251
|
Israeli A, Reed JW, Ori N. Genetic dissection of the auxin response network. NATURE PLANTS 2020; 6:1082-1090. [PMID: 32807951 DOI: 10.1038/s41477-020-0739-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 07/06/2020] [Indexed: 05/24/2023]
Abstract
The expansion of gene families during evolution, which can generate functional overlap or specialization among their members, is a characteristic feature of signalling pathways in complex organisms. For example, families of transcriptional activators and repressors mediate responses to the plant hormone auxin. Although these regulators were identified more than 20 years ago, their overlapping functions and compensating negative feedbacks have hampered their functional analyses. Studies using loss-of-function approaches in basal land plants and gain-of-function approaches in angiosperms have in part overcome these issues but have still left an incomplete understanding. Here, we propose that renewed emphasis on genetic analysis of multiple mutants and species will shed light on the role of gene families in auxin response. Combining loss-of-function mutations in auxin-response activators and repressors can unravel complex outputs enabled by expanded gene families, such as fine-tuned developmental outcomes and robustness. Similar approaches and concepts may help to analyse other regulatory pathways whose components are also encoded by large gene families.
Collapse
Affiliation(s)
- Alon Israeli
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University, Rehovot, Israel
| | - Jason W Reed
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Naomi Ori
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University, Rehovot, Israel.
| |
Collapse
|
252
|
Kim SH, Bahk S, An J, Hussain S, Nguyen NT, Do HL, Kim JY, Hong JC, Chung WS. A Gain-of-Function Mutant of IAA15 Inhibits Lateral Root Development by Transcriptional Repression of LBD Genes in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2020; 11:1239. [PMID: 32903377 PMCID: PMC7434933 DOI: 10.3389/fpls.2020.01239] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
Lateral root development is known to be regulated by Aux/IAA-ARF modules in Arabidopsis thaliana. As components, several Aux/IAAs have participated in these Aux/IAA-ARF modules. In this study, to identify the biological function of IAA15 in plant developments, transgenic plant overexpressing the gain-of-function mutant of IAA15 (IAA15P75S OX) under the control of dexamethasone (DEX) inducible promoter, in which IAA15 protein was mutated by changing Pro-75 residue to Ser at the degron motif in conserved domain II, was constructed. As a result, we found that IAA15P75S OX plants show a decreased number of lateral roots. Coincidently, IAA15 promoter-GUS reporter analysis revealed that IAA15 transcripts were highly detected in all stages of developing lateral root tissues. It was also verified that the IAA15P75S protein is strongly stabilized against proteasome-mediated protein degradation by inhibiting its poly-ubiquitination, resulting in the transcriptional repression of auxin-responsive genes. In particular, transcript levels of LBD16 and LBD29, which are positive regulators of lateral root formation, dramatically repressed in IAA15P75S OX plants. Furthermore, it was elucidated that IAA15 interacts with ARF7 and ARF19 and binds to the promoters of LBD16 and LBD29, strongly suggesting that IAA15 represses lateral root formation through the transcriptional suppression of LBD16 and LBD29 by inhibiting ARF7 and ARF19 activity. Taken together, this study suggests that IAA15 also plays a key negative role in lateral root formation as a component of Aux/IAA-ARF modules.
Collapse
|
253
|
Jiménez-Vázquez KR, García-Cárdenas E, Barrera-Ortiz S, Ortiz-Castro R, Ruiz-Herrera LF, Ramos-Acosta BP, Coria-Arellano JL, Sáenz-Mata J, López-Bucio J. The plant beneficial rhizobacterium Achromobacter sp. 5B1 influences root development through auxin signaling and redistribution. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1639-1654. [PMID: 32445404 DOI: 10.1111/tpj.14853] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/10/2020] [Accepted: 05/15/2020] [Indexed: 05/20/2023]
Abstract
Roots provide physical and nutritional support to plant organs that are above ground and play critical roles for adaptation via intricate movements and growth patterns. Through screening the effects of bacterial isolates from roots of halophyte Mesquite (Prosopis sp.) on Arabidopsis thaliana, we identified Achromobacter sp. 5B1 as a probiotic bacterium that influences plant functional traits. Detailed genetic and architectural analyses in Arabidopsis grown in vitro and in soil, cell division measurements, auxin transport and response gene expression and brefeldin A treatments demonstrated that root colonization with Achromobacter sp. 5B1 changes the growth and branching patterns of roots, which were related to auxin perception and redistribution. Expression analysis of auxin transport and signaling revealed a redistribution of auxin within the primary root tip of wild-type seedlings by Achromobacter sp. 5B1 that is disrupted by brefeldin A and correlates with repression of auxin transporters PIN1 and PIN7 in root provasculature, and PIN2 in the epidermis and cortex of the root tip, whereas expression of PIN3 was enhanced in the columella. In seedlings harboring AUX1, EIR1, AXR1, ARF7ARF19, TIR1AFB2AFB3 single, double or triple loss-of-function mutations, or in a dominant (gain-of-function) mutant of SLR1, the bacterium caused primary roots to form supercoils that are devoid of lateral roots. The changes in growth and root architecture elicited by the bacterium helped Arabidopsis seedlings to resist salt stress better. Thus, Achromobacter sp. 5B1 fine tunes both root movements and the auxin response, which may be important for plant growth and environmental adaptation.
Collapse
Affiliation(s)
- Kirán R Jiménez-Vázquez
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, Morelia, Michoacán, C. P. 58030, México
| | - Elizabeth García-Cárdenas
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, Morelia, Michoacán, C. P. 58030, México
| | - Salvador Barrera-Ortiz
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, Morelia, Michoacán, C. P. 58030, México
| | - Randy Ortiz-Castro
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A. C., Carretera Antigua a Coatepec 351 El Haya, Xalapa, Veracruz, 91070, México
| | - León F Ruiz-Herrera
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, Morelia, Michoacán, C. P. 58030, México
| | - Blanca P Ramos-Acosta
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Av. Universidad S/N, Frac. Filadelfia, Gómez Palacio, Durango, C.P. 35010, México
| | - Jessica L Coria-Arellano
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Av. Universidad S/N, Frac. Filadelfia, Gómez Palacio, Durango, C.P. 35010, México
| | - Jorge Sáenz-Mata
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Av. Universidad S/N, Frac. Filadelfia, Gómez Palacio, Durango, C.P. 35010, México
| | - José López-Bucio
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, Morelia, Michoacán, C. P. 58030, México
| |
Collapse
|
254
|
Li A, Lakshmanan P, He W, Tan H, Liu L, Liu H, Liu J, Huang D, Chen Z. Transcriptome Profiling Provides Molecular Insights into Auxin-Induced Adventitious Root Formation in Sugarcane ( Saccharum spp. Interspecific Hybrids) Microshoots. PLANTS 2020; 9:plants9080931. [PMID: 32717893 PMCID: PMC7465322 DOI: 10.3390/plants9080931] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/30/2020] [Accepted: 07/19/2020] [Indexed: 11/16/2022]
Abstract
Adventitious root (AR) formation was enhanced following the treatment of sugarcane microshoots with indole-3-butyric acid (IBA) and 1-naphthalene acetic acid (NAA) combined, suggesting that auxin is a positive regulator of sugarcane microshoot AR formation. The transcriptome profile identified 1737 and 1268 differentially expressed genes (DEGs) in the basal tissues (5 mm) of sugarcane microshoots treated with IBA+NAA compared to nontreated control on the 3rd and 7th days post-auxin or water treatment (days post-treatment—dpt), respectively. To understand the molecular changes, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed. This analysis showed that DEGs associated with the pathways were associated with plant hormone signaling, flavonoid and phenylpropanoid biosyntheses, cell cycle, and cell wall modification, and transcription factors could be involved in sugarcane microshoot AR formation. Furthermore, qRT–PCR analysis was used to validate the expression patterns of nine genes associated with root formation and growth, and the results were consistent with the RNA-seq results. Finally, a hypothetical hormonal regulatory working model of sugarcane microshoot AR formation is proposed. Our results provide valuable insights into the molecular processes associated with auxin-induced AR formation in sugarcane.
Collapse
Affiliation(s)
- Aomei Li
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (A.L.); (P.L.); (L.L.); (H.L.); (J.L.); (D.H.); (Z.C.)
| | - Prakash Lakshmanan
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (A.L.); (P.L.); (L.L.); (H.L.); (J.L.); (D.H.); (Z.C.)
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin (CAGD), College of Resources and Environment, Southwest University, Chongqing 400715, China
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia 4072, QLD, Australia
| | - Weizhong He
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (A.L.); (P.L.); (L.L.); (H.L.); (J.L.); (D.H.); (Z.C.)
- Correspondence: (W.H.); (H.T.)
| | - Hongwei Tan
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (A.L.); (P.L.); (L.L.); (H.L.); (J.L.); (D.H.); (Z.C.)
- Correspondence: (W.H.); (H.T.)
| | - Limin Liu
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (A.L.); (P.L.); (L.L.); (H.L.); (J.L.); (D.H.); (Z.C.)
| | - Hongjian Liu
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (A.L.); (P.L.); (L.L.); (H.L.); (J.L.); (D.H.); (Z.C.)
| | - Junxian Liu
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (A.L.); (P.L.); (L.L.); (H.L.); (J.L.); (D.H.); (Z.C.)
| | - Dongliang Huang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (A.L.); (P.L.); (L.L.); (H.L.); (J.L.); (D.H.); (Z.C.)
| | - Zhongliang Chen
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (A.L.); (P.L.); (L.L.); (H.L.); (J.L.); (D.H.); (Z.C.)
| |
Collapse
|
255
|
miRNA-mediated regulation of auxin signaling pathway during plant development and stress responses. J Biosci 2020. [DOI: 10.1007/s12038-020-00062-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
256
|
Ma F, Huang J, Yang J, Zhou J, Sun Q, Sun J. Identification, expression and miRNA targeting of auxin response factor genes related to phyllody in the witches’ broom disease of jujube. Gene 2020; 746:144656. [DOI: 10.1016/j.gene.2020.144656] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 04/04/2020] [Accepted: 04/06/2020] [Indexed: 11/16/2022]
|
257
|
Determinants of PB1 Domain Interactions in Auxin Response Factor ARF5 and Repressor IAA17. J Mol Biol 2020; 432:4010-4022. [PMID: 32305460 DOI: 10.1016/j.jmb.2020.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/08/2020] [Accepted: 04/08/2020] [Indexed: 02/06/2023]
Abstract
Auxin is a plant hormone that is central to plant growth and development from embryogenesis to senescence. Auxin signaling is mediated by auxin response transcription factors (ARFs) and Aux/IAA repressors that regulate the expression of a multitude of auxin response genes. ARF and Aux/IAA proteins assemble into homomeric and heteromeric complexes via their conserved PB1 domains. Here we report the first crystal structure of the PB1 complex between ARF5 and IAA17 of Arabidopsis thaliana, which represents the transcriptionally repressed state at low auxin levels. The PB1 domains assemble in a head-to-tail manner with a backbone arrangement similar to that of the ARF5:ARF5 PB1 complex. The ARF5:IAA17 complex, however, reveals distinct points of contact that promote the ARF5:IAA17 interaction over the ARF5:ARF5 interaction. Specifically, surface charges at the interface form salt-bridges that distinguish the homomeric and heteromeric complexes, revealing common and specific interfaces between transcriptionally repressed and derepressed states. Further, the salt-bridges can be reconfigured to switch the affinity between homomeric and heteromeric complexes in an incremental manner. The complex structure combined with quantitative binding analyses would be essential for deciphering the PB1 interaction code underlying the transcriptional regulation of auxin signaling.
Collapse
|
258
|
Liu X, Liu H, Liu WC, Gao Z. The nuclear localized RIN13 induces cell death through interacting with ARF1. Biochem Biophys Res Commun 2020; 527:124-130. [PMID: 32446355 DOI: 10.1016/j.bbrc.2020.04.082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 12/19/2022]
Abstract
Resistance to Pseudomonas syringae pv. Maculicola 1 (RPM1) is a crucial immune receptor conferring plant enhanced resistance to pathogenic bacteria. RPM1-interacting protein 13 (RIN13) enhances RPM1-mediated disease resistance through interacting with the central domain of RPM1 in Arabidopsis, while the underlying mechanism remains elusive. Here, we report the subcellular localization and function of RIN13 using the Nicotiana benthamiana (N. benthamiana) transient expression system. Our results showed that RIN13 is exclusively localized in the nucleus, and RIN13 (231-300) fragment is responsible for its nuclear localization. Transient expression of RIN13 in N. benthamiana leaves can accelerate leaf senescence and cell death, and affect the activities of ROS-scavenging enzymes, and the C-terminus of RIN13 is crucial for its function. Furthermore, we identified a RIN13-interacting protein, Auxin Response Factor 1 (ARF1), and found that similar to RIN13, ARF1 can also promote leaf senescence and cell death. In addition, expression of RIN13 in N. benthamiana leaves can facilitate the translocation of ARF1 into the nucleus. Collectively, our study revealed a possible mechanism of RIN13 in accelerating leaf senescence and cell death by changing the subcellular localization of ARF1.
