251
|
Luo W, Sun W, Taldone T, Rodina A, Chiosis G. Heat shock protein 90 in neurodegenerative diseases. Mol Neurodegener 2010; 5:24. [PMID: 20525284 PMCID: PMC2896944 DOI: 10.1186/1750-1326-5-24] [Citation(s) in RCA: 172] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 06/03/2010] [Indexed: 12/31/2022] Open
Abstract
Hsp90 is a molecular chaperone with important roles in regulating pathogenic transformation. In addition to its well-characterized functions in malignancy, recent evidence from several laboratories suggests a role for Hsp90 in maintaining the functional stability of neuronal proteins of aberrant capacity, whether mutated or over-activated, allowing and sustaining the accumulation of toxic aggregates. In addition, Hsp90 regulates the activity of the transcription factor heat shock factor-1 (HSF-1), the master regulator of the heat shock response, mechanism that cells use for protection when exposed to conditions of stress. These biological functions therefore propose Hsp90 inhibition as a dual therapeutic modality in neurodegenerative diseases. First, by suppressing aberrant neuronal activity, Hsp90 inhibitors may ameliorate protein aggregation and its associated toxicity. Second, by activation of HSF-1 and the subsequent induction of heat shock proteins, such as Hsp70, Hsp90 inhibitors may redirect neuronal aggregate formation, and protect against protein toxicity. This mini-review will summarize our current knowledge on Hsp90 in neurodegeneration and will focus on the potential beneficial application of Hsp90 inhibitors in neurodegenerative diseases.
Collapse
Affiliation(s)
- Wenjie Luo
- Department of Medicine and Program in Molecular Pharmacology and Chemistry, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA.
| | | | | | | | | |
Collapse
|
252
|
Insulin promotes survival of amyloid-beta oligomers neuroblastoma damaged cells via caspase 9 inhibition and Hsp70 upregulation. J Biomed Biotechnol 2010; 2010:147835. [PMID: 20490276 PMCID: PMC2871552 DOI: 10.1155/2010/147835] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 02/24/2010] [Accepted: 02/24/2010] [Indexed: 11/21/2022] Open
Abstract
Alzheimer's disease (AD) and type 2 diabetes are connected in a way that is still not completely understood, but insulin resistance has been implicated as a risk factor for developing AD. Here we show an evidence that insulin is capable of reducing cytotoxicity induced by Amyloid-beta peptides (A-beta) in its oligomeric form in a dose-dependent manner. By TUNEL and biochemical assays we demonstrate that the recovery of the cell viability is obtained by inhibition of intrinsic apoptotic program, triggered by A-beta and involving caspase 9 and 3 activation. A protective role of insulin on mitochondrial damage is also shown by using Mito-red vital dye. Furthermore, A-beta activates the stress inducible Hsp70 protein in LAN5 cells and an overexpression is detectable after the addition of insulin, suggesting that this major induction is the necessary condition to activate a cell survival program. Together, these results may provide opportunities for the design of preventive and therapeutic strategies against AD.
Collapse
|
253
|
Legleiter J, Mitchell E, Lotz GP, Sapp E, Ng C, DiFiglia M, Thompson LM, Muchowski PJ. Mutant huntingtin fragments form oligomers in a polyglutamine length-dependent manner in vitro and in vivo. J Biol Chem 2010; 285:14777-90. [PMID: 20220138 PMCID: PMC2863238 DOI: 10.1074/jbc.m109.093708] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 03/03/2010] [Indexed: 11/06/2022] Open
Abstract
Huntington disease (HD) is caused by an expansion of more than 35-40 polyglutamine (polyQ) repeats in the huntingtin (htt) protein, resulting in accumulation of inclusion bodies containing fibrillar deposits of mutant htt fragments. Intriguingly, polyQ length is directly proportional to the propensity for htt to form fibrils and the severity of HD and is inversely correlated with age of onset. Although the structural basis for htt toxicity is unclear, the formation, abundance, and/or persistence of toxic conformers mediating neuronal dysfunction and degeneration in HD must also depend on polyQ length. Here we used atomic force microscopy to demonstrate mutant htt fragments and synthetic polyQ peptides form oligomers in a polyQ length-dependent manner. By time-lapse atomic force microscopy, oligomers form before fibrils, are transient in nature, and are occasionally direct precursors to fibrils. However, the vast majority of fibrils appear to form by monomer addition coinciding with the disappearance of oligomers. Thus, oligomers must undergo a major structural transition preceding fibril formation. In an immortalized striatal cell line and in brain homogenates from a mouse model of HD, a mutant htt fragment formed oligomers in a polyQ length-dependent manner that were similar in size to those formed in vitro, although these structures accumulated over time in vivo. Finally, using immunoelectron microscopy, we detected oligomeric-like structures in human HD brains. These results demonstrate that oligomer formation by a mutant htt fragment is strongly polyQ length-dependent in vitro and in vivo, consistent with a causative role for these structures, or subsets of these structures, in HD pathogenesis.
Collapse
Affiliation(s)
- Justin Legleiter
- From the Gladstone Institute of Neurological Disease and
- Departments of Neurology and
| | - Emily Mitchell
- Departments of Psychiatry and Human Behavior
- Neurobiology and Behavior, and
- Biological Chemistry, University of California, Irvine, California 92697, and
| | - Gregor P. Lotz
- From the Gladstone Institute of Neurological Disease and
- Departments of Neurology and
| | - Ellen Sapp
- the Laboratory of Cellular Neurobiology, Department of Neurology, Massachusetts General Hospital, Charlestown, Massachusetts 02114
| | - Cheping Ng
- From the Gladstone Institute of Neurological Disease and
| | - Marian DiFiglia
- the Laboratory of Cellular Neurobiology, Department of Neurology, Massachusetts General Hospital, Charlestown, Massachusetts 02114
| | - Leslie M. Thompson
- Departments of Psychiatry and Human Behavior
- Neurobiology and Behavior, and
- Biological Chemistry, University of California, Irvine, California 92697, and
| | - Paul J. Muchowski
- From the Gladstone Institute of Neurological Disease and
- Departments of Neurology and
- Biochemistry and Biophysics, University of California, San Francisco, California 94158
- the Taube-Koret Center for Huntington's Disease Research and
| |
Collapse
|
254
|
Khurana V, Lindquist S. Modelling neurodegeneration in Saccharomyces cerevisiae: why cook with baker's yeast? Nat Rev Neurosci 2010; 11:436-49. [PMID: 20424620 DOI: 10.1038/nrn2809] [Citation(s) in RCA: 193] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In ageing populations, neurodegenerative diseases increase in prevalence, exacting an enormous toll on individuals and their communities. Multiple complementary experimental approaches are needed to elucidate the mechanisms underlying these complex diseases and to develop novel therapeutics. Here, we describe why the budding yeast Saccharomyces cerevisiae has a unique role in the neurodegeneration armamentarium. As the best-understood and most readily analysed eukaryotic organism, S. cerevisiae is delivering mechanistic insights into cell-autonomous mechanisms of neurodegeneration at an interactome-wide scale.
Collapse
Affiliation(s)
- Vikram Khurana
- Department of Neurology, Brigham and Women's and Massachusetts General Hospitals, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
255
|
Douglas PM, Cyr DM. Interplay between protein homeostasis networks in protein aggregation and proteotoxicity. Biopolymers 2010; 93:229-36. [PMID: 19768782 DOI: 10.1002/bip.21304] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The misfolding and aggregation of disease proteins is characteristic of numerous neurodegenerative diseases. Particular neuronal populations are more vulnerable to proteotoxicity while others are more apt to tolerate the misfolding and aggregation of disease proteins. Thus, the cellular environment must play a significant role in determining whether disease proteins are converted into toxic or benign forms. The endomembrane network of eukaryotes divides the cell into different subcellular compartments that possess distinct sets of molecular chaperones and protein interaction networks. Chaperones act as agonists and antagonists of disease protein aggregation to prevent the accumulation of toxic intermediates in the aggregation pathway. Interacting partners can also modulate the conformation and localization of disease proteins and thereby influence proteotoxicity. Thus, interplay between these protein homeostasis network components can modulate the self-association of disease proteins and determine whether they elicit a toxic or benign outcome.
