251
|
Walters RW, Bradrick SS, Gromeier M. Poly(A)-binding protein modulates mRNA susceptibility to cap-dependent miRNA-mediated repression. RNA (NEW YORK, N.Y.) 2010; 16:239-250. [PMID: 19934229 PMCID: PMC2802033 DOI: 10.1261/rna.1795410] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Accepted: 10/19/2009] [Indexed: 05/28/2023]
Abstract
MicroRNAs (miRNAs) regulate gene expression post-transcriptionally through binding specific sites within the 3' untranslated regions (UTRs) of their target mRNAs. Numerous investigations have documented repressive effects of miRNAs and identified factors required for their activity. However, the precise mechanisms by which miRNAs modulate gene expression are still obscure. Here, we have examined the effects of multiple miRNAs on diverse target transcripts containing artificial or naturally occurring 3' UTRs in human cell culture. In agreement with previous studies, we report that both the 5' m(7)G cap and 3' poly(A) tail are essential for maximum miRNA repression. These cis-acting elements also conferred miRNA susceptibility to target mRNAs translating under the control of viral- and eukaryotic mRNA-derived 5' UTR structures that enable cap-independent translation. Additionally, we evaluated a role for the poly(A)-binding protein (PABP) in miRNA function utilizing multiple approaches to modulate levels of active PABP in cells. PABP expression and activity inversely correlated with the strength of miRNA silencing, in part due to antagonism of target mRNA deadenylation. Together, these findings further define the cis- and trans-acting factors that modulate miRNA efficacy.
Collapse
Affiliation(s)
- Robert W Walters
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
252
|
Shi H, Chamond N, Djikeng A, Tschudi C, Ullu E. RNA interference in Trypanosoma brucei: role of the n-terminal RGG domain and the polyribosome association of argonaute. J Biol Chem 2009; 284:36511-36520. [PMID: 19880512 DOI: 10.1074/jbc.m109.073072] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Argonaute proteins (AGOs) are central to RNA interference (RNAi) and related silencing pathways. At the core of the RNAi pathway in the ancient parasitic eukaryote Trypanosoma brucei is a single Argonaute protein, TbAGO1, with an established role in the destruction of potentially harmful retroposon transcripts. One notable feature of TbAGO1 is that a fraction sediments with polyribosomes, and this association is facilitated by an arginine/glycine-rich domain (RGG domain) at the N terminus of the protein. Here we report that reducing the size of the RGG domain and, in particular, mutating all arginine residues severely reduced the association of TbAGO1 with polyribosomes and RNAi-induced cleavage of mRNA. However, these mutations did not change the cellular localization of Argonaute and did not affect the accumulation of single-stranded siRNAs, an essential step in the activation of the RNA-induced silencing complex. We further show that mRNA on polyribosomes can be targeted for degradation, although this alliance is not a pre-requisite. Finally, sequestering tubulin mRNAs from translation with antisense morpholino oligonucleotides reduced the RNAi response indicating that mRNAs not engaged in translation may be less accessible to the RNAi machinery. We conclude that the association of the RNAi machinery and target mRNA on polyribosomes promotes an efficient RNAi response. This mechanism may represent an ancient adaptation to ensure that retroposon transcripts are efficiently destroyed, if they become associated with the translational apparatus.
Collapse
Affiliation(s)
- Huafang Shi
- Department of Internal Medicine, Yale University Medical School, New Haven, Connecticut 06536-8012
| | - Nathalie Chamond
- Department of Internal Medicine, Yale University Medical School, New Haven, Connecticut 06536-8012
| | - Appolinaire Djikeng
- Department of Internal Medicine, Yale University Medical School, New Haven, Connecticut 06536-8012
| | - Christian Tschudi
- Department of Epidemiology and Public Health, Yale University Medical School, New Haven, Connecticut 06536-8012.
| | - Elisabetta Ullu
- Department of Internal Medicine, Yale University Medical School, New Haven, Connecticut 06536-8012; Department of Cell Biology, Yale University Medical School, New Haven, Connecticut 06536-8012
| |
Collapse
|
253
|
Pager CT, Wehner KA, Fuchs G, Sarnow P. MicroRNA-mediated gene silencing. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 90:187-210. [PMID: 20374742 DOI: 10.1016/s1877-1173(09)90005-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
MicroRNAs are 20-21 nucleotides-long noncoding RNAs that function as posttranscriptional regulators of gene expression in a variety of organisms ranging from plants to mammalian cells. These regulators are encoded by approximately 800 genes in the mammalian genome and target half of the mRNAs in mammalian cells. While the biogenesis of microRNAs is fairly well understood, the mechanism by which target genes are regulated remains controversial. The recent discoveries that viruses encode microRNAs or subvert host cell microRNAs has enhanced our knowledge about biological functions of microRNAs during disease and has suggested that microRNAs could be used as targets in antiviral gene therapy. This review will provide a brief history of microRNA research, discuss the biogenesis and mechanisms of microRNAs, and summarize findings that have employed inhibitors of microRNA miR-122 to treat hepatitis C virus-induced liver disease.
Collapse
Affiliation(s)
- Cara T Pager
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | |
Collapse
|
254
|
Poole CB, Davis PJ, Jin J, McReynolds LA. Cloning and bioinformatic identification of small RNAs in the filarial nematode, Brugia malayi. Mol Biochem Parasitol 2009; 169:87-94. [PMID: 19874857 DOI: 10.1016/j.molbiopara.2009.10.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 10/15/2009] [Accepted: 10/16/2009] [Indexed: 11/16/2022]
Abstract
Characterization of small RNAs from the filarial nematode Brugia malayi is the initial step in understanding their role in gene silencing. Both RNA cloning and bioinformatics were used to identify 32 microRNAs (miRNAs) belonging to 24 families. One family, miR-36 only occurs in helminths including B. malayi. Several of the miRNAs are arranged in clusters and are coordinately expressed as determined by northern blot analysis. In addition, small RNAs were identified from Pao/Bleo retrotransposons and their associated repeat sequences indicating that B. malayi uses an RNAi mechanism to maintain genome integrity. Analysis of these data provides a first glimpse into how small RNA-mediated silencing pathways regulate the parasitic life cycle of B. malayi.
Collapse
|
255
|
Ago-TNRC6 triggers microRNA-mediated decay by promoting two deadenylation steps. Nat Struct Mol Biol 2009; 16:1160-6. [PMID: 19838187 PMCID: PMC2921184 DOI: 10.1038/nsmb.1709] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Accepted: 09/25/2009] [Indexed: 12/18/2022]
Abstract
MicroRNAs (miRNAs) silence the expression of their mRNA targets mainly by promoting mRNA decay. The mechanism, kinetics and participating enzymes for miRNA-mediated decay in mammalian cells remain largely unclear. Combining the approaches of transcriptional pulsing, RNA tethering, overexpression of dominant-negative mutants, and siRNA-mediated gene knockdown, we show that let-7 miRNA-induced silencing complexes (miRISCs), which contain the proteins Argonaute (Ago) and TNRC6 (also known as GW182), trigger very rapid mRNA decay by inducing accelerated biphasic deadenylation mediated by Pan2-Pan3 and Ccr4-Caf1 deadenylase complexes followed by Dcp1-Dcp2 complex-directed decapping in mammalian cells. When tethered to mRNAs, all four human Ago proteins and TNRC6C are each able to recapitulate the two deadenylation steps. Two conserved human Ago2 phenylalanines (Phe470 and Phe505) are critical for recruiting TNRC6 to promote deadenylation. These findings indicate that promotion of biphasic deadenylation to trigger mRNA decay is an intrinsic property of miRISCs.
Collapse
|
256
|
Drosophila miR2 primarily targets the m7GpppN cap structure for translational repression. Mol Cell 2009; 35:881-8. [PMID: 19782035 DOI: 10.1016/j.molcel.2009.09.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 08/13/2009] [Accepted: 08/28/2009] [Indexed: 11/20/2022]
Abstract
Understanding the molecular mechanism(s) of how miRNAs repress mRNA translation is a fundamental challenge in RNA biology. Here we use a validated cell-free system from Drosophila embryos to investigate how miR2 inhibits translation initiation. By screening a library of chemical m7GpppN cap structure analogs, we identified defined modifications of the triphosphate backbone that augment miRNA-mediated inhibition of translation initiation but are "neutral" toward general cap-dependent translation. Interestingly, these caps also augment inhibition by 4E-BP. Kinetic dissection of translational repression and miR2-induced deadenylation shows that both processes proceed largely independently, with establishment of the repressed state involving a slow step. Our data demonstrate a primary role for the m7GpppN cap structure in miRNA-mediated translational inhibition, implicate structural determinants outside the core eIF4E-binding region in this process, and suggest that miRNAs may target cap-dependent translation through a mechanism related to the 4E-BP class of translational regulators.