Collapse
Affiliation(s)
- Xiaoxiao Liu
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Hui Liu
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Wen-Cheng Liu
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China.
| | - Zhiyong Gao
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
259
|
Cui J, Li X, Li J, Wang C, Cheng D, Dai C. Genome-wide sequence identification and expression analysis of ARF family in sugar beet ( Beta vulgaris L.) under salinity stresses. PeerJ 2020; 8:e9131. [PMID: 32547857 PMCID: PMC7276148 DOI: 10.7717/peerj.9131] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 04/14/2020] [Indexed: 02/05/2023] Open
Abstract
Auxin response factor (ARF) proteins respond to biological and abiotic stresses and play important roles in regulating plant growth and development. In this study, based on the genome-wide database of sugar beet, 16 BvARF proteins were identified. A detailed investigation into the BvARF family is performed, including analysis of the conserved domains, chromosomal locations, phylogeny, exon-intron structure, conserved motifs, subcellular localization, gene ontology (GO) annotations and expression profiles of BvARF under salt-tolerant condition. The majority of BvARF proteins contain B3 domain, AUX_RESP domain and AUX/IAA domain and a few lacked of AUX/IAA domain. Phylogenetic analysis suggests that the 16 BvARF proteins are clustered into six groups. Expression profile analysis shows that most of these BvARF genes in sugar beet under salinity stress were up-regulated or down-regulated to varying degrees and nine of the BvARF genes changed significantly. They were thought to have a significant response to salinity stress. The current study provides basic information for the BvARF genes and will pave the way for further studies on the roles of BvARF genes in regulating sugar beet's growth, development and responses to salinity stress.
Collapse
Affiliation(s)
- Jie Cui
- Harbin Institute of Technology, Harbin, China
| | - Xinyan Li
- Harbin Institute of Technology, Harbin, China
| | - Junliang Li
- Harbin Institute of Technology, Harbin, China
| | - Congyu Wang
- Harbin Institute of Technology, Harbin, China
| | - Dayou Cheng
- Harbin Institute of Technology, Harbin, China
| | - Cuihong Dai
- Harbin Institute of Technology, Harbin, China
| |
Collapse
|
260
|
Mazur E, Kulik I, Hajný J, Friml J. Auxin canalization and vascular tissue formation by TIR1/AFB-mediated auxin signaling in Arabidopsis. THE NEW PHYTOLOGIST 2020; 226:1375-1383. [PMID: 31971254 PMCID: PMC7318144 DOI: 10.1111/nph.16446] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 01/10/2020] [Indexed: 05/17/2023]
Abstract
Plant survival depends on vascular tissues, which originate in a self-organizing manner as strands of cells co-directionally transporting the plant hormone auxin. The latter phenomenon (also known as auxin canalization) is classically hypothesized to be regulated by auxin itself via the effect of this hormone on the polarity of its own intercellular transport. Correlative observations supported this concept, but molecular insights remain limited. In the current study, we established an experimental system based on the model Arabidopsis thaliana, which exhibits auxin transport channels and formation of vasculature strands in response to local auxin application. Our methodology permits the genetic analysis of auxin canalization under controllable experimental conditions. By utilizing this opportunity, we confirmed the dependence of auxin canalization on a PIN-dependent auxin transport and nuclear, TIR1/AFB-mediated auxin signaling. We also show that leaf venation and auxin-mediated PIN repolarization in the root require TIR1/AFB signaling. Further studies based on this experimental system are likely to yield better understanding of the mechanisms underlying auxin transport polarization in other developmental contexts.
Collapse
Affiliation(s)
- Ewa Mazur
- University of Silesia in KatowiceFaculty of Natural SciencesInstitute of Biology, Biotechnology and Environmental ProtectionKatowicePoland
- Mendel Centre for Plant Genomics and ProteomicsCentral European Institute of Technology (CEITEC)Masaryk UniversityCZ‐62‐500BrnoCzech Republic
| | - Ivan Kulik
- Institute of Science and Technology (IST)3400KlosterneuburgAustria
| | - Jakub Hajný
- Institute of Science and Technology (IST)3400KlosterneuburgAustria
- Laboratory of Growth Regulators and Department of Chemical Biology and GeneticsCentre of Region Haná for Biotechnological and Agricultural ResearchFaculty of SciencePalacký University and Institute of Experimental Botany ASCRŠlechtitelů 27783 71OlomoucCzech Republic
| | - Jiří Friml
- Institute of Science and Technology (IST)3400KlosterneuburgAustria
| |
Collapse
|
261
|
Diao D, Hu X, Guan D, Wang W, Yang H, Liu Y. Genome-wide identification of the ARF (auxin response factor) gene family in peach and their expression analysis. Mol Biol Rep 2020; 47:4331-4344. [PMID: 32430848 PMCID: PMC7295738 DOI: 10.1007/s11033-020-05525-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 05/14/2020] [Indexed: 01/07/2023]
Abstract
Auxin response factors (ARFs) are important transcription factors to relay auxin signaling. From the Genome Database for Rosaceae (GDR), we identified 17 peach ARF genes (PpARFs) encoding the proteins with three conserved domains. Their gene structure and functional domains were analyzed. Their transcriptional response to exogenous auxin treatment was tested and confirmed. We also expressed PpARF-GFP fusion reporters in tobacco leaves and observed their nuclear localization by fluorescence microscopy. It has been known that ARFs are widely involved in fruit development. We compared the expression pattern of all PpARFs in different tissues including the fruits at different developmental stages of two peach cultivars, “melting” and “stony hard”. We found eight PpARFs were more highly expressed in the “melting” peaches compared to “stony hard” peaches, while three PpARFs were more highly expressed in “stony hard” peaches. Among them, the expression difference of PpARF4, PpARF7 and PpARF12 was large, and their function in regulating fruit development and fruit quality was discussed. Our work provides a basis for further exploring the mechanisms underlying auxin regulated peach fruit ripening.
Collapse
Affiliation(s)
- Donghui Diao
- College of Bioscience and Resources Environment, Beijing University of Agriculture, Beijing, 102206 China
| | - Xiao Hu
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206 China
| | - Dan Guan
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206 China
| | - Wei Wang
- College of Bioscience and Resources Environment, Beijing University of Agriculture, Beijing, 102206 China
| | - Haiqing Yang
- Pinggu District of Fruit Bureau, Beijing, 101200 China
| | - Yueping Liu
- College of Bioscience and Resources Environment, Beijing University of Agriculture, Beijing, 102206 China
- Key Laboratory for Northern Urban Agriculture Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing, 102206 China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, 102206 China
| |
Collapse
|
262
|
Fernandez AI, Vangheluwe N, Xu K, Jourquin J, Claus LAN, Morales-Herrera S, Parizot B, De Gernier H, Yu Q, Drozdzecki A, Maruta T, Hoogewijs K, Vannecke W, Peterson B, Opdenacker D, Madder A, Nimchuk ZL, Russinova E, Beeckman T. GOLVEN peptide signalling through RGI receptors and MPK6 restricts asymmetric cell division during lateral root initiation. NATURE PLANTS 2020; 6:533-543. [PMID: 32393883 DOI: 10.1038/s41477-020-0645-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 03/24/2020] [Indexed: 05/26/2023]
Abstract
During lateral root initiation, lateral root founder cells undergo asymmetric cell divisions that generate daughter cells with different sizes and fates, a prerequisite for correct primordium organogenesis. An excess of the GLV6/RGF8 peptide disrupts these initial asymmetric cell divisions, resulting in more symmetric divisions and the failure to achieve lateral root organogenesis. Here, we show that loss-of-function GLV6 and its homologue GLV10 increase asymmetric cell divisions during lateral root initiation, and we identified three members of the RGF1 INSENSITIVE/RGF1 receptor subfamily as likely GLV receptors in this process. Through a suppressor screen, we found that MITOGEN-ACTIVATED PROTEIN KINASE6 is a downstream regulator of the GLV pathway. Our data indicate that GLV6 and GLV10 act as inhibitors of asymmetric cell divisions and signal through RGF1 INSENSITIVE receptors and MITOGEN-ACTIVATED PROTEIN KINASE6 to restrict the number of initial asymmetric cell divisions that take place during lateral root initiation.
Collapse
Affiliation(s)
- Ana I Fernandez
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Nick Vangheluwe
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Ke Xu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Joris Jourquin
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Lucas Alves Neubus Claus
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Stefania Morales-Herrera
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Laboratory of Molecular Cell Biology, KU Leuven, Kasteelpark, Leuven, Belgium
- VIB Center for Microbiology, Kasteelpark, Leuven, Belgium
| | - Boris Parizot
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Hugues De Gernier
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Qiaozhi Yu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Andrzej Drozdzecki
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Takanori Maruta
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue, Japan
| | - Kurt Hoogewijs
- Department of Organic Chemistry and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Willem Vannecke
- Department of Organic Chemistry and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Brenda Peterson
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
| | - Davy Opdenacker
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Annemieke Madder
- Department of Organic Chemistry and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Zachary L Nimchuk
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
| | - Eugenia Russinova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.
- VIB Center for Plant Systems Biology, Ghent, Belgium.
| |
Collapse
|
263
|
Azizi P, Hanafi MM, Sahebi M, Harikrishna JA, Taheri S, Yassoralipour A, Nasehi A. Epigenetic changes and their relationship to somaclonal variation: a need to monitor the micropropagation of plantation crops. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:508-523. [PMID: 32349860 DOI: 10.1071/fp19077] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 02/23/2020] [Indexed: 06/11/2023]
Abstract
Chromatin modulation plays important roles in gene expression regulation and genome activities. In plants, epigenetic changes, including variations in histone modification and DNA methylation, are linked to alterations in gene expression. Despite the significance and potential of in vitro cell and tissue culture systems in fundamental research and marketable applications, these systems threaten the genetic and epigenetic networks of intact plant organs and tissues. Cell and tissue culture applications can lead to DNA variations, methylation alterations, transposon activation, and finally, somaclonal variations. In this review, we discuss the status of the current understanding of epigenomic changes that occur under in vitro conditions in plantation crops, including coconut, oil palm, rubber, cotton, coffee and tea. It is hoped that comprehensive knowledge of the molecular basis of these epigenomic variations will help researchers develop strategies to enhance the totipotent and embryogenic capabilities of tissue culture systems for plantation crops.
Collapse
Affiliation(s)
- Parisa Azizi
- Laboratory of Plantation Science and Technology, Institute of Plantation Studies, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; and Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Mohamed M Hanafi
- Laboratory of Plantation Science and Technology, Institute of Plantation Studies, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; and Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; and Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; and Corresponding author.
| | - Mahbod Sahebi
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Jennifer A Harikrishna
- Centre of Research in Biotechnology for Agriculture (CEBAR), University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Sima Taheri
- Centre of Research in Biotechnology for Agriculture (CEBAR), University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Ali Yassoralipour
- Department of Agricultural and Food Science, Faculty of Science (Kampar Campus), Universiti Tunku Abdul Rahman (UTAR), Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia
| | - Abbas Nasehi
- Laboratory of Plantation Science and Technology, Institute of Plantation Studies, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
264
|
Xiao Y, Offringa R. PDK1 regulates auxin transport and Arabidopsis vascular development through AGC1 kinase PAX. NATURE PLANTS 2020; 6:544-555. [PMID: 32393878 DOI: 10.1038/s41477-020-0650-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
The 3-phosphoinositide-dependent protein kinase 1 (PDK1) is a conserved master regulator of AGC kinases in eukaryotic organisms. pdk1 loss of function causes a lethal phenotype in animals and yeasts, but only mild phenotypic defects in Arabidopsis thaliana (Arabidopsis). The Arabidopsis genome contains two PDK1-encoding genes, PDK1 and PDK2. Here, we used clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) to generate true loss-of-function pdk1 alleles, which, when combined with pdk2 alleles, showed severe developmental defects including fused cotyledons, a short primary root, dwarf stature and defects in male fertility. We obtained evidence that PDK1 is responsible for AGC1 kinase PROTEIN KINASE ASSOCIATED WITH BRX (PAX) activation by phosphorylation during vascular development, and that the PDK1 phospholipid-binding Pleckstrin Homology domain is not required for this process. Our data indicate that PDK1 regulates polar auxin transport by activating AGC1 clade kinases, resulting in PIN phosphorylation.
