251
|
Vezina B, Judd LM, McDougall FK, Boardman WSJ, Power ML, Hawkey J, Brisse S, Monk JM, Holt KE, Wyres KL. Transmission of Klebsiella strains and plasmids within and between grey-headed flying fox colonies. Environ Microbiol 2022; 24:4425-4436. [PMID: 35590448 PMCID: PMC9790207 DOI: 10.1111/1462-2920.16047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 05/11/2022] [Indexed: 12/30/2022]
Abstract
The grey-headed flying fox (Pteropus poliocephalus) is an endemic Australian fruit bat, known to carry zoonotic pathogens. We recently showed they harbour bacterial pathogen Klebsiella pneumoniae and closely related species in the K. pneumoniae species complex (KpSC); however, the dynamics of KpSC transmission and gene flow within flying fox colonies are poorly understood. High-resolution genome comparisons of 39 KpSC isolates from grey-headed flying foxes identified five putative strain transmission clusters (four intra- and one inter-colony). The instance of inter-colony strain transmission of K. africana was found between two flying fox populations within flying distance, indicating either direct or indirect transmission through a common food/water source. All 11 plasmids identified within the KpSC isolates showed 73% coverage (mean) and ≥95% identity to human-associated KpSC plasmids, indicating gene flow between human clinical and grey-headed flying fox isolates. Along with strain transmission, inter-species horizontal plasmid transmission between K. pneumoniae and Klebsiella africana was also identified within a flying fox colony. Finally, genome-scale metabolic models were generated to predict and compare substrate usage to previously published KpSC models, from human and environmental sources. These models indicated no distinction on the basis of metabolic capabilities. Instead, metabolic capabilities were consistent with population structure and ST/lineage.
Collapse
Affiliation(s)
- Ben Vezina
- Department of Infectious Diseases, Central Clinical SchoolMonash UniversityMelbourneVic.Australia
| | - Louise M. Judd
- Department of Infectious Diseases, Central Clinical SchoolMonash UniversityMelbourneVic.Australia
| | | | | | - Michelle L. Power
- Department of Biological SciencesMacquarie UniversityNSW2109Australia
| | - Jane Hawkey
- Department of Infectious Diseases, Central Clinical SchoolMonash UniversityMelbourneVic.Australia
| | - Sylvain Brisse
- Institut PasteurUniversité de Paris, Biodiversity and Epidemiology of Bacterial PathogensParisFrance
| | | | - Kathryn E. Holt
- Department of Infectious Diseases, Central Clinical SchoolMonash UniversityMelbourneVic.Australia
- Department of Infection BiologyLondon School of Hygiene and Tropical MedicineLondonUK
| | - Kelly L. Wyres
- Department of Infectious Diseases, Central Clinical SchoolMonash UniversityMelbourneVic.Australia
| |
Collapse
|
252
|
WGS-Based Lineage and Antimicrobial Resistance Pattern of Salmonella Typhimurium Isolated during 2000-2017 in Peru. Antibiotics (Basel) 2022; 11:antibiotics11091170. [PMID: 36139949 PMCID: PMC9495214 DOI: 10.3390/antibiotics11091170] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Salmonella Typhimurium is associated with foodborne diseases worldwide, including in Peru, and its emerging antibiotic resistance (AMR) is now a global public health problem. Therefore, country-specific monitoring of the AMR emergence is vital to control this pathogen, and in these aspects, whole genome sequence (WGS)—based approaches are better than gene-based analyses. Here, we performed the antimicrobial susceptibility test for ten widely used antibiotics and WGS-based various analyses of 90 S. Typhimurium isolates (human, animal, and environment) from 14 cities of Peru isolated from 2000 to 2017 to understand the lineage and antimicrobial resistance pattern of this pathogen in Peru. Our results suggest that the Peruvian isolates are of Typhimurium serovar and predominantly belong to sequence type ST19. Genomic diversity analyses indicate an open pan-genome, and at least ten lineages are circulating in Peru. A total of 48.8% and 31.0% of isolates are phenotypically and genotypically resistant to at least one antibiotic, while 12.0% are multi-drug resistant (MDR). Genotype−phenotype correlations for ten tested drugs show >80% accuracy, and >90% specificity. Sensitivity above 90% was only achieved for ciprofloxacin and ceftazidime. Two lineages exhibit the majority of the MDR isolates. A total of 63 different AMR genes are detected, of which 30 are found in 17 different plasmids. Transmissible plasmids such as lncI-gamma/k, IncI1-I(Alpha), Col(pHAD28), IncFIB, IncHI2, and lncI2 that carry AMR genes associated with third-generation antibiotics are also identified. Finally, three new non-synonymous single nucleotide variations (SNVs) for nalidixic acid and eight new SNVs for nitrofurantoin resistance are predicted using genome-wide association studies, comparative genomics, and functional annotation. Our analysis provides for the first time the WGS-based details of the circulating S. Typhimurium lineages and their antimicrobial resistance pattern in Peru.
Collapse
|
253
|
Guitor AK, Yousuf EI, Raphenya AR, Hutton EK, Morrison KM, McArthur AG, Wright GD, Stearns JC. Capturing the antibiotic resistome of preterm infants reveals new benefits of probiotic supplementation. MICROBIOME 2022; 10:136. [PMID: 36008821 PMCID: PMC9414150 DOI: 10.1186/s40168-022-01327-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/14/2022] [Indexed: 05/28/2023]
Abstract
BACKGROUND Probiotic use in preterm infants can mitigate the impact of antibiotic exposure and reduce rates of certain illnesses; however, the benefit on the gut resistome, the collection of antibiotic resistance genes, requires further investigation. We hypothesized that probiotic supplementation of early preterm infants (born < 32-week gestation) while in hospital reduces the prevalence of antibiotic resistance genes associated with pathogenic bacteria in the gut. We used a targeted capture approach to compare the resistome from stool samples collected at the term corrected age of 40 weeks for two groups of preterm infants (those that routinely received a multi-strain probiotic during hospitalization and those that did not) with samples from full-term infants at 10 days of age to identify if preterm birth or probiotic supplementation impacted the resistome. We also compared the two groups of preterm infants up to 5 months of age to identify persistent antibiotic resistance genes. RESULTS At the term corrected age, or 10 days of age for the full-term infants, we found over 80 antibiotic resistance genes in the preterm infants that did not receive probiotics that were not identified in either the full-term or probiotic-supplemented preterm infants. More genes associated with antibiotic inactivation mechanisms were identified in preterm infants unexposed to probiotics at this collection time-point compared to the other infants. We further linked these genes to mobile genetic elements and Enterobacteriaceae, which were also abundant in their gut microbiomes. Various genes associated with aminoglycoside and beta-lactam resistance, commonly found in pathogenic bacteria, were retained for up to 5 months in the preterm infants that did not receive probiotics. CONCLUSIONS This pilot survey of preterm infants shows that probiotics administered after preterm birth during hospitalization reduced the diversity and prevented persistence of antibiotic resistance genes in the gut microbiome. The benefits of probiotic use on the microbiome and the resistome should be further explored in larger groups of infants. Due to its high sensitivity and lower sequencing cost, our targeted capture approach can facilitate these surveys to further address the implications of resistance genes persisting into infancy without the need for large-scale metagenomic sequencing. Video Abstract.
Collapse
Affiliation(s)
- Allison K Guitor
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Canada
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Canada
| | - Efrah I Yousuf
- Department of Pediatrics, McMaster University, Hamilton, Canada
| | - Amogelang R Raphenya
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Canada
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Canada
| | - Eileen K Hutton
- Department of Obstetrics & Gynecology, McMaster University, Hamilton, Canada
- The Baby & Mi and the Baby & Pre-Mi Cohort Studies, Hamilton, Canada
| | - Katherine M Morrison
- Department of Pediatrics, McMaster University, Hamilton, Canada
- The Baby & Mi and the Baby & Pre-Mi Cohort Studies, Hamilton, Canada
| | - Andrew G McArthur
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Canada
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Canada
| | - Gerard D Wright
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Canada
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Canada
| | - Jennifer C Stearns
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada.
- The Baby & Mi and the Baby & Pre-Mi Cohort Studies, Hamilton, Canada.
- Department of Medicine, McMaster University, Hamilton, Canada.
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada.
| |
Collapse
|
254
|
Hawkey J, Wyres KL, Judd LM, Harshegyi T, Blakeway L, Wick RR, Jenney AWJ, Holt KE. ESBL plasmids in Klebsiella pneumoniae: diversity, transmission and contribution to infection burden in the hospital setting. Genome Med 2022; 14:97. [PMID: 35999578 PMCID: PMC9396894 DOI: 10.1186/s13073-022-01103-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 08/05/2022] [Indexed: 12/24/2022] Open
Abstract
Background Resistance to third-generation cephalosporins, often mediated by extended-spectrum beta-lactamases (ESBLs), is a considerable issue in hospital-associated infections as few drugs remain for treatment. ESBL genes are often located on large plasmids that transfer horizontally between strains and species of Enterobacteriaceae and frequently confer resistance to additional drug classes. Whilst plasmid transmission is recognised to occur in the hospital setting, the frequency and impact of plasmid transmission on infection burden, compared to ESBL + strain transmission, is not well understood. Methods We sequenced the genomes of clinical and carriage isolates of Klebsiella pneumoniae species complex from a year-long hospital surveillance study to investigate ESBL burden and plasmid transmission in an Australian hospital. Long-term persistence of a key transmitted ESBL + plasmid was investigated via sequencing of ceftriaxone-resistant isolates during 4 years of follow-up, beginning 3 years after the initial study. Results We found 25 distinct ESBL plasmids. We identified one plasmid, which we called Plasmid A, that carried blaCTX-M-15 in an IncF backbone similar to pKPN-307. Plasmid A was transmitted at least four times into different Klebsiella species/lineages and was responsible for half of all ESBL episodes during the initial 1-year study period. Three of the Plasmid A-positive strains persisted locally 3–6 years later, and Plasmid A was detected in two additional strain backgrounds. Overall Plasmid A accounted for 21% of ESBL + infections in the follow-up period. Conclusions Here, we systematically surveyed ESBL strain and plasmid transmission over 1 year in a single hospital network. Whilst ESBL plasmid transmission events were rare in this setting, they had a significant and sustained impact on the burden of ceftriaxone-resistant and multidrug-resistant infections. If onward transmission of Plasmid A-carrying strains could have been prevented, this may have reduced the number of opportunities for Plasmid A to transmit and create novel ESBL + strains, as well as reducing overall ESBL infection burden.
Supplementary Information The online version contains supplementary material available at 10.1186/s13073-022-01103-0.
Collapse
Affiliation(s)
- Jane Hawkey
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia.
| | - Kelly L Wyres
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Louise M Judd
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Taylor Harshegyi
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Luke Blakeway
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Ryan R Wick
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Adam W J Jenney
- Microbiology Unit & Department of Infectious Diseases, The Alfred Hospital, Melbourne, VIC, Australia
| | - Kathryn E Holt
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia. .,Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK.
| |
Collapse
|
255
|
Jans C, Wambui J, Stevens MJA, Tasara T. Comparative genomics of dairy-associated Staphylococcus aureus from selected sub-Saharan African regions reveals milk as reservoir for human-and animal-derived strains and identifies a putative animal-related clade with presumptive novel siderophore. Front Microbiol 2022; 13:923080. [PMID: 36046020 PMCID: PMC9421002 DOI: 10.3389/fmicb.2022.923080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
Staphylococcus aureus infection is considered to be a neglected tropical disease with huge impact on human and animal health alike. Dairy production in sub-Saharan Africa (SSA) relies heavily on various animals such as cows, goats, and camels, depending on the region. S. aureus causes mastitis and exhibits high prevalence in raw milk. The population structure including genotypic and phenotypic traits of dairy S. aureus in relation to animal and human isolates is, however, unknown for SSA. In this work, 20 S. aureus dairy isolates from East and West Africa were selected for comparative genomics and phenotypic analysis. Comparing their population structure revealed a large diversity of different origins suggesting milk to be a reservoir for human and animal strains alike. Furthermore, a novel putative siderophore was detected in multiple strains in a distinct animal-clade with strains of global origin. This putative siderophore shares a high genetic identity with that from Streptococcus equi suggesting possible horizontal gene transfer. These findings combined with the virulence genes harbored by these dairy-derived strains such as pvl, human evasion factor scn, various enterotoxin, leucocidin and antibiotic resistance genes, stresses the need for an integrative One Health approach to tackle the problem of S. aureus infections in animals and humans in sub-Saharan Africa.
Collapse
Affiliation(s)
- Christoph Jans
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, Department of Health Science and Technology, ETH Zurich, Switzerland
| | - Joseph Wambui
- Institute of Food Safety and Hygiene, University of Zurich, Zurich, Switzerland
| | - Marc J. A. Stevens
- Institute of Food Safety and Hygiene, University of Zurich, Zurich, Switzerland
| | - Taurai Tasara
- Institute of Food Safety and Hygiene, University of Zurich, Zurich, Switzerland
- *Correspondence: Taurai Tasara,
| |
Collapse
|
256
|
Collis RM, Biggs PJ, Burgess SA, Midwinter AC, Brightwell G, Cookson AL. Prevalence and distribution of extended-spectrum β-lactamase and AmpC-producing Escherichia coli in two New Zealand dairy farm environments. Front Microbiol 2022; 13:960748. [PMID: 36033848 PMCID: PMC9403332 DOI: 10.3389/fmicb.2022.960748] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Antimicrobial resistance (AMR) is a global threat to human and animal health, with the misuse and overuse of antimicrobials being suggested as the main driver of resistance. In a global context, New Zealand (NZ) is a relatively low user of antimicrobials in animal production. However, the role antimicrobial usage on pasture-based dairy farms, such as those in NZ, plays in driving the spread of AMR within the dairy farm environment remains equivocal. Culture-based methods were used to determine the prevalence and distribution of extended-spectrum β-lactamase (ESBL)- and AmpC-producing Escherichia coli from farm environmental samples collected over a 15-month period from two NZ dairy farms with contrasting management practices. Whole genome sequencing was utilised to understand the genomic epidemiology and antimicrobial resistance gene repertoire of a subset of third-generation cephalosporin resistant E. coli isolated in this study. There was a low sample level prevalence of ESBL-producing E. coli (faeces 1.7%; farm dairy effluent, 6.7% from Dairy 4 and none from Dairy 1) but AmpC-producing E. coli were more frequently isolated across both farms (faeces 3.3% and 8.3%; farm dairy effluent 38.4%, 6.7% from Dairy 1 and Dairy 4, respectively). ESBL- and AmpC-producing E. coli were isolated from faeces and farm dairy effluent in spring and summer, during months with varying levels of antimicrobial use, but no ESBL- or AmpC-producing E. coli were isolated from bulk tank milk or soil from recently grazed paddocks. Hybrid assemblies using short- and long-read sequence data from a subset of ESBL- and AmpC-producing E. coli enabled the assembly and annotation of nine plasmids from six E. coli, including one plasmid co-harbouring 12 antimicrobial resistance genes. ESBL-producing E. coli were infrequently identified from faeces and farm dairy effluent on the two NZ dairy farms, suggesting they are present at a low prevalence on these farms. Plasmids harbouring several antimicrobial resistance genes were identified, and bacteria carrying such plasmids are a concern for both animal and public health. AMR is a burden for human, animal and environmental health and requires a holistic “One Health” approach to address.
Collapse
Affiliation(s)
- Rose M. Collis
- The Hopkirk Research Institute, AgResearch Ltd., Massey University, Palmerston North, New Zealand
- EpiLab, School of Veterinary Science, Massey University, Palmerston North, New Zealand
- Rose M. Collis,
| | - Patrick J. Biggs
- EpiLab, School of Veterinary Science, Massey University, Palmerston North, New Zealand
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
- New Zealand Food Safety Science and Research Centre, Massey University, Palmerston North, New Zealand
| | - Sara A. Burgess
- EpiLab, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Anne C. Midwinter
- EpiLab, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Gale Brightwell
- The Hopkirk Research Institute, AgResearch Ltd., Massey University, Palmerston North, New Zealand
- New Zealand Food Safety Science and Research Centre, Massey University, Palmerston North, New Zealand
| | - Adrian L. Cookson
- The Hopkirk Research Institute, AgResearch Ltd., Massey University, Palmerston North, New Zealand
- EpiLab, School of Veterinary Science, Massey University, Palmerston North, New Zealand
- *Correspondence: Adrian L. Cookson,
| |
Collapse
|
257
|
Fountain K, Barbon A, Gibbon MJ, Lloyd DH, Loeffler A, Feil EJ. Staphylococcus aureus lineages associated with a free-ranging population of the fruit bat Pteropus livingstonii retained over 25 years in captivity. Sci Rep 2022; 12:13457. [PMID: 35931727 PMCID: PMC9355961 DOI: 10.1038/s41598-022-17835-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/01/2022] [Indexed: 11/09/2022] Open
Abstract
Conservation of endangered species has become increasingly complex, and costly interventions to protect wildlife require a robust scientific evidence base. This includes consideration of the role of the microbiome in preserving animal health. Captivity introduces stressors not encountered in the wild including environmental factors and exposure to exotic species, humans and antimicrobial drugs. These stressors may perturb the microbiomes of wild animals, with negative consequences for their health and welfare and hence the success of the conservation project, and ultimately the risk of release of non-native organisms into native ecosystems. We compared the genomes of Staphylococcus aureus colonising critically endangered Livingstone’s fruit bats (Pteropus livingstonii) which have been in a captive breeding programme for 25 years, with those from bats in the endemic founder population free ranging in the Comoros Republic. Using whole genome sequencing, we compared 47 isolates from captive bats with 37 isolates from those free ranging in the Comoros Republic. Our findings demonstrate unexpected resilience in the bacteria carried, with the captive bats largely retaining the same two distinctive lineages carried at the time of capture. In addition, we found evidence of genomic changes which suggest specific adaptations to the bat host.
