251
|
Wang MY, Liu XT, Chen Y, Xu XJ, Yu B, Zhang SQ, Li Q, He ZH. Arabidopsis acetyl-amido synthetase GH3.5 involvement in camalexin biosynthesis through conjugation of indole-3-carboxylic acid and cysteine and upregulation of camalexin biosynthesis genes. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2012; 54:471-85. [PMID: 22624950 DOI: 10.1111/j.1744-7909.2012.01131.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Camalexin (3-thiazol-2'-yl-indole) is the major phytoalexin found in Arabidopsis thaliana. Several key intermediates and corresponding enzymes have been identified in camalexin biosynthesis through mutant screening and biochemical experiments. Camalexin is formed when indole-3-acetonitrile (IAN) is catalyzed by the cytochrome P450 monooxygenase CYP71A13. Here, we demonstrate that the Arabidopsis GH3.5 protein, a multifunctional acetyl-amido synthetase, is involved in camalexin biosynthesis via conjugating indole-3-carboxylic acid (ICA) and cysteine (Cys) and regulating camalexin biosynthesis genes. Camalexin levels were increased in the activation-tagged mutant gh3.5-1D in both Col-0 and cyp71A13-2 mutant backgrounds after pathogen infection. The recombinant GH3.5 protein catalyzed the conjugation of ICA and Cys to form a possible intermediate indole-3-acyl-cysteinate (ICA(Cys)) in vitro. In support of the in vitro reaction, feeding with ICA and Cys increased camalexin levels in Col-0 and gh3.5-1D. Dihydrocamalexic acid (DHCA), the precursor of camalexin and the substrate for PAD3, was accumulated in gh3.5-1D/pad3-1, suggesting that ICA(Cys) could be an additional precursor of DHCA for camalexin biosynthesis. Furthermore, expression of the major camalexin biosynthesis genes CYP79B2, CYP71A12, CYP71A13 and PAD3 was strongly induced in gh3.5-1D. Our study suggests that GH3.5 is involved in camalexin biosynthesis through direct catalyzation of the formation of ICA(Cys), and upregulation of the major biosynthetic pathway genes.
Collapse
Affiliation(s)
- Mu-Yang Wang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, the Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
252
|
Gutierrez L, Mongelard G, Floková K, Păcurar DI, Novák O, Staswick P, Kowalczyk M, Păcurar M, Demailly H, Geiss G, Bellini C. Auxin controls Arabidopsis adventitious root initiation by regulating jasmonic acid homeostasis. THE PLANT CELL 2012; 24:2515-27. [PMID: 22730403 PMCID: PMC3406919 DOI: 10.1105/tpc.112.099119] [Citation(s) in RCA: 302] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 05/29/2012] [Accepted: 06/12/2012] [Indexed: 05/18/2023]
Abstract
Vegetative shoot-based propagation of plants, including mass propagation of elite genotypes, is dependent on the development of shoot-borne roots, which are also called adventitious roots. Multiple endogenous and environmental factors control the complex process of adventitious rooting. In the past few years, we have shown that the auxin response factors ARF6 and ARF8, targets of the microRNA miR167, are positive regulators of adventitious rooting, whereas ARF17, a target of miR160, is a negative regulator. We showed that these genes have overlapping expression profiles during adventitious rooting and that they regulate each other's expression at the transcriptional and posttranscriptional levels by modulating the homeostasis of miR160 and miR167. We demonstrate here that this complex network of transcription factors regulates the expression of three auxin-inducible Gretchen Hagen3 (GH3) genes, GH3.3, GH3.5, and GH3.6, encoding acyl-acid-amido synthetases. We show that these three GH3 genes are required for fine-tuning adventitious root initiation in the Arabidopsis thaliana hypocotyl, and we demonstrate that they act by modulating jasmonic acid homeostasis. We propose a model in which adventitious rooting is an adaptive developmental response involving crosstalk between the auxin and jasmonate regulatory pathways.
Collapse
Affiliation(s)
- Laurent Gutierrez
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umea, Sweden
- Centre de Ressources Régionales en Biologie Moléculaire, Université de Picardie Jules Verne, 80039 Amiens, France
| | - Gaëlle Mongelard
- Centre de Ressources Régionales en Biologie Moléculaire, Université de Picardie Jules Verne, 80039 Amiens, France
| | - Kristýna Floková
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, Academy of Sciences of the Czech Republic, 78371 Olomouc, Czech Republic
| | - Daniel I. Păcurar
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90187 Umea, Sweden
| | - Ondřej Novák
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umea, Sweden
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, Academy of Sciences of the Czech Republic, 78371 Olomouc, Czech Republic
| | - Paul Staswick
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, Nebraska 68583-0915
| | - Mariusz Kowalczyk
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umea, Sweden
| | - Monica Păcurar
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umea, Sweden
- University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj Napoca, Romania
| | - Hervé Demailly
- Centre de Ressources Régionales en Biologie Moléculaire, Université de Picardie Jules Verne, 80039 Amiens, France
| | - Gaia Geiss
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umea, Sweden
| | - Catherine Bellini
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90187 Umea, Sweden
- Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318 Institut National de la Recherche Agronomique–AgroParisTech, Institut National de la Recherche Agronomique Centre de Versailles–Grignon, F-78026 Versailles cedex, France
- Address correspondence to
| |
Collapse
|
253
|
Weston DJ, Pelletier DA, Morrell-Falvey JL, Tschaplinski TJ, Jawdy SS, Lu TY, Allen SM, Melton SJ, Martin MZ, Schadt CW, Karve AA, Chen JG, Yang X, Doktycz MJ, Tuskan GA. Pseudomonas fluorescens induces strain-dependent and strain-independent host plant responses in defense networks, primary metabolism, photosynthesis, and fitness. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:765-78. [PMID: 22375709 DOI: 10.1094/mpmi-09-11-0253] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Colonization of plants by nonpathogenic Pseudomonas fluorescens strains can confer enhanced defense capacity against a broad spectrum of pathogens. Few studies, however, have linked defense pathway regulation to primary metabolism and physiology. In this study, physiological data, metabolites, and transcript profiles are integrated to elucidate how molecular networks initiated at the root-microbe interface influence shoot metabolism and whole-plant performance. Experiments with Arabidopsis thaliana were performed using the newly identified P. fluorescens GM30 or P. fluorescens Pf-5 strains. Co-expression networks indicated that Pf-5 and GM30 induced a subnetwork specific to roots enriched for genes participating in RNA regulation, protein degradation, and hormonal metabolism. In contrast, only GM30 induced a subnetwork enriched for calcium signaling, sugar and nutrient signaling, and auxin metabolism, suggesting strain dependence in network architecture. In addition, one subnetwork present in shoots was enriched for genes in secondary metabolism, photosynthetic light reactions, and hormone metabolism. Metabolite analysis indicated that this network initiated changes in carbohydrate and amino acid metabolism. Consistent with this, we observed strain-specific responses in tryptophan and phenylalanine abundance. Both strains reduced host plant carbon gain and fitness, yet provided a clear fitness benefit when plants were challenged with the pathogen P. syringae DC3000.
Collapse
Affiliation(s)
- David J Weston
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
254
|
Westfall CS, Zubieta C, Herrmann J, Kapp U, Nanao MH, Jez JM. Structural Basis for Prereceptor Modulation of Plant Hormones by GH3 Proteins. Science 2012; 336:1708-11. [DOI: 10.1126/science.1221863] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Acyl acid amido synthetases of the GH3 family act as critical prereceptor modulators of plant hormone action; however, the molecular basis for their hormone selectivity is unclear. Here, we report the crystal structures of benzoate-specific Arabidopsis thaliana AtGH3.12/PBS3 and jasmonic acid–specific AtGH3.11/JAR1. These structures, combined with biochemical analysis, define features for the conjugation of amino acids to diverse acyl acid substrates and highlight the importance of conformational changes in the carboxyl-terminal domain for catalysis. We also identify residues forming the acyl acid binding site across the GH3 family and residues critical for amino acid recognition. Our results demonstrate how a highly adaptable three-dimensional scaffold is used for the evolution of promiscuous activity across an enzyme family for modulation of plant signaling molecules.
Collapse
|
255
|
Böttcher C, Dennis EG, Booker GW, Polyak SW, Boss PK, Davies C. A novel tool for studying auxin-metabolism: the inhibition of grapevine indole-3-acetic acid-amido synthetases by a reaction intermediate analogue. PLoS One 2012; 7:e37632. [PMID: 22649546 PMCID: PMC3359377 DOI: 10.1371/journal.pone.0037632] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 04/27/2012] [Indexed: 02/03/2023] Open
Abstract
An important process for the regulation of auxin levels in plants is the inactivation of indole-3-acetic acid (IAA) by conjugation to amino acids. The conjugation reaction is catalysed by IAA-amido synthetases belonging to the family of GH3 proteins. Genetic approaches to study the biological significance of these enzymes have been hampered by large gene numbers and a high degree of functional redundancy. To overcome these difficulties a chemical approach based on the reaction mechanism of GH3 proteins was employed to design a small molecule inhibitor of IAA-amido synthetase activity. Adenosine-5'-[2-(1H-indol-3-yl)ethyl]phosphate (AIEP) mimics the adenylated intermediate of the IAA-conjugation reaction and was therefore proposed to compete with the binding of MgATP and IAA in the initial stages of catalysis. Two grapevine IAA-amido synthetases with different catalytic properties were chosen to test the inhibitory effects of AIEP in vitro. GH3-1 has previously been implicated in the grape berry ripening process and is restricted to two amino acid substrates, whereas GH3-6 conjugated IAA to 13 amino acids. AIEP is the most potent inhibitor of GH3 enzymes so far described and was shown to be competitive against MgATP and IAA binding to both enzymes with K(i)-values 17-68-fold lower than the respective K(m)-values. AIEP also exhibited in vivo activity in an ex planta test system using young grape berries. Exposure to 5-20 µM of the inhibitor led to decreased levels of the common conjugate IAA-Asp and reduced the accumulation of the corresponding Asp-conjugate upon treatment with a synthetic auxin. AIEP therefore represents a novel chemical probe with which to study IAA-amido synthetase function.
