251
|
Henley DB, Sundell KL, Sethuraman G, Dowsett SA, May PC. Safety profile of semagacestat, a gamma-secretase inhibitor: IDENTITY trial findings. Curr Med Res Opin 2014; 30:2021-32. [PMID: 24983746 DOI: 10.1185/03007995.2014.939167] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Semagacestat, a γ-secretase inhibitor, demonstrated an unfavorable risk-benefit profile in a Phase 3 study of patients with Alzheimer's disease (IDENTITY trials), and clinical development was halted. To assist in future development of γ-secretase inhibitors, we report detailed safety findings from the IDENTITY study, with emphasis on those that might be mechanistically linked to γ-secretase inhibition. RESEARCH DESIGN AND METHODS The IDENTITY trial was a double-blind, placebo-controlled trial of semagacestat (100 mg and 140 mg), in which 1537 patients age 55 years and older with probable Alzheimer's disease were randomized. Treatment-emergent adverse events (TEAEs) are reported by body system along with pertinent laboratory, vital sign, and ECG findings. RESULTS Semagacestat treatment was associated with increased reporting of suspected Notch-related adverse events (gastrointestinal, infection, and skin cancer related). Other relevant safety findings associated with semagacestat treatment included cognitive and functional worsening, skin-related TEAEs, renal and hepatic changes, increased QT interval, and weight loss. With few exceptions, differences between semagacestat and placebo treatment groups were no longer significant after cessation of treatment with active drug. CONCLUSIONS Many of these safety findings can be attributed to γ-secretase inhibition, and may be valuable to researchers developing γ-secretase inhibitors.
Collapse
|
252
|
Bolós M, Hu Y, Young KM, Foa L, Small DH. Neurogenin 2 mediates amyloid-β precursor protein-stimulated neurogenesis. J Biol Chem 2014; 289:31253-61. [PMID: 25217641 DOI: 10.1074/jbc.m114.581918] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Amyloid-β precursor protein (APP) is well studied for its role in Alzheimer disease, although its normal function remains uncertain. It has been reported that APP stimulates the proliferation and neuronal differentiation of neural stem/progenitor cells (NSPCs). In this study we examined the role of APP in NSPC differentiation. To identify proteins that may mediate the effect of APP on NSPC differentiation, we used a gene array approach to find genes whose expression correlated with APP-induced neurogenesis. We found that the expression of neurogenin 2 (Ngn2), a basic helix-loop-helix transcription factor, was significantly down-regulated in NSPCs from APP knock-out mice (APPKO) and increased in APP transgenic (Tg2576) mice. Ngn2 overexpression in APPKO NSPCs promoted neuronal differentiation, whereas siRNA knockdown of Ngn2 expression in wild-type NSPCs decreased neuronal differentiation. The results demonstrate that APP-stimulated neuronal differentiation of NSPCs is mediated by Ngn2.
Collapse
Affiliation(s)
- Marta Bolós
- From the Menzies Research Institute Tasmania and
| | - Yanling Hu
- From the Menzies Research Institute Tasmania and
| | | | - Lisa Foa
- From the Menzies Research Institute Tasmania and School of Medicine, University of Tasmania, Hobart, Tasmania 7000, Australia
| | | |
Collapse
|
253
|
Liu X, Yang Z, Yin Y, Deng X. Increased expression of Notch1 in temporal lobe epilepsy: animal models and clinical evidence. Neural Regen Res 2014; 9:526-33. [PMID: 25206850 PMCID: PMC4153506 DOI: 10.4103/1673-5374.130083] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2014] [Indexed: 11/04/2022] Open
Abstract
Temporal lobe epilepsy is associated with astrogliosis. Notch1 signaling can induce astrogliosis in glioma. However, it remains unknown whether Notch1 signaling is involved in the pathogenesis of epilepsy. This study investigated the presence of Notch1, hairy and enhancer of split-1, and glial fibrillary acidic protein in the temporal neocortex and hippocampus of lithium-pilocarpine-treated rats. The presence of Notch1 and hairy and enhancer of split-1 was also explored in brain tissues of patients with intractable temporal lobe epilepsy. Quantitative electroencephalogram analysis and behavioral observations were used as auxiliary measures. Results revealed that the presence of Notch1, hairy and enhancer of split-1, and glial fibrillary acidic protein were enhanced in status epilepticus and vehicle-treated spontaneous recurrent seizures rats, but remain unchanged in the following groups: control, absence of either status epilepticus or spontaneous recurrent seizures, and zileuton-treated spontaneous recurrent seizures. Compared with patient control cases, the presences of Notch1 and hairy and enhancer of split-1 were upregulated in the temporal neocortex of patients with intractable temporal lobe epilepsy. Therefore, these results suggest that Notch1 signaling may play an important role in the onset of temporal lobe epilepsy via astrogliosis. Furthermore, zileuton may be a potential therapeutic strategy for temporal lobe epilepsy by blocking Notch1 signaling.
Collapse
Affiliation(s)
- Xijin Liu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Zhiyong Yang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yaping Yin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xuejun Deng
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
254
|
MicroRNA profiling reveals unique miRNA signatures in IGF-1 treated embryonic striatal stem cell fate decisions in striatal neurogenesis in vitro. BIOMED RESEARCH INTERNATIONAL 2014; 2014:503162. [PMID: 25254208 PMCID: PMC4165568 DOI: 10.1155/2014/503162] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 06/25/2014] [Accepted: 07/02/2014] [Indexed: 01/20/2023]
Abstract
The striatum is considered to be the central processing unit of the basal ganglia in locomotor activity and cognitive function of the brain. IGF-1 could act as a control switch for the long-term proliferation and survival of EGF+bFGF-responsive cultured embryonic striatal stem cell (ESSC), while LIF imposes a negative impact on cell proliferation. The IGF-1-treated ESSCs also showed elevated hTERT expression with demonstration of self-renewal and trilineage commitment (astrocytes, oligodendrocytes, and neurons). In order to decipher the underlying regulatory microRNA (miRNA)s in IGF-1/LIF-treated ESSC-derived neurogenesis, we performed in-depth miRNA profiling at 12 days in vitro and analyzed the candidates using the Partek Genome Suite software. The annotated miRNA fingerprints delineated the differential expressions of miR-143, miR-433, and miR-503 specific to IGF-1 treatment. Similarly, the LIF-treated ESSCs demonstrated specific expression of miR-326, miR-181, and miR-22, as they were nonsignificant in IGF-treated ESSCs. To elucidate the possible downstream pathways, we performed in silico mapping of the said miRNAs into ingenuity pathway analysis. Our findings revealed the important mRNA targets of the miRNAs and suggested specific interactomes. The above studies introduced a new genre of miRNAs for ESSC-based neuroregenerative therapeutic applications.
Collapse
|
255
|
Rusanescu G, Mao J. Notch3 is necessary for neuronal differentiation and maturation in the adult spinal cord. J Cell Mol Med 2014; 18:2103-16. [PMID: 25164209 PMCID: PMC4244024 DOI: 10.1111/jcmm.12362] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Notch receptors are key regulators of nervous system development and promoters of neural stem cells renewal and proliferation. Defects in the expression of Notch genes result in severe, often lethal developmental abnormalities. Notch3 is generally thought to have a similar proliferative, anti-differentiation and gliogenic role to Notch1. However, in some cases, Notch3 has an opposite, pro-differentiation effect. Here, we show that Notch3 segregates from Notch1 and is transiently expressed in adult rat and mouse spinal cord neuron precursors and immature neurons. This suggests that during the differentiation of adult neural progenitor cells, Notch signalling may follow a modified version of the classical lateral inhibition model, involving the segregation of individual Notch receptors. Notch3 knockout mice, otherwise neurologically normal, are characterized by a reduced number of mature inhibitory interneurons and an increased number of highly excitable immature neurons in spinal cord laminae I–II. As a result, these mice have permanently lower nociceptive thresholds, similar to chronic pain. These results suggest that defective neuronal differentiation, for example as a result of reduced Notch3 expression or activation, may underlie human cases of intractable chronic pain, such as fibromyalgia and neuropathic pain.
Collapse
Affiliation(s)
- Gabriel Rusanescu
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Charlestown, MA, USA
| | | |
Collapse
|
256
|
Vied CM, Freudenberg F, Wang Y, Raposo AASF, Feng D, Nowakowski RS. A multi-resource data integration approach: identification of candidate genes regulating cell proliferation during neocortical development. Front Neurosci 2014; 8:257. [PMID: 25191221 PMCID: PMC4139594 DOI: 10.3389/fnins.2014.00257] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 08/01/2014] [Indexed: 11/17/2022] Open
Abstract
Neurons of the mammalian neocortex are produced by proliferating cells located in the ventricular zone (VZ) lining the lateral ventricles. This is a complex and sequential process, requiring precise control of cell cycle progression, fate commitment and differentiation. We have analyzed publicly available databases from mouse and human to identify candidate genes that are potentially involved in regulating early neocortical development and neurogenesis. We used a mouse in situ hybridization dataset (The Allen Institute for Brain Science) to identify 13 genes (Cdon, Celsr1, Dbi, E2f5, Eomes, Hmgn2, Neurog2, Notch1, Pcnt, Sox3, Ssrp1, Tead2, Tgif2) with high correlation of expression in the proliferating cells of the VZ of the neocortex at early stages of development (E15.5). We generated a similar human brain network using microarray and RNA-seq data (BrainSpan Atlas) and identified 407 genes with high expression in the developing human VZ and subventricular zone (SVZ) at 8–9 post-conception weeks. Seven of the human genes were also present in the mouse VZ network. The human and mouse networks were extended using available genetic and proteomic datasets through GeneMANIA. A gene ontology search of the mouse and human networks indicated that many of the genes are involved in the cell cycle, DNA replication, mitosis and transcriptional regulation. The reported involvement of Cdon, Celsr1, Dbi, Eomes, Neurog2, Notch1, Pcnt, Sox3, Tead2, and Tgif2 in neural development or diseases resulting from the disruption of neurogenesis validates these candidate genes. Taken together, our knowledge-based discovery method has validated the involvement of many genes already known to be involved in neocortical development and extended the potential number of genes by 100's, many of which are involved in functions related to cell proliferation but others of which are potential candidates for involvement in the regulation of neocortical development.
Collapse
Affiliation(s)
- Cynthia M Vied
- Department of Biomedical Sciences, College of Medicine, Florida State University Tallahassee, FL, USA
| | - Florian Freudenberg
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Frankfurt Frankfurt, Germany
| | - Yuting Wang
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore Singapore, Singapore
| | | | - David Feng
- Allen Institute for Brain Science Seattle, WA, USA
| | - Richard S Nowakowski
- Department of Biomedical Sciences, College of Medicine, Florida State University Tallahassee, FL, USA
| |
Collapse
|
257
|
Dai X, Lu X, Cheng F, Hao H, Qian T, Yu W, Tang L, Li L. Neurogenin 2 enhances the neuronal differentiation of skin-derived precursors. Int J Neurosci 2014; 125:367-74. [DOI: 10.3109/00207454.2014.935375] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
258
|
Imayoshi I, Kageyama R. Oscillatory control of bHLH factors in neural progenitors. Trends Neurosci 2014; 37:531-8. [PMID: 25149265 DOI: 10.1016/j.tins.2014.07.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 07/02/2014] [Accepted: 07/27/2014] [Indexed: 10/24/2022]
Abstract
The mammalian brain consists of a complex ensemble of neurons and glia. Their production during development and remodeling is tightly controlled by various regulatory mechanisms in neural progenitor cells (NPCs). Among such regulations, basic helix-loop-helix (bHLH) factors have key functions in the self-renewal, multipotency, and fate determination of NPCs. Here, we highlight the importance of the expression dynamics of bHLH factors in these processes. The oscillatory expression of multiple bHLH factors is correlated with the multipotent and self-renewable state, whereas sustained expression of a selected bHLH factor regulates fate determination. We also discuss potential mechanisms by which a single bHLH factor can exhibit versatile functions in NPC regulation as well as the hierarchical structure of the bHLH factor oscillatory network.
