251
|
Tao Y, Ge G, Wang Q, Wang W, Zhang W, Bai J, Lin J, Shen J, Guo X, Xu Y, Geng D. Exenatide ameliorates inflammatory response in human rheumatoid arthritis fibroblast-like synoviocytes. IUBMB Life 2019; 71:969-977. [PMID: 30897288 DOI: 10.1002/iub.2031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 02/10/2019] [Accepted: 02/15/2019] [Indexed: 12/11/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease of unknown etiology characterized by degradation of cartilage and bone, accompanied by unimpeded proliferation of synoviocytes of altered phenotype. In the present study, we investigated the involvement of the glucagon-like peptide 1 (GLP-1) receptor on human fibroblast-like synoviocytes (FLS) in the pathogenesis of RA using the selective GLP-1 agonist exenatide, a licensed drug used for the treatment of type 2 diabetes. Our results indicate that exenatide may play a role in regulating tumor necrosis factor-α-induced mitochondrial dysfunction by increasing mitochondrial membrane potential, oxidative stress by reducing the production of reactive oxygen species, the expression of NADPH oxidase 4, expression of matrix metalloproteinase (MMP)-3 and MMP-13, release of proinflammatory cytokines including interleukin-1β (IL-1β), IL-6, monocyte chemoattractant protein-1, and high-mobility group protein 1, as well as activation of the p38/nuclear factor of κ light polypeptide gene enhancer in B-cells inhibitor, α/nuclear factor κB signaling pathway in primary human RA FLS. These positive results indicate that exenatide may have potential as a therapeutic agent for the treatment and prevention of RA. © 2019 IUBMB Life, 9999(9999):1-9, 2019.
Collapse
Affiliation(s)
- Yunxia Tao
- Department of Orthopedics, The first Affiliated Hospital of Soochow University, Suzhou, China
| | - Gaoran Ge
- Department of Orthopedics, The first Affiliated Hospital of Soochow University, Suzhou, China
| | - Qing Wang
- Department of Orthopedics, The first Affiliated Hospital of Soochow University, Suzhou, China
| | - Wei Wang
- Department of Orthopedics, The first Affiliated Hospital of Soochow University, Suzhou, China
| | - Wenhao Zhang
- Department of Orthopedics, The first Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiaxiang Bai
- Department of Orthopedics, The first Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiayi Lin
- Department of Orthopedics, The first Affiliated Hospital of Soochow University, Suzhou, China
| | - Jining Shen
- Department of Orthopedics, The first Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaobin Guo
- Department of Orthopedics, The first Affiliated Hospital of Soochow University, Suzhou, China
| | - Yaozeng Xu
- Department of Orthopedics, The first Affiliated Hospital of Soochow University, Suzhou, China
| | - Dechun Geng
- Department of Orthopedics, The first Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
252
|
Teng X, Li W, Cornaby C, Morel L. Immune cell metabolism in autoimmunity. Clin Exp Immunol 2019; 197:181-192. [PMID: 30770544 DOI: 10.1111/cei.13277] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2019] [Indexed: 12/13/2022] Open
Abstract
Immune metabolism is a rapidly moving field. While most of the research has been conducted to define the metabolism of healthy immune cells in the mouse, it is recognized that the overactive immune system that drives autoimmune diseases presents metabolic abnormalities that provide therapeutic opportunities, as well as a means to understand the fundamental mechanisms of autoimmune activation more clearly. Here, we review recent publications that have reported how the major metabolic pathways are affected in autoimmune diseases, with a focus on rheumatic diseases.
Collapse
Affiliation(s)
- X Teng
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - W Li
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - C Cornaby
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - L Morel
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
253
|
Papadaki M, Rinotas V, Violitzi F, Thireou T, Panayotou G, Samiotaki M, Douni E. New Insights for RANKL as a Proinflammatory Modulator in Modeled Inflammatory Arthritis. Front Immunol 2019; 10:97. [PMID: 30804932 PMCID: PMC6370657 DOI: 10.3389/fimmu.2019.00097] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 01/14/2019] [Indexed: 01/01/2023] Open
Abstract
Receptor activator of nuclear factor-κB ligand (RANKL), a member of the Tumor Necrosis Factor (TNF) superfamily, constitutes the master regulator of osteoclast formation and bone resorption, whereas its involvement in inflammatory diseases remains unclear. Here, we used the human TNF transgenic mouse model of erosive inflammatory arthritis to determine if the progression of inflammation is affected by either genetic inactivation or overexpression of RANKL in transgenic mouse models. TNF-mediated inflammatory arthritis was significantly attenuated in the absence of functional RANKL. Notably, TNF overexpression could not compensate for RANKL-mediated osteopetrosis, but promoted osteoclastogenesis between the pannus and bone interface, suggesting RANKL-independent mechanisms of osteoclastogenesis in inflamed joints. On the other hand, simultaneous overexpression of RANKL and TNF in double transgenic mice accelerated disease onset and led to severe arthritis characterized by significantly elevated clinical and histological scores as shown by aggressive pannus formation, extended bone resorption, and massive accumulation of inflammatory cells, mainly of myeloid origin. RANKL and TNF cooperated not only in local bone loss identified in the inflamed calcaneous bone, but also systemically in distal femurs as shown by microCT analysis. Proteomic analysis in inflamed ankles from double transgenic mice overexpressing human TNF and RANKL showed an abundance of proteins involved in osteoclastogenesis, pro-inflammatory processes, gene expression regulation, and cell proliferation, while proteins participating in basic metabolic processes were downregulated compared to TNF and RANKL single transgenic mice. Collectively, these results suggest that RANKL modulates modeled inflammatory arthritis not only as a mediator of osteoclastogenesis and bone resorption but also as a disease modifier affecting inflammation and immune activation.
Collapse
Affiliation(s)
- Maria Papadaki
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, Athens, Greece.,Division of Immunology, Biomedical Sciences Research Center "Alexander Fleming", Athens, Greece
| | - Vagelis Rinotas
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, Athens, Greece.,Division of Immunology, Biomedical Sciences Research Center "Alexander Fleming", Athens, Greece
| | - Foteini Violitzi
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, Athens, Greece.,Division of Immunology, Biomedical Sciences Research Center "Alexander Fleming", Athens, Greece
| | - Trias Thireou
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - George Panayotou
- Division of Molecular Oncology, Biomedical Sciences Research Center "Alexander Fleming", Athens, Greece
| | - Martina Samiotaki
- Division of Molecular Oncology, Biomedical Sciences Research Center "Alexander Fleming", Athens, Greece
| | - Eleni Douni
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, Athens, Greece.,Division of Immunology, Biomedical Sciences Research Center "Alexander Fleming", Athens, Greece
| |
Collapse
|
254
|
Roy S, Rizvi ZA, Awasthi A. Metabolic Checkpoints in Differentiation of Helper T Cells in Tissue Inflammation. Front Immunol 2019; 9:3036. [PMID: 30692989 PMCID: PMC6340303 DOI: 10.3389/fimmu.2018.03036] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 12/07/2018] [Indexed: 12/20/2022] Open
Abstract
Naïve CD4+ T cell differentiate into effector and regulatory subsets of helper T (Th) cells in various pathophysiological conditions and modulate tissue inflammation in autoimmune diseases. While cytokines play a key role in determining the fate of Th cells differentiation, metabolites, and metabolic pathways profoundly influence Th cells fate and their functions. Emerging literature suggests that interplay between metabolic pathways and cytokines potentiates T cell differentiation and functions in tissue inflammation in autoimmune diseases. Metabolic pathways, which are essential for the differentiation and functions of Th cell subsets, are regulated by cytokines, nutrients, growth factors, local oxygen levels, co-activation receptors, and metabolites. Dysregulation of metabolic pathways not only alters metabolic regulators in Th cells but also affect the outcome of tissue inflammation in autoimmune and allergic diseases. Understanding the modulation of metabolic pathways during T cells differentiation may potentially lead to a therapeutic strategy for immune-modulation of autoimmune and allergic diseases. In this review, we summarize the role of metabolic checkpoints and their crosstalk with different master transcription factors and signaling molecules in differentiation and function of Th subsets, which may potentially unravel novel therapeutic interventions for tissue inflammation and autoimmune disorders.
Collapse
Affiliation(s)
- Suyasha Roy
- Immuno-Biology Lab, Translational Health Science and Technology Institute, Faridabad, India
| | - Zaigham Abbas Rizvi
- Immuno-Biology Lab, Translational Health Science and Technology Institute, Faridabad, India
| | - Amit Awasthi
- Immuno-Biology Lab, Translational Health Science and Technology Institute, Faridabad, India
| |
Collapse
|
255
|
Janakiraman K, Krishnaswami V, Rajendran V, Natesan S, Kandasamy R. Novel nano therapeutic materials for the effective treatment of rheumatoid arthritis-recent insights. MATERIALS TODAY. COMMUNICATIONS 2018; 17:200-213. [PMID: 32289062 PMCID: PMC7104012 DOI: 10.1016/j.mtcomm.2018.09.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 09/11/2018] [Accepted: 09/13/2018] [Indexed: 05/02/2023]
Abstract
Rheumatoid arthritis (RA) is the most common complex multifactorial joint related autoimmune inflammatory disease with unknown etiology accomplished with increased cardiovascular risks. RA is characterized by the clinical findings of synovial inflammation, autoantibody production, and cartilage/bone destruction, cardiovascular, pulmonary and skeletal disorders. Pro-inflammatory cytokines such as IL-1, IL-6, IL-8, and IL-10 were responsible for the induction of inflammation in RA patients. Drawbacks such as poor efficacy, higher doses, frequent administration, low responsiveness, and higher cost and serious side effects were associated with the conventional dosage forms for RA treatment. Nanomedicines were recently gaining more interest towards the treatment of RA, and researchers were also focusing towards the development of various anti-inflammatory drug loaded nanoformulations with an aid to both actively/passively targeting the inflamed site to afford an effective treatment regimen for RA. Alterations in the surface area and nanoscale size of the nanoformulations elicit beneficial physical and chemical properties for better pharmacological activities. These drug loaded nanoformulations may enhances the solubility of poorly water soluble drugs, improves the bioavailability, affords targetability and may improve the therapeutic activity. In this regimen, the present review focus towards the novel nanoparticulate formulations (nanoparticles, nanoemulsions, solid lipid nanoparticles, nanomicelles, and nanocapsules) utilized for the treatment of RA. The recent advancements such as siRNA, peptide and targeted based nanoparticulate systems for RA treatment were also discussed. Special emphasis was provided regarding the pathophysiology, prevalence and symptoms towards the development of RA.