Collapse
Affiliation(s)
- Kay Fountain
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| | - Alberto Barbon
- North of England Zoological Society (Chester Zoo), Caughall Road, Upton by Chester, Chester, Cheshire, CH2 1LH, UK
| | - Marjorie J Gibbon
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - David H Lloyd
- Department of Clinical Science and Services, Royal Veterinary College, North Mymms, Hatfield, Hertfordshire, AL9 7TA, UK
| | - Anette Loeffler
- Department of Clinical Science and Services, Royal Veterinary College, North Mymms, Hatfield, Hertfordshire, AL9 7TA, UK
| | - Edward J Feil
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| |
Collapse
|
258
|
Yong M, Chen Y, Oo G, Chang KC, Chu WHW, Teo J, Venkatachalam I, Thevasagayam NM, Sridatta PSR, Koh V, Marcoleta AE, Chen H, Nagarajan N, Kalisvar M, Ng OT, Gan YH. Dominant Carbapenemase-Encoding Plasmids in Clinical Enterobacterales Isolates and Hypervirulent Klebsiella pneumoniae, Singapore. Emerg Infect Dis 2022; 28:1578-1588. [PMID: 35876475 PMCID: PMC9328930 DOI: 10.3201/eid2808.212542] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Dissemination of carbapenemase-encoding plasmids by horizontal gene transfer in multidrug-resistant bacteria is the major driver of rising carbapenem-resistance, but the conjugative mechanics and evolution of clinically relevant plasmids are not yet clear. We performed whole-genome sequencing on 1,215 clinical Enterobacterales isolates collected in Singapore during 2010–2015. We identified 1,126 carbapenemase-encoding plasmids and discovered pKPC2 is becoming the dominant plasmid in Singapore, overtaking an earlier dominant plasmid, pNDM1. pKPC2 frequently conjugates with many Enterobacterales species, including hypervirulent Klebsiella pneumoniae, and maintains stability in vitro without selection pressure and minimal adaptive sequence changes. Furthermore, capsule and decreasing taxonomic relatedness between donor and recipient pairs are greater conjugation barriers for pNDM1 than pKPC2. The low fitness costs pKPC2 exerts in Enterobacterales species indicate previously undetected carriage selection in other ecological settings. The ease of conjugation and stability of pKPC2 in hypervirulent K. pneumoniae could fuel spread into the community.
Collapse
|
259
|
Shotgun metagenomic sequencing of bulk tank milk filters reveals the role of Moraxellaceae and Enterobacteriaceae as carriers of antimicrobial resistance genes. Food Res Int 2022; 158:111579. [DOI: 10.1016/j.foodres.2022.111579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 01/06/2023]
|
260
|
Differential Overlap in Human and Animal Fecal Microbiomes and Resistomes in Rural versus Urban Bangladesh. Appl Environ Microbiol 2022; 88:e0075922. [DOI: 10.1128/aem.00759-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
While the development of antibiotic resistance in animal gut microbiomes and subsequent transmission to humans has been demonstrated in intensive farming environments and high-income countries, evidence of zoonotic exchange of antibiotic resistance in LMIC communities is lacking. This research provides genomic evidence of overlap of antibiotic resistance genes between humans and animals, especially in urban communities, and highlights chickens as important reservoirs of antibiotic resistance.
Collapse
|
261
|
Kochan TJ, Nozick SH, Medernach RL, Cheung BH, Gatesy SWM, Lebrun-Corbin M, Mitra SD, Khalatyan N, Krapp F, Qi C, Ozer EA, Hauser AR. Genomic surveillance for multidrug-resistant or hypervirulent Klebsiella pneumoniae among United States bloodstream isolates. BMC Infect Dis 2022; 22:603. [PMID: 35799130 PMCID: PMC9263067 DOI: 10.1186/s12879-022-07558-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/21/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Klebsiella pneumoniae strains have been divided into two major categories: classical K. pneumoniae, which are frequently multidrug-resistant and cause hospital-acquired infections in patients with impaired defenses, and hypervirulent K. pneumoniae, which cause severe community-acquired and disseminated infections in normal hosts. Both types of infections may lead to bacteremia and are associated with significant morbidity and mortality. The relative burden of these two types of K. pneumoniae among bloodstream isolates within the United States is not well understood. METHODS We evaluated consecutive K. pneumoniae isolates cultured from the blood of hospitalized patients at Northwestern Memorial Hospital (NMH) in Chicago, Illinois between April 2015 and April 2017. Bloodstream isolates underwent whole genome sequencing, and sequence types (STs), capsule loci (KLs), virulence genes, and antimicrobial resistance genes were identified in the genomes using the bioinformatic tools Kleborate and Kaptive. Patient demographic, comorbidity, and infection information, as well as the phenotypic antimicrobial resistance of the isolates were extracted from the electronic health record. Candidate hypervirulent isolates were tested in a murine model of pneumonia, and their plasmids were characterized using long-read sequencing. We also extracted STs, KLs, and virulence and antimicrobial resistance genes from the genomes of bloodstream isolates submitted from 33 United States institutions between 2007 and 2021 to the National Center for Biotechnology Information (NCBI) database. RESULTS Consecutive K. pneumoniae bloodstream isolates (n = 104, one per patient) from NMH consisted of 75 distinct STs and 51 unique capsule loci. The majority of these isolates (n = 58, 55.8%) were susceptible to all tested antibiotics except ampicillin, but 17 (16.3%) were multidrug-resistant. A total of 32 (30.8%) of these isolates were STs of known high-risk clones, including ST258 and ST45. In particular, 18 (17.3%) were resistant to ceftriaxone (of which 17 harbored extended-spectrum beta-lactamase genes) and 9 (8.7%) were resistant to meropenem (all of which harbored a carbapenemase genes). Four (3.8%) of the 104 isolates were hypervirulent K. pneumoniae, as evidenced by hypermucoviscous phenotypes, high levels of virulence in a murine model of pneumonia, and the presence of large plasmids similar to characterized hypervirulence plasmids. These isolates were cultured from patients who had not recently traveled to Asia. Two of these hypervirulent isolates belonged to the well characterized ST23 lineage and one to the re-emerging ST66 lineage. Of particular concern, two of these isolates contained plasmids with tra conjugation loci suggesting the potential for transmission. We also analyzed 963 publicly available genomes of K. pneumoniae bloodstream isolates from locations within the United States. Of these, 465 (48.3%) and 760 (78.9%) contained extended-spectrum beta-lactamase genes or carbapenemase genes, respectively, suggesting a bias towards submission of antibiotic-resistant isolates. The known multidrug-resistant high-risk clones ST258 and ST307 were the predominant sequence types. A total of 32 (3.3%) of these isolates contained aerobactin biosynthesis genes and 26 (2.7%) contained at least two genetic features of hvKP strains, suggesting elevated levels of virulence. We identified 6 (0.6%) isolates that were STs associated with hvKP: ST23 (n = 4), ST380 (n = 1), and ST65 (n = 1). CONCLUSIONS Examination of consecutive isolates from a single center demonstrated that multidrug-resistant high-risk clones are indeed common, but a small number of hypervirulent K. pneumoniae isolates were also observed in patients with no recent travel history to Asia, suggesting that these isolates are undergoing community spread in the United States. A larger collection of publicly available bloodstream isolate genomes also suggested that hypervirulent K. pneumoniae strains are present but rare in the USA; however, this collection appears to be heavily biased towards highly antibiotic-resistant isolates (and correspondingly away from hypervirulent isolates).
Collapse
Affiliation(s)
- Travis J Kochan
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.
| | - Sophia H Nozick
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Rachel L Medernach
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
- Division of Infectious Diseases, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Bettina H Cheung
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Samuel W M Gatesy
- Division of Infectious Diseases, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Marine Lebrun-Corbin
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Sumitra D Mitra
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Natalia Khalatyan
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Fiorella Krapp
- Division of Infectious Diseases, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Chao Qi
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Egon A Ozer
- Division of Infectious Diseases, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
- Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Alan R Hauser
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
- Division of Infectious Diseases, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
262
|
Gomez-Simmonds A, Annavajhala MK, Tang N, Rozenberg FD, Ahmad M, Park H, Lopatkin AJ, Uhlemann AC. Population structure of blaKPC-harbouring IncN plasmids at a New York City medical centre and evidence for multi-species horizontal transmission. J Antimicrob Chemother 2022; 77:1873-1882. [PMID: 35412609 PMCID: PMC9633718 DOI: 10.1093/jac/dkac114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 03/14/2022] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND Carbapenem-resistant Enterobacterales (CRE) are highly concerning MDR pathogens. Horizontal transfer of broad-host-range IncN plasmids may contribute to the dissemination of the Klebsiella pneumoniae carbapenemase (KPC), spreading carbapenem resistance among unrelated bacteria. However, the population structure and genetic diversity of IncN plasmids has not been fully elucidated. OBJECTIVES We reconstructed blaKPC-harbouring IncN plasmid genomes to characterize shared gene content, structural variability, and putative horizontal transfer within and across patients and diverse bacterial clones. METHODS We performed short- and long-read sequencing and hybrid assembly on 45 CRE isolates with blaKPC-harbouring IncN plasmids. Eight serial isolates from two patients were included to assess intra-patient plasmid dynamics. Comparative genomic analysis was performed to assess structural and sequence similarity across plasmids. Within IncN sublineages defined by plasmid MLST and kmer-based clustering, phylogenetic analysis was used to identify closely related plasmids. RESULTS Comparative analysis of IncN plasmid genomes revealed substantial heterogeneity including large rearrangements in serial patient plasmids and differences in structure and content across plasmid clusters. Within plasmid sublineages, core genome content and resistance gene regions were largely conserved. Closely related plasmids (≤1 SNP) were found in highly diverse isolates, including ten pST6 plasmids found in eight bacterial clones from three different species. CONCLUSIONS Genomic analysis of blaKPC-harbouring IncN plasmids revealed the presence of several distinct sublineages as well as substantial host diversity within plasmid clusters suggestive of frequent mobilization. This study reveals complex plasmid dynamics within a single plasmid family, highlighting the challenge of tracking plasmid-mediated transmission of blaKPC in clinical settings.
Collapse
Affiliation(s)
- Angela Gomez-Simmonds
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, 630 W 168th St, New York NY 10032, USA
| | - Medini K Annavajhala
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, 630 W 168th St, New York NY 10032, USA
| | - Nina Tang
- Barnard College, Columbia University, 3009 Broadway, New York NY 10027, USA
| | - Felix D Rozenberg
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, 630 W 168th St, New York NY 10032, USA
| | - Mehrose Ahmad
- Barnard College, Columbia University, 3009 Broadway, New York NY 10027, USA
| | - Heekuk Park
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, 630 W 168th St, New York NY 10032, USA
| | - Allison J Lopatkin
- Barnard College, Columbia University, 3009 Broadway, New York NY 10027, USA
- Data Science Institute, Columbia University, 550 W 120th St, New York NY 10027, USA
| | - Anne Catrin Uhlemann
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, 630 W 168th St, New York NY 10032, USA
| |
Collapse
|
263
|
Raufu IA, Moura A, Vales G, Ahmed OA, Aremu A, Thouvenot P, Tessaud-Rita N, Bracq-Dieye H, Krishnamurthy R, Leclercq A, Lecuit M. Listeria ilorinensis sp. nov., isolated from cow milk cheese in Nigeria. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005437] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During microbial assessment of cow milk cheese products in the city of Ilorin, Nigeria, a
Listeria
-like isolate was detected that could not be assigned to any known species. Whole-genome sequence analyses against all currently known 26
Listeria
species confirmed that this isolate constitutes a new taxon within the genus
Listeria
, with highest similarity to
Listeria costaricensis
(average nucleotide identity blast of 82.66%, in silico DNA–DNA hybridization of 28.3%). Phenotypically, it differs from
L. costaricensis
by the inability to ferment sucrose, l-fucose and starch. The absence of haemolysis and
Listeria
pathogenic islands suggest that this novel species is not pathogenic for humans and animals. The name Listeria ilorinensis sp. nov. is proposed, with the type strain CLIP 2019/01311T (=CIP 111875T=DSM 111566T).
Collapse
Affiliation(s)
- Ibrahim Adisa Raufu
- Department of Veterinary Microbiology, University of Ilorin, Ilorin, Nigeria
| | - Alexandra Moura
- Biology of Infection Unit, Institut Pasteur, Université Paris Cité, Inserm U1117, Paris, France
- Institut Pasteur, National Reference Center and WHO Collaborating Center Listeria, Paris, France
| | - Guillaume Vales
- Biology of Infection Unit, Institut Pasteur, Université Paris Cité, Inserm U1117, Paris, France
- Institut Pasteur, National Reference Center and WHO Collaborating Center Listeria, Paris, France
| | | | - Abdulfatai Aremu
- Department of Veterinary Pharmacology and Toxicology, University of Ilorin, Ilorin, Nigeria
| | - Pierre Thouvenot
- Biology of Infection Unit, Institut Pasteur, Université Paris Cité, Inserm U1117, Paris, France
- Institut Pasteur, National Reference Center and WHO Collaborating Center Listeria, Paris, France
| | - Nathalie Tessaud-Rita
- Biology of Infection Unit, Institut Pasteur, Université Paris Cité, Inserm U1117, Paris, France
- Institut Pasteur, National Reference Center and WHO Collaborating Center Listeria, Paris, France
| | - Hélène Bracq-Dieye
- Biology of Infection Unit, Institut Pasteur, Université Paris Cité, Inserm U1117, Paris, France
- Institut Pasteur, National Reference Center and WHO Collaborating Center Listeria, Paris, France
| | - Ramar Krishnamurthy
- C. G. Bhakta Institute of Biotechnology, Uka Tarsadia University, Bardoli, Gujarat State, India
| | - Alexandre Leclercq
- Biology of Infection Unit, Institut Pasteur, Université Paris Cité, Inserm U1117, Paris, France
- Institut Pasteur, National Reference Center and WHO Collaborating Center Listeria, Paris, France
| | - Marc Lecuit
- Biology of Infection Unit, Institut Pasteur, Université Paris Cité, Inserm U1117, Paris, France
- Division of Infectious Diseases and Tropical Medicine, APHP, Institut Imagine, Necker-Enfants Malades University Hospital, Paris, France
- Institut Pasteur, National Reference Center and WHO Collaborating Center Listeria, Paris, France
| |
Collapse
|
264
|
Molecular Evolution and Genomic Insights into Community-Acquired Methicillin-Resistant Staphylococcus aureus Sequence Type 88. Microbiol Spectr 2022; 10:e0034222. [PMID: 35730953 PMCID: PMC9430171 DOI: 10.1128/spectrum.00342-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sequence type 88 (ST88) methicillin-resistant Staphylococcus aureus (MRSA) has been recognized as an important pathogen that causes infections in humans, especially when it has strong biofilm production and multidrug resistance (MDR). However, knowledge of the determinants of resistance or virulence and genomic characteristics of ST88 MRSA from China is still limited. In this study, we employed the antimicrobial resistance (AMR), biofilm formation, and genomic characteristics of ST88 MRSA collected from various foods in China and estimated the worldwide divergence of ST88 MRSA with publicly available ST88 genomes. All ST88 isolates studied were identified as having resistance genes, while 50% (41/82) harbored MDR genes. All isolates carried core virulence genes related to immune modulation, adherence, secreted enzymes, and hemolysin. In addition, all 20 Chinese ST88 isolates showed biofilm production capacity, three strongly so. Bayesian phylogenetic analysis showed that Chinese ST88 clones formed an independent MRSA lineage, with two subclades associated with acquisition of type IVc staphylococcal cassette chromosome mec (SCCmec) elements. In contrast, all African ST88 strains were subtyped as SCCmecIVa, where the African clades were mixed with a few European and American isolates, suggesting potential transmission from Africa to these regions. In summary, our results revealed the evolution of ST88 MRSA in humans, animals, and foods in Africa and Asia. The food-associated ST88 genomes in this study will remedy the lack of food-associated ST88 isolates, and the study in general will extend the discussion of the potential exchanges of ST88 between humans and foods or food animals. IMPORTANCE ST88 MRSA has frequently been detected in humans, animals, and foods mainly in Africa and Asia. It can colonize and cause mild to severe infections in humans, especially children. Several studies from African countries have described its genotypic characteristics but, limited information is available on the evolution and characterization of ST88 MRSA in Asia, especially China. Meanwhile, the molecular history of its global spread remains largely unclear. In this study, we analyzed the genomic evolution of global ST88 MRSA strains in detail and identified key genetic changes associated with specific hosts or regions. Our results suggested geographical differentiation between ST88 MRSA’s evolution in Africa and its evolution in Asia, with a more recent clonal evolution in China. The introduction of ST88 MRSA in China was aligned with the acquisition of SCCmecIVc elements, specific virulent prophages, and AMR genes.