Collapse
|
257
|
Chan SP, Slack FJ. Ribosomal protein RPS-14 modulates let-7 microRNA function in Caenorhabditis elegans. Dev Biol 2009; 334:152-60. [PMID: 19627982 PMCID: PMC2753218 DOI: 10.1016/j.ydbio.2009.07.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Revised: 07/10/2009] [Accepted: 07/12/2009] [Indexed: 12/11/2022]
Abstract
The let-7 microRNA (miRNA) regulates developmental timing at the larval-to-adult transition in Caenorhabditis elegans. Dysregulation of let-7 results in irregular hypodermal and vulval development. Disrupted let-7 function is also a feature of human lung cancer. However, little is known about the mechanism and co-factors of let-7. Here we demonstrate that ribosomal protein RPS-14 is able to modulate let-7 function in C. elegans. The RPS-14 protein co-immunoprecipitated with the nematode Argonaute homolog, ALG-1. Reduction of rps-14 gene expression by RNAi suppressed the aberrant vulva and hypodermis development phenotypes of let-7(n2853) mutant animals and the mis-regulation of a reporter bearing the lin-41 3'UTR, a well established let-7 target. Our results indicate an interactive relationship between let-7 miRNA function and ribosomal protein RPS-14 in regulation of terminal differentiation that may help in understanding the mechanism of translational control by miRNAs.
Collapse
Affiliation(s)
- Shih-Peng Chan
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | | |
Collapse
|
258
|
De Marco N, Iannone L, Carotenuto R, Biffo S, Vitale A, Campanella C. p27BBP/eIF6 acts as an anti-apoptotic factor upstream of Bcl-2 during Xenopus laevis development. Cell Death Differ 2009; 17:360-72. [DOI: 10.1038/cdd.2009.128] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
259
|
The silencing domain of GW182 interacts with PABPC1 to promote translational repression and degradation of microRNA targets and is required for target release. Mol Cell Biol 2009; 29:6220-31. [PMID: 19797087 DOI: 10.1128/mcb.01081-09] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
GW182 family proteins are essential in animal cells for microRNA (miRNA)-mediated gene silencing, yet the molecular mechanism that allows GW182 to promote translational repression and mRNA decay remains largely unknown. Previous studies showed that while the GW182 N-terminal domain interacts with Argonaute proteins, translational repression and degradation of miRNA targets are promoted by a bipartite silencing domain comprising the GW182 middle and C-terminal regions. Here we show that the GW182 C-terminal region is required for GW182 to release silenced mRNPs; moreover, GW182 dissociates from miRNA targets at a step of silencing downstream of deadenylation, indicating that GW182 is required to initiate but not to maintain silencing. In addition, we show that the GW182 bipartite silencing domain competes with eukaryotic initiation factor 4G for binding to PABPC1. The GW182-PABPC1 interaction is also required for miRNA target degradation; accordingly, we observed that PABPC1 associates with components of the CCR4-NOT deadenylase complex. Finally, we show that PABPC1 overexpression suppresses the silencing of miRNA targets. We propose a model in which the GW182 silencing domain promotes translational repression, at least in part, by interfering with mRNA circularization and also recruits the deadenylase complex through the interaction with PABPC1.
Collapse
|
260
|
Bradrick SS, Gromeier M. Identification of gemin5 as a novel 7-methylguanosine cap-binding protein. PLoS One 2009; 4:e7030. [PMID: 19750007 PMCID: PMC2736588 DOI: 10.1371/journal.pone.0007030] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Accepted: 08/14/2009] [Indexed: 01/04/2023] Open
Abstract
Background A unique attribute of RNA molecules synthesized by RNA polymerase II is the presence of a 7-methylguanosine (m7G) cap structure added co-transcriptionally to the 5′ end. Through its association with trans-acting effector proteins, the m7G cap participates in multiple aspects of RNA metabolism including localization, translation and decay. However, at present relatively few eukaryotic proteins have been identified as factors capable of direct association with m7G. Methodology/Principal Findings Employing an unbiased proteomic approach, we identified gemin5, a component of the survival of motor neuron (SMN) complex, as a factor capable of direct and specific interaction with the m7G cap. Gemin5 was readily purified by cap-affinity chromatography in contrast to other SMN complex proteins. Investigating the underlying basis for this observation, we found that purified gemin5 associates with m7G-linked sepharose in the absence of detectable eIF4E, and specifically crosslinks to radiolabeled cap structure after UV irradiation. Deletion analysis revealed that an intact set of WD repeat domains located in the N-terminal half of gemin5 are required for cap-binding. Moreover, using structural modeling and site-directed mutagenesis, we identified two proximal aromatic residues located within the WD repeat region that significantly impact m7G association. Conclusions/Significance This study rigorously identifies gemin5 as a novel cap-binding protein and describes an unprecedented role for WD repeat domains in m7G recognition. The findings presented here will facilitate understanding of gemin5's role in the metabolism of non-coding snRNAs and perhaps other RNA pol II transcripts.
Collapse
Affiliation(s)
- Shelton S Bradrick
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America.
| | | |
Collapse
|
261
|
Yang J, Yuan YA. A structural perspective of the protein–RNA interactions involved in virus-induced RNA silencing and its suppression. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2009; 1789:642-52. [DOI: 10.1016/j.bbagrm.2009.05.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 05/14/2009] [Accepted: 05/25/2009] [Indexed: 12/15/2022]
|
262
|
Curry S, Kotik-Kogan O, Conte MR, Brick P. Getting to the end of RNA: structural analysis of protein recognition of 5' and 3' termini. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1789:653-66. [PMID: 19619683 DOI: 10.1016/j.bbagrm.2009.07.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 07/07/2009] [Accepted: 07/09/2009] [Indexed: 10/20/2022]
Abstract
The specific recognition by proteins of the 5' and 3' ends of RNA molecules is an important facet of many cellular processes, including RNA maturation, regulation of translation initiation and control of gene expression by degradation and RNA interference. The aim of this review is to survey recent structural analyses of protein binding domains that specifically bind to the extreme 5' or 3' termini of RNA. For reasons of space and because their interactions are also governed by catalytic considerations, we have excluded enzymes that modify the 5' and 3' extremities of RNA. It is clear that there is enormous structural diversity among the proteins that have evolved to bind to the ends of RNA molecules. Moreover, they commonly exhibit conformational flexibility that appears to be important for binding and regulation of the interaction. This flexibility has sometimes complicated the interpretation of structural results and presents significant challenges for future investigations.
Collapse
Affiliation(s)
- Stephen Curry
- Biophysics Section, Blackett Laboratory, Imperial College, Exhibition Road, London, SW7 2AZ, UK.
| | | | | | | |
Collapse
|
263
|
Zhang L, Hammell M, Kudlow BA, Ambros V, Han M. Systematic analysis of dynamic miRNA-target interactions during C. elegans development. Development 2009; 136:3043-55. [PMID: 19675127 PMCID: PMC2730362 DOI: 10.1242/dev.039008] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2009] [Indexed: 11/20/2022]
Abstract
Although microRNA (miRNA)-mediated functions have been implicated in many aspects of animal development, the majority of miRNA::mRNA regulatory interactions remain to be characterized experimentally. We used an AIN/GW182 protein immunoprecipitation approach to systematically analyze miRNA::mRNA interactions during C. elegans development. We characterized the composition of miRNAs in functional miRNA-induced silencing complexes (miRISCs) at each developmental stage and identified three sets of miRNAs with distinct stage-specificity of function. We then identified thousands of miRNA targets in each developmental stage, including a significant portion that is subject to differential miRNA regulation during development. By identifying thousands of miRNA family-mRNA pairs with temporally correlated patterns of AIN-2 association, we gained valuable information on the principles of physiological miRNA::target recognition and predicted 1589 high-confidence miRNA family::mRNA interactions. Our data support the idea that miRNAs preferentially target genes involved in signaling processes and avoid genes with housekeeping functions, and that miRNAs orchestrate temporal developmental programs by coordinately targeting or avoiding genes involved in particular biological functions.
Collapse
Affiliation(s)
- Liang Zhang
- Howard Hughes Medical Institute and Department of MCDB, University of Colorado, Boulder, CO 80309, USA
| | | | | | | | | |
Collapse
|
264
|
Fabian MR, Mathonnet G, Sundermeier T, Mathys H, Zipprich JT, Svitkin YV, Rivas F, Jinek M, Wohlschlegel J, Doudna JA, Chen CYA, Shyu AB, Yates JR, Hannon GJ, Filipowicz W, Duchaine TF, Sonenberg N. Mammalian miRNA RISC recruits CAF1 and PABP to affect PABP-dependent deadenylation. Mol Cell 2009; 35:868-80. [PMID: 19716330 DOI: 10.1016/j.molcel.2009.08.004] [Citation(s) in RCA: 303] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Revised: 04/13/2009] [Accepted: 08/11/2009] [Indexed: 11/13/2022]
Abstract
MicroRNAs (miRNAs) inhibit mRNA expression in general by base pairing to the 3'UTR of target mRNAs and consequently inhibiting translation and/or initiating poly(A) tail deadenylation and mRNA destabilization. Here we examine the mechanism and kinetics of miRNA-mediated deadenylation in mouse Krebs-2 ascites extract. We demonstrate that miRNA-mediated mRNA deadenylation occurs subsequent to initial translational inhibition, indicating a two-step mechanism of miRNA action, which serves to consolidate repression. We show that a let-7 miRNA-loaded RNA-induced silencing complex (miRISC) interacts with the poly(A)-binding protein (PABP) and the CAF1 and CCR4 deadenylases. In addition, we demonstrate that miRNA-mediated deadenylation is dependent upon CAF1 activity and PABP, which serves as a bona fide miRNA coactivator. Importantly, we present evidence that GW182, a core component of the miRISC, directly interacts with PABP via its C-terminal region and that this interaction is required for miRNA-mediated deadenylation.