Collapse
Key Words
- A-SLN, actarit loaded solid lipid nanoparticles
- ACF-SLN, aceclofenac loaded solid lipid nanoparticles
- AIA, antigen-induced arthritis
- ALP, alkaline phosphate
- ALT, alanine aminotransferase
- AST, aspartate aminotransferase
- C-SLN, curcumin loaded solid lipid nanoparticles
- CEL-TS-LN, celecoxib loaded tristearin based lipidic nanoparticles
- CFA, complete freund’s adjuvant
- CHNP, chitosan nanoparticle
- CLSM, confocal laser scanning microscopy
- COX- 1, cyclooxygenase - 1
- COX- 2, cyclooxygenase - 2
- DEX, dexamethasone
- DEX-PMs, dexamethasone-loaded polymeric micelles
- DMARD, disease modifying antirheumatic drugs
- FA, folic acid
- FR-β, folate receptor-beta
- GC, glucocorticoid
- HA- AuNP/TCZ, hyaluronate gold nanoparticle/Tocilizumab
- HEKcells, human embryonic kidney cells
- HSA-NCs, human serum albumin nanocapsules
- HUVEC, human umbilical vein cells
- IL, interleukin
- IND-NMs, indomethacin loaded polymeric micelles
- Ig, immunoglobulin
- Ind-NCs, indomethacin-loaded nanocapsules
- Inflammation
- LDE, lipidic nanoemulsion
- LX-NMs, larnoxicam loaded nanomicelles
- MTX-LCNCs, methotrexate-loaded lipidic core nanocapsules
- NSAIDs, non steroidal anti-inflammatory drugs
- Nanoformulation
- Nanoparticles
- P-SLN, piperine loaded solid lipid nanoparticle
- PCL, polycaprolactone
- PCL-PEG, poly (ethylene glycol)-block-poly (ε-caprolactone)
- PSA, polysialic acid
- PSA-PCL-CyA-NMs, polysialic acid- polycaprolactone cyclosporine A nanomicelles
- Pir-SLN, piroxicam solid lipid nanoparticles
- RA, rheumatoid arthritis
- RGD, arginine-glycine aspartic acid
- RNAi, RNA interference
- Rheumatoid arthritis
- SLN, solid lipid nanoparticles
- TAC-HSA-NPs, tacrolimus human serum albumin nanoparticle
- TAC-LCNCs, tacrolimus loaded lipidic core nanocapsules
- TNF-α, tumour necrosis factor
- VCAM-1, vascular cell adhesion molecule-1
- VEGF, vascular endothelial growth factor
- VIP, vasoactive intestinal peptide
- mRNA, messenger RNA
- shRNA, short hairpin RNA
- siRNA, small interfering RNA
Collapse
Affiliation(s)
- Kumar Janakiraman
- National Facility for Drug Development for Academia, Pharmaceutical and Allied Industries (NFDD), Centre for Excellence in Nanobio Translational REsearch (CENTRE), Department of Pharmaceutical Technology, University College of Engineering, Anna University, BIT Campus, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Venkateshwaran Krishnaswami
- National Facility for Drug Development for Academia, Pharmaceutical and Allied Industries (NFDD), Centre for Excellence in Nanobio Translational REsearch (CENTRE), Department of Pharmaceutical Technology, University College of Engineering, Anna University, BIT Campus, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Vijaya Rajendran
- National Facility for Drug Development for Academia, Pharmaceutical and Allied Industries (NFDD), Centre for Excellence in Nanobio Translational REsearch (CENTRE), Department of Pharmaceutical Technology, University College of Engineering, Anna University, BIT Campus, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Subramanian Natesan
- National Facility for Drug Development for Academia, Pharmaceutical and Allied Industries (NFDD), Centre for Excellence in Nanobio Translational REsearch (CENTRE), Department of Pharmaceutical Technology, University College of Engineering, Anna University, BIT Campus, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Ruckmani Kandasamy
- National Facility for Drug Development for Academia, Pharmaceutical and Allied Industries (NFDD), Centre for Excellence in Nanobio Translational REsearch (CENTRE), Department of Pharmaceutical Technology, University College of Engineering, Anna University, BIT Campus, Tiruchirappalli 620 024, Tamil Nadu, India
| |
Collapse
|
256
|
Sun Y, Chen S, Pei M. Comparative advantages of infrapatellar fat pad: an emerging stem cell source for regenerative medicine. Rheumatology (Oxford) 2018; 57:2072-2086. [PMID: 29373763 PMCID: PMC6256334 DOI: 10.1093/rheumatology/kex487] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 11/13/2017] [Indexed: 12/15/2022] Open
Abstract
Growing evidence indicates that infrapatellar fat pad (IPFP)-derived stem cells (IPFSCs) exert robust proliferation capacities and multilineage differentiation potentials. However, few papers summarize the advantages that the IPFP and IPFSCs have in regenerative medicine. In this review we delineate the development and anatomy of the IPFP by comparing it with an adjacent fibrous tissue, synovium, and a more frequently harvested fat depot, subcutaneous adipose tissue. Furthermore, we explore the similarities and differences of stem cells from these three tissues in terms of IPFSCs, synovium-derived stem cells and subcutaneous adipose tissue-derived stem cells in proliferation capacity and tri-lineage differentiation potentials, including chondrogenesis, osteogenesis and adipogenesis. Finally, we highlight the advantages of IPFSCs in regenerative medicine, such as the abundant accessibility and the ability to resist inflammation and senescence, two hurdles for cell-based tissue regeneration. Considering the comparative advantages of IPFSCs, the IPFP can serve as an excellent stem cell source for regenerative medicine, particularly for cartilage regeneration.
Collapse
Affiliation(s)
- Yu Sun
- Department of Orthopaedics, Orthopaedics Institute, Subei People’s Hospital of Jiangsu Province, Yangzhou, Jiangsu, China
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV, USA
| | - Song Chen
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV, USA
- Department of Orthopaedics, Chengdu Military General Hospital, Chengdu, Sichuan, China
| | - Ming Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV, USA
- Exercise Physiology, West Virginia University, Morgantown, WV, USA
- Mary Babb Randolph Cancer Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
257
|
Thankam FG, Chandra IS, Kovilam AN, Diaz CG, Volberding BT, Dilisio MF, Radwan MM, Gross RM, Agrawal DK. Amplification of Mitochondrial Activity in the Healing Response Following Rotator Cuff Tendon Injury. Sci Rep 2018; 8:17027. [PMID: 30451947 PMCID: PMC6242817 DOI: 10.1038/s41598-018-35391-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/31/2018] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial function following rotator cuff tendon injury (RCI) influences the tendon healing. We examined the mitochondrial morphology and function under hypoxia in the shoulder tendon tissue from surgically-induced tenotomy-RCI rat model and cultured swine tenocytes. The tendon tissue was collected post-injury on 3-5 (Group-A), 10-12 (Group-B), and 22-24 (Group-C), days and the corresponding contralateral tendons were used as control for each group. There was higher protein expression of citrate synthase (P < 0.0001) [10.22 MFI (mean fluorescent intensity)] and complex-1 (P = 0.0008) (7.86 MFI) in Group-A and Group-B that decreased in Group-C [(P = 0.0201) (5.78 MFI and (P = 0.7915) (2.32 MFI), respectively] compared to control tendons. The ratio of BAX:Bcl2 (Bcl2 associated x protein:B cell lymphoma 2) in RCI tendons increased by 50.5% (Group-A) and 68.4% (Group-B) and decreased by 25.8% (Group-C) compared to normoxic controls. Hypoxia increased β-tubulin expression (P = 0067) and reduced PGC1-α (P = 0412) expression in the isolated swine tenocytes with no effect on the protein expression of Complex-1 (P = 7409) and citrate synthase (P = 0.3290). Also, the hypoxic tenocytes exhibited about 4-fold increase in mitochondrial superoxide (P < 0.0001), altered morphology and mitochondrial pore integrity, and increase in mitochondrial density compared to normoxic controls. These findings suggest the critical role of mitochondria in the RCI healing response.