Collapse
|
265
|
Ribeiro-Almeida M, Mourão J, Novais Â, Pereira S, Freitas-Silva J, Ribeiro S, Martins da Costa P, Peixe L, Antunes P. High diversity of pathogenic Escherichia coli clones carrying mcr-1 among gulls underlines the need for strategies at the environment-livestock-human interface. Environ Microbiol 2022; 24:4702-4713. [PMID: 35726894 DOI: 10.1111/1462-2920.16111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/17/2022] [Accepted: 06/19/2022] [Indexed: 11/30/2022]
Abstract
The expansion of mcr-carrying bacteria is a well-recognized public health problem. Measures to contain mcr spread have mainly been focused on the food-animal production sector. Nevertheless, the spread of MCR-producers at the environmental interface particularly driven by the increasing population of gulls in coastal cities has been less explored. Occurrence of mcr-carrying Escherichia coli in gull's colonies faeces on a Portuguese beach was screened over 7-months. Cultural, molecular, and genomic approaches were used to characterize their diversity, mcr plasmids and adaptive features. Multidrug-resistant mcr-1-carrying E. coli were detected for three consecutive months. Over time, multiple strains were recovered, including zoonotic-related pathogenic E. coli clones (e.g., B2-ST131-H22, A-ST10, and B1-ST162). Diverse mcr-1.1 genetic environments were mainly associated with ST2/ST4-HI2 (ST10, ST131, ST162, ST354 and ST4204) but also IncI2 (ST12990) plasmids or in the chromosome (ST656). Whole-genome sequencing revealed enrichment of these strains on antibiotic resistance, virulence, and metal tolerance genes. Our results underscore gulls as important spreaders of high priority bacteria and genes that may affect the environment, food-animals and/or humans, potentially undermining One-Health strategies to reduce colistin resistance. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Marisa Ribeiro-Almeida
- UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.,Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal.,School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Porto, Portugal
| | - Joana Mourão
- Faculty of Sciences and Technology, University of Algarve, Gambelas Campus, Faro, Portugal
| | - Ângela Novais
- UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.,Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Sofia Pereira
- School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Porto, Portugal
| | - Joana Freitas-Silva
- School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Porto, Portugal.,CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal
| | - Sofia Ribeiro
- UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Paulo Martins da Costa
- School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Porto, Portugal.,CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal
| | - Luísa Peixe
- UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.,Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Patrícia Antunes
- UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.,Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal.,Faculty of Nutrition and Food Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
266
|
A 16 th century Escherichia coli draft genome associated with an opportunistic bile infection. Commun Biol 2022; 5:599. [PMID: 35710940 PMCID: PMC9203756 DOI: 10.1038/s42003-022-03527-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/23/2022] [Indexed: 11/12/2022] Open
Abstract
Escherichia coli – one of the most characterized bacteria and a major public health concern – remains invisible across the temporal landscape. Here, we present the meticulous reconstruction of the first ancient E. coli genome from a 16th century gallstone from an Italian mummy with chronic cholecystitis. We isolated ancient DNA and reconstructed the ancient E. coli genome. It consisted of one chromosome of 4446 genes and two putative plasmids with 52 genes. The E. coli strain belonged to the phylogroup A and an exceptionally rare sequence type 4995. The type VI secretion system component genes appears to be horizontally acquired from Klebsiella aerogenes, however we could not identify any pathovar specific genes nor any acquired antibiotic resistances. A sepsis mouse assay showed that a closely related contemporary E. coli strain was avirulent. Our reconstruction of this ancient E. coli helps paint a more complete picture of the burden of opportunistic infections of the past. Ancient DNA from an Italian mummy’s gallstone provides insight into opportunistic E. coli infection.
Collapse
|
267
|
Draft Genome Sequences of Two Clostridium botulinum Group II Strains Carrying Phage-Like Plasmids. Microbiol Resour Announc 2022; 11:e0009122. [PMID: 35583330 PMCID: PMC9202375 DOI: 10.1128/mra.00091-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clostridium botulinum is responsible for botulism, a potentially lethal foodborne intoxication. Here, we report the draft genome sequences of C. botulinum group II strains 202F (serotype F) and Hazen (serotype E). The genomes share many similarities, including multiple mobile genetic elements.
Collapse
|
268
|
Bolourchi N, Naz A, Sohrabi M, Badmasti F. Comparative in silico characterization of Klebsiella pneumoniae hypervirulent plasmids and their antimicrobial resistance genes. Ann Clin Microbiol Antimicrob 2022; 21:23. [PMID: 35655313 PMCID: PMC9161459 DOI: 10.1186/s12941-022-00514-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 04/27/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The hypervirulent pathotype of Klebsiella pneumoniae (hvKp) is mainly mediated by large virulent plasmids. It seems that these hypervirulent plasmids (HVPs) are accumulating antimicrobial resistance genes (ARGs) and are turning quickly into drug-resistant hypervirulent hybrids. Therefore, molecular mechanisms involved in this convergence needs to be investigated to control their global spread.
Methods
In this study, the complete sequence of 79 non-redundant hypervirulent plasmids were retrieved from GenBank and their genetic features, hypervirulence and antimicrobial resistance patterns (AMR) as well as their putative transmission capability were compared using bioinformatics tools.
Results
The majority of HVPs belonged to clonal complex (CC)23, and sequence type (ST)11. IncFIB and IncHI1B were the most prevalent plasmid replicon types. Out of 79 plasmids, 78 were positive for iutA and iucA. The iucC, iucB and iucD genes were found in 77 plasmids. Almost 26% of the HVPs were potentially conjugative of which 71% carried AGRs. ARGs against beta-lactams, carbapenems, quinolones, aminoglycosides, chloramphenicols, tetracyclines and macrolides were detected in 30% of HVPs. Class 1 integron and prophage structures harboring multiple ARGs were found in eight plasmids. Insertion sequences (IS)6, IS110 and IS1380 appeared to be important genetic elements in transmission of ARGs.
Conclusions
The high prevalence of iucA and iutA suggests their strong capability for rapid and accurate genetic markers for discrimination of hvKp in the laboratory. This study indicated the important role of mobile genetic elements (MGEs) in the emergence of drug-resistance in hypervirulent strains. The high prevalence of putative conjugative hybrids implies higher incidence of multidrug-resistant (MDR)-hvKp strains in near future.
Collapse
|
269
|
Bolourchi N, Noori Goodarzi N, Giske CG, Nematzadeh S, Haririzadeh Jouriani F, Solgi H, Badmasti F. Comprehensive pan-genomic, resistome and virulome analysis of clinical OXA-48 producing carbapenem-resistant Serratia marcescens strains. Gene 2022; 822:146355. [PMID: 35189248 DOI: 10.1016/j.gene.2022.146355] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/03/2022] [Accepted: 02/15/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Carbapenem-resistant Enterobacteriaceae (CRE) have been thoroughly studied as the pathogens associated with hospital acquired infections. However, data on Serratia marcescens are not enough. S. marcescens is now becoming a propensity for its highly antimicrobial-resistant clinical infections. METHODS Four carbapenem-resistant S. marcescens (CR-SM) isolates were obtained from hospitalized patients through routine microbiological experiments. We assembled the isolates genomes using whole genome sequencing (WGS) and compared their resistome and virulome patterns. RESULTS The average length and CG content of chromosomes was 5.33 Mbp and 59.8%, respectively. The number of coding sequences (CDSs) ranged from 4,959 to 4,989. All strains had one single putative conjugative plasmid with IncL incompatibility (Inc) group. The strains harbored blaCTX-M-15, blaTEM-1 and blaSHV-134. All plamsids were positive for blaOXA-48. No blaNDM-1, blaKPC, blaVIM and blaIMP were identified. The blaSRT-2 and aac(6')-Ic genes were chromosomally-encoded. Class 1 integron was detected in strains P8, P11 and P14. The Escher_RCS47 and Salmon_SJ46 prophages played major role in plasmid-mediated carraige of extended spectrum β-lactamases (ESBLs). The CR-SM strains were equipt with typical virulence factors of oppotunistic pathogens including biofilm formation, adhesins, secretory systems and siderophores. The strains did not have ability to produce prodigiosin but were positive for chitinase and EstA. CONCLUSION The presence of conjugative plasmids harboring major β-lactamases within prophage and class 1 integron structures highlights the role of different mobile genetic elements (MGEs) in distribution of AMR factors and more specifically carbapenemases. More molecular studies are required to determine the status of carbapenem resistance in clinical starins. However, appropriate strategies to control the global dissemination of CR-SM are urgent.
Collapse
Affiliation(s)
- Negin Bolourchi
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Narjes Noori Goodarzi
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Christian G Giske
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| | - Shoeib Nematzadeh
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| | | | - Hamid Solgi
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Farzad Badmasti
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
270
|
Pinilla-Redondo R, Russel J, Mayo-Muñoz D, Shah SA, Garrett RA, Nesme J, Madsen JS, Fineran PC, Sørensen SJ. CRISPR-Cas systems are widespread accessory elements across bacterial and archaeal plasmids. Nucleic Acids Res 2022; 50:4315-4328. [PMID: 34606604 DOI: 10.1093/nar/gkab859/40506127/gkab859.pdf] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/08/2021] [Accepted: 10/02/2021] [Indexed: 05/27/2023] Open
Abstract
Many prokaryotes encode CRISPR-Cas systems as immune protection against mobile genetic elements (MGEs), yet a number of MGEs also harbor CRISPR-Cas components. With a few exceptions, CRISPR-Cas loci encoded on MGEs are uncharted and a comprehensive analysis of their distribution, prevalence, diversity, and function is lacking. Here, we systematically investigated CRISPR-Cas loci across the largest curated collection of natural bacterial and archaeal plasmids. CRISPR-Cas loci are widely but heterogeneously distributed across plasmids and, in comparison to host chromosomes, their mean prevalence per Mbp is higher and their distribution is distinct. Furthermore, the spacer content of plasmid CRISPRs exhibits a strong targeting bias towards other plasmids, while chromosomal arrays are enriched with virus-targeting spacers. These contrasting targeting preferences highlight the genetic independence of plasmids and suggest a major role for mediating plasmid-plasmid conflicts. Altogether, CRISPR-Cas are frequent accessory components of many plasmids, which is an overlooked phenomenon that possibly facilitates their dissemination across microbiomes.
Collapse
Affiliation(s)
- Rafael Pinilla-Redondo
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
- Department of Technological Educations, University College Copenhagen, Sigurdsgade 26, 2200 Copenhagen, Denmark
| | - Jakob Russel
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - David Mayo-Muñoz
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Shiraz A Shah
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, Ledreborg Alle 34, 2820 Gentofte, Denmark
| | - Roger A Garrett
- Danish Archaea Centre, Department of Biology, University of Copenhagen, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Joseph Nesme
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Jonas S Madsen
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Peter C Fineran
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Bio-Protection Research Centre, University of Otago, Dunedin, New Zealand
| | - Søren J Sørensen
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| |
Collapse
|
271
|
Bloomfield S, Duong VT, Tuyen HT, Campbell JI, Thomson NR, Parkhill J, Le Phuc H, Chau TTH, Maskell DJ, Perron GG, Ngoc NM, Vi LL, Adriaenssens EM, Baker S, Mather AE. Mobility of antimicrobial resistance across serovars and disease presentations in non-typhoidal Salmonella from animals and humans in Vietnam. Microb Genom 2022; 8. [PMID: 35511231 PMCID: PMC9465066 DOI: 10.1099/mgen.0.000798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Non-typhoidal Salmonella (NTS) is a major cause of bacterial enterocolitis globally but also causes invasive bloodstream infections. Antimicrobial resistance (AMR) hampers the treatment of these infections and understanding how AMR spreads between NTS may help in developing effective strategies. We investigated NTS isolates associated with invasive disease, diarrhoeal disease and asymptomatic carriage in animals and humans from Vietnam. Isolates included multiple serovars and both common and rare phenotypic AMR profiles; long- and short-read sequencing was used to investigate the genetic mechanisms and genomic backgrounds associated with phenotypic AMR profiles. We demonstrate concordance between most AMR genotypes and phenotypes but identified large genotypic diversity in clinically relevant phenotypes and the high mobility potential of AMR genes (ARGs) in this setting. We found that 84 % of ARGs identified were located on plasmids, most commonly those containing IncHI1A_1 and IncHI1B(R27)_1_R27 replicons (33%), and those containing IncHI2_1 and IncHI2A_1 replicons (31%). The vast majority (95%) of ARGS were found within 10 kbp of IS6/IS26 elements, which provide plasmids with a mechanism to exchange ARGs between plasmids and other parts of the genome. Whole genome sequencing with targeted long-read sequencing applied in a One Health context identified a comparatively limited number of insertion sequences and plasmid replicons associated with AMR. Therefore, in the context of NTS from Vietnam and likely for other settings as well, the mechanisms by which ARGs move contribute to a more successful AMR profile than the specific ARGs, facilitating the adaptation of bacteria to different environments or selection pressures.
Collapse
Affiliation(s)
| | | | - Ha Thanh Tuyen
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - James I Campbell
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | | | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | | - Tran Thi Hong Chau
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | | | - Gabriel G Perron
- Department of Biology, Bard College, Annandale-on-Hudson, New York, USA
| | | | - Lu Lan Vi
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | | | - Stephen Baker
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
| | - Alison E Mather
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK.,University of East Anglia, Norwich, UK
| |
Collapse
|
272
|
Di Marcantonio L, Romantini R, Marotta F, Chiaverini A, Zilli K, Abass A, Di Giannatale E, Garofolo G, Janowicz A. The Current Landscape of Antibiotic Resistance of Salmonella Infantis in Italy: The Expansion of Extended-Spectrum Beta-Lactamase Producers on a Local Scale. Front Microbiol 2022; 13:812481. [PMID: 35418960 PMCID: PMC8996230 DOI: 10.3389/fmicb.2022.812481] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
Salmonella enterica serovar Infantis is one of the five main causes of human salmonellosis in the European Union (EU) and in recent years, has been increasingly reported to carry multiple antimicrobial resistance determinants, including extended-spectrum beta-lactamase (ESBL) genes. In our study, we used WGS-based tools to characterize S. Infantis strains circulating in the Abruzzo and Molise regions of Italy between 2017 and 2020 and compared this local dataset to the S. Infantis population present in Italy over the last two decades. Phylogenetic analyses demonstrated that the majority of strains isolated from poultry and turkeys from Abruzzo and Molise were closely related and belonged to one of the two main genetic clusters present in Italy, which were grouped predominantly as ESBL-producing strains that harbored pESI-like plasmid. We showed that 60% of the local strains carried multiple antibiotic resistance genes, including ESBL gene blaCTX–M–1 as well as aadA1, dfrA1, dfrA14, sul1, and tet(A) genes present on the pESI-like megaplasmid. The analysis of strains from Abruzzo and Molise and the publicly available Italian S. Infantis sequences revealed a dramatic increase in the number of identified AMR genes in the strains isolated after 2011. Moreover, the number of strains resistant to five or more antibiotic classes increased from 20–80% in the last decade likely due to the acquisition of the megaplasmid. The persistence of the ESBL-producing and the multidrug-resistant (MDR) clone of S. Infantis in poultry populations in Italy and in Europe requires rapid and efficient intervention strategies to prevent further expansion of the clone.
Collapse
Affiliation(s)
- Lisa Di Marcantonio
- Bacteriology and Diary Production Hygiene Department, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale," Teramo, Italy
| | - Romina Romantini
- Bacteriology and Diary Production Hygiene Department, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale," Teramo, Italy
| | - Francesca Marotta
- Bacteriology and Diary Production Hygiene Department, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale," Teramo, Italy
| | - Alexandra Chiaverini
- Hygiene in Food Technology and Animal Feeds, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale," Teramo, Italy
| | - Katiuscia Zilli
- Bacteriology and Diary Production Hygiene Department, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale," Teramo, Italy
| | - Anna Abass
- Bacteriology and Diary Production Hygiene Department, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale," Teramo, Italy
| | - Elisabetta Di Giannatale
- Bacteriology and Diary Production Hygiene Department, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale," Teramo, Italy
| | - Giuliano Garofolo
- Bacteriology and Diary Production Hygiene Department, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale," Teramo, Italy
| | - Anna Janowicz
- Bacteriology and Diary Production Hygiene Department, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale," Teramo, Italy
| |
Collapse
|
273
|
Shalon N, Relman DA, Yaffe E. Precise genotyping of circular mobile elements from metagenomic data uncovers human-associated plasmids with recent common ancestors. Genome Res 2022; 32:986-1003. [PMID: 35414589 PMCID: PMC9104695 DOI: 10.1101/gr.275894.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 04/01/2022] [Indexed: 11/25/2022]
Abstract
Mobile genetic elements with circular genomes play a key role in the evolution of microbial communities. Their circular genomes correspond to circular walks in metagenome graphs, and yet, assemblies derived from natural microbial communities produce graphs riddled with spurious cycles, complicating the accurate reconstruction of circular genomes. We present DomCycle, an algorithm that reconstructs likely circular genomes based on the identification of so-called 'dominant' graph cycles. In the implementation we leverage paired reads to bridge assembly gaps and scrutinize cycles through a nucleotide-level analysis, making the approach robust to misassembly artifacts. We validated the approach using simulated and real sequencing data. Application of DomCycle to 32 publicly available DNA shotgun sequence data sets from diverse natural environments led to the reconstruction of hundreds of circular mobile genomes. Clustering revealed 20 highly prevalent and cryptic plasmids that have clonal population structures with recent common ancestors. This method facilitates the study of microbial communities that evolve through horizontal gene transfer.
