. [PMID: 34183648 PMCID: PMC8238934 DOI: 10.1038/s41419-021-03945-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023]
Abstract
Subcellular organelles communicate with each other to regulate function and coordinate responses to changing cellular conditions. The physical-functional coupling of the endoplasmic reticulum (ER) with mitochondria allows for the direct transfer of Ca2+ between organelles and is an important avenue for rapidly increasing mitochondrial metabolic activity. As such, increasing ER-mitochondrial coupling can boost the generation of ATP that is needed to restore homeostasis in the face of cellular stress. The mitochondrial unfolded protein response (mtUPR) is activated by the accumulation of unfolded proteins in mitochondria. Retrograde signaling from mitochondria to the nucleus promotes mtUPR transcriptional responses aimed at restoring protein homeostasis. It is currently unknown whether the changes in mitochondrial-ER coupling also play a role during mtUPR stress. We hypothesized that mitochondrial stress favors an expansion of functional contacts between mitochondria and ER, thereby increasing mitochondrial metabolism as part of a protective response. Hela cells were treated with doxycycline, an antibiotic that inhibits the translation of mitochondrial-encoded proteins to create protein disequilibrium. Treatment with doxycycline decreased the abundance of mitochondrial encoded proteins while increasing expression of CHOP, C/EBPβ, ClpP, and mtHsp60, markers of the mtUPR. There was no change in either mitophagic activity or cell viability. Furthermore, ER UPR was not activated, suggesting focused activation of the mtUPR. Within 2 h of doxycycline treatment, there was a significant increase in physical contacts between mitochondria and ER that was distributed throughout the cell, along with an increase in the kinetics of mitochondrial Ca2+ uptake. This was followed by the rise in the rate of oxygen consumption at 4 h, indicating a boost in mitochondrial metabolic activity. In conclusion, an early phase of the response to doxycycline-induced mitochondrial stress is an increase in mitochondrial-ER coupling that potentiates mitochondrial metabolic activity as a means to support subsequent steps in the mtUPR pathway and sustain cellular adaptation.
Collapse
Affiliation(s)
- Camila Lopez-Crisosto
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmaceuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis Díaz-Vegas
- Charles Perkins Centre, School of Life and Environmental Sciences, The University of Sydney, Camperdown, 2050, Sydney, NSW, Australia
| | - Pablo F Castro
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Corporacion Centro de Estudios Científicos de las Enfermedades Cronicas (CECEC), Santiago, 7680201, Chile
| | - Beverly A Rothermel
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Roberto Bravo-Sagua
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmaceuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, 7830490, Chile
- Chilean State Universities Network on Aging, Universidad de Chile, Santiago, Chile
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmaceuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile.
- Corporacion Centro de Estudios Científicos de las Enfermedades Cronicas (CECEC), Santiago, 7680201, Chile.
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
281
|
Pereira CV, Gitschlag BL, Patel MR. Cellular mechanisms of mtDNA heteroplasmy dynamics. Crit Rev Biochem Mol Biol 2021; 56:510-525. [PMID: 34120542 DOI: 10.1080/10409238.2021.1934812] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Heteroplasmy refers to the coexistence of more than one variant of the mitochondrial genome (mtDNA). Mutated or partially deleted mtDNAs can induce chronic metabolic impairment and cause mitochondrial diseases when their heteroplasmy levels exceed a critical threshold. These mutant mtDNAs can be maternally inherited or can arise de novo. Compelling evidence has emerged showing that mutant mtDNA levels can vary and change in a nonrandom fashion across generations and amongst tissues of an individual. However, our lack of understanding of the basic cellular and molecular mechanisms of mtDNA heteroplasmy dynamics has made it difficult to predict who will inherit or develop mtDNA-associated diseases. More recently, with the advances in technology and the establishment of tractable model systems, insights into the mechanisms underlying the selection forces that modulate heteroplasmy dynamics are beginning to emerge. In this review, we summarize evidence from different organisms, showing that mutant mtDNA can experience both positive and negative selection. We also review the recently identified mechanisms that modulate heteroplasmy dynamics. Taken together, this is an opportune time to survey the literature and to identify key cellular pathways that can be targeted to develop therapies for diseases caused by heteroplasmic mtDNA mutations.
Collapse
Affiliation(s)
- Claudia V Pereira
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Bryan L Gitschlag
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Maulik R Patel
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.,Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.,Diabetes Research and Training Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
282
|
Multifactorial Pathogenic Processes of Retinal Ganglion Cell Degeneration in Glaucoma towards Multi-Target Strategies for Broader Treatment Effects. Cells 2021; 10:cells10061372. [PMID: 34199494 PMCID: PMC8228726 DOI: 10.3390/cells10061372] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/14/2021] [Accepted: 05/29/2021] [Indexed: 02/06/2023] Open
Abstract
Glaucoma is a chronic neurodegenerative disease characterized by apoptosis of retinal ganglion cell (RGC) somas, degeneration of axons, and loss of synapses at dendrites and axon terminals. Glaucomatous neurodegeneration encompasses multiple triggers, multiple cell types, and multiple molecular pathways through the etiological paths with biomechanical, vascular, metabolic, oxidative, and inflammatory components. As much as intrinsic responses of RGCs themselves, divergent responses and intricate interactions of the surrounding glia also play decisive roles for the cell fate. Seen from a broad perspective, multitarget treatment strategies have a compelling pathophysiological basis to more efficiently manipulate multiple pathogenic processes at multiple injury sites in such a multifactorial neurodegenerative disease. Despite distinct molecular programs for somatic and axonal degeneration, mitochondrial dysfunction and glia-driven neuroinflammation present interdependent processes with widespread impacts in the glaucomatous retina and optic nerve. Since dysfunctional mitochondria stimulate inflammatory responses and proinflammatory mediators impair mitochondria, mitochondrial restoration may be immunomodulatory, while anti-inflammatory treatments protect mitochondria. Manipulation of these converging routes may thus allow a unified treatment strategy to protect RGC axons, somas, and synapses. This review presents an overview of recent research advancements with emphasis on potential treatment targets to achieve the best treatment efficacy to preserve visual function in glaucoma.