Collapse
Affiliation(s)
- Finosh G Thankam
- Departments of Clinical & Translational Science and Orthopedic Surgery, Creighton University School of Medicine, Omaha, NE, 68178, USA
| | - Isaiah S Chandra
- Departments of Clinical & Translational Science and Orthopedic Surgery, Creighton University School of Medicine, Omaha, NE, 68178, USA
| | - Anuradha N Kovilam
- Departments of Clinical & Translational Science and Orthopedic Surgery, Creighton University School of Medicine, Omaha, NE, 68178, USA
| | - Connor G Diaz
- Departments of Clinical & Translational Science and Orthopedic Surgery, Creighton University School of Medicine, Omaha, NE, 68178, USA
| | - Benjamin T Volberding
- Departments of Clinical & Translational Science and Orthopedic Surgery, Creighton University School of Medicine, Omaha, NE, 68178, USA
| | - Matthew F Dilisio
- Departments of Clinical & Translational Science and Orthopedic Surgery, Creighton University School of Medicine, Omaha, NE, 68178, USA
| | - Mohamed M Radwan
- Departments of Clinical & Translational Science and Orthopedic Surgery, Creighton University School of Medicine, Omaha, NE, 68178, USA
| | - R Michael Gross
- Departments of Clinical & Translational Science and Orthopedic Surgery, Creighton University School of Medicine, Omaha, NE, 68178, USA
| | - Devendra K Agrawal
- Departments of Clinical & Translational Science and Orthopedic Surgery, Creighton University School of Medicine, Omaha, NE, 68178, USA.
| |
Collapse
|
258
|
Fearon U, Hanlon MM, Wade SM, Fletcher JM. Altered metabolic pathways regulate synovial inflammation in rheumatoid arthritis. Clin Exp Immunol 2018; 197:170-180. [PMID: 30357805 DOI: 10.1111/cei.13228] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2018] [Indexed: 12/25/2022] Open
Abstract
Rheumatoid arthritis is characterized by synovial proliferation, neovascularization and leucocyte extravasation leading to joint destruction and functional disability. The blood vessels in the inflamed synovium are highly dysregulated, resulting in poor delivery of oxygen; this, along with the increased metabolic demand of infiltrating immune cells and inflamed resident cells, results in the lack of key nutrients at the site of inflammation. In these adverse conditions synovial cells must adapt to generate sufficient energy to support their proliferation and activation status, and thus switch their cell metabolism from a resting regulatory state to a highly metabolically active state. This alters redox-sensitive signalling pathways and also results in the accumulation of metabolic intermediates which, in turn, can act as signalling molecules that further exacerbate the inflammatory response. The RA synovium is a multi-cellular tissue, and while many cell types interact to promote the inflammatory response, their metabolic requirements differ. Thus, understanding the complex interplay between hypoxia-induced signalling pathways, metabolic pathways and the inflammatory response will provide better insight into the underlying mechanisms of disease pathogenesis.
Collapse
Affiliation(s)
- U Fearon
- Molecular Rheumatology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - M M Hanlon
- Molecular Rheumatology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - S M Wade
- Molecular Rheumatology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - J M Fletcher
- Translational Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
259
|
Bustamante MF, Oliveira PG, Garcia-Carbonell R, Croft AP, Smith JM, Serrano RL, Sanchez-Lopez E, Liu X, Kisseleva T, Hay N, Buckley CD, Firestein GS, Murphy AN, Miyamoto S, Guma M. Hexokinase 2 as a novel selective metabolic target for rheumatoid arthritis. Ann Rheum Dis 2018; 77:1636-1643. [PMID: 30061164 PMCID: PMC6328432 DOI: 10.1136/annrheumdis-2018-213103] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 07/03/2018] [Accepted: 07/04/2018] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Recent studies indicate that glucose metabolism is altered in rheumatoid arthritis (RA) fibroblast-like synoviocytes (FLS). Hexokinases (HKs) catalyse the first step in glucose metabolism, and HK2 constitutes the principal HK inducible isoform. We hypothesise that HK2 contributes to the synovial lining hypertrophy and plays a critical role in bone and cartilage damage. METHODS HK1 and HK2 expression were determined in RA and osteoarthritis (OA) synovial tissue by immunohistochemistry. RA FLS were transfected with either HK1 or HK2 siRNA, or infected with either adenovirus (ad)-GFP, ad-HK1 or ad-HK2. FLS migration and invasion were assessed. To study the role of HK2 in vivo, 108 particles of ad-HK2 or ad-GFP were injected into the knee of wild-type mice. K/BxN serum transfer arthritis was induced in HK2F/F mice harbouring Col1a1-Cre (HK2Col1), to delete HK2 in non-haematopoietic cells. RESULTS HK2 is particular of RA histopathology (9/9 RA; 1/8 OA) and colocalises with FLS markers. Silencing HK2 in RA FLS resulted in a less invasive and migratory phenotype. Consistently, overexpression of HK2 resulted in an increased ability to migrate and invade. It also increased extracellular lactate production. Intra-articular injection of ad-HK2 in normal knees dramatically increased synovial lining thickness, FLS activation and proliferation. HK2 was highly expressed in the synovial lining after K/BxN serum transfer arthritis. HK2Col1 mice significantly showed decreased arthritis severity, bone and cartilage damage. CONCLUSION HK2 is specifically expressed in RA synovial lining and regulates FLS aggressive functions. HK2 might be an attractive selective metabolic target safer than global glycolysis for RA treatment.
Collapse
Affiliation(s)
- Marta F. Bustamante
- Department of Medicine, University of California San Diego, San Diego, CA, USA
| | | | - Ricard Garcia-Carbonell
- Departments of Pharmacology and Surgery. University of California San Diego, San Diego, CA, USA
| | - Adam P Croft
- Rheumatology Research Group, Institute of inflammation and Ageing, College of Medical and dental Sciences, University of Birmingham, Queen Elizabeth Hospital, Birmingham, UK
| | - Jeff M Smith
- Rheumatology Research Group, Institute of inflammation and Ageing, College of Medical and dental Sciences, University of Birmingham, Queen Elizabeth Hospital, Birmingham, UK
| | | | - Elsa Sanchez-Lopez
- Departments of Pharmacology and Surgery. University of California San Diego, San Diego, CA, USA
| | - Xiao Liu
- Department of Medicine, University of California San Diego, San Diego, CA, USA
| | - Tatiana Kisseleva
- Department of Medicine, University of California San Diego, San Diego, CA, USA
| | - Nissim Hay
- Department of Biochemistry and Molecular Genetics, UIC, Chicago, IL. USA
| | - Christopher D Buckley
- Rheumatology Research Group, Institute of inflammation and Ageing, College of Medical and dental Sciences, University of Birmingham, Queen Elizabeth Hospital, Birmingham, UK
| | | | - Anne N Murphy
- Departments of Pharmacology and Surgery. University of California San Diego, San Diego, CA, USA
| | - Shigeki Miyamoto
- Departments of Pharmacology and Surgery. University of California San Diego, San Diego, CA, USA
| | - Monica Guma
- Department of Medicine, University of California San Diego, San Diego, CA, USA
- Department of Medicine, Autonomous University of Barcelona, Plaça Cívica, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
260
|
McGarry T, Orr C, Wade S, Biniecka M, Wade S, Gallagher L, Low C, Veale DJ, Fearon U. JAK/STATBlockade Alters Synovial Bioenergetics, Mitochondrial Function, and Proinflammatory Mediators in Rheumatoid Arthritis. Arthritis Rheumatol 2018; 70:1959-1970. [DOI: 10.1002/art.40569] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 05/17/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Trudy McGarry
- Trinity College Dublin and St. Vincent's University Hospital University College Dublin Dublin Ireland
| | - Carl Orr
- St. Vincent's University Hospital University College Dublin Dublin Ireland
| | | | - Monika Biniecka
- Trinity College Dublin and St. Vincent's University Hospital University College Dublin Dublin Ireland
| | | | | | - Candice Low
- St. Vincent's University Hospital University College Dublin Dublin Ireland
| | - Douglas J. Veale
- St. Vincent's University Hospital University College Dublin Dublin Ireland
| | | |
Collapse
|
261
|
Guo X, Wang S, Godwood A, Close D, Ryan PC, Roskos LK, White WI. Pharmacodynamic biomarkers and differential effects of TNF- and GM-CSF-targeting biologics in rheumatoid arthritis. Int J Rheum Dis 2018; 22:646-653. [PMID: 30358109 PMCID: PMC6587493 DOI: 10.1111/1756-185x.13395] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 07/20/2018] [Accepted: 08/28/2018] [Indexed: 12/13/2022]
Abstract
Aim The aim of our study was to identify pharmacodynamic biomarkers and assess differential effects of tumor necrosis factor (TNF)‐ and non‐TNF‐targeting agents on rheumatoid arthritis (RA) patients with an inadequate response to anti‐TNF agents (anti‐TNF‐IR) in comparison with biologic‐naïve patients. Methods EARTH EXPLORER 2, a phase IIb trial, evaluated golimumab, an anti‐TNF antibody, and mavrilimumab, an granulocyte‐macrophage colony‐stimulating factor (GM‐CSF) receptor antibody, in disease‐modifying antirheumatic drug (DMARD)‐IR and anti‐TNF‐IR patients. Our current study assessed peripheral protein markers and gene expression levels in association with clinical response post‐treatment in two disease strata. Results Serum proteomics results indicated the existence of specific pharmacodynamic markers for golimumab and mavrilimumab, regardless of prior anti‐TNF treatment. In contrast, both antibodies induced early and sustained suppression of RA disease markers, including interleukin (IL)‐6, C‐reactive protein, IL2RA, and matrix metalloproteinase 1, in DMARD‐IR patients. Golimumab‐induced early changes rapidly returned toward baseline concentrations in anti‐TNF‐IR patients, whereas mavrilimumab‐induced changes were maintained through to day 169. RNA sequencing demonstrated gene expression changes at day 169 after administration of mavrilimumab but not golimumab in anti‐TNF‐IR patients. Additionally, receiver operating characteristic curve and regression analysis showed the association of early IL‐6 change and subsequent clinical responses to golimumab in anti‐TNF‐IR patients. Conclusion Our results revealed golimumab‐ and mavrilimumab‐specific pharmacodynamic biomarkers, and demonstrated differential biomarker‐treatment relationships in anti‐TNF‐IR and DMARD‐IR patients, respectively. Early IL‐6 change after anti‐TNF antibody treatment may be a potential predictive biomarker for selection of different treatment regimens in anti‐TNF‐IR patients.