Collapse
Affiliation(s)
- Itaru Imayoshi
- Institute for Virus Research, Kyoto University, Shogoin-Kawahara, Sakyo-ku, Kyoto 606-8507, Japan; The Hakubi Center, Kyoto University, Kyoto 606-8501, Japan; World Premier International Research Initiative-Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan; Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology (PRESTO), 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
| | - Ryoichiro Kageyama
- Institute for Virus Research, Kyoto University, Shogoin-Kawahara, Sakyo-ku, Kyoto 606-8507, Japan; World Premier International Research Initiative-Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan; Japan Science and Technology Agency, Core Research for Evolutional Science and Technology (CREST), 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
| |
Collapse
|
259
|
Merson TD, Bourne JA. Endogenous neurogenesis following ischaemic brain injury: insights for therapeutic strategies. Int J Biochem Cell Biol 2014; 56:4-19. [PMID: 25128862 DOI: 10.1016/j.biocel.2014.08.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 07/18/2014] [Accepted: 08/04/2014] [Indexed: 01/19/2023]
Abstract
Ischaemic stroke is among the most common yet most intractable types of central nervous system (CNS) injury in the adult human population. In the acute stages of disease, neurons in the ischaemic lesion rapidly die and other neuronal populations in the ischaemic penumbra are vulnerable to secondary injury. Multiple parallel approaches are being investigated to develop neuroprotective, reparative and regenerative strategies for the treatment of stroke. Accumulating evidence indicates that cerebral ischaemia initiates an endogenous regenerative response within the adult brain that potentiates adult neurogenesis from populations of neural stem and progenitor cells. A major research focus has been to understand the cellular and molecular mechanisms that underlie the potentiation of adult neurogenesis and to appreciate how interventions designed to modulate these processes could enhance neural regeneration in the post-ischaemic brain. In this review, we highlight recent advances over the last 5 years that help unravel the cellular and molecular mechanisms that potentiate endogenous neurogenesis following cerebral ischaemia and are dissecting the functional importance of this regenerative mechanism following brain injury. This article is part of a Directed Issue entitled: Regenerative Medicine: the challenge of translation.
Collapse
Affiliation(s)
- Tobias D Merson
- Florey Institute of Neuroscience and Mental Health, Kenneth Myer Building, 30 Royal Parade, Parkville, VIC 3010, Australia.
| | - James A Bourne
- Australian Regenerative Medicine Institute, Monash University, Building 75, Level 1 North STRIP 1, Clayton, VIC 3800, Australia.
| |
Collapse
|
260
|
Jessberger S, Gage FH. Adult neurogenesis: bridging the gap between mice and humans. Trends Cell Biol 2014; 24:558-63. [PMID: 25124338 DOI: 10.1016/j.tcb.2014.07.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 07/12/2014] [Accepted: 07/15/2014] [Indexed: 01/17/2023]
Abstract
Neural stem/progenitor cells (NSPCs) generate new neurons in the mammalian brain throughout life. Over the past two decades, substantial progress has been made in deciphering the cellular and molecular mechanisms underlying adult neurogenesis and in understanding the role played by new neurons in brain function in animal models of health and disease. By contrast, knowledge regarding the extent and relevance of neurogenesis in the adult human brain remains scant. Here we review new concepts about how new neurons shape adult brain circuits, discuss fundamental, unanswered questions about stem cell-associated neural plasticity, and illustrate how the gap between the animal-based basic research and current efforts to analyze life-long neuronal development of the human brain may be overcome by using novel experimental strategies.
Collapse
Affiliation(s)
- Sebastian Jessberger
- Laboratory of Neural Plasticity, Brain Research Institute, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| | - Fred H Gage
- Laboratory of Genetics, Salk Institute for Biological Studies, 10010N. Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
261
|
Amygdala-dependent fear memory consolidation via miR-34a and Notch signaling. Neuron 2014; 83:906-18. [PMID: 25123309 DOI: 10.1016/j.neuron.2014.07.019] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2014] [Indexed: 11/23/2022]
Abstract
UNLABELLED Using an array-based approach after auditory fear conditioning and microRNA (miRNA) sponge-mediated inhibition, we identified a role for miR-34a within the basolateral amygdala (BLA) in fear memory consolidation. Luciferase assays and bioinformatics suggested the Notch pathway as a target of miR-34a. mRNA and protein levels of Notch receptors and ligands are downregulated in a time- and learning-specific manner after fear conditioning in the amygdala. Systemic and stereotaxic manipulations of the Notch pathway indicated that Notch signaling in the BLA suppresses fear memory consolidation. Impairment of fear memory consolidation after inhibition of miR-34a within the BLA is rescued by inhibiting Notch signaling. Together, these data suggest that within the BLA, a transient decrease in Notch signaling, via miR-34a regulation, is important for the consolidation of fear memory. This work expands the idea that developmental molecules have roles in adult behavior and that existing interventions targeting them hold promise for treating neuropsychiatric disorders. VIDEO ABSTRACT
Collapse
|
262
|
Chronic γ-secretase inhibition reduces amyloid plaque-associated instability of pre- and postsynaptic structures. Mol Psychiatry 2014; 19:937-46. [PMID: 24061497 PMCID: PMC4113951 DOI: 10.1038/mp.2013.122] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 08/06/2013] [Accepted: 08/08/2013] [Indexed: 12/27/2022]
Abstract
The loss of synapses is a strong histological correlate of the cognitive decline in Alzheimer's disease (AD). Amyloid β-peptide (Aβ), a cleavage product of the amyloid precursor protein (APP), exerts detrimental effects on synapses, a process thought to be causally related to the cognitive deficits in AD. Here, we used in vivo two-photon microscopy to characterize the dynamics of axonal boutons and dendritic spines in APP/Presenilin 1 (APP(swe)/PS1(L166P))-green fluorescent protein (GFP) transgenic mice. Time-lapse imaging over 4 weeks revealed a pronounced, concerted instability of pre- and postsynaptic structures within the vicinity of amyloid plaques. Treatment with a novel sulfonamide-type γ-secretase inhibitor (GSI) attenuated the formation and growth of new plaques and, most importantly, led to a normalization of the enhanced dynamics of synaptic structures close to plaques. GSI treatment did neither affect spines and boutons distant from plaques in amyloid precursor protein/presenilin 1-GFP (APPPS1-GFP) nor those in GFP-control mice, suggesting no obvious neuropathological side effects of the drug.
Collapse
|
263
|
Mannari T, Miyata S. Activity-dependent Notch signalling in the hypothalamic-neurohypophysial system of adult mouse brains. J Neuroendocrinol 2014; 26:497-509. [PMID: 24943269 DOI: 10.1111/jne.12172] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 05/24/2014] [Accepted: 06/12/2014] [Indexed: 02/06/2023]
Abstract
Notch signalling has a key role in cell fate specification in developing brains; however, recent studies have shown that Notch signalling also participates in the regulation of synaptic plasticity in adult brains. In the present study, we examined the expression of Notch3 and Delta-like ligand 4 (DLL4) in the hypothalamic-neurohypophysial system (HNS) of the adult mouse. The expression of DLL4 was higher in the supraoptic nucleus (SON) and paraventricular nucleus (PVN) compared to adjacent hypothalamic regions. Double-labelling immunohistochemistry using vesicular GABA transporter and glutamate transporter revealed that DLL4 was localised at a subpopulation of excitatory and inhibitory axonal boutons against somatodendrites of arginine vasopressin (AVP)- and oxytocin (OXT)-containing magnocellular neurones. In the neurohypophysis (NH), the expression of DLL4 was seen at OXT- but not AVP-containing axonal terminals. The expression of Notch3 was seen at somatodendrites of AVP- and OXT-containing magnocellular neurones in the SON and PVN and at pituicytes in the NH. Chronic physiological stimulation by salt loading, which remarkably enhances the release of AVP and OXT, decreased the number of DLL4-immunoreactive axonal boutons in the SON and PVN. Moreover, chronic and acute osmotic stimulation promoted proteolytic cleavage of Notch3 to yield the intracellular fragments of Notch3 in the HNS. Thus, the present study demonstrates activity-dependent reduction of DLL4 expression and proteolytic cleavage of Notch3 in the HNS, suggesting that Notch signalling possibly participates in synaptic interaction in the hypothalamic nuclei and neuroglial interaction in the NH.
Collapse
Affiliation(s)
- T Mannari
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto, Japan
| | | |
Collapse
|
264
|
García-Gallastegui P, Ibarretxe G, Garcia-Ramírez JJ, Baladrón V, Aurrekoetxea M, Nueda ML, Naranjo AI, Santaolalla F, Sánchez-del Rey A, Laborda J, Unda F. DLK1 regulates branching morphogenesis and parasympathetic innervation of salivary glands through inhibition of NOTCH signalling. Biol Cell 2014; 106:237-53. [PMID: 24828459 DOI: 10.1111/boc.201300086] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 05/08/2014] [Indexed: 12/26/2022]
Abstract
BACKGROUND INFORMATION Delta-like proteins 1 and 2 (DLK1, 2) are NOTCH receptor ligands containing epidermal growth factor-like repeats, which regulate NOTCH signalling. We investigated the role of DLK and the NOTCH pathway in the morphogenesis of the submandibular salivary glands (SMGs), using in vitro organotypic cultures. RESULTS DLK1 and 2 were present in all stages of SMG morphogenesis, where DLK1 inhibited both NOTCH activity and SMG branching. The addition of NOTCH inhibitory agents, either soluble DLK1 (sDLK1) or N-[N-(3, 5-difluorophenacetyl-L-alanyl]-S-phenylglycine t-buthyl ester (DAPT), to the SMG culture medium did not affect the rate of cell proliferation, but induced a strong reduction in SMG branching, increased epithelial apoptosis, and impaired innervation of the epithelial end buds by local parasympathetic ganglion neurons. SMG innervation could be restored by the acetylcholine analog carbachol (CCh), which also rescued cytokeratin 5 (CK5(+))-expressing epithelial progenitor cells. Despite this, CCh failed to restore normal branching morphogenesis in the presence of either sDLK1 or DAPT. However, it improved recovery of branching morphogenesis in SMGs, once DLK1 or DAPT were removed from the medium. CONCLUSIONS Our data suggest that DLK1 regulates SMGs morphogenesis and parasympathetic nerve fibre outgrowth through inhibition of NOTCH signalling.
