251
|
Nykänen AI, Liu M, Keshavjee S. Mesenchymal Stromal Cell Therapy in Lung Transplantation. Bioengineering (Basel) 2023; 10:728. [PMID: 37370659 DOI: 10.3390/bioengineering10060728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Lung transplantation is often the only viable treatment option for a patient with end-stage lung disease. Lung transplant results have improved substantially over time, but ischemia-reperfusion injury, primary graft dysfunction, acute rejection, and chronic lung allograft dysfunction (CLAD) continue to be significant problems. Mesenchymal stromal cells (MSC) are pluripotent cells that have anti-inflammatory and protective paracrine effects and may be beneficial in solid organ transplantation. Here, we review the experimental studies where MSCs have been used to protect the donor lung against ischemia-reperfusion injury and alloimmune responses, as well as the experimental and clinical studies using MSCs to prevent or treat CLAD. In addition, we outline ex vivo lung perfusion (EVLP) as an optimal platform for donor lung MSC delivery, as well as how the therapeutic potential of MSCs could be further leveraged with genetic engineering.
Collapse
Affiliation(s)
- Antti I Nykänen
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Hospital Institute, University Health Network, Toronto, ON M5G 1L7, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Cardiothoracic Surgery, Helsinki University Hospital and University of Helsinki, FI-00029 Helsinki, Finland
| | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Hospital Institute, University Health Network, Toronto, ON M5G 1L7, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Shaf Keshavjee
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Hospital Institute, University Health Network, Toronto, ON M5G 1L7, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
252
|
Slovinska L, Harvanova D. The Role of Mesenchymal Stromal Cells and Their Products in the Treatment of Injured Spinal Cords. Curr Issues Mol Biol 2023; 45:5180-5197. [PMID: 37367078 DOI: 10.3390/cimb45060329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/09/2023] [Accepted: 06/14/2023] [Indexed: 06/28/2023] Open
Abstract
Spinal cord injury (SCI) is a destructive condition that results in lasting neurological damage resulting in disruption of the connection between the central nervous system and the rest of the body. Currently, there are several approaches in the treatment of a damaged spinal cord; however, none of the methods allow the patient to return to the original full-featured state of life before the injury. Cell transplantation therapies show great potential in the treatment of damaged spinal cords. The most examined type of cells used in SCI research are mesenchymal stromal cells (MSCs). These cells are at the center of interest of scientists because of their unique properties. MSCs regenerate the injured tissue in two ways: (i) they are able to differentiate into some types of cells and so can replace the cells of injured tissue and (ii) they regenerate tissue through their powerful known paracrine effect. This review presents information about SCI and the treatments usually used, aiming at cell therapy using MSCs and their products, among which active biomolecules and extracellular vesicles predominate.
Collapse
Affiliation(s)
- Lucia Slovinska
- Associated Tissue Bank, P.J. Šafárik University and L. Pasteur University Hospital, 040 01 Košice, Slovakia
- Department of Regenerative Medicine and Cell Therapy, Institute of Neurobiology Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| | - Denisa Harvanova
- Associated Tissue Bank, P.J. Šafárik University and L. Pasteur University Hospital, 040 01 Košice, Slovakia
| |
Collapse
|
253
|
Wang L, Wu Y, Yao R, Li Y, Wei Y, Cao Y, Zhang Z, Wu M, Zhu H, Yao Y, Kang H. The role of mesenchymal stem cell-derived extracellular vesicles in inflammation-associated programmed cell death. NANO TODAY 2023; 50:101865. [DOI: 10.1016/j.nantod.2023.101865] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
254
|
Miceli V, Zito G, Bulati M, Gallo A, Busà R, Iannolo G, Conaldi PG. Different priming strategies improve distinct therapeutic capabilities of mesenchymal stromal/stem cells: Potential implications for their clinical use. World J Stem Cells 2023; 15:400-420. [PMID: 37342218 PMCID: PMC10277962 DOI: 10.4252/wjsc.v15.i5.400] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/07/2023] [Accepted: 04/17/2023] [Indexed: 05/26/2023] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) have shown significant therapeutic potential, and have therefore been extensively investigated in preclinical studies of regenerative medicine. However, while MSCs have been shown to be safe as a cellular treatment, they have usually been therapeutically ineffective in human diseases. In fact, in many clinical trials it has been shown that MSCs have moderate or poor efficacy. This inefficacy appears to be ascribable primarily to the heterogeneity of MSCs. Recently, specific priming strategies have been used to improve the therapeutic properties of MSCs. In this review, we explore the literature on the principal priming approaches used to enhance the preclinical inefficacy of MSCs. We found that different priming strategies have been used to direct the therapeutic effects of MSCs toward specific pathological processes. Particularly, while hypoxic priming can be used primarily for the treatment of acute diseases, inflammatory cytokines can be used mainly to prime MSCs in order to treat chronic immune-related disorders. The shift in approach from regeneration to inflammation implies, in MSCs, a shift in the production of functional factors that stimulate regenerative or anti-inflammatory pathways. The opportunity to fine-tune the therapeutic properties of MSCs through different priming strategies could conceivably pave the way for optimizing their therapeutic potential.
Collapse
Affiliation(s)
- Vitale Miceli
- Department of Research, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), Palermo 90127, Italy.
| | - Giovanni Zito
- Department of Research, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), Palermo 90127, Italy
| | - Matteo Bulati
- Department of Research, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), Palermo 90127, Italy
| | - Alessia Gallo
- Department of Research, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), Palermo 90127, Italy
| | - Rosalia Busà
- Department of Research, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), Palermo 90127, Italy
| | - Gioacchin Iannolo
- Department of Research, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), Palermo 90127, Italy
| | - Pier Giulio Conaldi
- Department of Research, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), Palermo 90127, Italy
| |
Collapse
|
255
|
Paganelli A, Diomede F, Marconi GD, Pizzicannella J, Rajan TS, Trubiani O, Paganelli R. Inhibition of LPS-Induced Inflammatory Response of Oral Mesenchymal Stem Cells in the Presence of Galectin-3. Biomedicines 2023; 11:1519. [PMID: 37371614 DOI: 10.3390/biomedicines11061519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Galectin-3 (GAL-3) is a beta-galactoside binding lectin produced by mesenchymal stem cells (MSCs) and other cell sources under inflammatory conditions. Several studies have reported that GAL-3 exerts an anti-inflammatory action, regulated by its natural ligand GAL-3 BP. In the present study, we aimed to assess the GAL-3 mediated regulation of the MSC function in an LPS-induced inflammation setting. Human gingival mesenchymal stem cells (hGMSCs) were stimulated in vitro with LPSs; the expression of TLR4, NFκB p65, MyD88 and NALP3 were assessed in the hGMSCs via immunofluorescence imaging using confocal microscopy, Western blot assay, and RT-PCR before and after the addition of GAL-3, both alone and with the addition of its inhibitors. LPSs stimulated the expression of TLR4, NFκB p65, MyD88 and NALP3 in hGMSCs, which was inhibited by GAL-3. The addition of either GAL3-BP or the antibody to GAL-3 were able to revert the GAL-3-mediated effects, restoring the expression of TLR4, NFκB p65, MyD88 and NALP3. GAL-3 induces the downregulation of the LPS-induced inflammatory program in MSCs.
Collapse
Affiliation(s)
- Alessia Paganelli
- PhD Course in Clinical and Experimental Medicine, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Francesca Diomede
- Department of Innovative Technologies in Medicine and Dentistry, University "G. d'Annunzio" Chieti-Pescara, 66100 Chieti, Italy
| | - Guya Diletta Marconi
- Department of Innovative Technologies in Medicine and Dentistry, University "G. d'Annunzio" Chieti-Pescara, 66100 Chieti, Italy
| | - Jacopo Pizzicannella
- Department of Engineering and Geology, University "G. d'Annunzio" Chieti-Pescara, Viale Pindaro, 42, 65127 Pescara, Italy
| | - Thangavelu Soundara Rajan
- Research and Development Unit, Theertha Biopharma Private Limited, KIADB, Industrial Area, Bommasandra, Jigani Link Road, Bangalore 560105, India
| | - Oriana Trubiani
- Department of Innovative Technologies in Medicine and Dentistry, University "G. d'Annunzio" Chieti-Pescara, 66100 Chieti, Italy
| | - Roberto Paganelli
- Saint Camillus International University of Health and Medical Sciences (UniCamillus), 00131 Rome, Italy
| |
Collapse
|
256
|
Gangadaran P, Oh EJ, Rajendran RL, Oh JM, Kim HM, Kwak S, Chung HY, Lee J, Ahn BC, Hong CM. Three-dimensional culture conditioned bone marrow MSC secretome accelerates wound healing in a burn injury mouse model. Biochem Biophys Res Commun 2023; 673:87-95. [PMID: 37364390 DOI: 10.1016/j.bbrc.2023.05.088] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/09/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023]
Abstract
Mesenchymal stem cell (MSC)-based therapy has emerged as a promising regenerative therapeutic approach for wound healing. To determine the effects of cultured MSCs as a 2D monolayer (2D-MSCs) and 3D spheroids (3D-MSCs) on their secretomes, and to examine the effect of 3D-MSC secretomes on endothelial cells (ECs) and MSCs in a burn injury mouse model. MSCs were cultured as 2D monolayers (2D-MSCs) and 3D spheroids (3D-MSCs) and their cellular characteristics were evaluated by western blotting. 2D-MSC and 3D-MSC secretomes (condition medium: CM) were analyzed using an angiogenic array. The activation of ECs by 2D-MSC and 3D-MSC CMs was examined in cellular proliferation, migration, and tube formation assays. The wound healing effects of 2D-MSCs and 3D-MSCs were determined in vivo using a burn injury mouse model. 3D culture conditions altered the markers of components that regulate cell survival, cytoskeletal, adhesion, and proliferation. Interleukin-6 (IL-6), vascular endothelial growth factor A (VEGFA), IL-8, and chemokine (CXC motif) ligand 1 (CXCL1) were present at high levels in the CM of 3D-MSCs compared with 2D-MCs. 3D-MSC-CMs promoted the proliferation, migration, and tube formation of ECs. Furthermore, 3D-MSC treatment enhanced wound healing in a burn injury mouse model. 3D culture improves proangiogenic factors in the MSC secretome and 3D-MSCs represent a new cell-based treatment strategy for wound healing.
Collapse
Affiliation(s)
- Prakash Gangadaran
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, 41944, South Korea; Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, 41944, South Korea
| | - Eun Jung Oh
- Department of Plastic and Reconstructive Surgery, CMRI, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, South Korea
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, 41944, South Korea
| | - Ji Min Oh
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, 41944, South Korea
| | - Hyun Mi Kim
- Department of Plastic and Reconstructive Surgery, CMRI, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, South Korea
| | - Suin Kwak
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, 41944, South Korea; Department of Plastic and Reconstructive Surgery, CMRI, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, South Korea
| | - Ho Yun Chung
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, 41944, South Korea; Department of Plastic and Reconstructive Surgery, CMRI, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, South Korea
| | - Jaetae Lee
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, 41944, South Korea; Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, 41944, South Korea
| | - Byeong-Cheol Ahn
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, 41944, South Korea; Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, 41944, South Korea; Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, 41944, South Korea.
| | - Chae Moon Hong
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, 41944, South Korea; Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, 41944, South Korea.
| |
Collapse
|
257
|
Soliman AH, Abdellatif M. COVID-19 disease treatment: pivotal challenges in the arena of umbilical cord-mesenchymal stem cells (UC-MSCs). Front Cell Dev Biol 2023; 11:1146835. [PMID: 37274737 PMCID: PMC10235792 DOI: 10.3389/fcell.2023.1146835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/10/2023] [Indexed: 06/06/2023] Open
Abstract
This century's first major epidemic of a new coronavirus illness (2019-nCoV) was a tremendous shock to the healthcare system. The onset of the pandemic has caused severe economic and health shortages. At this time, there are no viable treatments for COVID-19. Several clinical studies using cell-based therapies, such as umbilical cord mesenchymal stem cells, have showed promising results (UC-MSCs). UC-MSCs have been the focus of much study because to their potential as a treatment option for COVID-19 patients. Cytokine release syndrome, often called cytokine storm, increases the risk of morbidity and mortality from COVID-19. It has been established that UC-MSCs may suppress and control both the adaptive and innate immune responses by modulating the release of immunostimulatory cytokines. The purpose of this study is to assess and clarify the use of UC-MSCs for the treatment of ARDS caused by COVID-19.
