251
|
Zhang H, Zhou H, Berke L, Heck AJR, Mohammed S, Scheres B, Menke FLH. Quantitative phosphoproteomics after auxin-stimulated lateral root induction identifies an SNX1 protein phosphorylation site required for growth. Mol Cell Proteomics 2013; 12:1158-69. [PMID: 23328941 DOI: 10.1074/mcp.m112.021220] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein phosphorylation is instrumental to early signaling events. Studying system-wide phosphorylation in relation to processes under investigation requires a quantitative proteomics approach. In Arabidopsis, auxin application can induce pericycle cell divisions and lateral root formation. Initiation of lateral root formation requires transcriptional reprogramming following auxin-mediated degradation of transcriptional repressors. The immediate early signaling events prior to this derepression are virtually uncharacterized. To identify the signal molecules responding to auxin application, we used a lateral root-inducible system that was previously developed to trigger synchronous division of pericycle cells. To identify and quantify the early signaling events following this induction, we combined (15)N-based metabolic labeling and phosphopeptide enrichment and applied a mass spectrometry-based approach. In total, 3068 phosphopeptides were identified from auxin-treated root tissue. This root proteome dataset contains largely phosphopeptides not previously reported and represents one of the largest quantitative phosphoprotein datasets from Arabidopsis to date. Key proteins responding to auxin treatment included the multidrug resistance-like and PIN2 auxin carriers, auxin response factor2 (ARF2), suppressor of auxin resistance 3 (SAR3), and sorting nexin1 (SNX1). Mutational analysis of serine 16 of SNX1 showed that overexpression of the mutated forms of SNX1 led to retarded growth and reduction of lateral root formation due to the reduced outgrowth of the primordium, showing proof of principle for our approach.
Collapse
Affiliation(s)
- Hongtao Zhang
- Bijvoet Center for Biomolecular Research, and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
252
|
Schmidt C, Zhou M, Marriott H, Morgner N, Politis A, Robinson CV. Comparative cross-linking and mass spectrometry of an intact F-type ATPase suggest a role for phosphorylation. Nat Commun 2013; 4:1985. [PMID: 23756419 PMCID: PMC3709506 DOI: 10.1038/ncomms2985] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 05/07/2013] [Indexed: 11/13/2022] Open
Abstract
F-type ATPases are highly conserved enzymes used primarily for the synthesis of ATP. Here we apply mass spectrometry to the F1FO-ATPase, isolated from spinach chloroplasts, and uncover multiple modifications in soluble and membrane subunits. Mass spectra of the intact ATPase define a stable lipid 'plug' in the FO complex and reveal the stoichiometry of nucleotide binding in the F1 head. Comparing complexes formed in solution from an untreated ATPase with one incubated with a phosphatase reveals that the dephosphorylated enzyme has reduced nucleotide occupancy and decreased stability. By contrasting chemical cross-linking of untreated and dephosphorylated forms we show that cross-links are retained between the head and base, but are significantly reduced in the head, stators and stalk. Conformational changes at the catalytic interface, evidenced by changes in cross-linking, provide a rationale for reduced nucleotide occupancy and highlight a role for phosphorylation in regulating nucleotide binding and stability of the chloroplast ATPase.
Collapse
Affiliation(s)
- Carla Schmidt
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, UK
| | - Min Zhou
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, UK
| | - Hazel Marriott
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, UK
| | - Nina Morgner
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, UK
| | - Argyris Politis
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, UK
| | - Carol V. Robinson
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, UK
| |
Collapse
|
253
|
Huang M, Friso G, Nishimura K, Qu X, Olinares PDB, Majeran W, Sun Q, van Wijk KJ. Construction of Plastid Reference Proteomes for Maize and Arabidopsis and Evaluation of Their Orthologous Relationships; The Concept of Orthoproteomics. J Proteome Res 2012. [DOI: 10.1021/pr300952g] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mingshu Huang
- Department
of Plant Biology and ‡Computational Biology Service Unit, Cornell University, Ithaca, New York 14853, United States
| | - Giulia Friso
- Department
of Plant Biology and ‡Computational Biology Service Unit, Cornell University, Ithaca, New York 14853, United States
| | - Kenji Nishimura
- Department
of Plant Biology and ‡Computational Biology Service Unit, Cornell University, Ithaca, New York 14853, United States
| | - Xian Qu
- Department
of Plant Biology and ‡Computational Biology Service Unit, Cornell University, Ithaca, New York 14853, United States
| | - Paul Dominic B. Olinares
- Department
of Plant Biology and ‡Computational Biology Service Unit, Cornell University, Ithaca, New York 14853, United States
| | - Wojciech Majeran
- Department
of Plant Biology and ‡Computational Biology Service Unit, Cornell University, Ithaca, New York 14853, United States
| | - Qi Sun
- Department
of Plant Biology and ‡Computational Biology Service Unit, Cornell University, Ithaca, New York 14853, United States
| | - Klaas J. van Wijk
- Department
of Plant Biology and ‡Computational Biology Service Unit, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
254
|
Motohashi R, Rödiger A, Agne B, Baerenfaller K, Baginsky S. Common and specific protein accumulation patterns in different albino/pale-green mutants reveals regulon organization at the proteome level. PLANT PHYSIOLOGY 2012; 160:2189-201. [PMID: 23027667 PMCID: PMC3510140 DOI: 10.1104/pp.112.204032] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Research interest in proteomics is increasingly shifting toward the reverse genetic characterization of gene function at the proteome level. In plants, several distinct gene defects perturb photosynthetic capacity, resulting in the loss of chlorophyll and an albino or pale-green phenotype. Because photosynthesis is interconnected with the entire plant metabolism and its regulation, all albino plants share common characteristics that are determined by the switch from autotrophic to heterotrophic growth. Reverse genetic characterizations of such plants often cannot distinguish between specific consequences of a gene defect from generic effects in response to perturbations in photosynthetic capacity. Here, we set out to define common and specific features of protein accumulation in three different albino/pale-green plant lines. Using quantitative proteomics, we report a common molecular phenotype that connects the loss of photosynthetic capacity with other chloroplast and cellular functions, such as protein folding and stability, plastid protein import, and the expression of stress-related genes. Surprisingly, we do not find significant differences in the expression of key transcriptional regulators, suggesting that substantial regulation occurs at the posttranscriptional level. We examine the influence of different normalization schemes on the quantitative proteomics data and report all identified proteins along with their fold changes and P values in albino plants in comparison with the wild type. Our analysis provides initial guidance for the distinction between general and specific adaptations of the proteome in photosynthesis-impaired plants.
Collapse
|
255
|
Wang X, Bian Y, Cheng K, Gu LF, Ye M, Zou H, Sun SSM, He JX. A large-scale protein phosphorylation analysis reveals novel phosphorylation motifs and phosphoregulatory networks in Arabidopsis. J Proteomics 2012; 78:486-98. [PMID: 23111157 DOI: 10.1016/j.jprot.2012.10.018] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 10/10/2012] [Accepted: 10/19/2012] [Indexed: 01/08/2023]
Abstract
Large-scale protein phosphorylation analysis by MS is emerging as a powerful tool in plant signal transduction research. However, our current understanding of the phosphorylation regulatory network in plants is still very limited. Here, we report on a proteome-wide profiling of phosphopeptides in nine-day-old Arabidopsis (Arabidopsis thaliana) seedlings by using an enrichment method combining the titanium (Ti(4+))-based IMAC and the RP-strong cation exchange (RP-SCX) biphasic trap column-based online RPLC. Through the duplicated RPLC-MS/MS analyses, we identified 5348 unique phosphopeptides for 2552 unique proteins. Among the phosphoproteins identified, 41% of them were first-time identified. Further evolutionary conservation and phosphorylation motif analyses of the phosphorylation sites discovered 100 highly conserved phosphorylation residues and identified 17 known and 14 novel motifs specific for Ser/Thr protein kinases. Gene ontology and pathway analyses revealed that many of the new identified phosphoproteins are important regulatory proteins that are involved in diverse biological processes, particularly in central metabolisms and cell signaling. Taken together, our results provided not only new insights into the complex phosphoregulatory network in plants but also important resources for future functional studies of protein phosphorylation in plant growth and development.
Collapse
Affiliation(s)
- Xu Wang
- State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | | | | | | | | | | | | | | |
Collapse
|
256
|
Vargas-Suárez M, Castro-Sánchez A, Toledo-Ortiz G, González de la Vara LE, García E, Loza-Tavera H. Protein phosphorylation regulates in vitro spinach chloroplast petD mRNA 3'-untranslated region stability, processing, and degradation. Biochimie 2012; 95:400-9. [PMID: 23108228 DOI: 10.1016/j.biochi.2012.10.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 10/17/2012] [Indexed: 12/19/2022]
Abstract
RNA-binding proteins (RNPs) participate in diverse processes of mRNA metabolism, and phosphorylation changes their binding properties. In spinach chloroplasts, 24RNP and 28RNP are associated with polynucleotide posphorylase forming a complex on charge of pre-mRNA 3'-end maturation. Here, we tested the hypothesis that the phosphorylation status of 24RNP and 28RNP, present in a spinach chloroplast mRNA 3'-UTR processing extract (CPE), controls the transition between petD precursor stabilization, 3'-UTR processing, and RNA degradation in vitro. The CPE processed or stabilized petD precursor depending on the ATP concentration present in an in vitro 3'-UTR processing (IVP) assay. These effects were also observed when ATP was pre-incubated and removed before the IVP assay. Moreover, a dephosphorylated (DP)-CPE degraded petD precursor and recovered 3'-UTR processing or stabilization activities in an ATP concentration dependent manner. To determine the role 24/28RNP plays in regulating these processes a 24/28RNP-depleted (Δ24/28)CPE was generated. The Δ24/28CPE degraded the petD precursor, but when it was reconstituted with recombinant non-phosphorylated (NP)-24RNP or NP-28RNP, the precursor was stabilized, whereas when Δ24/28CPE was reconstituted with phosphorylated (P)-24RNP or P-28RNP, it recovered 3'-UTR processing, indicating that 24RNP or 28RNP is needed to stabilize the precursor, have a redundant role, and their phosphorylation status regulates the transition between precursor stabilization and 3'-UTR processing. A DP-Δ24/28CPE reconstituted or not with NP-24/28RNP degraded petD precursor. Pre-incubation of DP-Δ24/28CPE with NP-24/28RNP plus 0.03 mM ATP recovered 3'-UTR processing activity, and its reconstitution with P-24/28RNP stabilized the precursor. However, pre-incubation of DP-Δ24/28CPE with 0.03 mM ATP, and further reconstitution with NP-24/28RNP or P-24/28RNP produced precursor stability instead of RNA degradation, and RNA processing instead of precursor stability, respectively. Moreover, in vitro phosphorylation of CPE showed that 24RNP, 28RNP, and other proteins may be phosphorylated. Altogether, these results reveal that phosphorylation of 24RNP, 28RNP, and other unidentified CPE proteins mediates the in vitro interplay between petD precursor stability, 3'-UTR processing, and degradation, and support the idea that protein phosphorylation plays an important role in regulating mRNA metabolism in chloroplast.