Collapse
Affiliation(s)
- Patricia García-Gallastegui
- Department of Cell Biology and Histology, Faculty of Medicine and Dentistry, University of the Basque Country, UPV/EHU, Leioa, 48940, Bizkaia, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
265
|
Yoshida Y, Hayashi Y, Suda M, Tateno K, Okada S, Moriya J, Yokoyama M, Nojima A, Yamashita M, Kobayashi Y, Shimizu I, Minamino T. Notch signaling regulates the lifespan of vascular endothelial cells via a p16-dependent pathway. PLoS One 2014; 9:e100359. [PMID: 24950189 PMCID: PMC4065107 DOI: 10.1371/journal.pone.0100359] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/25/2014] [Indexed: 11/18/2022] Open
Abstract
Evolutionarily conserved Notch signaling controls cell fate determination and differentiation during development, and is also essential for neovascularization in adults. Although recent studies suggest that the Notch pathway is associated with age-related conditions, it remains unclear whether Notch signaling is involved in vascular aging. Here we show that Notch signaling has a crucial role in endothelial cell senescence. Inhibition of Notch signaling in human endothelial cells induced premature senescence via a p16-dependent pathway. Conversely, over-expression of Notch1 or Jagged1 prolonged the replicative lifespan of endothelial cells. Notch1 positively regulated the expression of inhibitor of DNA binding 1 (Id1) and MAP kinase phosphatase 1 (MKP1), while MKP1 further up-regulated Id1 expression by inhibiting p38MAPK-induced protein degradation. Over-expression of Id1 down-regulated p16 expression, thereby inhibiting premature senescence of Notch1-deleted endothelial cells. These findings indicate that Notch1 signaling has a role in the regulation of endothelial cell senescence via a p16-dependent pathway and suggest that activation of Notch1 could be a new therapeutic target for treating age-associated vascular diseases.
Collapse
Affiliation(s)
- Yohko Yoshida
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yuka Hayashi
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Masayoshi Suda
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kaoru Tateno
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Sho Okada
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Junji Moriya
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Masataka Yokoyama
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Aika Nojima
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | | | - Yoshio Kobayashi
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Ippei Shimizu
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
- * E-mail:
| |
Collapse
|
266
|
Ferent J, Cochard L, Faure H, Taddei M, Hahn H, Ruat M, Traiffort E. Genetic activation of Hedgehog signaling unbalances the rate of neural stem cell renewal by increasing symmetric divisions. Stem Cell Reports 2014; 3:312-23. [PMID: 25254344 PMCID: PMC4175546 DOI: 10.1016/j.stemcr.2014.05.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/22/2014] [Accepted: 05/22/2014] [Indexed: 02/08/2023] Open
Abstract
In the adult brain, self-renewal is essential for the persistence of neural stem cells (NSCs) throughout life, but its regulation is still poorly understood. One NSC can give birth to two NSCs or one NSC and one transient progenitor. A correct balance is necessary for the maintenance of germinal areas, and understanding the molecular mechanisms underlying NSC division mode is clearly important. Here, we report a function of the Sonic Hedgehog (SHH) receptor Patched in the direct control of long-term NSC self-renewal in the subependymal zone. We show that genetic conditional activation of SHH signaling in adult NSCs leads to their expansion and the depletion of their direct progeny. These phenotypes are associated in vitro with an increase in NSC symmetric division in a process involving NOTCH signaling. Together, our results demonstrate a tight control of adult neurogenesis and NSC renewal driven by Patched. Ptc inactivation in the adult NSCs expands the NSC pool and depletes their progeny Neurogenesis blockade is related to the increase of NSC symmetric division PTC exerts a central role via NOTCH, in the regulation of adult NSC self-renewal
Collapse
Affiliation(s)
- Julien Ferent
- Laboratory of Neurobiology and Development-CNRS, Signal Transduction and Developmental Neuropharmacology Team, Institute of Neurobiology Alfred Fessard, Gif-sur-Yvette 91198, France
| | - Loïc Cochard
- Laboratory of Neurobiology and Development-CNRS, Signal Transduction and Developmental Neuropharmacology Team, Institute of Neurobiology Alfred Fessard, Gif-sur-Yvette 91198, France
| | - Hélène Faure
- Laboratory of Neurobiology and Development-CNRS, Signal Transduction and Developmental Neuropharmacology Team, Institute of Neurobiology Alfred Fessard, Gif-sur-Yvette 91198, France
| | - Maurizio Taddei
- Dipartimento Farmaco Chimico Tecnologico, Università degli Studi di Siena, 53100 Siena, Italy
| | - Heidi Hahn
- Tumor Genetics Group, Institute of Human Genetics, University Medical Center, Göttingen 37073, Germany
| | - Martial Ruat
- Laboratory of Neurobiology and Development-CNRS, Signal Transduction and Developmental Neuropharmacology Team, Institute of Neurobiology Alfred Fessard, Gif-sur-Yvette 91198, France.
| | - Elisabeth Traiffort
- Laboratory of Neurobiology and Development-CNRS, Signal Transduction and Developmental Neuropharmacology Team, Institute of Neurobiology Alfred Fessard, Gif-sur-Yvette 91198, France.
| |
Collapse
|
267
|
Hammond TR, Gadea A, Dupree J, Kerninon C, Nait-Oumesmar B, Aguirre A, Gallo V. Astrocyte-derived endothelin-1 inhibits remyelination through notch activation. Neuron 2014; 81:588-602. [PMID: 24507193 DOI: 10.1016/j.neuron.2013.11.015] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2013] [Indexed: 01/01/2023]
Abstract
Oligodendrocyte progenitor cells (OPCs) can repair demyelinated lesions by maturing into myelin-producing oligodendrocytes. However, the OPC potential to differentiate can be prevented by inhibitory signals present in the pathological lesion environment. Identification of these signals is essential to promote OPC differentiation and lesion repair. We identified an endogenous inhibitor of remyelination, Endothelin-1 (ET-1), which is highly expressed in reactive astrocytes of demyelinated lesions. Using both gain- and loss-of-function approaches, we demonstrate that ET-1 drastically reduces the rate of remyelination. We also discovered that ET-1 acts mechanistically by promoting Notch activation in OPCs during remyelination through induction of Jagged1 expression in reactive astrocytes. Pharmacological inhibition of ET signaling prevented Notch activation in demyelinated lesions and accelerated remyelination. These findings reveal that ET-1 is a negative regulator of OPC differentiation and remyelination and is potentially a therapeutic target to promote lesion repair in demyelinated tissue.
Collapse
Affiliation(s)
- Timothy R Hammond
- Center for Neuroscience Research, Children's National Medical Center, Washington, DC 20010, USA; Institute for Biomedical Sciences, The George Washington University, Washington, DC 20052, USA
| | - Ana Gadea
- Center for Neuroscience Research, Children's National Medical Center, Washington, DC 20010, USA
| | - Jeff Dupree
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Christophe Kerninon
- Centre de Recherche de l'Institut du Cerveauet de la Moelle Epinière, Inserm U.975; Université Pierre et Marie Curie-Paris 6 UMR-S975; CNRS UMR 7225; and AP-HP Groupe Hospitalier Pitié-Salpêtrière, Fédération de Neurologie, Cedex 13, Paris, France
| | - Brahim Nait-Oumesmar
- Centre de Recherche de l'Institut du Cerveauet de la Moelle Epinière, Inserm U.975; Université Pierre et Marie Curie-Paris 6 UMR-S975; CNRS UMR 7225; and AP-HP Groupe Hospitalier Pitié-Salpêtrière, Fédération de Neurologie, Cedex 13, Paris, France
| | - Adan Aguirre
- Pharmacological Sciences Department, SUNY at Stony Brook University, Stony Brook, NY 11794, USA
| | - Vittorio Gallo
- Center for Neuroscience Research, Children's National Medical Center, Washington, DC 20010, USA; Institute for Biomedical Sciences, The George Washington University, Washington, DC 20052, USA.
| |
Collapse
|
268
|
Kovacs GG, Adle-Biassette H, Milenkovic I, Cipriani S, van Scheppingen J, Aronica E. Linking pathways in the developing and aging brain with neurodegeneration. Neuroscience 2014; 269:152-72. [PMID: 24699227 DOI: 10.1016/j.neuroscience.2014.03.045] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 03/21/2014] [Accepted: 03/21/2014] [Indexed: 12/12/2022]
Abstract
The molecular and cellular mechanisms, which coordinate the critical stages of brain development to reach a normal structural organization with appropriate networks, are progressively being elucidated. Experimental and clinical studies provide evidence of the occurrence of developmental alterations induced by genetic or environmental factors leading to the formation of aberrant networks associated with learning disabilities. Moreover, evidence is accumulating that suggests that also late-onset neurological disorders, even Alzheimer's disease, might be considered disorders of aberrant neural development with pathological changes that are set up at early stages of development before the appearance of the symptoms. Thus, evaluating proteins and pathways that are important in age-related neurodegeneration in the developing brain together with the characterization of mechanisms important during brain development with relevance to brain aging are of crucial importance. In the present review we focus on (1) aspects of neurogenesis with relevance to aging; (2) neurodegenerative disease (NDD)-associated proteins/pathways in the developing brain; and (3) further pathways of the developing or neurodegenerating brains that show commonalities. Elucidation of complex pathogenetic routes characterizing the earliest stage of the detrimental processes that result in pathological aging represents an essential first step toward a therapeutic intervention which is able to reverse these pathological processes and prevent the onset of the disease. Based on the shared features between pathways, we conclude that prevention of NDDs of the elderly might begin during the fetal and childhood life by providing the mothers and their children a healthy environment for the fetal and childhood development.
Collapse
Affiliation(s)
- G G Kovacs
- Institute of Neurology, Medical University of Vienna, Austria.
| | - H Adle-Biassette
- Inserm U1141, F-75019 Paris, France; Univ Paris Diderot, Sorbonne Paris Cité, UMRS 676, F-75019 Paris, France; Department of Pathology, Lariboisière Hospital, APHP, Paris, France
| | - I Milenkovic
- Institute of Neurology, Medical University of Vienna, Austria
| | | | - J van Scheppingen
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, The Netherlands
| | - E Aronica
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, The Netherlands; SEIN - Stichting Epilepsie Instellingen Nederland, Heemstede, The Netherlands; Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, The Netherlands
| |
Collapse
|
269
|
Zhang K, Zhao T, Huang X, Wu LY, Wu K, Zhu LL, Fan M. Notch1 mediates postnatal neurogenesis in hippocampus enhanced by intermittent hypoxia. Neurobiol Dis 2014; 64:66-78. [DOI: 10.1016/j.nbd.2013.12.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 11/23/2013] [Accepted: 12/12/2013] [Indexed: 12/17/2022] Open
|
270
|
Tang R, Noh HJ, Wang D, Sigurdsson S, Swofford R, Perloski M, Duxbury M, Patterson EE, Albright J, Castelhano M, Auton A, Boyko AR, Feng G, Lindblad-Toh K, Karlsson EK. Candidate genes and functional noncoding variants identified in a canine model of obsessive-compulsive disorder. Genome Biol 2014; 15:R25. [PMID: 24995881 PMCID: PMC4038740 DOI: 10.1186/gb-2014-15-3-r25] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 03/14/2014] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Obsessive-compulsive disorder (OCD), a severe mental disease manifested in time-consuming repetition of behaviors, affects 1 to 3% of the human population. While highly heritable, complex genetics has hampered attempts to elucidate OCD etiology. Dogs suffer from naturally occurring compulsive disorders that closely model human OCD, manifested as an excessive repetition of normal canine behaviors that only partially responds to drug therapy. The limited diversity within dog breeds makes identifying underlying genetic factors easier. RESULTS We use genome-wide association of 87 Doberman Pinscher cases and 63 controls to identify genomic loci associated with OCD and sequence these regions in 8 affected dogs from high-risk breeds and 8 breed-matched controls. We find 119 variants in evolutionarily conserved sites that are specific to dogs with OCD. These case-only variants are significantly more common in high OCD risk breeds compared to breeds with no known psychiatric problems. Four genes, all with synaptic function, have the most case-only variation: neuronal cadherin (CDH2), catenin alpha2 (CTNNA2), ataxin-1 (ATXN1), and plasma glutamate carboxypeptidase (PGCP). In the 2 Mb gene desert between the cadherin genes CDH2 and DSC3, we find two different variants found only in dogs with OCD that disrupt the same highly conserved regulatory element. These variants cause significant changes in gene expression in a human neuroblastoma cell line, likely due to disrupted transcription factor binding. CONCLUSIONS The limited genetic diversity of dog breeds facilitates identification of genes, functional variants and regulatory pathways underlying complex psychiatric disorders that are mechanistically similar in dogs and humans.