Collapse
Affiliation(s)
- Peter M Douglas
- Department of Cell and Developmental Biology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599-7090, USA
| | | |
Collapse
|
256
|
Hands SL, Mason R, Sajjad MU, Giorgini F, Wyttenbach A. Metallothioneins and copper metabolism are candidate therapeutic targets in Huntington's disease. Biochem Soc Trans 2010; 38:552-8. [PMID: 20298220 DOI: 10.1042/bst0380552] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
HD (Huntington's disease) is caused by a polyQ (polyglutamine) expansion in the huntingtin protein, which leads to protein misfolding and aggregation of this protein. Abnormal copper accumulation in the HD brain was first reported more than 15 years ago. Recent findings show that copper-regulatory genes are induced during HD and copper binds to an N-terminal fragment of huntingtin, supporting the involvement of abnormal copper metabolism in HD. We have demonstrated that in vitro copper accelerates the fibrillization of an N-terminal fragment of huntingtin with an expanded polyQ stretch (httExon1). As we found that copper also increases polyQ aggregation and toxicity in mammalian cells expressing httExon1, we investigated further whether overexpression of genes involved in copper metabolism, notably MTs (metallothioneins) known to bind copper, protect against httExon1 toxicity. Using a yeast model of HD, we have shown that overexpression of several genes involved in copper metabolism reduces polyQ-mediated toxicity. Overexpression of MT-3 in mammalian cells significantly reduced polyQ aggregation and toxicity. We propose that copper-binding and/or -chaperoning proteins, especially MTs, are potential therapeutic targets for HD.
Collapse
Affiliation(s)
- Sarah L Hands
- Neuroscience Group, School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton SO16 7PX, UK
| | | | | | | | | |
Collapse
|
257
|
Ravache M, Abou-Sleymane G, Trottier Y. [Neurodegenerative polyglutamine expansion diseases: physiopathology and therapeutic strategies]. ACTA ACUST UNITED AC 2010; 58:357-66. [PMID: 20299163 DOI: 10.1016/j.patbio.2009.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Accepted: 12/29/2009] [Indexed: 10/19/2022]
Abstract
Polyglutamine expansion diseases are adult-onset inherited neurodegenerative disorders that lead to death 10 to 20 years after the first symptoms. Currently, there is no therapy to fight against these diseases. They include Huntington's disease, spinobulbar muscular atrophy, dentatorubral-pallido-luysian atrophy and six types of spino-cerebellar ataxia. The diseases are caused by a unique mutational mechanism: an expansion of the CAG trinucleotide in the corresponding genes coding for an expanded tract of glutamine in the mutated proteins. Polyglutamine expansion confers to the mutant proteins toxic properties that cause neuronal cell death in brain regions specific to each disease. Thanks to cellular and animal models (fly, fish, mouse and rat) of these diseases, we have considerably improved our understanding of the toxic nature of polyglutamine expansion and the physiopathology, and we are now in position to design and test therapeutic strategies to prevent or delay the disease process.
Collapse
Affiliation(s)
- M Ravache
- Département de Neurobiologie et Génétique, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/Inserm, université de Strasbourg, BP 10142, 67404 Illkirch cedex, France
| | | | | |
Collapse
|
258
|
Sathasivam K, Lane A, Legleiter J, Warley A, Woodman B, Finkbeiner S, Paganetti P, Muchowski PJ, Wilson S, Bates GP. Identical oligomeric and fibrillar structures captured from the brains of R6/2 and knock-in mouse models of Huntington's disease. Hum Mol Genet 2010; 19:65-78. [PMID: 19825844 PMCID: PMC2792149 DOI: 10.1093/hmg/ddp467] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Huntington's disease (HD) is a late-onset neurodegenerative disorder that is characterized neuropathologically by the presence of neuropil aggregates and nuclear inclusions. However, the profile of aggregate structures that are present in the brains of HD patients or of HD mouse models and the relative contribution of specific aggregate structures to disease pathogenesis is unknown. We have used the Seprion ligand to develop a highly sensitive enzyme-linked immunosorbent assay (ELISA)-based method for quantifying aggregated polyglutamine in tissues from HD mouse models. We used a combination of electron microscopy, atomic force microscopy (AFM) and sodium dodecyl sulphate–polyacrylamide gel electrophoresis (SDS–PAGE) to investigate the aggregate structures isolated by the ligand. We found that the oligomeric, proto-fibrillar and fibrillar aggregates extracted from the brains of R6/2 and HdhQ150 knock-in mice were remarkably similar. Using AFM, we determined that the nanometre globular oligomers isolated from the brains of both mouse models have dimensions identical to those generated from recombinant huntingtin exon 1 proteins. Finally, antibodies that detect exon 1 Htt epitopes differentially recognize the ligand-captured material on SDS–PAGE gels. The Seprion-ligand ELISA provides an assay with good statistical power for use in preclinical pharmacodynamic therapeutic trials or to assess the effects of the genetic manipulation of potential therapeutic targets on aggregate load. This, together with the ability to identify a spectrum of aggregate species in HD mouse tissues, will contribute to our understanding of how these structures relate to the pathogenesis of HD and whether their formation can be manipulated for therapeutic benefit.
Collapse
Affiliation(s)
- Kirupa Sathasivam
- Department of Medical and Molecular Genetics, King's College London School of Medicine, King's College London, 8th Floor Tower Wing, Guy's Tower, Great Maze Pond, London, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
259
|
|
260
|
F-actin binding regions on the androgen receptor and huntingtin increase aggregation and alter aggregate characteristics. PLoS One 2010; 5:e9053. [PMID: 20140226 PMCID: PMC2816219 DOI: 10.1371/journal.pone.0009053] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Accepted: 12/30/2009] [Indexed: 11/19/2022] Open
Abstract
Protein aggregation is associated with neurodegeneration. Polyglutamine expansion diseases such as spinobulbar muscular atrophy and Huntington disease feature proteins that are destabilized by an expanded polyglutamine tract in their N-termini. It has previously been reported that intracellular aggregation of these target proteins, the androgen receptor (AR) and huntingtin (Htt), is modulated by actin-regulatory pathways. Sequences that flank the polyglutamine tract of AR and Htt might influence protein aggregation and toxicity through protein-protein interactions, but this has not been studied in detail. Here we have evaluated an N-terminal 127 amino acid fragment of AR and Htt exon 1. The first 50 amino acids of ARN127 and the first 14 amino acids of Htt exon 1 mediate binding to filamentous actin in vitro. Deletion of these actin-binding regions renders the polyglutamine-expanded forms of ARN127 and Htt exon 1 less aggregation-prone, and increases the SDS-solubility of aggregates that do form. These regions thus appear to alter the aggregation frequency and type of polyglutamine-induced aggregation. These findings highlight the importance of flanking sequences in determining the propensity of unstable proteins to misfold.
Collapse
|
261
|
Neef DW, Turski ML, Thiele DJ. Modulation of heat shock transcription factor 1 as a therapeutic target for small molecule intervention in neurodegenerative disease. PLoS Biol 2010; 8:e1000291. [PMID: 20098725 PMCID: PMC2808216 DOI: 10.1371/journal.pbio.1000291] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Accepted: 12/11/2009] [Indexed: 11/18/2022] Open
Abstract
A yeast-based small molecule screen identifies a novel activator of human HSF1 and protein chaperone expression and which appears to alleviate the toxicity of protein misfolding diseases. Neurodegenerative diseases such as Huntington disease are devastating disorders with no therapeutic approaches to ameliorate the underlying protein misfolding defect inherent to poly-glutamine (polyQ) proteins. Given the mounting evidence that elevated levels of protein chaperones suppress polyQ protein misfolding, the master regulator of protein chaperone gene transcription, HSF1, is an attractive target for small molecule intervention. We describe a humanized yeast-based high-throughput screen to identify small molecule activators of human HSF1. This screen is insensitive to previously characterized activators of the heat shock response that have undesirable proteotoxic activity or that inhibit Hsp90, the central chaperone for cellular signaling and proliferation. A molecule identified in this screen, HSF1A, is structurally distinct from other characterized small molecule human HSF1 activators, activates HSF1 in mammalian and fly cells, elevates protein chaperone expression, ameliorates protein misfolding and cell death in polyQ-expressing neuronal precursor cells and protects against cytotoxicity in a fly model of polyQ-mediated neurodegeneration. In addition, we show that HSF1A interacts with components of the TRiC/CCT complex, suggesting a potentially novel regulatory role for this complex in modulating HSF1 activity. These studies describe a novel approach for the identification of new classes of pharmacological interventions for protein misfolding that underlies devastating neurodegenerative disease. The misfolding of proteins into a toxic state contributes to a variety of neurodegenerative diseases such as Huntington, Alzheimer, and Parkinson disease. Although no known cure exists for these afflictions, many studies have shown that increasing the levels of protein chaperones, proteins that assist in the correct folding of other proteins, can suppress the neurotoxicity of the misfolded proteins. As such, increasing the cellular concentration of protein chaperones might serve as a powerful therapeutic approach in treating protein misfolding diseases. Because the levels of protein chaperones in the cell are primarily controlled by the heat shock transcription factor 1 [HSF1], we have designed and implemented a pharmacological screen to identify small molecules that can promote human HSF1 activation and increase the expression of protein chaperones. Through these studies, we have identified HSF1A, a molecule capable of activating human HSF1, increasing the levels of protein chaperones and alleviating the toxicity of misfolded proteins in both cell culture as well as fruit fly models of neurodegenerative disease.