Collapse
|
258
|
Song Y, Li P, Xu Y, Lin Z, Deng Z, Chen C. Menstrual Blood-Derived Mesenchymal Stem Cells Encapsulated in Autologous Platelet-Rich Gel Facilitate Rotator Cuff Healing in a Rabbit Model of Chronic Tears. Am J Sports Med 2023:3635465231168104. [PMID: 37184028 DOI: 10.1177/03635465231168104] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
BACKGROUND Successful management of chronic rotator cuff (RC) tears remains a challenge owing to its limited intrinsic healing capacity and unsatisfactory failure rate. Menstrual blood-derived mesenchymal stem cells (MenSCs) have the potential to differentiate into the chondrogenic or osteogenic lineage. Autologous platelet-rich gel (APG), a gel material derived from platelet-rich plasma (PRP), can be applied as a carrier system for cell delivery and also as a releasing system for endogenous growth factors. PURPOSE To investigate the effect of human MenSCs encapsulated in APG (MenSCs@APG) on the healing of chronic RC tears in a rabbit model. STUDY DESIGN Controlled laboratory study. METHODS After evaluation of the effect of PRP on MenSC proliferation or differentiation, the stem cells were encapsulated in APG for in vivo injection. Supraspinatus tenotomy from the right greater tuberosity was performed on 45 New Zealand White rabbits. After 6 weeks, these rabbits were randomly allocated to 3 supplemental treatments during supraspinatus repair: saline injection (control [CTL] group), APG injection (APG group), and MenSCs@APG injection (MenSCs@APG group). At week 18, these rabbits were sacrificed to harvest the humerus-supraspinatus tendon complexes for micro-computed tomography (CT), histological evaluation, tensile test, and MenSC tracking. RESULTS In vitro results showed that APG can stimulate MenSC proliferation and enhance chondrogenic or osteogenic differentiation. In vivo results showed that APG can act as a carrier for delivering MenSCs into the healing site, and also as a stimulator for enhancing the in vivo performance of MenSCs. Micro-CT showed that bone volume/total volume and trabecular thickness of the new bone in the MenSCs@APG group presented significantly larger values than those of the APG or CTL group (P < .05 for all). Histologically, compared with the CTL or APG group, significantly more mature fibrocartilage regenerated at the healing site in the MenSCs@APG group. A large number of human nuclei-stained cells were observed in the MenSCs@APG group, presenting a similar appearance to fibrochondrocytes or osteocytes. Biomechanically, the MenSCs@APG group showed significantly higher failure load and stiffness than the APG or CTL group (P < .05 for all). CONCLUSION Human MenSCs@APG facilitated RC healing in a rabbit model of chronic tears. CLINICAL RELEVANCE Autogenous MenSCs@APG may be a new stem cell-based therapy for augmenting RC healing in the clinic.
Collapse
Affiliation(s)
- Ya Song
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ping Li
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Obstetrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yan Xu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Zhangyuan Lin
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhenhan Deng
- Department of Sports Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen University, Shenzhen, China
| | - Can Chen
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- Department of Sports Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen University, Shenzhen, China
| |
Collapse
|
259
|
Ishiuchi N, Nakashima A, Maeda S, Miura Y, Miyasako K, Sasaki K, Uchiki T, Sasaki A, Nagamatsu S, Nakao N, Nagao M, Masaki T. Comparison of therapeutic effects of mesenchymal stem cells derived from superficial and deep subcutaneous adipose tissues. Stem Cell Res Ther 2023; 14:121. [PMID: 37143086 PMCID: PMC10161523 DOI: 10.1186/s13287-023-03350-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 04/19/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Fibrosis is a common histological feature in the process from chronic organ injury to organ failure. Chronic tissue injury causes inflammatory cell infiltration into the injured tissue. The persistence of this inflammatory cell infiltration leads to fibrosis and organ failure. Adipose-derived mesenchymal stem cells (ASCs) have received much attention as a regenerative therapeutic tool to prevent progression from organ injury to failure. Subcutaneous abdominal adipose tissue is divided into superficial and deep layers by a superficial fascia. Adipose tissue easily collected by liposuction is usually obtained from a deep layer, so ASCs derived from a deep layer are generally used for regenerative medicine. However, no research has been conducted to investigate differences in the therapeutic effects of ASCs from the superficial and deep layers (Sup-ASCs and Deep-ASCs, respectively). Therefore, we compared the therapeutic potencies of Sup-ASCs and Deep-ASCs. METHODS ASCs were isolated from superficial and deep subcutaneous abdominal adipose tissues collected from patients who underwent breast reconstruction. We first compared cell characteristics, such as morphology, cell proliferation, cell surface markers, adipogenic and osteogenic differentiation, cell senescence markers, and expression of coagulation and anticoagulant factors between Sup-ASCs and Deep-ASCs. Furthermore, we compared their ability to promote polarization of M2 macrophages and to inhibit transforming growth factor (TGF)-β/Smad signaling using THP-1 cells and TGF-β1 stimulated HK-2 cells incubated with conditioned media from Sup-ASCs or Deep-ASCs. In in vivo experiments, after renal ischemia-reperfusion injury (IRI) procedure, Sup-ASCs or Deep-ASCs were injected through the abdominal aorta. At 21 days post-injection, the rats were sacrificed and their left kidneys were collected to evaluate fibrosis. Finally, we performed RNA-sequencing analysis of Sup-ASCs and Deep-ASCs. RESULTS Sup-ASCs had greater proliferation and adipogenic differentiation compared with Deep-ASCs, whereas both ASC types had similar morphology, cell surface markers, senescence markers, and expression of coagulation and anticoagulant factors. Conditioned media from Sup-ASCs and Deep-ASCs equally promoted polarization of M2 macrophages and suppressed TGF-β/Smad signaling. Moreover, administration of Sup-ASCs and Deep-ASCs equally ameliorated renal fibrosis induced by IRI in rats. RNA-sequencing analysis revealed no significant difference in the expression of genes involved in anti-inflammatory and anti-fibrotic effects between Sup-ASCs and Deep-ASCs. CONCLUSIONS These results indicate that both Sup-ASCs and Deep-ASCs can be used effectively and safely as an intravascular ASC therapy for organ injury.
Collapse
Affiliation(s)
- Naoki Ishiuchi
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
- Center for Cause of Death Investigation Research, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
- Department of Forensic Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Ayumu Nakashima
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
- Department of Stem Cell Biology and Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.
| | - Satoshi Maeda
- Department of Stem Cell Biology and Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
- TWOCELLS Company, Limited, 16-35 Hijiyama-honmachi, Minami-ku, Hiroshima, 732-0816, Japan
| | - Yoshie Miura
- Department of Stem Cell Biology and Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
- TWOCELLS Company, Limited, 16-35 Hijiyama-honmachi, Minami-ku, Hiroshima, 732-0816, Japan
| | - Kisho Miyasako
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Kensuke Sasaki
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Toshio Uchiki
- Department of Plastic and Reconstructive Surgery, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Ayano Sasaki
- Department of Plastic and Reconstructive Surgery, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Shogo Nagamatsu
- Department of Plastic and Reconstructive Surgery, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Naoki Nakao
- Department of Forensic Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Masataka Nagao
- Center for Cause of Death Investigation Research, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
- Department of Forensic Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Takao Masaki
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| |
Collapse
|
260
|
Hoang DM, Nguyen QT, Phan TT, Ngo AT, Pham PT, Bach TQ, Le PT, Bui HT, Thanh LN. Advanced cell-based products generated via automated and manual manufacturing platforms under the quality by design principle: Are they equivalent or different? Heliyon 2023; 9:e15946. [PMID: 37229156 PMCID: PMC10205494 DOI: 10.1016/j.heliyon.2023.e15946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are multipotent stem cells that can be isolated from bone marrow, adipose tissue, the umbilical cord, dental pulp, etc. These cells have unique properties that give them excellent therapeutic potential, including immunoregulation, immunomodulation, and tissue regeneration functions. MSC-based products are considered advanced therapy medicinal products (ATMPs) under European regulations (1394/2007); thus, they must be manufactured under good manufacturing practices and via effective manufacturing methods. The former can be achieved via a proper laboratory design and compliance with manufacturing protocols, whereas the latter requires an approach that ensures that the quality of the products is consistent regardless of the manufacturing procedure. To meet these daunting requirements, this study proposes an exchangeable approach that combines optimized and equivalent manufacturing processes under the Quality by Design (QbD) principle, allowing investigators to convert from small laboratory-scale to large-scale manufacturing of MSC-based products for clinical applications without altering the quality and quantity of the cell-based products.
Collapse
Affiliation(s)
- Duc M. Hoang
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, 458 Minh Khai, Hanoi 11622, Viet Nam
| | - Quyen T. Nguyen
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, 458 Minh Khai, Hanoi 11622, Viet Nam
| | - Trang T.K. Phan
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, 458 Minh Khai, Hanoi 11622, Viet Nam
| | - Anh T.L. Ngo
- Vinmec High Tech Center, Vinmec Healthcare System, 458 Minh Khai, Hanoi 11622, Viet Nam
| | - Phuong T. Pham
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, 458 Minh Khai, Hanoi 11622, Viet Nam
| | - Trung Q. Bach
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, 458 Minh Khai, Hanoi 11622, Viet Nam
| | - Phuong T.T. Le
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, 458 Minh Khai, Hanoi 11622, Viet Nam
| | - Hoa T.P. Bui
- Vinmec High Tech Center, Vinmec Healthcare System, 458 Minh Khai, Hanoi 11622, Viet Nam
| | - Liem Nguyen Thanh
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, 458 Minh Khai, Hanoi 11622, Viet Nam
- College of Health Science, Vin University, Vinhomes Ocean Park, Gia Lam District, Hanoi 12400, Viet Nam
- Vinmec International Hospital – Times City, Vinmec Healthcare System, 458 Minh Khai, Hanoi 11622, Viet Nam
| |
Collapse
|
261
|
Hu G, Cui Z, Chen X, Sun F, Li T, Li C, Zhang L, Guo X, Zhao H, Xia Y, Yan W, Yi W, Fan M, Yang R, Wang S, Tao L, Zhang F. Suppressing Mesenchymal Stromal Cell Ferroptosis Via Targeting a Metabolism-Epigenetics Axis Corrects their Poor Retention and Insufficient Healing Benefits in the Injured Liver Milieu. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206439. [PMID: 36808838 PMCID: PMC10161111 DOI: 10.1002/advs.202206439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/28/2023] [Indexed: 05/06/2023]
Abstract
Mesenchymal stromal cell (MSC) implantation is a promising option for liver repair, but their poor retention in the injured liver milieu critically blunts therapeutic effects. The aim is to clarify the mechanisms underlying massive MSC loss post-implantation and establish corresponding improvement strategies. MSC loss primarily occurs within the initial hours after implantation into the injured liver milieu or under reactive oxygen species (ROS) stress. Surprisingly, ferroptosis is identified as the culprit for rapid depletion. In ferroptosis- or ROS-provoking MSCs, branched-chain amino acid transaminase-1 (BCAT1) is dramatically decreased, and its downregulation renders MSC susceptible to ferroptosis via suppressing the transcription of glutathione peroxidase-4 (GPX4), a vital ferroptosis defensing enzyme. BCAT1 downregulation impedes GPX4 transcription via a rapid-responsive metabolism-epigenetics coordinating mechanism, involving α-ketoglutarate accumulation, histone 3 lysine 9 trimethylation loss, and early growth response protein-1 upregulation. Approaches to suppress ferroptosis (e.g., incorporating ferroptosis inhibitors in injection solvent and overexpressing BCAT1) significantly improve MSC retention and liver-protective effects post-implantation. This study provides the first evidence indicating that excessive MSC ferroptosis is the nonnegligible culprit for their rapid depletion and insufficient therapeutic efficacy after implantation into the injured liver milieu. Strategies suppressing MSC ferroptosis are conducive to optimizing MSC-based therapy.