Collapse
|
274
|
Allué-Guardia A, Koenig SSK, Martinez RA, Rodriguez AL, Bosilevac JM, Feng† P, Eppinger M. Pathogenomes and variations in Shiga toxin production among geographically distinct clones of Escherichia coli O113:H21. Microb Genom 2022; 8. [PMID: 35394418 PMCID: PMC9453080 DOI: 10.1099/mgen.0.000796] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Infections with globally disseminated Shiga toxin-producing Escherichia coli (STEC) of the O113:H21 serotype can progress to severe clinical complications, such as hemolytic uremic syndrome (HUS). Two phylogeographically distinct clonal complexes have been established by multi locus sequence typing (MLST). Infections with ST-820 isolates circulating exclusively in Australia have caused severe human disease, such as HUS. Conversely, ST-223 isolates prevalent in the US and outside Australia seem to rarely cause severe human disease but are frequent contaminants. Following a genomic epidemiology approach, we wanted to gain insights into the underlying cause for this disparity. We examined the plasticity in the genome make-up and Shiga toxin production in a collection of 20 ST-820 and ST-223 strains isolated from produce, the bovine reservoir, and clinical cases. STEC are notorious for assembly into fragmented draft sequences when using short-read sequencing technologies due to the extensive and partly homologous phage complement. The application of long-read technology (LRT) sequencing yielded closed reference chromosomes and plasmids for two representative ST-820 and ST-223 strains. The established high-resolution framework, based on whole genome alignments, single nucleotide polymorphism (SNP)-typing and MLST, includes the chromosomes and plasmids of other publicly available O113:H21 sequences and allowed us to refine the phylogeographical boundaries of ST-820 and ST-223 complex isolates and to further identify a historic non-shigatoxigenic strain from Mexico as a quasi-intermediate. Plasmid comparison revealed strong correlations between the strains' featured pO113 plasmid genotypes and chromosomally inferred ST, which suggests coevolution of the chromosome and virulence plasmids. Our pathogenicity assessment revealed statistically significant differences in the Stx2a-production capabilities of ST-820 as compared to ST-223 strains under RecA-induced Stx phage mobilization, a condition that mimics Stx-phage induction. These observations suggest that ST-820 strains may confer an increased pathogenic potential in line with the strain-associated epidemiological metadata. Still, some of the tested ST-223 cultures sourced from contaminated produce or the bovine reservoir also produced Stx at levels comparable to those of ST-820 isolates, which calls for awareness and for continued surveillance of this lineage.
Collapse
Affiliation(s)
- Anna Allué-Guardia
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX, USA
- South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX, USA
| | - Sara S. K. Koenig
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX, USA
- South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX, USA
| | - Ricardo A. Martinez
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX, USA
- South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX, USA
| | - Armando L. Rodriguez
- University of Texas at San Antonio, Research Computing Support Group, San Antonio, TX, USA
| | - Joseph M. Bosilevac
- U.S. Department of Agriculture (USDA), Agricultural Research Service (ARS), Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, NE, USA
| | - Peter Feng†
- U.S. Food and Drug Administration (FDA), College Park, MD, USA
| | - Mark Eppinger
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX, USA
- South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX, USA
- *Correspondence: Mark Eppinger,
| |
Collapse
|
275
|
Salamzade R, Manson AL, Walker BJ, Brennan-Krohn T, Worby CJ, Ma P, He LL, Shea TP, Qu J, Chapman SB, Howe W, Young SK, Wurster JI, Delaney ML, Kanjilal S, Onderdonk AB, Bittencourt CE, Gussin GM, Kim D, Peterson EM, Ferraro MJ, Hooper DC, Shenoy ES, Cuomo CA, Cosimi LA, Huang SS, Kirby JE, Pierce VM, Bhattacharyya RP, Earl AM. Inter-species geographic signatures for tracing horizontal gene transfer and long-term persistence of carbapenem resistance. Genome Med 2022; 14:37. [PMID: 35379360 PMCID: PMC8981930 DOI: 10.1186/s13073-022-01040-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 03/22/2022] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Carbapenem-resistant Enterobacterales (CRE) are an urgent global health threat. Inferring the dynamics of local CRE dissemination is currently limited by our inability to confidently trace the spread of resistance determinants to unrelated bacterial hosts. Whole-genome sequence comparison is useful for identifying CRE clonal transmission and outbreaks, but high-frequency horizontal gene transfer (HGT) of carbapenem resistance genes and subsequent genome rearrangement complicate tracing the local persistence and mobilization of these genes across organisms. METHODS To overcome this limitation, we developed a new approach to identify recent HGT of large, near-identical plasmid segments across species boundaries, which also allowed us to overcome technical challenges with genome assembly. We applied this to complete and near-complete genome assemblies to examine the local spread of CRE in a systematic, prospective collection of all CRE, as well as time- and species-matched carbapenem-susceptible Enterobacterales, isolated from patients from four US hospitals over nearly 5 years. RESULTS Our CRE collection comprised a diverse range of species, lineages, and carbapenem resistance mechanisms, many of which were encoded on a variety of promiscuous plasmid types. We found and quantified rearrangement, persistence, and repeated transfer of plasmid segments, including those harboring carbapenemases, between organisms over multiple years. Some plasmid segments were found to be strongly associated with specific locales, thus representing geographic signatures that make it possible to trace recent and localized HGT events. Functional analysis of these signatures revealed genes commonly found in plasmids of nosocomial pathogens, such as functions required for plasmid retention and spread, as well survival against a variety of antibiotic and antiseptics common to the hospital environment. CONCLUSIONS Collectively, the framework we developed provides a clearer, high-resolution picture of the epidemiology of antibiotic resistance importation, spread, and persistence in patients and healthcare networks.
Collapse
Affiliation(s)
- Rauf Salamzade
- grid.66859.340000 0004 0546 1623Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA ,grid.14003.360000 0001 2167 3675Present Address: Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Abigail L. Manson
- grid.66859.340000 0004 0546 1623Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Bruce J. Walker
- grid.66859.340000 0004 0546 1623Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA ,Applied Invention, Cambridge, MA 02139 USA
| | - Thea Brennan-Krohn
- grid.239395.70000 0000 9011 8547Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215 USA
| | - Colin J. Worby
- grid.66859.340000 0004 0546 1623Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Peijun Ma
- grid.66859.340000 0004 0546 1623Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Lorrie L. He
- grid.66859.340000 0004 0546 1623Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Terrance P. Shea
- grid.66859.340000 0004 0546 1623Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - James Qu
- grid.66859.340000 0004 0546 1623Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Sinéad B. Chapman
- grid.66859.340000 0004 0546 1623Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Whitney Howe
- grid.66859.340000 0004 0546 1623Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Sarah K. Young
- grid.66859.340000 0004 0546 1623Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Jenna I. Wurster
- grid.38142.3c000000041936754XDepartment of Ophthalmology, Department of Microbiology, Harvard Medical School and Massachusetts Eye and Ear Infirmary, 240 Charles St., Boston, MA 02114 USA
| | - Mary L. Delaney
- grid.38142.3c000000041936754XDivision of Infectious Disease, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Sanjat Kanjilal
- grid.38142.3c000000041936754XDivision of Infectious Disease, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA ,grid.38142.3c000000041936754XDepartment of Population Medicine, Harvard Medical School and Harvard Pilgrim Healthcare Institute, Boston, MA 02215 USA
| | - Andrew B. Onderdonk
- grid.38142.3c000000041936754XDivision of Infectious Disease, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Cassiana E. Bittencourt
- grid.266093.80000 0001 0668 7243Department of Pathology and Laboratory Medicine, University of California Irvine School of Medicine, Orange, CA 92868 USA
| | - Gabrielle M. Gussin
- grid.266093.80000 0001 0668 7243Division of Infectious Diseases, University of California Irvine School of Medicine, Irvine, CA 92617 USA
| | - Diane Kim
- grid.266093.80000 0001 0668 7243Division of Infectious Diseases, University of California Irvine School of Medicine, Irvine, CA 92617 USA
| | - Ellena M. Peterson
- grid.266093.80000 0001 0668 7243Department of Pathology and Laboratory Medicine, University of California Irvine School of Medicine, Orange, CA 92868 USA
| | - Mary Jane Ferraro
- grid.32224.350000 0004 0386 9924Massachusetts General Hospital, Boston, MA 02114 USA
| | - David C. Hooper
- grid.32224.350000 0004 0386 9924Massachusetts General Hospital, Boston, MA 02114 USA
| | - Erica S. Shenoy
- grid.32224.350000 0004 0386 9924Massachusetts General Hospital, Boston, MA 02114 USA
| | - Christina A. Cuomo
- grid.66859.340000 0004 0546 1623Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Lisa A. Cosimi
- grid.66859.340000 0004 0546 1623Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA ,grid.38142.3c000000041936754XDivision of Infectious Disease, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Susan S. Huang
- grid.266093.80000 0001 0668 7243Division of Infectious Diseases, University of California Irvine School of Medicine, Irvine, CA 92617 USA
| | - James E. Kirby
- grid.239395.70000 0000 9011 8547Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215 USA
| | - Virginia M. Pierce
- grid.32224.350000 0004 0386 9924Massachusetts General Hospital, Boston, MA 02114 USA
| | - Roby P. Bhattacharyya
- grid.66859.340000 0004 0546 1623Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA ,grid.32224.350000 0004 0386 9924Massachusetts General Hospital, Boston, MA 02114 USA
| | - Ashlee M. Earl
- grid.66859.340000 0004 0546 1623Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| |
Collapse
|
276
|
Takeuchi D, Kerdsin A, Akeda Y, Sugawara Y, Sakamoto N, Matsumoto Y, Motooka D, Ishihara T, Nishi I, Laolerd W, Santanirand P, Yamamoto N, Tomono K, Hamada S. Nationwide surveillance in Thailand revealed genotype-dependent dissemination of carbapenem-resistant Enterobacterales. Microb Genom 2022; 8:000797. [PMID: 35438076 PMCID: PMC9453063 DOI: 10.1099/mgen.0.000797] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 02/08/2022] [Indexed: 02/03/2023] Open
Abstract
Carbapenem-resistant Enterobacterales (CRE) are a serious public health threat because of their rapid dissemination. To determine the epidemiological and genetic characteristics of CRE infections in Thailand, we performed whole-genome sequencing of 577 carbapenem-resistant Klebsiella pneumoniae isolates and 170 carbapenem-resistant Escherichia coli isolates from hospitals across the nation. The four most prevalent carbapenemase genes harboured by these bacteria were bla NDM-1, bla NDM-5, bla OXA-181 and bla OXA-232. The gene bla NDM-1 was identified in diverse sequence types. The gene bla NDM-5 was identified almost exclusively in E. coli . The genes bla OXA-181, bla OXA-232, and co-carriage of bla NDM-1 and bla OXA-232 were found in specific sequence types from certain provinces. Replicon typing revealed the diverse backbones of bla NDM-1- and bla NDM-5-harbouring plasmids and successful expansion of bla NDM-1-harbouring IncN2-type plasmids. Core-genome single-nucleotide polymorphism analysis suggested that bla OXA-181-, bla OXA-232-, bla NDM-5-, and co-carriage of bla NDM-1 and bla OXA-232-associated sub-clonal lineages have recently predominated in the provinces from where these isolates were isolated. Thus, we demonstrate genotype-dependent dissemination of CRE in Thailand, which is helpful for establishing infection-control strategies in CRE-endemic areas.
Collapse
Affiliation(s)
- Dan Takeuchi
- Japan-Thailand Research Collaboration Center, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Anusak Kerdsin
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | - Yukihiro Akeda
- Japan-Thailand Research Collaboration Center, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Yo Sugawara
- Japan-Thailand Research Collaboration Center, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Noriko Sakamoto
- Japan-Thailand Research Collaboration Center, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Yuki Matsumoto
- Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Daisuke Motooka
- Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Takuma Ishihara
- Innovative and Clinical Research Promotion Center, Gifu University Hospital, Gifu, Japan
| | - Isao Nishi
- Division of Infection Control and Prevention, Osaka University Hospital, Suita, Japan
| | - Warawut Laolerd
- Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Pitak Santanirand
- Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Norihisa Yamamoto
- Japan-Thailand Research Collaboration Center, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Kazunori Tomono
- Division of Infection Control and Prevention, Osaka University Hospital, Suita, Japan
| | - Shigeyuki Hamada
- Japan-Thailand Research Collaboration Center, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| |
Collapse
|
277
|
Santana de Carvalho D, Trovatti Uetanabaro AP, Kato RB, Aburjaile FF, Jaiswal AK, Profeta R, De Oliveira Carvalho RD, Tiwar S, Cybelle Pinto Gomide A, Almeida Costa E, Kukharenko O, Orlovska I, Podolich O, Reva O, Ramos PIP, De Carvalho Azevedo VA, Brenig B, Andrade BS, de Vera JPP, Kozyrovska NO, Barh D, Góes-Neto A. The Space-Exposed Kombucha Microbial Community Member Komagataeibacter oboediens Showed Only Minor Changes in Its Genome After Reactivation on Earth. Front Microbiol 2022; 13:782175. [PMID: 35369445 PMCID: PMC8970348 DOI: 10.3389/fmicb.2022.782175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 02/01/2022] [Indexed: 11/23/2022] Open
Abstract
Komagataeibacter is the dominant taxon and cellulose-producing bacteria in the Kombucha Microbial Community (KMC). This is the first study to isolate the K. oboediens genome from a reactivated space-exposed KMC sample and comprehensively characterize it. The space-exposed genome was compared with the Earth-based reference genome to understand the genome stability of K. oboediens under extraterrestrial conditions during a long time. Our results suggest that the genomes of K. oboediens IMBG180 (ground sample) and K. oboediens IMBG185 (space-exposed) are remarkably similar in topology, genomic islands, transposases, prion-like proteins, and number of plasmids and CRISPR-Cas cassettes. Nonetheless, there was a difference in the length of plasmids and the location of cas genes. A small difference was observed in the number of protein coding genes. Despite these differences, they do not affect any genetic metabolic profile of the cellulose synthesis, nitrogen-fixation, hopanoid lipids biosynthesis, and stress-related pathways. Minor changes are only observed in central carbohydrate and energy metabolism pathways gene numbers or sequence completeness. Altogether, these findings suggest that K. oboediens maintains its genome stability and functionality in KMC exposed to the space environment most probably due to the protective role of the KMC biofilm. Furthermore, due to its unaffected metabolic pathways, this bacterial species may also retain some promising potential for space applications.