Collapse
Affiliation(s)
- Martín Vargas-Suárez
- Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Ave. Universidad 3000, Colonia Ciudad Universitaria, 04510 México, DF, Mexico.
| | | | | | | | | | | |
Collapse
|
257
|
Mayank P, Grossman J, Wuest S, Boisson-Dernier A, Roschitzki B, Nanni P, Nühse T, Grossniklaus U. Characterization of the phosphoproteome of mature Arabidopsis pollen. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012. [PMID: 22631563 DOI: 10.1111/j.1365-313x.2012.05061.x [epub ahead of print]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Successful pollination depends on cell-cell communication and rapid cellular responses. In Arabidopsis, the pollen grain lands on a dry stigma, where it hydrates, germinates and grows a pollen tube that delivers the sperm cells to the female gametophyte to effect double fertilization. Various studies have emphasized that a mature, dehydrated pollen grain contains all the transcripts and proteins required for germination and initial pollen tube growth. Therefore, it is important to explore the role of post-translational modifications (here phosphorylation), through which many processes induced by pollination are probably controlled. We report here a phosphoproteomic study conducted on mature Arabidopsis pollen grains with the aim of identifying potential targets of phosphorylation. Using three enrichment chromatographies, a broad coverage of pollen phosphoproteins with 962 phosphorylated peptides corresponding to 598 phosphoproteins was obtained. Additionally, 609 confirmed phosphorylation sites were successfully mapped. Two hundred and seven of 240 phosphoproteins that were absent from the PhosPhAt database containing the empirical Arabidopsis phosphoproteome showed highly enriched expression in pollen. Gene ontology (GO) enrichment analysis of these 240 phosphoproteins shows an over-representation of GO categories crucial for pollen tube growth, suggesting that phosphorylation regulates later processes of pollen development. Moreover, motif analyses of pollen phosphopeptides showed an over-representation of motifs specific for Ca²⁺/calmodulin-dependent protein kinases, mitogen-activated protein kinases, and binding motifs for 14-3-3 proteins. Lastly, one tyrosine phosphorylation site was identified, validating the TDY dual phosphorylation motif of mitogen-activated protein kinases (MPK8/MPK15). This study provides a solid basis to further explore the role of phosphorylation during pollen development.
Collapse
Affiliation(s)
- Pururawa Mayank
- Centre for Model Organism Proteomes, University of Zürich, Zürich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
258
|
Kurepa J, Wang S, Smalle J. The role of 26S proteasome-dependent proteolysis in the formation and restructuring of microtubule networks. PLANT SIGNALING & BEHAVIOR 2012; 7:1289-1295. [PMID: 22902696 PMCID: PMC3493416 DOI: 10.4161/psb.21543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In this review, we summarize the evidence pointing at the important role of 26S proteasome-dependent proteolysis in the regulation of microtubule synthesis and microtubule dynamics. Because most of the advances in this relatively unexplored research field originate from yeast and animal studies, we have considered those studies that describe the role of proteolysis in processes that are evolutionarily conserved and known to exist in plants. In addition, we place particular emphasis on the proteasome-dependent degradation of plant-specific microtubule-associated protein SPIRAL1 and its function in MT rearrangements associated with salt stress.
Collapse
|
259
|
Mayank P, Grossman J, Wuest S, Boisson-Dernier A, Roschitzki B, Nanni P, Nühse T, Grossniklaus U. Characterization of the phosphoproteome of mature Arabidopsis pollen. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 72:89-101. [PMID: 22631563 DOI: 10.1111/j.1365-313x.2012.05061.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Successful pollination depends on cell-cell communication and rapid cellular responses. In Arabidopsis, the pollen grain lands on a dry stigma, where it hydrates, germinates and grows a pollen tube that delivers the sperm cells to the female gametophyte to effect double fertilization. Various studies have emphasized that a mature, dehydrated pollen grain contains all the transcripts and proteins required for germination and initial pollen tube growth. Therefore, it is important to explore the role of post-translational modifications (here phosphorylation), through which many processes induced by pollination are probably controlled. We report here a phosphoproteomic study conducted on mature Arabidopsis pollen grains with the aim of identifying potential targets of phosphorylation. Using three enrichment chromatographies, a broad coverage of pollen phosphoproteins with 962 phosphorylated peptides corresponding to 598 phosphoproteins was obtained. Additionally, 609 confirmed phosphorylation sites were successfully mapped. Two hundred and seven of 240 phosphoproteins that were absent from the PhosPhAt database containing the empirical Arabidopsis phosphoproteome showed highly enriched expression in pollen. Gene ontology (GO) enrichment analysis of these 240 phosphoproteins shows an over-representation of GO categories crucial for pollen tube growth, suggesting that phosphorylation regulates later processes of pollen development. Moreover, motif analyses of pollen phosphopeptides showed an over-representation of motifs specific for Ca²⁺/calmodulin-dependent protein kinases, mitogen-activated protein kinases, and binding motifs for 14-3-3 proteins. Lastly, one tyrosine phosphorylation site was identified, validating the TDY dual phosphorylation motif of mitogen-activated protein kinases (MPK8/MPK15). This study provides a solid basis to further explore the role of phosphorylation during pollen development.
Collapse
Affiliation(s)
- Pururawa Mayank
- Centre for Model Organism Proteomes, University of Zürich, Zürich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
260
|
Kusakina J, Dodd AN. Phosphorylation in the plant circadian system. TRENDS IN PLANT SCIENCE 2012; 17:575-83. [PMID: 22784827 DOI: 10.1016/j.tplants.2012.06.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 06/13/2012] [Accepted: 06/14/2012] [Indexed: 05/17/2023]
Abstract
Circadian regulation is essential for optimum plant performance. In addition to loops and cascades of transcription and translation, the plant circadian clock and its associated signal transduction networks incorporate many post-translational mechanisms. Phosphorylation is a common feature of signal transduction and gene regulation. In this opinion article, we illustrate how phosphorylation events are positioned within the entrainment, functioning, and regulation of the circadian timing system. Phosphorylation regulates protein stability, protein-protein interactions and protein-DNA interactions within the core oscillator. We suggest that phosphorylation provides a potential mechanism for the distribution of circadian timing information within the cell and for the integration of circadian timing information with other signaling pathways.
Collapse
Affiliation(s)
- Jelena Kusakina
- Department of Biology, University of York, York YO10 5DD, UK
| | | |
Collapse
|
261
|
Lundquist PK, Davis JI, van Wijk KJ. ABC1K atypical kinases in plants: filling the organellar kinase void. TRENDS IN PLANT SCIENCE 2012; 17:546-55. [PMID: 22694836 PMCID: PMC3926664 DOI: 10.1016/j.tplants.2012.05.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 05/10/2012] [Accepted: 05/12/2012] [Indexed: 05/20/2023]
Abstract
Surprisingly few protein kinases have been demonstrated in chloroplasts or mitochondria. Here, we discuss the activity of bc(1) complex kinase (ABC1K) protein family, which we suggest locate in mitochondria and plastids, thus filling the kinase void. The ABC1Ks are atypical protein kinases and their ancestral function is the regulation of quinone synthesis. ABC1Ks have proliferated from one or two members in non-photosynthetic organisms to more than 16 members in algae and higher plants. In this review, we reconstruct the evolutionary history of the ABC1K family, provide a functional domain analysis for angiosperms and a nomenclature for ABC1Ks in Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa) and maize (Zea mays). Finally, we hypothesize that targets of ABC1Ks include enzymes of prenyl-lipid metabolism as well as components of the organellar gene expression machineries.
Collapse
Affiliation(s)
- Peter K Lundquist
- Department of Plant Biology, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
262
|
Fristedt R, Wasilewska W, Romanowska E, Vener AV. Differential phosphorylation of thylakoid proteins in mesophyll and bundle sheath chloroplasts from maize plants grown under low or high light. Proteomics 2012; 12:2852-61. [DOI: 10.1002/pmic.201200196] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 06/21/2012] [Accepted: 07/05/2012] [Indexed: 02/02/2023]
Affiliation(s)
- Rikard Fristedt
- Department of Clinical and Experimental Medicine; Linköping University; Linköping Sweden
| | - Wioleta Wasilewska
- Department of Molecular Plant Physiology; Warsaw University; Warsaw Poland
| | | | - Alexander V. Vener
- Department of Clinical and Experimental Medicine; Linköping University; Linköping Sweden
| |
Collapse
|
263
|
Yao Q, Gao J, Bollinger C, Thelen JJ, Xu D. Predicting and analyzing protein phosphorylation sites in plants using musite. FRONTIERS IN PLANT SCIENCE 2012; 3:186. [PMID: 22934099 PMCID: PMC3423629 DOI: 10.3389/fpls.2012.00186] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 07/31/2012] [Indexed: 05/29/2023]
Abstract
Although protein phosphorylation sites can be reliably identified with high-resolution mass spectrometry, the experimental approach is time-consuming and resource-dependent. Furthermore, it is unlikely that an experimental approach could catalog an entire phosphoproteome. Computational prediction of phosphorylation sites provides an efficient and flexible way to reveal potential phosphorylation sites and provide hypotheses in experimental design. Musite is a tool that we previously developed to predict phosphorylation sites based solely on protein sequence. However, it was not comprehensively applied to plants. In this study, the phosphorylation data from Arabidopsis thaliana, B. napus, G. max, M. truncatula, O. sativa, and Z. mays were collected for cross-species testing and the overall plant-specific prediction as well. The results show that the model for A. thaliana can be extended to other organisms, and the overall plant model from Musite outperforms the current plant-specific prediction tools, Plantphos, and PhosphAt, in prediction accuracy. Furthermore, a comparative study of predicted phosphorylation sites across orthologs among different plants was conducted to reveal potential evolutionary features. A bipolar distribution of isolated, non-conserved phosphorylation sites, and highly conserved ones in terms of the amino acid type was observed. It also shows that predicted phosphorylation sites conserved within orthologs do not necessarily share more sequence similarity in the flanking regions than the background, but they often inherit protein disorder, a property that does not necessitate high sequence conservation. Our analysis also suggests that the phosphorylation frequencies among serine, threonine, and tyrosine correlate with their relative proportion in disordered regions. Musite can be used as a web server (http://musite.net) or downloaded as an open-source standalone tool (http://musite.sourceforge.net/).