Collapse
Affiliation(s)
- Guangyu Hu
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Zhe Cui
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Xiyao Chen
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, P. R. China
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Fangfang Sun
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Tongzheng Li
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Congye Li
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Ling Zhang
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Xiong Guo
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Hang Zhao
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Yunlong Xia
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Wenjun Yan
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Wei Yi
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Miaomiao Fan
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Rongjin Yang
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Shan Wang
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Ling Tao
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Fuyang Zhang
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, P. R. China
| |
Collapse
|
262
|
Lee DH, Lee EB, Seo JP, Ko EJ. In vitro effects of monophosphoryl lipid A and Poly I:C combination on equine cells. J Vet Sci 2023; 24:e37. [PMID: 37271505 DOI: 10.4142/jvs.23007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/09/2023] [Accepted: 03/10/2023] [Indexed: 06/06/2023] Open
Abstract
BACKGROUND Toll-like receptor (TLR) agonists have been used as adjuvants to modulate immune responses in both animals and humans. OBJECTIVES The objective of this study was to evaluate the combined effects of the TLR 4 agonist monophosphoryl lipid A (MPL) and the TLR 3 agonist polyinosinic:polycytidylic acid (Poly I:C) on equine peripheral blood mononuclear cells (PBMCs), monocyte-derived dendritic cells (MoDCs), and bone marrow-derived mesenchymal stromal cells (BM-MSCs). METHODS The PBMCs, MoDCs, and BM-MSCs collected from three mixed breed horses were treated with MPL, Poly I:C, and their combination. The mRNA expression of interferon gamma (IFN-γ), interleukin (IL)-1β, IL-4, IL-6, IL-8, IL-12p40, tumor necrosis factor alpha (TNF-α), vascular endothelial growth factor (VEGF), and monocyte chemoattractant protein-1 (MCP-1) was determined using real-time polymerase chain reaction. RESULTS The combination of MPL and Poly I:C significantly upregulated immunomodulatory responses in equine cells/ without cytotoxicity. The combination induced greater mRNA expression of pro-inflammatory cytokines IFN-γ and IL-6 than MPL or Poly I:C stimulation alone in PBMCs. In addition, the combination induced significantly higher mRNA expression of IL-1β, IL-6, and IL-12p40 in MoDCs, and IL-8, MCP-1, and VEGF in BM-MSCs compared to stimulation with a single TLR agonist. CONCLUSIONS The combination of MPL and Poly I:C can be used as a potential adjuvant candidate for vaccines to aid in preventing infectious diseases in horses.
Collapse
Affiliation(s)
- Dong-Ha Lee
- College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Korea
| | - Eun-Bee Lee
- Department of Veterinary Medicine, College of Veterinary Medicine, Jeju National University, Jeju 63243, Korea
| | - Jong-Pil Seo
- Department of Veterinary Medicine, College of Veterinary Medicine, Jeju National University, Jeju 63243, Korea
| | - Eun-Ju Ko
- College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Korea
- Department of Veterinary Medicine, College of Veterinary Medicine, Jeju National University, Jeju 63243, Korea.
| |
Collapse
|
263
|
Min Q, Yang L, Tian H, Tang L, Xiao Z, Shen J. Immunomodulatory Mechanism and Potential Application of Dental Pulp-Derived Stem Cells in Immune-Mediated Diseases. Int J Mol Sci 2023; 24:ijms24098068. [PMID: 37175774 PMCID: PMC10178746 DOI: 10.3390/ijms24098068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Dental pulp stem cells (DPSCs) are mesenchymal stem cells (MSCs) derived from dental pulp tissue, which have high self-renewal ability and multi-lineage differentiation potential. With the discovery of the immunoregulatory ability of stem cells, DPSCs have attracted much attention because they have similar or even better immunomodulatory effects than MSCs from other sources. DPSCs and their exosomes can exert an immunomodulatory ability by acting on target immune cells to regulate cytokines. DPSCs can also migrate to the lesion site to differentiate into target cells to repair the injured tissue, and play an important role in tissue regeneration. The aim of this review is to summarize the molecular mechanism and target cells of the immunomodulatory effects of DPSCs, and the latest advances in preclinical research in the treatment of various immune-mediated diseases, providing new reflections for their clinical application. DPSCs may be a promising source of stem cells for the treatment of immune-mediated diseases.
Collapse
Affiliation(s)
- Qi Min
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Liqiong Yang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Hua Tian
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Lu Tang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| |
Collapse
|
264
|
Wu Y, Shum HCE, Wu K, Vadgama J. From Interaction to Intervention: How Mesenchymal Stem Cells Affect and Target Triple-Negative Breast Cancer. Biomedicines 2023; 11:1182. [PMID: 37189800 PMCID: PMC10136169 DOI: 10.3390/biomedicines11041182] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Triple-negative breast cancer (TNBC) lacks estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 expressions, making targeted therapies ineffective. Mesenchymal stem cells (MSCs) have emerged as a promising approach for TNBC treatment by modulating the tumor microenvironment (TME) and interacting with cancer cells. This review aims to comprehensively overview the role of MSCs in TNBC treatment, including their mechanisms of action and application strategies. We analyze the interactions between MSC and TNBC cells, including the impact of MSCs on TNBC cell proliferation, migration, invasion, metastasis, angiogenesis, and drug resistance, along with the signaling pathways and molecular mechanisms involved. We also explore the impact of MSCs on other components of the TME, such as immune and stromal cells, and the underlying mechanisms. The review discusses the application strategies of MSCs in TNBC treatment, including their use as cell or drug carriers and the advantages and limitations of different types and sources of MSCs in terms of safety and efficacy. Finally, we discuss the challenges and prospects of MSCs in TNBC treatment and propose potential solutions or improvement methods. Overall, this review provides valuable insights into the potential of MSCs as a novel therapeutic approach for TNBC treatment.
Collapse
Affiliation(s)
- Yong Wu
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, David Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
| | - Hang Chee Erin Shum
- Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ke Wu
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, David Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
| | - Jaydutt Vadgama
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, David Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
| |
Collapse
|
265
|
Stage HJ, Trappe S, Söllig K, Trachsel DS, Kirsch K, Zieger C, Merle R, Aschenbach JR, Gehlen H. Multilineage Differentiation Potential of Equine Adipose-Derived Stromal/Stem Cells from Different Sources. Animals (Basel) 2023; 13:ani13081352. [PMID: 37106915 PMCID: PMC10135324 DOI: 10.3390/ani13081352] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/06/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
The investigation of multipotent stem/stromal cells (MSCs) in vitro represents an important basis for translational studies in large animal models. The study's aim was to examine and compare clinically relevant in vitro properties of equine MSCs, which were isolated from abdominal (abd), retrobulbar (rb) and subcutaneous (sc) adipose tissue by collagenase digestion (ASCs-SVF) and an explant technique (ASCs-EXP). Firstly, we examined proliferation and trilineage differentiation and, secondly, the cardiomyogenic differentiation potential using activin A, bone morphogenetic protein-4 and Dickkopf-1. Fibroblast-like, plastic-adherent ASCs-SVF and ASCs-EXP were obtained from all sources. The proliferation and chondrogenic differentiation potential did not differ significantly between the isolation methods and localizations. However, abd-ASCs-EXP showed the highest adipogenic differentiation potential compared to rb- and sc-ASCs-EXP on day 7 and abd-ASCs-SVF a higher adipogenic potential compared to abd-ASCs-EXP on day 14. Osteogenic differentiation potential was comparable at day 14, but by day 21, abd-ASCs-EXP demonstrated a higher osteogenic potential compared to abd-ASCs-SVF and rb-ASCs-EXP. Cardiomyogenic differentiation could not be achieved. This study provides insight into the proliferation and multilineage differentiation potential of equine ASCs and is expected to provide a basis for future preclinical and clinical studies in horses.
Collapse
Affiliation(s)
- Hannah J Stage
- Equine Clinic, Surgery and Radiology, Department of Veterinary Medicine, Freie Universität Berlin, Oertzenweg 19b, 14163 Berlin, Germany
| | - Susanne Trappe
- Institute of Veterinary Physiology, Freie Universität Berlin, Oertzenweg 19b, 14163 Berlin, Germany
| | - Katharina Söllig
- Institute of Veterinary Physiology, Freie Universität Berlin, Oertzenweg 19b, 14163 Berlin, Germany
| | - Dagmar S Trachsel
- Clinical Unit of Equine Internal Medicine, Department for Companion Animals and Horses, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Katharina Kirsch
- Institute of Veterinary Physiology, Freie Universität Berlin, Oertzenweg 19b, 14163 Berlin, Germany
| | - Cornelia Zieger
- Institute of Veterinary Pathology Department of Veterinary Medicine, Freie Universität Berlin, Robert-von-Ostertag-Straße 15, 14163 Berlin, Germany
| | - Roswitha Merle
- Institute for Veterinary Epidemiology and Biostatistics, Department of Veterinary Medicine, Freie Universität Berlin, Königsweg 67, 14163 Berlin, Germany
| | - Jörg R Aschenbach
- Institute of Veterinary Physiology, Freie Universität Berlin, Oertzenweg 19b, 14163 Berlin, Germany
| | - Heidrun Gehlen
- Equine Clinic, Surgery and Radiology, Department of Veterinary Medicine, Freie Universität Berlin, Oertzenweg 19b, 14163 Berlin, Germany
| |
Collapse
|
266
|
Tavasolian F, Inman RD. Biology and therapeutic potential of mesenchymal stem cell extracellular vesicles in axial spondyloarthritis. Commun Biol 2023; 6:413. [PMID: 37059822 PMCID: PMC10104809 DOI: 10.1038/s42003-023-04743-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 03/21/2023] [Indexed: 04/16/2023] Open
Abstract
Axial spondyloarthritis (AxSpA) is a chronic, inflammatory, autoimmune disease that predominantly affects the joints of the spine, causes chronic pain, and, in advanced stages, may result in spinal fusion. Recent developments in understanding the immunomodulatory and tissue-differentiating properties of mesenchymal stem cell (MSC) therapy have raised the possibility of applying such treatment to AxSpA. The therapeutic effectiveness of MSCs has been shown in numerous studies spanning a range of diseases. Several studies have been conducted examining acellular therapy based on MSC secretome. Extracellular vesicles (EVs) generated by MSCs have been proven to reproduce the impact of MSCs on target cells. These EVs are associated with immunological regulation, tissue remodeling, and cellular homeostasis. EVs' biological effects rely on their cargo, with microRNAs (miRNAs) integrated into EVs playing a particularly important role in gene expression regulation. In this article, we will discuss the impact of MSCs and EVs generated by MSCs on target cells and how these may be used as unique treatment strategies for AxSpA.
Collapse
Affiliation(s)
- Fataneh Tavasolian
- Spondylitis Program, Division of Rheumatology, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
| | - Robert D Inman
- Spondylitis Program, Division of Rheumatology, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada.
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.
- Departments of Medicine and Immunology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
267
|
Fan M, Zhang Y, Shi H, Xiang L, Yao H, Lin R. Bone mesenchymal stem cells promote gastric cancer progression through TGF-β1/Smad2 positive feedback loop. Life Sci 2023; 323:121657. [PMID: 37019301 DOI: 10.1016/j.lfs.2023.121657] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023]
Abstract
AIMS Bone marrow-derived mesenchymal stem cells (BMSCs) have been proven to be recruited into the tumor microenvironment and contribute to gastric cancer (GC) progression, but the underlying mechanism is still unclear. The purpose of this study is to explore the exact role and potential mechanism of BMSCs in the progression of GC. MATERIALS AND METHODS Bioinformatics analyzed were used to clarify the correlation between TGF-β1 and prognosis of gastric cancer. Cell co-culture were used to explore the interaction between gastric cancer cells (GCs) and BMSCs. Quantitative real time-PCR and Western blot assay were used to detect gene and protein expression, respectively. The biological characteristics of GCs and BMSCs were detected by immunofluorescence, Transwell migration, Elisa and invasion assay. Xenograft models in nude mice were constructed to evaluate GC development in vivo. KEY FINDINGS TGF-β1 was overexpressed in GC cells and tissues, and is positively related to the poor prognosis of patients. TGF-β1 from GCs activated the Smad2 pathway in BMSCs, promoting their differentiation into carcinoma-associated fibroblasts (CAFs) and TGF-β1 expression. Concomitantly, TGF-β1 secreted by CAFs activate Smad2 signaling in GC cells, thus inducing their epithelial-mesenchymal transition (EMT) and TGF-β1 secretion. BMSCs can dramatically promote the proliferation, migration, and invasion of GCs while blocking TGF-β1/Smad2 positive feedback loop can reverse these effects. SIGNIFICANCE The TGF-β1/Smad2 positive feedback loop between GCs and BMSCs, promotes the CAFs differentiation of BMSCs and the epithelial-mesenchymal transition of GCs, resulting in the progression of GC.
Collapse
|
268
|
Sokolova IB, Gorshkova OP. Cell Therapy: A New Technology for Cerebral Circulation Restoration after Ischemia/Reperfusion. Acta Naturae 2023; 15:75-80. [PMID: 37538806 PMCID: PMC10395779 DOI: 10.32607/actanaturae.14338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/07/2023] [Indexed: 08/05/2023] Open
Abstract
Cell therapy with mesenchymal stem cells (MSCs) may be a promising technique for cerebral blood flow restoration after transient ischemia. Before a practical application of the cell material, 7-9 days are required for its cultivation. We studied the efficacy of human MSC (hMSC) transplantation performed 7 days after cerebral ischemia/reperfusion (I/R) to help recover cerebral circulation. The intravital micrograph technique was used to comparatively evaluate the vasculature density in the pia mater and the reactivity of the pial arteries in response to acetylcholine (ACh) in rats after I/R (clamping of both carotid arteries and a simultaneous decrease in and strict maintenance of the mean BP at 45 ± 2 mm Hg for 12 min) and with/without hMSC transplantation. Perfusion (P) in the sensorimotor cortex was assessed using laser dopplerography. After 14 and 21 days, the vasculature density in I/R-affected rats was 1.2- to 1.4-fold and 1.2- to 1.3-fold lower, respectively, than that in the controls. The number of ACh-dilated arteries decreased 1.6- to 1.9-fold and 1.2- to 1.7-fold 14 and 21 days after I/R, respectively. After 21 days, the P level decreased 1.6-fold, on average. Administration of hMSCs on day 7 after I/R resulted in complete recovery of the vasculature density by day 14. ACh-mediated dilatation fully recovered only in arteries of less than 40 μm in diameter within 21 days. After 21 days, the P level was 1.2-fold lower than that in the controls but significantly higher than that in rats after I/R without hMSCs. Delayed administration of MSCs after a transient cerebral ischemic attack affords the time for the procedures required to prepare cell material for transplantation and provides a good therapeutic response in the pial microvasculature.