Collapse
Affiliation(s)
- Marc R Fabian
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
265
|
Beilharz TH, Humphreys DT, Clancy JL, Thermann R, Martin DIK, Hentze MW, Preiss T. microRNA-mediated messenger RNA deadenylation contributes to translational repression in mammalian cells. PLoS One 2009; 4:e6783. [PMID: 19710908 PMCID: PMC2728509 DOI: 10.1371/journal.pone.0006783] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Accepted: 07/24/2009] [Indexed: 12/11/2022] Open
Abstract
Animal microRNAs (miRNAs) typically regulate gene expression by binding to partially complementary target sites in the 3' untranslated region (UTR) of messenger RNA (mRNA) reducing its translation and stability. They also commonly induce shortening of the mRNA 3' poly(A) tail, which contributes to their mRNA decay promoting function. The relationship between miRNA-mediated deadenylation and translational repression has been less clear. Using transfection of reporter constructs carrying three imperfectly matching let-7 target sites in the 3' UTR into mammalian cells we observe rapid target mRNA deadenylation that precedes measureable translational repression by endogenous let-7 miRNA. Depleting cells of the argonaute co-factors RCK or TNRC6A can impair let-7-mediated repression despite ongoing mRNA deadenylation, indicating that deadenylation alone is not sufficient to effect full repression. Nevertheless, the magnitude of translational repression by let-7 is diminished when the target reporter lacks a poly(A) tail. Employing an antisense strategy to block deadenylation of target mRNA with poly(A) tail also partially impairs translational repression. On the one hand, these experiments confirm that tail removal by deadenylation is not strictly required for translational repression. On the other hand they show directly that deadenylation can augment miRNA-mediated translational repression in mammalian cells beyond stimulating mRNA decay. Taken together with published work, these results suggest a dual role of deadenylation in miRNA function: it contributes to translational repression as well as mRNA decay and is thus critically involved in establishing the quantitatively appropriate physiological response to miRNAs.
Collapse
Affiliation(s)
- Traude H. Beilharz
- Molecular Genetics Division, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- School of Biotechnology & Biomolecular Sciences and St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - David T. Humphreys
- Molecular Genetics Division, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
| | - Jennifer L. Clancy
- Molecular Genetics Division, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
| | - Rolf Thermann
- European Molecular Biology Laboratory, Heidelberg, Baden-Württemberg, Germany
| | - David I. K. Martin
- Molecular Genetics Division, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
| | - Matthias W. Hentze
- European Molecular Biology Laboratory, Heidelberg, Baden-Württemberg, Germany
| | - Thomas Preiss
- Molecular Genetics Division, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- School of Biotechnology & Biomolecular Sciences and St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
266
|
Abstract
MicroRNAs (miRNAs) are endogenous antisense regulators that trigger endonucleolytic mRNA cleavage, translational repression, and/or mRNA decay. miRNA-mediated gene regulation is important for numerous biological pathways, yet the underlying mechanisms are still under rigorous investigation. Here we identify human UPF1 (hUPF1) as a protein that contributes to RNA silencing. When hUPF1 is knocked down, miRNA targets are upregulated. The depletion of hUPF1 also increases the off-target messages of small interfering RNAs (siRNAs), which are imperfectly complementary to transfected siRNAs. Conversely, when overexpressed, wild-type hUPF1 downregulates miRNA targets. The helicase domain mutant of hUPF1 fails to suppress miRNA targets. hUPF1 interacts with human Argonaute 1 (hAGO1) and hAGO2 and colocalizes with hAGO1 and hAGO2 in processing bodies, which are known to be the sites for translational repression and mRNA destruction. We further find that the amounts of target messages bound to hAGO2 are reduced when hUPF1 is depleted. Our data thus suggest that hUPF1 may participate in RNA silencing by facilitating the binding of the RNA-induced silencing complex to the target and by accelerating the decay of the mRNA.
Collapse
|
267
|
Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity. Nat Cell Biol 2009; 11:1143-9. [PMID: 19684575 DOI: 10.1038/ncb1929] [Citation(s) in RCA: 787] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Accepted: 05/28/2009] [Indexed: 12/11/2022]
Abstract
In animals, P-bodies or GW-bodies appear to cause the congregation of proteins involved in microRNA (miRNA)-mediated post-transcriptional silencing. The localization of P-bodies does not overlap with that of known organelles and are thus considered independent of lipid bilayers. Nonetheless, an miRNA effector protein, argonaute 2 (AGO2), was initially identified as membrane-associated, and some miRNAs have been found in secreted vesicles (exosomes) that derive from endo-lysosomal compartments called multivesicular bodies (MVBs). Proteins can be sorted in a ubiquitin-dependent manner into MVBs by three heteromeric subcomplexes, collectively termed ESCRT (endosomal sorting complex required for transport), to be further secreted in exosomes and/or degraded by the lysosome. Here we show that GW-bodies containing GW182 and AGO2, two main components of the RNA-induced silencing complex (RISC), are distinct from P-bodies due to their congregation with endosomes and MVBs. Moreover, miRNAs and miRNA-repressible mRNAs are enriched at these cellular membranes, suggesting that endosomes and/or MVBs are sites of miRNA-loaded RISC (miRISC) accumulation and, possibly, action. We further show that purified exosome-like vesicles secreted by MVBs are considerably enriched in GW182, but not P-body components, AGO2 or miRNA-repressible mRNA. Moreover, cells depleted of some ESCRT components show compromised miRNA-mediated gene silencing and over-accumulate GW182, which associates with ubiquitylated proteins. Therefore, GW182, possibly in association with a fraction of miRNA-loaded AGO2, is sorted into MVBs for secretion and/or lysosomal degradation. We propose that this process promotes continuous assembly or disassembly of membrane-associated miRISCs, which is possibly required for miRNA loading or target recognition and subsequent silencing.
Collapse
|
268
|
Kawamata T, Seitz H, Tomari Y. Structural determinants of miRNAs for RISC loading and slicer-independent unwinding. Nat Struct Mol Biol 2009; 16:953-60. [PMID: 19684602 DOI: 10.1038/nsmb.1630] [Citation(s) in RCA: 208] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Accepted: 06/03/2009] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) regulate expression of their target mRNAs through the RNA-induced silencing complex (RISC), which contains an Argonaute (Ago) family protein as a core component. In Drosophila melanogaster, miRNAs are generally sorted into Ago1-containing RISC (Ago1-RISC). We established a native gel system that can biochemically dissect the Ago1-RISC assembly pathway. We found that miRNA-miRNA* duplexes are loaded into Ago1 as double-stranded RNAs in an ATP-dependent fashion. In contrast, unexpectedly, unwinding of miRNA-miRNA* duplexes is a passive process that does not require ATP or slicer activity of Ago1. Central mismatches direct miRNA-miRNA* duplexes into pre-Ago1-RISC, whereas mismatches in the seed or guide strand positions 12-15 promote conversion of pre-Ago1-RISC into mature Ago1-RISC. Our findings show that unwinding of miRNAs is a precise mirror-image process of target recognition, and both processes reflect the unique geometry of RNAs in Ago proteins.
Collapse
Affiliation(s)
- Tomoko Kawamata
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Japan
| | | | | |
Collapse
|
269
|
Eulalio A, Tritschler F, Izaurralde E. The GW182 protein family in animal cells: new insights into domains required for miRNA-mediated gene silencing. RNA (NEW YORK, N.Y.) 2009; 15:1433-42. [PMID: 19535464 PMCID: PMC2714752 DOI: 10.1261/rna.1703809] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
GW182 family proteins interact directly with Argonaute proteins and are required for miRNA-mediated gene silencing in animal cells. The domains of the GW182 proteins have recently been studied to determine their role in silencing. These studies revealed that the middle and C-terminal regions function as an autonomous domain with a repressive function that is independent of both the interaction with Argonaute proteins and of P-body localization. Such findings reinforce the idea that GW182 proteins are key components of miRNA repressor complexes in metazoa.