Collapse
Affiliation(s)
- Daniel W. Neef
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Michelle L. Turski
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Dennis J. Thiele
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
262
|
Ahmad A. DnaK/DnaJ/GrpE of Hsp70 system have differing effects on alpha-synuclein fibrillation involved in Parkinson's disease. Int J Biol Macromol 2010; 46:275-9. [PMID: 20060408 DOI: 10.1016/j.ijbiomac.2009.12.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Revised: 12/30/2009] [Accepted: 12/30/2009] [Indexed: 11/17/2022]
Abstract
Chaperones assist in maintenance of functional proteome in vivo. However, they seem to be either ineffective or overwhelmed in the case of protein misfolding diseases like Parkinson's, Huntington's or Alzheimer's. Studies involving one or two chaperones from Hsp70 system cannot provide comprehensive information about the involvement of whole system. We present for the first time, in vitro characterization of the effect of each component of Hsp70 system on alpha-synuclein (involved in Parkinson's) using SEC and ThT assay. Our results show while some components enhance the aggregation others seem to stabilize alpha-synuclein against aggregation. Keeping whole Hsp70 system intact, the factor responsible for triggering aggregation seemed to be initial alpha-synuclein conformation.
Collapse
Affiliation(s)
- Atta Ahmad
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA.
| |
Collapse
|
263
|
Ghukasyan V, Hsu CC, Liu CR, Kao FJ, Cheng TH. Fluorescence lifetime dynamics of enhanced green fluorescent protein in protein aggregates with expanded polyglutamine. JOURNAL OF BIOMEDICAL OPTICS 2010; 15:016008. [PMID: 20210454 DOI: 10.1117/1.3290821] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Protein aggregation is one of the characteristic steps in a number of neurodegenerative diseases eventually leading to neuronal death and thorough study of aggregation is required for the development of effective therapy. We apply fluorescence lifetime imaging for the characterization of the fluorescence dynamics of the enhanced green fluorescent protein (eGFP) in fusion with the polyQ-expanded polyglutamine stretch. At the expansion of polyQ above 39 residues, it has an inherent propensity to form amyloid-like fibrils and aggregates, and is responsible for Huntington's disease. The results of the experiments show that expression of the eGFP in fusion with the 97Q protein leads to the decrease of the eGFP fluorescence lifetime by approximately 300 ps. This phenomenon does not appear in Hsp104-deficient cells, where the aggregation in polyQ is prevented. We demonstrate that the lifetime decrease observed is related to the aggregation per se and discuss the possible role of refractive index and homo-FRET in these dynamics.
Collapse
Affiliation(s)
- Vladimir Ghukasyan
- National Yang-Ming University, Institute of Biophotonics, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
264
|
Tam S, Spiess C, Auyeung W, Joachimiak L, Chen B, Poirier MA, Frydman J. The chaperonin TRiC blocks a huntingtin sequence element that promotes the conformational switch to aggregation. Nat Struct Mol Biol 2009; 16:1279-85. [PMID: 19915590 PMCID: PMC2788664 DOI: 10.1038/nsmb.1700] [Citation(s) in RCA: 205] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2009] [Accepted: 09/11/2009] [Indexed: 12/21/2022]
Abstract
Aggregation of proteins containing polyglutamine (polyQ) expansions characterizes many neurodegenerative disorders, including Huntington’s disease. Molecular chaperones modulate Huntingtin (Htt) aggregation and toxicity by an ill-defined mechanism. Here we determine how the chaperonin TRiC suppresses Htt aggregation. Surprisingly, TRiC does not physically block the polyQ tract itself, but rather sequesters a short Htt sequence element N-terminal to the polyQ tract, that promotes the amyloidogenic conformation. The residues of this amyloid-promoting element essential for rapid Htt aggregation are directly bound by TRiC. Our findings illustrate how molecular chaperones, which recognize hydrophobic determinants, can prevent aggregation of polar polyQ tracts associated with neurodegenerative diseases. The observation that the switch of polyQ tracts to an amyloidogenic conformation is accelerated by short endogenous sequence elements provides a novel target for therapeutic strategies to inhibit aggregation.
Collapse
Affiliation(s)
- Stephen Tam
- Department of Biology, BioX Program Stanford University, Stanford, California, USA
| | | | | | | | | | | | | |
Collapse
|
265
|
Roodveldt C, Bertoncini CW, Andersson A, van der Goot AT, Hsu ST, Fernández-Montesinos R, de Jong J, van Ham TJ, Nollen EA, Pozo D, Christodoulou J, Dobson CM. Chaperone proteostasis in Parkinson's disease: stabilization of the Hsp70/alpha-synuclein complex by Hip. EMBO J 2009; 28:3758-70. [PMID: 19875982 DOI: 10.1038/emboj.2009.298] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 09/15/2009] [Indexed: 11/09/2022] Open
Abstract
The ATP-dependent protein chaperone heat-shock protein 70 (Hsp70) displays broad anti-aggregation functions and has a critical function in preventing protein misfolding pathologies. According to in vitro and in vivo models of Parkinson's disease (PD), loss of Hsp70 activity is associated with neurodegeneration and the formation of amyloid deposits of alpha-synuclein (alphaSyn), which constitute the intraneuronal inclusions in PD patients known as Lewy bodies. Here, we show that Hsp70 depletion can be a direct result of the presence of aggregation-prone polypeptides. We show a nucleotide-dependent interaction between Hsp70 and alphaSyn, which leads to the aggregation of Hsp70, in the presence of ADP along with alphaSyn. Such a co-aggregation phenomenon can be prevented in vitro by the co-chaperone Hip (ST13), and the hypothesis that it might do so also in vivo is supported by studies of a Caenorhabditis elegans model of alphaSyn aggregation. Our findings indicate that a decreased expression of Hip could facilitate depletion of Hsp70 by amyloidogenic polypeptides, impairing chaperone proteostasis and stimulating neurodegeneration.
Collapse
Affiliation(s)
- Cintia Roodveldt
- Department of Chemistry, University of Cambridge, Cambridge, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
266
|
Kubota H. Quality control against misfolded proteins in the cytosol: a network for cell survival. J Biochem 2009; 146:609-16. [PMID: 19737776 DOI: 10.1093/jb/mvp139] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Misfolded proteins are toxic to cells and the accumulation of toxic species can lead to protein misfolding diseases, such as neurodegenerative disorders. The toxicity of misfolded proteins is thought to result from the presence of exposed hydrophobic surfaces, which mediate unnecessary binding to normal proteins, interrupting essential interactions between cellular proteins. To prevent toxicity, quality control systems monitor protein folding and remove misfolded species in the cytosol. Molecular chaperones recognize and mask hydrophobic surfaces of misfolded monomers, and transfer them to the ubiquitin-proteasome system and chaperone-mediated autophagy. To eliminate soluble aggregates of misfolded proteins, the macroautophagy-lysosome system is thought to degrade proteasome-resistant toxic species. In addition, the microtubule-dependent transport system sequesters soluble oligomers/aggregates into inclusion bodies. These systems are regulated by stress-inducible transcription factors, cochaperones and other cofactors for the effective removal of toxic monomers and oligomers. This review explores the roles of protein quality control pathways and networks that control quality control activities in the cytosol, particularly focusing on recent progress in this field.
Collapse
Affiliation(s)
- Hiroshi Kubota
- Department of Life Science, Faculty of Engineering and Resource Science, Akita University, Akita 010-8502, Japan.
| |
Collapse
|
267
|
HSP40 ameliorates impairment of insulin secretion by inhibiting huntingtin aggregation in a HD pancreatic beta cell model. Biosci Biotechnol Biochem 2009; 73:1787-92. [PMID: 19661690 DOI: 10.1271/bbb.90147] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Diabetes frequently develops in Huntington's disease patients. Here, we found that mutant huntingtin forms aggregates in the cytoplasm and reduces insulin secretion from huntingtin transfected pancreatic beta cell lines, NIT-1 cells. Activity of the pro-survival factor, Akt, is enhanced in these cells, which might improve the maintenance of insulin content. Overexpression of heat shock protein 40 (HSP40) inhibits aggregation, reverses impaired insulin release, and blocks the enhancement of Akt activity. These results suggest that impairment of beta cells is mostly linked with the aggregate formation of mutant huntingtin, and that HSP40 ameliorates the malfunction of pancreatic beta cells by inhibiting aggregation.