Collapse
Affiliation(s)
- Qiuming Yao
- Department of Computer Science, University of MissouriColumbia, MO, USA
- Bond Life Science Center, University of MissouriColumbia, MO, USA
| | - Jianjiong Gao
- Computational Biology Center, Memorial Sloan-Kettering Cancer CenterNew York, NY, USA
| | - Curtis Bollinger
- Department of Computer Science, University of MissouriColumbia, MO, USA
- Bond Life Science Center, University of MissouriColumbia, MO, USA
| | - Jay J. Thelen
- Bond Life Science Center, University of MissouriColumbia, MO, USA
- Department of Biochemistry, University of MissouriColumbia, MO, USA
| | - Dong Xu
- Department of Computer Science, University of MissouriColumbia, MO, USA
- Bond Life Science Center, University of MissouriColumbia, MO, USA
| |
Collapse
|
264
|
Paul AL, Denison FC, Schultz ER, Zupanska AK, Ferl RJ. 14-3-3 phosphoprotein interaction networks - does isoform diversity present functional interaction specification? FRONTIERS IN PLANT SCIENCE 2012; 3:190. [PMID: 22934100 PMCID: PMC3422896 DOI: 10.3389/fpls.2012.00190] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 08/02/2012] [Indexed: 05/02/2023]
Abstract
The 14-3-3 proteins have emerged as major phosphoprotein interaction proteins and thereby constitute a key node in the Arabidopsis Interactome Map, a node through which a large number of important signals pass. Throughout their history of discovery and description, the 14-3-3s have been described as protein families and there has been some evidence that the different 14-3-3 family members within any organism might carry isoform-specific functions. However, there has also been evidence for redundancy of 14-3-3 function, suggesting that the perceived 14-3-3 diversity may be the accumulation of neutral mutations over evolutionary time and as some 14-3-3 genes develop tissue or organ-specific expression. This situation has led to a currently unresolved question - does 14-3-3 isoform sequence diversity indicate functional diversity at the biochemical or cellular level? We discuss here some of the key observations on both sides of the resulting debate, and present a set of contrastable observations to address the theory functional diversity does exist among 14-3-3 isoforms. The resulting model suggests strongly that there are indeed functional specificities in the 14-3-3s of Arabidopsis. The model further suggests that 14-3-3 diversity and specificity should enter into the discussion of 14-3-3 roles in signal transduction and be directly approached in 14-3-3 experimentation. It is hoped that future studies involving 14-3-3s will continue to address specificity in experimental design and analysis.
Collapse
Affiliation(s)
- Anna-Lisa Paul
- Program in Plant Molecular and Cellular Biology, Horticultural Science Department, University of FloridaGainesville, FL, USA
| | - Fiona C. Denison
- Program in Plant Molecular and Cellular Biology, Horticultural Science Department, University of FloridaGainesville, FL, USA
| | - Eric R. Schultz
- Program in Plant Molecular and Cellular Biology, Horticultural Science Department, University of FloridaGainesville, FL, USA
| | - Agata K. Zupanska
- Program in Plant Molecular and Cellular Biology, Horticultural Science Department, University of FloridaGainesville, FL, USA
| | - Robert J. Ferl
- Program in Plant Molecular and Cellular Biology, Horticultural Science Department, University of FloridaGainesville, FL, USA
- Interdisciplinary Center for Biotechnology Research, University of FloridaGainesville, FL, USA
| |
Collapse
|
265
|
Abstract
A newcomer to the -omics era, proteomics, is a broad instrument-intensive research area that has advanced rapidly since its inception less than 20 years ago. Although the 'wet-bench' aspects of proteomics have undergone a renaissance with the improvement in protein and peptide separation techniques, including various improvements in two-dimensional gel electrophoresis and gel-free or off-gel protein focusing, it has been the seminal advances in MS that have led to the ascension of this field. Recent improvements in sensitivity, mass accuracy and fragmentation have led to achievements previously only dreamed of, including whole-proteome identification, and quantification and extensive mapping of specific PTMs (post-translational modifications). With such capabilities at present, one might conclude that proteomics has already reached its zenith; however, 'capability' indicates that the envisioned goals have not yet been achieved. In the present review we focus on what we perceive as the areas requiring more attention to achieve the improvements in workflow and instrumentation that will bridge the gap between capability and achievement for at least most proteomes and PTMs. Additionally, it is essential that we extend our ability to understand protein structures, interactions and localizations. Towards these ends, we briefly focus on selected methods and research areas where we anticipate the next wave of proteomic advances.
Collapse
|
266
|
Evidence for nucleotide-dependent processes in the thylakoid lumen of plant chloroplasts--an update. FEBS Lett 2012; 586:2946-54. [PMID: 22796491 DOI: 10.1016/j.febslet.2012.07.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 07/04/2012] [Accepted: 07/05/2012] [Indexed: 12/21/2022]
Abstract
The thylakoid lumen is an aqueous chloroplast compartment enclosed by the thylakoid membrane network. Bioinformatic and proteomic studies indicated the existence of 80-90 thylakoid lumenal proteins in Arabidopsis thaliana, having photosynthetic, non-photosynthetic or unclassified functions. None of the identified lumenal proteins had canonical nucleotide-binding motifs. It was therefore suggested that, in contrast to the chloroplast stroma harboring nucleotide-dependent enzymes and other proteins, the thylakoid lumen is a nucleotide-free compartment. Based on recent findings, we provide here an updated view about the presence of nucleotides in the thylakoid lumen of plant chloroplasts, and their role in function and dynamics of photosynthetic complexes.
Collapse
|
267
|
Melo-Braga MN, Verano-Braga T, León IR, Antonacci D, Nogueira FCS, Thelen JJ, Larsen MR, Palmisano G. Modulation of protein phosphorylation, N-glycosylation and Lys-acetylation in grape (Vitis vinifera) mesocarp and exocarp owing to Lobesia botrana infection. Mol Cell Proteomics 2012; 11:945-56. [PMID: 22778145 DOI: 10.1074/mcp.m112.020214] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Grapevine (Vitis vinifera) is an economically important fruit crop that is subject to many types of insect and pathogen attack. To better elucidate the plant response to Lobesia botrana pathogen infection, we initiated a global comparative proteomic study monitoring steady-state protein expression as well as changes in N-glycosylation, phosphorylation, and Lys-acetylation in control and infected mesocarp and exocarp from V. vinifera cv Italia. A multi-parallel, large-scale proteomic approach employing iTRAQ labeling prior to three peptide enrichment techniques followed by tandem mass spectrometry led to the identification of a total of 3059 proteins, 1135 phosphorylation sites, 323 N-linked glycosylation sites and 138 Lys-acetylation sites. Of these, we could identify changes in abundance of 899 proteins. The occupancy of 110 phosphorylation sites, 10 N-glycosylation sites and 20 Lys-acetylation sites differentially changed during L. botrana infection. Sequence consensus analysis for phosphorylation sites showed eight significant motifs, two of which containing up-regulated phosphopeptides (X-G-S-X and S-X-X-D) and two containing down-regulated phosphopeptides (R-X-X-S and S-D-X-E) in response to pathogen infection. Topographical distribution of phosphorylation sites within primary sequences reveal preferential phosphorylation at both the N- and C termini, and a clear preference for C-terminal phosphorylation in response to pathogen infection suggesting induction of region-specific kinase(s). Lys-acetylation analysis confirmed the consensus X-K-Y-X motif previously detected in mammals and revealed the importance of this modification in plant defense. The importance of N-linked protein glycosylation in plant response to biotic stimulus was evident by an up-regulated glycopeptide belonging to the disease resistance response protein 206. This study represents a substantial step toward the understanding of protein and PTMs-mediated plant-pathogen interaction shedding light on the mechanisms underlying the grape infection.
Collapse
Affiliation(s)
- Marcella N Melo-Braga
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
268
|
|
269
|
Stoppel R, Manavski N, Schein A, Schuster G, Teubner M, Schmitz-Linneweber C, Meurer J. RHON1 is a novel ribonucleic acid-binding protein that supports RNase E function in the Arabidopsis chloroplast. Nucleic Acids Res 2012; 40:8593-606. [PMID: 22735703 PMCID: PMC3458557 DOI: 10.1093/nar/gks613] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The Arabidopsis endonuclease RNase E (RNE) is localized in the chloroplast and is involved in processing of plastid ribonucleic acids (RNAs). By expression of a tandem affinity purification-tagged version of the plastid RNE in the Arabidopsis rne mutant background in combination with mass spectrometry, we identified the novel vascular plant-specific and co-regulated interaction partner of RNE, designated RHON1. RHON1 is essential for photoautotrophic growth and together with RNE forms a distinct ∼800 kDa complex. Additionally, RHON1 is part of various smaller RNA-containing complexes. RIP-chip and other association studies revealed that a helix-extended-helix-structured Rho-N motif at the C-terminus of RHON1 binds to and supports processing of specific plastid RNAs. In all respects, such as plastid RNA precursor accumulation, protein pattern, increased number and decreased size of chloroplasts and defective chloroplast development, the phenotype of rhon1 knockout mutants resembles that of rne lines. This strongly suggests that RHON1 supports RNE functions presumably by conferring sequence specificity to the endonuclease.
