251
|
Scholthof HB. Plant virus transport: motions of functional equivalence. TRENDS IN PLANT SCIENCE 2005; 10:376-82. [PMID: 16023398 DOI: 10.1016/j.tplants.2005.07.002] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2004] [Revised: 04/26/2005] [Accepted: 07/01/2005] [Indexed: 05/03/2023]
Abstract
Plant virus cell-to-cell movement and subsequent systemic transport are governed by a series of mechanisms involving various virus and plant factors. Specialized virus encoded movement proteins (MPs) control the cell-to-cell transport of viral nucleoprotein complexes through plasmodesmata. MPs of different viruses have diverse properties and each interacts with specific host factors that also have a range of functions. Most viruses are then transported via the phloem as either nucleoprotein complexes or virions, with contributions from host and virus proteins. Some virus proteins contribute to the establishment and maintenance of systemic infection by inhibiting RNA silencing-mediated degradation of viral RNA. In spite of all the different movement strategies and the viral and host components, there are possible functional commonalities in virus-host interactions that govern viral spread through plants.
Collapse
Affiliation(s)
- Herman B Scholthof
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, 77843, USA.
| |
Collapse
|
252
|
Ajjikuttira P, Loh CS, Wong SM. Reciprocal function of movement proteins and complementation of long-distance movement of Cymbidium mosaic virus RNA by Odontoglossum ringspot virus coat protein. J Gen Virol 2005; 86:1543-1553. [PMID: 15831968 DOI: 10.1099/vir.0.80772-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Complementation of movement and coat proteins of the orchid-infecting potexvirus Cymbidium mosaic virus (CymMV) and tobamovirus Odontoglossum ringspot virus (ORSV) was investigated. Nicotiana benthamiana, which is susceptible to both CymMV and ORSV, was used as a model system. Four transgenic lines, each harbouring one of the movement protein (MP) or coat protein (CP) genes of CymMV or ORSV, were constructed. The MP of CymMV consists of three overlapping open reading frames, together called the triple-gene block (TGB). CymMV and ORSV mutants, each carrying an inactivated MP or CP, were generated from the respective biologically active full-length cDNA clones. Complementation was studied by infecting transgenic plants with in vitro transcripts generated from these mutants. The cell-to-cell movement of a movement-deficient CymMV was restored in transgenic plants carrying the ORSV MP transgene. Similarly, CymMV TGB1 transgenic plants were able to rescue the cell-to-cell movement of a movement-deficient ORSV mutant. ORSV CP transgenic plants supported systemic movement of a CymMV CP-deficient mutant. However, in these plants, neither encapsidation of CymMV RNA with ORSV CP nor CymMV CP expression was detected. Long-distance movement of an ORSV CP-deficient mutant was not supported by CymMV CP. The complementation of MPs and CPs of CymMV and ORSV facilitates movement of these viruses in plants, except for long-distance movement of ORSV RNA by CymMV CP.
Collapse
Affiliation(s)
- Prabha Ajjikuttira
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Chiang-Shiong Loh
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Sek-Man Wong
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore 117604, Singapore
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| |
Collapse
|
253
|
Verchot-Lubicz J. A new cell-to-cell transport model for Potexviruses. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2005; 18:283-90. [PMID: 15828680 DOI: 10.1094/mpmi-18-0283] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
In the last five years, we have gained significant insight into the role of the Potexvirus proteins in virus movement and RNA silencing. Potexviruses require three movement proteins, named triple gene block (TGB)p1, TGBp2, and TGBp3, and the viral coat protein (CP) to facilitate viral cell-to-cell and vascular transport. TGBp1 is a multifunctional protein that has RNA helicase activity, promotes translation of viral RNAs, increases plasmodesmal size exclusion limits, and suppresses RNA silencing. TGBp2 and TGBp3 are membrane-binding proteins. CP is required for genome encapsidation and forms ribonucleoprotein complexes along with TGBp1 and viral RNA. This review considers the functions of the TGB proteins, how they interact with each other and CP, and how silencing suppression might be linked to viral transport. A new model of the mechanism for Potexvirus transport is proposed.