Collapse
Affiliation(s)
- I. B. Sokolova
- Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, 199034 Russian Federation
| | - O. P. Gorshkova
- Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, 199034 Russian Federation
| |
Collapse
|
269
|
Administration of stem cells against cardiovascular diseases with a focus on molecular mechanisms: Current knowledge and prospects. Tissue Cell 2023; 81:102030. [PMID: 36709696 DOI: 10.1016/j.tice.2023.102030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023]
Abstract
Cardiovascular diseases (CVDs) are a serious global concern for public and human health. Despite the emergence of significant therapeutic advances, it is still the leading cause of death and disability worldwide. As a result, extensive efforts are underway to develop practical therapeutic approaches. Stem cell-based therapies could be considered a promising strategy for the treatment of CVDs. The efficacy of stem cell-based therapeutic approaches is demonstrated through recent laboratory and clinical studies due to their inherent regenerative properties, proliferative nature, and their capacity to differentiate into different cells such as cardiomyocytes. These properties could improve cardiovascular functioning leading to heart regeneration. The two most common types of stem cells with the potential to cure heart diseases are induced pluripotent stem cells (iPSCs) and mesenchymal stem cells (MSCs). Several studies have demonstrated the use, efficacy, and safety of MSC and iPSCs-based therapies for the treatment of CVDs. In this study, we explain the application of stem cells, especially iPSCs and MSCs, in the treatment of CVDs with a focus on cellular and molecular mechanisms and then discuss the advantages, disadvantages, and perspectives of using this technology in the treatment of these diseases.
Collapse
|
270
|
Ye P, Feng L, Zhang D, Li R, Wen Y, Tong X, Shi S, Dong C. Metformin Ameliorates D-Galactose-Induced Senescent Human Bone Marrow-Derived Mesenchymal Stem Cells by Enhancing Autophagy. Stem Cells Int 2023; 2023:1429642. [PMID: 37035446 PMCID: PMC10079386 DOI: 10.1155/2023/1429642] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/16/2023] [Accepted: 03/11/2023] [Indexed: 04/04/2023] Open
Abstract
Human bone marrow-derived mesenchymal stem cells (hBMSCs) are promising candidates for stem cell therapy in clinical trials. Applications of hBMSCs in clinical therapy are limited by cellular senescence due to long-term ex vivo expansion. Metformin, an oral hypoglycemic drug for type 2 diabetes, has been shown to have antiaging effects. However, the mechanisms of metformin in antiaging treatment remain controversial. Here, we used D-galactose (D-gal) to establish an appropriate model of senescent hBMSCs to explore the antiaging effects of metformin. Following metformin treatment with a low concentration range, senescence phenotypes induced by D-gal significantly changed, including generation of reactive oxygen species (ROS), loss of mitochondrial membrane potential (MMP), and cell cycle arrest. In contrast, no apparent change was found in unsenescent hBMSCs. Furthermore, the results show that activation of 5'AMP-activated protein kinase (AMPK) by metformin enhances cell autophagy in senescent hBMSCs. These findings suggest that metformin exerts antiaging function within the low concentration range by enhancing autophagy and exhibits potential benefits for clinical stem cell therapy by ameliorating the ex vivo replicative senescence of hBMSCs.
Collapse
Affiliation(s)
- Pingting Ye
- Department of Oncology, Shanghai East Hospital, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200120, China
| | - Lei Feng
- Department of Oncology, Shanghai East Hospital, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200120, China
| | - Dan Zhang
- Department of Oncology, Shanghai East Hospital, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200120, China
| | - Ruihao Li
- Department of Oncology, Shanghai East Hospital, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200120, China
| | - Yixuan Wen
- Department of Oncology, Shanghai East Hospital, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200120, China
| | - Xiaohan Tong
- Department of Oncology, Shanghai East Hospital, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200120, China
| | - Shuo Shi
- Department of Oncology, Shanghai East Hospital, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200120, China
| | - Chunyan Dong
- Department of Oncology, Shanghai East Hospital, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200120, China
| |
Collapse
|
271
|
Lyamina S, Baranovskii D, Kozhevnikova E, Ivanova T, Kalish S, Sadekov T, Klabukov I, Maev I, Govorun V. Mesenchymal Stromal Cells as a Driver of Inflammaging. Int J Mol Sci 2023; 24:6372. [PMID: 37047346 PMCID: PMC10094085 DOI: 10.3390/ijms24076372] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/03/2023] [Accepted: 03/22/2023] [Indexed: 03/31/2023] Open
Abstract
Life expectancy and age-related diseases burden increased significantly over the past few decades. Age-related conditions are commonly discussed in a very limited paradigm of depleted cellular proliferation and maturation with exponential accumulation of senescent cells. However, most recent evidence showed that the majority of age-associated ailments, i.e., diabetes mellitus, cardiovascular diseases and neurodegeneration. These diseases are closely associated with tissue nonspecific inflammation triggered and controlled by mesenchymal stromal cell secretion. Mesenchymal stromal cells (MSCs) are known as the most common type of cells for therapeutic approaches in clinical practice. Side effects and complications of MSC-based treatments increased interest in the MSCs secretome as an alternative concept for validation tests in regenerative medicine. The most recent data also proposed it as an ideal tool for cell-free regenerative therapy and tissue engineering. However, senescent MSCs secretome was shown to hold the role of 'key-driver' in inflammaging. We aimed to review the immunomodulatory effects of the MSCs-secretome during cell senescence and provide eventual insight into the interpretation of its beneficial biological actions in inflammaging-associated diseases.
Collapse
Affiliation(s)
- Svetlana Lyamina
- Molecular Pathology of Digestion Laboratory, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Delegatskaya Str., 20/1, 127473 Moscow, Russia
- Scientific Research Institute for Systems Biology and Medicine, Nauchniy Proezd, 18, 117246 Moscow, Russia
| | - Denis Baranovskii
- Molecular Pathology of Digestion Laboratory, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Delegatskaya Str., 20/1, 127473 Moscow, Russia
- Research and Educational Resource Center for Cellular Technologies, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 249036 Obninsk, Russia
| | - Ekaterina Kozhevnikova
- Molecular Pathology of Digestion Laboratory, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Delegatskaya Str., 20/1, 127473 Moscow, Russia
| | - Tatiana Ivanova
- Molecular Pathology of Digestion Laboratory, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Delegatskaya Str., 20/1, 127473 Moscow, Russia
| | - Sergey Kalish
- Molecular Pathology of Digestion Laboratory, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Delegatskaya Str., 20/1, 127473 Moscow, Russia
- Scientific Research Institute for Systems Biology and Medicine, Nauchniy Proezd, 18, 117246 Moscow, Russia
| | - Timur Sadekov
- Molecular Pathology of Digestion Laboratory, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Delegatskaya Str., 20/1, 127473 Moscow, Russia
| | - Ilya Klabukov
- Research and Educational Resource Center for Cellular Technologies, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 249036 Obninsk, Russia
| | - Igor Maev
- Molecular Pathology of Digestion Laboratory, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Delegatskaya Str., 20/1, 127473 Moscow, Russia
| | - Vadim Govorun
- Molecular Pathology of Digestion Laboratory, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Delegatskaya Str., 20/1, 127473 Moscow, Russia
- Scientific Research Institute for Systems Biology and Medicine, Nauchniy Proezd, 18, 117246 Moscow, Russia
| |
Collapse
|
272
|
Feng R, Wu S, Li R, Huang K, Zeng T, Zhou Z, Zhong X, Songyang Z, Liu F. mTORC1-induced bone marrow-derived mesenchymal stem cell exhaustion contributes to the bone abnormalities in klotho-deficient mice of premature aging. Stem Cells Dev 2023. [PMID: 36924305 DOI: 10.1089/scd.2022.0243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
Stem cell exhaustion is a hallmark of aging. Klotho-deficient mice (kl/kl mice) is a murine model that mimics human aging with significant bone abnormalities. The aim of this study is using kl/kl mice to investigate the functional change of bone marrow-derived mesenchymal stem cells (BMSCs) and explore the underlying mechanism. We found klotho-deficiency leads to bone abnormalities. In addition, kl/kl BMSCs manifested hyper-active proliferation but functional declined both in vivo and in vitro. mTORC1 activity was higher in freshly isolated kl/kl BMSCs and autophagy in kl/kl BMSCs were significantly decreased, possibly through mTORC1 activation. Conditional medium containing soluble Klotho protein (sKL) rescued hyper-proliferation of kl/kl BMSCs by inhibiting mTORC1 activity and restoring autophagy. Finally, intraperitoneally injection of mTORC1 inhibitor rapamycin restored BMSC quiescence, ameliorated bone phenotype and increased lifespan of kl/kl mice in vivo. This research highlights a therapeutic strategy to maintain the homeostasis of adult stem cell pool for healthy bone aging.
Collapse
Affiliation(s)
- Ran Feng
- Sun Yat-Sen University, 26469, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Guangzhou, Guangdong, China;
| | - Su Wu
- Sun Yat-Sen University, 26469, Guangzhou, China, 510275.,Sun Yat-Sen Memorial Hospital, 56713, Guangzhou, China, 510120;
| | - Ruofei Li
- Sun Yat-Sen University, 26469, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Guangzhou, Guangdong, China;
| | - Kunling Huang
- Sun Yat-Sen University, 26469, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Guangzhou, Guangdong, China;
| | - Ting Zeng
- Sun Yat-Sen Memorial Hospital, 56713, Guangzhou, China;
| | - Zhifen Zhou
- Sun Yat-Sen Memorial Hospital, 56713, Guangzhou, Guangdong, China;
| | - Xiaoqin Zhong
- Sun Yat-Sen University, 26469, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Guangzhou, Guangdong, China;
| | - Zhou Songyang
- Sun Yat-Sen University, 26469, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Guangzhou, Guangdong, China.,Sun Yat-Sen Memorial Hospital, 56713, Guangzhou, Guangdong, China;
| | - Feng Liu
- Sun Yat-Sen University, 26469, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Guangzhou, Guangdong, China;
| |
Collapse
|
273
|
Liu H, Huang L, Chen F, Zhong Z, Ma X, Zhou Z, Cao S, Shen L, Peng G. Adipose-derived mesenchymal stem cells secrete extracellular vesicles: A potential cell-free therapy for canine renal ischaemia-reperfusion injury. Vet Med Sci 2023; 9:1134-1142. [PMID: 36913179 DOI: 10.1002/vms3.1105] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/15/2023] [Accepted: 02/06/2023] [Indexed: 03/14/2023] Open
Abstract
BACKGROUND Adipose-derived mesenchymal stem cells (ADMSCs) and their extracellular vesicles (EVs) are a promising source of therapies for ischaemia-reperfusion (IR) because of their potent anti-inflammatory and immunomodulatory properties. OBJECTIVES The aims of this study were to explore the therapeutic efficacy and potential mechanism of ADMSC-EVs in canine renal IR injury. METHODS Mesenchymal stem cells (MSCs) and EVs were isolated and characterised for surface markers. A canine IR model administered with ADMSC-EVs was used to evaluate therapeutic effects on inflammation, oxidative stress, mitochondrial damage and apoptosis. RESULTS CD105, CD90 and beta integrin ITGB were positively expressed in MSCs, while CD63, CD9 and intramembrane marker TSG101 were positively expressed in EVs. Compared with the IR model group, there was less mitochondrial damage and reduction in quantity of mitochondria in the EV treatment group. Renal IR injury led to severe histopathological lesions and significant increases in biomarkers of renal function, inflammation and apoptosis, which were attenuated by the administration of ADMSC-EVs. CONCLUSIONS Secretion of EVs by ADMSCs exhibited therapeutic potential in renal IR injury and may lead to a cell-free therapy for canine renal IR injury. These findings revealed that canine ADMSC-EVs potently attenuate renal IR injury-induced renal dysfunction, inflammation and apoptosis, possibly by reducing mitochondrial damage.