Collapse
Affiliation(s)
- Ruqi Tang
- Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Hyun Ji Noh
- Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Dongqing Wang
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Snaevar Sigurdsson
- Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Ross Swofford
- Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Michele Perloski
- Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Margaret Duxbury
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA
| | - Edward E Patterson
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA
| | - Julie Albright
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Marta Castelhano
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Adam Auton
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Van Etten B06, Bronx, NY 10461, USA
| | - Adam R Boyko
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Guoping Feng
- Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kerstin Lindblad-Toh
- Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala 75237, Sweden
| | - Elinor K Karlsson
- Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA
- Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
271
|
Dawkins E, Small DH. Insights into the physiological function of the β-amyloid precursor protein: beyond Alzheimer's disease. J Neurochem 2014; 129:756-69. [PMID: 24517464 PMCID: PMC4314671 DOI: 10.1111/jnc.12675] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Revised: 02/02/2014] [Accepted: 02/03/2014] [Indexed: 12/21/2022]
Abstract
The β-amyloid precursor protein (APP) has been extensively studied for its role as the precursor of the β-amyloid protein (Aβ) of Alzheimer's disease. However, the normal function of APP remains largely unknown. This article reviews studies on the structure, expression and post-translational processing of APP, as well as studies on the effects of APP in vitro and in vivo. We conclude that the published data provide strong evidence that APP has a trophic function. APP is likely to be involved in neural stem cell development, neuronal survival, neurite outgrowth and neurorepair. However, the mechanisms by which APP exerts its actions remain to be elucidated. The available evidence suggests that APP interacts both intracellularly and extracellularly to regulate various signal transduction mechanisms. This article reviews studies on the structure, expression and post-translational processing of β-amyloid precursor protein (APP), as well as studies on the effects of APP in vitro and in vivo. We conclude that the published data provide strong evidence that APP has a trophic function. APP is likely to be involved in neural stem cell development, neuronal survival, neurite outgrowth and neurorepair. However, the mechanisms by which APP exerts its actions remain to be elucidated. The available evidence suggests that APP interacts both intracellularly and extracellularly to regulate various signal transduction mechanisms.
Collapse
Affiliation(s)
- Edgar Dawkins
- Menzies Research Institute Tasmania, University of Tasmania, Hobart, Tasmania, Australia
| | | |
Collapse
|
272
|
Pietersen CY, Mauney SA, Kim SS, Passeri E, Lim MP, Rooney RJ, Goldstein JM, Petreyshen TL, Seidman LJ, Shenton ME, Mccarley RW, Sonntag KC, Woo TUW. Molecular profiles of parvalbumin-immunoreactive neurons in the superior temporal cortex in schizophrenia. J Neurogenet 2014; 28:70-85. [PMID: 24628518 PMCID: PMC4633016 DOI: 10.3109/01677063.2013.878339] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dysregulation of pyramidal cell network function by the soma- and axon-targeting inhibitory neurons that contain the calcium-binding protein parvalbumin (PV) represents a core pathophysiological feature of schizophrenia. In order to gain insight into the molecular basis of their functional impairment, we used laser capture microdissection (LCM) to isolate PV-immunolabeled neurons from layer 3 of Brodmann's area 42 of the superior temporal gyrus (STG) from postmortem schizophrenia and normal control brains. We then extracted ribonucleic acid (RNA) from these neurons and determined their messenger RNA (mRNA) expression profile using the Affymetrix platform of microarray technology. Seven hundred thirty-nine mRNA transcripts were found to be differentially expressed in PV neurons in subjects with schizophrenia, including genes associated with WNT (wingless-type), NOTCH, and PGE2 (prostaglandin E2) signaling, in addition to genes that regulate cell cycle and apoptosis. Of these 739 genes, only 89 (12%) were also differentially expressed in pyramidal neurons, as described in the accompanying paper, suggesting that the molecular pathophysiology of schizophrenia appears to be predominantly neuronal type specific. In addition, we identified 15 microRNAs (miRNAs) that were differentially expressed in schizophrenia; enrichment analysis of the predicted targets of these miRNAs included the signaling pathways found by microarray to be dysregulated in schizophrenia. Taken together, findings of this study provide a neurobiological framework within which hypotheses of the molecular mechanisms that underlie the dysfunction of PV neurons in schizophrenia can be generated and experimentally explored and, as such, may ultimately inform the conceptualization of rational targeted molecular intervention for this debilitating disorder.
Collapse
Affiliation(s)
- Charmaine Y. Pietersen
- Laboratory of Cellular Neuropathology, McLean Hospital, Belmont, Massachusetts, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - Sarah A. Mauney
- Laboratory of Cellular Neuropathology, McLean Hospital, Belmont, Massachusetts, USA
| | - Susie S. Kim
- Laboratory of Cellular Neuropathology, McLean Hospital, Belmont, Massachusetts, USA
| | - Eleonora Passeri
- Laboratory of Cellular Neuropathology, McLean Hospital, Belmont, Massachusetts, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - Maribel P. Lim
- Laboratory of Cellular Neuropathology, McLean Hospital, Belmont, Massachusetts, USA
| | | | - Jill M. Goldstein
- Department of Psychiatry, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Tracey L. Petreyshen
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Larry J. Seidman
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Martha E. Shenton
- Department of Psychiatry, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Robert W. Mccarley
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Department of Psychiatry, Veterans Affairs Boston Healthcare System, Brockton, Massachusetts, USA
| | - Kai-C. Sonntag
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
- Department of Psychiatry, McLean Hospital, Belmont, Massachusetts, USA
| | - Tsung-Ung W. Woo
- Laboratory of Cellular Neuropathology, McLean Hospital, Belmont, Massachusetts, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
273
|
Pitychoutis PM, Sanoudou D, Papandreou M, Nasias D, Kouskou M, Tomlinson CR, Tsonis PA, Papadopoulou-Daifoti Z. Forced swim test induces divergent global transcriptomic alterations in the hippocampus of high versus low novelty-seeker rats. Hum Genomics 2014; 8:4. [PMID: 24568636 PMCID: PMC3941591 DOI: 10.1186/1479-7364-8-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 02/14/2014] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Many neuropsychiatric disorders, including stress-related mood disorders, are complex multi-parametric syndromes. Susceptibility to stress and depression is individually different. The best animal model of individual differences that can be used to study the neurobiology of affect regards spontaneous reactions to novelty. Experimentally, when naive rats are exposed to the stress of a novel environment, they display a highly variable exploratory activity and are classified as high or low responders (HR or LR, respectively). Importantly, HR and LR rats do not seem to exhibit a substantial differentiation in relation to their 'depressive-like' status in the forced swim test (FST), a widely used animal model of 'behavioral despair'. In the present study, we investigated whether FST exposure would be accompanied by phenotype-dependent differences in hippocampal gene expression in HR and LR rats. RESULTS HR and LR rats present a distinct behavioral pattern in the pre-test session but develop comparable depressive-like status in the second FST session. At 24 h following the second FST session, HR and LR rats (stressed and unstressed controls) were sacrificed and hippocampal samples were independently analyzed on whole rat genome Illumina arrays. Functional analysis into pathways and networks was performed using Ingenuity Pathway Analysis (IPA) software. Notably, hippocampal gene expression signatures between HR and LR rats were markedly divergent, despite their comparable depressive-like status in the FST. These molecular differences are reflected in both the extent of transcriptional remodeling (number of significantly changed genes) and the types of molecular pathways affected following FST exposure. A markedly higher number of genes (i.e., 2.28-fold) were statistically significantly changed following FST in LR rats, as compared to their HR counterparts. Notably, genes associated with neurogenesis and synaptic plasticity were induced in the hippocampus of LR rats in response to FST, whereas in HR rats, FST induced pathways directly or indirectly associated with induction of apoptotic mechanisms. CONCLUSIONS The markedly divergent gene expression signatures exposed herein support the notion that the hippocampus of HR and LR rats undergoes distinct transcriptional remodeling in response to the same stress regimen, thus yielding a different FST-related 'endophenotype', despite the seemingly similar depressive-like phenotype.
Collapse
Affiliation(s)
- Pothitos M Pitychoutis
- Department of Biology & Center for Tissue Regeneration and Engineering (TREND), University of Dayton, 300 College Park, Dayton, OH 45469-2320, USA.
| | | | | | | | | | | | | | | |
Collapse
|
274
|
Giachino C, Taylor V. Notching up neural stem cell homogeneity in homeostasis and disease. Front Neurosci 2014; 8:32. [PMID: 24611040 PMCID: PMC3933793 DOI: 10.3389/fnins.2014.00032] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 02/07/2014] [Indexed: 01/17/2023] Open
Abstract
Adult neural stem cells (NSCs) are perceived as a homogeneous population of cells that divide infrequently and are capable of multi-lineage differentiation. However, recent data revealed that independent stem cell lineages act in parallel to maintain neurogenesis and provide a cellular source for tissue repair. In addition, even within the same lineage, the stem and progenitor cells are strikingly heterogeneous including NSCs that are dormant or mitotically active. We will discuss these different NSC populations and activity states with relation to their role in neurogenesis and regeneration but also how these different stem cells respond to aging. NSCs depend on Notch signaling for their maintenance. While Notch-dependence is a common feature among NSC populations, we will discuss how differences in Notch signaling might contribute to adult NSC heterogeneity. Understanding the fate of multiple NSC populations with distinct functions has implications for the mechanisms of aging and regeneration.
Collapse
Affiliation(s)
- Claudio Giachino
- Department of Biomedicine, University of Basel Basel, Switzerland
| | - Verdon Taylor
- Department of Biomedicine, University of Basel Basel, Switzerland
| |
Collapse
|
275
|
Lavado A, Oliver G. Jagged1 is necessary for postnatal and adult neurogenesis in the dentate gyrus. Dev Biol 2014; 388:11-21. [PMID: 24530424 DOI: 10.1016/j.ydbio.2014.02.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 02/03/2014] [Accepted: 02/05/2014] [Indexed: 11/17/2022]
Abstract
Understanding the mechanisms that control the maintenance of neural stem cells is crucial for the study of neurogenesis. In the brain, granule cell neurogenesis occurs during development and adulthood, and the generation of new neurons in the adult subgranular zone of the dentate gyrus contributes to learning. Notch signaling plays an important role during postnatal and adult subgranular zone neurogenesis, and it has been suggested as a potential candidate to couple cell proliferation with stem cell maintenance. Here we show that conditional inactivation of Jagged1 affects neural stem cell maintenance and proliferation during postnatal and adult neurogenesis of the subgranular zone. As a result, granule cell production is severely impaired. Our results provide additional support to the proposal that Notch/Jagged1 activity is required for neural stem cell maintenance during granule cell neurogenesis and suggest a link between maintenance and proliferation of these cells during the early stages of neurogenesis.