Collapse
|
256
|
Massoud K, Barchietto T, Le Rudulier T, Pallandre L, Didierlaurent L, Garmier M, Ambard-Bretteville F, Seng JM, Saindrenan P. Dissecting phosphite-induced priming in Arabidopsis infected with Hyaloperonospora arabidopsidis. PLANT PHYSIOLOGY 2012; 159:286-98. [PMID: 22408091 PMCID: PMC3375965 DOI: 10.1104/pp.112.194647] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Phosphite (Phi), a phloem-mobile oxyanion of phosphorous acid (H(3)PO(3)), protects plants against diseases caused by oomycetes. Its mode of action is unclear, as evidence indicates both direct antibiotic effects on pathogens as well as inhibition through enhanced plant defense responses, and its target(s) in the plants is unknown. Here, we demonstrate that the biotrophic oomycete Hyaloperonospora arabidopsidis (Hpa) exhibits an unusual biphasic dose-dependent response to Phi after inoculation of Arabidopsis (Arabidopsis thaliana), with characteristics of indirect activity at low doses (10 mm or less) and direct inhibition at high doses (50 mm or greater). The effect of low doses of Phi on Hpa infection was nullified in salicylic acid (SA)-defective plants (sid2-1, NahG) and in a mutant impaired in SA signaling (npr1-1). Compromised jasmonate (jar1-1) and ethylene (ein2-1) signaling or abscisic acid (aba1-5) biosynthesis, reactive oxygen generation (atrbohD), or accumulation of the phytoalexins camalexin (pad3-1) and scopoletin (f6'h1-1) did not affect Phi activity. Low doses of Phi primed the accumulation of SA and Pathogenesis-Related protein1 transcripts and mobilized two essential components of basal resistance, Enhanced Disease Susceptibility1 and Phytoalexin Deficient4, following pathogen challenge. Compared with inoculated, Phi-untreated plants, the gene expression, accumulation, and phosphorylation of the mitogen-activated protein kinase MPK4, a negative regulator of SA-dependent defenses, were reduced in plants treated with low doses of Phi. We propose that Phi negatively regulates MPK4, thus priming SA-dependent defense responses following Hpa infection.
Collapse
|
257
|
De-La-Peña C, Rangel-Cano A, Alvarez-Venegas R. Regulation of disease-responsive genes mediated by epigenetic factors: interaction of Arabidopsis-Pseudomonas. MOLECULAR PLANT PATHOLOGY 2012; 13:388-98. [PMID: 22023111 PMCID: PMC6638851 DOI: 10.1111/j.1364-3703.2011.00757.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Genes in eukaryotic organisms function within the context of chromatin, and the mechanisms that modulate the structure of chromatin are defined as epigenetic. In Arabidopsis, pathogen infection induces the expression of at least one histone deacetylase, suggesting that histone acetylation/deacetylation has an important role in the pathogenic response in plants. How/whether histone methylation affects gene response to pathogen infection is unknown. To gain a better understanding of the epigenetic mechanisms regulating the interaction between Pseudomonas syringae and Arabidopsis thaliana, we analysed three different Arabidopsis ash1-related (absent, small or homeotic discs 1) mutants. We found that the loss of function of ASHH2 and ASHR1 resulted in faster hypersensitive responses (HRs) to both mutant (hrpA) and pathogenic (DC3000) strains of P. syringae, whereas control (Col-0) and ashr3 mutants appeared to be more resistant to the infection after 2 days. Furthermore, we showed that, in the ashr3 background, the PR1 gene (PATHOGENESIS-RELATED GENE 1) displayed the highest expression levels on infection with DC3000, correlating with increased resistance against this pathogen. Our results show that, in both the ashr1 and ashh2 backgrounds, the histone H3 lysine 4 dimethylation (H3K4me2) levels decreased at the promoter region of PR1 on infection with the DC3000 strain, suggesting that an epigenetically regulated PR1 expression is involved in the plant defence. Our results suggest that histone methylation in response to pathogen infection may be a critical component in the signalling and defence processes occurring between plants and microbes.
Collapse
Affiliation(s)
- Clelia De-La-Peña
- Department of Genetic Engineering, Centro de Investigación y de Estudios Avanzados, Unidad Irapuato, Irapuato, Gto., CP 36821, Mexico
| | | | | |
Collapse
|
258
|
Köster J, Thurow C, Kruse K, Meier A, Iven T, Feussner I, Gatz C. Xenobiotic- and jasmonic acid-inducible signal transduction pathways have become interdependent at the Arabidopsis CYP81D11 promoter. PLANT PHYSIOLOGY 2012; 159:391-402. [PMID: 22452854 PMCID: PMC3375972 DOI: 10.1104/pp.112.194274] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Plants modify harmful substances through an inducible detoxification system. In Arabidopsis (Arabidopsis thaliana), chemical induction of the cytochrome P450 gene CYP81D11 and other genes linked to the detoxification program depends on class II TGA transcription factors. CYP81D11 expression is also induced by the phytohormone jasmonic acid (JA) through the established pathway requiring the JA receptor CORONATINE INSENSITIVE1 (COI1) and the JA-regulated transcription factor MYC2. Here, we report that the xenobiotic- and the JA-dependent signal cascades have become interdependent at the CYP81D11 promoter. On the one hand, MYC2 can only activate the expression of CYP81D11 when both the MYC2- and the TGA-binding sites are present in the promoter. On the other hand, the xenobiotic-regulated class II TGA transcription factors can only mediate maximal promoter activity if TGA and MYC2 binding motifs, MYC2, and the JA-isoleucine biosynthesis enzymes DDE2/AOS and JAR1 are functional. Since JA levels and degradation of JAZ1, a repressor of the JA response, are not affected by reactive chemicals, we hypothesize that basal JA signaling amplifies the response to chemical stress. Remarkably, stress-induced expression levels were 3-fold lower in coi1 than in the JA biosynthesis mutant dde2-2, [corrected] revealing that COI1 can contribute to the activation of the promoter in the absence of JA. Moreover, we show that deletion of the MYC2 binding motifs abolishes the JA responsiveness of the promoter but not the responsiveness to COI1. These findings suggest that yet unknown cis-element(s) can mediate COI1-dependent transcriptional activation in the absence of JA.
Collapse
|
259
|
Birkenbihl RP, Diezel C, Somssich IE. Arabidopsis WRKY33 is a key transcriptional regulator of hormonal and metabolic responses toward Botrytis cinerea infection. PLANT PHYSIOLOGY 2012; 159:266-85. [PMID: 22392279 PMCID: PMC3375964 DOI: 10.1104/pp.111.192641] [Citation(s) in RCA: 380] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 03/05/2012] [Indexed: 05/17/2023]
Abstract
The Arabidopsis (Arabidopsis thaliana) transcription factor WRKY33 is essential for defense toward the necrotrophic fungus Botrytis cinerea. Here, we aimed at identifying early transcriptional responses mediated by WRKY33. Global expression profiling on susceptible wrky33 and resistant wild-type plants uncovered massive differential transcriptional reprogramming upon B. cinerea infection. Subsequent detailed kinetic analyses revealed that loss of WRKY33 function results in inappropriate activation of the salicylic acid (SA)-related host response and elevated SA levels post infection and in the down-regulation of jasmonic acid (JA)-associated responses at later stages. This down-regulation appears to involve direct activation of several jasmonate ZIM-domain genes, encoding repressors of the JA-response pathway, by loss of WRKY33 function and by additional SA-dependent WRKY factors. Moreover, genes involved in redox homeostasis, SA signaling, ethylene-JA-mediated cross-communication, and camalexin biosynthesis were identified as direct targets of WRKY33. Genetic studies indicate that although SA-mediated repression of the JA pathway may contribute to the susceptibility of wrky33 plants to B. cinerea, it is insufficient for WRKY33-mediated resistance. Thus, WRKY33 apparently directly targets other still unidentified components that are also critical for establishing full resistance toward this necrotroph.
Collapse
Affiliation(s)
| | | | - Imre E. Somssich
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany (R.P.B., I.E.S.); Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Beutenberg Campus, Jena 07745, Germany (C.D.)
| |
Collapse
|
260
|
Arabidopsis synchronizes jasmonate-mediated defense with insect circadian behavior. Proc Natl Acad Sci U S A 2012; 109:4674-7. [PMID: 22331878 DOI: 10.1073/pnas.1116368109] [Citation(s) in RCA: 219] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Diverse life forms have evolved internal clocks enabling them to monitor time and thereby anticipate the daily environmental changes caused by Earth's rotation. The plant circadian clock regulates expression of about one-third of the Arabidopsis genome, yet the physiological relevance of this regulation is not fully understood. Here we show that the circadian clock, acting with hormone signals, provides selective advantage to plants through anticipation of and enhanced defense against herbivory. We found that cabbage loopers (Trichoplusia ni) display rhythmic feeding behavior that is sustained under constant conditions, and plants entrained in light/dark cycles coincident with the entrainment of the T. ni suffer only moderate tissue loss due to herbivory. In contrast, plants entrained out-of-phase relative to the insects are significantly more susceptible to attack. The in-phase entrainment advantage is lost in plants with arrhythmic clocks or deficient in jasmonate hormone; thus, both the circadian clock and jasmonates are required. Circadian jasmonate accumulation occurs in a phase pattern consistent with preparation for the onset of peak circadian insect feeding behavior, providing evidence for the underlying mechanism of clock-enhanced herbivory resistance. Furthermore, we find that salicylate, a hormone involved in biotrophic defense that often acts antagonistically to jasmonates, accumulates in opposite phase to jasmonates. Our results demonstrate that the plant circadian clock provides a strong physiological advantage by performing a critical role in Arabidopsis defense.
Collapse
|
261
|
Linkies A, Leubner-Metzger G. Beyond gibberellins and abscisic acid: how ethylene and jasmonates control seed germination. PLANT CELL REPORTS 2012; 31:253-70. [PMID: 22044964 DOI: 10.1007/s00299-011-1180-1] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 10/13/2011] [Accepted: 10/13/2011] [Indexed: 05/04/2023]
Abstract
Appropriate responses of seeds and fruits to environmental factors are key traits that control the establishment of a species in a particular ecosystem. Adaptation of germination to abiotic stresses and changing environmental conditions is decisive for fitness and survival of a species. Two opposing forces provide the basic physiological mechanism for the control of seed germination: the increasing growth potential of the embryo and the restraint weakening of the various covering layers (seed envelopes), including the endosperm which is present to a various extent in the mature seeds of most angiosperms. Gibberellins (GA), abscisic acid (ABA) and ethylene signaling and metabolism mediate environmental cues and in turn influence developmental processes like seed germination. Cross-species work has demonstrated that GA, ABA and ethylene interact during the regulation of endosperm weakening, which is at least partly based on evolutionarily conserved mechanisms. We summarize the recent progress made in unraveling how ethylene promotes germination and acts as an antagonist of ABA. Far less is known about jasmonates in seeds for which we summarize the current knowledge about their role in seeds. While it seems very clear that jasmonates inhibit germination, the results obtained so far are partly contradictory and depend on future research to reach final conclusions on the mode of jasmonate action during seed germination. Understanding the mechanisms underlying the control of seed germination and its hormonal regulation is not only of academic interest, but is also the ultimate basis for further improving crop establishment and yield, and is therefore of common importance.