Collapse
Affiliation(s)
- Daniel Santana de Carvalho
- Laboratory of Molecular and Computational Biology of Fungi, Department of Microbiology, Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
- Laboratory of Cellular and Molecular Genetics, Department of Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ana Paula Trovatti Uetanabaro
- Laboratory of Molecular and Computational Biology of Fungi, Department of Microbiology, Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
- Postgraduate Program in Biology and Biotechnology of Microorganisms, Department of Biological Sciences, State University of Santa Cruz, Ilhéus, Brazil
| | - Rodrigo Bentes Kato
- Laboratory of Molecular and Computational Biology of Fungi, Department of Microbiology, Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
- Laboratory of Cellular and Molecular Genetics, Department of Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Flávia Figueira Aburjaile
- Laboratory of Cellular and Molecular Genetics, Department of Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Arun Kumar Jaiswal
- Laboratory of Cellular and Molecular Genetics, Department of Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rodrigo Profeta
- Laboratory of Cellular and Molecular Genetics, Department of Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rodrigo Dias De Oliveira Carvalho
- Laboratory of Cellular and Molecular Genetics, Department of Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Sandeep Tiwar
- Laboratory of Cellular and Molecular Genetics, Department of Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Anne Cybelle Pinto Gomide
- Laboratory of Cellular and Molecular Genetics, Department of Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Eduardo Almeida Costa
- Computational Biology and Biotechnological Information Management Center (NBCGIB), State University of Santa Cruz, Ilhéus, Brazil
| | - Olga Kukharenko
- Institute of Molecular Biology and Genetics of NASU, Kyiv, Ukraine
| | - Iryna Orlovska
- Institute of Molecular Biology and Genetics of NASU, Kyiv, Ukraine
| | - Olga Podolich
- Institute of Molecular Biology and Genetics of NASU, Kyiv, Ukraine
| | - Oleg Reva
- Department of Biochemistry, Genetics and Microbiology, Centre for Bioinformatics and Computational Biology, University of Pretoria, Pretoria, South Africa
| | - Pablo Ivan P. Ramos
- Center for Data and Knowledge Integration for Health (CIDACS), Institute Gonçalo Moniz, Oswaldo Cruz Foundation (FIOCRUZ-Bahia), Salvador, Brazil
| | - Vasco Ariston De Carvalho Azevedo
- Laboratory of Cellular and Molecular Genetics, Department of Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Bertram Brenig
- Institute of Veterinary Medicine, Burckhardtweg, University of Göttingen, Göttingen, Germany
| | - Bruno Silva Andrade
- Laboratory of Bioinformatics and Computational Chemistry, Department of Biological Sciences, State University of Southwest Bahia (UESB), Jequié, Brazil
| | - Jean-Pierre P. de Vera
- German Aerospace Center (DLR) Berlin, Institute of Planetary Research, Planetary Laboratories, Astrobiological Laboratories, Berlin, Germany
| | | | - Debmalya Barh
- Laboratory of Cellular and Molecular Genetics, Department of Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology, Purba Medinipur, India
| | - Aristóteles Góes-Neto
- Laboratory of Molecular and Computational Biology of Fungi, Department of Microbiology, Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
278
|
Samper-Cativiela C, Diéguez-Roda B, Trigo da Roza F, Ugarte-Ruiz M, Elnekave E, Lim S, Hernández M, Abad D, Collado S, Sáez JL, de Frutos C, Agüero M, Moreno MÁ, Escudero JA, Álvarez J. Genomic characterization of multidrug-resistant Salmonella serovar Kentucky ST198 isolated in poultry flocks in Spain (2011-2017). Microb Genom 2022; 8. [PMID: 35259085 PMCID: PMC9176280 DOI: 10.1099/mgen.0.000773] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Salmonella Kentucky is commonly found in poultry and rarely associated with human disease. However, a multidrug-resistant (MDR) S. Kentucky clone [sequence type (ST)198] has been increasingly reported globally in humans and animals. Our aim here was to assess if the recently reported increase of S. Kentucky in poultry in Spain was associated with the ST198 clone and to characterize this MDR clone and its distribution in Spain. Sixty-six isolates retrieved from turkey, laying hen and broiler in 2011–2017 were subjected to whole-genome sequencing to assess their sequence type, genetic relatedness, and presence of antimicrobial resistance genes (ARGs), plasmid replicons and virulence factors. Thirteen strains were further analysed using long-read sequencing technologies to characterize the genetic background associated with ARGs. All isolates belonged to the ST198 clone and were grouped in three clades associated with the presence of a specific point mutation in the gyrA gene, their geographical origin and isolation year. All strains carried between one and 16 ARGs whose presence correlated with the resistance phenotype to between two and eight antimicrobials. The ARGs were located in the Salmonella genomic island (SGI-1) and in some cases (blaSHV-12, catA1, cmlA1, dfrA and multiple aminoglycoside-resistance genes) in IncHI2/IncI1 plasmids, some of which were consistently detected in different years/farms in certain regions, suggesting they could persist over time. Our results indicate that the MDR S. Kentucky ST198 is present in all investigated poultry hosts in Spain, and that certain strains also carry additional plasmid-mediated ARGs, thus increasing its potential public health significance.
Collapse
Affiliation(s)
- Clara Samper-Cativiela
- VISAVET Health Surveillance Centre, Complutense University of Madrid, 28040 Madrid, Spain.,Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | | | - Filipa Trigo da Roza
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain.,Molecular Basis of Adaptation, Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, 28040 Madrid, Spain
| | - María Ugarte-Ruiz
- VISAVET Health Surveillance Centre, Complutense University of Madrid, 28040 Madrid, Spain
| | - Ehud Elnekave
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 76100 Rehovot, Israel
| | - Seunghyun Lim
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN 55455, USA.,Bioinformatics and Computational Biology Program, University of Minnesota, Rochester, MN 55455, 55455 Minnesota, USA
| | - Marta Hernández
- Molecular Biology and Microbiology Laboratory, Instituto Tecnológico Agrario de Castilla y León (ITACyL), Junta de Castilla y León, 47009 Valladolid, Spain
| | - David Abad
- Molecular Biology and Microbiology Laboratory, Instituto Tecnológico Agrario de Castilla y León (ITACyL), Junta de Castilla y León, 47009 Valladolid, Spain
| | - Soledad Collado
- Subdirección General de Sanidad e Higiene Animal y Trazabilidad, Dirección General de la Producción Agraria, Ministerio de Agricultura, Pesca y Alimentación, 28010 Madrid, Spain
| | - José Luis Sáez
- Subdirección General de Sanidad e Higiene Animal y Trazabilidad, Dirección General de la Producción Agraria, Ministerio de Agricultura, Pesca y Alimentación, 28010 Madrid, Spain
| | - Cristina de Frutos
- Laboratorio Central de Veterinaria, Ministerio de Agricultura, Pesca y Alimentación, 28110 Madrid, Spain
| | - Montserrat Agüero
- Laboratorio Central de Veterinaria, Ministerio de Agricultura, Pesca y Alimentación, 28110 Madrid, Spain
| | - Miguel Ángel Moreno
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - José Antonio Escudero
- VISAVET Health Surveillance Centre, Complutense University of Madrid, 28040 Madrid, Spain.,Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain.,Molecular Basis of Adaptation, Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, 28040 Madrid, Spain
| | - Julio Álvarez
- VISAVET Health Surveillance Centre, Complutense University of Madrid, 28040 Madrid, Spain.,Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
279
|
Whole-Genome Sequences of Two Listeria monocytogenes Biofilm Formers. Microbiol Resour Announc 2022; 11:e0106221. [PMID: 35254124 PMCID: PMC9022516 DOI: 10.1128/mra.01062-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Listeria monocytogenes strains from different lineages show different biofilm-forming abilities. In this study, two strains of L. monocytogenes were whole genome sequenced using single-molecule real-time (SMRT) technology and characterized.
Collapse
|
280
|
Madriz-Ordeñana K, Pazarlar S, Jørgensen HJL, Nielsen TK, Zhang Y, Nielsen KL, Hansen LH, Thordal-Christensen H. The Bacillus cereus Strain EC9 Primes the Plant Immune System for Superior Biocontrol of Fusarium oxysporum. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11050687. [PMID: 35270157 PMCID: PMC8912794 DOI: 10.3390/plants11050687] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 05/08/2023]
Abstract
Antibiosis is a key feature widely exploited to develop biofungicides based on the ability of biological control agents (BCAs) to produce fungitoxic compounds. A less recognised attribute of plant-associated beneficial microorganisms is their ability to stimulate the plant immune system, which may provide long-term, systemic self-protection against different types of pathogens. By using conventional antifungal in vitro screening coupled with in planta assays, we found antifungal and non-antifungal Bacillus strains that protected the ornamental plant Kalanchoe against the soil-borne pathogen Fusarium oxysporum in experimental and commercial production settings. Further examination of one antifungal and one non-antifungal strain indicated that high protection efficacy in planta did not correlate with antifungal activity in vitro. Whole-genome sequencing showed that the non-antifungal strain EC9 lacked the biosynthetic gene clusters associated with typical antimicrobial compounds. Instead, this bacterium triggers the expression of marker genes for the jasmonic and salicylic acid defence pathways, but only after pathogen challenge, indicating that this strain may protect Kalanchoe plants by priming immunity. We suggest that the stimulation of the plant immune system is a promising mode of action of BCAs for the development of novel biological crop protection products.
Collapse
Affiliation(s)
- Kenneth Madriz-Ordeñana
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Centre, Section for Plant and Soil Science, University of Copenhagen, 1871 Frederiksberg, Denmark; (S.P.); (H.J.L.J.); (Y.Z.); (H.T.-C.)
- Correspondence:
| | - Sercan Pazarlar
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Centre, Section for Plant and Soil Science, University of Copenhagen, 1871 Frederiksberg, Denmark; (S.P.); (H.J.L.J.); (Y.Z.); (H.T.-C.)
| | - Hans Jørgen Lyngs Jørgensen
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Centre, Section for Plant and Soil Science, University of Copenhagen, 1871 Frederiksberg, Denmark; (S.P.); (H.J.L.J.); (Y.Z.); (H.T.-C.)
| | - Tue Kjærgaard Nielsen
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Centre, Section for Microbial Ecology and Biotechnology, University of Copenhagen, 1871 Frederiksberg, Denmark; (T.K.N.); (L.H.H.)
| | - Yingqi Zhang
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Centre, Section for Plant and Soil Science, University of Copenhagen, 1871 Frederiksberg, Denmark; (S.P.); (H.J.L.J.); (Y.Z.); (H.T.-C.)
| | | | - Lars Hestbjerg Hansen
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Centre, Section for Microbial Ecology and Biotechnology, University of Copenhagen, 1871 Frederiksberg, Denmark; (T.K.N.); (L.H.H.)
| | - Hans Thordal-Christensen
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Centre, Section for Plant and Soil Science, University of Copenhagen, 1871 Frederiksberg, Denmark; (S.P.); (H.J.L.J.); (Y.Z.); (H.T.-C.)
| |
Collapse
|
281
|
Grenni P. Antimicrobial Resistance in Rivers: A Review of the Genes Detected and New Challenges. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:687-714. [PMID: 35191071 DOI: 10.1002/etc.5289] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 11/11/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
River ecosystems are very important parts of the water cycle and an excellent habitat, food, and drinking water source for many organisms, including humans. Antibiotics are emerging contaminants which can enter rivers from various sources. Several antibiotics and their related antibiotic resistance genes (ARGs) have been detected in these ecosystems by various research programs and could constitute a substantial problem. The presence of antibiotics and other resistance cofactors can boost the development of ARGs in the chromosomes or mobile genetic elements of natural bacteria in rivers. The ARGs in environmental bacteria can also be transferred to clinically important pathogens. However, antibiotics and their resistance genes are both not currently monitored by national or international authorities responsible for controlling the quality of water bodies. For example, they are not included in the contaminant list in the European Water Framework Directive or in the US list of Water-Quality Benchmarks for Contaminants. Although ARGs are naturally present in the environment, very few studies have focused on non-impacted rivers to assess the background ARG levels in rivers, which could provide some useful indications for future environmental regulation and legislation. The present study reviews the antibiotics and associated ARGs most commonly measured and detected in rivers, including the primary analysis tools used for their assessment. In addition, other factors that could enhance antibiotic resistance, such as the effects of chemical mixtures, the effects of climate change, and the potential effects of the coronavirus disease 2019 pandemic, are discussed. Environ Toxicol Chem 2022;41:687-714. © 2022 SETAC.
Collapse
Affiliation(s)
- Paola Grenni
- Water Research Institute, National Research Council of Italy, via Salaria km 29.300, Monterotondo, Rome, 00015, Italy
| |
Collapse
|
282
|
Peng Z, Maciel-Guerra A, Baker M, Zhang X, Hu Y, Wang W, Rong J, Zhang J, Xue N, Barrow P, Renney D, Stekel D, Williams P, Liu L, Chen J, Li F, Dottorini T. Whole-genome sequencing and gene sharing network analysis powered by machine learning identifies antibiotic resistance sharing between animals, humans and environment in livestock farming. PLoS Comput Biol 2022; 18:e1010018. [PMID: 35333870 PMCID: PMC8986120 DOI: 10.1371/journal.pcbi.1010018] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 04/06/2022] [Accepted: 03/14/2022] [Indexed: 01/26/2023] Open
Abstract
Anthropogenic environments such as those created by intensive farming of livestock, have been proposed to provide ideal selection pressure for the emergence of antimicrobial-resistant Escherichia coli bacteria and antimicrobial resistance genes (ARGs) and spread to humans. Here, we performed a longitudinal study in a large-scale commercial poultry farm in China, collecting E. coli isolates from both farm and slaughterhouse; targeting animals, carcasses, workers and their households and environment. By using whole-genome phylogenetic analysis and network analysis based on single nucleotide polymorphisms (SNPs), we found highly interrelated non-pathogenic and pathogenic E. coli strains with phylogenetic intermixing, and a high prevalence of shared multidrug resistance profiles amongst livestock, human and environment. Through an original data processing pipeline which combines omics, machine learning, gene sharing network and mobile genetic elements analysis, we investigated the resistance to 26 different antimicrobials and identified 361 genes associated to antimicrobial resistance (AMR) phenotypes; 58 of these were known AMR-associated genes and 35 were associated to multidrug resistance. We uncovered an extensive network of genes, correlated to AMR phenotypes, shared among livestock, humans, farm and slaughterhouse environments. We also found several human, livestock and environmental isolates sharing closely related mobile genetic elements carrying ARGs across host species and environments. In a scenario where no consensus exists on how antibiotic use in the livestock may affect antibiotic resistance in the human population, our findings provide novel insights into the broader epidemiology of antimicrobial resistance in livestock farming. Moreover, our original data analysis method has the potential to uncover AMR transmission pathways when applied to the study of other pathogens active in other anthropogenic environments characterised by complex interconnections between host species. Livestock have been suggested as an important source of antimicrobial-resistant (AMR) Escherichia coli, capable of infecting humans and carrying resistance to drugs used in human medicine. China has a large intensive livestock farming industry, poultry being the second most important source of meat in the country, and is the largest user of antibiotics for food production in the world. Here we studied antimicrobial resistance gene overlap between E. coli isolates collected from humans, livestock and their shared environments in a large-scale Chinese poultry farm and associated slaughterhouse. By using a computational approach that integrates machine learning, whole-genome sequencing, gene sharing network and mobile genetic elements analysis we characterized the E. coli community structure, antimicrobial resistance phenotypes and the genetic relatedness of non-pathogenic and pathogenic E. coli strains. We uncovered the network of genes, associated with AMR, shared across host species (animals and workers) and environments (farm and slaughterhouse). Our approach opens up new avenues for the development of a fast, affordable and effective computational solutions that provide novel insights into the broader epidemiology of antimicrobial resistance in livestock farming.
Collapse
Affiliation(s)
- Zixin Peng
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing, People’s Republic of China
| | - Alexandre Maciel-Guerra
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, United Kingdom
| | - Michelle Baker
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, United Kingdom
| | - Xibin Zhang
- Qingdao Tian run Food Co., Ltd, New Hope, Beijing, People’s Republic of China
| | - Yue Hu
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, United Kingdom
| | - Wei Wang
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing, People’s Republic of China
| | - Jia Rong
- Qingdao Tian run Food Co., Ltd, New Hope, Beijing, People’s Republic of China
| | - Jing Zhang
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing, People’s Republic of China
| | - Ning Xue
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, United Kingdom
| | - Paul Barrow
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, United Kingdom
- School of Veterinary Medicine, University of Surrey, Guildford, Surrey, United Kingdom
| | - David Renney
- Nimrod Veterinary Products Limited, Moreton-in-Marsh, United Kingdom
| | - Dov Stekel
- School of Biosciences, University of Nottingham, Sutton Bonington, United Kingdom
| | - Paul Williams
- Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Longhai Liu
- Qingdao Tian run Food Co., Ltd, New Hope, Beijing, People’s Republic of China
| | - Junshi Chen
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing, People’s Republic of China
| | - Fengqin Li
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing, People’s Republic of China
- * E-mail: (FL); (TD)
| | - Tania Dottorini
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, United Kingdom
- * E-mail: (FL); (TD)
| |
Collapse
|
283
|
Storey N, Cawthraw S, Turner O, Rambaldi M, Lemma F, Horton R, Randall L, Duggett NA, AbuOun M, Martelli F, Anjum MF. Use of genomics to explore AMR persistence in an outdoor pig farm with low antimicrobial usage. Microb Genom 2022; 8:000782. [PMID: 35344479 PMCID: PMC9176276 DOI: 10.1099/mgen.0.000782] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Food animals may be reservoirs of antimicrobial resistance (AMR) passing through the food chain, but little is known about AMR prevalence in bacteria when selective pressure from antimicrobials is low or absent. We monitored antimicrobial-resistant Escherichia coli over 1 year in a UK outdoor pig farm with low antimicrobial usage (AMU) compared to conventional pig farms in the United Kingdom. Short and selected long-read whole-genome sequencing (WGS) was performed to identify AMR genes, phylogeny and mobile elements in 385 E. coli isolates purified mainly from pig and some seagull faeces. Generally, low levels of antimicrobial-resistant E. coli were present, probably due to low AMU. Those present were likely to be multi-drug resistant (MDR) and belonging to particular Sequence Types (STs) such as ST744, ST88 or ST44, with shared clones (<14 Single Nucleotide Polymorphisms (SNPs) apart) isolated from different time points indicating epidemiological linkage within pigs of different ages, and between pig and the wild bird faeces. Although importance of horizontal transmission of AMR is well established, there was limited evidence of plasmid-mediated dissemination between different STs. Non-conjugable MDR plasmids or large AMR gene-bearing transposons were stably integrated within the chromosome and remained associated with particular STs/clones over the time period sampled. Heavy metal resistance genes were also detected within some genetic elements. This study highlights that although low levels of antimicrobial-resistant E. coli correlates with low AMU, a basal level of MDR E. coli can still persist on farm potentially due to transmission and recycling of particular clones within different pig groups. Environmental factors such as wild birds and heavy metal contaminants may also play important roles in the recycling and dissemination, and hence enabling persistence of MDR E. coli. All such factors need to be considered as any rise in AMU on low usage farms, could in future, result in a significant increase in their AMR burden.