Collapse
Affiliation(s)
- Alfonso Lavado
- Department of Genetics, St. Jude Children׳s Research Hospital, Memphis, TN 38105, USA.
| | - Guillermo Oliver
- Department of Genetics, St. Jude Children׳s Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
276
|
Hibaoui Y, Grad I, Letourneau A, Sailani MR, Dahoun S, Santoni FA, Gimelli S, Guipponi M, Pelte MF, Béna F, Antonarakis SE, Feki A. Modelling and rescuing neurodevelopmental defect of Down syndrome using induced pluripotent stem cells from monozygotic twins discordant for trisomy 21. EMBO Mol Med 2014; 6:259-77. [PMID: 24375627 PMCID: PMC3927959 DOI: 10.1002/emmm.201302848] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 11/11/2013] [Accepted: 11/12/2013] [Indexed: 12/18/2022] Open
Abstract
Down syndrome (trisomy 21) is the most common viable chromosomal disorder with intellectual impairment and several other developmental abnormalities. Here, we report the generation and characterization of induced pluripotent stem cells (iPSCs) derived from monozygotic twins discordant for trisomy 21 in order to eliminate the effects of the variability of genomic background. The alterations observed by genetic analysis at the iPSC level and at first approximation in early development illustrate the developmental disease transcriptional signature of Down syndrome. Moreover, we observed an abnormal neural differentiation of Down syndrome iPSCs in vivo when formed teratoma in NOD-SCID mice, and in vitro when differentiated into neuroprogenitors and neurons. These defects were associated with changes in the architecture and density of neurons, astroglial and oligodendroglial cells together with misexpression of genes involved in neurogenesis, lineage specification and differentiation. Furthermore, we provide novel evidence that dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1A (DYRK1A) on chromosome 21 likely contributes to these defects. Importantly, we found that targeting DYRK1A pharmacologically or by shRNA results in a considerable correction of these defects.
Collapse
Affiliation(s)
- Youssef Hibaoui
- Stem Cell Research Laboratory, Department of Obstetrics and Gynecology, Geneva University HospitalsGeneva, Switzerland
- Department of Genetic Medicine and Development, University of Geneva Medical School and Geneva University HospitalsGeneva, Switzerland
| | - Iwona Grad
- Stem Cell Research Laboratory, Department of Obstetrics and Gynecology, Geneva University HospitalsGeneva, Switzerland
| | - Audrey Letourneau
- Department of Genetic Medicine and Development, University of Geneva Medical School and Geneva University HospitalsGeneva, Switzerland
| | - M Reza Sailani
- Department of Genetic Medicine and Development, University of Geneva Medical School and Geneva University HospitalsGeneva, Switzerland
| | - Sophie Dahoun
- Department of Genetic Medicine and Development, University of Geneva Medical School and Geneva University HospitalsGeneva, Switzerland
| | - Federico A Santoni
- Department of Genetic Medicine and Development, University of Geneva Medical School and Geneva University HospitalsGeneva, Switzerland
| | - Stefania Gimelli
- Department of Genetic Medicine and Development, University of Geneva Medical School and Geneva University HospitalsGeneva, Switzerland
| | - Michel Guipponi
- Department of Genetic Medicine and Development, University of Geneva Medical School and Geneva University HospitalsGeneva, Switzerland
| | - Marie Françoise Pelte
- Department of Pathology and Immunology, Faculty of Medicine, University of GenevaGeneva, Switzerland
| | - Frédérique Béna
- Department of Genetic Medicine and Development, University of Geneva Medical School and Geneva University HospitalsGeneva, Switzerland
| | - Stylianos E Antonarakis
- Department of Genetic Medicine and Development, University of Geneva Medical School and Geneva University HospitalsGeneva, Switzerland
- iGE3 Institute of Genetics and Genomics of Geneva, University of GenevaGeneva, Switzerland
| | - Anis Feki
- Stem Cell Research Laboratory, Department of Obstetrics and Gynecology, Geneva University HospitalsGeneva, Switzerland
- Service de gynécologie obstétrique, HFR Fribourg—Hôpital CantonalFribourg, Switzerland
| |
Collapse
|
277
|
Sorrentino P, Iuliano A, Polverino A, Jacini F, Sorrentino G. The dark sides of amyloid in Alzheimer's disease pathogenesis. FEBS Lett 2014; 588:641-52. [PMID: 24491999 DOI: 10.1016/j.febslet.2013.12.038] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 12/06/2013] [Accepted: 12/20/2013] [Indexed: 11/15/2022]
Abstract
Although widely explored, the pathogenesis of Alzheimer's disease (AD) has yet to be cleared. Over the past twenty years the so call amyloid cascade hypothesis represented the main research paradigm in AD pathogenesis. In spite of its large consensus, the proposed role of β-amyloid (Aβ) remain to be elucidated. Many evidences are starting to cast doubt on Aβ as the primary causative factor in AD. For instance, Aβ is deposited in the brain following many different kinds of injury. Also, concentration of Aβ needed to induce toxicity in vitro are never reached in vivo. In this review we propose an amyloid-independent interpretation of several AD pathogenic features, such as synaptic plasticity, endo-lysosomal trafficking, cell cycle regulation and neuronal survival.
Collapse
Affiliation(s)
- Pierpaolo Sorrentino
- Dipartimento di Neuroscienze e Scienze Riproduttive ed Odontostomatologiche, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Antonietta Iuliano
- Dipartimento di Scienze Motorie e del Benessere, Università degli Studi di Napoli Parthenope, Naples, Italy; Istituto di Diagnosi e Cura Hermitage Capodimonte, Naples, Italy
| | - Arianna Polverino
- Dipartimento di Scienze Motorie e del Benessere, Università degli Studi di Napoli Parthenope, Naples, Italy; Istituto di Diagnosi e Cura Hermitage Capodimonte, Naples, Italy
| | - Francesca Jacini
- Dipartimento di Scienze Motorie e del Benessere, Università degli Studi di Napoli Parthenope, Naples, Italy; Istituto di Diagnosi e Cura Hermitage Capodimonte, Naples, Italy
| | - Giuseppe Sorrentino
- Dipartimento di Scienze Motorie e del Benessere, Università degli Studi di Napoli Parthenope, Naples, Italy; Istituto di Diagnosi e Cura Hermitage Capodimonte, Naples, Italy.
| |
Collapse
|
278
|
Abstract
Notch signaling is probably the most widely used intercellular communication pathway. The Notch mutant in the fruit fly Drosophila melanogaster was isolated about 100 years ago at the dawn of genetics. Since then, research on Notch and its related genes in flies, worms, mice, and human has led to the establishment of an evolutionarily conserved signaling pathway, the Notch signaling pathway. In the past few decades, molecular cloning of the Notch signaling components as well as genetic, cell biological, biochemical, structural, and bioinformatic approaches have uncovered the basic molecular logic of the pathway. In addition, genetic screens and systems approaches have led to the expansion of the list of genes that interact and fine-tune the pathway in a context specific manner. Furthermore, recent human genetic and genomic studies have led to the discovery that Notch plays a role in numerous diseases such as congenital disorders, stroke, and especially cancer. Pharmacological studies are actively pursuing key components of the pathway as drug targets for potential therapy. In this chapter, we will provide a brief historical overview of Notch signaling research and discuss the basic principles of Notch signaling, focusing on the unique features of this pathway when compared to other signaling pathways. Further studies to understand and manipulate Notch signaling in vivo in model organisms and in clinical settings will require a combination of a number of different approaches that are discussed throughout this book.
Collapse
|
279
|
Abstract
Proper lamination of the cerebral cortex is precisely orchestrated, especially when neurons migrate from their place of birth to their final destination. The consequences of failure or delay in neuronal migration cause a wide range of disorders, such as lissencephaly, schizophrenia, autism and mental retardation. Neuronal migration is a dynamic process, which requires dynamic remodeling of the cytoskeleton. In this context microtubules and microtubule-related proteins have been suggested to play important roles in the regulation of neuronal migration. Here, we will review the dynamic aspects of neuronal migration and brain development, describe the molecular and cellular mechanisms of neuronal migration and elaborate on neuronal migration diseases.
Collapse
|
280
|
Dennis M, Spiegler BJ, Juranek JJ, Bigler ED, Snead OC, Fletcher JM. Age, plasticity, and homeostasis in childhood brain disorders. Neurosci Biobehav Rev 2013; 37:2760-73. [PMID: 24096190 PMCID: PMC3859812 DOI: 10.1016/j.neubiorev.2013.09.010] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 07/29/2013] [Accepted: 09/19/2013] [Indexed: 12/26/2022]
Abstract
It has been widely accepted that the younger the age and/or immaturity of the organism, the greater the brain plasticity, the young age plasticity privilege. This paper examines the relation of a young age to plasticity, reviewing human pediatric brain disorders, as well as selected animal models, human developmental and adult brain disorder studies. As well, we review developmental and childhood acquired disorders that involve a failure of regulatory homeostasis. Our core arguments are as follows:
Collapse
Affiliation(s)
- Maureen Dennis
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1X8, Canada.
| | | | | | | | | | | |
Collapse
|
281
|
Sun F, Mao X, Xie L, Ding M, Shao B, Jin K. Notch1 signaling modulates neuronal progenitor activity in the subventricular zone in response to aging and focal ischemia. Aging Cell 2013; 12:978-87. [PMID: 23834718 DOI: 10.1111/acel.12134] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2013] [Indexed: 12/21/2022] Open
Abstract
Neurogenesis diminishes with aging and ischemia-induced neurogenesis also occurs, but reduced in aged brain. Currently, the cellular and molecular pathways mediating these effects remain largely unknown. Our previous study has shown that Notch1 signaling regulates neurogenesis in subventricular zone (SVZ) of young adult brain after focal ischemia, but whether a similar effect occurs in aged normal and ischemic animals is unknown. Here, we used normal and ischemic aged rat brains to investigate whether Notch1 signaling was involved in the reduction of neurogenesis in response to aging and modulates neurogenesis in aged brains after focal ischemia. By Western blot, we found that Notch1 and Jagged1 expression in the SVZ of aged brain was significantly reduced compared with young adult brain. Consistently, the activated form of Notch1 (Notch intracellular domain; NICD) expression was also declined. Immunohistochemistry confirmed that expression and activation of Notch1 signaling in the SVZ of aged brain were reduced. Double or triple immunostaining showed that that Notch1 was mainly expressed in doublecortin (DCX)-positive cells, whereas Jagged1 was predominantly expressed in astroglial cells in the SVZ of normal aged rat brain. In addition, disruption or activation of Notch1 signaling altered the number of proliferating cells labeled by bromodeoxyuridine (BrdU) and DCX in the SVZ of aged brain. Moreover, ischemia-induced cell proliferation in the SVZ of aged brain was enhanced by activating the Notch1 pathway and was suppressed by inhibiting the Notch1 signaling. Reduced infarct volume and improved motor deficits were also observed in Notch1 activator-treated aged ischemic rats. Our data suggest that Notch1 signaling modulates the SVZ neurogenesis in aged brain in normal and ischemic conditions.