Collapse
Affiliation(s)
- Rhea Stoppel
- Department Biology 1, Biocenter of the Ludwig-Maximilians-University Munich, Chair of Plant Molecular Biology, Planegg-Martinsried D-82152, Germany
| | | | | | | | | | | | | |
Collapse
|
270
|
Wu X, Cheng Y, Li T, Wang Z, Liu JY. In vitro identification of DNA-binding motif for the new zinc finger protein AtYY1. Acta Biochim Biophys Sin (Shanghai) 2012; 44:483-9. [PMID: 22508367 DOI: 10.1093/abbs/gms020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The functional characterization of novel transcription factors identified by systematic analysis remains a major challenge due to insufficient data to interpret their specific roles in signaling networks. Here we present a DNA-binding sequence discovery method to in vitro identify a G-rich, 11-bp DNA-binding motif of a novel potential transcription factor AtYY1, a zinc finger protein in Arabidopsis, by using polymerase chain reaction-assisted in vitro selection and surface plasmon resonance analysis. Further mutational analysis of the conserved G bases of the potential motif confirmed that AtYY1 specifically bound to these conserved G sites. Additionally, genome-wide target gene analysis revealed that AtYY1 was involved in diverse cellular pathways, including glucose metabolism, photosynthesis, phototropism, and stress response.
Collapse
Affiliation(s)
- Xueping Wu
- Laboratory of Molecular Biology and Protein Science Laboratory of the Ministry of Education, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | | | | | | | | |
Collapse
|
271
|
Meyer LJ, Gao J, Xu D, Thelen JJ. Phosphoproteomic analysis of seed maturation in Arabidopsis, rapeseed, and soybean. PLANT PHYSIOLOGY 2012; 159:517-28. [PMID: 22440515 PMCID: PMC3375983 DOI: 10.1104/pp.111.191700] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 03/19/2012] [Indexed: 05/03/2023]
Abstract
To characterize protein phosphorylation in developing seed, a large-scale, mass spectrometry-based phosphoproteomic study was performed on whole seeds at five sequential stages of development in soybean (Glycine max), rapeseed (Brassica napus), and Arabidopsis (Arabidopsis thaliana). Phosphopeptides were enriched from 0.5 mg of total peptides using a combined strategy of immobilized metal affinity and metal oxide affinity chromatography. Enriched phosphopeptides were analyzed by Orbitrap tandem mass spectrometry and mass spectra mined against cognate genome or cDNA databases in both forward and randomized orientations, the latter to calculate false discovery rate. We identified a total of 2,001 phosphopeptides containing 1,026 unambiguous phosphorylation sites from 956 proteins, with an average false discovery rate of 0.78% for the entire study. The entire data set was uploaded into the Plant Protein Phosphorylation Database (www.p3db.org), including all meta-data and annotated spectra. The Plant Protein Phosphorylation Database is a portal for all plant phosphorylation data and allows for homology-based querying of experimentally determined phosphosites. Comparisons with other large-scale phosphoproteomic studies determined that 652 of the phosphoproteins are novel to this study. The unique proteins fall into several Gene Ontology categories, some of which are overrepresented in our study as well as other large-scale phosphoproteomic studies, including metabolic process and RNA binding; other categories are only overrepresented in our study, like embryonic development. This investigation shows the importance of analyzing multiple plants and plant organs to comprehensively map the complete plant phosphoproteome.
Collapse
Affiliation(s)
- Louis J. Meyer
- Department of Biochemistry (L.J.M., J.J.T.) and Department of Computer Sciences (J.G., D.X.), Christopher S. Bond Life Sciences Center, Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211
| | - Jianjiong Gao
- Department of Biochemistry (L.J.M., J.J.T.) and Department of Computer Sciences (J.G., D.X.), Christopher S. Bond Life Sciences Center, Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211
| | - Dong Xu
- Department of Biochemistry (L.J.M., J.J.T.) and Department of Computer Sciences (J.G., D.X.), Christopher S. Bond Life Sciences Center, Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211
| | - Jay J. Thelen
- Department of Biochemistry (L.J.M., J.J.T.) and Department of Computer Sciences (J.G., D.X.), Christopher S. Bond Life Sciences Center, Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211
| |
Collapse
|
272
|
Lan P, Li W, Wen TN, Schmidt W. Quantitative phosphoproteome profiling of iron-deficient Arabidopsis roots. PLANT PHYSIOLOGY 2012; 159:403-17. [PMID: 22438062 PMCID: PMC3375974 DOI: 10.1104/pp.112.193987] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Iron (Fe) is an essential mineral nutrient for plants, but often it is not available in sufficient quantities to sustain optimal growth. To gain insights into adaptive processes to low Fe availability at the posttranslational level, we conducted a quantitative analysis of Fe deficiency-induced changes in the phosphoproteome profile of Arabidopsis (Arabidopsis thaliana) roots. Isobaric tags for relative and absolute quantitation-labeled phosphopeptides were analyzed by liquid chromatography-tandem mass spectrometry on an LTQ-Orbitrap with collision-induced dissociation and high-energy collision dissociation capabilities. Using a combination of titanium dioxide and immobilized metal affinity chromatography to enrich phosphopeptides, we extracted 849 uniquely identified phosphopeptides corresponding to 425 proteins and identified several not previously described phosphorylation motifs. A subset of 45 phosphoproteins was defined as being significantly changed in abundance upon Fe deficiency. Kinase motifs in Fe-responsive proteins matched to protein kinase A/calcium calmodulin-dependent kinase II, casein kinase II, and proline-directed kinase, indicating a possible critical function of these kinase classes in Fe homeostasis. To validate our analysis, we conducted site-directed mutagenesis on IAA-CONJUGATE-RESISTANT4 (IAR4), a protein putatively functioning in auxin homeostasis. iar4 mutants showed compromised root hair formation and developed shorter primary roots. Changing serine-296 in IAR4 to alanine resulted in a phenotype intermediate between mutant and wild type, whereas acidic substitution to aspartate to mimic phosphorylation was either lethal or caused an extreme dwarf phenotype, supporting the critical importance of this residue in Fe homeostasis. Our analyses further disclose substantial changes in the abundance of phosphoproteins involved in primary carbohydrate metabolism upon Fe deficiency, complementing the picture derived from previous proteomic and transcriptomic profiling studies.
Collapse
|
273
|
Phosphoproteomics of Arabidopsis
chloroplasts reveals involvement of the STN7 kinase in phosphorylation of nucleoid protein pTAC16. FEBS Lett 2012; 586:1265-71. [DOI: 10.1016/j.febslet.2012.03.061] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 03/20/2012] [Accepted: 03/27/2012] [Indexed: 11/19/2022]
|
274
|
Joshi HJ, Christiansen KM, Fitz J, Cao J, Lipzen A, Martin J, Smith-Moritz AM, Pennacchio LA, Schackwitz WS, Weigel D, Heazlewood JL. 1001 Proteomes: a functional proteomics portal for the analysis of Arabidopsis thaliana accessions. ACTA ACUST UNITED AC 2012; 28:1303-6. [PMID: 22451271 DOI: 10.1093/bioinformatics/bts133] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
MOTIVATION The sequencing of over a thousand natural strains of the model plant Arabidopsis thaliana is producing unparalleled information at the genetic level for plant researchers. To enable the rapid exploitation of these data for functional proteomics studies, we have created a resource for the visualization of protein information and proteomic datasets for sequenced natural strains of A. thaliana. RESULTS The 1001 Proteomes portal can be used to visualize amino acid substitutions or non-synonymous single-nucleotide polymorphisms in individual proteins of A. thaliana based on the reference genome Col-0. We have used the available processed sequence information to analyze the conservation of known residues subject to protein phosphorylation among these natural strains. The substitution of amino acids in A. thaliana natural strains is heavily constrained and is likely a result of the conservation of functional attributes within proteins. At a practical level, we demonstrate that this information can be used to clarify ambiguously defined phosphorylation sites from phosphoproteomic studies. Protein sets of available natural variants are available for download to enable proteomic studies on these accessions. Together this information can be used to uncover the possible roles of specific amino acids in determining the structure and function of proteins in the model plant A. thaliana. An online portal to enable the community to exploit these data can be accessed at http://1001proteomes.masc-proteomics.org/
Collapse
Affiliation(s)
- Hiren J Joshi
- Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
275
|
Engelsberger WR, Schulze WX. Nitrate and ammonium lead to distinct global dynamic phosphorylation patterns when resupplied to nitrogen-starved Arabidopsis seedlings. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 69:978-95. [PMID: 22060019 PMCID: PMC3380553 DOI: 10.1111/j.1365-313x.2011.04848.x] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 11/03/2011] [Indexed: 05/04/2023]
Abstract
Nitrogen is an essential macronutrient for plant growth and development. Inorganic nitrogen and its assimilation products control various metabolic, physiological and developmental processes. Although the transcriptional responses induced by nitrogen have been extensively studied in the past, our work here focused on the discovery of candidate proteins for regulatory events that are complementary to transcriptional changes. Most signaling pathways involve modulation of protein abundance and/or activity by protein phosphorylation. Therefore, we analyzed the dynamic changes in protein phosphorylation in membrane and soluble proteins from plants exposed to rapid changes in nutrient availability over a time course of 30 min. Plants were starved of nitrogen and subsequently resupplied with nitrogen in the form of nitrate or ammonium. Proteins with maximum change in their phosphorylation level at up to 5 min after nitrogen resupply (fast responses) included GPI-anchored proteins, receptor kinases and transcription factors, while proteins with maximum change in their phosphorylation level after 10 min of nitrogen resupply (late responses) included proteins involved in protein synthesis and degradation, as well as proteins with functions in central metabolism and hormone metabolism. Resupply of nitrogen in the form of nitrate or ammonium resulted in distinct phosphorylation patterns, mainly of proteins with signaling functions, transcription factors and transporters.