Collapse
|
283
|
Abstract
Mitochondria are organelles with vital functions in almost all eukaryotic cells. Often described as the cellular 'powerhouses' due to their essential role in aerobic oxidative phosphorylation, mitochondria perform many other essential functions beyond energy production. As signaling organelles, mitochondria communicate with the nucleus and other organelles to help maintain cellular homeostasis, allow cellular adaptation to diverse stresses, and help steer cell fate decisions during development. Mitochondria have taken center stage in the research of normal and pathological processes, including normal tissue homeostasis and metabolism, neurodegeneration, immunity and infectious diseases. The central role that mitochondria assume within cells is evidenced by the broad impact of mitochondrial diseases, caused by defects in either mitochondrial or nuclear genes encoding for mitochondrial proteins, on different organ systems. In this Review, we will provide the reader with a foundation of the mitochondrial 'hardware', the mitochondrion itself, with its specific dynamics, quality control mechanisms and cross-organelle communication, including its roles as a driver of an innate immune response, all with a focus on development, disease and aging. We will further discuss how mitochondrial DNA is inherited, how its mutation affects cell and organismal fitness, and current therapeutic approaches for mitochondrial diseases in both model organisms and humans.
Collapse
Affiliation(s)
- Marlies P. Rossmann
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 01238, USA
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Sonia M. Dubois
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Suneet Agarwal
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Leonard I. Zon
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 01238, USA
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA 02115, USA
| |
Collapse
|
284
|
Redox and Inflammatory Signaling, the Unfolded Protein Response, and the Pathogenesis of Pulmonary Hypertension. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1304:333-373. [PMID: 34019276 DOI: 10.1007/978-3-030-68748-9_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Protein folding overload and oxidative stress disrupt endoplasmic reticulum (ER) homeostasis, generating reactive oxygen species (ROS) and activating the unfolded protein response (UPR). The altered ER redox state induces further ROS production through UPR signaling that balances the cell fates of survival and apoptosis, contributing to pulmonary microvascular inflammation and dysfunction and driving the development of pulmonary hypertension (PH). UPR-induced ROS production through ER calcium release along with NADPH oxidase activity results in endothelial injury and smooth muscle cell (SMC) proliferation. ROS and calcium signaling also promote endothelial nitric oxide (NO) synthase (eNOS) uncoupling, decreasing NO production and increasing vascular resistance through persistent vasoconstriction and SMC proliferation. C/EBP-homologous protein further inhibits eNOS, interfering with endothelial function. UPR-induced NF-κB activity regulates inflammatory processes in lung tissue and contributes to pulmonary vascular remodeling. Conversely, UPR-activated nuclear factor erythroid 2-related factor 2-mediated antioxidant signaling through heme oxygenase 1 attenuates inflammatory cytokine levels and protects against vascular SMC proliferation. A mutation in the bone morphogenic protein type 2 receptor (BMPR2) gene causes misfolded BMPR2 protein accumulation in the ER, implicating the UPR in familial pulmonary arterial hypertension pathogenesis. Altogether, there is substantial evidence that redox and inflammatory signaling associated with UPR activation is critical in PH pathogenesis.
Collapse
|
285
|
Chen LT, Lin CT, Lin LY, Hsu JM, Wu YC, Pan CL. Neuronal mitochondrial dynamics coordinate systemic mitochondrial morphology and stress response to confer pathogen resistance in C. elegans. Dev Cell 2021; 56:1770-1785.e12. [PMID: 33984269 DOI: 10.1016/j.devcel.2021.04.021] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/09/2020] [Accepted: 04/21/2021] [Indexed: 01/02/2023]
Abstract
Mitochondrial functions across different tissues are regulated in a coordinated fashion to optimize the fitness of an organism. Mitochondrial unfolded protein response (UPRmt) can be nonautonomously elicited by mitochondrial perturbation in neurons, but neuronal signals that propagate such response and its physiological significance remain incompletely understood. Here, we show that in C. elegans, loss of neuronal fzo-1/mitofusin induces nonautonomous UPRmt through multiple neurotransmitters and neurohormones, including acetylcholine, serotonin, glutamate, tyramine, and insulin-like peptides. Neuronal fzo-1 depletion also triggers nonautonomous mitochondrial fragmentation, which requires autophagy and mitophagy genes. Systemic activation of UPRmt and mitochondrial fragmentation in C. elegans via perturbing neuronal mitochondrial dynamics improves resistance to pathogenic Pseudomonas infection, which is supported by transcriptomic signatures of immunity and stress-response genes. We propose that C. elegans surveils neuronal mitochondrial dynamics to coordinate systemic UPRmt and mitochondrial connectivity for pathogen defense and optimized survival under bacterial infection.