Collapse
Affiliation(s)
- Fen Sun
- Department of Neurology; Second Affiliated Hospital; School of Medicine; Zhejiang University; No. 88 Jiefang Road Hangzhou Zhejiang 310009 China
- Department of Pharmacology & Neuroscience; Institute for Aging and Alzheimer's Disease Research; University of North Texas Health Science Center; 3500 Camp Bowie Boulevard Fort Worth TX 76107 USA
| | - XiaoOu Mao
- Buck Institute for Research on Aging; 8001 Redwood Blvd. Novato CA 94945 USA
| | - Lin Xie
- Buck Institute for Research on Aging; 8001 Redwood Blvd. Novato CA 94945 USA
| | - Meiping Ding
- Department of Neurology; Second Affiliated Hospital; School of Medicine; Zhejiang University; No. 88 Jiefang Road Hangzhou Zhejiang 310009 China
| | - Bei Shao
- Department of Neurology; First Affiliated Hospital; Wenzhou Medical University; 2 Fuxue Road Wenzhou Zhejiang 325000 China
| | - Kunlin Jin
- Department of Pharmacology & Neuroscience; Institute for Aging and Alzheimer's Disease Research; University of North Texas Health Science Center; 3500 Camp Bowie Boulevard Fort Worth TX 76107 USA
- Buck Institute for Research on Aging; 8001 Redwood Blvd. Novato CA 94945 USA
| |
Collapse
|
282
|
Zhang J, Yin JCP, Wesley CS. From Drosophila development to adult: clues to Notch function in long-term memory. Front Cell Neurosci 2013; 7:222. [PMID: 24312012 PMCID: PMC3836050 DOI: 10.3389/fncel.2013.00222] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 11/03/2013] [Indexed: 12/26/2022] Open
Abstract
Notch is a cell surface receptor that is well known to mediate inter-cellular communication during animal development. Data in the field indicate that it is also involved in the formation of long-term memory (LTM) in the fully developed adults and in memory loss upon neurodegeneration. Our studies in the model organism Drosophila reveal that a non-canonical Notch-protein kinase C activity that plays critical roles in embryonic development also regulates cyclic-AMP response element binding protein during LTM formation in adults. Here we present a perspective on how the various known features of Notch function relate to LTM formation and how they might interface with elements of Wingless/Wnt signaling in this process.
Collapse
Affiliation(s)
- Jiabin Zhang
- Neuroscience Training Program, University of Wisconsin-Madison Madison, WI, USA ; Department of Genetics and Medical Genetics, University of Wisconsin-Madison Madison, WI, USA
| | | | | |
Collapse
|
283
|
Aboitiz F, Zamorano F. Neural progenitors, patterning and ecology in neocortical origins. Front Neuroanat 2013; 7:38. [PMID: 24273496 PMCID: PMC3824149 DOI: 10.3389/fnana.2013.00038] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 10/21/2013] [Indexed: 01/13/2023] Open
Abstract
The anatomical organization of the mammalian neocortex stands out among vertebrates for its laminar and columnar arrangement, featuring vertically oriented, excitatory pyramidal neurons. The evolutionary origin of this structure is discussed here in relation to the brain organization of other amniotes, i.e., the sauropsids (reptiles and birds). Specifically, we address the developmental modifications that had to take place to generate the neocortex, and to what extent these modifications were shared by other amniote lineages or can be considered unique to mammals. In this article, we propose a hypothesis that combines the control of proliferation in neural progenitor pools with the specification of regional morphogenetic gradients, yielding different anatomical results by virtue of the differential modulation of these processes in each lineage. Thus, there is a highly conserved genetic and developmental battery that becomes modulated in different directions according to specific selective pressures. In the case of early mammals, ecological conditions like nocturnal habits and reproductive strategies are considered to have played a key role in the selection of the particular brain patterning mechanisms that led to the origin of the neocortex.
Collapse
Affiliation(s)
- Francisco Aboitiz
- Departamento de Psiquiatría, Facultad de Medicina y Centro Interdisciplinario de Neurociencia, Pontificia Universidad Católica de Chile Santiago, Chile
| | | |
Collapse
|
284
|
Mathieu P, Adami PVM, Morelli L. Notch signaling in the pathologic adult brain. Biomol Concepts 2013; 4:465-76. [DOI: 10.1515/bmc-2013-0006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 07/30/2013] [Indexed: 11/15/2022] Open
Abstract
AbstractAlong the entire lifetime, Notch is actively involved in dynamic changes in the cellular architecture and function of the nervous system. It controls neurogenesis, the growth of axons and dendrites, synaptic plasticity, and ultimately neuronal death. The specific roles of Notch in adult brain plasticity and neurological disorders have begun to be unraveled in recent years, and pieces of experimental evidence suggest that Notch is operative in diverse brain pathologies including tumorigenesis, stroke, and neurological disorders such as Alzheimer’s disease, Down syndrome, and multiple sclerosis. In this review, we will cover the recent findings of Notch signaling and neural dysfunction in adult human brain and discuss its relevance in the pathogenesis of diseases of the central nervous system.
Collapse
Affiliation(s)
- Patricia Mathieu
- 1Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, Patricias Argentinas 435, Ciudad Autónoma de Buenos Aires, C1405BWE, Argentina
| | - Pamela V. Martino Adami
- 1Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, Patricias Argentinas 435, Ciudad Autónoma de Buenos Aires, C1405BWE, Argentina
| | - Laura Morelli
- 1Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, Patricias Argentinas 435, Ciudad Autónoma de Buenos Aires, C1405BWE, Argentina
| |
Collapse
|
285
|
Martini S, Bernoth K, Main H, Ortega GDC, Lendahl U, Just U, Schwanbeck R. A critical role for Sox9 in notch-induced astrogliogenesis and stem cell maintenance. Stem Cells 2013; 31:741-51. [PMID: 23307615 DOI: 10.1002/stem.1320] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 11/21/2012] [Indexed: 12/31/2022]
Abstract
Notch signaling is a key regulator of cell-fate decisions and is essential for proper neuroectodermal development. There, it favors the formation of ectoderm, promotes maintenance of neural stem cells, inhibits differentiation into neurons, and commits neural progenitors to a glial fate. In this report, we explore downstream effects of Notch important for astroglial differentiation. Transient activation of Notch1 during early stages of neuroectodermal differentiation of embryonic stem cells resulted in an increase of neural stem cells, a reduction in neurons, an induction of astroglial cell differentiation, and an induction of neural crest (NC) development. Transient or continuous activation of Notch1 during neuroectodermal differentiation led to upregulation of Sox9 expression. Knockdown of the Notch1-induced Sox9 expression reversed Notch1-induced astroglial cell differentiation, increase in neural stem cells, and the decrease in neurons, whereas the Notch1 effects on NC development were hardly affected by knockdown of Sox9 expression. These findings reveal a critical role for Notch-mediated upregulation of Sox9 in a select set of neural lineage determination steps controlled by Notch.
Collapse
Affiliation(s)
- Simone Martini
- Department of Biochemistry, Medical Faculty, Christian-Albrechts-University Kiel, Kiel, Germany
| | | | | | | | | | | | | |
Collapse
|
286
|
Ye X, Tai W, Bao X, Chen X, Zhang D. FLZ inhibited γ-secretase selectively and decreased Aβ mitochondrial production in APP-SH-SY5Y cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2013; 387:75-85. [PMID: 24071813 DOI: 10.1007/s00210-013-0918-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 09/08/2013] [Indexed: 10/26/2022]
Abstract
Amyloid precursor protein (APP) metabolism is a key factor in the pathogenesis of Alzheimer's disease (AD). Amyloid-beta (Aβ) in mitochondria comes from APP mitochondrial metabolism or from the uptake Aβ from outside of mitochondria. It has been recently proposed that mitochondria are involved in the biochemical pathways through which Aβ causes neuronal dysfunction. The accumulated Aβ in mitochondria decreases the level of cytochrome c oxidase (COX IV) and attenuates the ATP production consequently. FLZ is a synthetic cyclic derivative of squamosamide from Annona glabra. In this study, the effect of FLZ on APP processing in mitochondria was investigated in SH-SY5Y cells over-expressing APP695 (wt/Swe). FLZ treatment attenuated APP processing and decreased Aβ production in mitochondria. The mitochondrial function was increased with the upregulation of COX IV both at protein and activity levels. ATP production was also increased after FLZ treatment. The mechanistic study showed that FLZ inhibited γ-secretase activity by decreasing C-terminal fragment protein level of presenilin, the active center of γ-secretase. The effect of FLZ differs from DAPT (a non-selective γ-secretase inhibitor), suggesting FLZ is a selective γ-secretase inhibitor. FLZ selectively inhibited γ-secretase in the cleavage of recombinant C terminus of APP in vitro, without specifically modulating the processing of recombinant Notch intracellular domain. These results indicate that FLZ decreases Aβ accumulation in mitochondria by selectively inhibiting γ-secretase. We propose that FLZ is a potential anti-AD drug candidate, and its mechanism may be improving mitochondrial function by reducing the Aβ burden in mitochondria.
Collapse
Affiliation(s)
- Xuan Ye
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, People's Republic of China
| | | | | | | | | |
Collapse
|
287
|
Han D, Moon S, Kim Y, Kim J, Jin J, Kim Y. In-depth proteomic analysis of mouse microglia using a combination of FASP and StageTip-based, high pH, reversed-phase fractionation. Proteomics 2013; 13:2984-8. [PMID: 23943505 DOI: 10.1002/pmic.201300091] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Revised: 06/02/2013] [Accepted: 07/20/2013] [Indexed: 11/07/2022]
Abstract
Microglia are major immune cells in the central nervous system. A characterization of microglia proteome would facilitate on the study of microglial functions in association with various neurodegenerative diseases. To build a reference proteome, we established a BV-2 microglial proteome to a depth of 5494 unique protein groups using a novel strategy that combined FASP, StageTip-based high pH fractionation, and high-resolution MS quickly and cost efficiently. By bioinformatics analysis, the BV-2 proteome is a valuable resource for studies of microglial function, such as in the immune response, inflammatory response, and phagocytosis. All MS data have been deposited in the ProteomeXchange with identifier PXD000168.