Collapse
Affiliation(s)
- Ana Eulalio
- Department of Biochemistry, Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
| | | | | |
Collapse
|
270
|
Baillat D, Shiekhattar R. Functional dissection of the human TNRC6 (GW182-related) family of proteins. Mol Cell Biol 2009; 29:4144-55. [PMID: 19470757 PMCID: PMC2715800 DOI: 10.1128/mcb.00380-09] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 04/28/2009] [Accepted: 05/15/2009] [Indexed: 12/14/2022] Open
Abstract
Argonaute (Ago) proteins through their association with small RNAs perform a critical function in the effector step of RNA interference. The TNRC6 (trinucleotide repeat containing 6) family of proteins have been shown to stably associate with Agos in mammalian cells. Here, we describe the isolation and functional characterization of TNRC6B- and TNRC6C-containing complexes. We show that TNRC6B and TNRC6C proteins associate with all four human Agos which are already loaded with microRNAs. Detailed domain analysis of TNRC6B protein indicated that distinct domains of the protein are required for Ago binding and P-body localization. Functional analysis using reporter constructs responsive to TNRC6B tethered through an MS2-binding domain indicates that neither the Ago-binding nor the P-body localization domains are required for translational silencing. In contrast, the C-terminal domain containing the RNA recognition motif plays a critical role in the silencing mediated by the TNRC6B protein.
Collapse
Affiliation(s)
- David Baillat
- Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | | |
Collapse
|
271
|
Miyoshi K, Okada TN, Siomi H, Siomi MC. Characterization of the miRNA-RISC loading complex and miRNA-RISC formed in the Drosophila miRNA pathway. RNA (NEW YORK, N.Y.) 2009; 15:1282-91. [PMID: 19451544 PMCID: PMC2704077 DOI: 10.1261/rna.1541209] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2009] [Accepted: 04/14/2009] [Indexed: 05/22/2023]
Abstract
In Drosophila, miRNA is processed by Dicer-1 (DCR-1) from its precursor and loaded onto Argonaute1 (AGO1). AGO1 recognizes target mRNAs based on the miRNA sequence and suppresses the expression at post-transcriptional levels. GW182, a P-body component, localizes the AGO1 complex to processing bodies (P-bodies) where mRNA targets are decayed or stored. However, the details of the pathway remain elusive. In this study, two distinct types of AGO1-containing complexes from Drosophila Schneider2 (S2) cells were isolated and compared at the molecular level. The AGO1 complex with DCR-1 contained neither mature miRNA nor GW182 but exhibited pre-miRNA processing activity. The resultant mature RNA was loaded onto AGO1 within the complex. The AGO1 complex with GW182 excluded DCR-1, but possessed mature miRNA and showed no pre-miRNA processing activity. Thus, the AGO1-DCR-1 and AGO1-GW182 complexes correspond to miRLC (miRISC loading complex) and miRISC, respectively. The requirement for various domains of AGO1 in miRNA-loading and DCR-1/GW182 interaction was also examined. The Mid domain mutant (F2V2) interacted with DCR-1 but not with mature miRNA and GW182. The AGO1-PAZ mutant lacks the mature miRNA-binding ability but associates with either DCR-1 or GW182. The AGO1-PIWI mutant showed no Slicer activity but associates with mature miRNA. These results indicate that these domains are required differently for miRLC and miRISC formation in the miRNA pathway.
Collapse
Affiliation(s)
- Keita Miyoshi
- School of Medicine, Keio University, Tokyo 160-8582, Japan
| | | | | | | |
Collapse
|
272
|
Konecna A, Heraud JE, Schoderboeck L, Raposo AASF, Kiebler MA. What are the roles of microRNAs at the mammalian synapse? Neurosci Lett 2009; 466:63-8. [PMID: 19545603 DOI: 10.1016/j.neulet.2009.06.050] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 06/12/2009] [Accepted: 06/17/2009] [Indexed: 01/14/2023]
Abstract
The modification of neuronal connections in response to stimuli is believed to be the basis of long-term memory formation. It is currently accepted that local protein synthesis critically contributes to site-restricted modulation of individual synapses. Here, we summarize recent evidence implicating miRNAs in this process, leading to altered dendrite morphogenesis and synaptic plasticity. Second, we discuss findings in non-neuronal systems about how RNA-binding proteins can modulate miRNA-mRNA interactions, and how these mechanisms might apply to neurons. Finally, we review recent findings that P-bodies may be important sites for miRNA action at the synapse.
Collapse
Affiliation(s)
- Anetta Konecna
- Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria
| | | | | | | | | |
Collapse
|
273
|
Kasinath BS, Feliers D, Sataranatarajan K, Ghosh Choudhury G, Lee MJ, Mariappan MM. Regulation of mRNA translation in renal physiology and disease. Am J Physiol Renal Physiol 2009; 297:F1153-65. [PMID: 19535566 DOI: 10.1152/ajprenal.90748.2008] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Translation, a process of generating a peptide from the codons present in messenger RNA, can be a site of independent regulation of protein synthesis; it has not been well studied in the kidney. Translation occurs in three stages (initiation, elongation, and termination), each with its own set of regulatory factors. Mechanisms controlling translation include small inhibitory RNAs such as microRNAs, binding proteins, and signaling reactions. Role of translation in renal injury in diabetes, endoplasmic reticulum stress, acute kidney injury, and, in physiological adaptation to loss of nephrons is reviewed here. Contribution of mRNA translation to physiology and disease is not well understood. Because it is involved in such diverse areas as development and cancer, it should prove a fertile field for investigation in renal science.
Collapse
Affiliation(s)
- Balakuntalam S Kasinath
- Division of Nephrology, Department of Medicine, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA.
| | | | | | | | | | | |
Collapse
|
274
|
Takimoto K, Wakiyama M, Yokoyama S. Mammalian GW182 contains multiple Argonaute-binding sites and functions in microRNA-mediated translational repression. RNA (NEW YORK, N.Y.) 2009; 15:1078-89. [PMID: 19398495 PMCID: PMC2685530 DOI: 10.1261/rna.1363109] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In mammalian cells, microRNAs (miRNAs) are incorporated into miRNA-induced silencing complexes (miRISCs), which regulate protein expression post-transcriptionally through binding to 3'-untranslated regions of target mRNAs. Argonaute2 (Ago2), a key component of the miRISC, recruits GW182, a component of the processing body (GW/P-body), to the target mRNAs. To elucidate the function of GW182 in an miRNA-mediated translational repression, we analyzed Argonaute-binding sites in GW182. We found that human GW182 contains three binding sites for Ago2, within the amino-terminal glycine tryptophan (GW/WG)-repeated region that is characteristic of the GW182 family proteins. We also found that the first and second Ago2-binding site is conserved within the amino-terminal half of TNRC6B, which is a paralog of GW182. Each of the Ago-binding sites is alone sufficient to bind Ago2. Furthermore, we demonstrated that multiple Argonaute proteins were connected via the GW182 protein. A GW182 fragment containing the Ago2-binding region partially relieved let-7-mediated repression of protein synthesis in a mammalian cell-free system. Coincidentally, let-7-directed target mRNA deadenylation was delayed. Together, these results strongly suggested that the interactions of GW182 with Argonautes may induce the formation of large complexes containing miRNA target mRNAs, and may be critical for miRNA-mediated translational repression.
Collapse
Affiliation(s)
- Koji Takimoto
- Systems and Structural Biology Center, Yokohama Institute, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | | | | |
Collapse
|
275
|
Lazzaretti D, Tournier I, Izaurralde E. The C-terminal domains of human TNRC6A, TNRC6B, and TNRC6C silence bound transcripts independently of Argonaute proteins. RNA (NEW YORK, N.Y.) 2009; 15:1059-66. [PMID: 19383768 PMCID: PMC2685519 DOI: 10.1261/rna.1606309] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Accepted: 03/17/2009] [Indexed: 05/24/2023]
Abstract
Proteins of the GW182 family are essential components of the miRNA pathway in animal cells. Vertebrate genomes encode three GW182 paralogs (TNRC6A, TNRC6B, and TNRC6C), which may be functionally redundant. Here, we show that the N-terminal GW-repeat-containing regions of all three TNRC6s interact with the four human Argonaute proteins (AGO1-AGO4). We also show that TNRC6A, TNRC6B, and TNRC6C silence the expression of bound mRNAs. This activity is mediated by their C-terminal silencing domains, and thus, is independent of the interaction with AGO1-AGO4. Silencing by TNRC6A, TNRC6B, and TNRC6C is effected by changes in protein expression and mRNA stability that can, in part, be attributed to deadenylation. Our findings indicate that TNRC6A, TNRC6B, and TNRC6C are recruited to miRNA targets through an interaction between their N-terminal domain and an Argonaute protein; the TNRC6s then promote translational repression and/or degradation of miRNA targets through a C-terminal silencing domain.