Collapse
Affiliation(s)
| | - Waltraud X Schulze
- Max Planck Institut für Molekulare PflanzenphysiologieAm Mühlenberg 1, 14476 Golm, Germany
| |
Collapse
|
276
|
Kawaguchi S, Iida K, Harada E, Hanada K, Matsui A, Okamoto M, Shinozaki K, Seki M, Toyoda T. Positional correlation analysis improves reconstruction of full-length transcripts and alternative isoforms from noisy array signals or short reads. ACTA ACUST UNITED AC 2012; 28:929-37. [PMID: 22332235 PMCID: PMC3315713 DOI: 10.1093/bioinformatics/bts065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Motivation: A reconstruction of full-length transcripts observed by next-generation sequencer or tiling arrays is an essential technique to know all phenomena of transcriptomes. Several techniques of the reconstruction have been developed. However, problems of high-level noises and biases still remain and interrupt the reconstruction. A method is required that is robust against noise and bias and correctly reconstructs transcripts regardless of equipment used. Results: We propose a completely new statistical method that reconstructs full-length transcripts and can be applied on both next-generation sequencers and tiling arrays. The method called ARTADE2 analyzes ‘positional correlation’, meaning correlations of expression values for every combination on genomic positions of multiple transcriptional data. ARTADE2 then reconstructs full-length transcripts using a logistic model based on the positional correlation and the Markov model. ARTADE2 elucidated 17 591 full-length transcripts from 55 transcriptome datasets and showed notable performance compared with other recent prediction methods. Moreover, 1489 novel transcripts were discovered. We experimentally tested 16 novel transcripts, among which 14 were confirmed by reverse transcription–polymerase chain reaction and sequence mapping. The method also showed notable performance for reconstructing of mRNA observed by a next-generation sequencer. Moreover, the positional correlation and factor analysis embedded in ARTADE2 successfully detected regions at which alternative isoforms may exist, and thus are expected to be applied for discovering transcript biomarkers for a wide range of disciplines including preemptive medicine. Availability:http://matome.base.riken.jp Contact:toyoda@base.riken.jp Supplementary information:Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Shuji Kawaguchi
- Bioinformatics and Systems Engineering division, RIKEN Yokohama Institute, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
277
|
Stael S, Rocha AG, Wimberger T, Anrather D, Vothknecht UC, Teige M. Cross-talk between calcium signalling and protein phosphorylation at the thylakoid. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:1725-33. [PMID: 22197893 PMCID: PMC3970089 DOI: 10.1093/jxb/err403] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The role of protein phosphorylation for adjusting chloroplast functions to changing environmental needs is well established, whereas calcium signalling in the chloroplast is only recently becoming appreciated. The work presented here explores the potential cross-talk between calcium signalling and protein phosphorylation in chloroplasts and provides the first evidence for targets of calcium-dependent protein phosphorylation at the thylakoid membrane. Thylakoid proteins were screened for calcium-dependent phosphorylation by 2D gel electrophoresis combined with phospho-specific labelling and PsaN, CAS, and VAR1, among other proteins, were identified repeatedly by mass spectrometry. Subsequently their calcium-dependent phosphorylation was confirmed in kinase assays using the purified proteins and chloroplast extracts. This is the first report on the protein targets of calcium-dependent phosphorylation of thylakoid proteins and provides ground for further studies in this direction.
Collapse
Affiliation(s)
- Simon Stael
- Department of Biochemistry and Cell Biology, MFPL, University of Vienna, Dr. Bohrgasse 9, A-1030, Vienna, Austria
| | - Agostinho G. Rocha
- Department of Biology I, Botany, LMU Munich, Großhaderner Str. 2, D-82152 Planegg-Martinsried, Germany
| | - Terje Wimberger
- Department of Biochemistry and Cell Biology, MFPL, University of Vienna, Dr. Bohrgasse 9, A-1030, Vienna, Austria
| | - Dorothea Anrather
- Mass Spectrometry Facility, MFPL, University of Vienna, Dr. Bohrgasse 9, A-1030 Vienna, Austria
| | - Ute C. Vothknecht
- Department of Biology I, Botany, LMU Munich, Großhaderner Str. 2, D-82152 Planegg-Martinsried, Germany
- Center for Integrated Protein Science (Munich) at the Department of Biology of the LMU Munich, D-81377 Munich, Germany
| | - Markus Teige
- Department of Biochemistry and Cell Biology, MFPL, University of Vienna, Dr. Bohrgasse 9, A-1030, Vienna, Austria
| |
Collapse
|
278
|
Foyer CH, Neukermans J, Queval G, Noctor G, Harbinson J. Photosynthetic control of electron transport and the regulation of gene expression. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:1637-61. [PMID: 22371324 DOI: 10.1093/jxb/ers013] [Citation(s) in RCA: 291] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The term 'photosynthetic control' describes the short- and long-term mechanisms that regulate reactions in the photosynthetic electron transport (PET) chain so that the rate of production of ATP and NADPH is coordinated with the rate of their utilization in metabolism. At low irradiances these mechanisms serve to optimize light use efficiency, while at high irradiances they operate to dissipate excess excitation energy as heat. Similarly, the production of ATP and NADPH in ratios tailored to meet demand is finely tuned by a sophisticated series of controls that prevents the accumulation of high NAD(P)H/NAD(P) ratios and ATP/ADP ratios that would lead to potentially harmful over-reduction and inactivation of PET chain components. In recent years, photosynthetic control has also been extrapolated to the regulation of gene expression because mechanisms that are identical or similar to those that serve to regulate electron flow through the PET chain also coordinate the regulated expression of genes encoding photosynthetic proteins. This requires coordinated gene expression in the chloroplasts, mitochondria, and nuclei, involving complex networks of forward and retrograde signalling pathways. Photosynthetic control operates to control photosynthetic gene expression in response to environmental and metabolic changes. Mining literature data on transcriptome profiles of C(3) and C(4) leaves from plants grown under high atmospheric carbon dioxide (CO(2)) levels compared with those grown with ambient CO(2) reveals that the transition to higher photorespiratory conditions in C(3) plants enhances the expression of genes associated with cyclic electron flow pathways in Arabidopsis thaliana, consistent with the higher ATP requirement (relative to NADPH) of photorespiration.
Collapse
Affiliation(s)
- Christine H Foyer
- Centre for Plant Sciences, Faculty of Biology, University of Leeds, Leeds LS2 9JT, UK.
| | | | | | | | | |
Collapse
|
279
|
Giacometti S, Marrano CA, Bonza MC, Luoni L, Limonta M, De Michelis MI. Phosphorylation of serine residues in the N-terminus modulates the activity of ACA8, a plasma membrane Ca2+-ATPase of Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:1215-24. [PMID: 22090438 PMCID: PMC3276087 DOI: 10.1093/jxb/err346] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 09/20/2011] [Accepted: 10/04/2011] [Indexed: 05/23/2023]
Abstract
ACA8 is a plasma membrane-localized isoform of calmodulin (CaM)-regulated Ca(2+)-ATPase of Arabidopsis thaliana. Several phosphopeptides corresponding to portions of the regulatory N-terminus of ACA8 have been identified in phospho-proteomic studies. To mimic phosphorylation of the ACA8 N-terminus, each of the serines found to be phosphorylated in those studies (Ser19, Ser22, Ser27, Ser29, Ser57, and Ser99) has been mutated to aspartate. Mutants have been expressed in Saccharomyces cerevisiae and characterized: mutants S19D and S57D--and to a lesser extent also mutants S22D and S27D--are deregulated, as shown by their low activation by CaM and by tryptic cleavage of the N-terminus. The His-tagged N-termini of wild-type and mutant ACA8 (6His-(1)M-I(116)) were expressed in Escherichia coli, affinity-purified, and used to analyse the kinetics of CaM binding by surface plasmon resonance. All the analysed mutations affect the kinetics of interaction with CaM to some extent: in most cases, the altered kinetics result in marginal changes in affinity, with the exception of mutants S57D (K(D) ≈ 10-fold higher than wild-type ACA8) and S99D (K(D) about half that of wild-type ACA8). The ACA8 N-terminus is phosphorylated in vitro by two isoforms of A. thaliana calcium-dependent protein kinase (CPK1 and CPK16); phosphorylation of mutant 6His-(1)M-I(116) peptides shows that CPK16 is able to phosphorylate the ACA8 N-terminus at Ser19 and at Ser22. The possible physiological implications of the subtle modulation of ACA8 activity by phosphorylation of its N-terminus are discussed.
Collapse
|
280
|
Bayer RG, Stael S, Rocha AG, Mair A, Vothknecht UC, Teige M. Chloroplast-localized protein kinases: a step forward towards a complete inventory. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:1713-23. [PMID: 22282538 PMCID: PMC3971369 DOI: 10.1093/jxb/err377] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
In addition to redox regulation, protein phosphorylation has gained increasing importance as a regulatory principle in chloroplasts in recent years. However, only very few chloroplast-localized protein kinases have been identified to date. Protein phosphorylation regulates important chloroplast processes such as photosynthesis or transcription. In order to better understand chloroplast function, it is therefore crucial to obtain a complete picture of the chloroplast kinome, which is currently constrained by two effects: first, recent observations showed that the bioinformatics-based prediction of chloroplast-localized protein kinases from available sequence data is strongly biased; and, secondly, protein kinases are of very low abundance, which makes their identification by proteomics approaches extremely difficult. Therefore, the aim of this study was to obtain a complete list of chloroplast-localized protein kinases from different species. Evaluation of protein kinases which were either highly predicted to be chloroplast localized or have been identified in different chloroplast proteomic studies resulted in the confirmation of only three new kinases. Considering also all reports of experimentally verified chloroplast protein kinases to date, compelling evidence was found for a total set of 15 chloroplast-localized protein kinases in different species. This is in contrast to a much higher number that would be expected based on targeting prediction or on the general abundance of protein kinases in relation to the entire proteome. Moreover, it is shown that unusual protein kinases with differing ATP-binding sites or catalytic centres seem to occur frequently within the chloroplast kinome, thus making their identification by mass spectrometry-based approaches even more difficult due to a different annotation.