Collapse
|
268
|
Bauer PO, Nukina N. The pathogenic mechanisms of polyglutamine diseases and current therapeutic strategies. J Neurochem 2009; 110:1737-65. [PMID: 19650870 DOI: 10.1111/j.1471-4159.2009.06302.x] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Expansion of CAG trinucleotide repeat within the coding region of several genes results in the production of proteins with expanded polyglutamine (PolyQ) stretch. The expression of these pathogenic proteins leads to PolyQ diseases, such as Huntington's disease or several types of spinocerebellar ataxias. This family of neurodegenerative disorders is characterized by constant progression of the symptoms and molecularly, by the accumulation of mutant proteins inside neurons causing their dysfunction and eventually death. So far, no effective therapy actually preventing the physical and/or mental decline has been developed. Experimental therapeutic strategies either target the levels or processing of mutant proteins in an attempt to prevent cellular deterioration, or they are aimed at the downstream pathologic effects to reverse or ameliorate the caused damages. Certain pathomechanistic aspects of PolyQ disorders are discussed here. Relevance of disease models and recent knowledge of therapeutic possibilities is reviewed and updated.
Collapse
Affiliation(s)
- Peter O Bauer
- Laboratory for Structural Neuropathology, RIKEN Brain Science Institute, Saitama, Japan
| | | |
Collapse
|
269
|
Wacker JL, Huang SY, Steele AD, Aron R, Lotz GP, Nguyen Q, Giorgini F, Roberson ED, Lindquist S, Masliah E, Muchowski PJ. Loss of Hsp70 exacerbates pathogenesis but not levels of fibrillar aggregates in a mouse model of Huntington's disease. J Neurosci 2009; 29:9104-14. [PMID: 19605647 PMCID: PMC2739279 DOI: 10.1523/jneurosci.2250-09.2009] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Accepted: 06/11/2009] [Indexed: 01/06/2023] Open
Abstract
Endogenous protein quality control machinery has long been suspected of influencing the onset and progression of neurodegenerative diseases characterized by accumulation of misfolded proteins. Huntington's disease (HD) is a fatal neurodegenerative disorder caused by an expansion of a polyglutamine (polyQ) tract in the protein huntingtin (htt), which leads to its aggregation and accumulation in inclusion bodies. Here, we demonstrate in a mouse model of HD that deletion of the molecular chaperones Hsp70.1 and Hsp70.3 significantly exacerbated numerous physical, behavioral and neuropathological outcome measures, including survival, body weight, tremor, limb clasping and open field activities. Deletion of Hsp70.1 and Hsp70.3 significantly increased the size of inclusion bodies formed by mutant htt exon 1, but surprisingly did not affect the levels of fibrillar aggregates. Moreover, the lack of Hsp70s significantly decreased levels of the calcium regulated protein c-Fos, a marker for neuronal activity. In contrast, deletion of Hsp70s did not accelerate disease in a mouse model of infectious prion-mediated neurodegeneration, ruling out the possibility that the Hsp70.1/70.3 mice are nonspecifically sensitized to all protein misfolding disorders. Thus, endogenous Hsp70s are a critical component of the cellular defense against the toxic effects of misfolded htt protein in neurons, but buffer toxicity by mechanisms independent of the deposition of fibrillar aggregates.
Collapse
Affiliation(s)
- Jennifer L. Wacker
- Department of Pharmacology, University of Washington, Seattle, Washington 98195
| | | | - Andrew D. Steele
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, and
| | | | | | - QuangVu Nguyen
- Department of Pharmacology, University of Washington, Seattle, Washington 98195
| | - Flaviano Giorgini
- Department of Pharmacology, University of Washington, Seattle, Washington 98195
| | | | - Susan Lindquist
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, and
| | - Eliezer Masliah
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093
| | - Paul J. Muchowski
- Department of Pharmacology, University of Washington, Seattle, Washington 98195
- Gladstone Institute of Neurological Disease
- The Taube-Koret Center for Huntington's Disease Research, and
- Departments of Biochemistry and Biophysics and
- Neurology, University of California, San Francisco, San Francisco, California 94158
| |
Collapse
|
270
|
Abstract
Most proteins must fold into precise three-dimensional conformations to fulfill their biological functions. Here we review recent concepts emerging from studies of protein folding in vitro and in vivo, with a focus on how proteins navigate the complex folding energy landscape inside cells with the aid of molecular chaperones. Understanding these reactions is also of considerable medical relevance, as the aggregation of misfolding proteins that escape the cellular quality-control machinery underlies a range of debilitating diseases, including many age-onset neurodegenerative disorders.
Collapse
|
271
|
Kang S, Hong S. Molecular pathogenesis of spinocerebellar ataxia type 1 disease. Mol Cells 2009; 27:621-7. [PMID: 19572115 DOI: 10.1007/s10059-009-0095-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Accepted: 06/19/2009] [Indexed: 01/21/2023] Open
Abstract
Spinocerebellar ataxia type 1 (SCA1) is an autosomal-dominant neurodegenerative disorder characterized by ataxia and progressive motor deterioration. SCA1 is associated with an elongated polyglutamine tract in ataxin-1, the SCA1 gene product. As summarized in this review, recent studies have clarified the molecular mechanisms of SCA1 pathogenesis and provided direction for future therapeutic approaches. The nucleus is the subcellular site where misfolded mutant ataxin-1 acts to cause SCA1 disease in the cerebellum. The role of these nuclear aggregates is the subject of intensive study. Additional proteins have been identified, whose conformational alterations occurring through interactions with the polyglutamine tract itself or non-polyglutamine regions in ataxin-1 are the cause of SCA-1 cytotoxicity. Therapeutic hope comes from the observations concerning the reduction of nuclear aggregation and alleviation of the pathogenic phenotype by the application of potent inhibitors and RNA interference.
Collapse
Affiliation(s)
- Seongman Kang
- Graduate School of Life Science and Biotechnology, Korea University, Seoul 136-701, Korea
| | | |
Collapse
|
272
|
Miesbauer M, Pfeiffer NV, Rambold AS, Müller V, Kiachopoulos S, Winklhofer KF, Tatzelt J. alpha-Helical domains promote translocation of intrinsically disordered polypeptides into the endoplasmic reticulum. J Biol Chem 2009; 284:24384-93. [PMID: 19561072 DOI: 10.1074/jbc.m109.023135] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Co-translational import into the endoplasmic reticulum (ER) is primarily controlled by N-terminal signal sequences that mediate targeting of the ribosome-nascent chain complex to the Sec61/translocon and initiate the translocation process. Here we show that after targeting to the translocon the secondary structure of the nascent polypeptide chain can significantly modulate translocation efficiency. ER-targeted polypeptides dominated by unstructured domains failed to efficiently translocate into the ER lumen and were subjected to proteasomal degradation via a co-translocational/preemptive pathway. Productive ER import could be reinstated by increasing the amount of alpha-helical domains, whereas more effective ER signal sequences had only a minor effect on ER import efficiency of unstructured polypeptides. ER stress and overexpression of p58(IPK) promoted the co-translocational degradation pathway. Moreover polypeptides with unstructured domains at their N terminus were specifically targeted to proteasomal degradation under these conditions. Our study indicates that extended unstructured domains are signals to dispose ER-targeted proteins via a co-translocational, preemptive quality control pathway.
Collapse
Affiliation(s)
- Margit Miesbauer
- Neurobiochemistry, Deutsches Zentrum für Neurodegenerative Erkrankungen and Adolf-Butenandt-Institut, Ludwig-Maximilians-Universität München, D-80336 München, Germany
| | | | | | | | | | | | | |
Collapse
|
273
|
Identification of a consensus motif in substrates bound by a Type I Hsp40. Proc Natl Acad Sci U S A 2009; 106:11073-8. [PMID: 19549854 DOI: 10.1073/pnas.0900746106] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein aggregation is a hallmark of a large and diverse number of conformational diseases. Molecular chaperones of the Hsp40 family (Escherichia coli DnaJ homologs) recognize misfolded disease proteins and suppress the accumulation of toxic protein species. Type I Hsp40s are very potent at suppressing protein aggregation and facilitating the refolding of damaged proteins. Yet, the molecular mechanism for the recognition of nonnative polypeptides by Type I Hsp40s such as yeast Ydj1 is not clear. Here we computationally identify a unique motif that is selectively recognized by Ydj1p. The motif is characterized by the consensus sequence GX[LMQ]{P}X{P}{CIMPVW}, where [XY] denotes either X or Y and {XY} denotes neither X nor Y. We further verify the validity of the motif by site-directed mutagenesis and show that substrate binding by Ydj1 requires recognition of this motif. A yeast proteome screen revealed that many proteins contain more than one stretch of residues that contain the motif and are separated by varying numbers of amino acids. In light of our results, we propose a 2-site peptide-binding model and a plausible mechanism of peptide presentation by Ydj1p to the chaperones of the Hsp70 family. Based on our results, and given that Ydj1p and its human ortholog Hdj2 are functionally interchangeable, we hypothesize that our results can be extended to understanding human diseases.