Collapse
Affiliation(s)
- Yao Xiao
- Plant Developmental Genetics, Institute of Biology Leiden, Leiden University, Leiden, the Netherlands
- Plant Systems Biology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Remko Offringa
- Plant Developmental Genetics, Institute of Biology Leiden, Leiden University, Leiden, the Netherlands.
| |
Collapse
|
265
|
Ogden AJ, Wietsma TW, Winkler T, Farris Y, Myers GL, Ahkami AH. Dynamics of Global Gene Expression and Regulatory Elements in Growing Brachypodium Root System. Sci Rep 2020; 10:7071. [PMID: 32341392 PMCID: PMC7184759 DOI: 10.1038/s41598-020-63224-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 02/28/2020] [Indexed: 11/09/2022] Open
Abstract
Root systems are dynamic and adaptable organs that play critical roles in plant development. However, how roots grow and accumulate biomass during plant life cycle and in relation to shoot growth phenology remains understudied. A comprehensive time-dependent root morphological analysis integrated with molecular signatures is then required to advance our understanding of root growth and development. Here we studied Brachypodium distachyon rooting process by monitoring root morphology, biomass production, and C/N ratios during developmental stages. To provide insight into gene regulation that accompanies root growth, we generated comprehensive transcript profiles of Brachypodium whole-root system at four developmental stages. Our data analysis revealed that multiple biological processes including trehalose metabolism and various families of transcription factors (TFs) were differentially expressed in root system during plant development. In particular, the AUX/IAA, ERFs, WRKY, NAC, and MADS TF family members were upregulated as plant entered the booting/heading stage, while ARFs and GRFs were downregulated suggesting these TF families as important factors involved in specific phases of rooting, and possibly in regulation of transition to plant reproductive stages. We identified several Brachypodium candidate root biomass-promoting genes and cis-regulatory elements for further functional validations and root growth improvements in grasses.
Collapse
Affiliation(s)
- Aaron J Ogden
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, Washington, USA
| | - Thomas W Wietsma
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, Washington, USA
| | - Tanya Winkler
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, Washington, USA
| | - Yuliya Farris
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, Washington, USA
| | - Gabriel L Myers
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, Washington, USA
| | - Amir H Ahkami
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, Washington, USA.
| |
Collapse
|
266
|
An H, Zhang J, Xu F, Jiang S, Zhang X. Transcriptomic profiling and discovery of key genes involved in adventitious root formation from green cuttings of highbush blueberry (Vaccinium corymbosum L.). BMC PLANT BIOLOGY 2020; 20:182. [PMID: 32334538 PMCID: PMC7183619 DOI: 10.1186/s12870-020-02398-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 04/15/2020] [Indexed: 06/01/2023]
Abstract
BACKGROUND Propagation of cuttings is frequently used in various plant species, including blueberry, which shows special root characteristics that may hinder adventitious root (AR) formation. AR formation is influenced by various factors, and auxin is considered to play a central role; however, little is known of the related regulatory mechanisms. In this study, a comparative transcriptome analysis of green cuttings treated with or without indole-butyric acid (IBA) was performed via RNA_seq to identify candidate genes associated with IBA-induced AR formation. RESULTS Rooting phenotypes, especially the rooting rate, were significantly promoted by exogenous auxin in the IBA application. Blueberry AR formation was an auxin-induced process, during which adventitious root primordium initiation (rpi) began at 14 days after cutting (DAC), root primordium (rp) was developed at 21 DAC, mature AR was observed at 28 DAC and finally outgrowth from the stem occurred at 35 DAC. Higher IAA levels and lower ABA and zeatin contents might facilitate AR formation and development. A time series transcriptome analysis identified 14,970 differentially expressed genes (DEGs) during AR formation, of which there were 7467 upregulated and 7503 downregulated genes. Of these, approximately 35 candidate DEGs involved in the auxin-induced pathway and AR formation were further identified, including 10 auxin respective genes (ARFs and SAURs), 13 transcription factors (LOB domain-containing protein (LBDs)), 6 auxin transporters (AUX22, LAX3/5 and PIN-like 6 (PIL6s)) and 6 rooting-associated genes (root meristem growth factor 9 (RGF9), lateral root primordium 1 (LRP1s), and dormancy-associated protein homologue 3 (DRMH3)). All these identified DEGs were highly upregulated in certain stages during AR formation, indicating their potential roles in blueberry AR formation. CONCLUSIONS The transcriptome profiling results indicated candidate genes or major regulatory factors that influence adventitious root formation in blueberry and provided a comprehensive understanding of the rooting mechanism underlying the auxin-induced AR formation from blueberry green cuttings.
Collapse
Affiliation(s)
- Haishan An
- Forestry and Pomology Research Insitute, Shanghai Academy of Agricultural Sciences, Jinqi Road No. 1000, Fengxian District, Shanghai, 201403, China
- Shanghai Key Lab of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Jinqi Road No. 1000, Fengxian District, Shanghai, 201403, China
| | - Jiaying Zhang
- Forestry and Pomology Research Insitute, Shanghai Academy of Agricultural Sciences, Jinqi Road No. 1000, Fengxian District, Shanghai, 201403, China
- Shanghai Key Lab of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Jinqi Road No. 1000, Fengxian District, Shanghai, 201403, China
| | - Fangjie Xu
- Forestry and Pomology Research Insitute, Shanghai Academy of Agricultural Sciences, Jinqi Road No. 1000, Fengxian District, Shanghai, 201403, China
- Shanghai Key Lab of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Jinqi Road No. 1000, Fengxian District, Shanghai, 201403, China
| | - Shuang Jiang
- Forestry and Pomology Research Insitute, Shanghai Academy of Agricultural Sciences, Jinqi Road No. 1000, Fengxian District, Shanghai, 201403, China.
- Shanghai Key Lab of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Jinqi Road No. 1000, Fengxian District, Shanghai, 201403, China.
| | - Xueying Zhang
- Forestry and Pomology Research Insitute, Shanghai Academy of Agricultural Sciences, Jinqi Road No. 1000, Fengxian District, Shanghai, 201403, China.
- Shanghai Key Lab of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Jinqi Road No. 1000, Fengxian District, Shanghai, 201403, China.
| |
Collapse
|
267
|
Vissenberg K, Claeijs N, Balcerowicz D, Schoenaers S. Hormonal regulation of root hair growth and responses to the environment in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2412-2427. [PMID: 31993645 PMCID: PMC7178432 DOI: 10.1093/jxb/eraa048] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/23/2020] [Indexed: 05/04/2023]
Abstract
The main functions of plant roots are water and nutrient uptake, soil anchorage, and interaction with soil-living biota. Root hairs, single cell tubular extensions of root epidermal cells, facilitate or enhance these functions by drastically enlarging the absorptive surface. Root hair development is constantly adapted to changes in the root's surroundings, allowing for optimization of root functionality in heterogeneous soil environments. The underlying molecular pathway is the result of a complex interplay between position-dependent signalling and feedback loops. Phytohormone signalling interconnects this root hair signalling cascade with biotic and abiotic changes in the rhizosphere, enabling dynamic hormone-driven changes in root hair growth, density, length, and morphology. This review critically discusses the influence of the major plant hormones on root hair development, and how changes in rhizosphere properties impact on the latter.
Collapse
Affiliation(s)
- Kris Vissenberg
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, Belgium
- Plant Biochemistry and Biotechnology Lab, Department of Agriculture, Hellenic Mediterranean University, Stavromenos PC, Heraklion, Crete, Greece
| | - Naomi Claeijs
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Daria Balcerowicz
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Sébastjen Schoenaers
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
268
|
Genome-wide identification and functional analysis of ARF transcription factors in Brassica juncea var. tumida. PLoS One 2020; 15:e0232039. [PMID: 32320456 PMCID: PMC7176091 DOI: 10.1371/journal.pone.0232039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/05/2020] [Indexed: 12/26/2022] Open
Abstract
Auxin signalling is vital for plant growth and development, from embryogenesis to senescence. Recent studies have shown that auxin regulates biological processes by mediating gene expression through a family of functionally original DNA-binding auxin response factors, which exist in a large multi-gene family in plants. However, to date, no information has been available about characteristics of the ARF gene family in Brassica juncea var. tumida. In this study, 65 B. juncea genes that encode ARF proteins were identified in the B. juncea whole-genome, classified into three phylogenetical groups and found to be widely and randomly distributed in the A-and B-genome. Highly conserved proteins were also found within each ortholog based on gene structure and conserved motifs, as well as clustering level. Furthermore, promoter cis-element analysis of BjARFs demonstrated that these genes affect the levels of plant hormones, such as auxin, salicylic, gibberellin acid, MeJA, abscisic acid, and ethylene. Expression analysis showed that differentially expressed BjARF genes were detected during the seedling stage, tumor stem development and the flowering period of B. juncea. Interestingly, we found that BjARF2b_A, BjARF3b_A, BjARF6b_A, and BjARF17a_B were significantly expressed in tumor stem, and an exogenous auxin assay indicated that these genes were sensitive to auxin and IAA signaling. Moreover, eight of the nine BjARF10/16/17 genes and all of the BjARF6/8 genes were involved in post-transcriptional regulation, targeted by Bj-miR160 and Bj-miR167c, respectively. This analysis provides deeper insight of diversification for ARFs and will facilitate further dissection of ARF gene function in B. juncea.
Collapse
|
269
|
Wang X, Yu R, Wang J, Lin Z, Han X, Deng Z, Fan L, He H, Deng XW, Chen H. The Asymmetric Expression of SAUR Genes Mediated by ARF7/19 Promotes the Gravitropism and Phototropism of Plant Hypocotyls. Cell Rep 2020; 31:107529. [PMID: 32320660 DOI: 10.1016/j.celrep.2020.107529] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 01/21/2020] [Accepted: 03/27/2020] [Indexed: 10/24/2022] Open
Abstract
The asymmetric distribution of auxin leads to the bending growth of hypocotyls during gravitropic and phototropic responses, but the signaling events downstream of auxin remain unclear. Here, we identify many SAUR genes showing asymmetric expression in soybean hypocotyls during gravistimulation and then study their homologs in Arabidopsis. SAUR19 subfamily genes have asymmetric expression in Arabidopsis hypocotyls during gravitropic and phototropic responses, induced by the lateral redistribution of auxin. Both the mutation of SAUR19 subfamily genes and the ectopic expression of SAUR19 weaken these tropic responses, indicating the critical role of their asymmetric expression. The auxin-responsive transcription factor ARF7 may directly bind the SAUR19 promoter and activate SAUR19 expression asymmetrically in tropic responses. Taken together, our results reveal that a gravity- or light-triggered asymmetric auxin distribution induces the asymmetric expression of SAUR19 subfamily genes by ARF7 and ARF19 in the hypocotyls, which leads to bending growth during gravitropic and phototropic responses.
Collapse
Affiliation(s)
- Xiaoyi Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Renbo Yu
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Jiajun Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Zechuan Lin
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Xue Han
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Zhaoguo Deng
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Liumin Fan
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Hang He
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Xing Wang Deng
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Haodong Chen
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
270
|
Smit ME, Llavata-Peris CI, Roosjen M, van Beijnum H, Novikova D, Levitsky V, Sevilem I, Roszak P, Slane D, Jürgens G, Mironova V, Brady SM, Weijers D. Specification and regulation of vascular tissue identity in the Arabidopsis embryo. Development 2020; 147:dev186130. [PMID: 32198154 DOI: 10.1242/dev.186130] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/05/2020] [Indexed: 12/30/2022]
Abstract
Development of plant vascular tissues involves tissue identity specification, growth, pattern formation and cell-type differentiation. Although later developmental steps are understood in some detail, it is still largely unknown how the tissue is initially specified. We used the early Arabidopsis embryo as a simple model to study this process. Using a large collection of marker genes, we found that vascular identity was specified in the 16-cell embryo. After a transient precursor state, however, there was no persistent uniform tissue identity. Auxin is intimately connected to vascular tissue development. We found that, although an AUXIN RESPONSE FACTOR5/MONOPTEROS (ARF5/MP)-dependent auxin response was required, it was not sufficient for tissue specification. We therefore used a large-scale enhanced yeast one-hybrid assay to identify potential regulators of vascular identity. Network and functional analysis of candidate regulators suggest that vascular identity is under robust, complex control. We found that one candidate regulator, the G-class bZIP transcription factor GBF2, can modulate vascular gene expression by tuning MP output through direct interaction. Our work uncovers components of a gene regulatory network that controls the initial specification of vascular tissue identity.