Collapse
Affiliation(s)
- Xiang Guo
- Clinical Pharmacology & DMPK, MedImmune, Gaithersburg, Maryland
| | - Shiliang Wang
- Clinical Pharmacology & DMPK, MedImmune, Gaithersburg, Maryland
| | | | - David Close
- Clinical Development, MedImmune, Cambridge, UK
| | - Patricia C Ryan
- Biologics Safety Assessment, MedImmune, Gaithersburg, Maryland
| | - Lorin K Roskos
- Clinical Pharmacology & DMPK, MedImmune, Gaithersburg, Maryland
| | - Wendy I White
- Clinical Pharmacology & DMPK, MedImmune, Gaithersburg, Maryland
| |
Collapse
|
262
|
Feng N, Yang M, Feng X, Wang Y, Chang F, Ding J. Reduction-Responsive Polypeptide Nanogel for Intracellular Drug Delivery in Relieving Collagen-Induced Arthritis. ACS Biomater Sci Eng 2018; 4:4154-4162. [PMID: 33418814 DOI: 10.1021/acsbiomaterials.8b00738] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Naibo Feng
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, P. R. China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
| | - Modi Yang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun 130033, P. R. China
| | - Xiangru Feng
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
- Jilin Biomedical Polymers Engineering Laboratory, 5625 Renmin Street, Changchun 130022, P. R. China
| | - Yinan Wang
- Academy of Translational Medicine, The First Hospital of Jilin University, 71 Xinmin Street, Changchun 130021, P. R. China
| | - Fei Chang
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
- Jilin Biomedical Polymers Engineering Laboratory, 5625 Renmin Street, Changchun 130022, P. R. China
| |
Collapse
|
263
|
Interleukin 17 under hypoxia mimetic condition augments osteoclast mediated bone erosion and expression of HIF-1α and MMP-9. Cell Immunol 2018; 332:39-50. [DOI: 10.1016/j.cellimm.2018.07.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 06/24/2018] [Accepted: 07/14/2018] [Indexed: 01/05/2023]
|
264
|
Wang Q, Zhou X, Zhao Y, Xiao J, Lu Y, Shi Q, Wang Y, Wang H, Liang Q. Polyphyllin I Ameliorates Collagen-Induced Arthritis by Suppressing the Inflammation Response in Macrophages Through the NF-κB Pathway. Front Immunol 2018; 9:2091. [PMID: 30319603 PMCID: PMC6170622 DOI: 10.3389/fimmu.2018.02091] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 08/24/2018] [Indexed: 12/27/2022] Open
Abstract
Background: Rheumatoid arthritis (RA) is a chronic autoimmune disorder, characterized by an increased number of M1-like macrophages in the joints. Polyphyllin I (PPI), one of the main components in the Rhizoma of Paris polyphyllin, displays a selective inhibitory effect on various tumor cells. Here we sought to investigate the anti-rheumatoid arthritis effects and mechanisms of PPI on macrophages in vivo and in vitro. Materials and Methods:In vitro, primary bone marrow-derived macrophages (BMMs) and peritoneal elucidated macrophages (PEMs) were stimulated by lipopolysaccharide (LPS) and Interferon (IFN)-γ and then treated with PPI. We determined the degree of activation of IKKα/β and p65, two key mediators of the NF-κB-mediated inflammatory pathway, by measuring their phosphorylated forms by Western blot. The p65 nuclear localization was detected by immunofluorescent staining. Further, a NF-κB-linked luciferase reporter plasmid, as well as those expressing key mediators of the Toll-like receptor 4 pathway, such as myeloid differentiation primary response 88 (MYD88), interleukin-1 receptor (IL-1R) associated kinase (IRAK)-1, TNF receptor associated factors (TRAF)-6, Transforming growth factor-b–activated kinase 1 (TAK1) and p65, were used to identify the mechanism by which PPI achieves its inhibitory effects on macrophage-mediated inflammation. Moreover, a NF-κB inhibitor, p65-targeted siRNAs, and a p65 plasmid were further used to validate the anti-inflammatory mechanism of PPI. In vivo, PPI (1 mg/kg) was administered intragastrically one time a day for 7 weeks starting on the 42nd day after the first immunization with collagen in a collagen-induced arthritis (CIA) mouse model. Micro-computed Tomography scanning, histological examination, F4/80 and iNOS double immunofluorescent staining and CD4 immunohistochemical staining were performed to determine the effect of PPI treatment on joint structure and inflammation in this model. Results: PPI reduced the inflammatory cytokines production of PEMs stimulated by LPS/IFN-γ, inhibited the phosphorylation of IKKα/β and p65, and prevented p65 nuclear localization. The NF-κB luciferase assay showed that the target of PPI was closely related to the NF-κB pathway. Moreover, NF-κB inhibition, siRNA-mediated knockdown of p65, and p65 overexpression eliminated PPI's inhibitory effect. In addition, PPI attenuated the bone erosion and synovitis, as well as M1-like macrophage and T cell infiltration, in the ankle joint of the CIA model. Conclusion: PPI demonstrated effective amelioration of synovial inflammation in the ankle joint of CIA mice while suppressing NF-κB-mediated production of pro-inflammatory effectors in activated macrophages.
Collapse
Affiliation(s)
- Qiong Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,State Key Laboratory of Cell Biology, Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Innovation Center for Cell Signaling Network, Shanghai, China.,Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Zhou
- State Key Laboratory of Cell Biology, Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Innovation Center for Cell Signaling Network, Shanghai, China
| | - Yongjian Zhao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), Shanghai, China
| | - Jun Xiao
- State Key Laboratory of Cell Biology, Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Innovation Center for Cell Signaling Network, Shanghai, China
| | - Yao Lu
- State Key Laboratory of Cell Biology, Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Innovation Center for Cell Signaling Network, Shanghai, China
| | - Qi Shi
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), Shanghai, China
| | - Yongjun Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), Shanghai, China.,School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongyan Wang
- State Key Laboratory of Cell Biology, Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Innovation Center for Cell Signaling Network, Shanghai, China
| | - Qianqian Liang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), Shanghai, China
| |
Collapse
|
265
|
Wang Y, Wei Y, Cheng X, Sun X, Ma L, Song Y, Zhou J, Wei F, Liu H. [2-deoxyglucose inhibits angiogenesis of rheumatoid arthritis via activating AMPK pathway]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:962-968. [PMID: 30187877 DOI: 10.3969/j.issn.1673-4254.2018.08.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To observe the effects of 2-deoxyglucose inhibiting synovial pannus of adjuvant arthritis rats and to explore its potential mechanism of inhibiting angiogenesis by investigating proliferation, migration and matrigel tube formation assay in vitro. METHODS The effect of 2-DG on synovial pannus was evaluated by histopathology of HE staining; HUVEC proliferation was determined by CCK-8 method; migration of FLS were determined by transwell; In vitro matrigel tube formation assay was made for assessing tube number of HUVEC; p-AMPK and Bcl-2 were detected by Western blot assay; AMPK signaling pathway in HUVEC was inhibited by compound C, which is an inhibitor of AMPK activation. RESULTS 2-DG (200 mg/kg) obviously decreased appearance of synovial pannus (P < 0.01); in vitro, 2-DG (0.5 mmol/L and/or 5 mmol/L) obviously inhibited proliferation, migration and tube number of HUVEC (P < 0.01 or P < 0.001), and its effects on HUVEC were reversed by using AMPK antagonist (Compound C); Western blot showed that 2-DG (5 mmol/L) increased expression of p-AMPK and decreased expression of Bcl-2 (P < 0.05). CONCLUSIONS Activating AMPK pathway and decreasing expression of Bcl-2 may the potential mechanism by which 2-DG contributes to anti-angiogenesis and effects of inhibiting proliferation, migration and tube number of HUVEC.
Collapse
Affiliation(s)
- Ying Wang
- Faculty of Pharmacy, Bengbu Medical College, Bengbu 233000, China
| | - Yingmei Wei
- Faculty of Pharmacy, Bengbu Medical College, Bengbu 233000, China
| | - Xiu Cheng
- Faculty of Pharmacy, Bengbu Medical College, Bengbu 233000, China
| | - Xiaojin Sun
- Faculty of Pharmacy, Bengbu Medical College, Bengbu 233000, China
| | - Linyan Ma
- Faculty of Pharmacy, Bengbu Medical College, Bengbu 233000, China
| | - Yining Song
- Faculty of Pharmacy, Bengbu Medical College, Bengbu 233000, China
| | - Jing Zhou
- Faculty of Pharmacy, Bengbu Medical College, Bengbu 233000, China
| | - Fang Wei
- Faculty of Pharmacy, Bengbu Medical College, Bengbu 233000, China
| | - Hao Liu
- Faculty of Pharmacy, Bengbu Medical College, Bengbu 233000, China
| |
Collapse
|
266
|
Falconer J, Murphy AN, Young S, Clark AR, Tiziani S, Guma M, Buckley CD. Review: Synovial Cell Metabolism and Chronic Inflammation in Rheumatoid Arthritis. Arthritis Rheumatol 2018; 70:984-999. [PMID: 29579371 PMCID: PMC6019623 DOI: 10.1002/art.40504] [Citation(s) in RCA: 222] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 03/15/2018] [Indexed: 12/17/2022]
Abstract
Metabolomic studies of body fluids show that immune-mediated inflammatory diseases such as rheumatoid arthritis (RA) are associated with metabolic disruption. This is likely to reflect the increased bioenergetic and biosynthetic demands of sustained inflammation and changes in nutrient and oxygen availability in damaged tissue. The synovial membrane lining layer is the principal site of inflammation in RA. Here, the resident cells are fibroblast-like synoviocytes (FLS) and synovial tissue macrophages, which are transformed toward overproduction of enzymes that degrade cartilage and bone and cytokines that promote immune cell infiltration. Recent studies have shown metabolic changes in both FLS and macrophages from RA patients, and these may be therapeutically targetable. However, because the origins and subset-specific functions of synoviocytes are poorly understood, and the signaling modules that control metabolic deviation in RA synovial cells are yet to be explored, significant additional research is needed to translate these findings to clinical application. Furthermore, in many inflamed tissues, different cell types can forge metabolic collaborations through solute carriers in their membranes to meet a high demand for energy or biomolecules. Such relationships are likely to exist in the synovium and have not been studied. Finally, it is not yet known whether metabolic change is a consequence of disease or whether primary changes to cellular metabolism might underlie or contribute to the pathogenesis of early-stage disease. In this review article, we collate what is known about metabolism in synovial tissue cells and highlight future directions of research in this area.