Collapse
Affiliation(s)
- Nathaniel Storey
- Animal and Plant Health Agency, Weybridge, New Haw, Addlestone, Surrey KT15 3NB, UK
- Great Ormond Street Hospital for Children, London WC1N 3JH, UK
| | - Shaun Cawthraw
- Animal and Plant Health Agency, Weybridge, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Olivia Turner
- Animal and Plant Health Agency, Weybridge, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Margherita Rambaldi
- Animal and Plant Health Agency, Weybridge, New Haw, Addlestone, Surrey KT15 3NB, UK
- University of Bologna, Via Zamboni, 33, 40126 Bologna BO, Italy
| | - Fabrizio Lemma
- Animal and Plant Health Agency, Weybridge, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Robert Horton
- Animal and Plant Health Agency, Weybridge, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Luke Randall
- Animal and Plant Health Agency, Weybridge, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Nicholas A. Duggett
- Animal and Plant Health Agency, Weybridge, New Haw, Addlestone, Surrey KT15 3NB, UK
- Teeside University, Campus Heart, Middlesbrough TS1 3BX, UK
| | - Manal AbuOun
- Animal and Plant Health Agency, Weybridge, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Francesca Martelli
- Animal and Plant Health Agency, Weybridge, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Muna F. Anjum
- Animal and Plant Health Agency, Weybridge, New Haw, Addlestone, Surrey KT15 3NB, UK
- *Correspondence: Muna F. Anjum,
| |
Collapse
|
284
|
Mourkas E, Yahara K, Bayliss SC, Calland JK, Johansson H, Mageiros L, Muñoz-Ramirez ZY, Futcher G, Méric G, Hitchings MD, Sandoval-Motta S, Torres J, Jolley KA, Maiden MCJ, Ellström P, Waldenström J, Pascoe B, Sheppard SK. Host ecology regulates interspecies recombination in bacteria of the genus Campylobacter. eLife 2022; 11:e73552. [PMID: 35191377 PMCID: PMC8912921 DOI: 10.7554/elife.73552] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 02/20/2022] [Indexed: 01/16/2023] Open
Abstract
Horizontal gene transfer (HGT) can allow traits that have evolved in one bacterial species to transfer to another. This has potential to rapidly promote new adaptive trajectories such as zoonotic transfer or antimicrobial resistance. However, for this to occur requires gaps to align in barriers to recombination within a given time frame. Chief among these barriers is the physical separation of species with distinct ecologies in separate niches. Within the genus Campylobacter, there are species with divergent ecologies, from rarely isolated single-host specialists to multihost generalist species that are among the most common global causes of human bacterial gastroenteritis. Here, by characterizing these contrasting ecologies, we can quantify HGT among sympatric and allopatric species in natural populations. Analyzing recipient and donor population ancestry among genomes from 30 Campylobacter species, we show that cohabitation in the same host can lead to a six-fold increase in HGT between species. This accounts for up to 30% of all SNPs within a given species and identifies highly recombinogenic genes with functions including host adaptation and antimicrobial resistance. As described in some animal and plant species, ecological factors are a major evolutionary force for speciation in bacteria and changes to the host landscape can promote partial convergence of distinct species through HGT.
Collapse
Affiliation(s)
- Evangelos Mourkas
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of BathBathUnited Kingdom
| | - Koji Yahara
- Antimicrobial Resistance Research Center, National Institute of Infectious DiseasesTokyoJapan
| | - Sion C Bayliss
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of BathBathUnited Kingdom
| | - Jessica K Calland
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of BathBathUnited Kingdom
| | - Håkan Johansson
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus UniversityKalmarSweden
| | - Leonardos Mageiros
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of BathBathUnited Kingdom
| | - Zilia Y Muñoz-Ramirez
- Unidad de Investigacion en Enfermedades Infecciosas, UMAE Pediatria, Instituto Mexicano del Seguro SocialMexico CityMexico
| | - Grant Futcher
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of BathBathUnited Kingdom
| | - Guillaume Méric
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of BathBathUnited Kingdom
| | | | - Santiago Sandoval-Motta
- Unidad de Investigacion en Enfermedades Infecciosas, UMAE Pediatria, Instituto Mexicano del Seguro SocialMexico CityMexico
| | - Javier Torres
- Unidad de Investigacion en Enfermedades Infecciosas, UMAE Pediatria, Instituto Mexicano del Seguro SocialMexico CityMexico
| | - Keith A Jolley
- Department of Zoology, University of OxfordOxfordUnited Kingdom
| | | | - Patrik Ellström
- Department of Medical Sciences, Zoonosis Science Centre, Uppsala UniversityUppsalaSweden
| | - Jonas Waldenström
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus UniversityKalmarSweden
| | - Ben Pascoe
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of BathBathUnited Kingdom
- Faculty of Veterinary Medicine, Chiang Mai UniversityChiang MaiThailand
| | - Samuel K Sheppard
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of BathBathUnited Kingdom
- Department of Zoology, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
285
|
Teixeira JS, Weedmark K, Dussault F, Banerjee S. Whole-Genome Sequences of Vibrio Species from Warm-Water Shrimps Imported into Canada: Detection of Genetic Elements Associated with Antimicrobial Resistance and Potential Mobilizing Capacities. Microbiol Resour Announc 2022; 11:e0101421. [PMID: 35112905 PMCID: PMC8819801 DOI: 10.1128/mra.01014-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/13/2022] [Indexed: 12/17/2022] Open
Abstract
We present draft genome sequences of Vibrio species (Vibrio alginolyticus, Vibrio cholerae, and two Vibrio parahaemolyticus strains) that were isolated from warm-water shrimps imported into Canada. All four isolates harbor genetic elements associated with antimicrobial resistance (AMR), including mobile genetic elements that can promote horizontal transfer of AMR genes.
Collapse
Affiliation(s)
| | - Kelly Weedmark
- Bureau of Microbial Hazards, Health Canada, Ottawa, Ontario, Canada
| | - Forest Dussault
- Bureau of Food Surveillance and Science Integration, Health Canada, Ottawa, Ontario, Canada
| | - Swapan Banerjee
- Bureau of Microbial Hazards, Health Canada, Ottawa, Ontario, Canada
| |
Collapse
|
286
|
Closed Genome Sequences of Providencia alcalifaciens Isolates from Dogs. Microbiol Resour Announc 2022; 11:e0095521. [PMID: 35175129 PMCID: PMC8852275 DOI: 10.1128/mra.00955-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Eight Providencia alcalifaciens isolates from eight different dogs in Norway with acute hemorrhagic diarrhea were sequenced. Based on Illumina and Oxford Nanopore Technologies sequencing, all of the genomes were complete and closed after hybrid assembly.
Collapse
|
287
|
Draft Genome Sequences of Two Lactobacillus johnsonii and Three Ligilactobacillus salivarius Strains Isolated from Intestinal Microbiomes of Chickens. Microbiol Resour Announc 2022; 11:e0092521. [PMID: 35112897 PMCID: PMC8812308 DOI: 10.1128/mra.00925-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This report describes the genome sequences of two Lactobacillus johnsonii strains (AER105 and AER25) and three Ligilactobacillus salivarius strains (AER35, AER36, and AER04) recovered from broiler chicken gastrointestinal tracts in the southeastern United States. These genome sequences will enhance our understanding of the ecology of lactobacilli in the chicken gut microbiome.
Collapse
|
288
|
Rehman MA, Rempel H, Carrillo CD, Ziebell K, Allen K, Manges AR, Topp E, Diarra MS. Virulence Genotype and Phenotype of Multiple Antimicrobial-Resistant Escherichia coli Isolates from Broilers Assessed from a "One-Health" Perspective. J Food Prot 2022; 85:336-354. [PMID: 34762732 DOI: 10.4315/jfp-21-273] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/09/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT Extraintestinal pathogenic Escherichia coli (ExPEC) include several serotypes that have been associated with colibacillosis in poultry and with urinary tract infections (UTIs) and newborn meningitis in humans. In this study, 57 antimicrobial-resistant E. coli from apparently healthy broiler chickens were characterized for their health and safety risks. These isolates belonged to 12 serotypes, and isolates of the same serotype were clonal based on single nucleotide variant analysis. Most of the isolates harbored plasmids; IncC and IncFIA were frequently detected. The majority of the resistant isolates harbored plasmid-mediated resistance genes, including aph(3″)-Ib, aph(6)-Id, blaCMY-2, floR, sul1, sul2, tet(A), and tet(B), in agreement with their resistant phenotypes. The class 1 integron was detected in all E. coli serotypes except O124:H25 and O7:H6. Of the 57 broiler E. coli isolates, 27 were avian pathogenic, among which 18 were also uropathogenic E. coli and the remainder were other ExPEC. The two isolates of serotype O161:H4 (ST117) were genetically related to the control avian pathogenic strains and a clinical isolate associated with UTIs. A strain of serotype O159:H45 (ST101) also was closely related to a UTI isolate. The detected virulence factors included adhesins, invasins, siderophores, type III secretion systems, and toxins in combination with other virulence determinants. A broiler isolate of serotype O7:H18 (ST38) carried the ibeA gene encoding a protein involved in invasion of brain endothelium on a 102-kbp genetic island. This isolate moderately adhered and invaded Caco-2 cells and induced mortality (42.5%) in a day-old-chick infection model. The results of this study suggest that multiple antimicrobial-resistant E. coli isolates recovered from apparent healthy broilers can be pathogenic and act as reservoirs for antimicrobial resistance genes, highlighting the necessity of their assessment in a "One-Heath" context. HIGHLIGHTS
Collapse
Affiliation(s)
- Muhammad Attiq Rehman
- Guelph Research and Development Center, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada N1G 5C9
| | - Heidi Rempel
- Agassiz Research and Development Center, Agriculture and Agri-Food Canada, Agassiz, British Columbia, Canada V0M 1A2
| | - Catherine D Carrillo
- Canadian Food Inspection Agency, Ottawa Laboratory (Carling), Ottawa, Ontario, Canada K1Y 4K7
| | - Kim Ziebell
- National Microbiology Laboratory, Public Health Agency Canada, Guelph, Ontario, Canada N1G 3W4
| | - Kevin Allen
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Amee R Manges
- School of Population and Public Health, University of British Columbia, British Columbia, Canada V6T 1Z3.,British Columbia Centre for Disease Control, Vancouver, British Columbia, Canada V5Z 4R4
| | - Edward Topp
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada N5V 4T3
| | - Moussa S Diarra
- Guelph Research and Development Center, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada N1G 5C9
| |
Collapse
|
289
|
Complete Genome Sequence and Benzophenone-3 Mineralisation Potential of Rhodococcus sp. USK10, A Bacterium Isolated from Riverbank Sediment. Appl Microbiol 2022. [DOI: 10.3390/applmicrobiol2010006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Benzophenone-3 (BP3) is an organic UV filter whose presence in the aquatic environment has been linked to detrimental developmental impacts in aquatic organisms such as coral and fish. The genus Rhodococcus has been extensively studied and is known for possessing large genomes housing genes for biodegradation of a wide range of compounds, including aromatic carbons. Here, we present the genome sequence of Rhodococcus sp. USK10, which was isolated from Chinese riverbank sediment and is capable of utilising BP3 as the sole carbon source, resulting in full BP3 mineralisation. The genome consisted of 9,870,030 bp in 3 replicons, a G+C content of 67.2%, and 9722 coding DNA sequences (CDSs). Annotation of the genome revealed that 179 of these CDSs are involved in the metabolism of aromatic carbons. The complete genome of Rhodococcus sp. USK10 is the first complete, annotated genome sequence of a Benzophenone-3-degrading bacterium. Through radiolabelling, it is also the first bacterium proven to mineralise Benzophenone-3. Due to the widespread environmental prevalence of Benzophenone-3, coupled with its adverse impact on aquatic organisms, this characterisation provides an integral first step in better understanding the environmentally relevant degradation pathway of the commonly used UV filter. Given USK10′s ability to completely mineralise Benzophenone-3, it could prove to be a suitable candidate for bioremediation application.
Collapse
|
290
|
Development of a Genomics-Based Approach To Identify Putative Hypervirulent Nontyphoidal Salmonella Isolates: Salmonella enterica Serovar Saintpaul as a Model. mSphere 2022; 7:e0073021. [PMID: 34986312 PMCID: PMC8731237 DOI: 10.1128/msphere.00730-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
While differences in human virulence have been reported across nontyphoidal Salmonella (NTS) serovars and associated subtypes, a rational and scalable approach to identify Salmonella subtypes with differential ability to cause human diseases is not available. Here, we used NTS serovar Saintpaul (S. Saintpaul) as a model to determine if metadata and associated whole-genome sequence (WGS) data in the NCBI Pathogen Detection (PD) database can be used to identify (i) subtypes with differential likelihoods of causing human diseases and (ii) genes and single nucleotide polymorphisms (SNPs) potentially responsible for such differences. S. Saintpaul SNP clusters (n = 211) were assigned different epidemiology types (epi-types) based on statistically significant over- or underrepresentation of human clinical isolates, including human associated (HA; n = 29), non-human associated (NHA; n = 23), and other (n = 159). Comparative genomic analyses identified 384 and 619 genes overrepresented among isolates in 5 HA and 4 NHA SNP clusters most significantly associated with the respective isolation source. These genes included 5 HA-associated virulence genes previously reported to be present on Gifsy-1/Gifsy-2 prophages. Additionally, premature stop codons in 3 and 7 genes were overrepresented among the selected HA and NHA SNP clusters, respectively. Tissue culture experiments with strains representing 4 HA and 3 NHA SNP clusters did not reveal evidence for enhanced invasion or intracellular survival for HA strains. However, the presence of sodCI (encoding a superoxide dismutase), found in 4 HA and 1 NHA SNP clusters, was positively correlated with intracellular survival in macrophage-like cells. Post hoc analyses also suggested a possible difference in intracellular survival among S. Saintpaul lineages. IMPORTANCE Not all Salmonella isolates are equally likely to cause human disease, and Salmonella control strategies may unintentionally focus on serovars and subtypes with high prevalence in source populations but are rarely associated with human clinical illness. We describe a framework leveraging WGS data in the NCBI PD database to identify Salmonella subtypes over- and underrepresented among human clinical cases. While we identified genomic signatures associated with HA/NHA SNP clusters, tissue culture experiments failed to identify consistent phenotypic characteristics indicative of enhanced human virulence of HA strains. Our findings illustrate the challenges of defining hypo- and hypervirulent S. Saintpaul and potential limitations of phenotypic assays when evaluating human virulence, for which in vivo experiments are essential. Identification of sodCI, an HA-associated virulence gene associated with enhanced intracellular survival, however, illustrates the potential of the framework and is consistent with prior work identifying specific genomic features responsible for enhanced or reduced virulence of nontyphoidal Salmonella.
Collapse
|
291
|
Pavlova AS, Egorova A, Krutova N, Saenko S, Mikhaylova Y, Guseva A, Chebotar IV, Podkolzin A, Kuleshov K, Akimkin V. The prevalence and characterization of ESBL-producing strains of Salmonella enterica circulating in the territory of the Russian Federation (2016–2020). CLINICAL MICROBIOLOGY AND ANTIMICROBIAL CHEMOTHERAPY 2022. [DOI: 10.36488/cmac.2022.3.236-247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Objective.
To analyze frequency and identify genetic determinants of resistance of non-typhoid Salmonella (NTS) producing extended-spectrum β-lactamase (ESBL) isolated in the Russian Federation over the period 2016 to 2020.
Materials and Methods.
Salmonella isolates, suspected to ESBL production, were collected by the All-Russia Reference Center of Salmonellosis during the national Salmonellosis surveillance program. Phenotypic resistance was determined by the broth microdilution method using G-I and G-II Mikrolatest®SensiLaTest MIC plates and by the double-disk synergy test. Whole genome sequencing was performed on the NextSeq platform (Illumina, USA), with subsequent de novo genome assembly (SPAdes 3.15.4), identification of plasmid types (MOB-suite v3.0.0), and identification of resistance genes (AMRFinderPlus v3.10.40).
Results.
Out of 1792 NTS isolates, 22 strains contained bla-genes of molecular classes A and D (blaTEM, blaCTX-M, blaSHV, blaOXA), one strain – AmpC (blaCMY-2) and three strains – combination ESBL of class A and AmpC (blaTEM, blaCMY-2, blaDHA). The frequency of occurrence of ESBL-producing Salmonella is 1.3%, AmpC – 0.2%. Additionally, strains were resistant to other non-β-lactam antibiotics. Six different types of plasmids were identified (IncI, IncFIB, IncC, IncHI2A, IncL/M and IncX1) in studied isolates. It was possible for 17 strains to identify location of resistance genes in plasmids of a certain type.