Collapse
Affiliation(s)
- Ada Linkies
- Botany/Plant Physiology, Institute for Biology II, Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104, Freiburg, Germany.
| | | |
Collapse
|
262
|
An C, Mou Z. Non-host defense response in a novel Arabidopsis-Xanthomonas citri subsp. citri pathosystem. PLoS One 2012; 7:e31130. [PMID: 22299054 PMCID: PMC3267768 DOI: 10.1371/journal.pone.0031130] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 01/03/2012] [Indexed: 11/19/2022] Open
Abstract
Citrus canker, caused by Xanthomonas citri subsp. citri (Xcc), is one of the most destructive diseases of citrus. Progress of breeding citrus canker-resistant varieties is modest due to limited resistant germplasm resources and lack of candidate genes for genetic manipulation. The objective of this study is to establish a novel heterologous pathosystem between Xcc and the well-established model plant Arabidopsis thaliana for defense mechanism dissection and resistance gene identification. Our results indicate that Xcc bacteria neither grow nor decline in Arabidopsis, but induce multiple defense responses including callose deposition, reactive oxygen species and salicylic aicd (SA) production, and defense gene expression, indicating that Xcc activates non-host resistance in Arabidopsis. Moreover, Xcc-induced defense gene expression is suppressed or attenuated in several well-characterized SA signaling mutants including eds1, pad4, eds5, sid2, and npr1. Interestingly, resistance to Xcc is compromised only in eds1, pad4, and eds5, but not in sid2 and npr1. However, combining sid2 and npr1 in the sid2npr1 double mutant compromises resistance to Xcc, suggesting genetic interactions likely exist between SID2 and NPR1 in the non-host resistance against Xcc in Arabidopsis. These results demonstrate that the SA signaling pathway plays a critical role in regulating non-host defense against Xcc in Arabidopsis and suggest that the SA signaling pathway genes may hold great potential for breeding citrus canker-resistant varieties through modern gene transfer technology.
Collapse
Affiliation(s)
- Chuanfu An
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, United States of America
| | - Zhonglin Mou
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
263
|
Devoghalaere F, Doucen T, Guitton B, Keeling J, Payne W, Ling TJ, Ross JJ, Hallett IC, Gunaseelan K, Dayatilake GA, Diak R, Breen KC, Tustin DS, Costes E, Chagné D, Schaffer RJ, David KM. A genomics approach to understanding the role of auxin in apple (Malus x domestica) fruit size control. BMC PLANT BIOLOGY 2012; 12:7. [PMID: 22243694 PMCID: PMC3398290 DOI: 10.1186/1471-2229-12-7] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 01/13/2012] [Indexed: 05/18/2023]
Abstract
BACKGROUND Auxin is an important phytohormone for fleshy fruit development, having been shown to be involved in the initial signal for fertilisation, fruit size through the control of cell division and cell expansion, and ripening related events. There is considerable knowledge of auxin-related genes, mostly from work in model species. With the apple genome now available, it is possible to carry out genomics studies on auxin-related genes to identify genes that may play roles in specific stages of apple fruit development. RESULTS High amounts of auxin in the seed compared with the fruit cortex were observed in 'Royal Gala' apples, with amounts increasing through fruit development. Injection of exogenous auxin into developing apples at the start of cell expansion caused an increase in cell size. An expression analysis screen of auxin-related genes involved in auxin reception, homeostasis, and transcriptional regulation showed complex patterns of expression in each class of gene. Two mapping populations were phenotyped for fruit size over multiple seasons, and multiple quantitative trait loci (QTLs) were observed. One QTL mapped to a region containing an Auxin Response Factor (ARF106). This gene is expressed during cell division and cell expansion stages, consistent with a potential role in the control of fruit size. CONCLUSIONS The application of exogenous auxin to apples increased cell expansion, suggesting that endogenous auxin concentrations are at least one of the limiting factors controlling fruit size. The expression analysis of ARF106 linked to a strong QTL for fruit weight suggests that the auxin signal regulating fruit size could partially be modulated through the function of this gene. One class of gene (GH3) removes free auxin by conjugation to amino acids. The lower expression of these GH3 genes during rapid fruit expansion is consistent with the apple maximising auxin concentrations at this point.
Collapse
Affiliation(s)
- Fanny Devoghalaere
- The New Zealand Institute for Plant & Food Research Limited (PFR), Private Bag 92169, Auckland 1142, New Zealand
| | - Thomas Doucen
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Baptiste Guitton
- PFR, Private Bag 11600, Palmerston North 4442, New Zealand
- INRA, UMR AGAP, Equipe Architecture et Fonctionnement des Espèces Fruitières, Avenue Agropolis - TA-A-108/03, 34398 Montpellier Cedex 01, France
| | - Jeannette Keeling
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Wendy Payne
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Toby John Ling
- School of Plant Science, University of Tasmania, GPO Box 252-55, Hobart, Tasmania 7001, Australia
| | - John James Ross
- School of Plant Science, University of Tasmania, GPO Box 252-55, Hobart, Tasmania 7001, Australia
| | - Ian Charles Hallett
- The New Zealand Institute for Plant & Food Research Limited (PFR), Private Bag 92169, Auckland 1142, New Zealand
| | - Kularajathevan Gunaseelan
- The New Zealand Institute for Plant & Food Research Limited (PFR), Private Bag 92169, Auckland 1142, New Zealand
| | - GA Dayatilake
- PFR, Private Bag 1401, Havelock North 4157, New Zealand
| | - Robert Diak
- PFR, Old Mill Road, RD3, Motueka 7198, New Zealand
| | - Ken C Breen
- PFR, Private Bag 1401, Havelock North 4157, New Zealand
| | | | - Evelyne Costes
- INRA, UMR AGAP, Equipe Architecture et Fonctionnement des Espèces Fruitières, Avenue Agropolis - TA-A-108/03, 34398 Montpellier Cedex 01, France
| | - David Chagné
- PFR, Private Bag 11600, Palmerston North 4442, New Zealand
| | - Robert James Schaffer
- The New Zealand Institute for Plant & Food Research Limited (PFR), Private Bag 92169, Auckland 1142, New Zealand
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Karine Myriam David
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
264
|
Kumar R, Agarwal P, Tyagi AK, Sharma AK. Genome-wide investigation and expression analysis suggest diverse roles of auxin-responsive GH3 genes during development and response to different stimuli in tomato (Solanum lycopersicum). Mol Genet Genomics 2012. [PMID: 22228229 DOI: 10.1007/s00438‐011‐0672‐6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
Abstract
In plants, auxin-mediated responses are regulated by diverse proteins. One such class of proteins, i.e. GH3, is involved in the conjugation of IAA to amino acids and provides a negative feedback loop to control auxin homoeostasis. In order to have a better understanding of the mechanism of the auxin action, 15 genes encoding GH3 members were identified using existing EST databases of tomato. Their orthologs were identified from tobacco, potato, N. benthemiana, pepper, and petunia. Phylogenetic analysis of AtGH3, SlGH3, and their Solanaceae orthologs provided insights into various orthologous relationships among these proteins. These genes were found to be responsive to a variety of signals including, phytohormones and environmental stresses. Analysis of AuxRE elements in their promoters showed variability in the sequence as well as number of this element. Up-regulation of only 11 SlGH3 genes, in response to exogenous auxin, suggested possible relationship between the diversity in the sequence and number of AuxRE element with the auxin inducibility. Expression analysis of SlGH3 genes in different vegetative and reproductive tissues/stages suggested limited or no role for most of the SlGH3 genes at the initiation of fruit ripening. However, up-regulation of SlGH3-1 and -2 at the onset of fruit ripening indicates that these genes could have a role in fruit ripening. The present study characterizes GH3 gene family of tomato and its evolutionary relationship with members of this family from other Solanaceae species and Arabidopsis. It could help in the identification of GH3 genes and revelation of their function during vegetative/reproductive development stages from other Solanaceae members.
Collapse
Affiliation(s)
- Rahul Kumar
- Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, 110021, India
| | | | | | | |
Collapse
|
265
|
Genome-wide investigation and expression analysis suggest diverse roles of auxin-responsive GH3 genes during development and response to different stimuli in tomato (Solanum lycopersicum). Mol Genet Genomics 2012; 287:221-35. [DOI: 10.1007/s00438-011-0672-6] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 12/22/2011] [Indexed: 12/29/2022]
|
266
|
Martínez-Andújar C, Martin RC, Nonogaki H. Seed traits and genes important for translational biology--highlights from recent discoveries. PLANT & CELL PHYSIOLOGY 2012; 53:5-15. [PMID: 21849396 DOI: 10.1093/pcp/pcr112] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Seeds provide food, feed, fiber and fuel. They are also an important delivery system of genetic information, which is essential for the survival of wild species in ecosystems and the production of agricultural crops. In this review, seed traits and genes that are potentially important for agricultural applications are discussed. Over the long period of crop domestication, seed traits have been modified through intentional or unintentional selections. While most selections have led to seed traits favorable for agricultural consumption, such as larger seeds with higher nutritional value than the wild type, other manipulations in modern breeding sometimes led to negative traits, such as vivipary, precocious germination on the maternal plant or reduced seed vigor, as a side effect during the improvement of other characteristics. Greater effort is needed to overcome these problems that have emerged as a consequence of crop improvement. Seed biology researchers have characterized the function of many genes in the last decade, including those associated with seed domestication, which may be useful in addressing critical issues in modern agriculture, such as the prevention of vivipary and seed shattering or the enhancement of yields. Recent discoveries in seed biology research are highlighted in this review, with an emphasis on their potential for translational biology.
Collapse
|
267
|
Wager A, Browse J. Social Network: JAZ Protein Interactions Expand Our Knowledge of Jasmonate Signaling. FRONTIERS IN PLANT SCIENCE 2012; 3:41. [PMID: 22629274 PMCID: PMC3355530 DOI: 10.3389/fpls.2012.00041] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 02/18/2012] [Indexed: 05/17/2023]
Abstract
Members of the family of JASMONATE ZIM-DOMAIN (JAZ) proteins are key regulators of the jasmonate (JA) hormonal response. The 12-member family is characterized by three conserved domains, an N-terminal domain, a TIFY-containing ZINC-FINGER EXPRESSED IN INFLORESCENCE MERISTEM domain, and a C-terminal Jas domain. JAZ proteins regulate JA-responsive gene transcription by inhibiting DNA-binding transcription factors in the absence of JA. JAZ proteins interact in a hormone-dependent manner with CORONATINE INSENSITIVE 1 (COI1), the recognition component of the E3 ubiquitin ligase, SCF(COI1), resulting in the ubiquitination and subsequent degradation of JAZs via the 26S proteasome pathway. Since their discovery in 2007, JAZ proteins have been implicated in protein-protein interactions with multiple transcription factors. These studies have shed light on the mechanism by which JAZs repress transcription, are targeted for degradation, modulate the JA signaling response, and participate in crosstalk with other hormone signaling pathways. In this review, we will take a close look at the recent discoveries made possible by the characterization JAZ protein-protein interactions.