Collapse
Affiliation(s)
- Li-Tzu Chen
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, No.7 Chung-Shan South Road, Taipei 10002, Taiwan; Center of Precision Medicine, College of Medicine, National Taiwan University, No.7 Chung-Shan South Road, Taipei 10002, Taiwan
| | - Chih-Ta Lin
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, No.7 Chung-Shan South Road, Taipei 10002, Taiwan
| | - Liang-Yi Lin
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, No.7 Chung-Shan South Road, Taipei 10002, Taiwan
| | - Jiun-Min Hsu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, No.7 Chung-Shan South Road, Taipei 10002, Taiwan
| | - Yu-Chun Wu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, No.7 Chung-Shan South Road, Taipei 10002, Taiwan; Center of Precision Medicine, College of Medicine, National Taiwan University, No.7 Chung-Shan South Road, Taipei 10002, Taiwan
| | - Chun-Liang Pan
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, No.7 Chung-Shan South Road, Taipei 10002, Taiwan; Center of Precision Medicine, College of Medicine, National Taiwan University, No.7 Chung-Shan South Road, Taipei 10002, Taiwan.
| |
Collapse
|
286
|
Ilyinsky NS, Nesterov SV, Shestoperova EI, Fonin AV, Uversky VN, Gordeliy VI. On the Role of Normal Aging Processes in the Onset and Pathogenesis of Diseases Associated with the Abnormal Accumulation of Protein Aggregates. BIOCHEMISTRY (MOSCOW) 2021; 86:275-289. [PMID: 33838629 DOI: 10.1134/s0006297921030056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Aging is a prime systemic cause of various age-related diseases, in particular, proteinopathies. In fact, most diseases associated with protein misfolding are sporadic, and their incidence increases with aging. This review examines the process of protein aggregate formation, the toxicity of such aggregates, the organization of cellular systems involved in proteostasis, and the impact of protein aggregates on important cellular processes leading to proteinopathies. We also analyze how manifestations of aging (mitochondrial dysfunction, dysfunction of signaling systems, changes in the genome and epigenome) facilitate pathogenesis of various proteinopathies either directly, by increasing the propensity of key proteins for aggregation, or indirectly, through dysregulation of stress responses. Such analysis might help in outlining approaches for treating proteinopathies and extending healthy longevity.
Collapse
Affiliation(s)
- Nikolay S Ilyinsky
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia.
| | - Semen V Nesterov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia.,Institute of Cytochemistry and Molecular Pharmacology, Moscow, 115404, Russia
| | - Elizaveta I Shestoperova
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Alexander V Fonin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia.,Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, 194064, Russia
| | - Vladimir N Uversky
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia.,Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Valentin I Gordeliy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia.,Forschungszentrum Juelich, Juelich, 52428, Germany.,Institut de Biologie Structurale, Grenoble, 38000, France
| |
Collapse
|
287
|
Ji H, Ma J, Guo L, Huang Y, Wang W, Sun X, Sun R. Amino acid sequence identification of goji berry cyclic peptides and anticervical carcinoma activity detection. J Pept Sci 2021; 27:e3326. [PMID: 33960079 DOI: 10.1002/psc.3326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 11/11/2022]
Abstract
The goji berry is widely used as tonics; however, the antihuman cervical carcinoma effect and underlying mechanism of goji berry peptide remain to be elucidated. The cyclic peptides are appealing targets in antitumor agent development, and in current study, three novel goji berry cyclic peptides (GCPs) were isolated and amino acid sequence identified. Among them, GCP-1 (Cycle-(Trp-Glu-His-Thr)) inhibited proliferation and induced human cervical cancer (HeLa) cells apoptosis and blocked the HeLa cells in G0/G1 phase significantly. Furthermore, the GCP-1 also inhibited the cervical carcinoma growth in vivo. Moreover, GCP-1 suppressed the cyclin expression and activated the caspase cascade and poly(ADP-ribose) polymerase. Of note, GCP-1 may be a promising novel inhibitor of human cervical cancer.
Collapse
Affiliation(s)
- Hongxia Ji
- Obstetrics and Gynecology Department, People's Hospital of Hekou District, Dongying, China
| | - Junxia Ma
- Obstetrics and Gynecology Department, People's Hospital of Hekou District, Dongying, China
| | - Lianjun Guo
- Obstetrics and Gynecology Department, People's Hospital of Hekou District, Dongying, China
| | - Yongmei Huang
- Obstetrics and Gynecology Department, People's Hospital of Hekou District, Dongying, China
| | - Weihong Wang
- Obstetrics and Gynecology Department, People's Hospital of Hekou District, Dongying, China
| | - Xiuyan Sun
- Obstetrics and Gynecology Department, People's Hospital of Hekou District, Dongying, China
| | - Rongchun Sun
- Obstetrics and Gynecology Department, People's Hospital of Hekou District, Dongying, China
| |
Collapse
|
288
|
Hershberger KA, Rooney JP, Turner EA, Donoghue LJ, Bodhicharla R, Maurer LL, Ryde IT, Kim JJ, Joglekar R, Hibshman JD, Smith LL, Bhatt DP, Ilkayeva OR, Hirschey MD, Meyer JN. Early-life mitochondrial DNA damage results in lifelong deficits in energy production mediated by redox signaling in Caenorhabditis elegans. Redox Biol 2021; 43:102000. [PMID: 33993056 PMCID: PMC8134077 DOI: 10.1016/j.redox.2021.102000] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 04/19/2021] [Accepted: 04/28/2021] [Indexed: 11/12/2022] Open
Abstract
The consequences of damage to the mitochondrial genome (mtDNA) are poorly understood, although mtDNA is more susceptible to damage resulting from some genotoxicants than nuclear DNA (nucDNA), and many environmental toxicants target the mitochondria. Reports from the toxicological literature suggest that exposure to early-life mitochondrial damage could lead to deleterious consequences later in life (the “Developmental Origins of Health and Disease” paradigm), but reports from other fields often report beneficial (“mitohormetic”) responses to such damage. Here, we tested the effects of low (causing no change in lifespan) levels of ultraviolet C (UVC)-induced, irreparable mtDNA damage during early development in Caenorhabditis elegans. This exposure led to life-long reductions in mtDNA copy number and steady-state ATP levels, accompanied by increased oxygen consumption and altered metabolite profiles, suggesting inefficient mitochondrial function. Exposed nematodes were also developmentally delayed, reached smaller adult size, and were rendered more susceptible to subsequent exposure to chemical mitotoxicants. Metabolomic and genetic analysis of key signaling and metabolic pathways supported redox and mitochondrial stress-response signaling during early development as a mechanism for establishing these persistent alterations. Our results highlight the importance of early-life exposures to environmental pollutants, especially in the context of exposure to chemicals that target mitochondria. Early life mtDNA damage led to lifelong deficits in mitochondrial function. C. elegans developed slowly and were sensitive to chemical exposures as adults. Redox signaling is a mechanism that establishes these persistent alterations. Data are consistent with the Developmental Origins of Health and Disease model.