Collapse
Affiliation(s)
- Roman G. Bayer
- Department of Biochemistry and Cell Biology, MFPL, University of Vienna, Dr. Bohrgasse 9, A-1030 Vienna, Austria
| | - Simon Stael
- Department of Biochemistry and Cell Biology, MFPL, University of Vienna, Dr. Bohrgasse 9, A-1030 Vienna, Austria
| | - Agostinho G. Rocha
- Department of Biology I, Botany, LMU Munich, Großhaderner Str. 2, D-82152 Planegg-Martinsried, Germany
| | - Andrea Mair
- Department of Biochemistry and Cell Biology, MFPL, University of Vienna, Dr. Bohrgasse 9, A-1030 Vienna, Austria
| | - Ute C. Vothknecht
- Department of Biology I, Botany, LMU Munich, Großhaderner Str. 2, D-82152 Planegg-Martinsried, Germany
- Center for Integrated Protein Science (Munich) at the Department of Biology of the LMU Munich, D-81377 Munich, Germany
| | - Markus Teige
- Department of Biochemistry and Cell Biology, MFPL, University of Vienna, Dr. Bohrgasse 9, A-1030 Vienna, Austria
- To whom correspondence should be addressed.
| |
Collapse
|
281
|
Qi Y, Armbruster U, Schmitz-Linneweber C, Delannoy E, de Longevialle AF, Rühle T, Small I, Jahns P, Leister D. Arabidopsis CSP41 proteins form multimeric complexes that bind and stabilize distinct plastid transcripts. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:1251-70. [PMID: 22090436 PMCID: PMC3276088 DOI: 10.1093/jxb/err347] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 10/06/2011] [Accepted: 10/10/2011] [Indexed: 05/20/2023]
Abstract
The spinach CSP41 protein has been shown to bind and cleave chloroplast RNA in vitro. Arabidopsis thaliana, like other photosynthetic eukaryotes, encodes two copies of this protein. Several functions have been described for CSP41 proteins in Arabidopsis, including roles in chloroplast rRNA metabolism and transcription. CSP41a and CSP41b interact physically, but it is not clear whether they have distinct functions. It is shown here that CSP41b, but not CSP41a, is an essential and major component of a specific subset of RNA-binding complexes that form in the dark and disassemble in the light. RNA immunoprecipitation and hybridization to gene chips (RIP-chip) experiments indicated that CSP41 complexes can contain chloroplast mRNAs coding for photosynthetic proteins and rRNAs (16S and 23S), but no tRNAs or mRNAs for ribosomal proteins. Leaves of plants lacking CSP41b showed decreased steady-state levels of CSP41 target RNAs, as well as decreased plastid transcription and translation rates. Representative target RNAs were less stable when incubated with broken chloroplasts devoid of CSP41 complexes, indicating that CSP41 proteins can stabilize target RNAs. Therefore, it is proposed that (i) CSP41 complexes may serve to stabilize non-translated target mRNAs and precursor rRNAs during the night when the translational machinery is less active in a manner responsive to the redox state of the chloroplast, and (ii) that the defects in translation and transcription in CSP41 protein-less mutants are secondary effects of the decreased transcript stability.
Collapse
Affiliation(s)
- Yafei Qi
- Lehrstuhl für Molekularbiologie der Pflanzen (Botanik), Department Biologie I, Ludwig-Maximilians-Universität München, D-82152 Planegg-Martinsried, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
282
|
Affinity-based proteomic profiling: Problems and achievements. Proteomics 2012; 12:621-37. [DOI: 10.1002/pmic.201100373] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 09/01/2011] [Accepted: 09/13/2011] [Indexed: 11/07/2022]
|
283
|
Heintz D, Gallien S, Compagnon V, Berna A, Suzuki M, Yoshida S, Muranaka T, Van Dorsselaer A, Schaeffer C, Bach TJ, Schaller H. Phosphoproteome exploration reveals a reformatting of cellular processes in response to low sterol biosynthetic capacity in Arabidopsis. J Proteome Res 2012; 11:1228-39. [PMID: 22182420 DOI: 10.1021/pr201127u] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Sterols are membrane-bound isoprenoid lipids that are required for cell viability and growth. In plants, it is generally assumed that 3-hydroxy-3-methylglutaryl-CoA-reductase (HMGR) is a key element of their biosynthesis, but the molecular regulation of that pathway is largely unknown. In an attempt to identify regulators of the biosynthetic flux from acyl-CoA toward phytosterols, we compared the membrane phosphoproteome of wild-type Arabidopsis thaliana and of a mutant being deficient in HMGR1. We performed a N-terminal labeling of microsomal peptides with a trimethoxyphenyl phosphonium (TMPP) derivative, followed by a quantitative assessment of phosphopeptides with a spectral counting method. TMPP derivatization of peptides resulted in an improved LC-MS/MS detection due to increased hydrophobicity in chromatography and ionization efficiency in electrospray. The phosphoproteome coverage was 40% higher with this methodology. We further found that 31 proteins were in a different phosphorylation state in the hmgr1-1 mutant as compared with the wild-type. One-third of these proteins were identified based on novel phosphopeptides. This approach revealed that phosphorylation changes in the Arabidopsis membrane proteome targets major cellular processes such as transports, calcium homeostasis, photomorphogenesis, and carbohydrate synthesis. A reformatting of these processes appears to be a response of a genetically reduced sterol biosynthesis.
Collapse
Affiliation(s)
- Dimitri Heintz
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique-Unité Propre de Recherche 2357, Université de Strasbourg , 28 rue Goethe, 67083 Strasbourg, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
284
|
Zhou S, Sawicki A, Willows RD, Luo M. C-terminal residues of oryza sativa GUN4 are required for the activation of the ChlH subunit of magnesium chelatase in chlorophyll synthesis. FEBS Lett 2012; 586:205-10. [PMID: 22226678 DOI: 10.1016/j.febslet.2011.12.026] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 12/19/2011] [Accepted: 12/19/2011] [Indexed: 11/19/2022]
Abstract
Oryza sativa GUN4 together with the magnesium chelatase subunits ChlI, ChlD, and ChlH have been heterologously expressed and purified to reconstitute magnesium chelatase activity in vitro. Maximum magnesium chelatase activity requires pre-activation of OsChlH with OsGUN4, Mg(2+) and protoporphyrin-IX. OsGUN4 and OsChlH preincubated without protoporphyrin-IX yields magnesium chelatase activity similar to assays without OsGUN4, suggesting formation of a dead-end complex. Either 9 or 10 C-terminal amino acids of OsGUN4 are slowly hydrolyzed to yield a truncated OsGUN4. These truncated OsGUN4 still bind protoporphyrin-IX and Mg-protoporphyrin-IX but are unable to activate OsChlH. This suggests the mechanism of GUN4 activation of magnesium chelatase is different in eukaryotes compared to cyanobacteria as the orthologous cyanobacterial GUN4 proteins lack this C-terminal extension.
Collapse
Affiliation(s)
- Shuaixiang Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | |
Collapse
|
285
|
Nakagami H, Sugiyama N, Ishihama Y, Shirasu K. Shotguns in the front line: phosphoproteomics in plants. PLANT & CELL PHYSIOLOGY 2012; 53:118-24. [PMID: 22039104 DOI: 10.1093/pcp/pcr148] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The emergence of 'shotgun proteomics' has paved the way for high-throughput proteome analysis, by which thousands of proteins can be identified simultaneously from complex samples. Although the shotgun approach has the potential to monitor many different post-translational modifications, further technological development is needed to enrich each post-translational 'modificome'. Large-scale in vivo phosphorylation site mapping, so-called shotgun phosphoproteomics, has become feasible in various organisms, including plants, owing to recent technological breakthroughs. Shotgun phosphoproteomics is not a mature technology, but progress has been rapid. In this review, we highlight the scope and limitations of current methods, and some key technological issues in this field.
Collapse
|
286
|
Marín M, Ott T. Phosphorylation of intrinsically disordered regions in remorin proteins. FRONTIERS IN PLANT SCIENCE 2012; 3:86. [PMID: 22639670 PMCID: PMC3355724 DOI: 10.3389/fpls.2012.00086] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 04/18/2012] [Indexed: 05/20/2023]
Abstract
Plant-specific remorin proteins reside in subdomains of plasma membranes, originally termed membrane rafts. They probably facilitate cellular signal transduction by direct interaction with signaling proteins such as receptor-like kinases and may dynamically modulate their lateral segregation within plasma membranes. Recent evidence suggests such functions of remorins during plant-microbe interactions and innate immune responses, where differential phosphorylation of some of these proteins has been described to be dependent on the perception of the microbe-associated molecular pattern (MAMP) flg22 and the presence of the NBS-LRR resistance protein RPM1. A number of specifically phosphorylated residues in their highly variable and intrinsically disordered N-terminal regions have been identified. Sequence diversity of these evolutionary distinct domains suggests that remorins may serve a wide range of biological functions. Here, we describe patterns and features of intrinsic disorder in remorin protein and discuss possible functional implications of phosphorylation within these rapidly evolving domains.
Collapse
Affiliation(s)
- Macarena Marín
- Institute of Genetics, Ludwig-Maximilians University MunichMunich, Germany
| | - Thomas Ott
- Institute of Genetics, Ludwig-Maximilians University MunichMunich, Germany
- *Correspondence: Thomas Ott, Institute of Genetics, Ludwig-Maximilians University Munich, Grosshaderner Strasse 2-4, Munich, 82152 Martinsried, Germany. e-mail:
| |
Collapse
|
287
|
Arsova B, Schulze WX. Current status of the plant phosphorylation site database PhosPhAt and its use as a resource for molecular plant physiology. FRONTIERS IN PLANT SCIENCE 2012; 3:132. [PMID: 22723801 PMCID: PMC3378073 DOI: 10.3389/fpls.2012.00132] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Accepted: 06/04/2012] [Indexed: 05/07/2023]
Abstract
As the most studied post-translational modification, protein phosphorylation is analyzed in a growing number of proteomic experiments. These high-throughput approaches generate large datasets, from which specific spectrum-based information can be hard to find. In 2007, the PhosPhAt database was launched to collect and present Arabidopsis phosphorylation sites identified by mass spectrometry from and for the scientific community. At present, PhosPhAt 3.0 consolidates phosphoproteomics data from 19 published proteomic studies. Out of 5460 listed unique phosphoproteins, about 25% have been identified in at least two independent experimental setups. This is especially important when considering issues of false positive and false negative identification rates and data quality (Durek etal., 2010). This valuable data set encompasses over 13205 unique phosphopeptides, with unambiguous mapping to serine (77%), threonine (17%), and tyrosine (6%). Sorting the functional annotations of experimentally found phosphorylated proteins in PhosPhAt using Gene Ontology terms shows an over-representation of proteins in regulatory pathways and signaling processes. A similar distribution is found when the PhosPhAt predictor, trained on experimentally obtained plant phosphorylation sites, is used to predict phosphorylation sites for the Arabidopsis genome. Finally, the possibility to insert a protein sequence into the PhosPhAt predictor allows species independent use of the prediction resource. In practice, PhosPhAt also allows easy exploitation of proteomic data for design of further targeted experiments.