Collapse
Affiliation(s)
- Amanda Wager
- Institute of Biological Chemistry, Washington State UniversityPullman, WA, USA
| | - John Browse
- Institute of Biological Chemistry, Washington State UniversityPullman, WA, USA
- *Correspondence: John Browse, Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA. e-mail:
| |
Collapse
|
268
|
Endo A, Tatematsu K, Hanada K, Duermeyer L, Okamoto M, Yonekura-Sakakibara K, Saito K, Toyoda T, Kawakami N, Kamiya Y, Seki M, Nambara E. Tissue-specific transcriptome analysis reveals cell wall metabolism, flavonol biosynthesis and defense responses are activated in the endosperm of germinating Arabidopsis thaliana seeds. PLANT & CELL PHYSIOLOGY 2012; 53:16-27. [PMID: 22147073 DOI: 10.1093/pcp/pcr171] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Seed germination is a result of the competition of embryonic growth potential and mechanical constraint by surrounding tissues such as the endosperm. To understand the processes occurring in the endosperm during germination, we analyzed tiling array expression data on dissected endosperm and embryo from 6 and 24 h-imbibed Arabidopsis seeds. The genes preferentially expressed in the endosperm of both 6 and 24 h-imbibed seeds were enriched for those related to cell wall biosynthesis/modifications, flavonol biosynthesis, defense responses and cellular transport. Loss of function of AtXTH31/XTR8, an endosperm-specific gene for a putative xyloglucan endotransglycosylase/hydrolase, led to faster germination. This suggests that AtXTH31/XTR8 is involved in the reinforcement of the cell wall of the endosperm during germination. In vivo flavonol staining by diphenyl boric acid aminoethyl ester (DPBA) showed flavonols accumulated in the endosperm of both dormant and non-dormant seeds, suggesting that this event is independent of germination. Notably, DPBA fluorescence was also intense in the embryo, but the fluorescent region was diminished around the radicle and lower half of the hypocotyl during germination. DPBA fluorescence was localized in the vacuoles during germination. Vacuolation was not seen in imbibed dormant seeds, suggesting that vacuolation is associated with germination. A gene for δVPE (vacuolar processing enzyme), a caspase-1-like cysteine proteinase involved in cell death, is expressed specifically in endosperms of 24 h-imbibed seeds. The δvpe mutant showed retardation of vacuolation, but this mutation did not affect the kinetics of germination. This suggests that vacuolation is a consequence, and not a trigger, of germination.
Collapse
Affiliation(s)
- Akira Endo
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
269
|
Yadav SR, Khanday I, Majhi BB, Veluthambi K, Vijayraghavan U. Auxin-responsive OsMGH3, a common downstream target of OsMADS1 and OsMADS6, controls rice floret fertility. PLANT & CELL PHYSIOLOGY 2011; 52:2123-35. [PMID: 22016342 DOI: 10.1093/pcp/pcr142] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
GH3 proteins control auxin homeostasis by inactivating excess auxin as conjugates of amino acids and sugars and thereby controlling cellular bioactive auxin. Since auxin regulates many aspects of plant growth and development, regulated expression of these genes offers a mechanism to control various developmental processes. OsMGH3/OsGH3-8 is expressed abundantly in rice florets and is regulated by two related and redundant transcription factors, OsMADS1 and OsMADS6, but its contribution to flower development is not known. We functionally characterize OsMGH3 by overexpression and knock-down analysis and show a partial overlap in these phenotypes with that of mutants in OsMADS1 and OsMADS6. The overexpression of OsMGH3 during the vegetative phase affects the overall plant architecture, whereas its inflorescence-specific overexpression creates short panicles with reduced branching, resembling in part the effects of OsMADS1 overexpression. In contrast, the down-regulation of endogenous OsMGH3 caused phenotypes consistent with auxin overproduction or activated signaling, such as ectopic rooting from aerial nodes. Florets in OsMGH3 knock-down plants were affected in carpel development and pollen viability, both of which reduced fertility. Some of these floret phenotypes are similar to osmads6 mutants. Taken together, we provide evidence for the functional significance of auxin homeostasis and its transcriptional regulation during rice panicle branching and floret organ development.
Collapse
Affiliation(s)
- Shri Ram Yadav
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore-560012, India
| | | | | | | | | |
Collapse
|
270
|
An L, Zhou Z, Yan A, Gan Y. Progress on trichome development regulated by phytohormone signaling. PLANT SIGNALING & BEHAVIOR 2011; 6:1959-62. [PMID: 22105030 PMCID: PMC3337187 DOI: 10.4161/psb.6.12.18120] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Trichomes are specialized structures that develop from epidermal cells in the aerial parts of plants, and are an excellent model system to study all aspects of cell differentiation including cell fate determination, cell cycle regulation, cell polarity and cell expansion. The development of the trichome is a process of integration of both external signals and endogenous developmental programs. During recent years, molecular analysis of trichome development at different stages has been well studied, and through the mutant phenotypes and the function of corresponding genes, the underlying mechanism has been revealed in a first glimpse. This paper offers a mini-view on this integration process with emphasis on the effects of plant hormone signaling on trichome development in plants through GLABROUS INFLORESCENCE STEMS (GIS) family and subfamily genes.
Collapse
|
271
|
Piotrowska A, Bajguz A. Conjugates of abscisic acid, brassinosteroids, ethylene, gibberellins, and jasmonates. PHYTOCHEMISTRY 2011; 72:2097-112. [PMID: 21880337 DOI: 10.1016/j.phytochem.2011.08.012] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 07/11/2011] [Accepted: 08/04/2011] [Indexed: 05/18/2023]
Abstract
Phytohormones, including auxins, abscisic acid, brassinosteroids, cytokinins, ethylene, gibberellins, and jasmonates, are involved in all aspects of plant growth, and developmental processes as well as environmental responses. However, our understanding of hormonal homeostasis is far from complete. Phytohormone conjugation is considered as a part of the mechanism to control cellular levels of these compounds. Active phytohormones are changed into multiple forms by acylation, esterification or glycosylation, for example. It seems that conjugated compounds could serve as pool of inactive phytohormones that can be converted to active forms by de-conjugation reactions. Some conjugates are thought to be temporary storage forms, from which free active hormones can be released after hydrolysis. It is also believed that conjugation serves functions, such as irreversible inactivation, transport, compartmentalization, and protection against degradation. The nature of abscisic acid, brassinosteroid, ethylene, gibberellin, and jasmonate conjugates is discussed.
Collapse
Affiliation(s)
- Alicja Piotrowska
- University of Bialystok, Institute of Biology, Swierkowa 20 B, 15-950 Bialystok, Poland
| | | |
Collapse
|
272
|
Stotz HU, Jikumaru Y, Shimada Y, Sasaki E, Stingl N, Mueller MJ, Kamiya Y. Jasmonate-dependent and COI1-independent defense responses against Sclerotinia sclerotiorum in Arabidopsis thaliana: auxin is part of COI1-independent defense signaling. PLANT & CELL PHYSIOLOGY 2011; 52:1941-56. [PMID: 21937677 DOI: 10.1093/pcp/pcr127] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The jasmonate receptor COI1 is known to facilitate plant defense responses against necrotrophic pathogens, including the ascomycete Sclerotinia sclerotiorum. However, it is not known to what extent jasmonates contribute to defense nor have COI1-independent defense pathways been sufficiently characterized. Here we show that the susceptibility to S. sclerotiorum of the aos mutant, deficient in biosynthesis of jasmonic acid (JA) and its precursor 12-oxophytadienoic acid, was elevated to a level reminiscent of that of hypersusceptible coi1 mutants. In contrast, susceptibility of the JA-deficient opr3 mutant was comparable with that of the wild type. A set of 99 genes responded similarly to infection with S. sclerotiorum in wild-type and coi1 mutant leaves. Expression of this COI1-independent gene set correlated with known differences in gene expression between wild-type plants and a mutant in the transcriptional repressor auxin response factor 2 (arf2). Susceptibility to S. sclerotiorum was reduced in two arf2 mutants early during infection, implicating ARF2 as a negative regulator of defense responses against this pathogen. Hypersusceptibility of an axr1 mutant to S. sclerotiorum confirmed the contribution of auxin action to defense responses against this fungal pathogen.
Collapse
Affiliation(s)
- Henrik U Stotz
- RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| | | | | | | | | | | | | |
Collapse
|
273
|
Costigan SE, Warnasooriya SN, Humphries BA, Montgomery BL. Root-localized phytochrome chromophore synthesis is required for photoregulation of root elongation and impacts root sensitivity to jasmonic acid in Arabidopsis. PLANT PHYSIOLOGY 2011; 157:1138-50. [PMID: 21875894 PMCID: PMC3252167 DOI: 10.1104/pp.111.184689] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 08/25/2011] [Indexed: 05/18/2023]
Abstract
Plants exhibit organ- and tissue-specific light responses. To explore the molecular basis of spatial-specific phytochrome-regulated responses, a transgenic approach for regulating the synthesis and accumulation of the phytochrome chromophore phytochromobilin (PΦB) was employed. In prior experiments, transgenic expression of the BILIVERDIN REDUCTASE (BVR) gene was used to metabolically inactivate biliverdin IXα, a key precursor in the biosynthesis of PΦB, and thereby render cells accumulating BVR phytochrome deficient. Here, we report analyses of transgenic Arabidopsis (Arabidopsis thaliana) lines with distinct patterns of BVR accumulation dependent upon constitutive or tissue-specific, promoter-driven BVR expression that have resulted in insights on a correlation between root-localized BVR accumulation and photoregulation of root elongation. Plants with BVR accumulation in roots and a PΦB-deficient elongated hypocotyl2 (hy2-1) mutant exhibit roots that are longer than those of wild-type plants under white illumination. Additional analyses of a line with root-specific BVR accumulation generated using a GAL4-dependent bipartite enhancer-trap system confirmed that PΦB or phytochromes localized in roots directly impact light-dependent root elongation under white, blue, and red illumination. Additionally, roots of plants with constitutive plastid-localized or root-specific cytosolic BVR accumulation, as well as phytochrome chromophore-deficient hy1-1 and hy2-1 mutants, exhibit reduced sensitivity to the plant hormone jasmonic acid (JA) in JA-dependent root inhibition assays, similar to the response observed for the JA-insensitive mutants jar1 and myc2. Our analyses of lines with root-localized phytochrome deficiency or root-specific phytochrome depletion have provided novel insights into the roles of root-specific PΦB, or phytochromes themselves, in the photoregulation of root development and root sensitivity to JA.
Collapse
|
274
|
Yao Y, Danna CH, Zemp FJ, Titov V, Ciftci ON, Przybylski R, Ausubel FM, Kovalchuk I. UV-C-irradiated Arabidopsis and tobacco emit volatiles that trigger genomic instability in neighboring plants. THE PLANT CELL 2011; 23:3842-52. [PMID: 22028460 PMCID: PMC3229153 DOI: 10.1105/tpc.111.089003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 09/18/2011] [Accepted: 10/12/2011] [Indexed: 05/02/2023]
Abstract
We have previously shown that local exposure of plants to stress results in a systemic increase in genome instability. Here, we show that UV-C-irradiated plants produce a volatile signal that triggers an increase in genome instability in neighboring nonirradiated Arabidopsis thaliana plants. This volatile signal is interspecific, as UV-C-irradiated Arabidopsis plants transmit genome destabilization to naive tobacco (Nicotiana tabacum) plants and vice versa. We report that plants exposed to the volatile hormones methyl salicylate (MeSA) or methyl jasmonate (MeJA) exhibit a similar level of genome destabilization as UV-C-irradiated plants. We also found that irradiated Arabidopsis plants produce MeSA and MeJA. The analysis of mutants impaired in the synthesis and/or response to salicylic acid (SA) and/or jasmonic acid showed that at least one other volatile compound besides MeSA and MeJA can communicate interplant genome instability. The NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 (npr1) mutant, defective in SA signaling, is impaired in both the production and the perception of the volatile signals, demonstrating a key role for NPR1 as a central regulator of genome stability. Finally, various forms of stress resulting in the formation of necrotic lesions also generate a volatile signal that leads to genomic instability.