Collapse
Affiliation(s)
- Jane Falconer
- Rheumatology Research Group, Institute of inflammation and Ageing, College of Medical and dental Sciences, University of Birmingham, Queen Elizabeth Hospital, Birmingham, UK
| | - Anne N Murphy
- Pharmacology, School of Medicine, University of California, San Diego, 9500 Gilman Drive, San Diego, CA 92093
| | - Stephen Young
- Rheumatology Research Group, Institute of inflammation and Ageing, College of Medical and dental Sciences, University of Birmingham, Queen Elizabeth Hospital, Birmingham, UK
| | - Andrew R Clark
- Rheumatology Research Group, Institute of inflammation and Ageing, College of Medical and dental Sciences, University of Birmingham, Queen Elizabeth Hospital, Birmingham, UK
| | - Stefano Tiziani
- Department of Nutritional Sciences & Dell Pediatric Research Institute, University of Texas at Austin, 1400 Barbara Jordan Blvd., Austin, TX
| | - Monica Guma
- Medicine, School of Medicine, University of California, San Diego, 9500 Gilman Drive, San Diego, CA 92093
| | - Christopher D Buckley
- Rheumatology Research Group, Institute of inflammation and Ageing, College of Medical and dental Sciences, University of Birmingham, Queen Elizabeth Hospital, Birmingham, UK
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford. UK
| |
Collapse
|
267
|
Jeong GJ, Song SY, Kang M, Go S, Sohn HS, Kim BS. An Injectable Decellularized Matrix That Improves Mesenchymal Stem Cell Engraftment for Therapeutic Angiogenesis. ACS Biomater Sci Eng 2018; 4:2571-2581. [DOI: 10.1021/acsbiomaterials.8b00617] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
268
|
Berberine inhibits IL-21/IL-21R mediated inflammatory proliferation of fibroblast-like synoviocytes through the attenuation of PI3K/Akt signaling pathway and ameliorates IL-21 mediated osteoclastogenesis. Cytokine 2018; 106:54-66. [DOI: 10.1016/j.cyto.2018.03.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/01/2018] [Accepted: 03/08/2018] [Indexed: 01/27/2023]
|
269
|
Mo BY, Guo XH, Yang MR, Liu F, Bi X, Liu Y, Fang LK, Luo XQ, Wang J, Bellanti JA, Pan YF, Zheng SG. Long Non-Coding RNA GAPLINC Promotes Tumor-Like Biologic Behaviors of Fibroblast-Like Synoviocytes as MicroRNA Sponging in Rheumatoid Arthritis Patients. Front Immunol 2018; 9:702. [PMID: 29692777 PMCID: PMC5902673 DOI: 10.3389/fimmu.2018.00702] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/22/2018] [Indexed: 01/15/2023] Open
Abstract
Rapidly accumulating evidence has now suggested that the long non-coding RNAs (LncRNAs), a large and diverse class of non-coding transcribed RNA molecules with diverse functional roles and mechanisms, play a major role in the pathogenesis of many human inflammatory diseases. Although some LncRNAs are overexpressed in plasma, T cell, and synovial tissues of patients with rheumatoid arthritis (RA), there is a dearth of knowledge in what role these transcripts play in fibroblast-like synoviocytes (FLSs) of these patients. Here, our studies showed that GAPLINC, a newly identified functional LncRNA in oncology, displayed a greater degree of expression in FLSs from RA than in patients with traumatic injury. GAPLINC suppression in RA-FLS cells revealed significant alterations in cell proliferation, invasion, migration, and proinflammatory cytokines production. Additionally, we performed a preliminary bioinformatics analysis of GAPLINC gene sequence in order to find its target molecules, using miRanda, PITA, RNAhybrid algorithms, Kyoto encyclopedia of genes and genomes, and gene ontology analysis. Since the results predicted that some of microRNAs and mRNA may interact with GAPLINC, we simulated a gene co-action network model based on a competitive endogenous RNA theory. Further verification of this model demonstrated that silencing of GAPLINC increased miR-382-5p and miR-575 expression. The results of this study suggest that GAPLINC may function as a novel microRNAs sponging agent affecting the biological characteristics of RA-FLSs. Additionally, GAPLINC may also promote RA-FLS tumor-like behaviors in a miR-382-5p-dependent and miR-575-dependent manner. Based upon these findings, LncRNA GAPLINC may provide a novel valuable therapeutic target for RA patients.
Collapse
Affiliation(s)
- Bi Yao Mo
- Department of Internal Medicine, Division of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xing Hua Guo
- Department of Internal Medicine, Division of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Meng Ru Yang
- Department of Internal Medicine, Division of Rheumatology, The Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Fang Liu
- Department of Internal Medicine, Division of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xuan Bi
- Department of Internal Medicine, Division of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yan Liu
- Center for Clinic Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lin Kai Fang
- Department of Internal Medicine, Division of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xi Qing Luo
- Department of Internal Medicine, Division of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Julie Wang
- Department of Medicine, Division of Rheumatology, Hershey Medical Center at Penn State University, Hershey, PA, United States
| | - Joseph A Bellanti
- Department of Pediatrics and Microbiology-Immunology, Georgetown University Medical Center, Washington, DC, United States
| | - Yun Feng Pan
- Department of Internal Medicine, Division of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Song Guo Zheng
- Department of Medicine, Division of Rheumatology, Hershey Medical Center at Penn State University, Hershey, PA, United States
| |
Collapse
|
270
|
Lee HT, Lin CS, Pan SC, Wu TH, Lee CS, Chang DM, Tsai CY, Wei YH. Alterations of oxygen consumption and extracellular acidification rates by glutamine in PBMCs of SLE patients. Mitochondrion 2018; 44:65-74. [PMID: 29337141 DOI: 10.1016/j.mito.2018.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 12/31/2017] [Accepted: 01/10/2018] [Indexed: 02/05/2023]
Abstract
We evaluated plasma glutamine levels and basal mitochondrial oxygen consumption rate (mOCRB) and basal extracellular acidification rate (ECARB) of peripheral blood mononuclear cells (PBMCs) of systemic lupus erythematous (SLE) patients and healthy controls (HCs). Lower plasma glutamine levels correlated with higher SLE disease activity indexes (p=0.025). Incubated in DMEM containing 100mg/dL glucose, SLE-PBMCs displayed lower mOCRB (p=0.018) but similar ECARB (p=0.467) to those of HC-PBMCs, and their mOCRB got elevated (p<0.001) without altering ECARB (p=0.239) by supplementation with 2 or 4mM glutamine. We conclude that impaired mitochondrial respiration of SLE-PBMCs could be improved by glutamine under euglycemic condition.
Collapse
Affiliation(s)
- Hui-Ting Lee
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Medicine, Mackay Medical College, New Taipei City, Taiwan; Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Mackay Memorial Hospital, Taipei, Taiwan
| | - Chen-Sung Lin
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan; Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan; Division of Thoracic Surgery, Taipei Hospital, Ministry of Health and Welfare, New Taipei City, Taiwan
| | - Siao-Cian Pan
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan; Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Mackay Memorial Hospital, Taipei, Taiwan; Center for Mitochondrial Medicine and Free Radical Research, Changhua Christian Hospital, Changhua City, Taiwan
| | - Tsai-Hung Wu
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan; Division of Nephrology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chyou-Shen Lee
- Mackay Junior College of Medicine, Nursing and Management, New Taipei City, Taiwan; Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Mackay Memorial Hospital, Taipei, Taiwan
| | - Deh-Ming Chang
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan; Division of Allergy, Immunology and Rheumatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chang-Youh Tsai
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan; Division of Allergy, Immunology and Rheumatology, Taipei Veterans General Hospital, Taipei, Taiwan.
| | - Yau-Huei Wei
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan; Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan; Department of Medicine, Mackay Medical College, New Taipei City, Taiwan; Center for Mitochondrial Medicine and Free Radical Research, Changhua Christian Hospital, Changhua City, Taiwan.
| |
Collapse
|
271
|
Tang Y, Wang B, Sun X, Li H, Ouyang X, Wei J, Dai B, Zhang Y, Li X. Rheumatoid arthritis fibroblast-like synoviocytes co-cultured with PBMC increased peripheral CD4 + CXCR5 + ICOS + T cell numbers. Clin Exp Immunol 2017; 190:384-393. [PMID: 28833034 DOI: 10.1111/cei.13025] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2017] [Indexed: 12/12/2022] Open
Abstract
'Circulating' T follicular helper cells (Tfh), characterized by their surface phenotypes CD4+ chemokine receptor 5 (CXCR5)+ inducible co-stimulatory molecule (ICOS)+ , have been identified as the CD4+ T cell subset specialized in supporting the activation, expansion and differentiation of B cells. Fibroblast-like synoviocytes (FLS) are critical in promoting inflammation and cartilage destruction in rheumatoid arthritis (RA), and the interaction between FLS and T cells is considered to facilitate FLS activation and T cell recruitment. However, it remains unknown whether RA-FLS co-cultured with activated peripheral blood mononuclear cells (PBMC) has immunoregulatory effects on peripheral Tfh. In the present study, we co-cultured RA-FLS with or without anti-CD3/CD28-stimulated PBMC. The results showed that RA-FLS co-cultured with stimulated PBMC could increase the numbers of CD4+ CXCR5+ ICOS+ T cells of RA PBMC possibly via the production of interleukin (IL)-6, a critical cytokine involved in the differentiation of Tfh cells. We also observed increased reactive oxygen species (ROS) levels in the co-culture system of RA-FLS and PBMC. The percentage of CD4+ CXCR5+ ICOS+ T cells was decreased when ROS production was inhibited by N-acetyl-L-cysteine (NAC), a specific inhibitor which can decrease ROS production. In addition, we showed that the higher levels of tumour necrosis factor (TNF)-α and IL-1β in the co-culture system and the blocking of TNF receptor 2 (TNF-R2) and IL-1β receptor (IL-1βR) both decreased the numbers of CD4+ CXCR5+ ICOS+ T cells. Our study reveals a novel mechanistic insight into how the interaction of RA-FLS and PBMC participates in the RA pathogenesis, and also provides support for the biologicals application for RA.