Collapse
Affiliation(s)
- Daniela Lazzaretti
- Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
| | | | | |
Collapse
|
276
|
Eulalio A, Helms S, Fritzsch C, Fauser M, Izaurralde E. A C-terminal silencing domain in GW182 is essential for miRNA function. RNA (NEW YORK, N.Y.) 2009; 15:1067-77. [PMID: 19383769 PMCID: PMC2685512 DOI: 10.1261/rna.1605509] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Proteins of the GW182 family are essential for miRNA-mediated gene silencing in animal cells; they interact with Argonaute proteins (AGOs) and are required for both the translational repression and mRNA degradation mediated by miRNAs. To gain insight into the role of the GW182-AGO1 interaction in silencing, we generated protein mutants that do not interact and tested them in complementation assays. We show that silencing of miRNA targets requires the N-terminal domain of GW182, which interacts with AGO1 through multiple glycine-tryptophan (GW)-repeats. Indeed, a GW182 mutant that does not interact with AGO1 cannot rescue silencing in cells depleted of endogenous GW182. Conversely, silencing is impaired by mutations in AGO1 that strongly reduce the interaction with GW182 but not with miRNAs. We further show that a GW182 mutant that does not localize to P-bodies but interacts with AGO1 rescues silencing in GW182-depleted cells, even though in these cells, AGO1 also fails to localize to P-bodies. Finally, we show that in addition to the N-terminal AGO1-binding domain, the middle and C-terminal regions of GW182 (referred to as the bipartite silencing domain) are essential for silencing. Together our results indicate that miRNA silencing in animal cells is mediated by AGO1 in complex with GW182, and that P-body localization is not required for silencing.
Collapse
Affiliation(s)
- Ana Eulalio
- Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
| | | | | | | | | |
Collapse
|
277
|
Chekulaeva M, Filipowicz W. Mechanisms of miRNA-mediated post-transcriptional regulation in animal cells. Curr Opin Cell Biol 2009; 21:452-60. [PMID: 19450959 DOI: 10.1016/j.ceb.2009.04.009] [Citation(s) in RCA: 545] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 04/16/2009] [Accepted: 04/17/2009] [Indexed: 02/08/2023]
Abstract
MicroRNAs (miRNAs) are 20-nt-long to 24-nt-long noncoding RNAs acting as post-transcriptional regulators of gene expression in animals and plants. In mammals, more than 50% of mRNAs are predicted to be the subject of miRNA-mediated control but mechanistic aspects of the regulation are not fully understood and different studies have produced often-contradictory results. miRNAs can affect both the translation and stability of mRNAs. In this report, we review current progress in understanding how miRNAs execute these effects in animals and we discuss some of the controversies regarding different modes of miRNA function.
Collapse
Affiliation(s)
- Marina Chekulaeva
- Friedrich Miescher Institute for Biomedical Research, 4002 Basel, Switzerland.
| | | |
Collapse
|
278
|
Rathjen T, Pais H, Sweetman D, Moulton V, Munsterberg A, Dalmay T. High throughput sequencing of microRNAs in chicken somites. FEBS Lett 2009; 583:1422-6. [PMID: 19328789 DOI: 10.1016/j.febslet.2009.03.048] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Revised: 02/25/2009] [Accepted: 03/19/2009] [Indexed: 10/21/2022]
Abstract
High throughput Solexa sequencing technology was applied to identify microRNAs in somites of developing chicken embryos. We obtained 651,273 reads, from which 340,415 were mapped to the chicken genome representing 1701 distinct sequences. Eighty-five of these were known microRNAs and 42 novel miRNA candidates were identified. Accumulation of 18 of 42 sequences was confirmed by Northern blot analysis. Ten of the 18 sequences are new variants of known miRNAs and eight short RNAs are novel miRNAs. Six of these eight have not been reported by other deep sequencing projects. One of the six new miRNAs is highly enriched in somite tissue suggesting that deep sequencing of other specific tissues has the potential to identify novel tissue specific miRNAs.
Collapse
Affiliation(s)
- Tina Rathjen
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | | | | | | | | | | |
Collapse
|
279
|
Chekulaeva M, Filipowicz W, Parker R. Multiple independent domains of dGW182 function in miRNA-mediated repression in Drosophila. RNA (NEW YORK, N.Y.) 2009; 15:794-803. [PMID: 19304924 PMCID: PMC2673071 DOI: 10.1261/rna.1364909] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Accepted: 01/22/2009] [Indexed: 05/19/2023]
Abstract
miRNA-mediated repression affects a wide range of biological processes including development and human pathologies. The GW182 protein is a key component of miRNA repression complex, recruited by Argonaute and functioning downstream to repress translation and accelerate mRNA degradation, but little is known about how GW182 proteins act. Using both tethered function and complementation assays, we identify three independent domains of the Drosophila GW182 protein (also termed Gawky) that are sufficient to repress mRNA. Each of these domains also functions independently of poly(A) tails. These results indicate that miRNA-mediated repression is facilitated by multiple domains of GW182.
Collapse
Affiliation(s)
- Marina Chekulaeva
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona 85721, USA.
| | | | | |
Collapse
|
280
|
He XJ, Hsu YF, Zhu S, Wierzbicki AT, Pontes O, Pikaard CS, Liu HL, Wang CS, Jin H, Zhu JK. An effector of RNA-directed DNA methylation in arabidopsis is an ARGONAUTE 4- and RNA-binding protein. Cell 2009; 137:498-508. [PMID: 19410546 PMCID: PMC2700824 DOI: 10.1016/j.cell.2009.04.028] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Revised: 03/11/2009] [Accepted: 04/13/2009] [Indexed: 10/20/2022]
Abstract
DNA methylation is a conserved epigenetic mark in plants and mammals. In Arabidopsis, DNA methylation can be triggered by small interfering RNAs (siRNAs) through an RNA-directed DNA methylation (RdDM) pathway. Here, we report the identification of an RdDM effector, KTF1. Loss-of-function mutations in KTF1 reduce DNA methylation and release the silencing of RdDM target loci without abolishing the siRNA triggers. KTF1 has similarity to the transcription elongation factor SPT5 and contains a C-terminal extension rich in GW/WG repeats. KTF1 colocalizes with ARGONAUTE 4 (AGO4) in punctate nuclear foci and binds AGO4 and RNA transcripts. Our results suggest KTF1 as an adaptor protein that binds scaffold transcripts generated by Pol V and recruits AGO4 and AGO4-bound siRNAs to form an RdDM effector complex. The dual interaction of an effector protein with AGO and small RNA target transcripts may be a general feature of RNA-silencing effector complexes.
Collapse
Affiliation(s)
- Xin-Jian He
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA 92521
| | - Yi-Feng Hsu
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA 92521
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Shihua Zhu
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA 92521
- College of Science and Technology, Ningbo University, Ningbo 315211, China
| | - Andrzej T. Wierzbicki
- Biology Department, Washington University, Campus Box 1137, One Brookings Drive, St Louis, MO 63130
| | - Olga Pontes
- Biology Department, Washington University, Campus Box 1137, One Brookings Drive, St Louis, MO 63130
| | - Craig S. Pikaard
- Biology Department, Washington University, Campus Box 1137, One Brookings Drive, St Louis, MO 63130
| | - Hai-Liang Liu
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA 92521
| | - Co-Shine Wang
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Hailing Jin
- Institute for Integrative Genome Biology and Department of Plant Pathology, University of California, Riverside, California 92521
| | - Jian-Kang Zhu
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA 92521
| |
Collapse
|
281
|
Lian SL, Li S, Abadal GX, Pauley BA, Fritzler MJ, Chan EKL. The C-terminal half of human Ago2 binds to multiple GW-rich regions of GW182 and requires GW182 to mediate silencing. RNA (NEW YORK, N.Y.) 2009; 15:804-13. [PMID: 19324964 PMCID: PMC2673069 DOI: 10.1261/rna.1229409] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
MicroRNA (miRNA)-mediated silencing is a post-transcriptional mechanism that regulates translation of mRNAs primarily via their 3'-UTR. Ago2 binds miRNA directly and is the core component of miRNA-induced silencing complex. GW182 is another important factor in miRNA-mediated silencing, and its interaction with Ago2 is evolutionarily conserved. However, the GW182-Ago2 interaction in humans has not been characterized thoroughly, and the role of GW182 in the mammalian miRNA pathway remains unclear. In the current study, we generated a set of GST-, green fluorescence protein (GFP)-, or 3xFlag-tagged deletion constructs of GW182 and Ago2 to further analyze GW182-Ago2 interactions. The C-terminal half of Ago2 interacted with four nonoverlapping GW-rich regions of GW182, and this interaction recruited Ago2 to GWB. Furthermore, the interaction with GW182 was observed in all four human Ago proteins. Most interestingly, tethering the C-terminal half of Ago2 to the 3'-UTR of reporter mRNA recapitulated translational repression comparable to that of tethered Ago2, and this repression was greatly impaired upon GW182 knockdown. In comparison, the N-terminal half of Ago2 did not bind GW182 and did not retain the repression function of Ago2. Our data strongly support a model in which Ago2 recruits GW182 to the 3'-UTR of mRNA to mediate silencing, and suggest that GW182 may contribute to enhancement in translational repression by interacting with multiple Ago proteins from multiple miRNA target sites in the same or adjacent 3'UTR.