Collapse
Affiliation(s)
- Youli Yao
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Cristian H. Danna
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02114
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Franz J. Zemp
- Department of Medical Sciences, University of Calgary, Alberta T2N 4N1, Canada
| | - Viktor Titov
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Ozan Nazim Ciftci
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Roman Przybylski
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Frederick M. Ausubel
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02114
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| |
Collapse
|
275
|
Kuang JF, Zhang Y, Chen JY, Chen QJ, Jiang YM, Lin HT, Xu SJ, Lu WJ. Two GH3 genes from longan are differentially regulated during fruit growth and development. Gene 2011; 485:1-6. [DOI: 10.1016/j.gene.2011.05.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 05/23/2011] [Accepted: 05/30/2011] [Indexed: 01/08/2023]
|
276
|
Stitz M, Gase K, Baldwin IT, Gaquerel E. Ectopic expression of AtJMT in Nicotiana attenuata: creating a metabolic sink has tissue-specific consequences for the jasmonate metabolic network and silences downstream gene expression. PLANT PHYSIOLOGY 2011; 157:341-54. [PMID: 21753114 PMCID: PMC3165883 DOI: 10.1104/pp.111.178582] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 07/12/2011] [Indexed: 05/19/2023]
Abstract
To create a metabolic sink in the jasmonic acid (JA) pathway, we generated transgenic Nicotiana attenuata lines ectopically expressing Arabidopsis (Arabidopsis thaliana) jasmonic acid O-methyltransferase (35S-jmt) and additionally silenced in other lines the N. attenuata methyl jasmonate esterase (35S-jmt/ir-mje) to reduce the deesterification of methyl jasmonate (MeJA). Basal jasmonate levels did not differ between transgenic and wild-type plants; however, after wounding and elicitation with Manduca sexta oral secretions, the bursts of JA, jasmonoyl-isoleucine (JA-Ile), and their metabolites that are normally observed in the lamina, midvein, and petiole of elicited wild-type leaves were largely absent in both transformants but replaced by a burst of endogenous MeJA that accounted for almost half of the total elicited jasmonate pools. In these plants, MeJA became a metabolic sink that affected the jasmonate metabolic network and its spread to systemic leaves, with major effects on 12-oxo-phytodieonic acid, JA, and hydroxy-JA in petioles and on JA-Ile in laminas. Alterations in the size of jasmonate pools were most obvious in systemic tissues, especially petioles. Expression of threonine deaminase and trypsin proteinase inhibitor, two JA-inducible defense genes, was strongly decreased in both transgenic lines without influencing the expression of JA biosynthesis genes that were uncoupled from the wounding and elicitation with M. sexta oral secretions-elicited JA-Ile gradient in elicited leaves. Taken together, this study provides support for a central role of the vasculature in the propagation of jasmonates and new insights into the versatile spatiotemporal characteristics of the jasmonate metabolic network.
Collapse
Affiliation(s)
| | | | | | - Emmanuel Gaquerel
- Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, 07745 Jena, Germany
| |
Collapse
|
277
|
Ruberti I, Sessa G, Ciolfi A, Possenti M, Carabelli M, Morelli G. Plant adaptation to dynamically changing environment: the shade avoidance response. Biotechnol Adv 2011; 30:1047-58. [PMID: 21888962 DOI: 10.1016/j.biotechadv.2011.08.014] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 07/23/2011] [Accepted: 08/16/2011] [Indexed: 11/30/2022]
Abstract
The success of competitive interactions between plants determines the chance of survival of individuals and eventually of whole plant species. Shade-tolerant plants have adapted their photosynthesis to function optimally under low-light conditions. These plants are therefore capable of long-term survival under a canopy shade. In contrast, shade-avoiding plants adapt their growth to perceive maximum sunlight and therefore rapidly dominate gaps in a canopy. Daylight contains roughly equal proportions of red and far-red light, but within vegetation that ratio is lowered as a result of red absorption by photosynthetic pigments. This light quality change is perceived through the phytochrome system as an unambiguous signal of the proximity of neighbors resulting in a suite of developmental responses (termed the shade avoidance response) that, when successful, result in the overgrowth of those neighbors. Shoot elongation induced by low red/far-red light may confer high relative fitness in natural dense communities. However, since elongation is often achieved at the expense of leaf and root growth, shade avoidance may lead to reduction in crop plant productivity. Over the past decade, major progresses have been achieved in the understanding of the molecular basis of shade avoidance. However, uncovering the mechanisms underpinning plant response and adaptation to changes in the ratio of red to far-red light is key to design new strategies to precise modulate shade avoidance in time and space without impairing the overall crop ability to compete for light.
Collapse
Affiliation(s)
- I Ruberti
- Institute of Molecular Biology and Pathology, National Research Council, Piazzalle Aldo Moro 5, Rome, Italy.
| | | | | | | | | | | |
Collapse
|
278
|
Okrent RA, Wildermuth MC. Evolutionary history of the GH3 family of acyl adenylases in rosids. PLANT MOLECULAR BIOLOGY 2011; 76:489-505. [PMID: 21594748 DOI: 10.1007/s11103-011-9776-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 04/10/2011] [Indexed: 05/30/2023]
Abstract
GH3 amino acid conjugases have been identified in many plant and bacterial species. The evolution of GH3 genes in plant species is explored using the sequenced rosids Arabidopsis, papaya, poplar, and grape. Analysis of the sequenced non-rosid eudicots monkey flower and columbine, the monocots maize and rice, as well as spikemoss and moss is included to provide further insight into the origin of GH3 clades. Comparison of co-linear genes in regions surrounding GH3 genes between species helps reconstruct the evolutionary history of the family. Combining analysis of synteny with phylogenetics, gene expression and functional data redefines the Group III GH3 genes, of which AtGH3.12/PBS3, a regulator of stress-induced salicylic acid metabolism and plant defense, is a member. Contrary to previous reports that restrict PBS3 to Arabidopsis and its close relatives, PBS3 syntelogs are identified in poplar, grape, columbine, maize and rice suggesting descent from a common ancestral chromosome dating to before the eudicot/monocot split. In addition, the clade containing PBS3 has undergone a unique expansion in Arabidopsis, with expression patterns for these genes consistent with specialized and evolving stress-responsive functions.
Collapse
Affiliation(s)
- Rachel A Okrent
- Department of Plant and Microbial Biology, University of California, 221 Koshland Hall, Berkeley, CA 94720, USA
| | | |
Collapse
|
279
|
Böttcher C, Boss PK, Davies C. Acyl substrate preferences of an IAA-amido synthetase account for variations in grape (Vitis vinifera L.) berry ripening caused by different auxinic compounds indicating the importance of auxin conjugation in plant development. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:4267-80. [PMID: 21543520 PMCID: PMC3153680 DOI: 10.1093/jxb/err134] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Nine Gretchen Hagen (GH3) genes were identified in grapevine (Vitis vinifera L.) and six of these were predicted on the basis of protein sequence similarity to act as indole-3-acetic acid (IAA)-amido synthetases. The activity of these enzymes is thought to be important in controlling free IAA levels and one auxin-inducible grapevine GH3 protein, GH3-1, has previously been implicated in the berry ripening process. Ex planta assays showed that the expression of only one other GH3 gene, GH3-2, increased following the treatment of grape berries with auxinic compounds. One of these was the naturally occurring IAA and the other two were synthetic, α-naphthalene acetic acid (NAA) and benzothiazole-2-oxyacetic acid (BTOA). The determination of steady-state kinetic parameters for the recombinant GH3-1 and GH3-2 proteins revealed that both enzymes efficiently conjugated aspartic acid (Asp) to IAA and less well to NAA, while BTOA was a poor substrate. GH3-2 gene expression was induced by IAA treatment of pre-ripening berries with an associated increase in levels of IAA-Asp and a decrease in free IAA levels. This indicates that GH3-2 responded to excess auxin to maintain low levels of free IAA. Grape berry ripening was not affected by IAA application prior to veraison (ripening onset) but was considerably delayed by NAA and even more so by BTOA. The differential effects of the three auxinic compounds on berry ripening can therefore be explained by the induction and acyl substrate specificity of GH3-2. These results further indicate an important role for GH3 proteins in controlling auxin-related plant developmental processes.
Collapse
|
280
|
Sun JQ, Jiang HL, Li CY. Systemin/Jasmonate-mediated systemic defense signaling in tomato. MOLECULAR PLANT 2011; 4:607-15. [PMID: 21357647 DOI: 10.1093/mp/ssr008] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Wound-inducible proteinase inhibitors (PIs) in tomato plants provide a useful model system to elucidate the signal transduction pathways that regulate systemic defense response. Among the proposed intercellular signals for wound-induced PIs expression are the peptide systemin and the oxylipin-derived phytohormone jasmonic acid (JA). An increasing body of evidence indicates that systemin and JA work in the same signaling pathway to activate the expression of PIs and other defense-related genes. However, relatively less is known about how these signals interact to promote cell-to-cell communication over long distances. Genetic analysis of the systemin/JA signaling pathway in tomato plants provides a unique opportunity to study, in a single experimental system, the mechanism by which peptide and oxylipin signals interact to coordinate systemic expression of defense-related genes. Previously, it has been proposed that systemin is the long-distance mobile signal for defense gene expression. Recently, grafting experiments with tomato mutants defective in JA biosynthesis and signaling provide new evidence that JA, rather than systemin, functions as the systemic wound signal, and that the biosynthesis of JA is regulated by the peptide systemin. Further understanding of the systemin/JA signaling pathway promises to provide new insights into the basic mechanisms governing plant defense to biotic stress.