Collapse
Affiliation(s)
- Kathleen A Hershberger
- Duke University, Nicholas School of the Environment, Integrated Toxicology and Environmental Health Program, Durham, NC, USA
| | - John P Rooney
- Duke University, Nicholas School of the Environment, Integrated Toxicology and Environmental Health Program, Durham, NC, USA
| | - Elena A Turner
- Duke University, Nicholas School of the Environment, Integrated Toxicology and Environmental Health Program, Durham, NC, USA
| | - Lauren J Donoghue
- Duke University, Nicholas School of the Environment, Integrated Toxicology and Environmental Health Program, Durham, NC, USA
| | - Rakesh Bodhicharla
- Duke University, Nicholas School of the Environment, Integrated Toxicology and Environmental Health Program, Durham, NC, USA
| | - Laura L Maurer
- Duke University, Nicholas School of the Environment, Integrated Toxicology and Environmental Health Program, Durham, NC, USA
| | - Ian T Ryde
- Duke University, Nicholas School of the Environment, Integrated Toxicology and Environmental Health Program, Durham, NC, USA
| | - Jina J Kim
- Duke University, Nicholas School of the Environment, Integrated Toxicology and Environmental Health Program, Durham, NC, USA
| | - Rashmi Joglekar
- Duke University, Nicholas School of the Environment, Integrated Toxicology and Environmental Health Program, Durham, NC, USA
| | - Jonathan D Hibshman
- Duke University Department of Biology and University Program in Genetics and Genomics, Durham, NC, USA
| | - Latasha L Smith
- Duke University, Nicholas School of the Environment, Integrated Toxicology and Environmental Health Program, Durham, NC, USA
| | | | | | | | - Joel N Meyer
- Duke University, Nicholas School of the Environment, Integrated Toxicology and Environmental Health Program, Durham, NC, USA.
| |
Collapse
|
289
|
Tang C, Cai J, Yin XM, Weinberg JM, Venkatachalam MA, Dong Z. Mitochondrial quality control in kidney injury and repair. Nat Rev Nephrol 2021; 17:299-318. [PMID: 33235391 PMCID: PMC8958893 DOI: 10.1038/s41581-020-00369-0] [Citation(s) in RCA: 292] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2020] [Indexed: 01/30/2023]
Abstract
Mitochondria are essential for the activity, function and viability of eukaryotic cells and mitochondrial dysfunction is involved in the pathogenesis of acute kidney injury (AKI) and chronic kidney disease, as well as in abnormal kidney repair after AKI. Multiple quality control mechanisms, including antioxidant defence, protein quality control, mitochondrial DNA repair, mitochondrial dynamics, mitophagy and mitochondrial biogenesis, have evolved to preserve mitochondrial homeostasis under physiological and pathological conditions. Loss of these mechanisms may induce mitochondrial damage and dysfunction, leading to cell death, tissue injury and, potentially, organ failure. Accumulating evidence suggests a role of disturbances in mitochondrial quality control in the pathogenesis of AKI, incomplete or maladaptive kidney repair and chronic kidney disease. Moreover, specific interventions that target mitochondrial quality control mechanisms to preserve and restore mitochondrial function have emerged as promising therapeutic strategies to prevent and treat kidney injury and accelerate kidney repair. However, clinical translation of these findings is challenging owing to potential adverse effects, unclear mechanisms of action and a lack of knowledge of the specific roles and regulation of mitochondrial quality control mechanisms in kidney resident and circulating cell types during injury and repair of the kidney.
Collapse
Affiliation(s)
- Chengyuan Tang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, China
| | - Juan Cai
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, China
| | - Xiao-Ming Yin
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Joel M. Weinberg
- Department of Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Manjeri A. Venkatachalam
- Department of Pathology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Zheng Dong
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, China.,Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, GA, USA.,
| |
Collapse
|
290
|
Kaspar S, Oertlin C, Szczepanowska K, Kukat A, Senft K, Lucas C, Brodesser S, Hatzoglou M, Larsson O, Topisirovic I, Trifunovic A. Adaptation to mitochondrial stress requires CHOP-directed tuning of ISR. SCIENCE ADVANCES 2021; 7:eabf0971. [PMID: 34039602 PMCID: PMC8153728 DOI: 10.1126/sciadv.abf0971] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 04/07/2021] [Indexed: 05/03/2023]
Abstract
In response to disturbed mitochondrial gene expression and protein synthesis, an adaptive transcriptional response sharing a signature of the integrated stress response (ISR) is activated. We report an intricate interplay between three transcription factors regulating the mitochondrial stress response: CHOP, C/EBPβ, and ATF4. We show that CHOP acts as a rheostat that attenuates prolonged ISR, prevents unfavorable metabolic alterations, and postpones the onset of mitochondrial cardiomyopathy. Upon mitochondrial dysfunction, CHOP interaction with C/EBPβ is needed to adjust ATF4 levels, thus preventing overactivation of the ATF4-regulated transcriptional program. Failure of this interaction switches ISR from an acute to a chronic state, leading to early respiratory chain deficiency, energy crisis, and premature death. Therefore, contrary to its previously proposed role as a transcriptional activator of mitochondrial unfolded protein response, our results highlight a role of CHOP in the fine-tuning of mitochondrial ISR in mammals.