Collapse
Affiliation(s)
- Margot E Smit
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, Wageningen, 6708WE, The Netherlands
| | - Cristina I Llavata-Peris
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, Wageningen, 6708WE, The Netherlands
| | - Mark Roosjen
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, Wageningen, 6708WE, The Netherlands
| | - Henriette van Beijnum
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, Wageningen, 6708WE, The Netherlands
| | - Daria Novikova
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, Wageningen, 6708WE, The Netherlands
- Novosibirsk State University, LCT&EB, Novosibirsk, 630090, Russia
- Institute of Cytology and Genetics, Novosibirsk, 630090, Russia
| | - Victor Levitsky
- Novosibirsk State University, LCT&EB, Novosibirsk, 630090, Russia
- Institute of Cytology and Genetics, Novosibirsk, 630090, Russia
| | - Iris Sevilem
- Institute of Biotechnology, HiLIFE/Organismal and Evolurionary Biology Research Programma, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014, Finland
| | - Pawel Roszak
- Institute of Biotechnology, HiLIFE/Organismal and Evolurionary Biology Research Programma, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014, Finland
- Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, UK
| | - Daniel Slane
- Max Planck Institute for Developmental Biology, Cell Biology, Tübingen, 72076, Germany
| | - Gerd Jürgens
- Max Planck Institute for Developmental Biology, Cell Biology, Tübingen, 72076, Germany
| | - Victoria Mironova
- Novosibirsk State University, LCT&EB, Novosibirsk, 630090, Russia
- Institute of Cytology and Genetics, Novosibirsk, 630090, Russia
| | - Siobhan M Brady
- Department of Plant Biology and Genome Center, University of California Davis, Davis, CA 95616, USA
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, Wageningen, 6708WE, The Netherlands
| |
Collapse
|
271
|
Jourquin J, Fukaki H, Beeckman T. Peptide-Receptor Signaling Controls Lateral Root Development. PLANT PHYSIOLOGY 2020; 182:1645-1656. [PMID: 31862841 PMCID: PMC7140930 DOI: 10.1104/pp.19.01317] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 12/08/2019] [Indexed: 05/17/2023]
Abstract
Lateral root development progresses through different steps with, the peptides and receptors involved in each of these steps triggering downstream mechanisms upon peptide perception.
Collapse
Affiliation(s)
- Joris Jourquin
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- Vlaams Instituut voor Biotechnologie-Ghent University Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Hidehiro Fukaki
- Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501 Japan
| | - Tom Beeckman
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- Vlaams Instituut voor Biotechnologie-Ghent University Center for Plant Systems Biology, 9052 Ghent, Belgium
| |
Collapse
|
272
|
Comelli P, Glowa D, Frerichs A, Engelhorn J, Chandler JW, Werr W. Functional dissection of the DORNRÖSCHEN-LIKE enhancer 2 during embryonic and phyllotactic patterning. PLANTA 2020; 251:90. [PMID: 32236749 DOI: 10.1007/s00425-020-03381-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/20/2020] [Indexed: 06/11/2023]
Abstract
The Arabidopsis DORNRÖSCHEN-LIKE enhancer 2 comprises a high-occupancy target region in the IM periphery that integrates signals for the spiral phyllotactic pattern and cruciferous arrangement of sepals. Transcription of the DORNRÖSCHEN-LIKE (DRNL) gene marks lateral organ founder cells (LOFCs) in the peripheral zone of the inflorescence meristem (IM) and enhancer 2 (En2) in the DRNL promoter upstream region essentially contributes to this phyllotactic transcription pattern. Further analysis focused on the phylogenetically highly conserved 100-bp En2core element, which was sufficient to promote the phyllotactic pattern, but was recalcitrant to further shortening. Here, we show that En2core functions independent of orientation and create a series of mutations to study consequences on the transcription pattern. Their analysis shows that, first, in addition to in the inflorescence apex, En2core acts in the embryo; second, cis-regulatory target sequences are distributed throughout the 100-bp element, although substantial differences exist in their function between embryo and IM. Third, putative core auxin response elements (AuxREs) spatially activate or restrict DRNL expression, and fourth, according to chromatin configuration data, En2core enhancer activity in LOFCs correlates with an open chromatin structure at the DRNL transcription start. In combination, mutational and chromatin analyses imply that En2core comprises a high-occupancy target (HOT) region for transcription factors, which implements phyllotactic information for the spiral LOFC pattern in the IM periphery and coordinates the cruciferous array of floral sepals. Our data disfavor a contribution of activating auxin response factors (ARFs) but do not exclude auxin as a morphogenetic signal.
Collapse
Affiliation(s)
- Petra Comelli
- Developmental Biology, Biocenter, University of Cologne, Zülpicher Str 47b, 50674, Cologne, Germany
| | - Dorothea Glowa
- Developmental Biology, Biocenter, University of Cologne, Zülpicher Str 47b, 50674, Cologne, Germany
| | - Anneke Frerichs
- Developmental Biology, Biocenter, University of Cologne, Zülpicher Str 47b, 50674, Cologne, Germany
| | - Julia Engelhorn
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
- Institute for Molecular Physiology, Heinrich-Heine-Universität, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - John W Chandler
- Developmental Biology, Biocenter, University of Cologne, Zülpicher Str 47b, 50674, Cologne, Germany
| | - Wolfgang Werr
- Developmental Biology, Biocenter, University of Cologne, Zülpicher Str 47b, 50674, Cologne, Germany.
| |
Collapse
|
273
|
Guo Y, Gao M, Liang X, Xu M, Liu X, Zhang Y, Liu X, Liu J, Gao Y, Qu S, Luan F. Quantitative Trait Loci for Seed Size Variation in Cucurbits - A Review. FRONTIERS IN PLANT SCIENCE 2020; 11:304. [PMID: 32265957 PMCID: PMC7099056 DOI: 10.3389/fpls.2020.00304] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 03/03/2020] [Indexed: 05/17/2023]
Abstract
Cucurbits (Cucurbitaceae family) include many economically important fruit vegetable crops such as watermelon, pumpkin/squash, cucumber, and melon. Seed size (SS) is an important trait in cucurbits breeding, which is controlled by quantitative trait loci (QTL). Recent advances have deciphered several signaling pathways underlying seed size variation in model plants such as Arabidopsis and rice, but little is known on the genetic basis of SS variation in cucurbits. Here we conducted literature review on seed size QTL identified in watermelon, pumpkin/squash, cucumber and melon, and inferred 14, 9 and 13 consensus SS QTL based on their physical positions in respective draft genomes. Among them, four from watermelon (ClSS2.2, ClSS6.1, ClSS6.2, and ClSS8.2), two from cucumber (CsSS4.1 and CsSS5.1), and one from melon (CmSS11.1) were major-effect, stable QTL for seed size and weight. Whole genome sequence alignment revealed that these major-effect QTL were located in syntenic regions across different genomes suggesting possible structural and functional conservation of some important genes for seed size control in cucurbit crops. Annotation of genes in the four watermelon consensus SS QTL regions identified genes that are known to play important roles in seed size control including members of the zinc finger protein and the E3 ubiquitin-protein ligase families. The present work highlights the utility of comparative analysis in understanding the genetic basis of seed size variation, which may help future mapping and cloning of seed size QTL in cucurbits.
Collapse
Affiliation(s)
- Yu Guo
- College of Life Sciences, Agriculture and Forestry, Qiqihar University, Qiqihar, China
- Heilongjiang Provincial Key Laboratory of Resistance Gene Engineering and Preservation of Biodiversity in Cold Areas, Qiqihar, China
| | - Meiling Gao
- College of Life Sciences, Agriculture and Forestry, Qiqihar University, Qiqihar, China
- Heilongjiang Provincial Key Laboratory of Resistance Gene Engineering and Preservation of Biodiversity in Cold Areas, Qiqihar, China
| | - Xiaoxue Liang
- College of Life Sciences, Agriculture and Forestry, Qiqihar University, Qiqihar, China
| | - Ming Xu
- College of Life Sciences, Agriculture and Forestry, Qiqihar University, Qiqihar, China
| | - Xiaosong Liu
- College of Life Sciences, Agriculture and Forestry, Qiqihar University, Qiqihar, China
| | - Yanling Zhang
- College of Life Sciences, Agriculture and Forestry, Qiqihar University, Qiqihar, China
| | - Xiujie Liu
- Qiqihar Horticultural Research Institute, Qiqihar, China
| | - Jixiu Liu
- Qiqihar Horticultural Research Institute, Qiqihar, China
| | - Yue Gao
- Qiqihar Horticultural Research Institute, Qiqihar, China
| | - Shuping Qu
- College of Horticulture, Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Feishi Luan
- College of Horticulture, Landscape Architecture, Northeast Agricultural University, Harbin, China
| |
Collapse
|
274
|
Auxin perception in Agave is dependent on the species' Auxin Response Factors. Sci Rep 2020; 10:3860. [PMID: 32123284 PMCID: PMC7052169 DOI: 10.1038/s41598-020-60865-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 02/05/2020] [Indexed: 12/12/2022] Open
Abstract
Auxins are one of the most important and studied phytohormones in nature. Auxin signaling and perception take place in the cytosol, where the auxin is sensed. Then, in the nucleus, the auxin response factors (ARF) promote the expression of early-response genes. It is well known that not all plants respond to the same amount and type of auxins and that the response can be very different even among plants of the same species, as we present here. Here we investigate the behavior of ARF in response to various auxins in Agave angustifolia Haw., A. fourcroydes Lem. and A. tequilana Weber var. Azul. By screening the available database of A. tequilana genes, we have identified 32 ARF genes with high sequence identity in the conserved domains, grouped into three main clades. A phylogenetic tree was inferred from alignments of the 32 Agave ARF protein sequences and the evolutionary relationship with other species was analyzed. AteqARF 4, 15, 21, and 29 were selected as a representative diverse sample coming from each of the different subclades that comprise the two main clades of the inferred phylogenetic reconstruction. These ARFs showed differential species-specific expression patterns in the presence of indole-3-acetic acid (IAA) and 2,4-dichlorophenoxyacetic acid (2,4-D). Interestingly, A. angustifolia showed different phenotypes in the presence and absence of auxins. In the absence of auxin, A. angustifolia produces roots, while shoots are developed in the presence of IAA. However, in the presence of 2,4-D, the plant meristem converts into callus. According to our results, it is likely that AteqARF15 participates in this outcome.
Collapse
|
275
|
Into the Seed: Auxin Controls Seed Development and Grain Yield. Int J Mol Sci 2020; 21:ijms21051662. [PMID: 32121296 PMCID: PMC7084539 DOI: 10.3390/ijms21051662] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 11/17/2022] Open
Abstract
Seed development, which involves mainly the embryo, endosperm and integuments, is regulated by different signaling pathways, leading to various changes in seed size or seed weight. Therefore, uncovering the genetic and molecular mechanisms of seed development has great potential for improving crop yields. The phytohormone auxin is a key regulator required for modulating different cellular processes involved in seed development. Here, we provide a comprehensive review of the role of auxin biosynthesis, transport, signaling, conjugation, and catabolism during seed development. More importantly, we not only summarize the research progress on the genetic and molecular regulation of seed development mediated by auxin but also discuss the potential of manipulating auxin metabolism and its signaling pathway for improving crop seed weight.
Collapse
|
276
|
Genome-Wide Identification of the Auxin Response Factor (ARF) Gene Family and Their Expression Analysis during Flower Development of Osmanthus fragrans. FORESTS 2020. [DOI: 10.3390/f11020245] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Auxins have long been implicated in many aspects of plant growth and development. Auxin response factors (ARFs) are important proteins in auxin-mediated pathways and they play key roles in plant physiological and biochemical processes, including flower development. Endogenous indoleacetic acid (IAA) levels were measured and ARFs were studied in the flowers during the developmental stages in order to further elucidate the role of auxin in flower development of Osmanthus fragrans. A systematic analysis of OfARFs was conducted by carrying out a genome-wide search of ARFs. A total of 50 ARF genes (OfARFs) were detected and validated from the Osmanthus fragrans genome. Furthermore, a comprehensive overview of the OfARFs was undertaken, including phylogenetic relationship, gene structures, conserved domains, motifs, promoters, chromosome locations, gene duplications, and subcellular locations of the gene product. Finally, expression profiling, while using transcriptome sequencing from a previous study and quantitative real-time PCR (qRT-PCR), revealed that many OfARF genes have different expression levels in various tissues and flower developmental stages. By comparing the expression profiles among the flower developmental stages, and the relationship between ARFs and endogenous IAA levels, it can be supposed that OfARFs function in flower development of O. fragrans in an auxin-mediated pathway.
Collapse
|
277
|
Identification of miR390-TAS3-ARF pathway in response to salt stress in Helianthus tuberosus L. Gene 2020; 738:144460. [PMID: 32045659 DOI: 10.1016/j.gene.2020.144460] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 12/12/2022]
Abstract
MicroRNA390 (miR390), an ancient and highly conserved miRNA family in land plants, plays multiple roles in plant growth, development and stress responses. In this study, we isolated and identified MIR390, miR390, TAS3a/b/c, tasiARF-1/2/3 (trans-acting small interfering RNAs influencing Auxin Response Factors) and ARF2/3/4 in Jerusalem artichoke (Helianthus tuberosus L.). Treatment with 100 mM NaCl induced expression of miR390, increased cleavage of TAS3, produced high levels of tasiARFs, and subsequently enhanced cleavage of ARF3/4, which was most likely associated with salt tolerance of the plants. In contrast, treatment with 300 mM NaCl inhibited expression of miR390, attenuated cleavage of TAS3, produced a small amount of tasiARFs, and reduced cleavage of ARF3/4. We proposed that ARF2, one of the targets of tasiARFs, induced under salinity was likely to play an active role in salt tolerance of Jerusalem artichoke. The study of the miR390-TAS3-ARF model in Jerusalem artichoke may broaden our understanding of salt tolerance mechanisms, and provides a theoretical support for further genetic identification and breeding crops with increased tolerance to salt stress.