Collapse
Affiliation(s)
- Jeanmarie Verchot-Lubicz
- Oklahoma State University, Department of Entomology and Plant Pathology, Stillwater, OK 74078, USA.
| |
Collapse
|
254
|
Kim JY. Regulation of short-distance transport of RNA and protein. CURRENT OPINION IN PLANT BIOLOGY 2005; 8:45-52. [PMID: 16207533 DOI: 10.1016/j.pbi.2004.11.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The intercellular trafficking of proteins and RNAs has emerged as a novel mechanism of cell-cell communication in plant development. Plasmodesmata (PD), intercellular cytoplasmic channels, have a central role in cell-cell trafficking of regulatory proteins and RNAs. Recent studies have demonstrated that plants use either a selective or a non-selective PD trafficking pathway for regulatory proteins. Moreover, plants have developed strategies to regulate both selective and non-selective movement. Recent work has focused especially on integrating the recent understanding of the function and mechanisms of intercellular macromolecule movement through PD.
Collapse
Affiliation(s)
- Jae-Yean Kim
- Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Environmental Biotechnology National Core Research Center, Gyeongsang National University, Jinju 660-701, Korea.
| |
Collapse
|
255
|
Haupt S, Cowan GH, Ziegler A, Roberts AG, Oparka KJ, Torrance L. Two plant-viral movement proteins traffic in the endocytic recycling pathway. THE PLANT CELL 2005; 17:164-81. [PMID: 15608333 PMCID: PMC544497 DOI: 10.1105/tpc.104.027821] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2004] [Accepted: 11/05/2004] [Indexed: 05/18/2023]
Abstract
Many plant viruses exploit a conserved group of proteins known as the triple gene block (TGB) for cell-to-cell movement. Here, we investigated the interaction of two TGB proteins (TGB2 and TGB3) of Potato mop-top virus (PMTV), with components of the secretory and endocytic pathways when expressed as N-terminal fusions to green fluorescent protein or monomeric red fluorescent protein (mRFP). Our studies revealed that fluorophore-labeled TGB2 and TGB3 showed an early association with the endoplasmic reticulum (ER) and colocalized in motile granules that used the ER-actin network for intracellular movement. Both proteins increased the size exclusion limit of plasmodesmata, and TGB3 accumulated at plasmodesmata in the absence of TGB2. TGB3 contains a putative Tyr-based sorting motif, mutations in which abolished ER localization and plasmodesmatal targeting. Later in the expression cycle, both fusion proteins were incorporated into vesicular structures. TGB2 associated with these structures on its own, but TGB3 could not be incorporated into the vesicles in the absence of TGB2. Moreover, in addition to localization to the ER and motile granules, mRFP-TGB3 was incorporated into vesicles when expressed in PMTV-infected epidermal cells, indicating recruitment by virus-expressed TGB2. The TGB fusion protein-containing vesicles were labeled with FM4-64, a marker for plasma membrane internalization and components of the endocytic pathway. TGB2 also colocalized in vesicles with Ara7, a Rab5 ortholog that marks the early endosome. Protein interaction analysis revealed that recombinant TGB2 interacted with a tobacco protein belonging to the highly conserved RME-8 family of J-domain chaperones, shown to be essential for endocytic trafficking in Caenorhabditis elegans and Drosophila melanogaster. Collectively, the data indicate the involvement of the endocytic pathway in viral intracellular movement, the implications of which are discussed.
Collapse
Affiliation(s)
- Sophie Haupt
- Programme of Cell-to-Cell Communication, Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | | | | | | | | | | |
Collapse
|
256
|
Abstract
Intercellular transport via plasmodesmata controls cell fate decisions in plants, and is of fundamental importance in viral movement, disease resistance, and the spread of RNAi signals. Although plasmodesmata appear to be unique to plant cells, they may have structural and functional similarities to the newly discovered tunneling nanotubes that connect animal cells. Recently, proteins that localize to plasmodesmata have been identified, and a microtubule-associated protein was found to negatively regulate the trafficking of viral movement proteins. Other advances have delivered new insights into the function and molecular nature of plasmodesmata and have shown that protein trafficking through plasmodesmata is developmentally regulated, opening up the possibility that the genetic control of plasmodesmal function will soon be understood.