Collapse
|
274
|
Legleiter J, Lotz GP, Miller J, Ko J, Ng C, Williams GL, Finkbeiner S, Patterson PH, Muchowski PJ. Monoclonal antibodies recognize distinct conformational epitopes formed by polyglutamine in a mutant huntingtin fragment. J Biol Chem 2009; 284:21647-58. [PMID: 19491400 DOI: 10.1074/jbc.m109.016923] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Huntington disease (HD) is a neurodegenerative disorder caused by an expansion of a polyglutamine (polyQ) domain in the N-terminal region of huntingtin (htt). PolyQ expansion above 35-40 results in disease associated with htt aggregation into inclusion bodies. It has been hypothesized that expanded polyQ domains adopt multiple potentially toxic conformations that belong to different aggregation pathways. Here, we used atomic force microscopy to analyze the effect of a panel of anti-htt antibodies (MW1-MW5, MW7, MW8, and 3B5H10) on aggregate formation and the stability of a mutant htt-exon1 fragment. Two antibodies, MW7 (polyproline-specific) and 3B5H10 (polyQ-specific), completely inhibited fibril formation and disaggregated preformed fibrils, whereas other polyQ-specific antibodies had widely varying effects on aggregation. These results suggest that expanded polyQ domains adopt multiple conformations in solution that can be readily distinguished by monoclonal antibodies, which has important implications for understanding the structural basis for polyQ toxicity and the development of intrabody-based therapeutics for HD.
Collapse
Affiliation(s)
- Justin Legleiter
- Gladstone Institute of Neurological Disease, University of California, San Francisco, California 94158, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
275
|
Chiang MC, Chen HM, Lai HL, Chen HW, Chou SY, Chen CM, Tsai FJ, Chern Y. The A2A adenosine receptor rescues the urea cycle deficiency of Huntington's disease by enhancing the activity of the ubiquitin-proteasome system. Hum Mol Genet 2009; 18:2929-42. [PMID: 19443488 DOI: 10.1093/hmg/ddp230] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disease caused by a CAG trinucleotide expansion in the Huntingtin (Htt) gene. The resultant mutant Htt protein (mHtt) forms aggregates in the brain and several peripheral tissues (e.g. the liver) and causes devastating neuronal degeneration. Metabolic defects resulting from Htt aggregates in peripheral tissues also contribute to HD pathogenesis. Simultaneous improvement of defects in both the CNS and peripheral tissues is thus the most effective therapeutic strategy and is highly desirable. We earlier showed that an agonist of the A(2A) adenosine receptor (A(2A) receptor), CGS21680 (CGS), attenuates neuronal symptoms of HD. We found herein that the A(2A) receptor also exists in the liver, and that CGS ameliorated the urea cycle deficiency by reducing mHtt aggregates in the liver. By suppressing aggregate formation, CGS slowed the hijacking of a crucial transcription factor (HSF1) and two protein chaperons (Hsp27 and Hsp70) into hepatic Htt aggregates. Moreover, the abnormally high levels of high-molecular-mass ubiquitin conjugates in the liver of an HD mouse model (R6/2) were also ameliorated by CGS. The protective effect of CGS against mHtt-induced aggregate formation was reproduced in two cells lines and was prevented by an antagonist of the A(2A) receptor and a protein kinase A (PKA) inhibitor. Most importantly, the mHtt-induced suppression of proteasome activity was also normalized by CGS through PKA. Our findings reveal a novel therapeutic pathway of A(2A) receptors in HD and further strengthen the concept that the A(2A) receptor can be a drug target in treating HD.
Collapse
Affiliation(s)
- Ming-Chang Chiang
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei 115, Taiwan, Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
276
|
Douglas PM, Summers DW, Cyr DM. Molecular chaperones antagonize proteotoxicity by differentially modulating protein aggregation pathways. Prion 2009; 3:51-8. [PMID: 19421006 DOI: 10.4161/pri.3.2.8587] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The self-association of misfolded or damaged proteins into ordered amyloid-like aggregates characterizes numerous neurodegenerative disorders. Insoluble amyloid plaques are diagnostic of many disease states. Yet soluble, oligomeric intermediates in the aggregation pathway appear to represent the toxic culprit. Molecular chaperones regulate the fate of misfolded proteins and thereby influence their aggregation state. Chaperones conventionally antagonize aggregation of misfolded, disease proteins and assist in refolding or degradation pathways. Recent work suggests that chaperones may also suppress neurotoxicity by converting toxic, soluble oligomers into benign aggregates. Chaperones can therefore suppress or promote aggregation of disease proteins to ameliorate the proteotoxic accumulation of soluble, assembly intermediates.
Collapse
Affiliation(s)
- Peter M Douglas
- Department of Cell and Developmental Biology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599-7090, USA
| | | | | |
Collapse
|
277
|
The role of molecular chaperones in human misfolding diseases. FEBS Lett 2009; 583:2647-53. [DOI: 10.1016/j.febslet.2009.04.029] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Accepted: 04/17/2009] [Indexed: 11/23/2022]
|
278
|
Yamin G, Ono K, Inayathullah M, Teplow DB. Amyloid beta-protein assembly as a therapeutic target of Alzheimer's disease. Curr Pharm Des 2009; 14:3231-46. [PMID: 19075703 DOI: 10.2174/138161208786404137] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Alzheimer's disease (AD), the most common neurodegenerative disorder in the aged, is characterized by the cerebral deposition of fibrils formed by the amyloid beta-protein (Abeta), a 40-42 amino acid peptide. The folding of Abeta into neurotoxic oligomeric, protofibrillar, and fibrillar assemblies is hypothesized to be the key pathologic event in AD. Abeta is formed through cleavage of the Abeta precursor protein by two endoproteinases, beta-secretase and gamma-secretase, that cleave the Abeta N-terminus and C-terminus, respectively. These facts support the relevance of therapeutic strategies targeting Abeta production, assembly, clearance, and neurotoxicity. Currently, no disease-modifying therapeutic agents are available for AD patients. Instead, existing therapeutics provide only modest symptomatic benefits for a limited time. We summarize here recent efforts to produce therapeutic drugs targeting Abeta assembly. A number of approaches are being used in these efforts, including immunological, nutraceutical, and more classical medicinal chemical (peptidic inhibitors, carbohydrate-containing compounds, polyamines, "drug-like" compounds, chaperones, metal chelators, and osmolytes), and many of these have progressed to phase III clinical trails. We also discuss briefly a number of less mature, but intriguing, strategies that have therapeutic potential. Although initial trials of some disease-modifying agents have failed, we argue that substantial cause for optimism exists.
Collapse
Affiliation(s)
- Ghiam Yamin
- Department of Neurology, David Geffen School of Medicine at UCLA, 635 Charles E. Young Drive South (Room 445), Los Angeles, California 90095, USA
| | | | | | | |
Collapse
|
279
|
Hatters DM. Protein misfolding inside cells: the case of huntingtin and Huntington's disease. IUBMB Life 2009; 60:724-8. [PMID: 18756529 DOI: 10.1002/iub.111] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Huntington's disease is one of the several neurodegenerative diseases caused by dominant mutations that expand the number of glutamine codons within an existing poly-glutamine (polyQ) repeat sequence of a gene. An expanded polyQ sequence in the huntingtin gene is known to cause the huntingtin protein to aggregate and form intracellular inclusions as disease progresses. However, the role that polyQ-induced aggregation plays in disease is yet to be fully determined. This review focuses on key questions remaining for how the expanded polyQ sequences affect the aggregation properties of the huntingtin protein and the corresponding effects on cellular machinery. The scope includes the technical challenges that remain for rigorously assessing the effects of aggregation on the cellular machinery.
Collapse
Affiliation(s)
- Danny M Hatters
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Road, The University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
280
|
Abstract
The mechanism by which Hsp40 and other molecular chaperones recognize and interact with non-native polypeptides is a fundamental question, as is how Hsp40 co-operates with Hsp70 to facilitate protein folding. Years of structural studies of Hsp40 from yeast and other species, conducted using X-ray protein crystallography, NMR and small-angle X-ray scattering, have shed light on the mechanisms how Hsp40 functions as a molecular chaperone and how Hsp40-Hsp70 pair promotes protein folding, protein transport and degradation. This review provides a discussion of recent structural studies of Hsp40s and their functional implications.
Collapse
Affiliation(s)
- Jingzhi Li
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Xinguo Qian
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Bingdong Sha
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
281
|
Abstract
High-ordered aggregates (amyloids) may disrupt cell functions, cause toxicity at certain conditions and provide a basis for self-perpetuated, protein-based infectious heritable agents (prions). Heat shock proteins acting as molecular chaperones counteract protein aggregation and influence amyloid propagation. The yeast Hsp104/Hsp70/Hsp40 chaperone complex plays a crucial role in interactions with both ordered and unordered aggregates. The main focus of this review will be on the Hsp104 chaperone, a molecular "disaggregase".