Conclusions.
The frequency of occurrence of Salmonella strains producing ESBL and AmpC was 1.45%, which were found in sporadic cases of human diseases, as well as food and environmental objects were sources of isolation. The fact of detection of such strains among various NTC serotypes and a wide range of sources of isolation confirms the relevance of monitoring antimicrobial resistance of Salmonella strains in the future.
Collapse
Affiliation(s)
| | - A.E. Egorova
- Central Research Institute of Epidemiology (Moscow, Russia)
| | - N.E. Krutova
- Central Research Institute of Epidemiology (Moscow, Russia)
| | - S.S. Saenko
- Central Research Institute of Epidemiology (Moscow, Russia)
| | | | - A.N. Guseva
- Central Research Institute of Epidemiology (Moscow, Russia)
| | - Igor V. Chebotar
- Pirogov Russian National Research Medical University (Moscow, Russia)
| | - A.T. Podkolzin
- Central Research Institute of Epidemiology (Moscow, Russia)
| | - K.V. Kuleshov
- Central Research Institute of Epidemiology (Moscow, Russia)
| | - V.G. Akimkin
- Central Research Institute of Epidemiology (Moscow, Russia)
| |
Collapse
|
292
|
Thorpe HA, Booton R, Kallonen T, Gibbon MJ, Couto N, Passet V, López-Fernández S, Rodrigues C, Matthews L, Mitchell S, Reeve R, David S, Merla C, Corbella M, Ferrari C, Comandatore F, Marone P, Brisse S, Sassera D, Corander J, Feil EJ. A large-scale genomic snapshot of Klebsiella spp. isolates in Northern Italy reveals limited transmission between clinical and non-clinical settings. Nat Microbiol 2022; 7:2054-2067. [PMID: 36411354 PMCID: PMC9712112 DOI: 10.1038/s41564-022-01263-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/10/2022] [Indexed: 11/22/2022]
Abstract
The Klebsiella group, found in humans, livestock, plants, soil, water and wild animals, is genetically and ecologically diverse. Many species are opportunistic pathogens and can harbour diverse classes of antimicrobial resistance genes. Healthcare-associated Klebsiella pneumoniae clones that are non-susceptible to carbapenems can spread rapidly, representing a high public health burden. Here we report an analysis of 3,482 genome sequences representing 15 Klebsiella species sampled over a 17-month period from a wide range of clinical, community, animal and environmental settings in and around the Italian city of Pavia. Northern Italy is a hotspot for hospital-acquired carbapenem non-susceptible Klebsiella and thus a pertinent setting to examine the overlap between isolates in clinical and non-clinical settings. We found no genotypic or phenotypic evidence for non-susceptibility to carbapenems outside the clinical environment. Although we noted occasional transmission between clinical and non-clinical settings, our data point to a limited role of animal and environmental reservoirs in the human acquisition of Klebsiella spp. We also provide a detailed genus-wide view of genomic diversity and population structure, including the identification of new groups.
Collapse
Affiliation(s)
- Harry A. Thorpe
- grid.5510.10000 0004 1936 8921Department of Biostatistics, University of Oslo, Oslo, Norway
| | - Ross Booton
- grid.5337.20000 0004 1936 7603Bristol Veterinary School, University of Bristol, Bristol, UK
| | - Teemu Kallonen
- grid.410552.70000 0004 0628 215XDepartment of Clinical Microbiology, Turku University Hospital, Turku, Finland
| | - Marjorie J. Gibbon
- grid.7340.00000 0001 2162 1699The Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, UK
| | - Natacha Couto
- grid.7340.00000 0001 2162 1699The Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, UK
| | - Virginie Passet
- grid.508487.60000 0004 7885 7602Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
| | - Sebastián López-Fernández
- grid.508487.60000 0004 7885 7602Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
| | - Carla Rodrigues
- grid.508487.60000 0004 7885 7602Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
| | - Louise Matthews
- grid.8756.c0000 0001 2193 314XBoyd Orr Centre for Population and Ecosystem Health, School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Sonia Mitchell
- grid.8756.c0000 0001 2193 314XBoyd Orr Centre for Population and Ecosystem Health, School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Richard Reeve
- grid.8756.c0000 0001 2193 314XBoyd Orr Centre for Population and Ecosystem Health, School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Sophia David
- grid.10306.340000 0004 0606 5382Parasites and Microbes, Wellcome Sanger Institute, Cambridge, UK
| | - Cristina Merla
- grid.419425.f0000 0004 1760 3027Microbiology and Virology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy
| | - Marta Corbella
- grid.419425.f0000 0004 1760 3027Microbiology and Virology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy
| | - Carolina Ferrari
- grid.419425.f0000 0004 1760 3027Microbiology and Virology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy
| | - Francesco Comandatore
- grid.4708.b0000 0004 1757 2822Romeo ed Enrica Invernizzi Pediatric Research Center, Department of Biomedical and Clinical Sciences Luigi Sacco, Università di Milano, Milan, Italy
| | - Piero Marone
- grid.419425.f0000 0004 1760 3027Microbiology and Virology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy
| | - Sylvain Brisse
- grid.508487.60000 0004 7885 7602Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
| | - Davide Sassera
- grid.8982.b0000 0004 1762 5736Department of Biology and Biotechnology, Università di Pavia, Pavia, Italy
| | - Jukka Corander
- grid.5510.10000 0004 1936 8921Department of Biostatistics, University of Oslo, Oslo, Norway ,grid.10306.340000 0004 0606 5382Parasites and Microbes, Wellcome Sanger Institute, Cambridge, UK ,grid.7737.40000 0004 0410 2071Department of Mathematics and Statistics, Helsinki Institute of Information Technology, University of Helsinki, Helsinki, Finland
| | - Edward J. Feil
- grid.7340.00000 0001 2162 1699The Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, UK
| |
Collapse
|
293
|
Mo SS, Norström M, Slettemeås JS, Urdahl AM, Telke AA, Sunde M. Longitudinal Sampling Reveals Persistence of and Genetic Diversity in Extended-Spectrum Cephalosporin-Resistant Escherichia coli From Norwegian Broiler Production. Front Microbiol 2021; 12:795127. [PMID: 34956163 PMCID: PMC8702822 DOI: 10.3389/fmicb.2021.795127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/16/2021] [Indexed: 11/22/2022] Open
Abstract
There are knowledge gaps concerning dynamics of extended-spectrum cephalosporin (ESC)-resistant Escherichia coli and their plasmids in broiler production and the persistence of strains on broiler farms. Thus, we aimed at characterising ESC-resistant Escherichia coli collected from all flocks reared on 10 different farms during a six-months sampling period. All isolates (n = 43) were subjected to whole-genome sequencing, and a subset of isolates (n = 7) were also sequenced using oxford nanopore technology and subsequent hybrid assembly in order to do in-depth characterisation of the ESC resistance plasmids. The 43 isolates belonged to 11 different sequence types, and three different ESC resistance gene/plasmid combinations were present, namely, IncK2/blaCMY-2 (n = 29), IncI1/blaCMY-2 (n = 6) and IncI1/blaCTX-M-1 (n = 8). ESC-resistant E. coli of different STs and with different ESC resistance gene/plasmid combinations could be present on the same farm, while a single ST and ESC resistance gene/plasmid displaying zero or few SNP differences were present on other farms. In-depth characterisation of IncK2/blaCMY-2 plasmids revealed that at least two distinct variants circulate in the broiler production. These plasmids showed close homology to previously published plasmids from other countries. Our longitudinal study show that ESC-resistant E. coli belong to a multitude of different STs and that different ESC resistance genes and plasmids occur. However, there is also indication of persistence of both ESC-resistant E. coli strains and IncK2/blaCMY-2 plasmids on farms. Further studies are warranted to determine the dynamics of strains, plasmids and ESC resistance genes within single broiler flocks.
Collapse
Affiliation(s)
- Solveig Sølverød Mo
- Section for Food Safety and Animal Health Research, Department of Animal Health, Welfare and Food Safety, Norwegian Veterinary Institute, Oslo, Norway
| | - Madelaine Norström
- Section for Food Safety and Animal Health Research, Department of Animal Health, Welfare and Food Safety, Norwegian Veterinary Institute, Oslo, Norway.,Section for Epidemiology, Department of Animal Health, Welfare and Food Safety, Norwegian Veterinary Institute, Oslo, Norway
| | - Jannice Schau Slettemeås
- Section for Food Safety and Animal Health Research, Department of Animal Health, Welfare and Food Safety, Norwegian Veterinary Institute, Oslo, Norway
| | - Anne Margrete Urdahl
- Section for Food Safety and Animal Health Research, Department of Animal Health, Welfare and Food Safety, Norwegian Veterinary Institute, Oslo, Norway
| | - Amar Anandrao Telke
- Section for Food Safety and Animal Health Research, Department of Animal Health, Welfare and Food Safety, Norwegian Veterinary Institute, Oslo, Norway
| | - Marianne Sunde
- Section for Food Safety and Animal Health Research, Department of Animal Health, Welfare and Food Safety, Norwegian Veterinary Institute, Oslo, Norway
| |
Collapse
|
294
|
Yehouenou CL, Bogaerts B, De Keersmaecker SCJ, Roosens NHC, Marchal K, Tchiakpe E, Affolabi D, Simon A, Dossou FM, Vanneste K, Dalleur O. Whole-Genome Sequencing-Based Antimicrobial Resistance Characterization and Phylogenomic Investigation of 19 Multidrug-Resistant and Extended-Spectrum Beta-Lactamase-Positive Escherichia coli Strains Collected From Hospital Patients in Benin in 2019. Front Microbiol 2021; 12:752883. [PMID: 34956117 PMCID: PMC8695880 DOI: 10.3389/fmicb.2021.752883] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/08/2021] [Indexed: 01/28/2023] Open
Abstract
The increasing worldwide prevalence of extended-spectrum beta-lactamase (ESBL) producing Escherichia coli constitutes a serious threat to global public health. Surgical site infections are associated with high morbidity and mortality rates in developing countries, fueled by the limited availability of effective antibiotics. We used whole-genome sequencing (WGS) to evaluate antimicrobial resistance and the phylogenomic relationships of 19 ESBL-positive E. coli isolates collected from surgical site infections in patients across public hospitals in Benin in 2019. Isolates were identified by MALDI-TOF mass spectrometry and phenotypically tested for susceptibility to 16 antibiotics. Core-genome multi-locus sequence typing and single-nucleotide polymorphism-based phylogenomic methods were used to investigate the relatedness between samples. The broader phylogenetic context was characterized through the inclusion of publicly available genome data. Among the 19 isolates, 13 different sequence types (STs) were observed, including ST131 (n = 2), ST38 (n = 2), ST410 (n = 2), ST405 (n = 2), ST617 (n = 2), and ST1193 (n = 2). The bla CTX-M-15 gene encoding ESBL resistance was found in 15 isolates (78.9%), as well as other genes associated with ESBL, such as bla OXA-1 (n = 14) and bla TEM-1 (n = 9). Additionally, we frequently observed genes encoding resistance against aminoglycosides [aac-(6')-Ib-cr, n = 14], quinolones (qnrS1 , n = 4), tetracyclines [tet(B), n = 14], sulfonamides (sul2, n = 14), and trimethoprim (dfrA17, n = 13). Nonsynonymous chromosomal mutations in the housekeeping genes parC and gyrA associated with resistance to fluoroquinolones were also detected in multiple isolates. Although the phylogenomic investigation did not reveal evidence of hospital-acquired transmissions, we observed two very similar strains collected from patients in different hospitals. By characterizing a set of multidrug-resistant isolates collected from a largely unexplored environment, this study highlights the added value for WGS as an effective early warning system for emerging pathogens and antimicrobial resistance.
Collapse
Affiliation(s)
- Carine Laurence Yehouenou
- Clinical Pharmacy Research Group (CLIP), Louvain Drug Research Institute (LDRI), Université Catholique de Louvain UCLouvain, Brussels, Belgium.,Laboratoire de Référence des Mycobactéries (LRM), Cotonou, Benin.,Faculté des Sciences de la Santé (FSS), Université d'Abomey Calavi (UAC), Cotonou, Benin
| | - Bert Bogaerts
- Transversal activities in Applied Genomics, Sciensano, Brussels, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | | | - Nancy H C Roosens
- Transversal activities in Applied Genomics, Sciensano, Brussels, Belgium
| | - Kathleen Marchal
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,Department of Information Technology, IDLab, Ghent University, IMEC, Ghent, Belgium.,Department of Genetics, University of Pretoria, Pretoria, South Africa
| | - Edmond Tchiakpe
- Laboratory of Cell Biology and Physiology, Department of Biochemistry and Cellular Biology Faculty of Sciences and Technology and Institute of Applied Biomedical Sciences (ISBA), University of Abomey-Calavi, Cotonou, Benin.,National Reference Laboratory of Health Program Fighting Against AIDS in Benin, Health Ministry, Cotonou, Benin
| | - Dissou Affolabi
- Laboratoire de Référence des Mycobactéries (LRM), Cotonou, Benin.,Faculté des Sciences de la Santé (FSS), Université d'Abomey Calavi (UAC), Cotonou, Benin.,Centre National Hospitalier et Universitaire Hubert Koutoukou Maga (CNHU-HKM), Cotonou, Benin
| | - Anne Simon
- Centres hospitaliers Jolimont, prevention et contrôle des infections, Haine-Saint-Paul, Belgium
| | - Francis Moise Dossou
- Department of Surgery and Surgical Specialties, Faculty of Health Sciences, Campus universitaire champ de foire, Cotonou, Benin
| | - Kevin Vanneste
- Transversal activities in Applied Genomics, Sciensano, Brussels, Belgium
| | - Olivia Dalleur
- Clinical Pharmacy Research Group (CLIP), Louvain Drug Research Institute (LDRI), Université Catholique de Louvain UCLouvain, Brussels, Belgium.,Pharmacy, Clinique universitaire Saint-Luc, Université catholique de Louvain, UCLouvain, Brussels, Belgium
| |
Collapse
|
295
|
Sugita K, Aoki K, Komori K, Nagasawa T, Ishii Y, Iwata S, Tateda K. Molecular Analysis of blaKPC-2-Harboring Plasmids: Tn 4401a Interplasmid Transposition and Tn 4401a-Carrying ColRNAI Plasmid Mobilization from Klebsiella pneumoniae to Citrobacter europaeus and Morganella morganii in a Single Patient. mSphere 2021; 6:e0085021. [PMID: 34730375 PMCID: PMC8565517 DOI: 10.1128/msphere.00850-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 10/21/2021] [Indexed: 11/20/2022] Open
Abstract
The spread of Klebsiella pneumoniae carbapenemase (KPC)-producing Enterobacterales is a public health concern. KPC-encoding blaKPC is predominantly spread by strains of a particular phylogenetic lineage, clonal group 258, but can also be spread by horizontal transfer of blaKPC-carrying plasmids. Here, we report the transfer of a blaKPC-2-harboring plasmid via mobilization from K. pneumoniae to Citrobacter freundii complex and Morganella morganii strains in a single patient. We performed draft whole-genome sequencing to analyze 20 carbapenemase-producing Enterobacterales strains (15 of K. pneumoniae, two of C. freundii complex, and three of M. morganii) and all K. pneumoniae strains using MiSeq and/or MinION isolated from a patient who was hospitalized in New York and Montreal before returning to Japan. All strains harbored blaKPC-2-containing Tn4401a. The 15 K. pneumoniae strains each belonged to sequence type 258 and harbored a Tn4401a-carrying multireplicon-type plasmid, IncN and IncR (IncN+R). Three of these K. pneumoniae strains also possessed a Tn4401a-carrying ColRNAI plasmid, suggesting that Tn4401a underwent interplasmid transposition. Of these three ColRNAI plasmids, two and one were identical to plasmids harbored by two Citrobacter europaeus and three M. morganii strains, respectively. The Tn4401a-carrying ColRNAI plasmids were each 23,753 bp long and incapable of conjugal transfer via their own genes alone, but they mobilized during the conjugal transfer of Tn4401a-carrying IncN+R plasmids in K. pneumoniae. Interplasmid transposition of Tn4401a from an IncN+R plasmid to a ColRNAI plasmid in K. pneumoniae and mobilization of Tn4401a-carrying ColRNAI plasmids contributed to the acquisition of blaKPC-2 in C. europaeus and M. morganii. IMPORTANCE Plasmid transfer plays an important role in the interspecies spread of carbapenemase genes, including the Klebsiella pneumoniae carbapenemase (KPC)-coding gene, blaKPC. We conducted whole-genome sequencing (WGS) analysis and transmission experiments to analyze blaKPC-2-carrying mobile genetic elements (MGEs) between the blaKPC-2-harboring K. pneumoniae, Citrobacter europaeus, and Morganella morganii strains isolated from a single patient. blaKPC-2 was contained within an MGE, Tn4401a. WGS of blaKPC-2-carrying K. pneumoniae, C. europaeus, and M. morganii strains isolated from one patient revealed that Tn4401a-carrying ColRNAI plasmids were generated by plasmid-to-plasmid transfer of Tn4401a from a multireplicon-type IncN and IncR (IncN+R) plasmid in K. pneumoniae strains. Tn4401a-carrying ColRNAI plasmids were incapable of conjugal transfer in C. europaeus and M. morganii but mobilized from K. pneumoniae to a recipient Escherichia coli strain during the conjugal transfer of Tn4401a-carrying IncN+R plasmid. Therefore, Tn4401a-carrying ColRNAI plasmids contributed to the acquisition of blaKPC-2 in C. europaeus and M. morganii.