Collapse
Affiliation(s)
- Dohyun Han
- Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, Korea; Institute of Medical & Biological Engineering, Medical Research Center, Seoul National University College of Medicine, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
288
|
Tyler CR, Allan AM. Adult hippocampal neurogenesis and mRNA expression are altered by perinatal arsenic exposure in mice and restored by brief exposure to enrichment. PLoS One 2013; 8:e73720. [PMID: 24019935 PMCID: PMC3760820 DOI: 10.1371/journal.pone.0073720] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 07/23/2013] [Indexed: 01/30/2023] Open
Abstract
Arsenic is a common and pervasive environmental contaminant found in drinking water in varying concentrations depending on region. Exposure to arsenic induces behavioral and cognitive deficits in both human populations and in rodent models. The Environmental Protection Agency (EPA) standard for the allotment of arsenic in drinking water is in the parts-per-billion range, yet our lab has shown that 50 ppb arsenic exposure during development can have far-reaching consequences into adulthood, including deficits in learning and memory, which have been linked to altered adult neurogenesis. Given that the morphological impact of developmental arsenic exposure on the hippocampus is unknown, we sought to evaluate proliferation and differentiation of adult neural progenitor cells in the dentate gyrus after 50 ppb arsenic exposure throughout the perinatal period of development in mice (equivalent to all three trimesters in humans) using a BrdU pulse-chase assay. Proliferation of the neural progenitor population was decreased by 13% in arsenic-exposed mice, but was not significant. However, the number of differentiated cells was significantly decreased by 41% in arsenic-exposed mice compared to controls. Brief, daily exposure to environmental enrichment significantly increased proliferation and differentiation in both control and arsenic-exposed animals. Expression levels of 31% of neurogenesis-related genes including those involved in Alzheimer's disease, apoptosis, axonogenesis, growth, Notch signaling, and transcription factors were altered after arsenic exposure and restored after enrichment. Using a concentration previously considered safe by the EPA, perinatal arsenic exposure altered hippocampal morphology and gene expression, but did not inhibit the cellular neurogenic response to enrichment. It is possible that behavioral deficits observed during adulthood in animals exposed to arsenic during development derive from the lack of differentiated neural progenitor cells necessary for hippocampal-dependent learning. This study is the first to determine the impact of arsenic exposure during development on adult hippocampal neurogenesis and related gene expression.
Collapse
Affiliation(s)
- Christina R. Tyler
- Department of Neuroscience, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
| | - Andrea M. Allan
- Department of Neuroscience, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
- * E-mail:
| |
Collapse
|
289
|
Notch signaling activation promotes seizure activity in temporal lobe epilepsy. Mol Neurobiol 2013; 49:633-44. [PMID: 23999872 DOI: 10.1007/s12035-013-8545-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 08/19/2013] [Indexed: 10/26/2022]
Abstract
Notch signaling in the nervous system is often regarded as a developmental pathway. However, recent studies have suggested that Notch is associated with neuronal discharges. Here, focusing on temporal lobe epilepsy, we found that Notch signaling was activated in the kainic acid (KA)-induced epilepsy model and in human epileptogenic tissues. Using an acute model of seizures, we showed that DAPT, an inhibitor of Notch, inhibited ictal activity. In contrast, pretreatment with exogenous Jagged1 to elevate Notch signaling before KA application had proconvulsant effects. In vivo, we demonstrated that the impacts of activated Notch signaling on seizures can in part be attributed to the regulatory role of Notch signaling on excitatory synaptic activity in CA1 pyramidal neurons. In vitro, we found that DAPT treatment impaired synaptic vesicle endocytosis in cultured hippocampal neurons. Taken together, our findings suggest a correlation between aberrant Notch signaling and epileptic seizures. Notch signaling is up-regulated in response to seizure activity, and its activation further promotes neuronal excitation of CA1 pyramidal neurons in acute seizures.
Collapse
|
290
|
Carter CJ. Susceptibility genes are enriched in those of the herpes simplex virus 1/host interactome in psychiatric and neurological disorders. Pathog Dis 2013; 69:240-61. [PMID: 23913659 DOI: 10.1111/2049-632x.12077] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Revised: 07/11/2013] [Accepted: 07/24/2013] [Indexed: 12/22/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) can promote beta-amyloid deposition and tau phosphorylation, demyelination or cognitive deficits relevant to Alzheimer's disease or multiple sclerosis and to many neuropsychiatric disorders with which it has been implicated. A seroprevalence much higher than disease incidence has called into question any primary causal role. However, as also the case with risk-promoting polymorphisms (also present in control populations), any causal effects are likely to be conditional. During its life cycle, the virus binds to many proteins and modifies the expression of multiple genes creating a host/pathogen interactome involving 1347 host genes. This data set is heavily enriched in the susceptibility genes for multiple sclerosis (P = 1.3E-99) > Alzheimer's disease > schizophrenia > Parkinsonism > depression > bipolar disorder > childhood obesity > chronic fatigue > autism > and anorexia (P = 0.047) but not attention deficit hyperactivity disorder, a relationship maintained for genome-wide association study data sets in multiple sclerosis and Alzheimer's disease. Overlapping susceptibility gene/interactome data sets disrupt signalling networks relevant to each disease, suggesting that disease susceptibility genes may filter the attentions of the pathogen towards particular pathways and pathologies. In this way, the same pathogen could contribute to multiple diseases in a gene-dependent manner and condition the risk-promoting effects of the genes whose function it disrupts.
Collapse
|
291
|
Vadodaria KC, Jessberger S. Maturation and integration of adult born hippocampal neurons: signal convergence onto small Rho GTPases. Front Synaptic Neurosci 2013; 5:4. [PMID: 23986696 PMCID: PMC3752586 DOI: 10.3389/fnsyn.2013.00004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 07/29/2013] [Indexed: 01/28/2023] Open
Abstract
Adult neurogenesis, restricted to specific regions in the mammalian brain, represents one of the most interesting forms of plasticity in the mature nervous system. Adult-born hippocampal neurons play important roles in certain forms of learning and memory, and altered hippocampal neurogenesis has been associated with a number of neuropsychiatric diseases such as major depression and epilepsy. Newborn neurons go through distinct developmental steps, from a dividing neurogenic precursor to a synaptically integrated mature neuron. Previous studies have uncovered several molecular signaling pathways involved in distinct steps of this maturational process. In this context, the small Rho GTPases, Cdc42, Rac1, and RhoA have recently been shown to regulate the morphological and synaptic maturation of adult-born dentate granule cells in vivo. Distinct upstream regulators, including growth factors that modulate maturation and integration of newborn neurons have been shown to also recruit the small Rho GTPases. Here we review recent findings and highlight the possibility that small Rho GTPases may act as central assimilators, downstream of critical input onto adult-born hippocampal neurons contributing to their maturation and integration into the existing dentate gyrus (DG) circuitry.
Collapse
Affiliation(s)
- Krishna C Vadodaria
- Brain Research Institute, University of Zurich Zurich, Switzerland ; Neuroscience Center Zurich, University of Zurich and ETH Zurich Zurich, Switzerland
| | | |
Collapse
|
292
|
Alunni A, Krecsmarik M, Bosco A, Galant S, Pan L, Moens CB, Bally-Cuif L. Notch3 signaling gates cell cycle entry and limits neural stem cell amplification in the adult pallium. Development 2013; 140:3335-47. [PMID: 23863484 DOI: 10.1242/dev.095018] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Maintaining the homeostasis of germinal zones in adult organs is a fundamental but mechanistically poorly understood process. In particular, what controls stem cell activation remains unclear. We have previously shown that Notch signaling limits neural stem cell (NSC) proliferation in the adult zebrafish pallium. Combining pharmacological and genetic manipulations, we demonstrate here that long-term Notch invalidation primarily induces NSC amplification through their activation from quiescence and increased occurrence of symmetric divisions. Expression analyses, morpholino-mediated invalidation and the generation of a notch3-null mutant directly implicate Notch3 in these effects. By contrast, abrogation of notch1b function results in the generation of neurons at the expense of the activated NSC state. Together, our results support a differential involvement of Notch receptors along the successive steps of NSC recruitment. They implicate Notch3 at the top of this hierarchy to gate NSC activation and amplification, protecting the homeostasis of adult NSC reservoirs under physiological conditions.
Collapse
Affiliation(s)
- Alessandro Alunni
- Institute of Neurobiology A. Fessard, Laboratory of Neurobiology and Development, CNRS UPR3294, Team Zebrafish Neurogenetics, Avenue de la Terrasse, Building 5, F-91198 Gif-sur-Yvette, France.
| | | | | | | | | | | | | |
Collapse
|
293
|
Post-transcriptional regulatory elements and spatiotemporal specification of neocortical stem cells and projection neurons. Neuroscience 2013; 248:499-528. [PMID: 23727006 DOI: 10.1016/j.neuroscience.2013.05.042] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 05/15/2013] [Accepted: 05/21/2013] [Indexed: 11/22/2022]
Abstract
The mature neocortex is a unique six-layered mammalian brain region. It is composed of morphologically and functionally distinct subpopulations of primary projection neurons that form complex circuits across the central nervous system. The precisely-timed generation of projection neurons from neural stem cells governs their differentiation, postmitotic specification, and signaling, and is critical for cognitive and sensorimotor ability. Developmental perturbations to the birthdate, location, and connectivity of neocortical neurons are observed in neurological and psychiatric disorders. These facts are highlighting the importance of the precise spatiotemporal development of the neocortex regulated by intricate transcriptional, but also complex post-transcriptional events. Indeed, mRNA transcripts undergo many post-transcriptional regulatory steps before the production of functional proteins, which specify neocortical neural stem cells and subpopulations of neocortical neurons. Therefore, particular attention is paid to the differential post-transcriptional regulation of key transcripts by RNA-binding proteins, including splicing, localization, stability, and translation. We also present a transcriptome screen of candidate molecules associated with post-transcriptional mRNA processing that are differentially expressed at key developmental time points across neocortical prenatal neurogenesis.
Collapse
|
294
|
Notch signaling pathway is activated in motoneurons of spinal muscular atrophy. Int J Mol Sci 2013; 14:11424-37. [PMID: 23759991 PMCID: PMC3709740 DOI: 10.3390/ijms140611424] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 05/02/2013] [Accepted: 05/17/2013] [Indexed: 02/07/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a neurodegenerative disease produced by low levels of Survival Motor Neuron (SMN) protein that affects alpha motoneurons in the spinal cord. Notch signaling is a cell-cell communication system well known as a master regulator of neural development, but also with important roles in the adult central nervous system. Aberrant Notch function is associated with several developmental neurological disorders; however, the potential implication of the Notch pathway in SMA pathogenesis has not been studied yet. We report here that SMN deficiency, induced in the astroglioma cell line U87MG after lentiviral transduction with a shSMN construct, was associated with an increase in the expression of the main components of Notch signaling pathway, namely its ligands, Jagged1 and Delta1, the Notch receptor and its active intracellular form (NICD). In the SMNΔ7 mouse model of SMA we also found increased astrocyte processes positive for Jagged1 and Delta1 in intimate contact with lumbar spinal cord motoneurons. In these motoneurons an increased Notch signaling was found, as denoted by increased NICD levels and reduced expression of the proneural gene neurogenin 3, whose transcription is negatively regulated by Notch. Together, these findings may be relevant to understand some pathologic attributes of SMA motoneurons.