Collapse
Affiliation(s)
- Nina V. Romanova
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta GA, USA
| | - Yury O. Chernoff
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta GA, USA
| |
Collapse
|
282
|
Giorgini F, Muchowski PJ. Exploiting yeast genetics to inform therapeutic strategies for Huntington's disease. Methods Mol Biol 2009; 548:161-74. [PMID: 19521824 DOI: 10.1007/978-1-59745-540-4_9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Huntington's disease (HD) is a devastating neurodegenerative disorder that is inherited in an autosomal dominant fashion and is caused by a polyglutamine expansion in the protein huntingtin (htt). In recent years, modeling of various aspects of HD in the yeast Saccharomyces cerevisiae has provided insight into the conserved mechanisms of mutant htt toxicity in eukaryotic cells. The high degree of conservation of cellular and molecular processes between yeast and mammalian cells have made it a valuable system for studying basic mechanisms underlying human disease. Yeast models of HD recapitulate conserved disease-relevant phenotypes and can be used for drug discovery efforts as well as to gain mechanistic and genetic insights into candidate drugs. Here we provide a detailed overview of yeast models of mutant htt misfolding and toxicity and the molecular and phenotypic characterization of these models. We also review how these models identified novel therapeutic targets and compounds for HD and discuss the benefits and limitations of this model genetic system. Finally, we discuss how yeast may be used to provide further insight into the molecular and cellular mechanisms underlying HD and treatment strategies for this devastating disorder.
Collapse
Affiliation(s)
- Flaviano Giorgini
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | | |
Collapse
|
283
|
Summers DW, Douglas PM, Ren HY, Cyr DM. The type I Hsp40 Ydj1 utilizes a farnesyl moiety and zinc finger-like region to suppress prion toxicity. J Biol Chem 2008; 284:3628-39. [PMID: 19056735 DOI: 10.1074/jbc.m807369200] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Type I Hsp40s are molecular chaperones that protect neurons from degeneration by modulating the aggregation state of amyloid-forming proteins. How Type I Hsp40s recognize beta-rich, amyloid-like substrates is currently unknown. Thus, we examined the mechanism for binding between the Type I Hsp40 Ydj1 and the yeast prion [RNQ+]. Ydj1 recognized the Gln/Asn-rich prion domain from Rnq1 specifically when it assembled into the amyloid-like [RNQ+] prion state. Upon deletion of YDJ1, overexpression of the Rnq1 prion domain killed yeast. Surprisingly, binding and suppression of prion domain toxicity by Ydj1 was dependent upon farnesylation of its C-terminal CAAX box and action of a zinc finger-like region. In contrast, folding of luciferase was independent of farnesylation, yet required the zinc finger-like region of Ydj1 and a conserved hydrophobic peptide-binding pocket. Type I Hsp40s contain at least three different domains that work in concert to bind different protein conformers. The combined action of a farnesyl moiety and zinc finger-like region enable Type I Hsp40s to recognize amyloid-like substrates and prevent formation of cytotoxic protein species.
Collapse
Affiliation(s)
- Daniel W Summers
- Department of Cell and Developmental Biology, University of North Carolina, Chapel Hill, North Carolina 27599-7090, USA
| | | | | | | |
Collapse
|
284
|
Richard GF, Kerrest A, Dujon B. Comparative genomics and molecular dynamics of DNA repeats in eukaryotes. Microbiol Mol Biol Rev 2008; 72:686-727. [PMID: 19052325 PMCID: PMC2593564 DOI: 10.1128/mmbr.00011-08] [Citation(s) in RCA: 343] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Repeated elements can be widely abundant in eukaryotic genomes, composing more than 50% of the human genome, for example. It is possible to classify repeated sequences into two large families, "tandem repeats" and "dispersed repeats." Each of these two families can be itself divided into subfamilies. Dispersed repeats contain transposons, tRNA genes, and gene paralogues, whereas tandem repeats contain gene tandems, ribosomal DNA repeat arrays, and satellite DNA, itself subdivided into satellites, minisatellites, and microsatellites. Remarkably, the molecular mechanisms that create and propagate dispersed and tandem repeats are specific to each class and usually do not overlap. In the present review, we have chosen in the first section to describe the nature and distribution of dispersed and tandem repeats in eukaryotic genomes in the light of complete (or nearly complete) available genome sequences. In the second part, we focus on the molecular mechanisms responsible for the fast evolution of two specific classes of tandem repeats: minisatellites and microsatellites. Given that a growing number of human neurological disorders involve the expansion of a particular class of microsatellites, called trinucleotide repeats, a large part of the recent experimental work on microsatellites has focused on these particular repeats, and thus we also review the current knowledge in this area. Finally, we propose a unified definition for mini- and microsatellites that takes into account their biological properties and try to point out new directions that should be explored in a near future on our road to understanding the genetics of repeated sequences.
Collapse
Affiliation(s)
- Guy-Franck Richard
- Institut Pasteur, Unité de Génétique Moléculaire des Levures, CNRS, URA2171, Université Pierre et Marie Curie, UFR927, 25 rue du Dr. Roux, F-75015, Paris, France.
| | | | | |
Collapse
|
285
|
Schiffer NW, Céraline J, Hartl FU, Broadley SA. N-terminal polyglutamine-containing fragments inhibit androgen receptor transactivation function. Biol Chem 2008; 389:1455-66. [DOI: 10.1515/bc.2008.169] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
AbstractSeveral neurodegenerative diseases, including Kennedy's disease (KD), are associated with misfolding and aggregation of polyglutamine (polyQ)-expansion proteins. KD is caused by a polyQ-expansion in the androgen receptor (AR), a key player in male sexual differentiation. Interestingly, KD patients often show signs of mild-to-moderate androgen insensitivity syndrome (AIS) resulting from AR dysfunction. Here, we used the yeastSaccharomyces cerevisiaeto investigate the molecular mechanism behind AIS in KD. Upon expression in yeast, polyQ-expanded N-terminal fragments of AR lacking the hormone binding domain caused a polyQ length-dependent growth defect. Interestingly, while AR fragments with 67 Q formed large, SDS-resistant inclusions, the most pronounced toxicity was observed upon expression of 102 Q fragments which accumulated exclusively as soluble oligomers in the 100–600 kDa range. Analysis using a hormone-dependent luciferase reporter revealed that full-length polyQ-expanded AR is fully functional in transactivation, but becomes inactivated in the presence of the corresponding polyQ-expanded N-terminal fragment. Furthermore, the greatest impairment of AR activity was observed upon interaction of full-length AR with soluble AR fragments. Taken together, our results suggest that soluble polyQ-containing fragments bind to full-length AR and inactivate it, thus providing insight into the mechanism behind AIS in KD and possibly other polyglutamine diseases, such as Huntington's disease.
Collapse
|
286
|
Luk KC, Mills IP, Trojanowski JQ, Lee VMY. Interactions between Hsp70 and the hydrophobic core of alpha-synuclein inhibit fibril assembly. Biochemistry 2008; 47:12614-25. [PMID: 18975920 PMCID: PMC2648307 DOI: 10.1021/bi801475r] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Molecular chaperones of the heat shock protein 70 (Hsp70) family counteract protein misfolding in a variety of neurodegenerative disease models. To determine whether human Hsp70 exerts similar effects on the aggregation of alpha-synuclein (alpha-Syn), the key component of insoluble fibrils present in Parkinson's disease, we investigated alpha-Syn fibril assembly in the presence of Hsp70. We found in vitro assembly was efficiently inhibited by substoichiometric concentrations of purified Hsp70 in the absence of cofactors. Experiments using alpha-Syn deletion mutants indicated that interactions between the Hsp70 substrate binding domain and the alpha-Syn core hydrophobic region underlie assembly inhibition. This assembly process was inhibited prior to the elongation stage as we failed to detect any fibrils by electron microscopy. In addition, fluorescence polarization and binding assays suggest that Hsp70 recognizes soluble alpha-Syn species in a highly dynamic and reversible manner. Together, these results provide novel insights into how Hsp70 suppresses alpha-Syn aggregation. Furthermore, our findings suggest that this critical step in Parkinson's disease pathogenesis may be subject to modulation by a common molecular chaperone.