Collapse
Affiliation(s)
- Jia-Qiang Sun
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Datun Road, Beijing 100101, China
| | | | | |
Collapse
|
281
|
Wang JG, Chen CH, Chien CT, Hsieh HL. FAR-RED INSENSITIVE219 modulates CONSTITUTIVE PHOTOMORPHOGENIC1 activity via physical interaction to regulate hypocotyl elongation in Arabidopsis. PLANT PHYSIOLOGY 2011; 156:631-46. [PMID: 21525334 PMCID: PMC3177264 DOI: 10.1104/pp.111.177667] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
FAR-RED INSENSITIVE219 (FIN219) in Arabidopsis (Arabidopsis thaliana) is involved in phytochrome A-mediated far-red (FR) light signaling. Previous genetic studies revealed that FIN219 acts as an extragenic suppressor of CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1). However, the molecular mechanism underlying the suppression of COP1 remains unknown. Here, we used a transgenic approach to study the regulation of COP1 by FIN219. Transgenic seedlings containing ectopic expression of the FIN219 amino (N)-terminal domain in wild-type Columbia (named NCox for the expression of the N-terminal coiled-coil domain and NTox for the N-terminal 300-amino acid region) exhibited a dominant-negative long-hypocotyl phenotype under FR light, reflected as reduced photomorphogenic responses and altered levels of COP1 and ELONGATED HYPOCOTYL5 (HY5). Yeast two-hybrid, pull-down, and bimolecular fluorescence complementation assays revealed that FIN219 could interact with the WD-40 domain of COP1 and with its N-terminal coiled-coil domain through its carboxyl-terminal domain. Further in vivo coimmunoprecipitation study confirms that FIN219 interacts with COP1 under continuous FR light. Studies of the double mutant fin219-2/cop1-6 indicated that HY5 stability requires FIN219 under darkness and FR light. Moreover, FIN219 levels positively regulated by phytochrome A can modulate the subcellular location of COP1 and are differentially regulated by various fluence rates of FR light. We conclude that the dominant-negative long-hypocotyl phenotype conferred by NCox and NTox in a wild-type background was caused by the misregulation of COP1 binding with the carboxyl terminus of FIN219. Our data provide a critical mechanism controlling the key repressor COP1 in response to FR light.
Collapse
|
282
|
Wakuta S, Suzuki E, Saburi W, Matsuura H, Nabeta K, Imai R, Matsui H. OsJAR1 and OsJAR2 are jasmonyl-l-isoleucine synthases involved in wound- and pathogen-induced jasmonic acid signalling. Biochem Biophys Res Commun 2011; 409:634-9. [DOI: 10.1016/j.bbrc.2011.05.055] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 05/10/2011] [Indexed: 11/16/2022]
|
283
|
Cytochrome P450 CYP94B3 mediates catabolism and inactivation of the plant hormone jasmonoyl-L-isoleucine. Proc Natl Acad Sci U S A 2011; 108:9298-303. [PMID: 21576464 DOI: 10.1073/pnas.1103542108] [Citation(s) in RCA: 206] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The phytohormone jasmonoyl-L-isoleucine (JA-Ile) signals through the COI1-JAZ coreceptor complex to control key aspects of plant growth, development, and immune function. Despite detailed knowledge of the JA-Ile biosynthetic pathway, little is known about the genetic basis of JA-Ile catabolism and inactivation. Here, we report the identification of a wound- and jasmonate-responsive gene from Arabidopsis that encodes a cytochrome P450 (CYP94B3) involved in JA-Ile turnover. Metabolite analysis of wounded leaves showed that loss of CYP94B3 function in cyp94b3 mutants causes hyperaccumulation of JA-Ile and concomitant reduction in 12-hydroxy-JA-Ile (12OH-JA-Ile) content, whereas overexpression of this enzyme results in severe depletion of JA-Ile and corresponding changes in 12OH-JA-Ile levels. In vitro studies showed that heterologously expressed CYP94B3 converts JA-Ile to 12OH-JA-Ile, and that 12OH-JA-Ile is less effective than JA-Ile in promoting the formation of COI1-JAZ receptor complexes. CYP94B3-overexpressing plants displayed phenotypes indicative of JA-Ile deficiency, including defects in male fertility, resistance to jasmonate-induced growth inhibition, and susceptibility to insect attack. Increased accumulation of JA-Ile in wounded cyp94b3 leaves was associated with enhanced expression of jasmonate-responsive genes. These results demonstrate that CYP94B3 exerts negative feedback control on JA-Ile levels and performs a key role in attenuation of jasmonate responses.
Collapse
|
284
|
Maurer F, Müller S, Bauer P. Suppression of Fe deficiency gene expression by jasmonate. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2011; 49:530-6. [PMID: 21334215 DOI: 10.1016/j.plaphy.2011.01.025] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 01/19/2011] [Accepted: 01/26/2011] [Indexed: 05/03/2023]
Abstract
Fe deficiency genes are regulated in response to external supply of Fe as well as internal plant signals. Internal plant signals include plant hormones and systemic signals which coordinate shoot physiological requirements for Fe with local availability of Fe in roots. Induction of IRT1 and FRO2 gene expression can be used to monitor the Fe deficiency status of plant roots. Here, we investigated the role of jasmonate in the regulation of Fe deficiency responses and in the split root system. We found that jasmonate suppressed expression levels of IRT1 and FRO2 but not their inducibility in response to Fe deficiency. Analysis of the jasmonate-resistant mutant jar1-1 and pharmacological application of the lipoxygenase inhibitor ibuprofene supported an inhibitory effect of this plant hormone. Inhibition of IRT1 and FRO2 gene expression by jasmonate did not require the functional regulator FIT. By performing split root analyses we found that systemic down-regulation of Fe deficiency responses by Fe sufficiency of the shoot was not compromised by ibuprofene and in the jasmonate-insensitive mutant coi1-1. Therefore, we conclude that jasmonate acts as an inhibitor in fine-tuning Fe deficiency responses but that it is not involved in the systemic down-regulation of Fe deficiency responses in the root.
Collapse
Affiliation(s)
- Felix Maurer
- Dept. Biosciences-Plant Biology, Saarland University, Campus A2.4, D-66123 Saarbrücken, Germany
| | | | | |
Collapse
|
285
|
Fu J, Yu H, Li X, Xiao J, Wang S. Rice GH3 gene family: regulators of growth and development. PLANT SIGNALING & BEHAVIOR 2011; 6:570-4. [PMID: 21447996 PMCID: PMC3142395 DOI: 10.4161/psb.6.4.14947] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 01/25/2011] [Indexed: 05/20/2023]
Abstract
Auxin is an indispensable hormone throughout the lifetime of nearly all plant species. Several aspects of plant growth and development are rigidly governed by auxin, from micro to macro hierarchies; auxin also has a close relationship with plant-pathogen interactions. Undoubtedly, precise auxin levels are vitally important to plants, which have many effective mechanisms to maintain auxin homeostasis. One mechanism is conjugating amino acid to excessive indole-3-acetic acid (IAA; main form of auxin) through some GH3 family proteins to inactivate it. Our previous study demonstrated that GH3-2 mediated broad-spectrum resistance in rice (Oryza sativa L.) by suppressing pathogen-induced IAA accumulation and downregulating auxin signaling. Here, we further investigated the expression pattern of GH3-2 and other GH3 family paralogues in the life cycle of rice and presented the possible function of GH3-2 on rice root development by histochemical analysis of GH3-2 promoter:GUS reporter transgenic plants.
Collapse
Affiliation(s)
- Jing Fu
- Huazhong Agricultural University, Wuhan, China
| | | | | | | | | |
Collapse
|
286
|
Shockey J, Browse J. Genome-level and biochemical diversity of the acyl-activating enzyme superfamily in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 66:143-60. [PMID: 21443629 DOI: 10.1111/j.1365-313x.2011.04512.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In higher plants, the superfamily of carboxyl-CoA ligases and related proteins, collectively called acyl activating enzymes (AAEs), has evolved to provide enzymes for many pathways of primary and secondary metabolism and for the conjugation of hormones to amino acids. Across the superfamily there is only limited sequence similarity, but a series of highly conserved motifs, including the AMP-binding domain, make it easy to identify members. These conserved motifs are best understood in terms of the unique domain-rotation architecture that allows AAE enzymes to catalyze the two distinct steps of the CoA ligase reaction. Arabidopsis AAE sequences were used to identify the AAE gene families in the sequenced genomes of green algae, mosses, and trees; the size of the respective families increased with increasing degree of organismal cellular complexity, size, and generation time. Large-scale genome duplications and small-scale tandem gene duplications have contributed to AAE gene family complexity to differing extents in each of the multicellular species analyzed. Gene duplication and evolution of novel functions in Arabidopsis appears to have occurred rapidly, because acquisition of new substrate specificity is relatively easy in this class of proteins. Convergent evolution has also occurred between members of distantly related clades. These features of the AAE superfamily make it difficult to use homology searches and other genomics tools to predict enzyme function.
Collapse
Affiliation(s)
- Jay Shockey
- USDA-ARS, Southern Regional Research Center, Commodity Utilization Research Unit, New Orleans, LA 70124, USA.
| | | |
Collapse
|
287
|
Kravchuk Z, Vicedo B, Flors V, Camañes G, González-Bosch C, García-Agustín P. Priming for JA-dependent defenses using hexanoic acid is an effective mechanism to protect Arabidopsis against B. cinerea. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:359-66. [PMID: 20950893 DOI: 10.1016/j.jplph.2010.07.028] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2010] [Revised: 07/27/2010] [Accepted: 07/28/2010] [Indexed: 05/04/2023]
Abstract
Soil drench treatments with hexanoic acid can effectively protect Arabidopsis plants against Botrytis cinerea through a mechanism based on a stronger and faster accumulation of JA-dependent defenses. Plants impaired in ethylene, salicylic acid, abscisic acid or glutathion pathways showed intact protection by hexanoic acid upon B. cinerea infection. Accordingly, no significant changes in the SA marker gene PR-1 in either the SA or ABA hormone balance were observed in the infected and treated plants. In contrast, the JA signaling pathway showed dramatic changes after hexanoic acid treatment, mainly when the pathogen was present. The impaired JA mutants, jin1-2 and jar1, were unable to display hexanoic acid priming against the necrotroph. In addition, hexanoic acid-treated plants infected with B. cinerea showed priming in the expression of the PDF1.2, PR-4 and VSP1 genes implicated in the JA pathways. Moreover, JA and OPDA levels were primed at early stages by hexanoic acid. Treatments also stimulated increased callose accumulation in response to the pathogen. Although callose accumulation has proved an effective IR mechanism against B. cinerea, it is apparently not essential to express hexanoic acid-induced resistance (HxAc-IR) because the mutant pmr4.1 (callose synthesis defective mutant) is protected by treatment. We recently described how hexanoic acid treatments can protect tomato plants against B. cinerea by stimulating ABA-dependent callose deposition and by priming OPDA and JA-Ile production. We clearly demonstrate here that Hx-IR is a dependent plant species, since this acid protects Arabidopsis plants against the same necrotroph by priming JA-dependent defenses without enhancing callose accumulation.