Collapse
|
278
|
Zhang F, Tao W, Sun R, Wang J, Li C, Kong X, Tian H, Ding Z. PRH1 mediates ARF7-LBD dependent auxin signaling to regulate lateral root development in Arabidopsis thaliana. PLoS Genet 2020; 16:e1008044. [PMID: 32032352 PMCID: PMC7006904 DOI: 10.1371/journal.pgen.1008044] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 12/22/2019] [Indexed: 11/19/2022] Open
Abstract
The development of lateral roots in Arabidopsis thaliana is strongly dependent on signaling directed by the AUXIN RESPONSE FACTOR7 (ARF7), which in turn activates LATERAL ORGAN BOUNDARIES DOMAIN (LBD) transcription factors (LBD16, LBD18 and LBD29). Here, the product of PRH1, a PR-1 homolog annotated previously as encoding a pathogen-responsive protein, was identified as a target of ARF7-mediated auxin signaling and also as participating in the development of lateral roots. PRH1 was shown to be strongly induced by auxin treatment, and plants lacking a functional copy of PRH1 formed fewer lateral roots. The transcription of PRH1 was controlled by the binding of both ARF7 and LBDs to its promoter region. In Arabidopsis thaliana AUXIN RESPONSE FACTOR7 (ARF7)-mediated auxin signaling plays a key role in lateral roots (LRs) development. The LATERAL ORGAN BOUNDARIES DOMAIN (LBD) transcription factors (LBD16, LBD18 and LBD29) act downstream of ARF7-mediated auxin signaling to control LRs formation. Here, the PR-1 homolog PRH1 was identified as a novel target of both ARF7 and LBDs (especially the LBD29) during auxin induced LRs formation, as both ARF7 and LBDs were able to bind to the PRH1 promoter. This study provides new insights about how auxin regulates lateral root development.
Collapse
Affiliation(s)
- Feng Zhang
- The Key Laboratory of the Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Wenqing Tao
- The Key Laboratory of the Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Ruiqi Sun
- The Key Laboratory of the Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Junxia Wang
- The Key Laboratory of the Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Cuiling Li
- The Key Laboratory of the Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Xiangpei Kong
- The Key Laboratory of the Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Huiyu Tian
- The Key Laboratory of the Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Zhaojun Ding
- The Key Laboratory of the Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China
- * E-mail:
| |
Collapse
|
279
|
Wachsman G, Benfey PN. Lateral Root Initiation: The Emergence of New Primordia Following Cell Death. Curr Biol 2020; 30:R121-R122. [PMID: 32017881 DOI: 10.1016/j.cub.2019.12.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The development of lateral roots requires multiple mechanisms that act together for accurate spatiotemporal emergence of the new organ. A new paper shows how cell death in overlying endodermis cells contributes to the formation of new lateral root primordia.
Collapse
Affiliation(s)
- Guy Wachsman
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| | - Philip N Benfey
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
280
|
Lee H, Ganguly A, Lee RD, Park M, Cho HT. Intracellularly Localized PIN-FORMED8 Promotes Lateral Root Emergence in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2020; 10:1808. [PMID: 32082353 PMCID: PMC7005106 DOI: 10.3389/fpls.2019.01808] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 12/24/2019] [Indexed: 05/28/2023]
Abstract
PIN-FORMED (PIN) auxin efflux carriers with a long central hydrophilic loop (long PINs) have been implicated in organogenesis. However, the role of short hydrophilic loop PINs (short PINs) in organogenesis is largely unknown. In this study, we investigated the role of a short PIN, PIN8, in lateral root (LR) development in Arabidopsis thaliana. The loss-of-function mutation in PIN8 significantly decreased LR density, mostly by affecting the emergence stage. PIN8 showed a sporadic expression pattern along the root vascular cells in the phloem, where the PIN8 protein predominantly localized to intracellular compartments. During LR primordium development, PIN8 was expressed at the late stage. Plasma membrane (PM)-localized long PINs suppressed LR formation when expressed in the PIN8 domain. Conversely, an auxin influx carrier, AUX1, restored the wild-type (WT) LR density when expressed in the PIN8 domain of the pin8 mutant root. Moreover, LR emergence was considerably inhibited when AXR2-1, the dominant negative form of Aux/IAA7, compromised auxin signaling in the PIN8 domain. Consistent with these observations, the expression of many genes implicated in late LR development was suppressed in the pin8 mutant compared with the WT. Our results suggest that the intracellularly localized PIN8 affects LR development most likely by modulating intracellular auxin translocation. Thus, the function of PIN8 is distinctive from that of PM-localized long PINs, where they generate local auxin gradients for organogenesis by conducting cell-to-cell auxin reflux.
Collapse
|
281
|
Yu F, Wan W, Lv MJ, Zhang JL, Meng LS. Molecular Mechanism Underlying the Effect of the Intraspecific Alternation of Seed Size on Plant Drought Tolerance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:703-711. [PMID: 31904950 DOI: 10.1021/acs.jafc.9b06491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In crop plants, the yield loss caused by drought exceeds the losses resulting from other adverse environment stresses. In numerous plant species, seedling establishment is positively correlated with the initial seed size under drought stress conditions. In intra- and interspecies, plants with large seeds can withstand water deficiency stresses, whereas those with small seeds are efficient colonizers as a result of their ability to produce more seeds. Therefore, larger initial seeds confer more drought resistance on germinating seedlings. Although this phenomenon has been observed by evolutionary biologists and ecologists, the correlation of initial seed size with the drought resistance of seedlings/plants is not well-reviewed and characterized. Furthermore, the related molecular mechanisms are unknown. Understanding these mechanisms will benefit future breeding or design strategies to increase crop yields. In the present review, we focus on recent research to analyze the genetic factors of plants/crops involved in the regulation of seed size and drought tolerance and their corresponding signal transduction pathways. Several signaling pathways that determine plant drought tolerance through influencing the initial seed size are identified. Such pathways include those that are involved in mitogen-activated protein kinase, abscisic acid, brassinosteroids, and several transcription factors and sugar signaling pathways.
Collapse
Affiliation(s)
- Fei Yu
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province , Jiangsu Normal University , Xuzhou , Jiangsu 221116 , People's Republic of China
| | - Wen Wan
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province , Jiangsu Normal University , Xuzhou , Jiangsu 221116 , People's Republic of China
| | - Meng-Jiao Lv
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province , Jiangsu Normal University , Xuzhou , Jiangsu 221116 , People's Republic of China
| | - Jin-Lin Zhang
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology , Lanzhou University , Lanzhou , Gansu 730020 , People's Republic of China
| | - Lai-Sheng Meng
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province , Jiangsu Normal University , Xuzhou , Jiangsu 221116 , People's Republic of China
| |
Collapse
|
282
|
Yuan TT, Xu HH, Li J, Lu YT. Auxin abolishes SHI-RELATED SEQUENCE5-mediated inhibition of lateral root development in Arabidopsis. THE NEW PHYTOLOGIST 2020; 225:297-309. [PMID: 31403703 DOI: 10.1111/nph.16115] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 08/03/2019] [Indexed: 06/10/2023]
Abstract
Lateral roots (LRs), which form in the plant postembryonically, determine the architecture of the root system. While negative regulatory factors that inhibit LR formation and are counteracted by auxin exist in the pericycle, these factors have not been characterised. Here, we report that SHI-RELATED SEQUENCE5 (SRS5) is an intrinsic negative regulator of LR formation and that auxin signalling abolishes this inhibitory effect of SRS5. Whereas LR primordia (LRPs) and LRs were fewer and less dense in SRS5ox and Pro35S:SRS5-GFP plants than in the wild-type, they were more abundant and denser in the srs5-2 loss-of-function mutant. SRS5 inhibited LR formation by directly downregulating the expression of LATERAL ORGAN BOUNDARIES-DOMAIN 16 (LBD16) and LBD29. Auxin repressed SRS5 expression. Auxin-mediated repression of SRS5 expression was not observed in the arf7-1 arf19-1 double mutant, likely because ARF7 and ARF19 bind to the promoter of SRS5 and inhibit its expression in response to auxin. Taken together, our data reveal that SRS5 negatively regulates LR formation by repressing the expression of LBD16 and LBD29 and that auxin releases this inhibitory effect through ARF7 and ARF19.
Collapse
Affiliation(s)
- Ting-Ting Yuan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Heng-Hao Xu
- Laboratory of Marine Pharmaceutical Compound Screening, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Huaihai Institute of Technology, Lianyungang, 222005, China
| | - Juan Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Ying-Tang Lu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
283
|
Wei SJ, Chai S, Zhu RM, Duan CY, Zhang Y, Li S. HUA ENHANCER1 Mediates Ovule Development. FRONTIERS IN PLANT SCIENCE 2020; 11:397. [PMID: 32351522 PMCID: PMC7174553 DOI: 10.3389/fpls.2020.00397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/19/2020] [Indexed: 05/03/2023]
Abstract
Ovules are female reproductive organs of angiosperms, containing sporophytic integuments and gametophytic embryo sacs. After fertilization, embryo sacs develop into embryos and endosperm whereas integuments into seed coat. Ovule development is regulated by transcription factors (TF) whose expression is often controlled by microRNAs. Mutations of Arabidopsis DICER-LIKE 1 (DCL1), a microRNA processing protein, caused defective ovule development and reduced female fertility. However, it was not clear whether other microRNA processing proteins participate in this process and how defective ovule development influenced female fertility. We report that mutations of HUA ENHANCER1 (HEN1) and HYPONASTIC LEAVES 1 (HYL1) interfered with integument growth. The sporophytic defect caused abnormal embryo sac development and inability of mutant ovules to attract pollen tubes, leading to reduced female fertility. We show that the role of HEN1 in integument growth is cell-autonomous. Although AUXIN RESPONSE FACTOR 6 (ARF6) and ARF8 were ectopically expressed in mutant ovules, consistent with the reduction of microRNA167 in hen1, introducing arf6;arf8 did not suppress ovule defects of hen1, suggesting the involvement of more microRNAs in this process. Results presented indicate that the microRNA processing machinery is critical for ovule development and seed production through multiple microRNAs and their targets.
Collapse
|
284
|
Xu L, Wang D, Liu S, Fang Z, Su S, Guo C, Zhao C, Tang Y. Comprehensive Atlas of Wheat ( Triticum aestivum L.) AUXIN RESPONSE FACTOR Expression During Male Reproductive Development and Abiotic Stress. FRONTIERS IN PLANT SCIENCE 2020; 11:586144. [PMID: 33101350 PMCID: PMC7554351 DOI: 10.3389/fpls.2020.586144] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/14/2020] [Indexed: 05/13/2023]
Abstract
AUXIN RESPONSE FACTOR (ARF) proteins regulate a wide range of signaling pathways, from general plant growth to abiotic stress responses. Here, we performed a genome-wide survey in wheat (Triticum aestivum) and identified 69 TaARF members that formed 24 homoeologous groups. Phylogenetic analysis clustered TaARF genes into three clades, similar to ARF genes in Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa). Structural characterization suggested that ARF gene structure and domain composition are well conserved between plant species. Expression profiling revealed diverse patterns of TaARF transcript levels across a range of developmental stages, tissues, and abiotic stresses. A number of TaARF genes shared similar expression patterns and were preferentially expressed in anthers. Moreover, our systematic analysis identified three anther-specific TaARF genes (TaARF8, TaARF9, and TaARF21) whose expression was significantly altered by low temperature in thermosensitive genic male-sterile (TGMS) wheat; these TaARF genes are candidates to participate in the cold-induced male sterility pathway, and offer potential applications in TGMS wheat breeding and hybrid seed production. Moreover, we identified putative functions for a set of TaARFs involved in responses to abscisic acid and abiotic stress. Overall, this study characterized the wheat ARF gene family and generated several hypotheses for future investigation of ARF function during anther development and abiotic stress.