Collapse
Affiliation(s)
- Haifeng Liu
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Liyuan Huang
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Fuhao Chen
- Chongqing Fengdu Agricultural Science and Technology Development Group Co. Ltd, Chongqing, China
| | - Zhijun Zhong
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaoping Ma
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ziyao Zhou
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Suizhong Cao
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Liuhong Shen
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Guangneng Peng
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
274
|
The Impact of Metal Nanoparticles on the Immunoregulatory and Therapeutic Properties of Mesenchymal Stem Cells. Stem Cell Rev Rep 2023:10.1007/s12015-022-10500-2. [PMID: 36810951 DOI: 10.1007/s12015-022-10500-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2022] [Indexed: 02/24/2023]
Abstract
Negative impacts of nanomaterials on stem cells and cells of the immune system are one of the main causes of an impaired or slowed tissue healing. Therefore, we tested effects of four selected types of metal nanoparticles (NPs): zinc oxide (ZnO), copper oxide (CuO), silver (Ag), and titanium dioxide (TiO2) on the metabolic activity and secretory potential of mouse mesenchymal stem cells (MSCs), and on the ability of MSCs to stimulate production of cytokines and growth factors by macrophages. Individual types of nanoparticles differed in the ability to inhibit metabolic activity, and significantly decreased the production of cytokines and growth factors (interleukin-6, vascular endothelial growth factor, hepatocyte growth factor, insulin-like growth factor-1) by MSCs, with the strongest inhibitory effect of CuO NPs and the least effect of TiO2 NPs. The recent studies indicate that immunomodulatory and therapeutic effects of transplanted MSCs are mediated by macrophages engulfing apoptotic MSCs. We co-cultivated macrophages with heat-inactivated MSCs which were untreated or were preincubated with the highest nontoxic concentrations of metal NPs, and the secretory activity of macrophages was determined. Macrophages cultivated in the presence of both untreated MSCs or MSCs preincubated with NPs produced significantly enhanced and comparable levels of various cytokines and growth factors. These results suggest that metal nanoparticles inhibit therapeutic properties of MSCs by a direct negative effect on their secretory activity, but MSCs cultivated in the presence of metal NPs have preserved the ability to stimulate cytokine and growth factor production by macrophages.
Collapse
|
275
|
Peng Y, Li W, Zhang Q. Editorial: Immunomodulation of MSCs in tissue repairing and regeneration. Front Immunol 2023; 14:1150106. [PMID: 36860858 PMCID: PMC9969131 DOI: 10.3389/fimmu.2023.1150106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/06/2023] [Indexed: 02/15/2023] Open
Affiliation(s)
- Yanwen Peng
- The Biotherapy Center, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China,Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, China,*Correspondence: Yanwen Peng, ; Qunzhou Zhang,
| | - Weiqiang Li
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Qunzhou Zhang
- Department of Oral and Maxillofacial Surgery & Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States,*Correspondence: Yanwen Peng, ; Qunzhou Zhang,
| |
Collapse
|
276
|
Molecular Mechanisms Responsible for Mesenchymal Stem Cell-Based Modulation of Obstructive Sleep Apnea. Int J Mol Sci 2023; 24:ijms24043708. [PMID: 36835120 PMCID: PMC9958695 DOI: 10.3390/ijms24043708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 02/16/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are adult stem cells that reside in almost all postnatal tissues where, due to the potent regenerative, pro-angiogenic and immunomodulatory properties, regulate tissue homeostasis. Obstructive sleep apnea (OSA) induces oxidative stress, inflammation and ischemia which recruit MSCs from their niches in inflamed and injured tissues. Through the activity of MSC-sourced anti-inflammatory and pro-angiogenic factors, MSCs reduce hypoxia, suppress inflammation, prevent fibrosis and enhance regeneration of damaged cells in OSA-injured tissues. The results obtained in large number of animal studies demonstrated therapeutic efficacy of MSCs in the attenuation of OSA-induced tissue injury and inflammation. Herewith, in this review article, we emphasized molecular mechanisms which are involved in MSC-based neo-vascularization and immunoregulation and we summarized current knowledge about MSC-dependent modulation of OSA-related pathologies.
Collapse
|
277
|
Effect of the Enrichment in c-Kit Stem Cell Potential of Foetal Human Amniotic Fluid Cells: Characterization from Single Cell Analysis to the Secretome Content. Biomedicines 2023; 11:biomedicines11020430. [PMID: 36830966 PMCID: PMC9953071 DOI: 10.3390/biomedicines11020430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Human amniotic fluid cells (hAFSCs) are a fascinating foetal cell-type that have important stem cell characteristics; however, they are a heterogeneous population that ranges from totally differentiated or progenitor cells to highly multipotent stem cells. There is no single approach to isolating the stem cell component, but the selection of a subpopulation of hAFSCs expressing c-Kit is widely employed, while a deep characterization of the two populations is still lacking. Here we performed single-cell and bulk RNAseq analysis to compare the gene expression profiles of adherent amniotic fluid cells and their subpopulation c-Kit+. Information deriving from this high throughput technology on the transcriptome was then confirmed for specific targets with protein expression experiments and functional analysis. In particular, transcriptome profiling identified changes in cellular distribution among the different clusters that correlated with significant differential expression in pathways related to stemness, proliferation, and cell cycle checkpoints. These differences were validated by RT-PCR, immunofluorescence, WB, and cell cycle assays. Interestingly, the two populations produced secretomes with different immune-modulating and pro-regenerative potentials. Indeed, the presence of TGFβ, HGF, IDO was higher in EVs deriving from c-Kit+ cells, unlike IL-6. These results suggest the existence of deep intra-population differences that can influence the stemness profile of hAFSCs. This study represents a proof-of-concept of the importance of selecting c-Kit positive fractions with higher potential in regenerative medicine applications.
Collapse
|
278
|
Li Y, Ju S, Li X, Li W, Zhou S, Wang G, Cai Y, Dong Z. Characterization of the microenvironment of diabetic foot ulcers and potential drug identification based on scRNA-seq. Front Endocrinol (Lausanne) 2023; 13:997880. [PMID: 36686438 PMCID: PMC9845942 DOI: 10.3389/fendo.2022.997880] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/02/2022] [Indexed: 01/05/2023] Open
Abstract
Background Diabetes foot ulcers (DFUs) are a type of foot infection, ulcer, and/or deep tissue destruction caused by neuropathy and vascular disease in the distal extremities of diabetic patients. Its pathogenesis and its microenvironment are not entirely understood. Methods Initially, the GSE165816 data set from the GEO database was utilized for single cell analysis to reveal the microenvironment and functional status of DFUs. The GSE199939 RNA-seq data set was utilized for external validation. On the basis of the logistic regression machine learning algorithm (OCLR), pseudo time series analysis, dryness index analysis, and drug target gene analysis were then performed. By constructing drug-gene and gene-gene networks, we can locate the most recent DFUs treatments. Finally, immunofluorescence technology was used to detect the cell-related markers of the DFUs microenvironment, and qPCR was used to detect the expression of drug targets in DFUs. Results Firstly, we used the Cell Maker database to obtain information about human cells and related gene markers, and manually reviewed a total of 45 kinds of cells and maker information that may appear in the DFUs microenvironment, which were divided into 17 cell clusters after annotation. Subsequently, we counted the proportions of DM and DFUs in different types of cells, and the results showed that the proportions of macrophages, white blood cells, and monocytes were higher in patients with DFUs, while the proportions of pluripotent stem cells and stromal cells were higher in patients with DM. The Pseudo-time series analysis of cells in DFUs showed that the differentiation pathways of immune cells, mesenchymal cells and stem cells were similar in the three states, while the other cells were distributed in different stages. At the level of a single cell, the scores of both multipotential stem cells and hematopoietic stem cells were significantly lower in DFU healing and non-healing than in DM. Additionally, the highly expressed genes in DFU were chosen as drug targets. We identified seven potential target genes and discovered twenty drugs with high significance. Finally, the colocalization relationship between CD19, ITGAM, and HLA-DR expression in monocytes and macrophages of DFU skin tissue and healthy subjects was analyzed by laser confocal microscopy with the immunofluorescence triple labeling method. The results showed that the expressions of CD19, ITGAM, and HLA-DR in the skin of DFUs were significantly higher than those in the skin of healthy subjects, and the co-localization relationship was significant in DFUs. Conclusion This study can serve as a resource for the treatment of DFUs.
Collapse
Affiliation(s)
- Yao Li
- Vascular and wound center, Jinshan Hospital, Fudan University, Shanghai, China
| | - Shuai Ju
- Vascular and wound center, Jinshan Hospital, Fudan University, Shanghai, China
| | - Xiaoyan Li
- Vascular and wound center, Jinshan Hospital, Fudan University, Shanghai, China
| | - Wenqiang Li
- Vascular and wound center, Jinshan Hospital, Fudan University, Shanghai, China
| | - Siyuan Zhou
- Vascular and wound center, Jinshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Guili Wang
- Vascular and wound center, Jinshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Yunmin Cai
- Vascular and wound center, Jinshan Hospital, Fudan University, Shanghai, China
| | - Zhihui Dong
- Vascular and wound center, Jinshan Hospital, Fudan University, Shanghai, China
- Department of vascular surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
279
|
Aghaei Z, Karbalaei N, Namavar MR, Haghani M, Razmkhah M, Ghaffari MK, Nemati M. Neuroprotective Effect of Wharton's Jelly-Derived Mesenchymal Stem Cell-Conditioned Medium (WJMSC-CM) on Diabetes-Associated Cognitive Impairment by Improving Oxidative Stress, Neuroinflammation, and Apoptosis. Stem Cells Int 2023; 2023:7852394. [PMID: 37081849 PMCID: PMC10113062 DOI: 10.1155/2023/7852394] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 04/22/2023] Open
Abstract
According to strong evidence, diabetes mellitus increases the risk of cognitive impairment. Mesenchymal stem cells have been shown to be potential therapeutic agents for neurological disorders. In the current study, we aimed to examine the effects of Wharton's jelly-derived mesenchymal stem cell-conditioned medium (WJMSC-CM) on learning and memory, oxidative stress, apoptosis, and histological changes in the hippocampus of diabetic rats. Randomly, 35 male Sprague Dawley rats weighing 260-300 g were allocated into five groups: control, diabetes, and three diabetic groups treated with insulin, WJMSC-CM, and DMEM. The injections of insulin (3 U/day, S.C.) and WJMSC-CM (10 mg/week, I.P.) were done for 60 days. The Morris water maze and open field were used to measure cognition and anxiety-like behaviors. Colorimetric assays were used to determine hippocampus glutathione (GSH), malondialdehyde (MDA) levels, and antioxidant enzyme activity. The histopathological evaluation of the hippocampus was performed by Nissl staining. The expression levels of Bax, Bcl-2, BDNF, and TNF-α were detected by real-time polymerase chain reaction (RT-PCR). According to our findings, WJMSC-CM significantly reduced and increased blood glucose and insulin levels, respectively. Enhanced cognition and improved anxiety-like behavior were also found in WJMSC-CM-treated diabetic rats. In addition, WJMSC-CM treatment reduced oxidative stress by lowering MDA and elevating GSH and antioxidant enzyme activity. Reduced TNF-α and enhanced Bcl-2 gene expression levels and elevated neuronal and nonneuronal (astrocytes and oligodendrocytes) cells were detected in the hippocampus of WJMSC-CM-treated diabetic rats. In conclusion, WJMSC-CM alleviated diabetes-related cognitive impairment by reducing oxidative stress, neuroinflammation, and apoptosis in diabetic rats.