Collapse
Affiliation(s)
- Shang L Lian
- Department of Oral Biology, University of Florida, Gainesville, Florida 32610-0424, USA
| | | | | | | | | | | |
Collapse
|
282
|
Miluzio A, Beugnet A, Volta V, Biffo S. Eukaryotic initiation factor 6 mediates a continuum between 60S ribosome biogenesis and translation. EMBO Rep 2009; 10:459-65. [PMID: 19373251 PMCID: PMC2680881 DOI: 10.1038/embor.2009.70] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Accepted: 03/24/2009] [Indexed: 12/11/2022] Open
Abstract
Eukaryotic ribosome biogenesis and translation are linked processes that limit the rate of cell growth. Although ribosome biogenesis and translation are mainly controlled by distinct factors, eukaryotic initiation factor 6 (eIF6) has been found to regulate both processes. eIF6 is a necessary protein with a unique anti-association activity, which prevents the interaction of 40S ribosomal subunits with 60S subunits through its binding to 60S ribosomes. In the nucleolus, eIF6 is a component of the pre-ribosomal particles and is required for the biogenesis of 60S subunits, whereas in the cytoplasm it mediates translation downstream from growth factors. The translational activity of eIF6 could be due to its anti-association properties, which are regulated by post-translational modifications; whether this anti-association activity is required for the biogenesis and nuclear export of ribosomes is unknown. eIF6 is necessary for tissue-specific growth and oncogene-driven transformation, and could be a new rate-limiting step for the initiation of translation.
Collapse
Affiliation(s)
- Annarita Miluzio
- Laboratory of Molecular Histology and Cell Growth, Division of Oncology, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy
| | - Anne Beugnet
- Laboratory of Molecular Histology and Cell Growth, Division of Oncology, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy
| | - Viviana Volta
- Laboratory of Molecular Histology and Cell Growth, Division of Oncology, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy
- Environmental and Life Science Department (DISAV), University of Eastern Piedmont, Via Bellini 15G, 15100 Alessandria, Italy
| | - Stefano Biffo
- Laboratory of Molecular Histology and Cell Growth, Division of Oncology, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy
- Environmental and Life Science Department (DISAV), University of Eastern Piedmont, Via Bellini 15G, 15100 Alessandria, Italy
| |
Collapse
|
283
|
Nahvi A, Shoemaker CJ, Green R. An expanded seed sequence definition accounts for full regulation of the hid 3' UTR by bantam miRNA. RNA (NEW YORK, N.Y.) 2009; 15:814-22. [PMID: 19286629 PMCID: PMC2673059 DOI: 10.1261/rna.1565109] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
MicroRNAs (miRNAs) are an abundant class of approximately 22 nucleotide (nt) long noncoding RNAs that negatively regulate gene expression post-transcriptionally through imperfect base-pairing interactions with sequences in the target messenger RNA (mRNA). We examined the interactions of the bantam miRNA with the 3' untranslated region (UTR) of the hid mRNA, and a synthetic derivative, in Drosophila S2 cells in order to define the relative contributions of proposed bantam binding sites. The contribution of the bantam miRNA to repression of reporter constructs carrying different 3' UTRs was evaluated by measuring derepression of reporter expression following the transfection of bantam complementary oligoribonucleotides (anti-bantam). Systematic excision of bantam miRNA target sequences in the hid 3' UTR identified by commonly used miRNA target prediction programs failed to relieve repression to the extent predicted by the anti-bantam experiment. However, removal of additional bantam complementary sequences (with a "seed" match to nucleotide 3-9) derepressed the reporter constructs to the full extent, arguing for a less narrow definition of the seed sequence. Further support for the potential contribution of the 3-9 seed register to microRNA-mediated gene regulation is provided by the experimental validation of several novel bantam targets identified with a more relaxed search algorithm.
Collapse
Affiliation(s)
- Ali Nahvi
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
284
|
Zipprich JT, Bhattacharyya S, Mathys H, Filipowicz W. Importance of the C-terminal domain of the human GW182 protein TNRC6C for translational repression. RNA (NEW YORK, N.Y.) 2009; 15:781-93. [PMID: 19304925 PMCID: PMC2673060 DOI: 10.1261/rna.1448009] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Proteins of the GW182 family play an important role in the execution of microRNA repression in metazoa. They interact directly with Argonaute proteins, components of microRNPs, and also form part of P-bodies, structures implicated in translational repression and mRNA degradation. Recent results demonstrated that Drosophila GW182 has the potential to both repress translation and accelerate mRNA deadenylation and decay. In contrast to a single GW182 protein in Drosophila, the three GW182 paralogs TNRC6A, TNRC6B, and TNRC6C are encoded in mammalian genomes. In this study, we provide evidence that TNRC6C, like TNRC6A and TNRC6B, is important for efficient miRNA repression. We further demonstrate that tethering of each of the human TNRC6 proteins to a reporter mRNA has a dramatic inhibitory effect on protein synthesis. The repression is due to a combination of effects on the mRNA level and mRNA translation. Through deletion and mutagenesis, we identified the C-terminal part of TNRC6C encompassing the RRM RNA-binding motif as a key effector domain mediating protein synthesis repression by TNRC6C.
Collapse
Affiliation(s)
- Jakob T Zipprich
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | | | | | | |
Collapse
|
285
|
Pratt AJ, MacRae IJ. The RNA-induced silencing complex: a versatile gene-silencing machine. J Biol Chem 2009; 284:17897-901. [PMID: 19342379 DOI: 10.1074/jbc.r900012200] [Citation(s) in RCA: 402] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
RNA interference is a powerful mechanism of gene silencing that underlies many aspects of eukaryotic biology. On the molecular level, RNA interference is mediated by a family of ribonucleoprotein complexes called RNA-induced silencing complexes (RISCs), which can be programmed to target virtually any nucleic acid sequence for silencing. The ability of RISC to locate target RNAs has been co-opted by evolution many times to generate a broad spectrum of gene-silencing pathways. Here, we review the fundamental biochemical and biophysical properties of RISC that facilitate gene targeting and describe the various mechanisms of gene silencing known to exploit RISC activity.
Collapse
Affiliation(s)
- Ashley J Pratt
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
286
|
Iwasaki S, Kawamata T, Tomari Y. Drosophila Argonaute1 and Argonaute2 Employ Distinct Mechanisms for Translational Repression. Mol Cell 2009; 34:58-67. [DOI: 10.1016/j.molcel.2009.02.010] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Revised: 11/21/2008] [Accepted: 02/12/2009] [Indexed: 10/21/2022]
|
287
|
Ma C, Liu Y, He L. MicroRNAs - powerful repression comes from small RNAs. SCIENCE IN CHINA. SERIES C, LIFE SCIENCES 2009; 52:323-30. [PMID: 19381458 PMCID: PMC3681298 DOI: 10.1007/s11427-009-0056-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Accepted: 03/15/2009] [Indexed: 10/20/2022]
Abstract
microRNAs (miRNAs) encode a novel class of small, non-coding RNAs that regulate gene expression post-trancriptionally. miRNAs comprise one of the major non-coding RNA families, whose diverse biological functions and unusual capacity for gene regulation have attracted enormous interests in the RNA world. Over the past 16 years, genetic, biochemical and computational approaches have greatly shaped the growth of the field, leading to the identification of thousands of miRNA genes in nearly all metazoans. The key molecular machinery for miRNA biogenesis and silencing has been identified, yet the precise biochemical and regulatory mechanisms still remain elusive. However, recent findings have shed new light on how miRNAs are generated and how they function to repress gene expression. miRNAs provide a paradigm for endogenous small RNAs that mediate gene silencing at a genome-wide level. The gene silencing mediated by these small RNAs constitutes a major component of gene regulation during various developmental and physiological processes. The accumulating knowledge about their biogenesis and gene silencing mechanism will add a new dimension to our understanding about the complex gene regulatory networks.