Collapse
Affiliation(s)
- Y Tang
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning
| | - B Wang
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning
| | - X Sun
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning
| | - H Li
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning
| | - X Ouyang
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning
| | - J Wei
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning
| | - B Dai
- Department of Rheumatology and Immunology, Dalian Municipal Central Hospital, Dalian
| | - Y Zhang
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Dalian Medical University, Liaoning, China
| | - X Li
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning
| |
Collapse
|
272
|
Kim KS, Yang HI. Thymosin β4 in rheumatoid arthritis: Friend or foe. Biomed Rep 2017; 7:205-208. [PMID: 28808568 DOI: 10.3892/br.2017.952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 07/20/2017] [Indexed: 12/21/2022] Open
Abstract
Rheumatoid arthritis (RA) has characteristic pannus tissues, which show tumor-like growth of the synovium through chronic joint inflammation. The synovium is highly penetrated by various immune cells, and the synovial lining becomes hyperplastic due to increased numbers of macrophage-like and fibroblast-like synoviocytes. Thus, a resultant hypoxic condition stimulates the expression of inflammation-related genes in various cells, in particular, vascular endothelial growth factor. Thymosin β4 (Tβ4), a 5-kDa protein, is known to play a significant role in various biological activities, such as actin sequestering, cell motility, migration, inflammation, and damage repair. Recent studies have provided evidence that Tβ4 may have a role in RA pathogenesis. The Tβ4 level has been shown to increase significantly in the joint fluid and serum of RA patients. However, whether Tβ4 stimulates or inhibits activation of RA immune responses remains to be determined. In the present study, we discuss the logical and clinical justifications for Tβ4 as a potential target for RA therapeutics.
Collapse
Affiliation(s)
- Kyoung Soo Kim
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Seoul 134-727, Republic of Korea.,East-West Bone and Joint Disease Research Institute, Kyung Hee University Hospital at Gangdong, Seoul 134-727, Republic of Korea
| | - Hyung-In Yang
- East-West Bone and Joint Disease Research Institute, Kyung Hee University Hospital at Gangdong, Seoul 134-727, Republic of Korea.,Division of Rheumatology, Department of Internal Medicine, Kyung Hee University Hospital at Gangdong, Seoul 134-727, Republic of Korea
| |
Collapse
|
273
|
Stienstra R, Netea-Maier RT, Riksen NP, Joosten LAB, Netea MG. Specific and Complex Reprogramming of Cellular Metabolism in Myeloid Cells during Innate Immune Responses. Cell Metab 2017; 26:142-156. [PMID: 28683282 DOI: 10.1016/j.cmet.2017.06.001] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 05/12/2017] [Accepted: 06/02/2017] [Indexed: 12/19/2022]
Abstract
Renewed interest in immune cell metabolism has led to the emergence of a research field aimed at studying the importance of metabolic processes for an effective immune response. In addition to the adaptive immune system, cells of the myeloid lineage have been shown to undergo robust metabolic changes upon activation. Whereas the specific metabolic requirements of myeloid cells after lipopolysaccharide/TLR4 stimulation have been extensively studied, recent evidence suggested that this model does not represent a metabolic blueprint for activated myeloid cells. Instead, different microbial stimuli, pathogens, or tissue microenvironments lead to specific and complex metabolic rewiring of myeloid cells. Here we present an overview of the metabolic heterogeneity in activated myeloid cells during health and disease. Directions for future research are suggested to ultimately provide new therapeutic opportunities. The uniqueness of metabolic signatures accompanying different conditions will require tailor-made interventions to ultimately modulate aberrant myeloid cell activation during disease.
Collapse
Affiliation(s)
- Rinke Stienstra
- Department of Internal Medicine (463), Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands; Division of Human Nutrition, Wageningen University, 6700 AA Wageningen, the Netherlands
| | - Romana T Netea-Maier
- Department of Internal Medicine (463), Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Niels P Riksen
- Department of Internal Medicine (463), Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine (463), Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands; Radboud Center for Infectious Diseases, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Mihai G Netea
- Department of Internal Medicine (463), Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands; Radboud Center for Infectious Diseases, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands; Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany.
| |
Collapse
|
274
|
Arjamaa O, Aaltonen V, Piippo N, Csont T, Petrovski G, Kaarniranta K, Kauppinen A. Hypoxia and inflammation in the release of VEGF and interleukins from human retinal pigment epithelial cells. Graefes Arch Clin Exp Ophthalmol 2017. [PMID: 28631245 DOI: 10.1007/s00417-017-3711-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
PURPOSE Retinal diseases are closely associated with both decreased oxygenation and increased inflammation. It is not known if hypoxia-induced vascular endothelial growth factor (VEGF) expression in the retina itself evokes inflammation, or whether inflammation is a prerequisite for the development of neovascularization. METHODS Human ARPE-19 cell line and primary human retinal pigment epithelium (RPE) cells were used. ARPE-19 cells were kept either under normoxic (24 h or 48 h) or hypoxic conditions (1% O2, 24 h). Part of the cells were re-oxygenated (24 h). Some ARPE-19 cells were additionally pre-treated with bacterial lipopolysaccharide (LPS). The levels of IL-6, IL-8, IL-1β, and IL-18 were determined from medium samples by an enzyme-linked immunosorbent assay (ELISA) method. Primary human RPE cells were exposed to hypoxia for 24 h, and the subsequent release of IL-6 and IL-8 was measured with ELISA. VEGF secretion from ARPE-19 cells was determined up to 24 h. RESULTS Hypoxia induced significant (P < 0.01) increases in the levels of both IL-6 and IL-8 in ARPE-19 cells, and LPS pre-treatment further enhanced these responses. Hypoxia exposure did not affect the IL-1β or IL-18 release irrespective of LPS pre-treatment. If primary RPE cells were incubated for 4 h in hypoxic conditions, IL-6 and IL-8 concentrations were increased by 7 and 8-fold respectively. Hypoxia increased the VEGF secretion from ARPE-19 cells in a similar manner with or without pre-treatment with LPS. CONCLUSIONS Hypoxia causes an inflammatory reaction in RPE cells that is potentiated by pre-treatment with the Toll-like receptor-activating agent, LPS. The secretion of VEGF from these cells is regulated directly by hypoxia and is not mediated by inflammation.
Collapse
Affiliation(s)
- Olli Arjamaa
- Department of Ophthalmology, University of Turku, Turku, 20521, Finland.
| | - Vesa Aaltonen
- Department of Ophthalmology, University of Turku, Turku, 20521, Finland.,Department of Ophthalmology, Turku University Hospital, Turku, Finland
| | - Niina Piippo
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland.,Department of Ophthalmology, University of Eastern Finland, Kuopio, Finland
| | - Tamás Csont
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Goran Petrovski
- Center for Eye Research, Department of Ophthalmology, Oslo University Hospital, University of Oslo, Oslo, Norway.,Department of Ophthalmology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Kai Kaarniranta
- Department of Ophthalmology, University of Eastern Finland, Kuopio, Finland.,Department of Ophthalmology, Kuopio University Hospital, Kuopio, Finland
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
275
|
Bustamante MF, Garcia-Carbonell R, Whisenant KD, Guma M. Fibroblast-like synoviocyte metabolism in the pathogenesis of rheumatoid arthritis. Arthritis Res Ther 2017; 19:110. [PMID: 28569176 PMCID: PMC5452638 DOI: 10.1186/s13075-017-1303-3] [Citation(s) in RCA: 310] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
An increasing number of studies show how changes in intracellular metabolic pathways alter tumor and immune cell function. However, little information about metabolic changes in other cell types, including synovial fibroblasts, is available. In rheumatoid arthritis (RA), fibroblast-like synoviocytes (FLS) are the most common cell type at the pannus–cartilage junction and contribute to joint destruction through their production of cytokines, chemokines, and matrix-degrading molecules and by migrating and invading joint cartilage. In this review, we show that these cells differ from healthy synovial fibroblasts, not only in their marker expression, proto-oncogene expression, or their epigenetic changes, but also in their intracellular metabolism. These metabolic changes must occur due to the stressful microenvironment of inflamed tissues, where concentrations of crucial nutrients such as glucose, glutamine, and oxygen are spatially and temporally heterogeneous. In addition, these metabolic changes will increase metabolite exchange between fibroblast and other synovial cells, which can potentially be activated. Glucose and phospholipid metabolism as well as bioactive lipids, including sphingosine-1-phosphate and lysophosphatidic acid, among others, are involved in FLS activation. These metabolic changes likely contribute to FLS involvement in aspects of immune response initiation or abnormal immune responses and strongly contribute to joint destruction.
Collapse
Affiliation(s)
- Marta F Bustamante
- Department of Medicine, School of Medicine, UCSD, 9500 Gilman Drive, La Jolla, CA, 92093-0663, USA
| | - Ricard Garcia-Carbonell
- Department of Medicine, School of Medicine, UCSD, 9500 Gilman Drive, La Jolla, CA, 92093-0663, USA
| | - Katrijn D Whisenant
- Department of Medicine, School of Medicine, UCSD, 9500 Gilman Drive, La Jolla, CA, 92093-0663, USA
| | - Monica Guma
- Department of Medicine, School of Medicine, UCSD, 9500 Gilman Drive, La Jolla, CA, 92093-0663, USA.
| |
Collapse
|
276
|
Cellular and molecular perspectives in rheumatoid arthritis. Semin Immunopathol 2017; 39:343-354. [PMID: 28508153 DOI: 10.1007/s00281-017-0633-1] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 04/17/2017] [Indexed: 12/13/2022]
Abstract
Synovial immunopathology in rheumatoid arthritis is complex involving both resident and infiltrating cells. The synovial tissue undergoes significant neovascularization, facilitating an influx of lymphocytes and monocytes that transform a typically acellular loose areolar membrane into an invasive tumour-like pannus. The microvasculature proliferates to form straight regularly-branching vessels; however, they are highly dysfunctional resulting in reduced oxygen supply and a hypoxic microenvironment. Autoantibodies such as rheumatoid factor and anti-citrullinated protein antibodies are found at an early stage, often before arthritis has developed, and they have been implicated in the pathogenesis of RA. Abnormal cellular metabolism and mitochondrial dysfunction thus ensue and, in turn, through the increased production of reactive oxygen species actively induce inflammation. Key pro-inflammatory cytokines, chemokines and growth factors and their signalling pathways, including nuclear factor κB, Janus kinase-signal transducer, are highly activated when immune cells are exposed to hypoxia in the inflamed rheumatoid joint show adaptive survival reactions by activating. This review attempts to highlight those aberrations in the innate and adaptive immune systems including the role of genetic and environmental factors, autoantibodies, cellular alterations, signalling pathways and metabolism that are implicated in the pathogenesis of RA and may therefore provide an opportunity for therapeutic intervention.