Collapse
Affiliation(s)
| | - Waltraud X. Schulze
- *Correspondence: Waltraud X. Schulze, Max Planck Institute for Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany. e-mail:
| |
Collapse
|
288
|
Yao Q, Bollinger C, Gao J, Xu D, Thelen JJ. P(3)DB: An Integrated Database for Plant Protein Phosphorylation. FRONTIERS IN PLANT SCIENCE 2012; 3:206. [PMID: 22973285 PMCID: PMC3435559 DOI: 10.3389/fpls.2012.00206] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 08/14/2012] [Indexed: 05/08/2023]
Abstract
Protein phosphorylation is widely recognized as the most widespread, enzyme-catalyzed post-translational modification in eukaryotes. In particular, plants have appropriated this signaling mechanism as evidenced by the twofold higher frequency of protein kinases within the genome compared to other eukaryotes. While all aspects of plant protein phosphorylation research have grown in the past 10 years; phosphorylation site mapping using high-resolution mass spectrometry has grown exponentially. In Arabidopsis alone there are thousands of experimentally determined phosphorylation sites. To archive these events in a user-intuitive format we have developed P(3)DB, the Plant Protein Phosphorylation Database (p3db.org). This database is a repository for plant protein phosphorylation site data, currently hosting information on 32,963 non-redundant sites collated from 23 experimental studies from six plant species. These data can be queried for a protein-of-interest using an integrated BLAST module to query similar sequences with known phosphorylation sites among the multiple plants currently investigated. The paper demonstrates how this resource can help identify functionally conserved phosphorylation sites in plants using a multi-system approach.
Collapse
Affiliation(s)
- Qiuming Yao
- Department of Computer Science, University of MissouriColumbia, MO, USA
- Bond Life Science Center, University of MissouriColumbia, MO, USA
| | - Curtis Bollinger
- Department of Computer Science, University of MissouriColumbia, MO, USA
- Bond Life Science Center, University of MissouriColumbia, MO, USA
| | - Jianjiong Gao
- Computational Biology Center, Memorial Sloan-Kettering Cancer CenterNew York, NY, USA
| | - Dong Xu
- Department of Computer Science, University of MissouriColumbia, MO, USA
- Bond Life Science Center, University of MissouriColumbia, MO, USA
| | - Jay J. Thelen
- Bond Life Science Center, University of MissouriColumbia, MO, USA
- Department of Biochemistry, University of MissouriColumbia, MO, USA
- *Correspondence: Jay J. Thelen, Department of Biochemistry, Christopher S. Bond Life Sciences Center, 271G Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA. e-mail:
| |
Collapse
|
289
|
Hirsch-Hoffmann M, Gruissem W, Baerenfaller K. pep2pro: the high-throughput proteomics data processing, analysis, and visualization tool. FRONTIERS IN PLANT SCIENCE 2012; 3:123. [PMID: 22701464 PMCID: PMC3371593 DOI: 10.3389/fpls.2012.00123] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 05/21/2012] [Indexed: 05/18/2023]
Abstract
The pep2pro database was built to support effective high-throughput proteome data analysis. Its database schema allows the coherent integration of search results from different database-dependent search algorithms and filtering of the data including control for unambiguous assignment of peptides to proteins. The capacity of the pep2pro database has been exploited in data analysis of various Arabidopsis proteome datasets. The diversity of the datasets and the associated scientific questions required thorough querying of the data. This was supported by the relational format structure of the data that links all information on the sample, spectrum, search database, and algorithm to peptide and protein identifications and their post-translational modifications. After publication of datasets they are made available on the pep2pro website at www.pep2pro.ethz.ch. Further, the pep2pro data analysis pipeline also handles data export do the PRIDE database (http://www.ebi.ac.uk/pride) and data retrieval by the MASCP Gator (http://gator.masc-proteomics.org/). The utility of pep2pro will continue to be used for analysis of additional datasets and as a data warehouse. The capacity of the pep2pro database for proteome data analysis has now also been made publicly available through the release of pep2pro4all, which consists of a database schema and a script that will populate the database with mass spectrometry data provided in mzIdentML format.
Collapse
Affiliation(s)
| | | | - Katja Baerenfaller
- *Correspondence:Katja Baerenfaller, Plant Biotechnology, Department of Biology, ETH Zurich, Universitaetsstrasse 2, 8092 Zurich, Switzerland. e-mail:
| |
Collapse
|
290
|
Aalto MK, Helenius E, Kariola T, Pennanen V, Heino P, Hõrak H, Puzõrjova I, Kollist H, Palva ET. ERD15--an attenuator of plant ABA responses and stomatal aperture. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 182:19-28. [PMID: 22118612 DOI: 10.1016/j.plantsci.2011.08.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2010] [Revised: 04/10/2011] [Accepted: 08/23/2011] [Indexed: 05/24/2023]
Abstract
Plants are continuously challenged by abiotic and biotic stress factors and need to mount appropriate responses to ensure optimal growth and survival. We have identified ERD15 as a central component in several stress responses in Arabidopsis thaliana. Comparative genomics demonstrates that ERD15 is a member of a small but highly conserved protein family ubiquitous but specific to the plant kingdom. The origin of ERD15 family of proteins can be traced to the time of emergence of land plants. The presence of the conserved PAM2 motif in ERD15 proteins is indicative of a possible interaction with poly(A) binding proteins and could suggest a role in posttranscriptional regulation of gene expression. The function of the other highly conserved motifs in ERD15 remains to be elucidated. The biological role of all ERD15 family members studied so far appears associated to stress responses and stress adaptation. Studies in Arabidopsis demonstrate a role in abiotic stress tolerance where ERD15 is a negative regulator of ABA signaling. The role in ABA signaling may also explain how ERD15 regulates stomatal aperture and consequently controls plant water relations.
Collapse
Affiliation(s)
- Markku K Aalto
- Department of Biosciences, Division of Genetics, POB 56, Viikki Biocenter, University of Helsinki, FI-00014 Helsinki, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
291
|
Schönberg A, Baginsky S. Signal integration by chloroplast phosphorylation networks: an update. FRONTIERS IN PLANT SCIENCE 2012; 3:256. [PMID: 23181067 PMCID: PMC3501822 DOI: 10.3389/fpls.2012.00256] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 11/01/2012] [Indexed: 05/20/2023]
Abstract
Forty years after the initial discovery of light-dependent protein phosphorylation at the thylakoid membrane system, we are now beginning to understand the roles of chloroplast phosphorylation networks in their function to decode and mediate information on the metabolic status of the organelle to long-term adaptations in plastid and nuclear gene expression. With the help of genetics and functional genomics tools, chloroplast kinases and several hundred phosphoproteins were identified that now await detailed functional characterization. The regulation and the target protein spectrum of some kinases are understood, but this information is fragmentary with respect to kinase and target protein crosstalk in a changing environment. In this review, we will highlight the most recent advances in the field and discuss approaches that might lead to a comprehensive understanding of plastid signal integration by protein phosphorylation.
Collapse
Affiliation(s)
| | - Sacha Baginsky
- *Correspondence: Sacha Baginsky, Institut für Biochemie und Biotechnologie, Martin-Luther-Universität Halle-Wittenberg, Weinbergweg 22, 06120 Halle (Saale), Germany. e-mail:
| |
Collapse
|
292
|
Huang Y, Thelen JJ. KiC assay: a quantitative mass spectrometry-based approach for kinase client screening and activity analysis [corrected]. Methods Mol Biol 2012; 893:359-70. [PMID: 22665311 DOI: 10.1007/978-1-61779-885-6_22] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Protein phosphorylation is one of the most important posttranslational modifications (PTMs) involved in the transduction of cellular signals. The number of kinases in eukaryotic genomes ranges from several hundred to over one thousand. And with rapidly evolving mass spectrometry (MS)-based approaches, thousands to tens of thousands of phosphorylation sites (phosphosites) have been reported from various eukaryotic organisms, from man to plants. In this relative context, few bona fide kinase-client relationships have been identified to date. To merge the gap between these phosphosites and the cognate kinases that beget these events, comparable large-scale methodologies are required. We describe in detail a MS-based method for identifying kinase-client interactions and quantifying kinase activity. We term this novel Kinase-Client assay, the KiC assay. The KiC assay relies upon the fact that substrate specificities of many kinases are largely determined by primary amino acid sequence or phosphorylation motifs, which consist of key amino acids surrounding the phosphorylation sites. The workflow for detecting kinase-substrate interactions includes four major steps: (1) preparation of purified kinases and synthetic peptide library, (2) in vitro kinase peptide library assay, (3) liquid chromatography (LC)-tandem MS (MS/MS) analysis, and (4) data processing and interpretation. Kinase activity is quantified with the KiC assay by monitoring spectral counts of phosphorylated and unphosphorylated peptides as the readout from LC-tandem mass spectrometry. The KiC assay can be applied as a discovery assay to screen kinases against a synthetic peptide library to find kinase-client relationships or as a targeted assay to characterize kinase kinetics.