Collapse
Affiliation(s)
- Sophie Kaspar
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Medical Faculty, University of Cologne, D-50931 Cologne, Germany
- Institute for Mitochondrial Diseases and Ageing, Medical Faculty and Center for Molecular Medicine Cologne (CMMC) , University of Cologne, D-50931 Cologne, Germany
| | - Christian Oertlin
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
| | - Karolina Szczepanowska
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Medical Faculty, University of Cologne, D-50931 Cologne, Germany
- Institute for Mitochondrial Diseases and Ageing, Medical Faculty and Center for Molecular Medicine Cologne (CMMC) , University of Cologne, D-50931 Cologne, Germany
| | - Alexandra Kukat
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Medical Faculty, University of Cologne, D-50931 Cologne, Germany
- Institute for Mitochondrial Diseases and Ageing, Medical Faculty and Center for Molecular Medicine Cologne (CMMC) , University of Cologne, D-50931 Cologne, Germany
| | - Katharina Senft
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Medical Faculty, University of Cologne, D-50931 Cologne, Germany
- Institute for Mitochondrial Diseases and Ageing, Medical Faculty and Center for Molecular Medicine Cologne (CMMC) , University of Cologne, D-50931 Cologne, Germany
| | - Christina Lucas
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Medical Faculty, University of Cologne, D-50931 Cologne, Germany
| | - Susanne Brodesser
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Medical Faculty, University of Cologne, D-50931 Cologne, Germany
| | - Maria Hatzoglou
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Ola Larsson
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
| | - Ivan Topisirovic
- Lady Davis Institute, SMBD Jewish General Hospital, Gerald Bronfman Department of Oncology and Departments of Experimental Medicine and Biochemistry, McGill University, Montreal, Canada
| | - Aleksandra Trifunovic
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Medical Faculty, University of Cologne, D-50931 Cologne, Germany.
- Institute for Mitochondrial Diseases and Ageing, Medical Faculty and Center for Molecular Medicine Cologne (CMMC) , University of Cologne, D-50931 Cologne, Germany
| |
Collapse
|
291
|
Timblin GA, Tharp KM, Ford B, Winchester JM, Wang J, Zhu S, Khan RI, Louie SK, Iavarone AT, Ten Hoeve J, Nomura DK, Stahl A, Saijo K. Mitohormesis reprogrammes macrophage metabolism to enforce tolerance. Nat Metab 2021; 3:618-635. [PMID: 34031590 PMCID: PMC8162914 DOI: 10.1038/s42255-021-00392-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 04/15/2021] [Indexed: 02/03/2023]
Abstract
Macrophages generate mitochondrial reactive oxygen species and mitochondrial reactive electrophilic species as antimicrobials during Toll-like receptor (TLR)-dependent inflammatory responses. Whether mitochondrial stress caused by these molecules impacts macrophage function is unknown. Here, we demonstrate that both pharmacologically driven and lipopolysaccharide (LPS)-driven mitochondrial stress in macrophages triggers a stress response called mitohormesis. LPS-driven mitohormetic stress adaptations occur as macrophages transition from an LPS-responsive to LPS-tolerant state wherein stimulus-induced pro-inflammatory gene transcription is impaired, suggesting tolerance is a product of mitohormesis. Indeed, like LPS, hydroxyoestrogen-triggered mitohormesis suppresses mitochondrial oxidative metabolism and acetyl-CoA production needed for histone acetylation and pro-inflammatory gene transcription, and is sufficient to enforce an LPS-tolerant state. Thus, mitochondrial reactive oxygen species and mitochondrial reactive electrophilic species are TLR-dependent signalling molecules that trigger mitohormesis as a negative feedback mechanism to restrain inflammation via tolerance. Moreover, bypassing TLR signalling and pharmacologically triggering mitohormesis represents a new anti-inflammatory strategy that co-opts this stress response to impair epigenetic support of pro-inflammatory gene transcription by mitochondria.
Collapse
Affiliation(s)
- Greg A Timblin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA, USA.
| | - Kevin M Tharp
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Breanna Ford
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, USA
- Novartis-Berkeley Center for Proteomics and Chemistry Technologies and Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Janet M Winchester
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Jerome Wang
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Stella Zhu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Rida I Khan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Shannon K Louie
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Anthony T Iavarone
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA, USA
- QB3/Chemistry Mass Spectrometry Facility, University of California, Berkeley, Berkeley, CA, USA
| | - Johanna Ten Hoeve
- Department of Molecular and Medical Pharmacology, Crump Institute for Molecular Imaging and UCLA Metabolomics Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Daniel K Nomura
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, USA
- Novartis-Berkeley Center for Proteomics and Chemistry Technologies and Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Andreas Stahl
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, USA
| | - Kaoru Saijo
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
292
|
Elkin ER, Bakulski KM, Colacino JA, Bridges D, Kilburn BA, Armant DR, Loch-Caruso R. Transcriptional profiling of the response to the trichloroethylene metabolite S-(1,2-dichlorovinyl)-L-cysteine revealed activation of the eIF2α/ATF4 integrated stress response in two in vitro placental models. Arch Toxicol 2021; 95:1595-1619. [PMID: 33725128 PMCID: PMC7961173 DOI: 10.1007/s00204-021-03011-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 02/25/2021] [Indexed: 12/13/2022]
Abstract
Trichloroethylene (TCE) is an industrial solvent and widespread environmental contaminant. Although TCE exposure is prevalent, epidemiological studies of TCE exposure associations with adverse birth outcomes are inconclusive. Prior studies show that the TCE metabolite S-(1,2-dichlorovinyl)-L-cysteine (DCVC) exhibits toxicity in a placental cell line. In the current study, genome-wide gene expression and gene set enrichment analyses were used to identify novel genes and pathway alterations in the HTR-8/SVneo human trophoblast cell line and human placental villous explants treated with DCVC at concentrations relevant to human exposures. In the cells, concentration- and time-dependent effects were observed, as evidenced by the magnitude of altered gene expression after treatment with 20 µM DCVC versus 10 µM, and 12-h versus 6-h of treatment. Comparing the two models for the transcriptional response to 12-h 20 µM DCVC treatment, no differentially expressed genes reached significance in villous explants, whereas 301 differentially expressed genes were detected in HTR-8/SVneo cells compared with non-treated controls (FDR < 0.05 + LogFC > 0.35 [FC > 1.3]). GSEA revealed five upregulated enriched pathways in common between explants and cells (FDR < 0.05). Moreover, all 12-h DCVC treatment groups from both models contained upregulated pathways enriched for genes regulated by the ATF4 transcription factor. The overrepresentation of ATF4 regulation of differentially expressed genes indicated activation of the integrated stress response (ISR), a condition triggered by multiple stress stimuli, including the unfolded protein response. DCVC-induced ISR activation was confirmed by elevated eIF2α phosphorylation, ATF4 protein concentrations, and decreased global protein synthesis in HTR-8/SVneo cells. This study identifies a mechanism of DCVC-induced cytotoxicity by revealing the involvement of a specific stress signaling pathway.