Collapse
Affiliation(s)
- Lei Xu
- The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing Engineering Research Center for Hybrid, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Dezhou Wang
- The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing Engineering Research Center for Hybrid, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Shan Liu
- The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing Engineering Research Center for Hybrid, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Zhaofeng Fang
- The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing Engineering Research Center for Hybrid, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Shichao Su
- The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing Engineering Research Center for Hybrid, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Chunman Guo
- The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing Engineering Research Center for Hybrid, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Changping Zhao
- The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing Engineering Research Center for Hybrid, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- *Correspondence: Changping Zhao, ; Yimiao Tang,
| | - Yimiao Tang
- The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing Engineering Research Center for Hybrid, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- *Correspondence: Changping Zhao, ; Yimiao Tang,
| |
Collapse
|
285
|
Singh S, Yadav S, Singh A, Mahima M, Singh A, Gautam V, Sarkar AK. Auxin signaling modulates LATERAL ROOT PRIMORDIUM1 (LRP1) expression during lateral root development in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:87-100. [PMID: 31483536 DOI: 10.1111/tpj.14520] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/17/2019] [Accepted: 08/21/2019] [Indexed: 05/18/2023]
Abstract
Auxin signaling mediated by various auxin/indole-3-acetic acid (Aux/IAAs) and AUXIN RESPONSE FACTORs (ARFs) regulate lateral root (LR) development by controlling the expression of downstream genes. LATERAL ROOT PRIMORDIUM1 (LRP1), a member of the SHORT INTERNODES/STYLISH (SHI/STY) family, was identified as an auxin-inducible gene. The precise developmental role and molecular regulation of LRP1 in root development remain to be understood. Here we show that LRP1 is expressed in all stages of LR development, besides the primary root. The expression of LRP1 is regulated by histone deacetylation in an auxin-dependent manner. Our genetic interaction studies showed that LRP1 acts downstream of auxin responsive Aux/IAAs-ARFs modules during LR development. We showed that auxin-mediated induction of LRP1 is lost in emerging LRs of slr-1 and arf7arf19 mutants roots. NPA treatment studies showed that LRP1 acts after LR founder cell specification and asymmetric division during LR development. Overexpression of LRP1 (LRP1 OE) showed an increased number of LR primordia (LRP) at stages I, IV and V, resulting in reduced emerged LR density, which suggests that it is involved in LRP development. Interestingly, LRP1-induced expression of YUC4, which is involved in auxin biosynthesis, contributes to the increased accumulation of endogenous auxin in LRP1 OE roots. LRP1 interacts with SHI, STY1, SRS3, SRS6 and SRS7 proteins of the SHI/STY family, indicating their possible redundant role during root development. Our results suggested that auxin and histone deacetylation affect LRP1 expression and it acts downstream of LR forming auxin response modules to negatively regulate LRP development by modulating auxin homeostasis in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Sharmila Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Sandeep Yadav
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Alka Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Mahima Mahima
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Archita Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Vibhav Gautam
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Ananda K Sarkar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| |
Collapse
|
286
|
Jing T, Ardiansyah R, Xu Q, Xing Q, Müller-Xing R. Reprogramming of Cell Fate During Root Regeneration by Transcriptional and Epigenetic Networks. FRONTIERS IN PLANT SCIENCE 2020; 11:317. [PMID: 32269581 PMCID: PMC7112134 DOI: 10.3389/fpls.2020.00317] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/04/2020] [Indexed: 05/18/2023]
Abstract
Many plant species are able to regenerate adventitious roots either directly from aerial organs such as leaves or stems, in particularly after detachment (cutting), or indirectly, from over-proliferating tissue termed callus. In agriculture, this capacity of de novo root formation from cuttings can be used to clonally propagate several important crop plants including cassava, potato, sugar cane, banana and various fruit or timber trees. Direct and indirect de novo root regeneration (DNRR) originates from pluripotent cells of the pericycle tissue, from other root-competent cells or from non-root-competent cells that first dedifferentiate. Independently of their origin, the cells convert into root founder cells, which go through proliferation and differentiation subsequently forming functional root meristems, root primordia and the complete root. Recent studies in the model plants Arabidopsis thaliana and rice have identified several key regulators building in response to the phytohormone auxin transcriptional networks that are involved in both callus formation and DNRR. In both cases, epigenetic regulation seems essential for the dynamic reprogramming of cell fate, which is correlated with local and global changes of the chromatin states that might ensure the correct spatiotemporal expression pattern of the key regulators. Future approaches might investigate in greater detail whether and how the transcriptional key regulators and the writers, erasers, and readers of epigenetic modifications interact to control DNRR.
Collapse
Affiliation(s)
- Tingting Jing
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- Institute of Development, College of Life Science, Northeast Forestry University, Harbin, China
| | - Rhomi Ardiansyah
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- Institute of Genetics, College of Life Science, Northeast Forestry University, Harbin, China
| | - Qijiang Xu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- Institute of Development, College of Life Science, Northeast Forestry University, Harbin, China
| | - Qian Xing
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- Institute of Development, College of Life Science, Northeast Forestry University, Harbin, China
- *Correspondence: Qian Xing,
| | - Ralf Müller-Xing
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- Institute of Genetics, College of Life Science, Northeast Forestry University, Harbin, China
- Ralf Müller-Xing, ;
| |
Collapse
|
287
|
Wu Q, Du M, Wu J, Wang N, Wang B, Li F, Tian X, Li Z. Mepiquat chloride promotes cotton lateral root formation by modulating plant hormone homeostasis. BMC PLANT BIOLOGY 2019; 19:573. [PMID: 31864311 PMCID: PMC6925410 DOI: 10.1186/s12870-019-2176-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/29/2019] [Indexed: 05/25/2023]
Abstract
BACKGROUND Mepiquat chloride (MC), a plant growth regulator, enhances root growth by promoting lateral root formation in cotton. However, the underlying molecular mechanisms of this phenomenon is still unknown. METHODS In this study, we used 10 cotton (Gossypium hirsutum Linn.) cultivars to perform a seed treatment with MC to investigate lateral root formation, and selected a MC sensitive cotton cultivar for dynamic monitor of root growth and transcriptome analysis during lateral root development upon MC seed treatment. RESULTS The results showed that MC treated seeds promotes the lateral root formation in a dosage-depended manner and the effective promotion region is within 5 cm from the base of primary root. MC treated seeds induce endogenous auxin level by altering gene expression of both gibberellin (GA) biosynthesis and signaling and abscisic acid (ABA) signaling. Meanwhile, MC treated seeds differentially express genes involved in indole acetic acid (IAA) synthesis and transport. Furthermore, MC-induced IAA regulates the expression of genes related to cell cycle and division for lateral root development. CONCLUSIONS Our data suggest that MC orchestrates GA and ABA metabolism and signaling, which further regulates auxin biosynthesis, transport, and signaling to promote the cell division responsible for lateral root formation.
Collapse
Affiliation(s)
- Qian Wu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
- Institute of Agricultural Information, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 China
| | - Mingwei Du
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| | - Jie Wu
- Plant Phenomics Research Center, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Ning Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| | - Baomin Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| | - Fangjun Li
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| | - Xiaoli Tian
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| | - Zhaohu Li
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
288
|
Powers SK, Strader LC. Regulation of auxin transcriptional responses. Dev Dyn 2019; 249:483-495. [PMID: 31774605 PMCID: PMC7187202 DOI: 10.1002/dvdy.139] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/17/2019] [Accepted: 11/22/2019] [Indexed: 01/27/2023] Open
Abstract
The plant hormone auxin acts as a signaling molecule to regulate a vast number of developmental responses throughout all stages of plant growth. Tight control and coordination of auxin signaling is required for the generation of specific auxin‐response outputs. The nuclear auxin signaling pathway controls auxin‐responsive gene transcription through the TRANSPORT INHIBITOR RESPONSE1/AUXIN SIGNALING F‐BOX pathway. Recent work has uncovered important details into how regulation of auxin signaling components can generate unique and specific responses to determine auxin outputs. In this review, we discuss what is known about the core auxin signaling components and explore mechanisms important for regulating auxin response specificity. A review of recent updates to our understanding of auxin signaling.
Collapse
Affiliation(s)
- Samantha K Powers
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri
| | - Lucia C Strader
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri.,Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, Missouri.,Center for Engineering MechanoBiology, Washington University in St. Louis, St. Louis, Missouri
| |
Collapse
|
289
|
Decaestecker W, Buono RA, Pfeiffer ML, Vangheluwe N, Jourquin J, Karimi M, Van Isterdael G, Beeckman T, Nowack MK, Jacobs TB. CRISPR-TSKO: A Technique for Efficient Mutagenesis in Specific Cell Types, Tissues, or Organs in Arabidopsis. THE PLANT CELL 2019; 31:2868-2887. [PMID: 31562216 DOI: 10.1101/474981] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 09/25/2019] [Indexed: 05/26/2023]
Abstract
Detailed functional analyses of many fundamentally important plant genes via conventional loss-of-function approaches are impeded by the severe pleiotropic phenotypes resulting from these losses. In particular, mutations in genes that are required for basic cellular functions and/or reproduction often interfere with the generation of homozygous mutant plants, precluding further functional studies. To overcome this limitation, we devised a clustered regularly interspaced short palindromic repeats (CRISPR)-based tissue-specific knockout system, CRISPR-TSKO, enabling the generation of somatic mutations in particular plant cell types, tissues, and organs. In Arabidopsis (Arabidopsis thaliana), CRISPR-TSKO mutations in essential genes caused well-defined, localized phenotypes in the root cap, stomatal lineage, or entire lateral roots. The modular cloning system developed in this study allows for the efficient selection, identification, and functional analysis of mutant lines directly in the first transgenic generation. The efficacy of CRISPR-TSKO opens avenues for discovering and analyzing gene functions in the spatial and temporal contexts of plant life while avoiding the pleiotropic effects of system-wide losses of gene function.
Collapse
Affiliation(s)
- Ward Decaestecker
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Rafael Andrade Buono
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Marie L Pfeiffer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Nick Vangheluwe
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Joris Jourquin
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Mansour Karimi
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Gert Van Isterdael
- VIB Flow Core, VIB Center for Inflammation Research, Technologiepark 71, B-9052 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Moritz K Nowack
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Thomas B Jacobs
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| |
Collapse
|
290
|
Decaestecker W, Buono RA, Pfeiffer ML, Vangheluwe N, Jourquin J, Karimi M, Van Isterdael G, Beeckman T, Nowack MK, Jacobs TB. CRISPR-TSKO: A Technique for Efficient Mutagenesis in Specific Cell Types, Tissues, or Organs in Arabidopsis. THE PLANT CELL 2019; 31:2868-2887. [PMID: 31562216 PMCID: PMC6925012 DOI: 10.1105/tpc.19.00454] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/23/2019] [Accepted: 09/25/2019] [Indexed: 05/18/2023]
Abstract
Detailed functional analyses of many fundamentally important plant genes via conventional loss-of-function approaches are impeded by the severe pleiotropic phenotypes resulting from these losses. In particular, mutations in genes that are required for basic cellular functions and/or reproduction often interfere with the generation of homozygous mutant plants, precluding further functional studies. To overcome this limitation, we devised a clustered regularly interspaced short palindromic repeats (CRISPR)-based tissue-specific knockout system, CRISPR-TSKO, enabling the generation of somatic mutations in particular plant cell types, tissues, and organs. In Arabidopsis (Arabidopsis thaliana), CRISPR-TSKO mutations in essential genes caused well-defined, localized phenotypes in the root cap, stomatal lineage, or entire lateral roots. The modular cloning system developed in this study allows for the efficient selection, identification, and functional analysis of mutant lines directly in the first transgenic generation. The efficacy of CRISPR-TSKO opens avenues for discovering and analyzing gene functions in the spatial and temporal contexts of plant life while avoiding the pleiotropic effects of system-wide losses of gene function.
Collapse
Affiliation(s)
- Ward Decaestecker
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Rafael Andrade Buono
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Marie L Pfeiffer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Nick Vangheluwe
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Joris Jourquin
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Mansour Karimi
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Gert Van Isterdael
- VIB Flow Core, VIB Center for Inflammation Research, Technologiepark 71, B-9052 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Moritz K Nowack
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Thomas B Jacobs
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| |
Collapse
|
291
|
Lakehal A, Chaabouni S, Cavel E, Le Hir R, Ranjan A, Raneshan Z, Novák O, Păcurar DI, Perrone I, Jobert F, Gutierrez L, Bakò L, Bellini C. A Molecular Framework for the Control of Adventitious Rooting by TIR1/AFB2-Aux/IAA-Dependent Auxin Signaling in Arabidopsis. MOLECULAR PLANT 2019; 12:1499-1514. [PMID: 31520787 DOI: 10.1016/j.molp.2019.09.001] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/20/2019] [Accepted: 09/03/2019] [Indexed: 05/13/2023]
Abstract
In Arabidopsis thaliana, canonical auxin-dependent gene regulation is mediated by 23 transcription factors from the AUXIN RESPONSE FACTOR (ARF) family that interact with auxin/indole acetic acid repressors (Aux/IAAs), which themselves form co-receptor complexes with one of six TRANSPORT INHIBITOR1/AUXIN-SIGNALLING F-BOX (TIR1/AFB) proteins. Different combinations of co-receptors drive specific sensing outputs, allowing auxin to control a myriad of processes. ARF6 and ARF8 are positive regulators of adventitious root initiation upstream of jasmonate, but the exact auxin co-receptor complexes controlling the transcriptional activity of these proteins has remained unknown. Here, using loss-of-function mutants we show that three Aux/IAA genes, IAA6, IAA9, and IAA17, act additively in the control of adventitious root (AR) initiation. These three IAA proteins interact with ARF6 and/or ARF8 and likely repress their activity in AR development. We show that TIR1 and AFB2 are positive regulators of AR formation and TIR1 plays a dual role in the control of jasmonic acid (JA) biosynthesis and conjugation, as several JA biosynthesis genes are up-regulated in the tir1-1 mutant. These results lead us to propose that in the presence of auxin, TIR1 and AFB2 form specific sensing complexes with IAA6, IAA9, and/or IAA17 to modulate JA homeostasis and control AR initiation.