Collapse
Affiliation(s)
- Yadong Huang
- Interdisciplinary Plant Group, Department of Biochemistry, University of Missouri-Columbia, Columbia, MO, USA
| | | |
Collapse
|
293
|
Türkeri H, Schweer J, Link G. Phylogenetic and functional features of the plastid transcription kinase cpCK2 from Arabidopsis signify a role of cysteinyl SH-groups in regulatory phosphorylation of plastid sigma factors. FEBS J 2011; 279:395-409. [DOI: 10.1111/j.1742-4658.2011.08433.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
294
|
Turkina MV, Klang Årstrand H, Vener AV. Differential phosphorylation of ribosomal proteins in Arabidopsis thaliana plants during day and night. PLoS One 2011; 6:e29307. [PMID: 22195043 PMCID: PMC3241707 DOI: 10.1371/journal.pone.0029307] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 11/24/2011] [Indexed: 12/12/2022] Open
Abstract
Protein synthesis in plants is characterized by increase in the translation rates for numerous proteins and central metabolic enzymes during the day phase of the photoperiod. The detailed molecular mechanisms of this diurnal regulation are unknown, while eukaryotic protein translation is mainly controlled at the level of ribosomal initiation complexes, which also involves multiple events of protein phosphorylation. We characterized the extent of protein phosphorylation in cytosolic ribosomes isolated from leaves of the model plant Arabidopsis thaliana harvested during day or night. Proteomic analyses of preparations corresponding to both phases of the photoperiod detected phosphorylation at eight serine residues in the C-termini of six ribosomal proteins: S2-3, S6-1, S6-2, P0-2, P1 and L29-1. This included previously unknown phosphorylation of the 40S ribosomal protein S6 at Ser-231. Relative quantification of the phosphorylated peptides using stable isotope labeling and mass spectrometry revealed a 2.2 times increase in the day/night phosphorylation ratio at this site. Phosphorylation of the S6-1 and S6-2 variants of the same protein at Ser-240 increased by the factors of 4.2 and 1.8, respectively. The 1.6 increase in phosphorylation during the day was also found at Ser-58 of the 60S ribosomal protein L29-1. It is suggested that differential phosphorylation of the ribosomal proteins S6-1, S6-2 and L29-1 may contribute to modulation of the diurnal protein synthesis in plants.
Collapse
Affiliation(s)
- Maria V. Turkina
- Division of Cell Biology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Hanna Klang Årstrand
- Division of Cell Biology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Alexander V. Vener
- Division of Cell Biology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
- * E-mail:
| |
Collapse
|
295
|
Rudashevskaya EL, Ye J, Jensen ON, Fuglsang AT, Palmgren MG. Phosphosite mapping of P-type plasma membrane H+-ATPase in homologous and heterologous environments. J Biol Chem 2011; 287:4904-13. [PMID: 22174420 DOI: 10.1074/jbc.m111.307264] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Phosphorylation is an important posttranslational modification of proteins in living cells and primarily serves regulatory purposes. Several methods were employed for isolating phosphopeptides from proteolytically digested plasma membranes of Arabidopsis thaliana. After a mass spectrometric analysis of the resulting peptides we could identify 10 different phosphorylation sites in plasma membrane H(+)-ATPases AHA1, AHA2, AHA3, and AHA4/11, five of which have not been reported before, bringing the total number of phosphosites up to 11, which is substantially higher than reported so far for any other P-type ATPase. Phosphosites were almost exclusively (9 of 10) in the terminal regulatory domains of the pumps. The AHA2 isoform was subsequently expressed in the yeast Saccharomyces cerevisiae. The plant protein was phosphorylated at multiple sites in yeast, and surprisingly, seven of nine of the phosphosites identified in AHA2 were identical in the plant and fungal systems even though none of the target sequences in AHA2 show homology to proteins of the fungal host. These findings suggest an unexpected accessibility of the terminal regulatory domain of plasma membrane H(+)-ATPase to protein kinase action.
Collapse
Affiliation(s)
- Elena L Rudashevskaya
- Centre for Membrane Pumps in Cells and Disease-PUMPkin, Department of Plant Biology and Biotechnology, University of Copenhagen, DK-1871 Frederiksberg C, Denmark.
| | | | | | | | | |
Collapse
|
296
|
Hemmerlin A, Harwood JL, Bach TJ. A raison d'être for two distinct pathways in the early steps of plant isoprenoid biosynthesis? Prog Lipid Res 2011; 51:95-148. [PMID: 22197147 DOI: 10.1016/j.plipres.2011.12.001] [Citation(s) in RCA: 214] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 11/28/2011] [Accepted: 12/05/2011] [Indexed: 12/12/2022]
Abstract
When compared to other organisms, plants are atypical with respect to isoprenoid biosynthesis: they utilize two distinct and separately compartmentalized pathways to build up isoprene units. The co-existence of these pathways in the cytosol and in plastids might permit the synthesis of many vital compounds, being essential for a sessile organism. While substrate exchange across membranes has been shown for a variety of plant species, lack of complementation of strong phenotypes, resulting from inactivation of either the cytosolic pathway (growth and development defects) or the plastidial pathway (pigment bleaching), seems to be surprising at first sight. Hundreds of isoprenoids have been analyzed to determine their biosynthetic origins. It can be concluded that in angiosperms, under standard growth conditions, C₂₀-phytyl moieties, C₃₀-triterpenes and C₄₀-carotenoids are made nearly exclusively within compartmentalized pathways, while mixed origins are widespread for other types of isoprenoid-derived molecules. It seems likely that this coexistence is essential for the interaction of plants with their environment. A major purpose of this review is to summarize such observations, especially within an ecological and functional context and with some emphasis on regulation. This latter aspect still requires more work and present conclusions are preliminary, although some general features seem to exist.
Collapse
Affiliation(s)
- Andréa Hemmerlin
- Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, IBMP-CNRS-UPR2357, Université de Strasbourg, 28 Rue Goethe, F-67083 Strasbourg Cedex, France.
| | | | | |
Collapse
|
297
|
Aryal UK, Krochko JE, Ross ARS. Identification of phosphoproteins in Arabidopsis thaliana leaves using polyethylene glycol fractionation, immobilized metal-ion affinity chromatography, two-dimensional gel electrophoresis and mass spectrometry. J Proteome Res 2011; 11:425-37. [PMID: 22092075 DOI: 10.1021/pr200917t] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Reversible protein phosphorylation is a key regulatory mechanism in cells. Identification and characterization of phosphoproteins requires specialized enrichment methods, due to the relatively low abundance of these proteins, and is further complicated in plants by the high abundance of Rubisco in green tissues. We present a novel method for plant phosphoproteome analysis that depletes Rubisco using polyethylene glycol fractionation and utilizes immobilized metal-ion affinity chromatography to enrich phosphoproteins. Subsequent protein separation by one- and two-dimensional gel electrophoresis is further improved by extracting the PEG-fractionated protein samples with SDS/phenol and methanol/chloroform to remove interfering compounds. Using this approach, we identified 132 phosphorylated proteins in a partial Arabidopsis leaf extract. These proteins are involved in a range of biological processes, including CO(2) fixation, protein assembly and folding, stress response, redox regulation, and cellular metabolism. Both large and small subunits of Rubisco were phosphorylated at multiple sites, and depletion of Rubisco enhanced detection of less abundant phosphoproteins, including those associated with state transitions between photosystems I and II. The discovery of a phosphorylated form of AtGRP7, a self-regulating RNA-binding protein that affects floral transition, as well as several previously uncharacterized ribosomal proteins confirm the utility of this approach for phosphoproteome analysis and its potential to increase our understanding of growth and development in plants.
Collapse
Affiliation(s)
- Uma K Aryal
- Plant Biotechnology Institute, National Research Council, 110 Gymnasium Place, Saskatoon, Saskatchewan, Canada S7N 0W9.
| | | | | |
Collapse
|
298
|
Vítámvás P, Prášil IT, Kosová K, Planchon S, Renaut J. Analysis of proteome and frost tolerance in chromosome 5A and 5B reciprocal substitution lines between two winter wheats during long-term cold acclimation. Proteomics 2011; 12:68-85. [DOI: 10.1002/pmic.201000779] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 09/27/2011] [Accepted: 10/17/2011] [Indexed: 12/30/2022]
|
299
|
Willig A, Shapiguzov A, Goldschmidt-Clermont M, Rochaix JD. The phosphorylation status of the chloroplast protein kinase STN7 of Arabidopsis affects its turnover. PLANT PHYSIOLOGY 2011; 157:2102-7. [PMID: 21976483 PMCID: PMC3327173 DOI: 10.1104/pp.111.187328] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 10/04/2011] [Indexed: 05/19/2023]
Abstract
The chloroplast serine-threonine protein kinase STN7 of Arabidopsis (Arabidopsis thaliana) is required for the phosphorylation of the light-harvesting system of photosystem II and for state transitions, a process that allows the photosynthetic machinery to balance the light excitation energy between photosystem II and photosystem I and thereby to optimize the photosynthetic yield. Because the STN7 protein kinase of Arabidopsis is known to be phosphorylated at four serine-threonine residues, we have changed these residues by site-directed mutagenesis to alanine (STN7-4A) or aspartic acid (STN7-4D) to assess the role of these phosphorylation events. The corresponding mutants were still able to phosphorylate the light-harvesting system of photosystem II and to perform state transitions. Moreover, we noticed a marked decrease in the level of the STN7 kinase in the wild-type strain under prolonged state 1 conditions that no longer occurs in the STN7-4D mutant. The results suggest a possible role of phosphorylation of the STN7 kinase in regulating its turnover.
Collapse
|
300
|
Meng Y, Liu F, Pang C, Fan S, Song M, Wang D, Li W, Yu S. Label-Free Quantitative Proteomics Analysis of Cotton Leaf Response to Nitric Oxide. J Proteome Res 2011; 10:5416-32. [DOI: 10.1021/pr200671d] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yanyan Meng
- State Key Laboratory of Cotton Biology, Cotton Research Institute, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan Province, China
| | - Feng Liu
- National Center of Biomedical Analysis, Beijing, China
| | - Chaoyou Pang
- State Key Laboratory of Cotton Biology, Cotton Research Institute, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan Province, China
| | - Shuli Fan
- State Key Laboratory of Cotton Biology, Cotton Research Institute, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan Province, China
| | - Meizhen Song
- State Key Laboratory of Cotton Biology, Cotton Research Institute, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan Province, China
| | - Dan Wang
- College of Agronomy, Northwest Sci-Tech University of Agriculture and Forest, Yangling, P. R. China
| | - Weihua Li
- National Center of Biomedical Analysis, Beijing, China
| | - Shuxun Yu
- State Key Laboratory of Cotton Biology, Cotton Research Institute, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan Province, China
| |
Collapse
|