Collapse
|
277
|
Rhoads JP, Major AS, Rathmell JC. Fine tuning of immunometabolism for the treatment of rheumatic diseases. Nat Rev Rheumatol 2017; 13:313-320. [PMID: 28381829 PMCID: PMC5502208 DOI: 10.1038/nrrheum.2017.54] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
All immune cells depend on specific and efficient metabolic pathways to mount an appropriate response. Over the past decade, the field of immunometabolism has expanded our understanding of the various means by which cells modulate metabolism to achieve the effector functions necessary to fight infection or maintain homeostasis. Harnessing these metabolic pathways to manipulate inappropriate immune responses as a therapeutic strategy in cancer and autoimmunity has received increasing scrutiny by the scientific community. Fine tuning immunometabolism to provide the desired response, or prevent a deleterious response, is an attractive alternative to chemotherapy or overt immunosuppression. The various metabolic pathways used by immune cells in rheumatoid arthritis, systemic lupus erythematosus and osteoarthritis offer numerous opportunities for selective targeting of specific immune cell subsets to manipulate cellular metabolism for therapeutic benefit in these rheumatologic diseases.
Collapse
Affiliation(s)
- Jillian P Rhoads
- Division of Molecular Pathology, Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, 1161 21st Avenue South, Nashville, Tennessee 37232, USA
| | - Amy S Major
- Division of Molecular Pathology, Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center; the Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University Medical Center; and the Vanderbilt Center for Immunobiology, Vanderbilt University School of Medicine, 1161 21st Avenue South, Nashville, Tennessee 37232, USA; and at the Department for Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee 37232, USA
| | - Jeffrey C Rathmell
- Division of Molecular Pathology, Department of Pathology, Microbiology, and Immunology, and the Vanderbilt Center for Immunobiology, Vanderbilt University School of Medicine, 1161 21st Avenue South, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| |
Collapse
|
278
|
Abstract
One of the fundamental traits of immune cells in rheumatoid arthritis (RA) is their ability to proliferate, a property shared with the joint-resident cells that form the synovial pannus. The building of biomass imposes high demands for energy and biosynthetic precursors, implicating metabolic control as a basic disease mechanism. During preclinical RA, when autoreactive T cells expand and immunological tolerance is broken, the main sites of disease are the secondary lymphoid tissues. Naive CD4+ T cells from patients with RA have a distinct metabolic signature, characterized by dampened glycolysis, low ATP levels and enhanced shunting of glucose into the pentose phosphate pathway. Equipped with high levels of NADPH and depleted of intracellular reactive oxygen species, such T cells hyperproliferate and acquire proinflammatory effector functions. During clinical RA, immune cells coexist with stromal cells in the acidic milieu of the inflamed joint. This microenvironment is rich in metabolic intermediates that are released into the extracellular space to shape cell-cell communication and the functional activity of tissue-resident cells. Increasing awareness of how metabolites regulate signalling pathways, guide post-translational modifications and condition the tissue microenvironment will help to connect environmental factors with the pathogenic behaviour of T cells in RA.
Collapse
|
279
|
Role of Protein Kinase C and Nox2-Derived Reactive Oxygen Species Formation in the Activation and Maturation of Dendritic Cells by Phorbol Ester and Lipopolysaccharide. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:4157213. [PMID: 28458776 PMCID: PMC5387830 DOI: 10.1155/2017/4157213] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 02/07/2017] [Accepted: 02/08/2017] [Indexed: 12/25/2022]
Abstract
Aims. Activation/maturation of dendritic cells (DCs) plays a central role in adaptive immune responses by antigen processing and (cross-) activation of T cells. There is ongoing discussion on the role of reactive oxygen species (ROS) in these processes and with the present study we investigated this enigmatic pathway. Methods and Results. DCs were cultured from precursors in the bone marrow of mice (BM-DCs) and analyzed for ROS formation, maturation, and T cell stimulatory capacity upon stimulation with phorbol ester (PDBu) and lipopolysaccharide (LPS). LPS stimulation of BM-DCs caused maturation with moderate intracellular ROS formation, whereas PDBu treatment resulted in maturation with significant ROS formation. The NADPH oxidase inhibitors apocynin/VAS2870 and genetic gp91phox deletion both decreased the ROS signal in PDBu-stimulated BM-DCs without affecting maturation and T cell stimulatory capacity of BM-DCs. In contrast, the protein kinase C inhibitors chelerythrine/Gö6983 decreased PDBu-stimulated ROS formation in BM-DCs as well as maturation. Conclusion. Obviously Nox2-dependent ROS formation in BM-DCs is not always required for their maturation or T cell stimulatory potential. PDBu/LPS-triggered BM-DC maturation rather relies on phosphorylation cascades. Our results question the role of oxidative stress as an essential “danger signal” for BM-DC activation, although we cannot exclude contribution by other ROS sources.
Collapse
|
280
|
Abstract
Immune cells constantly patrol the body via the bloodstream and migrate into multiple tissues where they face variable and sometimes demanding environmental conditions. Nutrient and oxygen availability can vary during homeostasis, and especially during the course of an immune response, creating a demand for immune cells that are highly metabolically dynamic. As an evolutionary response, immune cells have developed different metabolic programmes to supply them with cellular energy and biomolecules, enabling them to cope with changing and challenging metabolic conditions. In the past 5 years, it has become clear that cellular metabolism affects immune cell function and differentiation, and that disease-specific metabolic configurations might provide an explanation for the dysfunctional immune responses seen in rheumatic diseases. This Review outlines the metabolic challenges faced by immune cells in states of homeostasis and inflammation, as well as the variety of metabolic configurations utilized by immune cells during differentiation and activation. Changes in cellular metabolism that contribute towards the dysfunctional immune responses seen in rheumatic diseases are also briefly discussed.
Collapse
Affiliation(s)
- Timo Gaber
- Charité University Hospital, Department of Rheumatology and Clinical Immunology, Charité University Medicine, Charitéplatz 1, 10117 Berlin, Germany.,German Rheumatism Research Centre (DRFZ), Charitéplatz 1, 10117 Berlin, Germany
| | - Cindy Strehl
- Charité University Hospital, Department of Rheumatology and Clinical Immunology, Charité University Medicine, Charitéplatz 1, 10117 Berlin, Germany.,German Rheumatism Research Centre (DRFZ), Charitéplatz 1, 10117 Berlin, Germany
| | - Frank Buttgereit
- Charité University Hospital, Department of Rheumatology and Clinical Immunology, Charité University Medicine, Charitéplatz 1, 10117 Berlin, Germany.,German Rheumatism Research Centre (DRFZ), Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
281
|
McGarry T, Biniecka M, Gao W, Cluxton D, Canavan M, Wade S, Wade S, Gallagher L, Orr C, Veale DJ, Fearon U. Resolution of TLR2-induced inflammation through manipulation of metabolic pathways in Rheumatoid Arthritis. Sci Rep 2017; 7:43165. [PMID: 28225071 PMCID: PMC5320554 DOI: 10.1038/srep43165] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/20/2017] [Indexed: 12/25/2022] Open
Abstract
During inflammation, immune cells activated by toll-like receptors (TLRs) have the ability to undergo a bioenergetic switch towards glycolysis in a manner similar to that observed in tumour cells. While TLRs have been implicated in the pathogenesis of rheumatoid arthritis (RA), their role in regulating cellular metabolism in synovial cells, however, is still unknown. In this study, we investigated the effect of TLR2-activation on mitochondrial function and bioenergetics in primary RA-synovial fibroblast cells (RASFC), and further determined the role of glycolytic blockade on TLR2-induced inflammation in RASFC using glycolytic inhibitor 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO). We observed an increase in mitochondrial mutations, ROS and lipid peroxidation, paralleled by a decrease in the mitochondrial membrane potential in TLR2-stimulated RASFC. This was mirrored by differential regulation of key mitochondrial genes, coupled with alteration in mitochondrial morphology. TLR2-activation also regulated changes in the bioenergetic profile of RASFC, inducing PKM2 nuclear translocation, decreased mitochondrial respiration and ATP synthesis and increased glycolysis:respiration ratio, suggesting a metabolic switch. Finally, using 3PO, we demonstrated that glycolytic blockade reversed TLR2-induced pro-inflammatory mechanisms including invasion, migration, cytokine/chemokine secretion and signalling pathways. These findings support the concept of complex interplay between innate immunity, oxidative damage and oxygen metabolism in RA pathogenesis.