Collapse
Affiliation(s)
- Zhana Kravchuk
- Laboratorio de Bioquímica y Biotecnología, Área de Fisiología Vegetal, Departamento de Ciencias Agrarias y del Medio Natural, ESTCE, Universitat Jaume I, Campus de Riu Sec., Castellón, Spain
| | | | | | | | | | | |
Collapse
|
288
|
Nakamura Y, Mithöfer A, Kombrink E, Boland W, Hamamoto S, Uozumi N, Tohma K, Ueda M. 12-hydroxyjasmonic acid glucoside is a COI1-JAZ-independent activator of leaf-closing movement in Samanea saman. PLANT PHYSIOLOGY 2011; 155:1226-36. [PMID: 21228101 PMCID: PMC3046581 DOI: 10.1104/pp.110.168617] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Accepted: 01/05/2011] [Indexed: 05/20/2023]
Abstract
Jasmonates are ubiquitously occurring plant growth regulators with high structural diversity that mediate numerous developmental processes and stress responses. We have recently identified 12-O-β-D-glucopyranosyljasmonic acid as the bioactive metabolite, leaf-closing factor (LCF), which induced nyctinastic leaf closure of Samanea saman. We demonstrate that leaf closure of isolated Samanea pinnae is induced upon stereospecific recognition of (-)-LCF, but not by its enantiomer, (+)-ent-LCF, and that the nonglucosylated derivative, (-)-12-hydroxyjasmonic acid also displays weak activity. Similarly, rapid and cell type-specific shrinkage of extensor motor cell protoplasts was selectively initiated upon treatment with (-)-LCF, whereas flexor motor cell protoplasts did not respond. In these bioassays related to leaf movement, all other jasmonates tested were inactive, including jasmonic acid (JA) and the potent derivates JA-isoleucine and coronatine. By contrast, (-)-LCF and (-)-12-hydroxyjasmonic acid were completely inactive with respect to activation of typical JA responses, such as induction of JA-responsive genes LOX2 and OPCL1 in Arabidopsis (Arabidopsis thaliana) or accumulation of plant volatile organic compounds in S. saman and lima bean (Phaseolus lunatus), generally considered to be mediated by JA-isoleucine in a COI1-dependent fashion. Furthermore, application of selective inhibitors indicated that leaf movement in S. saman is mediated by rapid potassium fluxes initiated by opening of potassium-permeable channels. Collectively, our data point to the existence of at least two separate JA signaling pathways in S. saman and that 12-O-β-D-glucopyranosyljasmonic acid exerts its leaf-closing activity through a mechanism independent of the COI1-JAZ module.
Collapse
|
289
|
Guo D, Wong WS, Xu WZ, Sun FF, Qing DJ, Li N. Cis-cinnamic acid-enhanced 1 gene plays a role in regulation of Arabidopsis bolting. PLANT MOLECULAR BIOLOGY 2011; 75:481-95. [PMID: 21298397 DOI: 10.1007/s11103-011-9746-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2010] [Accepted: 01/22/2011] [Indexed: 05/22/2023]
Abstract
Cis-cinnamic acid (CA) is one of many cis-phenylpropanoids found in both monocots and dicots. It is produced in planta via sunlight-mediated isomerization of trans-cinnamic acid. This pair of isomers plays a differential role in regulation of plant growth. A functional proteomics approach has been adopted to identify genes of cis/trans-CA mixture-enhanced expression. Out of 1,241 proteins identified by mass spectrometry, 32 were CA-enhanced and 13 repressed. Further analysis with the molecular biology approach revealed 2 cis-CA (Z usammen-CA)-E nhanced genes, named ZCE1 and ZCE2, which encode members of the major latex protein-like (MLPL) gene family. The transcript accumulation of both genes is positively correlated with the amount of cis-CA applied externally, ranging from 1 to 100 μM. ZCE1 transcript accumulation is enhanced largely by cis-CA and slightly by other cis-phenylpropanoids. Treatment of several well-characterized plant growth regulator perception-deficient mutants with cis-CA is able to promote ZCE1 transcript accumulation, suggestive of distinct signaling pathways regulating cis-CA response. The zce1 loss-of-function mutant produced via the RNA-interference technique produces an earlier bolting phenotype in Arabidopsis, suggesting that ZCE1 plays a role in promoting vegetative growth and delay flowering.
Collapse
Affiliation(s)
- Di Guo
- Division of Life Science, The Hong Kong University of Science and Technology, Clear water bay, Hong Kong SAR, China
| | | | | | | | | | | |
Collapse
|
290
|
Ludwig-Müller J. Auxin conjugates: their role for plant development and in the evolution of land plants. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:1757-73. [PMID: 21307383 DOI: 10.1093/jxb/erq412] [Citation(s) in RCA: 355] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Auxin conjugates are thought to play important roles as storage forms for the active plant hormone indole-3-acetic acid (IAA). In its free form, IAA comprises only up to 25% of the total amount of IAA, depending on the tissue and the plant species studied. The major forms of IAA conjugate are low molecular weight ester or amide forms, but there is increasing evidence of the occurrence of peptides and proteins modified by IAA. Since the discovery of genes and enzymes involved in synthesis and hydrolysis of auxin conjugates, much knowledge has been gained on the biochemistry and function of these compounds, but there is still much to discover. For example, recent work has shown that some auxin conjugate hydrolases prefer conjugates with longer-chain auxins such as indole-3-propionic acid and indole-3-butyric acid as substrate. Also, the compartmentation of these reactions in the cell or in tissues has not been resolved in great detail. The function of auxin conjugates has been mainly elucidated by mutant analysis in genes for synthesis or hydrolysis and a possible function for conjugates inferred from these results. In the evolution of land plants auxin conjugates seem to be connected with the development of certain traits such as embryo, shoot, and vasculature. Most likely, the synthesis of auxin conjugates was developed first, since it has been already detected in moss, whereas sequences typical of auxin conjugate hydrolases were found according to database entries first in moss ferns. The implications for the regulation of auxin levels in different species will be discussed.
Collapse
Affiliation(s)
- Jutta Ludwig-Müller
- Institut für Botanik, Technische Universität Dresden, 01062 Dresden, Germany.
| |
Collapse
|
291
|
Yang DH, Hettenhausen C, Baldwin IT, Wu J. BAK1 regulates the accumulation of jasmonic acid and the levels of trypsin proteinase inhibitors in Nicotiana attenuata's responses to herbivory. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:641-52. [PMID: 20937731 PMCID: PMC3003809 DOI: 10.1093/jxb/erq298] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 08/30/2010] [Accepted: 09/03/2010] [Indexed: 05/18/2023]
Abstract
BAK1 is a co-receptor of brassinosteroid (BR) receptor BRI1, and plays a well-characterized role in BR signalling. BAK1 also physically interacts with the flagellin receptor FLS2 and regulates pathogen resistance. The role of BAK1 in mediating Nicotiana attenuata's resistance responses to its specialist herbivore, Manduca sexta, was examined here. A virus-induced gene-silencing system was used to generate empty vector (EV) and NaBAK1-silenced plants. The wounding- and herbivory-induced responses were examined on EV and NaBAK1-silenced plants by wounding plants or simulating herbivory by treating wounds with larval oral secretions (OS). After wounding or OS elicitation, NaBAK1-silenced plants showed attenuated jasmonic acid (JA) and JA-isoleucine bursts, phytohormone responses important in mediating plant defences against herbivores. However, these decreased JA and JA-Ile levels did not result from compromised MAPK activity or elevated SA levels. After simulated herbivory, NaBAK1-silenced plants had EV levels of defensive secondary metabolites, namely, trypsin proteinase inhibitors (TPIs), and similar levels of resistance to Manduca sexta larvae. Additional experiments demonstrated that decreased JA levels in NaBAK1-VIGS plants, rather than the enzymatic activity of JAR proteins or Ile levels, were responsible for the reduced JA-Ile levels observed in these plants. Methyl jasmonate application elicited higher levels of TPI activity in NaBAK1-silenced plants than in EV plants, suggesting that silencing NaBAK1 enhances the accumulation of TPIs induced by a given level of JA. Thus NaBAK1 is involved in modulating herbivory-induced JA accumulation and how JA levels are transduced into TPI levels in N. attenuata.
Collapse
Affiliation(s)
| | | | | | - Jianqiang Wu
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll Straße 8, D-07745 Jena, Germany
| |
Collapse
|
292
|
Dempsey DA, Vlot AC, Wildermuth MC, Klessig DF. Salicylic Acid biosynthesis and metabolism. THE ARABIDOPSIS BOOK 2011; 9:e0156. [PMID: 22303280 PMCID: PMC3268552 DOI: 10.1199/tab.0156] [Citation(s) in RCA: 426] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Salicylic acid (SA) has been shown to regulate various aspects of growth and development; it also serves as a critical signal for activating disease resistance in Arabidopsis thaliana and other plant species. This review surveys the mechanisms involved in the biosynthesis and metabolism of this critical plant hormone. While a complete biosynthetic route has yet to be established, stressed Arabidopsis appear to synthesize SA primarily via an isochorismate-utilizing pathway in the chloroplast. A distinct pathway utilizing phenylalanine as the substrate also may contribute to SA accumulation, although to a much lesser extent. Once synthesized, free SA levels can be regulated by a variety of chemical modifications. Many of these modifications inactivate SA; however, some confer novel properties that may aid in long distance SA transport or the activation of stress responses complementary to those induced by free SA. In addition, a number of factors that directly or indirectly regulate the expression of SA biosynthetic genes or that influence the rate of SA catabolism have been identified. An integrated model, encompassing current knowledge of SA metabolism in Arabidopsis, as well as the influence other plant hormones exert on SA metabolism, is presented.
Collapse
Affiliation(s)
| | | | - Mary C. Wildermuth
- Department of Plant and Microbial Biology, 221 Koshland Hall, University of California, Berkeley, California 94720-3102
- Address correspondence to and
| | - Daniel F. Klessig
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853
- Address correspondence to and
| |
Collapse
|
293
|
Fu J, Wang S. Insights into auxin signaling in plant-pathogen interactions. FRONTIERS IN PLANT SCIENCE 2011; 2:74. [PMID: 22639609 PMCID: PMC3355572 DOI: 10.3389/fpls.2011.00074] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 10/17/2011] [Indexed: 05/17/2023]
Abstract
The phytohormone auxin has been known to be a regulator of plant growth and development ever since its discovery. Recent studies on plant-pathogen interactions identify auxin as a key character in pathogenesis and plant defense. Like plants, diverse pathogens possess the capacity to synthesize indole-3-acetic acid (IAA), the major form of auxin in plants. The emerging knowledge on auxin-signaling components, auxin metabolic processes, and indole-derived phytoalexins in plant responses to pathogen invasion has provided putative mechanisms of IAA in plant susceptibility and resistance to non-gall- or tumor-inducing pathogens.
Collapse
Affiliation(s)
- Jing Fu
- College of Life Sciences, Northwest A&F UniversityYangling, China
| | - Shiping Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural UniversityWuhan, China
- *Correspondence: Shiping Wang, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China. e-mail:
| |
Collapse
|
294
|
Westfall CS, Herrmann J, Chen Q, Wang S, Jez JM. Modulating plant hormones by enzyme action: the GH3 family of acyl acid amido synthetases. PLANT SIGNALING & BEHAVIOR 2010; 5:1607-12. [PMID: 21150301 PMCID: PMC3115113 DOI: 10.4161/psb.5.12.13941] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 10/09/2010] [Indexed: 05/18/2023]
Abstract
Plants respond to developmental cues and environmental stresses by controlling both the level and activity of various hormones. One mechanism of modulating hormone action involves amino acid conjugation. In plants, the GH3 family of enzymes conjugates various amino acids to jasmonates, auxins, and benzoates. The effect of conjugation can lead to activation, inactivation, or degradation of these molecules. Although the acyl acid and amino acid specificities of a few GH3 enzymes have been examined qualitatively, further in-depth analysis of the structure and function of these proteins is needed to reveal the molecular basis for how GH3 proteins modulate plant hormone action.