Collapse
Affiliation(s)
- Zohre Aghaei
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Narges Karbalaei
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Namavar
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoud Haghani
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahboobeh Razmkhah
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahdi Khorsand Ghaffari
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marzieh Nemati
- Department of Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
280
|
Navakauskienė R, Žukauskaitė D, Borutinskaitė VV, Bukreieva T, Skliutė G, Valatkaitė E, Zentelytė A, Piešinienė L, Shablii V. Effects of human placenta cryopreservation on molecular characteristics of placental mesenchymal stromal cells. Front Bioeng Biotechnol 2023; 11:1140781. [PMID: 37122871 PMCID: PMC10133466 DOI: 10.3389/fbioe.2023.1140781] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/29/2023] [Indexed: 05/02/2023] Open
Abstract
Cryopreservation of placenta tissue for long-term storage provides the opportunity in the future to isolate mesenchymal stromal cells that could be used for cell therapy and regenerative medicine. Despite being widely used, the established cryopreservation protocols for freezing and thawing still raise concerns about their impact on molecular characteristics, such as epigenetic regulation. In our study, we compared the characteristics of human placental mesenchymal stromal cells (hPMSCs) isolated from fresh (native) and cryopreserved (cryo) placenta tissue. We assessed and compared the characteristics of native and cryo hPMSCs such as morphology, metabolic and differentiation potential, expression of cell surface markers, and transcriptome. No significant changes in immunophenotype and differentiation capacity between native and cryo cells were observed. Furthermore, we investigated the epigenetic changes and demonstrated that both native and cryo hPMSCs express only slight variations in the epigenetic profile, including miRNA levels, DNA methylation, and histone modifications. Nevertheless, transcriptome analysis defined the upregulation of early-senescence state-associated genes in hPMSCs after cryopreservation. We also evaluated the ability of hPMSCs to improve pregnancy outcomes in mouse models. Improved pregnancy outcomes in a mouse model confirmed that isolated placental cells both from native and cryo tissue have a positive effect on the restoration of the reproductive system. Still, the native hPMSCs possess better capacity (up to 66%) in comparison with cryo hPMSCs (up to 33%) to restore fertility in mice with premature ovarian failure. Our study demonstrates that placental tissue can be cryopreserved for long-term storage with the possibility to isolate mesenchymal stromal cells that retain characteristics suitable for therapeutic use.
Collapse
Affiliation(s)
- Rūta Navakauskienė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
- *Correspondence: Rūta Navakauskienė, ; Volodymyr Shablii,
| | - Deimantė Žukauskaitė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | | | - Tetiana Bukreieva
- Laboratory of Biosynthesis of Nucleic Acids, Department of Functional Genomics, Institute of Molecular Biology and Genetics, National Academy of Science, Kyiv, Ukraine
- Placenta Stem Cell Laboratory, Cryobank, Institute of Cell Therapy, Kyiv, Ukraine
| | - Giedrė Skliutė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
- Nanodiagnostika, Ltd., Vilnius, Lithuania
| | - Elvina Valatkaitė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Aistė Zentelytė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | | | - Volodymyr Shablii
- Laboratory of Biosynthesis of Nucleic Acids, Department of Functional Genomics, Institute of Molecular Biology and Genetics, National Academy of Science, Kyiv, Ukraine
- Placenta Stem Cell Laboratory, Cryobank, Institute of Cell Therapy, Kyiv, Ukraine
- *Correspondence: Rūta Navakauskienė, ; Volodymyr Shablii,
| |
Collapse
|
281
|
TNF- α Enhances the Therapeutic Effects of MenSC-Derived Small Extracellular Vesicles on Inflammatory Bowel Disease through Macrophage Polarization by miR-24-3p. Stem Cells Int 2023; 2023:2988907. [PMID: 36895784 PMCID: PMC9991477 DOI: 10.1155/2023/2988907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/18/2022] [Accepted: 11/24/2022] [Indexed: 03/06/2023] Open
Abstract
Human menstrual blood-derived mesenchymal stem cells (MenSCs) and their secreted small extracellular vesicles (EVs) had been proven to relieve inflammation, tissue damage, and fibrosis in various organs. The microenvironment induced by inflammatory cytokines can promote mesenchymal stem cells (MSCs) to secrete more substances (including EVs) that could regulate inflammation. Inflammatory bowel disease (IBD) is a chronic idiopathic intestinal inflammation, the etiology and mechanism of which are unclear. At present, the existing therapeutic methods are ineffective for many patients and have obvious side effects. Hence, we explored the role of tumor necrosis factor α- (TNF-α-) pretreated MenSC-derived small EV (MenSCs-sEVTNF-α ) in a mouse model of dextran sulfate sodium- (DSS-) induced colitis, expecting to find better therapeutic alterations. In this research, the small EVs of MenSCs were obtained by ultracentrifugation. MicroRNAs of small EVs derived from MenSCs before and after TNF-α treatment were sequenced, and the differential microRNAs were analyzed by bioinformatics. The small EVs secreted by TNF-α-stimulating MenSCs were more effective in colonic mice than those secreted directly by MenSCs, as evidenced by the results of histopathology analysis of colonic tissue, immunohistochemistry for tight junction proteins, and enzyme-linked immunosorbent assay (ELISA) for cytokine expression profiles in vivo. The process of MenSCs-sEVTNF-α relieving colonic inflammation was accompanied by the polarization of M2 macrophages in the colon and miR-24-3p upregulation in small EVs. In vitro, both MenSC-derived sEV (MenSCs-sEV) and MenSCs-sEVTNF-α reduced the expression of proinflammatory cytokines, and MenSCs-sEVTNF-α can increase the portion of M2 macrophages. In conclusion, after TNF-α stimulation, the expression of miR-24-3p in small EVs derived from MenSCs was upregulated. MiR-24-3p was proved to target and downregulate interferon regulatory factor 1 (IRF1) expression in the murine colon and then promoted the polarization of M2 macrophages. The polarization of M2 macrophages in colonic tissues then reduced the damage caused by hyperinflammation.
Collapse
|
282
|
Jang HH, Son Y, Park G, Park KS. Bone Marrow-Derived Vasculogenic Mesenchymal Stem Cells Enhance In Vitro Angiogenic Sprouting of Human Umbilical Vein Endothelial Cells. Int J Mol Sci 2022; 24:ijms24010413. [PMID: 36613857 PMCID: PMC9820660 DOI: 10.3390/ijms24010413] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Vasculogenic properties of bone marrow-derived mesenchymal stem cells (MSCs) have been reported, but it is still unclear whether the vasculogenic properties are restricted to some populations of MSCs or whether the entire population of MSCs has these properties. We cultured two different populations of MSCs in different culture media and their vasculogenic properties were evaluated using In vitro spheroid sprouting assay. Neither population of MSCs expressed markers of endothelial progenitor cells (EPCs), but they were different in the profiling of angiogenic factor expression as well as vasculogenic properties. One population of MSCs expressed basic fibroblast growth factor (bFGF) and another expressed hepatocyte growth factor (HGF). MSCs expressing HGF exhibited In vitro angiogenic sprouting capacity in response to bFGF derived from other MSCs as well as to their autocrine HGF. The vasculogenic mesenchymal stem cells (vMSCs) derived from the bone marrow also enhanced In vitro angiogenic sprouting capacity of human umbilical vein endothelial cells (HUVECs) in an HGF-dependent manner. These results suggest that MSCs exhibit different vasculogenic properties, and vMSCs that are different from EPCs may contribute to neovascularization and could be a promising cellular therapy for cardiovascular diseases.
Collapse
Affiliation(s)
- Hyun Hee Jang
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Youngsook Son
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Gabee Park
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Ki-Sook Park
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- East-West Medical Research Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Correspondence: ; Tel.: +82-2-958-9368
| |
Collapse
|
283
|
Han J, Lee C, Hur J, Jung Y. Current Therapeutic Options and Potential of Mesenchymal Stem Cell Therapy for Alcoholic Liver Disease. Cells 2022; 12:22. [PMID: 36611816 PMCID: PMC9818513 DOI: 10.3390/cells12010022] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Alcoholic liver disease (ALD) is a globally prevalent chronic liver disease caused by chronic or binge consumption of alcohol. The therapeutic efficiency of current therapies for ALD is limited, and there is no FDA-approved therapy for ALD at present. Various strategies targeting pathogenic events in the progression of ALD are being investigated in preclinical and clinical trials. Recently, mesenchymal stem cells (MSCs) have emerged as a promising candidate for ALD treatment and have been tested in several clinical trials. MSC-released factors have captured attention, as they have the same therapeutic function as MSCs. Herein, we focus on current therapeutic options, recently proposed strategies, and their limitations in ALD treatment. Also, we review the therapeutic effects of MSCs and those of MSC-related secretory factors on ALD. Although accumulating evidence suggests the therapeutic potential of MSCs and related factors in ALD, the mechanisms underlying their actions in ALD have not been well studied. Further investigations of the detailed mechanisms underlying the therapeutic role of MSCs in ALD are required to expand MSC therapies to clinical applications. This review provides information on current or possible treatments for ALD and contributes to our understanding of the development of effective and safe treatments for ALD.
Collapse
Affiliation(s)
- Jinsol Han
- Department of Integrated Biological Science, College of Natural Science, Pusan National University, Pusan 46241, Republic of Korea
| | - Chanbin Lee
- Department of Integrated Biological Science, College of Natural Science, Pusan National University, Pusan 46241, Republic of Korea
- Institute of Systems Biology, College of Natural Science, Pusan National University, Pusan 46241, Republic of Korea
| | - Jin Hur
- Department of Convergence Medicine, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
- PNU GRAND Convergence Medical Science Education Research Center, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| | - Youngmi Jung
- Department of Integrated Biological Science, College of Natural Science, Pusan National University, Pusan 46241, Republic of Korea
- Department of Biological Sciences, College of Natural Science, Pusan National University, Pusan 46241, Republic of Korea
| |
Collapse
|
284
|
Ahmed T. Neural stem cell engineering for the treatment of multiple sclerosis. BIOMEDICAL ENGINEERING ADVANCES 2022. [DOI: 10.1016/j.bea.2022.100053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
285
|
Mesenchymal stem cells alleviate systemic sclerosis by inhibiting the recruitment of pathogenic macrophages. Cell Death Dis 2022; 8:466. [DOI: 10.1038/s41420-022-01264-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/28/2022]
Abstract
AbstractSystemic sclerosis (SSc) is a recalcitrant autoimmune disease for which there is no cure. Mesenchymal stem cell (MSC)-based treatment has emerged as a promising therapeutic option for several autoimmune diseases. Previously, we found that the immunoregulatory potential of MSCs can be greatly enhanced by IFN-γ and TNF-α. Here, we found that IFN-γ- and TNF-α-pretreated MSCs significantly alleviated skin fibrosis in a bleomycin (BLM)-induced SSc model. Macrophages were found to be the predominant profibrotic immune cell population in the pathogenesis of SSc. The accumulation of macrophages was significantly decreased by MSC treatment. Importantly, MSCs primarily reduced the population of maturing macrophages with high CCR2 expression by inhibiting the generation of CCL2 from fibroblasts and macrophages. This finding may help to improve MSC-based clinical treatments for SSc patients.
Collapse
|
286
|
Mesenchymal stem/stromal cells primed by inflammatory cytokines alleviate psoriasis-like inflammation via the TSG-6-neutrophil axis. Cell Death Dis 2022; 13:996. [PMID: 36433947 PMCID: PMC9700741 DOI: 10.1038/s41419-022-05445-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 11/26/2022]
Abstract
Psoriasis is currently an incurable skin disorder mainly driven by a chronic inflammatory response. We found that subcutaneous application of umbilical cord- derived mesenchymal stem/stromal cells (MSCs) primed by IFN-γ and TNF-α, referred to as MSCs-IT, exhibited remarkable therapeutic efficacy on imiquimod (IMQ)-induced psoriasis-like inflammation in mice. Neutrophil infiltration, a hallmark of psoriasis, was significantly reduced after treatment with MSCs-IT. We further demonstrated that the effects of MSCs-IT were mediated by tumor necrosis factor (TNF) stimulating gene-6 (TSG-6), which was greatly upregulated in MSCs upon IFN-γ and TNF-α stimulation. MSCs transduced with TSG-6 siRNA lost their therapeutic efficacy while recombinant TSG-6 applied alone could also reduce neutrophil infiltration and alleviate the psoriatic lesions. Furthermore, we demonstrated that TSG-6 could inhibit neutrophil recruitment by decreasing the expression of CXCL1, which may be related to the reduced level of STAT1 phosphorylation in the keratinocytes. Thus, blocking neutrophil recruitment by MSCs-IT or TSG-6 has potential for therapeutic application in human psoriasis.
Collapse
|
287
|
Wang Y, Fang J, Liu B, Shao C, Shi Y. Reciprocal regulation of mesenchymal stem cells and immune responses. Cell Stem Cell 2022; 29:1515-1530. [DOI: 10.1016/j.stem.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/19/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022]
|
288
|
Aramini B, Masciale V, Radaelli LFZ, Sgarzani R, Dominici M, Stella F. The sternum reconstruction: Present and future perspectives. Front Oncol 2022; 12:975603. [PMID: 36387077 PMCID: PMC9649912 DOI: 10.3389/fonc.2022.975603] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/12/2022] [Indexed: 11/22/2022] Open
Abstract
Sternectomy is a procedure mainly used for removing tumor masses infiltrating the sternum or treating infections. Moreover, the removal of the sternum involves the additional challenge of performing a functional reconstruction. Fortunately, various approaches have been proposed for improving the operation and outcome of reconstruction, including allograft transplantation, using novel materials, and developing innovative surgical approaches, which promise to enhance the quality of life for the patient. This review will highlight the surgical approaches to sternum reconstruction and the new perspectives in the current literature.