Collapse
Affiliation(s)
- Michelle Lynn Cilia
- Watson School of Biological Sciences, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA.
| | | |
Collapse
|
257
|
Kobayashi K, Sarrobert C, Ares X, Rivero MM, Maldonado S, Robaglia C, Mentaberry A. Over-expression of potato virus X TGBp1 movement protein in transgenic tobacco plants causes developmental and metabolic alterations. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2004; 42:731-8. [PMID: 15474379 DOI: 10.1016/j.plaphy.2004.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2003] [Accepted: 07/23/2004] [Indexed: 04/30/2023]
Abstract
Transgenic Nicotiana tabacum plants expressing the TGBp1 movement protein of potato virus X (PVX) were studied to investigate the effects caused by this protein on plant physiology and development. TGBp1 caused consistent reductions of size and weight in different organs of these plants; however shoot-to-root ratios were similar to those of control plants. Transgenic seedlings showed smaller root meristems and calli derived from TGBp1 leaves grew at a slower rate through successive subcultures. Microscopic observations of TGBp1 plants revealed flattened chloroplasts containing plastoglobuli-like bodies. Further analyses showed a considerable reduction in photosynthetic rate, lower starch levels in leaves and roots, higher nitrate accumulation in leaves and induction of pathogenesis-related (PR) protein genes. Since these changes were not observed when other PVX sequences were expressed in tobacco, we postulate that TGBp1 is an important symptom contributor in PVX infections.
Collapse
Affiliation(s)
- Ken Kobayashi
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (CONICET), Facultad de Ciencias Exactas y Naturales (UBA), Vuelta de Obligado 2490, 1428 Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
258
|
Zamyatnin AA, Solovyev AG, Savenkov EI, Germundsson A, Sandgren M, Valkonen JPT, Morozov SY. Transient coexpression of individual genes encoded by the triple gene block of potato mop-top virus reveals requirements for TGBp1 trafficking. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2004; 17:921-30. [PMID: 15305613 DOI: 10.1094/mpmi.2004.17.8.921] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
TGBp1, TGBp2, and TGBp3, three plant virus movement proteins encoded by the "triple gene block" (TGB), may act in concert to facilitate cell-to-cell transport of viral RNA genomes. Transient expression of Potato mop-top virus (genus Pomovirus) movement proteins was used as a model to reconstruct interactions between TGB proteins. In bombarded epidermal cells of Nicotiana benthamiana, green fluorescent protein (GFP)-TGBp1 was distributed uniformly. However, in the presence of TGBp2 and TGBp3, GFP-TGBp1 was directed to intermediate bodies at the cell periphery, and to cell wall-embedded punctate bodies. Moreover, GFP-TGBp1 migrated into cells immediately adjacent to the bombarded cell. These data suggest that TGBp2 and TGBp3 mediate transport of GFP-TGBp1 to and through plasmodesmata. Mutagenesis of TGBp1 suggested that the NTPase and helicase activities of TGBp1 were not required for its transport to intermediate bodies directed by TGBp2 and TGBp3, but these activities were essential for the protein association with cell wall-embedded punctate bodies and translocation of TGBpl to neighboring cells. The C-terminal region of TGBp1 was critical for trafficking mediated by TGBp2 and TGBp3. Mutation analysis also suggested an involvement of the TGBp2 C-terminal region in interactions with TGBp1.
Collapse
Affiliation(s)
- Andrey A Zamyatnin
- Department of Plant Biology and Forest Genetics, Swedish University of Agricultural Sciences (SLU), SE-750 07 Uppsala, Sweden.
| | | | | | | | | | | | | |
Collapse
|
259
|
Whitham SA, Wang Y. Roles for host factors in plant viral pathogenicity. CURRENT OPINION IN PLANT BIOLOGY 2004; 7:365-71. [PMID: 15231257 DOI: 10.1016/j.pbi.2004.04.006] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The simple, obligate nature of viruses requires them to usurp or divert cellular resources, including host factors, away from their normal functions. The characterization of host proteins, membranes, and nucleic acids that are implicated in viral infection cycles, together with other recent discoveries, is providing fundamental clues about the molecular bases of viral susceptibility. As viruses invade susceptible plants, they create conditions that favor systemic infections by suppressing multiple layers of innate host defenses. When viruses meddle in these defense mechanisms, which are interlinked with basic cellular functions, phenotypic changes can result that contribute to disease symptoms.