Collapse
Affiliation(s)
- Corey S Westfall
- Department of Biology, Washington University, St. Louis, MO, USA
| | | | | | | | | |
Collapse
|
295
|
Harb A, Krishnan A, Ambavaram MM, Pereira A. Molecular and physiological analysis of drought stress in Arabidopsis reveals early responses leading to acclimation in plant growth. PLANT PHYSIOLOGY 2010; 154:1254-71. [PMID: 20807999 PMCID: PMC2971604 DOI: 10.1104/pp.110.161752] [Citation(s) in RCA: 389] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Accepted: 08/27/2010] [Indexed: 05/18/2023]
Abstract
Plant drought stress response and resistance are complex biological processes that need to be analyzed at a systems level using genomics and physiological approaches to dissect experimental models that address drought stresses encountered by crops in the field. Toward this goal, a controlled, sublethal, moderate drought (mDr) treatment system was developed in Arabidopsis (Arabidopsis thaliana) as a reproducible assay for the dissection of plant responses to drought. The drought assay was validated using Arabidopsis mutants in abscisic acid (ABA) biosynthesis and signaling displaying drought sensitivity and in jasmonate response mutants showing drought resistance, indicating the crucial role of ABA and jasmonate signaling in drought response and acclimation. A comparative transcriptome analysis of soil water deficit drought stress treatments revealed the similarity of early-stage mDr to progressive drought, identifying common and specific stress-responsive genes and their promoter cis-regulatory elements. The dissection of mDr stress responses using a time-course analysis of biochemical, physiological, and molecular processes revealed early accumulation of ABA and induction of associated signaling genes, coinciding with a decrease in stomatal conductance as an early avoidance response to drought stress. This is accompanied by a peak in the expression of expansin genes involved in cell wall expansion, as a preparatory step toward drought acclimation by the adjustment of the cell wall. The time-course analysis of mDr provides a model with three stages of plant responses: an early priming and preconditioning stage, followed by an intermediate stage preparatory for acclimation, and a late stage of new homeostasis with reduced growth.
Collapse
Affiliation(s)
| | | | | | - Andy Pereira
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| |
Collapse
|
296
|
Liu G, Ji Y, Bhuiyan NH, Pilot G, Selvaraj G, Zou J, Wei Y. Amino acid homeostasis modulates salicylic acid-associated redox status and defense responses in Arabidopsis. THE PLANT CELL 2010; 22:3845-63. [PMID: 21097712 PMCID: PMC3015111 DOI: 10.1105/tpc.110.079392] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Revised: 09/13/2010] [Accepted: 10/28/2010] [Indexed: 05/17/2023]
Abstract
The tight association between nitrogen status and pathogenesis has been broadly documented in plant-pathogen interactions. However, the interface between primary metabolism and disease responses remains largely unclear. Here, we show that knockout of a single amino acid transporter, LYSINE HISTIDINE TRANSPORTER1 (LHT1), is sufficient for Arabidopsis thaliana plants to confer a broad spectrum of disease resistance in a salicylic acid-dependent manner. We found that redox fine-tuning in photosynthetic cells was causally linked to the lht1 mutant-associated phenotypes. Furthermore, the enhanced resistance in lht1 could be attributed to a specific deficiency of its main physiological substrate, Gln, and not to a general nitrogen deficiency. Thus, by enabling nitrogen metabolism to moderate the cellular redox status, a plant primary metabolite, Gln, plays a crucial role in plant disease resistance.
Collapse
Affiliation(s)
- Guosheng Liu
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada
| | - Yuanyuan Ji
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada
| | - Nazmul H. Bhuiyan
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada
| | - Guillaume Pilot
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Gopalan Selvaraj
- Plant Biotechnology Institute, National Research Council of Canada, Saskatoon, Saskatchewan S7N 0W9, Canada
| | - Jitao Zou
- Plant Biotechnology Institute, National Research Council of Canada, Saskatoon, Saskatchewan S7N 0W9, Canada
| | - Yangdou Wei
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada
| |
Collapse
|
297
|
Normanly J. Approaching cellular and molecular resolution of auxin biosynthesis and metabolism. Cold Spring Harb Perspect Biol 2010; 2:a001594. [PMID: 20182605 DOI: 10.1101/cshperspect.a001594] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
There is abundant evidence of multiple biosynthesis pathways for the major naturally occurring auxin in plants, indole-3-acetic acid (IAA), and examples of differential use of two general routes of IAA synthesis, namely Trp-dependent and Trp-independent. Although none of these pathways has been completely defined, we now have examples of specific IAA biosynthetic pathways playing a role in developmental processes by way of localized IAA synthesis, causing us to rethink the interactions between IAA synthesis, transport, and signaling. Recent work also points to some IAA biosynthesis pathways being specific to families within the plant kingdom, whereas others appear to be more ubiquitous. An important advance within the past 5 years is our ability to monitor IAA biosynthesis and metabolism at increasingly higher resolution.
Collapse
Affiliation(s)
- Jennifer Normanly
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003, USA.
| |
Collapse
|
298
|
Zhou L, Zeng Y, Zheng W, Tang B, Yang S, Zhang H, Li J, Li Z. Fine mapping a QTL qCTB7 for cold tolerance at the booting stage on rice chromosome 7 using a near-isogenic line. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 121:895-905. [PMID: 20512559 DOI: 10.1007/s00122-010-1358-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 05/12/2010] [Indexed: 05/03/2023]
Abstract
Low temperature at the booting stage is a serious abiotic stress in rice, and cold tolerance is a complex trait controlled by many quantitative trait loci (QTL). A QTL for cold tolerance at the booting stage in cold-tolerant near-isogenic rice line ZL1929-4 was analyzed. A total of 647 simple sequence repeat (SSR) markers distributed across 12 chromosomes were used to survey for polymorphisms between ZL1929-4 and the cold-sensitive japonica cultivar Towada, and nine were polymorphic. Single marker analysis revealed that markers on chromosome 7 were associated with cold tolerance. By interval mapping using an F(2) population from ZL1929-4 x Towada, a QTL for cold tolerance was detected on the long arm of chromosome 7. The QTL explained 9 and 21% of the phenotypic variances in the F(2) and F(3) generations, respectively. Recombinant plants were screened for two flanking markers, RM182 and RM1132, in an F(2) population with 2,810 plants. Two-step substitution mapping suggested that the QTL was located in a 92-kb interval between markers RI02905 and RM21862. This interval was present in BAC clone AP003804. We designated the QTL as qCTB7 (quantitative trait locus for cold tolerance at the booting stage on chromosome 7), and identified 12 putative candidate genes.
Collapse
Affiliation(s)
- Lei Zhou
- Key Laboratory of Crop Genomics and Genetic Improvement, Ministry of Agriculture, and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | | | | | | | | | | | | | | |
Collapse
|
299
|
Böttcher C, Keyzers RA, Boss PK, Davies C. Sequestration of auxin by the indole-3-acetic acid-amido synthetase GH3-1 in grape berry (Vitis vinifera L.) and the proposed role of auxin conjugation during ripening. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:3615-25. [PMID: 20581124 DOI: 10.1093/jxb/erq174] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In fleshy fruit, levels of indole-3-acetic acid (IAA), the most abundant auxin, decline towards the onset of ripening. The application of auxins to immature fruit can delay the ripening processes. However, the mechanisms by which the decrease in endogenous IAA concentrations and the maintenance of low auxin levels in maturing fruit are achieved remain elusive. The transcript of a GH3 gene (GH3-1), encoding for an IAA-amido synthetase which conjugates IAA to amino acids, was detected in grape berries (Vitis vinifera L.). GH3-1 expression increased at the onset of ripening (veraison), suggesting that it might be involved in the establishment and maintenance of low IAA concentrations in ripening berries. Furthermore, this grapevine GH3 gene, responded positively to the combined application of abscisic acid and sucrose and to ethylene, linking it to the control of ripening processes. Levels of IAA-aspartic acid (IAA-Asp), an in vitro product of recombinant GH3-1, rose after veraison and remained high during the following weeks of the ripening phase when levels of free IAA were low. A similar pattern of changes in free IAA and IAA-Asp levels was detected in developing tomatoes (Solanum lycopersicum Mill.), where low concentrations of IAA and an increase in IAA-Asp concentrations coincided with the onset of ripening in this climacteric fruit. Since IAA-Asp might be involved in IAA degradation, the GH3 catalysed formation of this conjugate at, and after, the onset of ripening could represent a common IAA inactivation mechanism in climacteric and non-climacteric fruit which enables ripening.
Collapse
|
300
|
Anssour S, Baldwin IT. Variation in antiherbivore defense responses in synthetic Nicotiana allopolyploids correlates with changes in uniparental patterns of gene expression. PLANT PHYSIOLOGY 2010; 153:1907-18. [PMID: 20525855 PMCID: PMC2923876 DOI: 10.1104/pp.110.156786] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 06/01/2010] [Indexed: 05/21/2023]
Abstract
We examined the expression of Nicotiana attenuata (Na) and Nicotiana obtusifolia (No) herbivore-induced genes in synthetic autopolyploids (NaT and NoT) and five independent allopolyploid Nicotiana x obtusiata (Nxo) lines to understand how the expression of genes regulating complex polygenetic defense traits is altered in the early stages of allopolyploid hybridization. In Na, applying Manduca sexta oral secretions (OS) to wounds rapidly increased the transcript accumulation of wound-induced protein kinase (WIPK), lipoxygenase 3 (LOX3), nonexpressor of pathogenesis-related 1 (NPR1), and jasmonate-resistant 4 (JAR4) genes; these were correlated with increases in accumulation of jasmonic acid (JA), jasmonate-isoleucine, and trypsin protease inhibitors (TPIs). In No, OS elicitation reduced NPR1 transcripts and increased the level of salicylic acid (SA) that appeared to antagonize JA and JA-mediated defenses. OS elicited Nxo lines, accumulated high levels of the uniparental transcript of WIPK, LOX3, JAR4, and TPI, but low levels of both parental NPR1 transcripts that in turn were correlated with an increase in SA and a decrease in JA levels, suggesting SA/JA antagonism in the allopolyploid crosses. Methyl jasmonate treatment of Nxo lines elicited transcripts of both parental LOX3, JAR4, and TPIs, demonstrating that the uniparental pattern observed after OS elicitation was not due to gene inactivation. TPIs were induced at different levels among Nxo lines; some lines expressed high levels comparable to Na, others low levels similar to No, suggesting that synthetic neoallopolyploids rapidly readjust the expression of their parental defensive genes to generate diverse antiherbivore responses. Changes in the expression of key genes and posttranscriptional events likely facilitate adaptive radiations during allopolyploid speciation events.
Collapse
Affiliation(s)
| | - Ian T. Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Beutenberg Campus, D–07745 Jena, Germany
| |
Collapse
|