Collapse
Affiliation(s)
- Beatrice Aramini
- Division of Thoracic Surgery, Department of Experimental, Diagnostic and Specialty Medicine—DIMES of the Alma Mater Studiorum, University of Bologna, G.B. Morgagni—L. Pierantoni Hospital, Forlì, Italy
- *Correspondence: Beatrice Aramini,
| | - Valentina Masciale
- Cell Therapy Laboratory, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Lorenzo Federico Zini Radaelli
- Division of Thoracic Surgery, Department of Experimental, Diagnostic and Specialty Medicine—DIMES of the Alma Mater Studiorum, University of Bologna, G.B. Morgagni—L. Pierantoni Hospital, Forlì, Italy
| | - Rossella Sgarzani
- Center of Major Burns, Plastic Surgery Unit, Maurizio Bufalini Hospital, Cesena, Italy
| | - Massimo Dominici
- Cell Therapy Laboratory, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Division of Oncology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Franco Stella
- Division of Thoracic Surgery, Department of Experimental, Diagnostic and Specialty Medicine—DIMES of the Alma Mater Studiorum, University of Bologna, G.B. Morgagni—L. Pierantoni Hospital, Forlì, Italy
| |
Collapse
|
289
|
Cequier A, Vázquez FJ, Romero A, Vitoria A, Bernad E, García-Martínez M, Gascón I, Barrachina L, Rodellar C. The immunomodulation-immunogenicity balance of equine Mesenchymal Stem Cells (MSCs) is differentially affected by the immune cell response depending on inflammatory licensing and major histocompatibility complex (MHC) compatibility. Front Vet Sci 2022; 9:957153. [PMID: 36337202 PMCID: PMC9632425 DOI: 10.3389/fvets.2022.957153] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/22/2022] [Indexed: 07/25/2023] Open
Abstract
The immunomodulatory properties of equine mesenchymal stem cells (MSCs) are important for their therapeutic potential and for their facilitating role in their escape from immune recognition, which may also be influenced by donor-recipient major histocompatibility complex (MHC) matching/mismatching and MHC expression level. Factors such as inflammation can modify the balance between regulatory and immunogenic profiles of equine MSCs, but little is known about how the exposure to the immune system can affect these properties in equine MSCs. In this study, we analyzed the gene expression and secretion of molecules related to the immunomodulation and immunogenicity of equine MSCs, either non-manipulated (MSC-naive) or stimulated by pro-inflammatory cytokines (MSC-primed), before and after their exposure to autologous or allogeneic MHC-matched/-mismatched lymphocytes, either activated or resting. Cytokine priming induced the immunomodulatory profile of MSCs at the baseline (MSCs cultured alone), and the exposure to activated lymphocytes further increased the expression of interleukin 6 (IL6), cyclooxygenase 2, and inducible nitric oxide synthase, and IL6 secretion. Activated lymphocytes were also able to upregulate the regulatory profile of MSC-naive to levels comparable to cytokine priming. On the contrary, resting lymphocytes did not upregulate the immunomodulatory profile of equine MSCs, but interestingly, MSC-primed exposed to MHC-mismatched lymphocytes showed the highest expression and secretion of these mediators, which may be potentially linked to the activation of lymphocytes upon recognition of foreign MHC molecules. Cytokine priming alone did not upregulate the immunogenic genes, but MSC-primed exposed to activated or resting lymphocytes increased their MHC-I and MHC-II expression, regardless of the MHC-compatibility. The upregulation of immunogenic markers including CD40 in the MHC-mismatched co-culture might have activated lymphocytes, which, at the same time, could have promoted the immune regulatory profile aforementioned. In conclusion, activated lymphocytes are able to induce the equine MSC regulatory profile, and their effects seem to be additive to the priming action. Importantly, our results suggest that the lymphocyte response against MHC-mismatched MSC-primed would promote further activation of their immunomodulatory ability, which eventually might help them evade this reaction. Further studies are needed to clarify how these findings might have clinical implications in vivo, which will help developing safer and more effective therapies.
Collapse
Affiliation(s)
- Alina Cequier
- Laboratorio de Genética Bioquímica LAGENBIO, Instituto de Investigación Sanitaria de Aragón (IIS), Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, Spain
- Servicio de Cirugía y Medicina Equina, Hospital Veterinario, Universidad de Zaragoza, Zaragoza, Spain
| | - Francisco José Vázquez
- Laboratorio de Genética Bioquímica LAGENBIO, Instituto de Investigación Sanitaria de Aragón (IIS), Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, Spain
- Servicio de Cirugía y Medicina Equina, Hospital Veterinario, Universidad de Zaragoza, Zaragoza, Spain
| | - Antonio Romero
- Laboratorio de Genética Bioquímica LAGENBIO, Instituto de Investigación Sanitaria de Aragón (IIS), Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, Spain
- Servicio de Cirugía y Medicina Equina, Hospital Veterinario, Universidad de Zaragoza, Zaragoza, Spain
| | - Arantza Vitoria
- Laboratorio de Genética Bioquímica LAGENBIO, Instituto de Investigación Sanitaria de Aragón (IIS), Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, Spain
- Servicio de Cirugía y Medicina Equina, Hospital Veterinario, Universidad de Zaragoza, Zaragoza, Spain
| | - Elvira Bernad
- Laboratorio de Genética Bioquímica LAGENBIO, Instituto de Investigación Sanitaria de Aragón (IIS), Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - Mirta García-Martínez
- Laboratorio de Genética Bioquímica LAGENBIO, Instituto de Investigación Sanitaria de Aragón (IIS), Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - Isabel Gascón
- Laboratorio de Genética Bioquímica LAGENBIO, Instituto de Investigación Sanitaria de Aragón (IIS), Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - Laura Barrachina
- Laboratorio de Genética Bioquímica LAGENBIO, Instituto de Investigación Sanitaria de Aragón (IIS), Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, Spain
- Servicio de Cirugía y Medicina Equina, Hospital Veterinario, Universidad de Zaragoza, Zaragoza, Spain
| | - Clementina Rodellar
- Laboratorio de Genética Bioquímica LAGENBIO, Instituto de Investigación Sanitaria de Aragón (IIS), Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, Spain
| |
Collapse
|
290
|
Tian J, Chen W, Xiong Y, Li Q, Kong S, Li M, Pang C, Qiu Y, Xu Z, Gong Q, Wei X. Small extracellular vesicles derived from hypoxic preconditioned dental pulp stem cells ameliorate inflammatory osteolysis by modulating macrophage polarization and osteoclastogenesis. Bioact Mater 2022; 22:326-342. [PMID: 36311048 PMCID: PMC9587346 DOI: 10.1016/j.bioactmat.2022.10.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/23/2022] [Accepted: 10/01/2022] [Indexed: 11/05/2022] Open
Abstract
Extensive macrophage inflammatory responses and osteoclast formation are predominant during inflammatory or infective osteolysis. Mesenchymal stem cell (MSC)-derived small extracellular vesicles (MSC-sEV) have been shown to exert therapeutic effects on bone defects. However, cultured MSCs are typically exposed to normoxia (21% O2) in vitro, which differs largely from the oxygen concentration in vivo under hypoxic conditions. It is largely unknown whether sEV derived from dental pulp stem cells (DPSCs) cultured under hypoxic conditions (Hypo-sEV) exert better therapeutic effects on lipopolysaccharide (LPS)-induced inflammatory osteolysis than those cultured under normoxic conditions (Nor-sEV) by simultaneously inhibiting the macrophage inflammatory response and osteoclastogenesis. In this study, we show that hypoxia significantly induces the release of sEV from DPSCs. Moreover, Hypo-sEV exhibit significantly improved efficacy in promoting M2 macrophage polarization and suppressing osteoclast formation to alleviate LPS-induced inflammatory calvarial bone loss compared with Nor-sEV. Mechanistically, hypoxia preconditioning markedly alters the miRNA profiles of DPSC-sEV. MiR-210-3p is enriched in Hypo-sEV, and can simultaneously induce M2 macrophage generation and inhibit osteoclastogenesis by targeting NF-κB1 p105, which attenuates osteolysis. Our study suggests a promising potential for hypoxia-induced DPSC-sEV to treat inflammatory or infective osteolysis and identifies a novel role of miR-210-3p in concurrently hindering osteoclastogenesis and macrophage inflammatory response by inhibiting NF-kB1 expression. Hypoxia promotes the release of sEV from DPSCs. Hypoxia-induced DPSC-sEV (Hypo-sEV) show increased potential to inhibit inflammatory osteolysis. The miR-210-3p enriched in Hypo-sEV contributes to therapeutic effects of Hypo-sEV. MiR-210-3p concurrently induces M2 macrophage generation and inhibits osteoclastogenesis by targeting NF-κB1. Hypoxia-induced DPSC-sEV represent a promising therapy for inflammatory osteolysis.
Collapse
Affiliation(s)
- Jun Tian
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, 510055, PR China,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, 510055, PR China
| | - Weiyang Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, 510055, PR China,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, 510055, PR China
| | - Yuhua Xiong
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, 510055, PR China,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, 510055, PR China
| | - Qianer Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, 510055, PR China,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, 510055, PR China
| | - Siyi Kong
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, 510055, PR China,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, 510055, PR China
| | - Mengjie Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, 510055, PR China,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, 510055, PR China
| | - Chunfeng Pang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, 510055, PR China,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, 510055, PR China
| | - Yu Qiu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, 510055, PR China,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, 510055, PR China
| | - Zhezhen Xu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, 510055, PR China,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, 510055, PR China
| | - Qimei Gong
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, 510055, PR China,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, 510055, PR China,Corresponding author. Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, 56 Ling Yuan Xi Road, Guangzhou, 510055, China.
| | - Xi Wei
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, 510055, PR China,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, 510055, PR China,Corresponding author. Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, 56 Ling Yuan Xi Road, Guangzhou, 510055, China.
| |
Collapse
|
291
|
Advance of Mesenchymal Stem Cells in Chronic End-Stage Liver Disease Control. Stem Cells Int 2022; 2022:1526217. [PMID: 36248254 PMCID: PMC9568364 DOI: 10.1155/2022/1526217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/18/2022] [Accepted: 09/25/2022] [Indexed: 11/26/2022] Open
Abstract
The chronic liver diseases will slowly develop into liver fibrosis, cirrhosis, and even liver cancer if no proper control is performed with high efficiency. Up to now, the most effective treatment for end-stage liver diseases is liver transplantation. However, liver transplantation has the problems of donor deficiency, low matching rate, surgical complications, high cost, and immune rejection. These problems indicate that novel therapeutic strategies are urgently required. Mesenchymal stem cells (MSCs) are somatic stem cells with multidirectional differentiation potential and self-renewal ability. MSCs can secrete a large number of cytokines, chemokines, immunomodulatory molecules, and hepatotrophic factors, as well as produce extracellular vesicles. They alleviate liver diseases by differentiating to hepatocyte-like cells, immunomodulation, homing to the injured site, regulating cell ferroptosis, regulating cell autophagy, paracrine effects, and MSC-mitochondrial transfer. In this review, we focus on the main resources of MSCs, underlying therapeutic mechanisms, clinical applications, and efforts made to improve MSC-based cell therapy efficiency.
Collapse
|
292
|
Choi JH, In Kim S, Seo JS, Tumursukh NE, Kim SE, Choe SH, Kim SJ, Park S, Song JE, Khang G. Fast stress relaxing gellan gum that enhances the microenvironment and secreting function of bone mesenchymal stem cells. Int J Biol Macromol 2022; 222:2144-2157. [DOI: 10.1016/j.ijbiomac.2022.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/19/2022] [Accepted: 10/02/2022] [Indexed: 11/05/2022]
|
293
|
Sarsenova M, Kim Y, Raziyeva K, Kazybay B, Ogay V, Saparov A. Recent advances to enhance the immunomodulatory potential of mesenchymal stem cells. Front Immunol 2022; 13:1010399. [PMID: 36211399 PMCID: PMC9537745 DOI: 10.3389/fimmu.2022.1010399] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/07/2022] [Indexed: 11/19/2022] Open
Abstract
Considering the unique therapeutic potential of mesenchymal stem cells (MSCs), including their immunosuppressive and immunomodulatory properties as well as their ability to improve tissue regeneration, these cells have attracted the attention of scientists and clinicians for the treatment of different inflammatory and immune system mediated disorders. However, various clinical trials using MSCs for the therapeutic purpose are conflicting and differ from the results of promising preclinical studies. This inconsistency is caused by several factors such as poor migration and homing capacities, low survival rate, low level of proliferation and differentiation, and donor-dependent variation of the cells. Enhancement and retention of persistent therapeutic effects of the cells remain a challenge to overcome in MSC-based therapy. In this review, we summarized various approaches to enhance the clinical outcomes of MSC-based therapy as well as revised current and future perspectives for the creation of cellular products with improved potential for diverse clinical applications.