Collapse
Affiliation(s)
- Kelvin C. Luk
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-4283
| | - Ian P. Mills
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-4283
| | - John Q. Trojanowski
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-4283
| | - Virginia M.-Y. Lee
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-4283
| |
Collapse
|
287
|
Duennwald ML, Lindquist S. Impaired ERAD and ER stress are early and specific events in polyglutamine toxicity. Genes Dev 2008; 22:3308-19. [PMID: 19015277 DOI: 10.1101/gad.1673408] [Citation(s) in RCA: 249] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Protein misfolding, whether caused by aging, environmental factors, or genetic mutations, is a common basis for neurodegenerative diseases. The misfolding of proteins with abnormally long polyglutamine (polyQ) expansions causes several neurodegenerative disorders, such as Huntington's disease (HD). Although many cellular pathways have been documented to be impaired in HD, the primary triggers of polyQ toxicity remain elusive. We report that yeast cells and neuron-like PC12 cells expressing polyQ-expanded huntingtin (htt) fragments display a surprisingly specific, immediate, and drastic defect in endoplasmic reticulum (ER)-associated degradation (ERAD). We further decipher the mechanistic basis for this defect in ERAD: the entrapment of the essential ERAD proteins Npl4, Ufd1, and p97 by polyQ-expanded htt fragments. In both yeast and mammalian neuron-like cells, overexpression of Npl4 and Ufd1 ameliorates polyQ toxicity. Our results establish that impaired ER protein homeostasis is a broad and highly conserved contributor to polyQ toxicity in yeast, in PC12 cells, and, importantly, in striatal cells expressing full-length polyQ-expanded huntingtin.
Collapse
Affiliation(s)
- Martin L Duennwald
- The Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | | |
Collapse
|
288
|
|
289
|
Haider HK, Ashraf M. Strategies to promote donor cell survival: combining preconditioning approach with stem cell transplantation. J Mol Cell Cardiol 2008; 45:554-66. [PMID: 18561945 PMCID: PMC2670565 DOI: 10.1016/j.yjmcc.2008.05.004] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Revised: 04/18/2008] [Accepted: 05/02/2008] [Indexed: 12/22/2022]
Abstract
Stem cell transplantation has emerged as a potential modality in cardiovascular therapeutics due to their inherent characteristics of self-renewal, unlimited capacity for proliferation and ability to cross lineage restrictions and adopt different phenotypes. Constrained by extensive death in the unfriendly milieu of ischemic myocardium, the results of heart cell therapy in experimental animal models as well as clinical studies have been less than optimal. Several factors which play a role in early cell death after engraftment in the ischemic myocardium include: absence of survival factors in the transplanted heart, disruption of cell-cell interaction coupled with loss of survival signals from matrix attachments, insufficient vascular supply and elaboration of inflammatory cytokines resulting from ischemia and/or cell death. This article reviews various signaling pathways involved in triggering highly complex forms of cell death and provides critical appreciation of different novel anti-death strategies developed from the knowledge gained from using an ischemic preconditioning approach. The use of pharmacological preconditioning for up-regulation of pro-survival proteins and cardiogenic markers in the transplanted stem cells will be discussed.
Collapse
Affiliation(s)
- Husnain Kh Haider
- Department of Pathology and Laboratory Medicine, 231-Albert Sabin Way, University of Cincinnati, OH-45267-0529, USA
| | - Muhammad Ashraf
- Department of Pathology and Laboratory Medicine, 231-Albert Sabin Way, University of Cincinnati, OH-45267-0529, USA
| |
Collapse
|
290
|
Gibbs SJ, Braun JEA. Emerging roles of J proteins in neurodegenerative disorders. Neurobiol Dis 2008; 32:196-9. [PMID: 18760363 DOI: 10.1016/j.nbd.2008.07.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Revised: 07/18/2008] [Accepted: 07/25/2008] [Indexed: 11/19/2022] Open
Abstract
Several families of proteins called molecular chaperones comprise the cellular machinery that has evolved to maintain protein structure and eliminate misfolded proteins in the cell. In experimental animal models, chaperones have been shown to be powerful inhibitors of neurodegeneration. As such, molecular chaperones represent exciting pharmaceutical targets that potentially eliminate aberrant cellular proteins and slow disease progression. Current evidence indicates that the J protein family is the basis of selective chaperone action in the cell. Hence, J proteins are currently attracting attention as novel therapeutic targets for a number of neurodegenerative disorders.
Collapse
Affiliation(s)
- Sarah J Gibbs
- Department of Physiology and Biophysics, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | | |
Collapse
|
291
|
Nishikori S, Yamanaka K, Sakurai T, Esaki M, Ogura T. p97 Homologs from Caenorhabditis elegans, CDC-48.1 and CDC-48.2, suppress the aggregate formation of huntingtin exon1 containing expanded polyQ repeat. Genes Cells 2008; 13:827-38. [PMID: 18782221 DOI: 10.1111/j.1365-2443.2008.01214.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Polyglutamine (polyQ)-expanded proteins are associated with cytotoxicity in some neurodegenerative disorders such as Huntington's disease. We have reported that the aggregation of the polyQ-expanded protein is partially suppressed by co-expression of either of two homologs of an AAA chaperone p97, CDC-48.1 or CDC-48.2, in Caenorhabditis elegans, but how p97 regulates the aggregation of polyQ-expanded proteins remains unclear. Here we present direct evidence that CDC-48.1 and CDC-48.2 suppress the aggregation of a huntingtin (Htt) exon1 fragment containing an expanded polyQ repeat in vitro. CDC-48.1 and CDC-48.2 bound the Htt exon1 fragment directly, and suppressed the formation of SDS-insoluble aggregates of Htt fragments containing 53 glutamine residues (HttQ53) independently of nucleotides. CDC-48.1 and CDC-48.2 also modulated the oligomeric states of HttQ53 during the aggregate formation. In the absence of CDC-48.1 and CDC-48.2, HttQ53 formed 70-150 kDa oligomers, whereas 300-500 kDa oligomers as well as 70-150 kDa oligomers accumulated in the presence of CDC-48.1 and CDC-48.2. Taken together, these results suggest that p97 plays a protective role in neurodegenerative disorders by directly suppressing the protein aggregation as a molecular chaperone.
Collapse
Affiliation(s)
- Shingo Nishikori
- Division of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811, Japan
| | | | | | | | | |
Collapse
|
292
|
Fujikake N, Nagai Y, Popiel HA, Okamoto Y, Yamaguchi M, Toda T. Heat shock transcription factor 1-activating compounds suppress polyglutamine-induced neurodegeneration through induction of multiple molecular chaperones. J Biol Chem 2008; 283:26188-97. [PMID: 18632670 DOI: 10.1074/jbc.m710521200] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Many neurodegenerative diseases including Alzheimer, Parkinson, and polyglutamine (polyQ) diseases are thought to be caused by protein misfolding. The polyQ diseases, including Huntington disease and spinocerebellar ataxias (SCAs), are caused by abnormal expansions of the polyQ stretch in disease-causing proteins, which trigger misfolding of these proteins, resulting in their deposition as inclusion bodies in affected neurons. Although genetic expression of molecular chaperones has been shown to suppress polyQ protein misfolding and neurodegeneration, toward developing a therapy, it is ideal to induce endogenous molecular chaperones by chemical administration. In this study, we assessed the therapeutic effects of heat shock transcription factor 1 (HSF1)-activating compounds, which induce multiple molecular chaperones, on polyQ-induced neurodegeneration in vivo. We found that oral administration of 17-(allylamino)-17-demethoxygeldanamycin (17-AAG) markedly suppresses compound eye degeneration and inclusion body formation in a Drosophila model of SCA. 17-AAG also dramatically rescued the lethality of the SCA model (74.1% rescue) and suppressed neurodegeneration in a Huntington disease model (46.3% rescue), indicating that 17-AAG is widely effective against various polyQ diseases. 17-AAG induced Hsp70, Hsp40, and Hsp90 expression in a dose-dependent manner, and the expression levels correlated with its therapeutic effects. Furthermore, knockdown of HSF1 abolished the induction of molecular chaperones and the therapeutic effect of 17-AAG, indicating that its therapeutic effects depend on HSF1 activation. Our study indicates that induction of multiple molecular chaperones by 17-AAG treatment is a promising therapeutic approach for a wide range of polyQ diseases and possibly other neurodegenerative diseases.
Collapse
Affiliation(s)
- Nobuhiro Fujikake
- Division of Clinical Genetics, Department of Medical Genetics, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
293
|
Winderickx J, Delay C, De Vos A, Klinger H, Pellens K, Vanhelmont T, Van Leuven F, Zabrocki P. Protein folding diseases and neurodegeneration: Lessons learned from yeast. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:1381-95. [DOI: 10.1016/j.bbamcr.2008.01.020] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 01/23/2008] [Accepted: 01/24/2008] [Indexed: 12/29/2022]
|
294
|
Abstract
Y-27632, an inhibitor of the Rho-associated kinase ROCK, is a therapeutic lead for Huntington disease (HD). The downstream targets that mediate its inhibitory effects on huntingtin (Htt) aggregation and toxicity are unknown. We have identified profilin, a small actin-binding factor that also interacts with Htt, as being a direct target of the ROCK1 isoform. The overexpression of profilin reduces the aggregation of polyglutamine-expanded Htt and androgen receptor (AR) peptides. This requires profilin's G-actin binding activity and its direct interaction with Htt, which are both inhibited by the ROCK1-mediated phosphorylation of profilin at Ser-137. Y-27632 blocks the phosphorylation of profilin in HEK293 cells and primary neurons, which maintains profilin in an active state. The knockdown of profilin blocks the inhibitory effect of Y-27632 on both AR and Htt aggregation. A signaling pathway from ROCK1 to profilin thus controls polyglutamine protein aggregation and is targeted by a promising therapeutic lead for HD.