Collapse
Affiliation(s)
- Elana R Elkin
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109-2029, USA.
| | - Kelly M Bakulski
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Justin A Colacino
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109-2029, USA
- Department of Nutritional Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Dave Bridges
- Department of Nutritional Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Brian A Kilburn
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - D Randall Armant
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Rita Loch-Caruso
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109-2029, USA
| |
Collapse
|
293
|
Garcia-Sanchez JA, Ewbank JJ, Visvikis O. Ubiquitin-related processes and innate immunity in C. elegans. Cell Mol Life Sci 2021; 78:4305-4333. [PMID: 33630111 PMCID: PMC11072174 DOI: 10.1007/s00018-021-03787-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/18/2021] [Accepted: 02/03/2021] [Indexed: 02/06/2023]
Abstract
Innate immunity is an evolutionary ancient defence strategy that serves to eliminate infectious agents while maintaining host health. It involves a complex network of sensors, signaling proteins and immune effectors that detect the danger, then relay and execute the immune programme. Post-translational modifications relying on conserved ubiquitin and ubiquitin-like proteins are an integral part of the system. Studies using invertebrate models of infection, such as the nematode Caenorhabditis elegans, have greatly contributed to our understanding of how ubiquitin-related processes act in immune sensing, regulate immune signaling pathways, and participate to host defence responses. This review highlights the interest of working with a genetically tractable model organism and illustrates how C. elegans has been used to identify ubiquitin-dependent immune mechanisms, discover novel ubiquitin-based resistance strategies that mediate pathogen clearance, and unravel the role of ubiquitin-related processes in tolerance, preserving host fitness during pathogen attack. Special emphasis is placed on processes that are conserved in mammals.
Collapse
Affiliation(s)
- Juan A Garcia-Sanchez
- INSERM, C3M, Côte D'Azur University, Nice, France
- INSERM, CNRS, CIML, Turing Centre for Living Systems, Aix-Marseille University, Marseille, France
| | - Jonathan J Ewbank
- INSERM, CNRS, CIML, Turing Centre for Living Systems, Aix-Marseille University, Marseille, France.
| | | |
Collapse
|
294
|
Xanthohumol-Induced Rat Glioma C6 Cells Death by Triggering Mitochondrial Stress. Int J Mol Sci 2021; 22:ijms22094506. [PMID: 33925918 PMCID: PMC8123451 DOI: 10.3390/ijms22094506] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/04/2021] [Accepted: 04/08/2021] [Indexed: 02/07/2023] Open
Abstract
AIM: To investigate the underlying mechanisms of xanthohumol (XN) on the proliferation inhibition and death of C6 glioma cells. METHODS: To determine the effects of XN on C6 cells, cell proliferation and mortality after XN treatment were assessed by SRB assay and trypan blue assay respectively. Apoptotic rates were evaluated by flowcytometry after Annexin V-FITC/PI double staining. The influence of XN on the activity of caspase-3 was determined by Western blot (WB); and nuclear transposition of apoptosis-inducing factor (AIF) was tested by immunocytochemistry and WB. By MitoSOXTM staining, the mitochondrial ROS were detected. Mitochondrial function was also tested by MTT assay (content of succinic dehydrogenase), flow cytometry (mitochondrial membrane potential (MMP)—JC-1 staining; mitochondrial abundance—mito-Tracker green), immunofluorescence (MMP—JC-1 staining; mitochondrial morphology—mito-Tracker green), WB (mitochondrial fusion-fission protein—OPA1, mfn2, and DRP1; mitophagy-related proteins—Pink1, Parkin, LC3B, and P62), and high-performance liquid chromatography (HPLC) (energy charge). Finally, mitochondrial protein homeostasis of C6 cells after XN treatment with and without LONP1 inhibitor bortezomib was investigated by trypan blue assay (proliferative activity and mortality) and WB (mitochondrial protease LONP1). All cell morphology images were taken by a Leica Microsystems microscope. RESULTS: XN could lead to proliferation inhibition and death of C6 cells in a time- and dose-dependent manner and induce apoptosis of C6 cells through the AIF pathway. After long incubation of XN, mitochondria of C6 cells were seriously impaired, and mitochondria had a diffuse morphology and mitochondrial ROS were increased. The content of succinic dehydrogenase per cell was significantly decreased after XN insults of 24, 48, and 72 h. The energy charge was weakened after XN insult of 24 h. Furthermore, the MMP and mitochondrial abundance were significantly decreased; the protein expression levels of OPA1, mfn2, and DRP1 were down-regulated; and the protein expression levels of Pink1, Parkin, LC3B-II/LC3B-I, and p62 were up-regulated in long XN incubation times (24, 48, and 72 h). XN incubation with bortezomib for 48 h resulted in lower proliferative activity and higher mortality of C6 cells and caused the cell to have visible vacuoles. Moreover, the protein expression levels of LONP1 was up-regulated gradually as XN treatment time increased. CONCLUSION: These data supported that XN could induce AIF pathway apoptosis of the rat glioma C6 cells by affecting the mitochondria.