Collapse
Affiliation(s)
- Cong Ma
- 535 LSA, Division of Cell and Developmental Biology, MCB Department, University of California at Berkeley, Berkeley, CA 94720-3200
| | - Yufei Liu
- 535 LSA, Division of Cell and Developmental Biology, MCB Department, University of California at Berkeley, Berkeley, CA 94720-3200
| | - Lin He
- 535 LSA, Division of Cell and Developmental Biology, MCB Department, University of California at Berkeley, Berkeley, CA 94720-3200
| |
Collapse
|
288
|
Eulalio A, Tritschler F, Büttner R, Weichenrieder O, Izaurralde E, Truffault V. The RRM domain in GW182 proteins contributes to miRNA-mediated gene silencing. Nucleic Acids Res 2009; 37:2974-83. [PMID: 19295135 PMCID: PMC2685099 DOI: 10.1093/nar/gkp173] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Proteins of the GW182 family interact with Argonaute proteins and are required for miRNA-mediated gene silencing. These proteins contain two structural domains, an ubiquitin-associated (UBA) domain and an RNA recognition motif (RRM), embedded in regions predicted to be unstructured. The structure of the RRM of Drosophila melanogaster GW182 reveals that this domain adopts an RRM fold, with an additional C-terminal α-helix. The helix lies on the β-sheet surface, generally used by these domains to bind RNA. This, together with the absence of aromatic residues in the conserved RNP1 and RNP2 motifs, and the lack of general affinity for RNA, suggests that the GW182 RRM does not bind RNA. The domain may rather engage in protein interactions through an unusual hydrophobic cleft exposed on the opposite face of the β-sheet. We further show that the GW182 RRM is dispensable for P-body localization and for interaction of GW182 with Argonaute-1 and miRNAs. Nevertheless, its deletion impairs the silencing activity of GW182 in a miRNA target-specific manner, indicating that this domain contributes to silencing. The conservation of structural and surface residues suggests that the RRM domain adopts a similar fold with a related function in insect and vertebrate GW182 family members.
Collapse
Affiliation(s)
- Ana Eulalio
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
289
|
Li S, Lian SL, Moser JJ, Fritzler ML, Fritzler MJ, Satoh M, Chan EKL. Identification of GW182 and its novel isoform TNGW1 as translational repressors in Ago2-mediated silencing. J Cell Sci 2009; 121:4134-44. [PMID: 19056672 DOI: 10.1242/jcs.036905] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
RNA interference is triggered by small interfering RNA and microRNA, and is a potent mechanism in post-transcriptional regulation for gene expression. GW182 (also known as TNRC6A), an 182-kDa protein encoded by TNRC6A, is important for this process, although details of its function remain unclear. Here, we report a novel 210-kDa isoform of human GW182, provisionally named trinucleotide GW1 (TNGW1) because it contains trinucleotide repeats in its mRNA sequence. TNGW1 was expressed independently of GW182 and was present in human testis and various human cancer cells. Using polyclonal and monoclonal antibodies, we detected TNGW1 in only approximately 30% of GW bodies. Expression of EGFP-tagged TNGW1 in HeLa cells was colocalized to cytoplasmic foci enriched in Ago2 (also known as EIF2C2) and RNA decay factors. Tethering TNGW1 or GW182 to the 3'-UTR of a luciferase-reporter mRNA led to strong repression activity independent of Ago2, whereas the tethered Ago2-mediated suppression was completely dependent on TNGW1 and/or GW182. Our data demonstrated that GW182 and, probably, TNGW1 acted as a repressor in Ago2-mediated translational silencing. Furthermore, TNGW1 might contribute to diversity in the formation and function of GW and/or P bodies.
Collapse
Affiliation(s)
- Songqing Li
- Departments of Oral Biology and Anatomy and Cell Biology, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | | | | | |
Collapse
|
290
|
Chable-Bessia C, Meziane O, Latreille D, Triboulet R, Zamborlini A, Wagschal A, Jacquet JM, Reynes J, Levy Y, Saib A, Bennasser Y, Benkirane M. Suppression of HIV-1 replication by microRNA effectors. Retrovirology 2009; 6:26. [PMID: 19272132 PMCID: PMC2657893 DOI: 10.1186/1742-4690-6-26] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Accepted: 03/09/2009] [Indexed: 12/31/2022] Open
Abstract
The rate of HIV-1 gene expression is a key step that determines the kinetics of virus spread and AIDS progression. Viral entry and gene expression were described to be the key determinants for cell permissiveness to HIV. Recent reports highlighted the involvement of miRNA in regulating HIV-1 replication post-transcriptionally. In this study we explored the role of cellular factors required for miRNA-mediated mRNA translational inhibition in regulating HIV-1 gene expression. Here we show that HIV-1 mRNAs associate and co-localize with components of the RNA Induced Silencing Complex (RISC), and we characterize some of the proteins required for miRNA-mediated silencing (miRNA effectors). RCK/p54, GW182, LSm-1 and XRN1 negatively regulate HIV-1 gene expression by preventing viral mRNA association with polysomes. Interestingly, knockdown of RCK/p54 or DGCR8 resulted in virus reactivation in PBMCs isolated from HIV infected patients treated with suppressive HAART.
Collapse
Affiliation(s)
- Christine Chable-Bessia
- Institut de Génétique Humaine CNRS UPR1142, Laboratoire de Virologie Moléculaire, Montpellier, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
291
|
Hammell CM, Lubin I, Boag PR, Blackwell TK, Ambros V. nhl-2 Modulates microRNA activity in Caenorhabditis elegans. Cell 2009; 136:926-38. [PMID: 19269369 PMCID: PMC2670343 DOI: 10.1016/j.cell.2009.01.053] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 12/19/2008] [Accepted: 01/28/2009] [Indexed: 10/21/2022]
Abstract
TRIM-NHL proteins represent a large class of metazoan proteins implicated in development and disease. We demonstrate that a C. elegans TRIM-NHL protein, NHL-2, functions as a cofactor for the microRNA-induced silencing complex (miRISC) and thereby enhances the posttranscriptional repression of several genetically verified microRNA targets, including hbl-1 and let-60/Ras (by the let-7 family of microRNAs) and cog-1 (by the lsy-6 microRNA). NHL-2 is localized to cytoplasmic P-bodies and physically associates with the P-body protein CGH-1 and the core miRISC components ALG-1/2 and AIN-1. nhl-2 and cgh-1 mutations compromise the repression of microRNA targets in vivo but do not affect microRNA biogenesis, indicating a role for an NHL-2:CGH-1 complex in the effector phase of miRISC activity. We propose that the NHL-2:CGH-1 complex functions in association with mature miRISC to modulate the efficacy of microRNA:target interactions in response to physiological and developmental signals, thereby ensuring the robustness of genetic regulatory pathways regulated by microRNAs.
Collapse
Affiliation(s)
- Christopher M. Hammell
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, ph: 508 856-6380
| | - Isabella Lubin
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, ph: 508 856-6380
| | - Peter R. Boag
- Joslin Diabetes Center, Department of Pathology, Harvard Medical School, Harvard Stem Cell Institute, One Joslin Place, Boston, MA 02215
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne 3800, Australia
| | - T. Keith Blackwell
- Joslin Diabetes Center, Department of Pathology, Harvard Medical School, Harvard Stem Cell Institute, One Joslin Place, Boston, MA 02215
| | - Victor Ambros
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, ph: 508 856-6380
| |
Collapse
|
292
|
Jinek M, Doudna JA. A three-dimensional view of the molecular machinery of RNA interference. Nature 2009; 457:405-12. [PMID: 19158786 DOI: 10.1038/nature07755] [Citation(s) in RCA: 527] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In eukaryotes, small non-coding RNAs regulate gene expression, helping to control cellular metabolism, growth and differentiation, to maintain genome integrity, and to combat viruses and mobile genetic elements. These pathways involve two specialized ribonucleases that control the production and function of small regulatory RNAs. The enzyme Dicer cleaves double-stranded RNA precursors, generating short interfering RNAs and microRNAs in the cytoplasm. These small RNAs are transferred to Argonaute proteins, which guide the sequence-specific silencing of messenger RNAs that contain complementary sequences by either enzymatically cleaving the mRNA or repressing its translation. The molecular structures of Dicer and the Argonaute proteins, free and bound to small RNAs, have offered exciting insights into the molecular mechanisms that are central to RNA silencing pathways.
Collapse
Affiliation(s)
- Martin Jinek
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | | |
Collapse
|
293
|
Abstract
Translational control in eukaryotic cells is critical for gene regulation during nutrient deprivation and stress, development and differentiation, nervous system function, aging, and disease. We describe recent advances in our understanding of the molecular structures and biochemical functions of the translation initiation machinery and summarize key strategies that mediate general or gene-specific translational control, particularly in mammalian systems.
Collapse
Affiliation(s)
- Nahum Sonenberg
- Department of Biochemistry and Goodman Cancer Centre, McGill University, Montreal, Quebec, H3G 1Y6, Canada
| | - Alan G. Hinnebusch
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
294
|
Abstract
Over the last decade, approximately 20-30 nucleotide RNA molecules have emerged as critical regulators in the expression and function of eukaryotic genomes. Two primary categories of these small RNAs--short interfering RNAs (siRNAs) and microRNAs (miRNAs)--act in both somatic and germline lineages in a broad range of eukaryotic species to regulate endogenous genes and to defend the genome from invasive nucleic acids. Recent advances have revealed unexpected diversity in their biogenesis pathways and the regulatory mechanisms that they access. Our understanding of siRNA- and miRNA-based regulation has direct implications for fundamental biology as well as disease etiology and treatment.