Collapse
Affiliation(s)
- Madina Sarsenova
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Yevgeniy Kim
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Kamila Raziyeva
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Bexultan Kazybay
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Vyacheslav Ogay
- Laboratory of Stem Cells, National Center for Biotechnology, Nur-Sultan, Kazakhstan
| | - Arman Saparov
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan
- *Correspondence: Arman Saparov,
| |
Collapse
|
294
|
Najimi M, Michel S, Binda MM, Gellynck K, Belmonte N, Mazza G, Gordillo N, Vainilovich Y, Sokal E. Human Allogeneic Liver-Derived Progenitor Cells Significantly Improve NAFLD Activity Score and Fibrosis in Late-Stage NASH Animal Model. Cells 2022; 11:cells11182854. [PMID: 36139429 PMCID: PMC9497074 DOI: 10.3390/cells11182854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/26/2022] Open
Abstract
Accumulated experimental and clinical evidence supports the development of human allogeneic liver-derived progenitor cells (HALPCs) to treat fibro-inflammatory liver diseases. The aim of the present study was to evaluate their therapeutic effect in a non-alcoholic steatohepatitis (NASH)-STAM mouse model. The immune signaling characteristics of HALPCs were first assessed in vitro. Upon inflammation treatment, HALPCs secreted large amounts of potent bioactive prostaglandin E2 and indoleamine 2,3-dioxygenase, which significantly reduced CD4+ T-lymphocyte proliferation and secretion of proinflammatory cytokines. In vivo, HALPCs were intravenously administered as single or triple shots (of a dose of 12.5 × 106 cells/kg BW) in STAM mice. Transplantation of HALPCs was associated with a significant decrease in the NAFLD activity score at an early stage and in both inflammation and hepatocyte ballooning scores in late-stage NASH. Sirius red staining analyses revealed decreased collagen deposition in the pericentral region at both stages of NASH. Altogether, these findings showed the anti-inflammatory and anti-fibrotic features of HALPCs in an in vivo NASH model, which suggests their potential to reverse the progression of this chronic fibro-inflammatory disease.
Collapse
Affiliation(s)
- Mustapha Najimi
- Cellaïon, 1435 Mont-Saint-Guibert, Belgium
- UCLouvain, Laboratory of Pediatric Hepatology and Cell Therapy (PEDI), Institute of Experimental and Clinical Research (IREC), 1200 Brussels, Belgium
- Correspondence: (M.N.); (E.S.); Tel.: +32-10-39-43-00 (M.N.)
| | | | | | | | | | | | | | | | - Etienne Sokal
- Cellaïon, 1435 Mont-Saint-Guibert, Belgium
- UCLouvain, Laboratory of Pediatric Hepatology and Cell Therapy (PEDI), Institute of Experimental and Clinical Research (IREC), 1200 Brussels, Belgium
- Correspondence: (M.N.); (E.S.); Tel.: +32-10-39-43-00 (M.N.)
| |
Collapse
|
295
|
Hoang DM, Pham PT, Bach TQ, Ngo ATL, Nguyen QT, Phan TTK, Nguyen GH, Le PTT, Hoang VT, Forsyth NR, Heke M, Nguyen LT. Stem cell-based therapy for human diseases. Signal Transduct Target Ther 2022; 7:272. [PMID: 35933430 PMCID: PMC9357075 DOI: 10.1038/s41392-022-01134-4] [Citation(s) in RCA: 432] [Impact Index Per Article: 144.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 02/07/2023] Open
Abstract
Recent advancements in stem cell technology open a new door for patients suffering from diseases and disorders that have yet to be treated. Stem cell-based therapy, including human pluripotent stem cells (hPSCs) and multipotent mesenchymal stem cells (MSCs), has recently emerged as a key player in regenerative medicine. hPSCs are defined as self-renewable cell types conferring the ability to differentiate into various cellular phenotypes of the human body, including three germ layers. MSCs are multipotent progenitor cells possessing self-renewal ability (limited in vitro) and differentiation potential into mesenchymal lineages, according to the International Society for Cell and Gene Therapy (ISCT). This review provides an update on recent clinical applications using either hPSCs or MSCs derived from bone marrow (BM), adipose tissue (AT), or the umbilical cord (UC) for the treatment of human diseases, including neurological disorders, pulmonary dysfunctions, metabolic/endocrine-related diseases, reproductive disorders, skin burns, and cardiovascular conditions. Moreover, we discuss our own clinical trial experiences on targeted therapies using MSCs in a clinical setting, and we propose and discuss the MSC tissue origin concept and how MSC origin may contribute to the role of MSCs in downstream applications, with the ultimate objective of facilitating translational research in regenerative medicine into clinical applications. The mechanisms discussed here support the proposed hypothesis that BM-MSCs are potentially good candidates for brain and spinal cord injury treatment, AT-MSCs are potentially good candidates for reproductive disorder treatment and skin regeneration, and UC-MSCs are potentially good candidates for pulmonary disease and acute respiratory distress syndrome treatment.
Collapse
Affiliation(s)
- Duc M Hoang
- Department of Research and Development, Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam.
| | - Phuong T Pham
- Department of Cellular Therapy, Vinmec High-Tech Center, Vinmec Healthcare System, Hanoi, Vietnam
| | - Trung Q Bach
- Department of Research and Development, Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Anh T L Ngo
- Department of Cellular Therapy, Vinmec High-Tech Center, Vinmec Healthcare System, Hanoi, Vietnam
| | - Quyen T Nguyen
- Department of Research and Development, Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Trang T K Phan
- Department of Research and Development, Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Giang H Nguyen
- Department of Research and Development, Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Phuong T T Le
- Department of Research and Development, Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Van T Hoang
- Department of Research and Development, Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Nicholas R Forsyth
- Institute for Science & Technology in Medicine, Keele University, Keele, UK
| | - Michael Heke
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Liem Thanh Nguyen
- Department of Research and Development, Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| |
Collapse
|
296
|
Lozano Navarro LV, Chen X, Giratá Viviescas LT, Ardila-Roa AK, Luna-Gonzalez ML, Sossa CL, Arango-Rodríguez ML. Mesenchymal stem cells for critical limb ischemia: their function, mechanism, and therapeutic potential. Stem Cell Res Ther 2022; 13:345. [PMID: 35883198 PMCID: PMC9327195 DOI: 10.1186/s13287-022-03043-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/07/2022] [Indexed: 11/21/2022] Open
Abstract
Peripheral arterial disease is atherosclerotic occlusive disease of the lower extremity arteries and afflicts hundreds of millions of individuals worldwide. Its most severe manifestation is chronic limb-threatening ischemia (Petersen et al. (Science 300(5622):1140–2, 2003)), which is associated with severe pain at rest in the limbs, which progresses to necrosis, limb amputation, and/or death of the patient. Consequently, the care of these patients is considered a financial burden for both patients and health systems. Multidisciplinary endeavors are required to address this refractory disease and to find definitive solutions that lead to improved living conditions. Revascularization is the cornerstone of therapy for preventing limb amputation, and both open vascular surgery and endovascular therapy play a key role in the treatment of patients with CLI. Around one-third of these patients are not candidates for conventional surgical treatment, however, leading to higher amputation rates (approaching 20–25% at one year) with high morbidity and lower quality of life. Advances in regenerative medicine have enabled the development of cell-based therapies that promote the formation of new blood vessels. Particularly, mesenchymal stem cells (MSCs) have emerged as an attractive therapeutic agent in various diseases, including CLI, due to their role in tissue regeneration and immunomodulation. This review discusses the characteristics of MSCs, as well as their regenerative properties and their action mechanisms on CLI.
Collapse
Affiliation(s)
- Laura V Lozano Navarro
- Faculty of Health Sciences, Universidad Autónoma de Bucaramanga (UNAB), 681004153, Bucaramanga, Colombia
| | - Xueyi Chen
- Faculty of Health Sciences, Universidad Autónoma de Bucaramanga (UNAB), 681004153, Bucaramanga, Colombia
| | - Lady Tatiana Giratá Viviescas
- Banco Multitejidos y Centro de Terapias Avanzadas, Fundación Oftalmológica de Santander-FOSCAL, 681004153, Floridablanca, Colombia
| | - Andrea K Ardila-Roa
- Banco Multitejidos y Centro de Terapias Avanzadas, Fundación Oftalmológica de Santander-FOSCAL, 681004153, Floridablanca, Colombia
| | - Maria L Luna-Gonzalez
- Faculty of Health Sciences, Universidad Autónoma de Bucaramanga (UNAB), 681004153, Bucaramanga, Colombia.,Programa Para el Tratamiento y Estudio de Enfermedades Hematológicas y Oncológicas de Santander (PROTEHOS), 681004153, Floridablanca, Colombia
| | - Claudia L Sossa
- Faculty of Health Sciences, Universidad Autónoma de Bucaramanga (UNAB), 681004153, Bucaramanga, Colombia.,Banco Multitejidos y Centro de Terapias Avanzadas, Fundación Oftalmológica de Santander-FOSCAL, 681004153, Floridablanca, Colombia.,Programa Para el Tratamiento y Estudio de Enfermedades Hematológicas y Oncológicas de Santander (PROTEHOS), 681004153, Floridablanca, Colombia.,Universidad de Valencia, Valencia, Spain
| | - Martha L Arango-Rodríguez
- Banco Multitejidos y Centro de Terapias Avanzadas, Fundación Oftalmológica de Santander-FOSCAL, 681004153, Floridablanca, Colombia.
| |
Collapse
|
297
|
Bakar SAA, Ali AM, Noor SNFM, Hamid SBS, Azhar NA, Mohamad NM, Ahmad NH. Combination of Goniothalamin and Sol-Gel-Derived Bioactive Glass 45S5 Enhances Growth Inhibitory Activity via Apoptosis Induction and Cell Cycle Arrest in Breast Cancer Cells MCF-7. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5653136. [PMID: 35872839 PMCID: PMC9303150 DOI: 10.1155/2022/5653136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/17/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Combination of natural products with chemically synthesised biomaterials as cancer therapy has attracted great interest lately. Hence, this study is aimed at investigating the combined effects of goniothalamin and bioactive glass 45S5 (GTN-BG) and evaluating their anticancer properties on human breast cancer cells MCF-7. METHODS The BG 45S5 was prepared using the sol-gel process followed by characterisation using PSA, BET, SEM/EDS, XRD, and FTIR. The effects of GTN-BG on the proliferation of MCF-7 were assessed by MTT, PrestoBlue, and scratch wound assays. The cell cycle analysis, Annexin-FITC assay, and activation of caspase-3/7, caspase-8, and caspase-9 assays were determined to further explore its mechanism of action. RESULTS The synthesised BG 45S5 was classified as a fine powder, having a rough surface, and contains mesopores of 12.6 nm. EDS analysis revealed that silica and calcium elements are the primary components of BG powders. Both crystalline and amorphous structures were detected with 73% and 27% similarity to Na2Ca2(Si2O7) and hydroxyapatite, respectively. The combination of GTN-BG was more potent than GTN in inhibiting the proliferation of MCF-7 cells. G0/G1 and G2/M phases of the cell cycle were arrested by GTN and GTN-BG. The percentage of viable cells in GTN-BG treatment was significantly lower than that in GTN. In terms of activation of initiator caspases for both extrinsic and intrinsic apoptosis pathways, caspase-8 and caspase-9 were found more effective in response to GTN-BG than GTN. CONCLUSION The anticancer effect of GTN in MCF-7 cells was improved when combined with BG. The findings provide significant insight into the mechanism of GTN-BG against MCF-7 cells, which can potentially be used as a novel anticancer therapeutic approach.
Collapse
Affiliation(s)
- Siti Aishah Abu Bakar
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam 13200 Kepala Batas, Pulau Pinang, Malaysia
- Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut Campus, 22200 Besut, Terengganu Darul Iman, Malaysia
| | - Abdul Manaf Ali
- Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut Campus, 22200 Besut, Terengganu Darul Iman, Malaysia
| | - Siti Noor Fazliah Mohd Noor
- Department of Dental Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam 13200 Kepala Batas, Pulau Pinang, Malaysia
| | - Shahrul Bariyah Sahul Hamid
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam 13200 Kepala Batas, Pulau Pinang, Malaysia
| | - Nur Asna Azhar
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam 13200 Kepala Batas, Pulau Pinang, Malaysia
| | - Noor Muzamil Mohamad
- Centralised Laboratory Management Center, Universiti Sultan Zainal Abidin, Besut Campus, 22200 Besut, Terengganu Darul Iman, Malaysia
| | - Nor Hazwani Ahmad
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam 13200 Kepala Batas, Pulau Pinang, Malaysia
| |
Collapse
|