Collapse
|
295
|
Feng Y, Nouri K, Schimmer AD. Mitochondrial ATP-Dependent Proteases-Biological Function and Potential Anti-Cancer Targets. Cancers (Basel) 2021; 13:2020. [PMID: 33922062 PMCID: PMC8122244 DOI: 10.3390/cancers13092020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/11/2021] [Accepted: 04/18/2021] [Indexed: 12/20/2022] Open
Abstract
Cells must eliminate excess or damaged proteins to maintain protein homeostasis. To ensure protein homeostasis in the cytoplasm, cells rely on the ubiquitin-proteasome system and autophagy. In the mitochondria, protein homeostasis is regulated by mitochondria proteases, including four core ATP-dependent proteases, m-AAA, i-AAA, LonP, and ClpXP, located in the mitochondrial membrane and matrix. This review will discuss the function of mitochondrial proteases, with a focus on ClpXP as a novel therapeutic target for the treatment of malignancy. ClpXP maintains the integrity of the mitochondrial respiratory chain and regulates metabolism by degrading damaged and misfolded mitochondrial proteins. Inhibiting ClpXP genetically or chemically impairs oxidative phosphorylation and is toxic to malignant cells with high ClpXP expression. Likewise, hyperactivating the protease leads to increased degradation of ClpXP substrates and kills cancer cells. Thus, targeting ClpXP through inhibition or hyperactivation may be novel approaches for patients with malignancy.
Collapse
Affiliation(s)
- Yue Feng
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; (Y.F.); (K.N.)
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Kazem Nouri
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; (Y.F.); (K.N.)
| | - Aaron D. Schimmer
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; (Y.F.); (K.N.)
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| |
Collapse
|
296
|
Koncha RR, Ramachandran G, Sepuri NBV, Ramaiah KVA. CCCP-induced mitochondrial dysfunction - characterization and analysis of integrated stress response to cellular signaling and homeostasis. FEBS J 2021; 288:5737-5754. [PMID: 33837631 DOI: 10.1111/febs.15868] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/26/2021] [Accepted: 04/07/2021] [Indexed: 12/11/2022]
Abstract
Mitochondrial dysfunction mediated by CCCP (carbonyl cyanide m-chlorophenyl hydrazone), an inhibitor of mitochondrial oxidative phosphorylation, evokes the integrated stress response (ISR), which is analyzed here by eIF2α phosphorylation and expression profiles of ATF4 and CHOP proteins. Our findings suggest that the CCCP-induced ISR pathway is mediated by activation of HRI kinase, but not by GCN2, PERK, or PKR. Also, CCCP activates AMPK, a cellular energy sensor, and AKT, a regulator implicated in cell survival, and suppresses phosphorylation of mTORC1 substrates eIF4E-BP1 and S6K. CCCP also downregulates translation and promotes autophagy, leading to noncaspase-mediated cell death in HepG2 cells. All these events are neutralized by NAC, an anti-ROS, suggesting that CCCP-induced mitochondrial dysfunction promotes oxidative stress. ISRIB, an inhibitor of the ISR pathway, mitigates CCCP-induced expression of ATF4 and CHOP, activation of AKT, and autophagy, similar to NAC. However, it fails to reverse CCCP-induced AMPK activation, suggesting that CCCP-induced autophagy is dependent on ISR and independent of AMPK activation. ISRIB restores partly, inhibition in eIF4E-BP1 phosphorylation, promotes eIF2α phosphorylation, albeit slowly, and mitigates suppression of translation accordingly, in CCCP-treated cells. These findings are consistent with the idea that CCCP-induced oxidative stress leading to eIF2α phosphorylation and ATF4 expression, which is known to stimulate genes involved in autophagy, play a pro-survival role together with AKT activation and regulate mTOR-mediated eIF4E-BP1 phosphorylation.
Collapse
Affiliation(s)
| | - Gayatri Ramachandran
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, India
| | - Naresh Babu V Sepuri
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, India
| | - Kolluru V A Ramaiah
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, India
| |
Collapse
|
297
|
Zhu L, Luo X, Fu N, Chen L. Mitochondrial unfolded protein response: A novel pathway in metabolism and immunity. Pharmacol Res 2021; 168:105603. [PMID: 33838292 DOI: 10.1016/j.phrs.2021.105603] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 04/03/2021] [Accepted: 04/04/2021] [Indexed: 12/11/2022]
Abstract
Mitochondrial unfolded protein response (mitoUPR) is a mitochondria stress response to maintain mitochondrial proteostasis during stress. Increasing evidence suggests that mitoUPR participates in diverse physiological processes especially metabolism and immunity. Although mitoUPR regulates metabolism in many aspects, it is mainly reflected in the regulation of energy metabolism. During stress, mitoUPR alters energy metabolism via suppressing oxidative phosphorylation (OXPHOS) or increasing glycolysis. MitoUPR also alters energy metabolism and regulates diverse metabolic diseases such as diabetes, cancers, fatty liver and obesity. In addition, mitoUPR also participates in immune process during stress. MitoUPR can induce innate immune response during various infections and may regulate inflammatory response during diverse inflammations. Considering the pleiotropic actions of mitoUPR, mitoUPR may supply diverse therapeutic targets for metabolic diseases and immune diseases.
Collapse
Affiliation(s)
- Li Zhu
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, Hunan, China
| | - Xuling Luo
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, Hunan, China
| | - Nian Fu
- Department of Gastroenterology, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan, China.