Collapse
Affiliation(s)
- Richard W. Carthew
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, 2205 Tech Drive, Evanston, IL 60208−3500, USA
| | - Erik J. Sontheimer
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, 2205 Tech Drive, Evanston, IL 60208−3500, USA
| |
Collapse
|
295
|
Trombly MI, Su H, Wang X. A genetic screen for components of the mammalian RNA interference pathway in Bloom-deficient mouse embryonic stem cells. Nucleic Acids Res 2009; 37:e34. [PMID: 19223321 PMCID: PMC2651804 DOI: 10.1093/nar/gkp019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Genetic screens performed in model organisms have helped identify key components of the RNA interference (RNAi) pathway. Recessive genetic screens have recently become feasible through the use of mouse embryonic stem (ES) cells that are Bloom's syndrome protein (Blm) deficient. Here, we developed and performed a recessive genetic screen to identify components of the mammalian RNAi pathway in Blm-deficient ES cells. Genome-wide mutagenesis using a retroviral gene trap strategy resulted in the isolation of putative homozygous RNAi mutant cells. Candidate clones were confirmed by an independent RNAi-based reporter assay and the causative gene trap integration site was identified using molecular techniques. Our screen identified multiple mutant cell lines of Argonaute 2 (Ago2), a known essential component of the RNAi pathway. This result demonstrates that true RNAi components can be isolated by this screening strategy. Furthermore, Ago2 homozygous mutant ES cells provide a null genetic background to perform mutational analyses of the Ago2 protein. Using genetic rescue, we resolve an important controversy regarding the role of two phenylalanine residues in Ago2 activity.
Collapse
Affiliation(s)
- Melanie I Trombly
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, IL 60208, USA
| | | | | |
Collapse
|
296
|
Abstract
Small RNA molecules of about 20-30 nucleotides have emerged as powerful regulators of gene expression and genome stability. Studies in fission yeast and multicellular organisms suggest that effector complexes, directed by small RNAs, target nascent chromatin-bound non-coding RNAs and recruit chromatin-modifying complexes. Interactions between small RNAs and nascent non-coding transcripts thus reveal a new mechanism for targeting chromatin-modifying complexes to specific chromosome regions and suggest possibilities for how the resultant chromatin states may be inherited during the process of chromosome duplication.
Collapse
Affiliation(s)
- Danesh Moazed
- Howard Hughes Medical Institute, and Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA.
| |
Collapse
|
297
|
Kinch LN, Grishin NV. The human Ago2 MC region does not contain an eIF4E-like mRNA cap binding motif. Biol Direct 2009; 4:2. [PMID: 19159466 PMCID: PMC2636766 DOI: 10.1186/1745-6150-4-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Accepted: 01/21/2009] [Indexed: 12/13/2022] Open
Abstract
Background Argonaute (Ago) proteins interact with small regulatory RNAs to mediate gene regulatory pathways. A recent report by Kiriakidou et al. [1] describes an MC sequence region identified in Ago2 that displays similarity to the cap-binding motif in translation initiation factor 4E (eIF4E). In a cap-bound eIF4E structure, two important aromatic residues of the motif stack on either side of a 7-methylguanosine 5'-triphosphate (m7Gppp) base. The corresponding Ago2 aromatic residues (F450 and F505) were hypothesized to perform the same cap-binding function. However, the detected similarity between the MC sequence and the eIF4E cap-binding motif was questionable. Results A number of sequence-based and structure-based bioinformatics methods reveal the reported similarity between the Ago2 MC sequence region and the eIF4E cap-binding motif to be spurious. Alternatively, the MC sequence region is confidently assigned to the N-terminus of the Ago piwi module, within the mid domain of experimentally determined prokaryotic Ago structures. Confident mapping of the Ago2 MC sequence region to the piwi mid domain results in a homology-based structure model that positions the identified aromatic residues over 20 Å apart, with one of the aromatic side chains (F450) contributing instead to the hydrophobic core of the domain. Conclusion Correct functional prediction based on weak sequence similarity requires substantial evolutionary and structural support. The evolutionary context of the Ago mid domain suggested by multiple sequence alignment is limited to a conserved hydrophobicity profile required for the fold and a motif following the MC region that binds guide RNA. Mapping of the MC sequence to the mid domain structure reveals Ago2 aromatics that are incompatible with eIF4E-like mRNA cap-binding, yet display some limited local structure similarities that cause the chance sequence match to eIF4E. Reviewers This article was reviewed by Arcady Mushegian, Chris Ponting, and Igor Jouline (nominated by Igor Zhulin).
Collapse
Affiliation(s)
- Lisa N Kinch
- Howard Hughes Medical Institute and Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-9050, USA.
| | | |
Collapse
|
298
|
Costa-Mattioli M, Sossin WS, Klann E, Sonenberg N. Translational control of long-lasting synaptic plasticity and memory. Neuron 2009; 61:10-26. [PMID: 19146809 PMCID: PMC5154738 DOI: 10.1016/j.neuron.2008.10.055] [Citation(s) in RCA: 744] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 10/10/2008] [Accepted: 10/17/2008] [Indexed: 01/07/2023]
Abstract
Long-lasting forms of synaptic plasticity and memory are dependent on new protein synthesis. Recent advances obtained from genetic, physiological, pharmacological, and biochemical studies provide strong evidence that translational control plays a key role in regulating long-term changes in neural circuits and thus long-term modifications in behavior. Translational control is important for regulating both general protein synthesis and synthesis of specific proteins in response to neuronal activity. In this review, we summarize and discuss recent progress in the field and highlight the prospects for better understanding of long-lasting changes in synaptic strength, learning, and memory and implications for neurological diseases.
Collapse
Affiliation(s)
- Mauro Costa-Mattioli
- Department of Biochemistry and McGill Cancer Center, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Wayne S. Sossin
- Department of Neurology and Neurosurgery, McGill University, Montreal Neurological Institute, BT 110, 3801 University Street, Montreal, QC H3A 2B4, Canada
| | - Eric Klann
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Nahum Sonenberg
- Department of Biochemistry and McGill Cancer Center, McGill University, Montreal, QC H3G 1Y6, Canada
| |
Collapse
|
299
|
Ding XC, Grosshans H. Repression of C. elegans microRNA targets at the initiation level of translation requires GW182 proteins. EMBO J 2009; 28:213-22. [PMID: 19131968 DOI: 10.1038/emboj.2008.275] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Accepted: 12/03/2008] [Indexed: 11/09/2022] Open
Abstract
MicroRNAs (miRNAs) repress target genes through a poorly defined antisense mechanism. Cell-free and cell-based assays have supported the idea that miRNAs repress their target mRNAs by blocking initiation of translation, whereas studies in animal models argued against this possibility. We examined endogenous targets of the let-7 miRNA, an important regulator of stem cell fates. We report that let-7 represses translation initiation in Caenorhabditis elegans, demonstrating this mode of action for the first time in an organism. Unexpectedly, although the lin-4 miRNA was previously reported to repress its targets at a step downstream of translation initiation, we also observe repression of translation initiation for this miRNA. This repressive mechanism, which frequently but not always coincides with transcript degradation, requires the GW182 proteins AIN-1 and AIN-2, and acts on several mRNAs targeted by different miRNAs. Our analysis of an expanded set of endogenous miRNA targets therefore indicates widespread repression of translation initiation under physiological conditions and establishes C. elegans as a genetic system for dissection of the underlying mechanisms.
Collapse
Affiliation(s)
- Xavier C Ding
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
| | | |
Collapse
|
300
|
Eulalio A, Huntzinger E, Nishihara T, Rehwinkel J, Fauser M, Izaurralde E. Deadenylation is a widespread effect of miRNA regulation. RNA (NEW YORK, N.Y.) 2009; 15:21-32. [PMID: 19029310 PMCID: PMC2612776 DOI: 10.1261/rna.1399509] [Citation(s) in RCA: 318] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
miRNAs silence gene expression by repressing translation and/or by promoting mRNA decay. In animal cells, degradation of partially complementary miRNA targets occurs via deadenylation by the CAF1-CCR4-NOT1 deadenylase complex, followed by decapping and subsequent exonucleolytic digestion. To determine how generally miRNAs trigger deadenylation, we compared mRNA expression profiles in D. melanogaster cells depleted of AGO1, CAF1, or NOT1. We show that approximately 60% of AGO1 targets are regulated by CAF1 and/or NOT1, indicating that deadenylation is a widespread effect of miRNA regulation. However, neither a poly(A) tail nor mRNA circularization are required for silencing, because mRNAs whose 3' ends are generated by a self-cleaving ribozyme are also silenced in vivo. We show further that miRNAs trigger mRNA degradation, even when binding by 40S ribosomal subunits is inhibited in cis. These results indicate that miRNAs promote mRNA decay by altering mRNP composition and/or conformation, rather than by directly interfering with the binding and function of ribosomal subunits.
Collapse
Affiliation(s)
- Ana Eulalio
- Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
| | | | | | | | | | | |
Collapse
|