Collapse
|
295
|
Wong SLA, Chan WM, Chan HYE. Sodium dodecyl sulfate-insoluble oligomers are involved in polyglutamine degeneration. FASEB J 2008; 22:3348-57. [PMID: 18559990 DOI: 10.1096/fj.07-103887] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In polyglutamine (polyQ) degeneration, disease protein that carries an expanded polyQ tract is neurotoxic. Expanded polyQ protein exists in different conformations that display distinct solubility properties. In this study, an inducible transgenic Drosophila model is established to define the pathogenic form of polyQ protein at an early stage of degeneration in vivo. We show that microscopic polyQ aggregates are neither pathogenic nor protective. Further, no toxic effect of sodium dodecyl sulfate (SDS) -soluble polyQ protein is observed in our model. By means of filtration, 2 forms of SDS-insoluble protein species are identified according to their size. Coexpression of an ATPase-defective form of the molecular chaperone Hsc70 (Hsc70-K71S) selectively reduces the abundance of the large SDS-insoluble polyQ species, but such modulation has no modifying effects on degeneration. Notably, we detect a distinct Hsc70-K71S-resistant, small, SDS-insoluble polyQ oligomeric species that is closely correlated with degeneration. Our data highlight the toxic role of SDS-insoluble oligomers in polyQ degeneration in vivo.
Collapse
Affiliation(s)
- S L Alan Wong
- Laboratory of Drosophila Research, The Chinese University of Hong Kong, Shatin NT, Hong Kong, China
| | | | | |
Collapse
|
296
|
Ehrnhoefer DE, Bieschke J, Boeddrich A, Herbst M, Masino L, Lurz R, Engemann S, Pastore A, Wanker EE. EGCG redirects amyloidogenic polypeptides into unstructured, off-pathway oligomers. Nat Struct Mol Biol 2008; 15:558-66. [PMID: 18511942 DOI: 10.1038/nsmb.1437] [Citation(s) in RCA: 1138] [Impact Index Per Article: 66.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Accepted: 04/30/2008] [Indexed: 12/24/2022]
Abstract
The accumulation of beta-sheet-rich amyloid fibrils or aggregates is a complex, multistep process that is associated with cellular toxicity in a number of human protein misfolding disorders, including Parkinson's and Alzheimer's diseases. It involves the formation of various transient and intransient, on- and off-pathway aggregate species, whose structure, size and cellular toxicity are largely unclear. Here we demonstrate redirection of amyloid fibril formation through the action of a small molecule, resulting in off-pathway, highly stable oligomers. The polyphenol (-)-epigallocatechin gallate efficiently inhibits the fibrillogenesis of both alpha-synuclein and amyloid-beta by directly binding to the natively unfolded polypeptides and preventing their conversion into toxic, on-pathway aggregation intermediates. Instead of beta-sheet-rich amyloid, the formation of unstructured, nontoxic alpha-synuclein and amyloid-beta oligomers of a new type is promoted, suggesting a generic effect on aggregation pathways in neurodegenerative diseases.
Collapse
Affiliation(s)
- Dagmar E Ehrnhoefer
- Max Delbrueck Center for Molecular Medicine, AG Neuroproteomics, 13092 Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
297
|
Scotter EL, Narayan P, Glass M, Dragunow M. High throughput quantification of mutant huntingtin aggregates. J Neurosci Methods 2008; 171:174-9. [DOI: 10.1016/j.jneumeth.2008.02.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Revised: 02/12/2008] [Accepted: 02/12/2008] [Indexed: 10/22/2022]
|
298
|
Johnson BS, McCaffery JM, Lindquist S, Gitler AD. A yeast TDP-43 proteinopathy model: Exploring the molecular determinants of TDP-43 aggregation and cellular toxicity. Proc Natl Acad Sci U S A 2008; 105:6439-44. [PMID: 18434538 PMCID: PMC2359814 DOI: 10.1073/pnas.0802082105] [Citation(s) in RCA: 340] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2007] [Indexed: 12/12/2022] Open
Abstract
Protein misfolding is intimately associated with devastating human neurodegenerative diseases, including Alzheimer's, Huntington's, and Parkinson's. Although disparate in their pathophysiology, many of these disorders share a common theme, manifested in the accumulation of insoluble protein aggregates in the brain. Recently, the major disease protein found in the pathological inclusions of two of these diseases, amyotrophic lateral sclerosis (ALS) and frontal temporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U), was identified as the 43-kDa TAR-DNA-binding protein (TDP-43), providing a molecular link between them. TDP-43 is a ubiquitously expressed nuclear protein that undergoes a pathological conversion to an aggregated cytoplasmic localization in affected regions of the nervous system. Whether TDP-43 itself can convey toxicity and whether its abnormal aggregation is a cause or consequence of pathogenesis remain unknown. We report a yeast model to define mechanisms governing TDP-43 subcellular localization and aggregation. Remarkably, this simple model recapitulates several salient features of human TDP-43 proteinopathies, including conversion from nuclear localization to cytoplasmic aggregation. We establish a connection between this aggregation and toxicity. The pathological features of TDP-43 are distinct from those of yeast models of other protein-misfolding diseases, such as polyglutamine. This suggests that the yeast model reveals specific aspects of the underlying biology of the disease protein rather than general cellular stresses associated with accumulating misfolded proteins. This work provides a mechanistic framework for investigating the toxicity of TDP-43 aggregation relevant to human disease and establishes a manipulable, high-throughput model for discovering potential therapeutic strategies.
Collapse
Affiliation(s)
- Brian S. Johnson
- *Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104
| | - J. Michael McCaffery
- Integrated Imaging Center and Department of Biology, The Johns Hopkins University, Baltimore, MD 21218; and
| | - Susan Lindquist
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142
| | - Aaron D. Gitler
- *Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
299
|
Abstract
Stress proteins or heat shock proteins (HSPs) are ubiquitous cellular components that have long been known to act as molecular chaperones. By assisting proper folding and transport of proteins, and by assisting in the degradation of aberrant proteins, they play key roles in cellular metabolism. The frequent accumulation of insoluble protein aggregates during chronic neurodegenerative disorders suggests failure of HSP functions to be a common denominator among such diseases. Recent developments have clarified that functions of HSPs extend well beyond their role in protein folding and degradation alone. Stress-inducible HSPs also regulate apoptosis, antigen presentation, inflammatory signalling pathways and, intriguingly, also serve as extracellular mediators of inflammation. Several receptors have been identified for extracellular HSPs, which control inflammatory pathways similar to those activated by cytokines and chemokines. In this review, both the traditional and the exciting novel functions of HSPs are discussed, with a focus on their relevance for neurodegeneration and neuroinflammation. Recent advances in this field suggest that HSPs represent attractive novel targets as well as therapeutic entities for CNS disorders.
Collapse
Affiliation(s)
- J M van Noort
- Department of Biosciences, TNO Quality of Life, PO Box 2215, 2301 CE Leiden, The Netherlands.
| |
Collapse
|
300
|
Lee KS, Chung JH, Oh BH, Hong CH. Increased plasma levels of heat shock protein 70 in patients with vascular mild cognitive impairment. Neurosci Lett 2008; 436:223-6. [PMID: 18394800 DOI: 10.1016/j.neulet.2008.03.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Revised: 03/02/2008] [Accepted: 03/12/2008] [Indexed: 11/25/2022]
Abstract
Heat shock proteins (Hsps) have been regarded as cytoprotectants that protect brain cells from damage encountered following cerebral ischemia or during the progression of neurodegenerative diseases. In this study, we assessed the plasma Hsp70 and Hsp27 levels in not cognitively impaired (NCI) subjects and in patients with mild cognitive impairment (MCI), vascular mild cognitive impairment (VMCI), and probable Alzheimer's disease (AD). Comparison of the plasma Hsp70 and Hsp27 levels of the 4 groups revealed that only the plasma Hsp70 level of VMCI patients (14.11 ng/ml) was significantly higher than that of NCI subjects (11.32 ng/ml), MCI patients (10.16 ng/ml), and patients with probable AD (10.16 ng/ml) after adjustment of age, sex, and education (F=4.231, d.f.=3, p=0.008). Furthermore, there was no difference in plasma Hsp27 levels among the 4 groups. These findings suggest that the plasma Hsp70 level may be related to vascular factors or inflammation.
Collapse
Affiliation(s)
- Kang Soo Lee
- Department of Psychiatry, Yonsei University College of Medicine, Seoul, Republic of Korea
| | | | | | | |
Collapse
|