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, Hunan, China.
| |
Collapse
|
298
|
Chen Y, Leboutet R, Largeau C, Zentout S, Lefebvre C, Delahodde A, Culetto E, Legouis R. Autophagy facilitates mitochondrial rebuilding after acute heat stress via a DRP-1-dependent process. J Cell Biol 2021; 220:e201909139. [PMID: 33734301 PMCID: PMC7980257 DOI: 10.1083/jcb.201909139] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/21/2020] [Accepted: 01/21/2021] [Indexed: 02/06/2023] Open
Abstract
Acute heat stress (aHS) can induce strong developmental defects in Caenorhabditis elegans larva but not lethality or sterility. This stress results in transitory fragmentation of mitochondria, formation of aggregates in the matrix, and decrease of mitochondrial respiration. Moreover, active autophagic flux associated with mitophagy events enables the rebuilding of the mitochondrial network and developmental recovery, showing that the autophagic response is protective. This adaptation to aHS does not require Pink1/Parkin or the mitophagy receptors DCT-1/NIX and FUNDC1. We also find that mitochondria are a major site for autophagosome biogenesis in the epidermis in both standard and heat stress conditions. In addition, we report that the depletion of the dynamin-related protein 1 (DRP-1) affects autophagic processes and the adaptation to aHS. In drp-1 animals, the abnormal mitochondria tend to modify their shape upon aHS but are unable to achieve fragmentation. Autophagy is induced, but autophagosomes are abnormally elongated and clustered on mitochondria. Our data support a role for DRP-1 in coordinating mitochondrial fission and autophagosome biogenesis in stress conditions.
Collapse
Affiliation(s)
- Yanfang Chen
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
| | - Romane Leboutet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
- INSERM U1280, Gif‐sur‐Yvette, France
| | - Céline Largeau
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
- INSERM U1280, Gif‐sur‐Yvette, France
| | - Siham Zentout
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
| | - Christophe Lefebvre
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
- INSERM U1280, Gif‐sur‐Yvette, France
| | - Agnès Delahodde
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
| | - Emmanuel Culetto
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
- INSERM U1280, Gif‐sur‐Yvette, France
| | - Renaud Legouis
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
- INSERM U1280, Gif‐sur‐Yvette, France
| |
Collapse
|
299
|
Banasiak K, Szulc NA, Pokrzywa W. The Dose-Dependent Pleiotropic Effects of the UBB +1 Ubiquitin Mutant. Front Mol Biosci 2021; 8:650730. [PMID: 33842548 PMCID: PMC8032880 DOI: 10.3389/fmolb.2021.650730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/02/2021] [Indexed: 11/23/2022] Open
Abstract
The proteolytic machinery activity diminishes with age, leading to abnormal accumulation of aberrant proteins; furthermore, a decline in protein degradation capacity is associated with multiple age-related proteinopathies. Cellular proteostasis can be maintained via the removal of ubiquitin (Ub)-tagged damaged and redundant proteins by the ubiquitin-proteasome system (UPS). However, during aging, central nervous system (CNS) cells begin to express a frameshift-mutated Ub, UBB+1. Its accumulation is a neuropathological hallmark of tauopathy, including Alzheimer’s disease and polyglutamine diseases. Mechanistically, in cell-free and cell-based systems, an increase in the UBB+1 concentration disrupts proteasome processivity, leading to increased aggregation of toxic proteins. On the other hand, a low level of UBB+1 improves stress resistance and extends lifespan. Here we summarize recent findings regarding the impact of UBB+1 on Ub signaling and neurodegeneration. We also review the molecular basis of how UBB+1 affects UPS components as well as its dose-dependent switch between cytoprotective and cytotoxic roles.
Collapse
Affiliation(s)
- Katarzyna Banasiak
- Laboratory of Protein Metabolism, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Natalia A Szulc
- Laboratory of Protein Metabolism, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Wojciech Pokrzywa
- Laboratory of Protein Metabolism, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| |
Collapse
|
300
|
Lin KL, Chen SD, Lin KJ, Liou CW, Chuang YC, Wang PW, Chuang JH, Lin TK. Quality Matters? The Involvement of Mitochondrial Quality Control in Cardiovascular Disease. Front Cell Dev Biol 2021; 9:636295. [PMID: 33829016 PMCID: PMC8019794 DOI: 10.3389/fcell.2021.636295] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/02/2021] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases are one of the leading causes of death and global health problems worldwide. Multiple factors are known to affect the cardiovascular system from lifestyles, genes, underlying comorbidities, and age. Requiring high workload, metabolism of the heart is largely dependent on continuous power supply via mitochondria through effective oxidative respiration. Mitochondria not only serve as cellular power plants, but are also involved in many critical cellular processes, including the generation of intracellular reactive oxygen species (ROS) and regulating cellular survival. To cope with environmental stress, mitochondrial function has been suggested to be essential during bioenergetics adaptation resulting in cardiac pathological remodeling. Thus, mitochondrial dysfunction has been advocated in various aspects of cardiovascular pathology including the response to ischemia/reperfusion (I/R) injury, hypertension (HTN), and cardiovascular complications related to type 2 diabetes mellitus (DM). Therefore, mitochondrial homeostasis through mitochondrial dynamics and quality control is pivotal in the maintenance of cardiac health. Impairment of the segregation of damaged components and degradation of unhealthy mitochondria through autophagic mechanisms may play a crucial role in the pathogenesis of various cardiac disorders. This article provides in-depth understanding of the current literature regarding mitochondrial remodeling and dynamics in cardiovascular diseases.
Collapse
Affiliation(s)
- Kai-Lieh Lin
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Shang-Der Chen
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Center of Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Kai-Jung Lin
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chia-Wei Liou
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Center of Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yao-Chung Chuang
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Center of Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Pei-Wen Wang
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Metabolism, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Jiin-Haur Chuang
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Pediatric Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Tsu-Kung Lin
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Center of Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|