Collapse
Affiliation(s)
- Abdellah Lakehal
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90736 Umeå, Sweden
| | - Salma Chaabouni
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90736 Umeå, Sweden
| | - Emilie Cavel
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90736 Umeå, Sweden
| | - Rozenn Le Hir
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | - Alok Ranjan
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90736 Umeå, Sweden
| | - Zahra Raneshan
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90736 Umeå, Sweden; Department of Biology, Faculty of Science, Shahid Bahonar University, Kerman, Iran
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, 78371 Olomouc, Czech Republic; Umeå Plant Science Centre, Department of Forest Genetics and Physiology, Swedish Agriculture University, 90183 Umeå, Sweden
| | - Daniel I Păcurar
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90736 Umeå, Sweden
| | - Irene Perrone
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90736 Umeå, Sweden
| | - François Jobert
- Centre de Ressources Régionales en Biologie Moléculaire (CRRBM), Université de Picardie Jules Verne, 80039 Amiens, France
| | - Laurent Gutierrez
- Centre de Ressources Régionales en Biologie Moléculaire (CRRBM), Université de Picardie Jules Verne, 80039 Amiens, France
| | - Laszlo Bakò
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90736 Umeå, Sweden
| | - Catherine Bellini
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90736 Umeå, Sweden; Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France.
| |
Collapse
|
292
|
Jia KP, Dickinson AJ, Mi J, Cui G, Xiao TT, Kharbatia NM, Guo X, Sugiono E, Aranda M, Blilou I, Rueping M, Benfey PN, Al-Babili S. Anchorene is a carotenoid-derived regulatory metabolite required for anchor root formation in Arabidopsis. SCIENCE ADVANCES 2019; 5:eaaw6787. [PMID: 31807696 PMCID: PMC6881154 DOI: 10.1126/sciadv.aaw6787] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 09/25/2019] [Indexed: 05/09/2023]
Abstract
Anchor roots (ANRs) arise at the root-shoot junction and are the least investigated type of Arabidopsis root. Here, we show that ANRs originate from pericycle cells in an auxin-dependent manner and a carotenogenic signal to emerge. By screening known and assumed carotenoid derivatives, we identified anchorene, a presumed carotenoid-derived dialdehyde (diapocarotenoid), as the specific signal needed for ANR formation. We demonstrate that anchorene is an Arabidopsis metabolite and that its exogenous application rescues the ANR phenotype in carotenoid-deficient plants and promotes the growth of normal seedlings. Nitrogen deficiency resulted in enhanced anchorene content and an increased number of ANRs, suggesting a role of this nutrient in determining anchorene content and ANR formation. Transcriptome analysis and treatment of auxin reporter lines indicate that anchorene triggers ANR formation by modulating auxin homeostasis. Together, our work reveals a growth regulator with potential application to agriculture and a new carotenoid-derived signaling molecule.
Collapse
Affiliation(s)
- Kun-Peng Jia
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division, The BioActives Lab, Thuwal 23955-6900, Saudi Arabia
| | - Alexandra J. Dickinson
- Department of Biology and Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| | - Jianing Mi
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division, The BioActives Lab, Thuwal 23955-6900, Saudi Arabia
| | - Guoxin Cui
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division, Red Sea Research Center, Thuwal 23955-6900, Saudi Arabia
| | - Ting Ting Xiao
- King Abdullah University of Science and Technology, Division of Biological and Environmental Sciences and Engineering, Thuwal 23955-6900, Saudi Arabia
| | - Najeh M. Kharbatia
- King Abdullah University of Science and Technology (KAUST), Core Lab, Thuwal 23955-6900, Saudi Arabia
| | - Xiujie Guo
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division, The BioActives Lab, Thuwal 23955-6900, Saudi Arabia
| | - Erli Sugiono
- RWTH Aachen University, Institute of Organic Chemistry, 52074 Aachen, Germany
| | - Manuel Aranda
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division, Red Sea Research Center, Thuwal 23955-6900, Saudi Arabia
| | - Ikram Blilou
- King Abdullah University of Science and Technology, Division of Biological and Environmental Sciences and Engineering, Thuwal 23955-6900, Saudi Arabia
| | - Magnus Rueping
- King Abdullah University of Science and Technology (KAUST), Physical Science and Engineering Division, KAUST Catalysis Center, Thuwal 23955-6900, Saudi Arabia
| | - Philip N. Benfey
- Department of Biology and Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| | - Salim Al-Babili
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division, The BioActives Lab, Thuwal 23955-6900, Saudi Arabia
- Corresponding author.
| |
Collapse
|
293
|
Xu P, Cai W. Nitrate-responsive OBP4-XTH9 regulatory module controls lateral root development in Arabidopsis thaliana. PLoS Genet 2019; 15:e1008465. [PMID: 31626627 PMCID: PMC6821136 DOI: 10.1371/journal.pgen.1008465] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 10/30/2019] [Accepted: 10/07/2019] [Indexed: 11/19/2022] Open
Abstract
Plant root system architecture in response to nitrate availability represents a notable example to study developmental plasticity, but the underlying mechanism remains largely unknown. Xyloglucan endotransglucosylases (XTHs) play a critical role in cell wall biosynthesis. Here we assessed the gene expression of XTH1-11 belonging to group I of XTHs in lateral root (LR) primordia and found that XTH9 was highly expressed. Correspondingly, an xth9 mutant displayed less LR, while overexpressing XTH9 presented more LR, suggesting the potential function of XTH9 in controlling LR development. XTH9 gene mutation obviously alters the properties of the cell wall. Furthermore, nitrogen signals stimulated the expression of XTH9 to promote LRs. Genetic analysis revealed that the function of XTH9 was dependent on auxin-mediated ARF7/19 and downstream AFB3 in response to nitrogen signals. In addition, we identified another transcription factor, OBP4, that was also induced by nitrogen treatment, but the induction was much slower than that of XTH9. In contrast to XTH9, overexpressing OBP4 caused fewer LRs while OBP4 knockdown with OBP4-RNAi or an artificial miRNA silenced amiOBP4 line produced more LR. We further found OBP4 bound to the promoter of XTH9 to suppress XTH9 expression. In agreement with this, both OBP4-RNAi and crossed OBP4-RNAi & 35S::XTH9 lines led to more LR, but OBP4-RNAi & xth9 produced less LR, similar to xth9. Based on these findings we propose a novel mechanism by which OBP4 antagonistically controls XTH9 expression and the OBP4-XTH9 module elaborately sustains LR development in response to nitrate treatment. Nitrate is not only a nutrient, but also a signal that controls downstream signaling genes at the whole-plant level. In plants, changes in root system architecture in response to nitrate availability represent a notable example of developmental plasticity in response to environmental stimuli. However, the molecular mechanisms underlying nitrate-associated modulation are largely unknown. Here, we identified a nitrogen-responsive signaling module that comprises both xyloglucan endotransglucosylase 9 (XTH9) and the Dof transcription factor OBP4 and controls lateral root (LR) development. We used root gravitropic bending assays to observe the gene expression of group 1 xyloglucan endotransglucosylases (XTHs) involved in LR primordia. The results showed that XTH9 expression patterns were changed and that xth9 knockout mutants displayed altered LR growth. XTH9 was expressed in the LRs and in response to nitrate treatment, and the xth9 mutants were defective in nitrate-promoted LR growth. Moreover, XTH9 overexpression increased LR length and increased tolerance to low-nitrate stress. We found that OBP4 could negatively regulate XTH9 and inhibited root growth. OBP4 and XTH9 worked downstream of ARF7/9. We conclude that OBP4 and XTH9 constitute a regulatory module which contributes to LR growth in response to different environmental nitrate concentration signals.
Collapse
Affiliation(s)
- Peipei Xu
- Laboratory of Photosynthesis and Environment, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Weiming Cai
- Laboratory of Photosynthesis and Environment, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- * E-mail:
| |
Collapse
|
294
|
Mukherjee A, Mazumder M, Jana J, Srivastava AK, Mondal B, De A, Ghosh S, Saha U, Bose R, Chatterjee S, Dey N, Basu D. Enhancement of ABA Sensitivity Through Conditional Expression of the ARF10 Gene in Brassica juncea Reveals Fertile Plants with Tolerance Against Alternaria brassicicola. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:1429-1447. [PMID: 31184524 DOI: 10.1094/mpmi-05-19-0132-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Concomitant increase of auxin-responsive factors ARF16 and ARF17, along with enhanced expression of ARF10 in resistant Sinapis alba compared with that in susceptible Brassica juncea upon challenge with Alternaria brassicicola, revealed that abscisic acid (ABA)-auxin crosstalk is a critical factor for resistance response. Here, we induced the ABA response through conditional expression of ARF10 in B. juncea using the A. brassicicola-inducible GH3.3 promoter. Induced ABA sensitivity caused by conditional expression of ARF10 in transgenic B. juncea resulted in tolerance against A. brassicicola and led to enhanced expression of several ABA-responsive genes without affecting the auxin biosynthetic gene expression. Compared with ABI3 and ABI4, ABI5 showed maximum upregulation in the most tolerant transgenic lines upon pathogen challenge. Moreover, elevated expression of ARF10 by different means revealed a direct correlation between ARF10 expression and the induction of ABI5 protein in B. juncea. Through in vitro DNA-protein experiments and chromosome immunoprecipitation using the ARF10 antibody, we demonstrated that ARF10 interacts with the auxin-responsive elements of the ABI5 promoter. This suggests that ARF10 may function as a modulator of ABI5 to induce ABA sensitivity and mediate the resistance response against A. brassicicola.
Collapse
Affiliation(s)
- Amrita Mukherjee
- Division of Plant Biology, Bose Institute, Centenary Campus P-1/12 C.I.T., Scheme-VIIM Kolkata, 700054, West Bengal, India
| | - Mrinmoy Mazumder
- Division of Plant Biology, Bose Institute, Centenary Campus P-1/12 C.I.T., Scheme-VIIM Kolkata, 700054, West Bengal, India
| | - Jagannath Jana
- Division of Plant Biology, Bose Institute, Centenary Campus P-1/12 C.I.T., Scheme-VIIM Kolkata, 700054, West Bengal, India
- Institut Curie, CNRS UMR 3348, Orsay, France
| | - Archana Kumari Srivastava
- Plant and Microbial biotechnology, Institute of Life Sciences (ILS), NALCO Square, Bhubaneswar, 751023, Odisha, India
| | - Banani Mondal
- Division of Plant Biology, Bose Institute, Centenary Campus P-1/12 C.I.T., Scheme-VIIM Kolkata, 700054, West Bengal, India
| | - Aishee De
- Division of Plant Biology, Bose Institute, Centenary Campus P-1/12 C.I.T., Scheme-VIIM Kolkata, 700054, West Bengal, India
| | - Swagata Ghosh
- Division of Plant Biology, Bose Institute, Centenary Campus P-1/12 C.I.T., Scheme-VIIM Kolkata, 700054, West Bengal, India
| | - Upala Saha
- Division of Plant Biology, Bose Institute, Centenary Campus P-1/12 C.I.T., Scheme-VIIM Kolkata, 700054, West Bengal, India
- Department of Botany, Sister Nivedita Government General Degree College for Girls, 20B Judge's Court Road, Hastings House, Alipore, Kolkata, 700027, West Bengal, India
| | - Rahul Bose
- Department of Genetics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Subhrangsu Chatterjee
- Division of Plant Biology, Bose Institute, Centenary Campus P-1/12 C.I.T., Scheme-VIIM Kolkata, 700054, West Bengal, India
| | - Nrisingha Dey
- Plant and Microbial biotechnology, Institute of Life Sciences (ILS), NALCO Square, Bhubaneswar, 751023, Odisha, India
| | - Debabrata Basu
- Division of Plant Biology, Bose Institute, Centenary Campus P-1/12 C.I.T., Scheme-VIIM Kolkata, 700054, West Bengal, India
| |
Collapse
|
295
|
Goh T, Toyokura K, Yamaguchi N, Okamoto Y, Uehara T, Kaneko S, Takebayashi Y, Kasahara H, Ikeyama Y, Okushima Y, Nakajima K, Mimura T, Tasaka M, Fukaki H. Lateral root initiation requires the sequential induction of transcription factors LBD16 and PUCHI in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2019; 224:749-760. [PMID: 31310684 DOI: 10.1111/nph.16065] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 06/26/2019] [Indexed: 05/11/2023]
Abstract
Lateral root (LR) formation in Arabidopsis thaliana is initiated by asymmetric division of founder cells, followed by coordinated cell proliferation and differentiation for patterning new primordia. The sequential developmental processes of LR formation are triggered by a localized auxin response. LATERAL ORGAN BOUNDARIES-DOMAIN 16 (LBD16), an auxin-inducible transcription factor, is one of the key regulators linking auxin response in LR founder cells to LR initiation. We identified key genes for LR formation that are activated by LBD16 in an auxin-dependent manner. LBD16 targets identified include the transcription factor gene PUCHI, which is required for LR primordium patterning. We demonstrate that LBD16 activity is required for the auxin-inducible expression of PUCHI. We show that PUCHI expression is initiated after the first round of asymmetric cell division of LR founder cells and that premature induction of PUCHI during the preinitiation phase disrupts LR primordium formation. Our results indicate that LR initiation requires the sequential induction of transcription factors LBD16 and PUCHI.