Collapse
|
295
|
Nelson BR, Hodge RD, Bedogni F, Hevner RF. Dynamic interactions between intermediate neurogenic progenitors and radial glia in embryonic mouse neocortex: potential role in Dll1-Notch signaling. J Neurosci 2013; 33:9122-39. [PMID: 23699523 PMCID: PMC3716275 DOI: 10.1523/jneurosci.0791-13.2013] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 04/08/2013] [Accepted: 04/11/2013] [Indexed: 11/21/2022] Open
Abstract
The mammalian neocortical progenitor cell niche is composed of a diverse repertoire of neuroepithelial cells, radial glia (RG), and intermediate neurogenic progenitors (INPs). Previously, live-cell imaging experiments have proved crucial in identifying these distinct progenitor populations, especially INPs, which amplify neural output by undergoing additional rounds of proliferation before differentiating into new neurons. INPs also provide feedback to the RG pool by serving as a source of Delta-like 1 (Dll1), a key ligand for activating Notch signaling in neighboring cells, a well-known mechanism for maintaining RG identity. While much is known about Dll1-Notch signaling at the molecular level, little is known about how this cell-cell contact dependent feedback is transmitted at the cellular level. To investigate how RG and INPs might interact to convey Notch signals, we used high-resolution live-cell multiphoton microscopy (MPM) to directly observe cellular interactions and dynamics, in conjunction with Notch-pathway specific reporters in the neocortical neural stem cell niche in organotypic brain slices from embryonic mice. We found that INPs and RG interact via dynamic and transient elongate processes, some apparently long-range (extending from the subventricular zone to the ventricular zone), and some short-range (filopodia-like). Gene expression profiling of RG and INPs revealed further progenitor cell diversification, including different subpopulations of Hes1+ and/or Hes5+ RG, and Dll1+ and/or Dll3+ INPs. Thus, the embryonic progenitor niche includes a network of dynamic cell-cell interactions, using different combinations of Notch signaling molecules to maintain and likely diversify progenitor pools.
Collapse
Affiliation(s)
- Branden R. Nelson
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington 98101, and
- Department of Neurological Surgery, University of Washington, Seattle, Washington 98101
| | - Rebecca D. Hodge
- Department of Neurological Surgery, University of Washington, Seattle, Washington 98101
| | - Francesco Bedogni
- Department of Neurological Surgery, University of Washington, Seattle, Washington 98101
| | - Robert F. Hevner
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington 98101, and
- Department of Neurological Surgery, University of Washington, Seattle, Washington 98101
| |
Collapse
|
296
|
Crump CJ, Johnson DS, Li YM. Development and mechanism of γ-secretase modulators for Alzheimer's disease. Biochemistry 2013; 52:3197-216. [PMID: 23614767 DOI: 10.1021/bi400377p] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
γ-Secretase is an aspartyl intramembranal protease composed of presenilin, Nicastrin, Aph1, and Pen2 with 19 transmembrane domains. γ-Secretase cleaves the amyloid precursor proteins (APP) to release Aβ peptides that likely play a causative role in the pathogenesis of Alzheimer's disease (AD). In addition, γ-secretase cleaves Notch and other type I membrane proteins. γ-Secretase inhibitors (GSIs) have been developed and used for clinical studies. However, clinical trials have shown adverse effects of GSIs that are potentially linked with nondiscriminatory inhibition of Notch signaling, overall APP processing, and other substrate cleavages. Therefore, these findings call for the development of disease-modifying agents that target γ-secretase activity to lower levels of Aβ42 production without blocking the overall processing of γ-secretase substrates. γ-Secretase modulators (GSMs) originally derived from nonsteroidal anti-inflammatory drugs (NSAIDs) display such characteristics and are the focus of this review. However, first-generation GSMs have limited potential because of the low potency and undesired neuropharmacokinetic properties. This generation of GSMs has been suggested to interact with the APP substrate, γ-secretase, or both. To improve the potency and brain availability, second-generation GSMs, including NSAID-derived carboxylic acid and non-NSAID-derived heterocyclic chemotypes, as well as natural product-derived GSMs have been developed. Animal studies of this generation of GSMs have shown encouraging preclinical profiles. Moreover, using potent GSM photoaffinity probes, multiple studies unambiguously have showed that both carboxylic acid and heterocyclic GSMs specifically target presenilin, the catalytic subunit of γ-secretase. In addition, two types of GSMs have distinct binding sites within the γ-secretase complex and exhibit different Aβ profiles. GSMs induce a conformational change of γ-secretase to achieve modulation. Various models are proposed and discussed. Despite the progress of GSM research, many outstanding issues remain to be investigated to achieve the ultimate goal of developing GSMs as effective AD therapies.
Collapse
Affiliation(s)
- Christina J Crump
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center , 1275 York Avenue, New York, New York 10065, United States
| | | | | |
Collapse
|
297
|
Abstract
Notch signaling has been shown over the past few decades to play fundamental roles in a plethora of developmental processes in an evolutionarily conserved fashion. Notch-mediated cell-to-cell signaling is involved in many aspects of embryonic development and control of tissue homeostasis in a variety of adult tissues, and regulates stem cell maintenance, cell differentiation and cellular homeostasis. The focus of this Review is the role of Notch signaling in stem cells, comparing insights from flies, fish and mice to highlight similarities, as well as differences, between species, tissues and stem cell compartments.
Collapse
Affiliation(s)
- Ute Koch
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Science, SwissInstitute for Experimental Cancer Research (ISREC), Station 19, 1015 Lausanne, Switzerland.
| | | | | |
Collapse
|
298
|
Rubino E, Fenoglio P, Gallone S, Govone F, Vacca A, De Martino P, Giobbe ML, Boschi S, Pinessi L, Gentile S, Rainero I. Genetic variants in the NOTCH4 gene influence the clinical features of migraine. J Headache Pain 2013; 14:28. [PMID: 23566281 PMCID: PMC3620438 DOI: 10.1186/1129-2377-14-28] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 12/17/2012] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Recent studies suggested an important role for vascular factors in migraine etiopathogenesis. Notch4 belongs to a family of transmembrane receptors that play an important role in vascular development and maintenance. The aim of this study was to test the hypothesis that polymorphisms of the NOTCH4 gene would modify the occurrence and the clinical features of migraine. FINDINGS Using a case-control strategy, we genotyped 239 migraine patients and 264 controls for three different non-synonymous polymorphisms (T320A, G835V, R1346P) of the NOTCH4 gene and for the (CTG) n-encoding polyleucine polymorphism in exon 1. Although the analyzed polymorphisms resulted not associated with migraine, the clinical characteristics of our patients were significantly influenced by the different NOTCH4 genotypes. Longer duration of disease and severity of neurovegetative symptoms during headache attacks were associated with the R1346P and G835V polymorphisms, respectively. In female patients, worsening of migraine symptoms at menarche was significantly correlated with T320A polymorphism. CONCLUSIONS Our study shows that genetic variations within the NOTCH4 gene significantly modify the clinical characteristics of migraine and may have a role in disease pathogenesis.
Collapse
Affiliation(s)
- Elisa Rubino
- Neurology II, Department of Neuroscience, University of Torino, Via Cherasco 15, Torino, 10126, Italy
| | - Pierpaola Fenoglio
- Neurology II, Department of Neuroscience, University of Torino, Via Cherasco 15, Torino, 10126, Italy
| | - Salvatore Gallone
- Neurology II, Department of Neuroscience, University of Torino, Via Cherasco 15, Torino, 10126, Italy
| | - Flora Govone
- Neurology II, Department of Neuroscience, University of Torino, Via Cherasco 15, Torino, 10126, Italy
| | - Alessandro Vacca
- Neurology II, Department of Neuroscience, University of Torino, Via Cherasco 15, Torino, 10126, Italy
| | - Paola De Martino
- Neurology II, Department of Neuroscience, University of Torino, Via Cherasco 15, Torino, 10126, Italy
| | - Maria Laura Giobbe
- Neurology II, Department of Neuroscience, University of Torino, Via Cherasco 15, Torino, 10126, Italy
| | - Silvia Boschi
- Neurology II, Department of Neuroscience, University of Torino, Via Cherasco 15, Torino, 10126, Italy
| | - Lorenzo Pinessi
- Neurology II, Department of Neuroscience, University of Torino, Via Cherasco 15, Torino, 10126, Italy
| | - Salvatore Gentile
- Neurology II, Department of Neuroscience, University of Torino, Via Cherasco 15, Torino, 10126, Italy
| | - Innocenzo Rainero
- Neurology II, Department of Neuroscience, University of Torino, Via Cherasco 15, Torino, 10126, Italy
| |
Collapse
|
299
|
Caprini A, Silva D, Zanoni I, Cunha C, Volontè C, Vescovi A, Gelain F. A novel bioactive peptide: assessing its activity over murine neural stem cells and its potential for neural tissue engineering. N Biotechnol 2013; 30:552-62. [PMID: 23541699 DOI: 10.1016/j.nbt.2013.03.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 02/11/2013] [Accepted: 03/18/2013] [Indexed: 01/16/2023]
Abstract
The design of biomimetic scaffolds suitable for cell-based therapies is a fundamental step for the regeneration of the damaged nervous system; indeed growing interest is focusing on the discovery of peptide sequences to modulate the fate of transplanted cells and, in particular, the differentiation outcome of multipotent neural stem cells. By applying the Phage Display technique to murine neural stem cells we isolated a peptide, KLPGWSG, present in proteins involved in both stem cell maintenance and differentiation. We show that KLPGWSG binds molecules expressed on the cell surface of murine adult neural stem cells, thus may potentially be involved in stem cell fate determination. Indeed we demonstrated that this peptide in solution enhances per se cell differentiation toward the neuronal phenotype. Hence, we synthesized two LDLK-12-based self-assembling peptides functionalized with KLPGWSG peptide (KLP and Ac-KLP) and characterized them via atomic force microscopy, rheometry and circular dichroism, obtaining nanostructured hydrogels supporting murine neural stem cells differentiation in vitro. Interestingly, we demonstrated that, when scaffold stiffness is comparable to that of the brain in vivo, the Ac-KLP SAP-based scaffold enhances the neuronal differentiation of neural stem cells. These evidences place both KLPGWSG and the functionalized self-assembling peptide Ac-KLP as promising candidates for, respectively, biomimetic studies and stem cell therapies for nervous regeneration.
Collapse
Affiliation(s)
- Andrea Caprini
- Center for Nanomedicine and Tissue Engineering, A.O. Ospedale Niguarda Ca' Granda, Milan 20162, Italy
| | | | | | | | | | | | | |
Collapse
|
300
|
Presenilin1 regulates histamine neuron development and behavior in zebrafish, danio rerio. J Neurosci 2013; 33:1589-97. [PMID: 23345232 DOI: 10.1523/jneurosci.1802-12.2013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Modulatory neurotransmitters, including the histaminergic system, are essential in mediating cognitive functions affected in Alzheimer's disease (AD). The roles of disease genes associated with AD, most importantly the presenilin1 gene (psen1), are poorly understood. We studied the role of psen1 in plasticity of the brain histaminergic system using a novel psen1 mutant zebrafish, Danio rerio. We found that in psen1(-/-) zebrafish, the histaminergic system is altered throughout life. At 7 d postfertilization (dpf) the histamine neuron number was reduced in psen1(-/-) compared with wild-type (WT) fish; at 2 months of age the histamine neuron number was at the same level as that in WT fish. In 1-year-old zebrafish, the histamine neuron number was significantly increased in psen1(-/-) fish compared with WT fish. These changes in histamine neuron number were accompanied by changes in histamine-driven behaviors. Treatment with DAPT, a γ-secretase inhibitor, similarly interfered with the development of the histaminergic neurons. We also assessed the expression of γ-secretase-regulated Notch1a mRNA and β-catenin at different time points. Notch1a mRNA level was reduced in psen1(-/-) compared with WT fish, whereas β-catenin was slightly upregulated in the hypothalamus of psen1(-/-) compared with WT fish at 7 dpf. The results reveal a life-long brain plasticity in both the structure of the histaminergic system and its functions induced by altered Notch1a activity as a consequence of psen1 mutation. The new histaminergic neurons in aging zebrafish brain may arise as a result of phenotypic plasticity or represent newly differentiated stem cells.
Collapse
|