Collapse
Affiliation(s)
- Trudy McGarry
- Molecular Rheumatology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
- Centre for Arthritis and Rheumatic Diseases, St. Vincent’s University Hospital, Dublin, Ireland
| | - Monika Biniecka
- Centre for Arthritis and Rheumatic Diseases, St. Vincent’s University Hospital, Dublin, Ireland
| | - Wei Gao
- Centre for Arthritis and Rheumatic Diseases, St. Vincent’s University Hospital, Dublin, Ireland
| | - Deborah Cluxton
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Mary Canavan
- Molecular Rheumatology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
- Centre for Arthritis and Rheumatic Diseases, St. Vincent’s University Hospital, Dublin, Ireland
| | - Siobhan Wade
- Molecular Rheumatology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Sarah Wade
- Molecular Rheumatology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
- Centre for Arthritis and Rheumatic Diseases, St. Vincent’s University Hospital, Dublin, Ireland
| | - Lorna Gallagher
- Centre for Arthritis and Rheumatic Diseases, St. Vincent’s University Hospital, Dublin, Ireland
| | - Carl Orr
- Centre for Arthritis and Rheumatic Diseases, St. Vincent’s University Hospital, Dublin, Ireland
| | - Douglas J. Veale
- Centre for Arthritis and Rheumatic Diseases, St. Vincent’s University Hospital, Dublin, Ireland
| | - Ursula Fearon
- Molecular Rheumatology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
282
|
Glucose-6-Phosphate Isomerase (G6PI) Mediates Hypoxia-Induced Angiogenesis in Rheumatoid Arthritis. Sci Rep 2017; 7:40274. [PMID: 28067317 PMCID: PMC5220294 DOI: 10.1038/srep40274] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 12/05/2016] [Indexed: 12/22/2022] Open
Abstract
The higher level of Glucose-6-phosphate isomerase (G6PI) has been found in both synovial tissue and synovial fluid of rheumatoid arthritis (RA) patients, while the function of G6PI in RA remains unclear. Herein we found the enrichment of G6PI in microvascular endothelial cells of synovial tissue in RA patients, where a 3% O2 hypoxia environment has been identified. In order to determine the correlation between the high G6PI level and the low oxygen concentration in RA, a hypoxia condition (~3% O2) in vitro was applied to mimic the RA environment in vivo. Hypoxia promoted cellular proliferation of rheumatoid arthritis synovial fibroblasts (RASFs), and induced cell migration and angiogenic tube formation of human dermal microvascular endothelial cells (HDMECs), which were accompanied with the increased expression of G6PI and HIF-1α. Through application of G6PI loss-of-function assays, we confirmed the requirement of G6PI expression for those hypoxia-induced phenotype in RA. In addition, we demonstrated for the first time that G6PI plays key roles in regulating VEGF secretion from RASFs to regulate the hypoxia-induced angiogenesis in RA. Taken together, we demonstrated a novel pathway regulating hypoxia-induced angiogenesis in RA mediated by G6PI.
Collapse
|
283
|
Li Y, Zheng JY, Liu JQ, Yang J, Liu Y, Wang C, Ma XN, Liu BL, Xin GZ, Liu LF. Succinate/NLRP3 Inflammasome Induces Synovial Fibroblast Activation: Therapeutical Effects of Clematichinenoside AR on Arthritis. Front Immunol 2016; 7:532. [PMID: 28003810 PMCID: PMC5141240 DOI: 10.3389/fimmu.2016.00532] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 11/11/2016] [Indexed: 12/22/2022] Open
Abstract
Clematichinenoside AR (C-AR) is a triterpene saponin isolated from the root of Clematis manshurica Rupr., which is a herbal medicine used in traditional Chinese medicine for the treatment of arthritis. C-AR exerts anti-inflammatory and immunosuppressive properties, but little is known about its action in the suppression of fibroblast activation. Low oxygen tension and transforming growth factor-β (TGF-β1) induction in the synovium contribute to fibrosis in arthritis. This study was designed to investigate the effect of C-AR on synovial fibrosis from the aspects of hypoxic TGF-β1 and hypoxia-inducible transcription factor-1α (HIF-1α) induction. In the synovium of rheumatoid arthritis (RA) rats, hypoxic TGF-β1 induction increased succinate accumulation due to the reversal of succinate dehydrogenase (SDH) activation and induced NLRP3 inflammasome activation in a manner dependent on HIF-1α induction. In response to NLRP3 inflammasome activation, the released IL-1β further increased TGF-β1 induction, suggesting the forward cycle between inflammation and fibrosis in myofibroblast activation. In the synovium of RA rats, C-AR inhibited hypoxic TGF-β1 induction and suppressed succinate-associated NLRP3 inflammasome activation by inhibiting SDH activity, and thereby prevented myofibroblast activation by blocking the cross-talk between inflammation and fibrosis. Taken together, these results showed that succinate worked as a metabolic signaling, linking inflammation with fibrosis through NLRP3 inflammasome activation. These findings suggested that synovial succinate accumulation and HIF-1α induction might be therapeutical targets for the prevention of fibrosis in arthritis.
Collapse
Affiliation(s)
- Yi Li
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, China Pharmaceutical University , Nanjing , China
| | - Jia-Yi Zheng
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, China Pharmaceutical University , Nanjing , China
| | - Jian-Qun Liu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine , Nanchang , China
| | - Jie Yang
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, China Pharmaceutical University , Nanjing , China
| | - Yang Liu
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, China Pharmaceutical University , Nanjing , China
| | - Chen Wang
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, China Pharmaceutical University , Nanjing , China
| | - Xiao-Nan Ma
- Cellular and Molecular Biology Center of China Pharmaceutical University , Nanjing , China
| | - Bao-Lin Liu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University , Nanjing , China
| | - Gui-Zhong Xin
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, China Pharmaceutical University , Nanjing , China
| | - Li-Fang Liu
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, China Pharmaceutical University , Nanjing , China
| |
Collapse
|
284
|
Cronstein BN, Sitkovsky M. Adenosine and adenosine receptors in the pathogenesis and treatment of rheumatic diseases. Nat Rev Rheumatol 2016; 13:41-51. [PMID: 27829671 DOI: 10.1038/nrrheum.2016.178] [Citation(s) in RCA: 178] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Adenosine, a nucleoside derived primarily from the extracellular hydrolysis of adenine nucleotides, is a potent regulator of inflammation. Adenosine mediates its effects on inflammatory cells by engaging one or more cell-surface receptors. The expression and function of adenosine receptors on different cell types change during the course of rheumatic diseases, such as rheumatoid arthritis (RA). Targeting adenosine receptors directly for the treatment of rheumatic diseases is currently under study; however, indirect targeting of adenosine receptors by enhancing adenosine levels at inflamed sites accounts for most of the anti-inflammatory effects of methotrexate, the anchor drug for the treatment of RA. In this Review, we discuss the regulation of extracellular adenosine levels and the role of adenosine in regulating the inflammatory and immune responses in rheumatic diseases such as RA, psoriasis and other types of inflammatory arthritis. In addition, adenosine and its receptors are involved in promoting fibrous matrix production in the skin and other organs, and the role of adenosine in fibrosis and fibrosing diseases is also discussed.
Collapse
Affiliation(s)
- Bruce N Cronstein
- NYU-HHC Clinical and Translational Science Institute, NYU School of Medicine, 550 First Avenue, New York, New York 10016, USA
| | - Michail Sitkovsky
- New England Inflammation and Tissue Protection Institute, Northeastern University, 360 Huntington Avenue, 312 MU, Boston, Massachusetts 02115, USA
| |
Collapse
|
285
|
Ahmed U, Anwar A, Savage RS, Thornalley PJ, Rabbani N. Protein oxidation, nitration and glycation biomarkers for early-stage diagnosis of osteoarthritis of the knee and typing and progression of arthritic disease. Arthritis Res Ther 2016; 18:250. [PMID: 27788684 PMCID: PMC5081671 DOI: 10.1186/s13075-016-1154-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 10/11/2016] [Indexed: 01/15/2023] Open
Abstract
Background There is currently no blood-based test for detection of early-stage osteoarthritis (OA) and the anti-cyclic citrullinated peptide (CCP) antibody test for rheumatoid arthritis (RA) has relatively low sensitivity for early-stage disease. Morbidity in arthritis could be markedly decreased if early-stage arthritis could be routinely detected and classified by clinical chemistry test. We hypothesised that damage to proteins of the joint by oxidation, nitration and glycation, and with signatures released in plasma as oxidized, nitrated and glycated amino acids may facilitate early-stage diagnosis and typing of arthritis. Methods Patients with knee joint early-stage and advanced OA and RA or other inflammatory joint disease (non-RA) and healthy subjects with good skeletal health were recruited for the study (n = 225). Plasma/serum and synovial fluid was analysed for oxidized, nitrated and glycated proteins and amino acids by quantitative liquid chromatography-tandem mass spectrometry. Data-driven machine learning methods were employed to explore diagnostic utility of the measurements for detection and classifying early-stage OA and RA, non-RA and good skeletal health with training set and independent test set cohorts. Results Glycated, oxidized and nitrated proteins and amino acids were detected in synovial fluid and plasma of arthritic patients with characteristic patterns found in early and advanced OA and RA, and non-RA, with respect to healthy controls. In early-stage disease, two algorithms for consecutive use in diagnosis were developed: (1) disease versus healthy control, and (2) classification as OA, RA and non-RA. The algorithms featured 10 damaged amino acids in plasma, hydroxyproline and anti-CCP antibody status. Sensitivities/specificities were: (1) good skeletal health, 0.92/0.91; (2) early-stage OA, 0.92/0.90; early-stage RA, 0.80/0.78; and non-RA, 0.70/0.65 (training set). These were confirmed in independent test set validation. Damaged amino acids increased further in severe and advanced OA and RA. Conclusions Oxidized, nitrated and glycated amino acids combined with hydroxyproline and anti-CCP antibody status provided a plasma-based biochemical test of relatively high sensitivity and specificity for early-stage diagnosis and typing of arthritic disease. Electronic supplementary material The online version of this article (doi:10.1186/s13075-016-1154-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Usman Ahmed
- Warwick Medical School, Clinical Sciences Research Laboratories, University of Warwick, University Hospital, Coventry, CV2 2DX, UK
| | - Attia Anwar
- Warwick Medical School, Clinical Sciences Research Laboratories, University of Warwick, University Hospital, Coventry, CV2 2DX, UK
| | - Richard S Savage
- Warwick Systems Biology Centre, Senate House, University of Warwick, Coventry, CV4 7AL, UK
| | - Paul J Thornalley
- Warwick Medical School, Clinical Sciences Research Laboratories, University of Warwick, University Hospital, Coventry, CV2 2DX, UK.,Warwick Systems Biology Centre, Senate House, University of Warwick, Coventry, CV4 7AL, UK
| | - Naila Rabbani
- Warwick Medical School, Clinical Sciences Research Laboratories, University of Warwick, University Hospital, Coventry, CV2 2DX, UK. .,Warwick Systems Biology Centre, Senate House, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|