Collapse
Affiliation(s)
- Steven A Whitham
- Iowa State University, Department of Plant Pathology, Ames, Iowa 50011-1020, USA.
| | | |
Collapse
|
260
|
Peremyslov VV, Pan YW, Dolja VV. Movement protein of a closterovirus is a type III integral transmembrane protein localized to the endoplasmic reticulum. J Virol 2004; 78:3704-9. [PMID: 15016890 PMCID: PMC371079 DOI: 10.1128/jvi.78.7.3704-3709.2004] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2003] [Accepted: 11/25/2003] [Indexed: 11/20/2022] Open
Abstract
Cell-to-cell movement of beet yellows closterovirus requires four structural proteins and a 6-kDa protein (p6) that is a conventional, nonstructural movement protein. Here we demonstrate that either virus infection or p6 overexpression results in association of p6 with the rough endoplasmic reticulum. The p6 protein possesses a single-span, transmembrane, N-terminal domain and a hydrophilic, C-terminal domain that is localized on the cytoplasmic face of the endoplasmic reticulum. In the infected cells, p6 forms a disulfide bridge via a cysteine residue located near the protein's N terminus. Mutagenic analyses indicated that each of the p6 domains, as well as protein dimerization, is essential for p6 function in virus movement.
Collapse
Affiliation(s)
- Valera V Peremyslov
- Department of Botany and Plant Pathology and Center for Gene Research and Biotechnology, Oregon State University, Corvallis, Oregon 97331, USA
| | | | | |
Collapse
|
261
|
Rochon D, Kakani K, Robbins M, Reade R. Molecular aspects of plant virus transmission by olpidium and plasmodiophorid vectors. ANNUAL REVIEW OF PHYTOPATHOLOGY 2004; 42:211-241. [PMID: 15283666 DOI: 10.1146/annurev.phyto.42.040803.140317] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The genome structures of a large number of viruses transmitted by olpidium and plasmodiophorid vectors have been determined. The viruses are highly diverse, belonging to 12 genera in at least 4 families. Plasmodiophorids are now classified as protists rather than true fungi. This finding, along with the recognition of the great variety of viruses transmitted by olpidium and plasmodiophorid vectors, will likely lead to an elaboration of the details of in vitro and in vivo transmission mechanisms. Recent progress in elucidating the interaction between Cucumber necrosis virus (CNV) and its zoospore vector suggests that specific sites on the capsid as well as on the zoospore are involved in transmission. Moreover, some features of CNV/zoospore attachment are similar to poliovirus/host cell interactions, suggesting evolutionary conservation of functional features of plant and animal virus capsids.
Collapse
Affiliation(s)
- D'Ann Rochon
- Agriculture and Agri-Food Canada, Pacific Agri-Food Research Center, Summerland, British Columbia V0H 1Z0, Canada.
| | | | | | | |
Collapse
|
262
|
Heinlein M, Epel BL. Macromolecular Transport and Signaling Through Plasmodesmata. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 235:93-164. [PMID: 15219782 DOI: 10.1016/s0074-7696(04)35003-5] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Plasmodesmata (Pd) are channels in the plant cell wall that in conjunction with associated phloem form an intercellular communication network that supports the cell-to-cell and long-distance trafficking of a wide spectrum of endogenous proteins and ribonucleoprotein complexes. The trafficking of such macromolecules is of importance in the orchestration of non-cell autonomous developmental and physiological processes. Plant viruses encode movement proteins (MPs) that subvert this communication network to facilitate the spread of infection. These viral proteins thus represent excellent experimental keys for exploring the mechanisms involved in intercellular trafficking and communication via Pd.
Collapse
Affiliation(s)
- Manfred Heinlein
- Botanical Institute, University of Basel, Hebelstrasse 1, CH-4056 Basel, Switzerland
| | | |
Collapse
|
263
|
Oparka KJ. Getting the message across: how do plant cells exchange macromolecular complexes? TRENDS IN PLANT SCIENCE 2004; 9:33-41. [PMID: 14729217 DOI: 10.1016/j.tplants.2003.11.001] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
A major pathway for macromolecular exchange in plants involves plasmodesmata (PD), the small pores that connect adjoining cells. This article considers the nature of macromolecular complexes (MCs) that pass through PD and the pathways and mechanisms that guide them to the PD pore. Recent cell-biological studies have identified proteins involved in the directional trafficking of MCs to PD, and yeast two-hybrid studies have isolated novel host proteins that interact with viral movement proteins. Collectively, these studies are yielding important clues in the search for components that compose the plant intercellular MC trafficking pathway. Here, they are placed in the context of a functional model that links the cytoskeleton, chaperones and secretory pathway in the intercellular trafficking of MCs.
Collapse
Affiliation(s)
- Karl J Oparka
- Cell-to-Cell Communication Programme, Scottish Crop Research Institute, Invergowrie, DD2 5DA, Dundee, UK.
| |
Collapse
|