Collapse
Affiliation(s)
- Kayoko Sugita
- Department of Microbiology and Infectious Diseases, Toho University Graduate School of Medicine, Tokyo, Japan
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Kotaro Aoki
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo, Japan
| | - Kohji Komori
- Department of Microbiology and Infectious Diseases, Toho University Graduate School of Medicine, Tokyo, Japan
| | - Tatsuya Nagasawa
- Department of Microbiology and Infectious Diseases, Toho University Graduate School of Medicine, Tokyo, Japan
| | - Yoshikazu Ishii
- Department of Microbiology and Infectious Diseases, Toho University Graduate School of Medicine, Tokyo, Japan
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo, Japan
| | - Satoshi Iwata
- Department of Infectious Diseases, Keio University School of Medicine, Tokyo, Japan
- Department of Infectious Diseases, National Cancer Center Hospital, Tokyo, Japan
| | - Kazuhiro Tateda
- Department of Microbiology and Infectious Diseases, Toho University Graduate School of Medicine, Tokyo, Japan
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo, Japan
| |
Collapse
|
296
|
Ma X, Zhang X, Xia J, Sun H, Zhang X, Ye L. Phenolic compounds promote the horizontal transfer of antibiotic resistance genes in activated sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149549. [PMID: 34392203 DOI: 10.1016/j.scitotenv.2021.149549] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
Phenolic compounds are common organic pollutants in wastewater. During the wastewater treatment process, these compounds may influence the microbial community structure and functions. However, the impact of the phenolic compounds in the wastewater treatment plants on the horizontal transfer of antibiotic resistance genes (ARGs) has not been well assessed. In this study, we investigated the horizontal transfer of ARGs under the stress of phenolic compounds. The results showed that in pure culture bacteria system, p-nitrophenol (PNP), p-aminophenol (PAP) and phenol (PhOH) (10-100 mg/L) can significantly increase the horizontal transfer frequency of ARGs by 2.2-4.6, 3.6-9.4 and 1.9-9.0 fold, respectively. And, the RP4 plasmid transfer from Escherichia coli HB101 (E. coli HB101) to the bacteria in activated sludge increased obviously under the stress of phenolic compounds. Further investigation revealed that the PNP and PhOH at the concentration of 10-100 mg/L increased the production of reactive oxygen species and the permeability of cell membrane in the donor and recipient, which could be the causes of horizontal transfer of RP4 plasmid. In addition, it was also found that PNP, PAP and PhOH stress inhibit the expression of the global regulatory genes korB and trbA in the RP4 plasmid, and increase the expression level of the traF gene, thereby promoting the conjugative transfer of the RP4 plasmid. Taken together, these results improved our understanding of the horizontal transfer of ARGs under the stress of phenolic compounds and provided basic information for management of the systems that treat wastewater containing phenolic compounds.
Collapse
Affiliation(s)
- Xueyan Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Xiuwen Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Juntao Xia
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Haohao Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Xuxiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Lin Ye
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China.
| |
Collapse
|
297
|
Bloomfield SJ, Midwinter AC, Biggs PJ, French NP, Marshall JC, Hayman DTS, Carter PE, Mather AE, Fayaz A, Thornley C, Kelly DJ, Benschop J. Genomic adaptations of Campylobacter jejuni to long-term human colonization. Gut Pathog 2021; 13:72. [PMID: 34893079 PMCID: PMC8665580 DOI: 10.1186/s13099-021-00469-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 12/01/2021] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Campylobacter is a genus of bacteria that has been isolated from the gastrointestinal tract of humans and animals, and the environments they inhabit around the world. Campylobacter adapt to new environments by changes in their gene content and expression, but little is known about how they adapt to long-term human colonization. In this study, the genomes of 31 isolates from a New Zealand patient and 22 isolates from a United Kingdom patient belonging to Campylobacter jejuni sequence type 45 (ST45) were compared with 209 ST45 genomes from other sources to identify the mechanisms by which Campylobacter adapts to long-term human colonization. In addition, the New Zealand patient had their microbiota investigated using 16S rRNA metabarcoding, and their level of inflammation and immunosuppression analyzed using biochemical tests, to determine how Campylobacter adapts to a changing gastrointestinal tract. RESULTS There was some evidence that long-term colonization led to genome degradation, but more evidence that Campylobacter adapted through the accumulation of non-synonymous single nucleotide polymorphisms (SNPs) and frameshifts in genes involved in cell motility, signal transduction and the major outer membrane protein (MOMP). The New Zealand patient also displayed considerable variation in their microbiome, inflammation and immunosuppression over five months, and the Campylobacter collected from this patient could be divided into two subpopulations, the proportion of which correlated with the amount of gastrointestinal inflammation. CONCLUSIONS This study demonstrates how genomics, phylogenetics, 16S rRNA metabarcoding and biochemical markers can provide insight into how Campylobacter adapts to changing environments within human hosts. This study also demonstrates that long-term human colonization selects for changes in Campylobacter genes involved in cell motility, signal transduction and the MOMP; and that genetically distinct subpopulations of Campylobacter evolve to adapt to the changing gastrointestinal environment.
Collapse
Affiliation(s)
| | - Anne C Midwinter
- mEpiLab, Hopkirk Research Institute, Massey University, Palmerston North, 4410, New Zealand
- Infectious Disease Research Centre, Hopkirk Research Institute, Massey University, Palmerston North, 4410, New Zealand
| | - Patrick J Biggs
- mEpiLab, Hopkirk Research Institute, Massey University, Palmerston North, 4410, New Zealand
- Infectious Disease Research Centre, Hopkirk Research Institute, Massey University, Palmerston North, 4410, New Zealand
- School of Fundamental Science, Massey University, Palmerston North, 4410, New Zealand
| | - Nigel P French
- Infectious Disease Research Centre, Hopkirk Research Institute, Massey University, Palmerston North, 4410, New Zealand
- New Zealand Food Safety Science and Research Centre, Hopkirk Research Institute, Massey University, Palmerston North, 4410, New Zealand
| | - Jonathan C Marshall
- mEpiLab, Hopkirk Research Institute, Massey University, Palmerston North, 4410, New Zealand
- Infectious Disease Research Centre, Hopkirk Research Institute, Massey University, Palmerston North, 4410, New Zealand
- School of Fundamental Science, Massey University, Palmerston North, 4410, New Zealand
| | - David T S Hayman
- mEpiLab, Hopkirk Research Institute, Massey University, Palmerston North, 4410, New Zealand
- Infectious Disease Research Centre, Hopkirk Research Institute, Massey University, Palmerston North, 4410, New Zealand
- Centre of Research Excellence for Complex Systems, Te Pūnaha Matatini, Auckland, New Zealand
| | - Philip E Carter
- Institute of Environmental Science of Research, 34 Kenepuru Drive, Kenepuru, Porirua, 5022, New Zealand
| | - Alison E Mather
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk, UK
- University of East Anglia, Norwich, Norfolk, UK
| | - Ahmed Fayaz
- mEpiLab, Hopkirk Research Institute, Massey University, Palmerston North, 4410, New Zealand
- Infectious Disease Research Centre, Hopkirk Research Institute, Massey University, Palmerston North, 4410, New Zealand
| | - Craig Thornley
- Regional Public Health, Hutt Hospital, Lower Hutt, 5040, New Zealand
| | - David J Kelly
- School of Biosciences, The University of Sheffield, Sheffield, South Yorkshire, UK
| | - Jackie Benschop
- mEpiLab, Hopkirk Research Institute, Massey University, Palmerston North, 4410, New Zealand
- Infectious Disease Research Centre, Hopkirk Research Institute, Massey University, Palmerston North, 4410, New Zealand
| |
Collapse
|
298
|
Luo L, Wang H, Payne MJ, Liang C, Bai L, Zheng H, Zhang Z, Zhang L, Zhang X, Yan G, Zou N, Chen X, Wan Z, Xiong Y, Lan R, Li Q. Comparative genomics of Chinese and international isolates of Escherichia albertii: population structure and evolution of virulence and antimicrobial resistance. Microb Genom 2021; 7. [PMID: 34882085 PMCID: PMC8767325 DOI: 10.1099/mgen.0.000710] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Escherichia albertii is a recently recognized species in the genus Escherichia that causes diarrhoea. The population structure, genetic diversity and genomic features have not been fully examined. Here, 169 E. albertii isolates from different sources and regions in China were sequenced and combined with 312 publicly available genomes (from additional 14 countries) for genomic analyses. The E. albertii population was divided into two clades and eight lineages, with lineage 3 (L3), L5 and L8 more common in China. Clinical isolates were observed in all clades/lineages. Virulence genes were found to be distributed differently among lineages: subtypes of the intimin encoding gene eae and the cytolethal distending toxin gene cdtB were lineage associated, and the second type three secretion system (ETT2) island was truncated in L3 and L6. Seven new eae subtypes and one new cdtB subtype (cdtB-VI) were identified. Alarmingly, 85.9 % of the Chinese E. albertii isolates were predicted to be multidrug-resistant (MDR) with 35.9 % harbouring genes capable of conferring resistance to 10 to 14 different drug classes. The majority of the MDR isolates were of poultry source from China and belonged to four sequence types (STs) [ST4638, ST4479, ST4633 and ST4488]. Thirty-four plasmids with some carrying MDR and virulence genes, and 130 prophages were identified from 17 complete E. albertii genomes. The 130 intact prophages were clustered into five groups, with group five prophages harbouring more virulence genes. We further identified three E. albertii specific genes as markers for the identification of this species. Our findings provided fundamental insights into the population structure, virulence variation and drug resistance of E. albertii.
Collapse
Affiliation(s)
- Lijuan Luo
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Hong Wang
- Zigong Center for Disease Control and Prevention, Zigong, Sichuan, PR China
| | - Michael J Payne
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Chelsea Liang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Li Bai
- Division I of Risk Assessment, National Health Commission Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing, PR China
| | - Han Zheng
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Zhengdong Zhang
- Zigong Center for Disease Control and Prevention, Zigong, Sichuan, PR China
| | - Ling Zhang
- Zigong Center for Disease Control and Prevention, Zigong, Sichuan, PR China
| | - Xiaomei Zhang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Guodong Yan
- Zigong Center for Disease Control and Prevention, Zigong, Sichuan, PR China
| | - Nianli Zou
- Zigong Center for Disease Control and Prevention, Zigong, Sichuan, PR China
| | - Xi Chen
- Zigong Center for Disease Control and Prevention, Zigong, Sichuan, PR China
| | - Ziting Wan
- Zigong Center for Disease Control and Prevention, Zigong, Sichuan, PR China
| | - Yanwen Xiong
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Qun Li
- Zigong Center for Disease Control and Prevention, Zigong, Sichuan, PR China
| |
Collapse
|
299
|
Mobile Colistin Resistance Genetic Determinants of Non-Typhoid Salmonella enterica Isolates from Russia. Microorganisms 2021; 9:microorganisms9122515. [PMID: 34946117 PMCID: PMC8705591 DOI: 10.3390/microorganisms9122515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 11/23/2022] Open
Abstract
Polymyxin resistance, determined by mcr genes located on plasmid DNA, currently poses a high epidemiological threat. Non-typhoid Salmonella (NTS) are one of the key pathogens causing diarrheal diseases. Here, we report the isolation and whole genome sequencing of multidrug colistin-resistant/susceptible isolates of non-typhoid Salmonella enterica serovars carrying mcr genes. Non-typhoid strains of Salmonella enterica subsp. enterica were isolated during microbiological monitoring of the environment, food, and diarrheal disease patients between 2018 and 2020 in Russia (n = 586). mcr-1 genes were detected using a previously developed qPCR assay, and whole genome sequencing of mcr positive isolates was performed by both short-read (Illumina) and long-read (Oxford Nanopore) approaches. Three colistin-resistant isolates, including two isolates of S. Enteritidis and one isolate of S. Bovismorbificans, carried the mcr-1.1 gene located on IncX4 and IncI2 conjugative plasmids, respectively. The phenotypically colistin-susceptible isolate of S. Typhimurium carried a mcr-9 gene on plasmid IncHI2. In conclusion, we present the first three cases of mcr gene-carrying NTS isolates detected in Russia with both outbreak and sporadic epidemiological backgrounds.
Collapse
|
300
|
Palacios-Gorba C, Moura A, Gomis J, Leclercq A, Gómez-Martín Á, Bracq-Dieye H, Mocé ML, Tessaud-Rita N, Jiménez-Trigos E, Vales G, García-Muñoz Á, Thouvenot P, García-Roselló E, Lecuit M, Quereda JJ. Ruminant-associated Listeria monocytogenes isolates belong preferentially to dairy-associated hypervirulent clones: a longitudinal study in 19 farms. Environ Microbiol 2021; 23:7617-7631. [PMID: 34863016 DOI: 10.1111/1462-2920.15860] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/24/2021] [Indexed: 01/18/2023]
Abstract
Studies have shown that ruminants constitute reservoirs of Listeria monocytogenes, but little is known about the epidemiology and genetic diversity of this pathogen within farms. Here we conducted a large-scale longitudinal study to monitor Listeria spp. in 19 dairy farms during three consecutive seasons (N = 3251 samples). L. innocua was the most prevalent species, followed by L. monocytogenes. Listeria monocytogenes was detected in 52.6% of farms and more frequently in cattle (4.1%) and sheep (4.5%) than in goat farms (0.2%). Lineage I accounted for 69% of L. monocytogenes isolates. Among animal samples, the most prevalent sublineages (SL) and clonal complexes (CC) were SL1/CC1, SL219/CC4, SL26/CC26 and SL87/CC87, whereas SL666/CC666 was most prevalent in environmental samples. Sixty-one different L. monocytogenes cgMLST types were found, 28% common to different animals and/or surfaces within the same farm and 21% previously reported elsewhere in the context of food and human surveillance. Listeria monocytogenes prevalence was not affected by farm hygiene but by season: higher prevalence was observed during winter in cattle, and during winter and spring in sheep farms. Cows in their second lactation had a higher probability of L. monocytogenes faecal shedding. This study highlights dairy farms as a reservoir for hypervirulent L. monocytogenes.
Collapse
Affiliation(s)
- Carla Palacios-Gorba
- Departamento Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Alexandra Moura
- Institut Pasteur, National Reference Centre and WHO Collaborating Centre for Listeria, Paris, France.,Institut Pasteur, Université de Paris, Inserm U1117, Biology of Infection Unit, Paris, 75015, France
| | - Jesús Gomis
- Departamento Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Alexandre Leclercq
- Institut Pasteur, National Reference Centre and WHO Collaborating Centre for Listeria, Paris, France.,Institut Pasteur, Université de Paris, Inserm U1117, Biology of Infection Unit, Paris, 75015, France
| | - Ángel Gómez-Martín
- Departamento Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Hélène Bracq-Dieye
- Institut Pasteur, National Reference Centre and WHO Collaborating Centre for Listeria, Paris, France.,Institut Pasteur, Université de Paris, Inserm U1117, Biology of Infection Unit, Paris, 75015, France
| | - María L Mocé
- Departamento Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Nathalie Tessaud-Rita
- Institut Pasteur, National Reference Centre and WHO Collaborating Centre for Listeria, Paris, France.,Institut Pasteur, Université de Paris, Inserm U1117, Biology of Infection Unit, Paris, 75015, France
| | - Estrella Jiménez-Trigos
- Departamento Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Guillaume Vales
- Institut Pasteur, National Reference Centre and WHO Collaborating Centre for Listeria, Paris, France.,Institut Pasteur, Université de Paris, Inserm U1117, Biology of Infection Unit, Paris, 75015, France
| | - Ángel García-Muñoz
- Departamento Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Pierre Thouvenot
- Institut Pasteur, National Reference Centre and WHO Collaborating Centre for Listeria, Paris, France.,Institut Pasteur, Université de Paris, Inserm U1117, Biology of Infection Unit, Paris, 75015, France
| | - Empar García-Roselló
- Departamento Medicina y Cirugía Animal, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Marc Lecuit
- Institut Pasteur, National Reference Centre and WHO Collaborating Centre for Listeria, Paris, France.,Institut Pasteur, Université de Paris, Inserm U1117, Biology of Infection Unit, Paris, 75015, France.,Necker-Enfants Malades University Hospital, Division of Infectious Diseases and Tropical Medicine, Institut Imagine, APHP, Paris, France
| | - Juan J Quereda
- Departamento Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| |
Collapse
|