Collapse
Affiliation(s)
- Tatsuaki Goh
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Kobe, 657-8501, Japan
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, 630-0192, Japan
| | - Koichi Toyokura
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Kobe, 657-8501, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, 13 Toyonaka, Osaka, 560-0043, Japan
- Faculty of Science and Engineering, Konan University, Kobe, 658-5801, Japan
| | - Nobutoshi Yamaguchi
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, 630-0192, Japan
| | - Yoshie Okamoto
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Kobe, 657-8501, Japan
| | - Takeo Uehara
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, 630-0192, Japan
- Graduate School of Science and Technology, Kobe University, 1-1 Rokkodai, Kobe, 657-8501, Japan
| | - Shutaro Kaneko
- Department of Bioregulation and Biointeraction, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai, Fuchu, 183-8509, Japan
| | - Yumiko Takebayashi
- Center for Sustainable Resource Science, Riken, Yokohama, Kanagawa, 230-0045, Japan
| | - Hiroyuki Kasahara
- Center for Sustainable Resource Science, Riken, Yokohama, Kanagawa, 230-0045, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai, Fuchu, 183-8509, Japan
| | - Yoshifumi Ikeyama
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, 630-0192, Japan
| | - Yoko Okushima
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, 630-0192, Japan
| | - Keiji Nakajima
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, 630-0192, Japan
| | - Tetsuro Mimura
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Kobe, 657-8501, Japan
| | - Masao Tasaka
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, 630-0192, Japan
| | - Hidehiro Fukaki
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Kobe, 657-8501, Japan
| |
Collapse
|
296
|
Lee KH, Du Q, Zhuo C, Qi L, Wang H. LBD29-Involved Auxin Signaling Represses NAC Master Regulators and Fiber Wall Biosynthesis. PLANT PHYSIOLOGY 2019; 181:595-608. [PMID: 31377726 PMCID: PMC6776862 DOI: 10.1104/pp.19.00148] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 07/31/2019] [Indexed: 05/18/2023]
Abstract
NAM, ATAF1/2 and CUC2 (NAC) domain transcription factors function as master switches in regulating secondary cell wall (SCW) biosynthesis in Arabidopsis (Arabidopsis thaliana) stems. Despite the importance of these NACs in fiber development, the upstream signal is still elusive. Using a large-scale mutant screening, we identified a dominant activation-tagging mutant, fiberless-d (fls-d), showing defective SCW development in stem fibers, similar to that of the nac secondary wall thickening promoting factor1-1 (nst1-1)nst3-3 double mutant. Overexpression of LATERAL ORGAN BOUNDARIES DOMAIN29 (LBD29) is responsible for the fls-d mutant phenotypes. By contrast, loss-of-function of LBD29, either in the dominant repression transgenic lines or in the transfer-DNA (T-DNA) insertion mutant lbd29-1, enhanced SCW development in fibers. Genetic analysis and transgenic studies demonstrated LBD29 depends on master regulators in mediating SCW biosynthesis, specifically NAC SECONDARY WALL THICKENING PROMOTING FACTOR1 (NST1), NST2, and NST3. Increasing indole-3-acetic acid (IAA) levels, either in stem tissues above a N-1-naphthylphthalamic acid-treated region or in plants directly sprayed with IAA, inhibits fiber wall thickening. The inhibition effect of naphthylphthalamic acid treatment and exogenous IAA application depends on a known auxin signaling pathway involving AUXIN RESPONSE FACTOR7 (ARF7)/ARF19 and LBD29. These results demonstrate auxin is upstream of LBD29 in repressing NAC master regulators, and therefore shed new light on the regulation of SCW biosynthesis in Arabidopsis.
Collapse
Affiliation(s)
- Kwang-Hee Lee
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, Connecticut 06269
| | - Qian Du
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, Connecticut 06269
| | - Chunliu Zhuo
- Department of Biological Sciences, University of North Texas, Denton, Texas 76203
| | - Liying Qi
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, Connecticut 06269
| | - Huanzhong Wang
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, Connecticut 06269
- Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut 06269
| |
Collapse
|
297
|
Sun R, Wang S, Ma D, Li Y, Liu C. Genome-Wide Analysis of Cotton Auxin Early Response Gene Families and Their Roles in Somatic Embryogenesis. Genes (Basel) 2019; 10:E730. [PMID: 31547015 PMCID: PMC6827057 DOI: 10.3390/genes10100730] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/17/2019] [Accepted: 09/19/2019] [Indexed: 12/14/2022] Open
Abstract
Auxin is well known to regulate growth and development processes. Auxin early response genes serve as a critical component of auxin signaling and mediate auxin regulation of diverse physiological processes. In the present study, a genome-wide identification and comprehensive analysis of auxin early response genes were conducted in upland cotton. A total of 71 auxin response factor (ARF), 86 Auxin/Indole-3-Acetic Acid (Aux/IAA), 63 Gretchen Hagen3 (GH3), and 194 small auxin upregulated RNA (SAUR) genes were identified in upland cotton, respectively. Phylogenetic analysis revealed that the ARF, GH3, and SAUR families were likely subject to extensive evolutionary divergence between Arabidopsis and upland cotton, while the Aux/IAA family was evolutionary conserved. Expression profiles showed that the ARF, Aux/IAA, GH3, and SAUR family genes were extensively involved in embryogenic competence acquisition of upland cotton callus. The Aux/IAA family genes generally showed a higher expression level in the non-embryogenic callus (NEC) of highly embryogenic cultivar CCRI24 than that of recalcitrant cultivar CCRI12, which may be conducive to initializing the embryogenic transformation. Auxin early response genes were tightly co-expressed with most of the known somatic embryogenesis (SE) related genes, indicating that these genes may regulate upland cotton SE by interacting with auxin early response genes.
Collapse
Affiliation(s)
- Ruibin Sun
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Shaohui Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Dan Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Yilin Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China.
| | - Chuanliang Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
298
|
Vanhaelewyn L, Viczián A, Prinsen E, Bernula P, Serrano AM, Arana MV, Ballaré CL, Nagy F, Van Der Straeten D, Vandenbussche F. Differential UVR8 Signal across the Stem Controls UV-B-Induced Inflorescence Phototropism. THE PLANT CELL 2019; 31:2070-2088. [PMID: 31289115 PMCID: PMC6751110 DOI: 10.1105/tpc.18.00929] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 05/28/2019] [Accepted: 06/25/2019] [Indexed: 05/10/2023]
Abstract
In the course of evolution, plants have developed mechanisms that orient their organs toward the incoming light. At the seedling stage, positive phototropism is mainly regulated by phototropin photoreceptors in blue and UV wavelengths. Contrasting with this, we report that UV RESISTANCE LOCUS8 (UVR8) serves as the predominant photoreceptor of UV-B-induced phototropic responses in Arabidopsis (Arabidopsis thaliana) inflorescence stems. We examined the molecular mechanisms underlying this response and our findings support the Blaauw theory (Blaauw, 1919), suggesting rapid differential growth through unilateral photomorphogenic growth inhibition. UVR8-dependent UV-B light perception occurs mainly in the epidermis and cortex, but deeper tissues such as endodermis can also contribute. Within stems, a spatial difference of UVR8 signal causes a transcript and protein increase of transcription factors ELONGATED HYPOCOTYL5 (HY5) and its homolog HY5 HOMOLOG at the UV-B-exposed side. The irradiated side shows (1) strong activation of flavonoid synthesis genes and flavonoid accumulation; (2) increased gibberellin (GA)2-oxidase expression, diminished GA1 levels, and accumulation of the DELLA protein REPRESSOR OF GA1; and (3) increased expression of the auxin transport regulator PINOID, contributing to diminished auxin signaling. Together, the data suggest a mechanism of phototropin-independent inflorescence phototropism through multiple, locally UVR8-regulated hormone pathways.
Collapse
Affiliation(s)
- Lucas Vanhaelewyn
- Laboratory of Functional Plant Biology, Department of Biology, Faculty of Sciences, Ghent University, KL Ledeganckstraat 35, B-9000 Gent, Belgium
| | - András Viczián
- Institute of Plant Biology, Biological Research Centre, Temesvári körút 62, H-6726 Szeged, Hungary
| | - Els Prinsen
- Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Péter Bernula
- Institute of Plant Biology, Biological Research Centre, Temesvári körút 62, H-6726 Szeged, Hungary
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, Szeged, H-6726, Hungary
| | - Alejandro Miguel Serrano
- IADIZA, Av. Ruiz Leal s/n Parque Gral. San Martín, Casilla de Correo 507, Mendoza, 5500, Argentina (CONICET)
| | - Maria Veronica Arana
- Instituto de Investigaciones Forestales y Agropecuarias Bariloche, (CONICET-INTA), Modesta Victoria 4450, San Carlos de Bariloche Rio Negro R8403DVZ, Argentina
| | - Carlos L Ballaré
- IFEVA Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE, Buenos Aires, Argentina
- IIBIO-INTECH, Universidad Nacional de San Martín, B1650HMP, Buenos Aires, Argentina
| | - Ferenc Nagy
- Institute of Plant Biology, Biological Research Centre, Temesvári körút 62, H-6726 Szeged, Hungary
| | - Dominique Van Der Straeten
- Laboratory of Functional Plant Biology, Department of Biology, Faculty of Sciences, Ghent University, KL Ledeganckstraat 35, B-9000 Gent, Belgium
| | - Filip Vandenbussche
- Laboratory of Functional Plant Biology, Department of Biology, Faculty of Sciences, Ghent University, KL Ledeganckstraat 35, B-9000 Gent, Belgium
| |
Collapse
|
299
|
Crombez H, Motte H, Beeckman T. Tackling Plant Phosphate Starvation by the Roots. Dev Cell 2019; 48:599-615. [PMID: 30861374 DOI: 10.1016/j.devcel.2019.01.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 10/16/2018] [Accepted: 12/31/2018] [Indexed: 12/17/2022]
Abstract
Plant responses to phosphate deprivation encompass a wide range of strategies, varying from altering root system architecture, entering symbiotic interactions to excreting root exudates for phosphorous release, and recycling of internal phosphate. These processes are tightly controlled by a complex network of proteins that are specifically upregulated upon phosphate starvation. Although the different effects of phosphate starvation have been intensely studied, the full extent of its contribution to altered root system architecture remains unclear. In this review, we focus on the effect of phosphate starvation on the developmental processes that shape the plant root system and their underlying molecular pathways.
Collapse
Affiliation(s)
- Hanne Crombez
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent 9052, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, Ghent 9052, Belgium
| | - Hans Motte
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent 9052, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, Ghent 9052, Belgium
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent 9052, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, Ghent 9052, Belgium.
| |
Collapse
|
300
|
Goh T. Long-term live-cell imaging approaches to study lateral root formation in Arabidopsis thaliana. Microscopy (Oxf) 2019; 68:4-12. [PMID: 30476201 DOI: 10.1093/jmicro/dfy135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/23/2018] [Accepted: 10/31/2018] [Indexed: 11/12/2022] Open
Abstract
Lateral roots comprise the majority of the branching root system and are important for acquiring nutrients and water from soil in addition to providing anchorage. Lateral roots develop post-embryonically from existing root parts and originate from a subset of specified pericycle cells (lateral root founder cells) located deep inside roots. Small numbers of these specified pericycle cells undergo several rounds of cell division to create a dome-shaped primordium, which eventually organizes a meristem, an essential region for plant growth with active cell division, and emerges from its parental root as a lateral root. Observing cellular and molecular processes for an extended time at various scales are crucial for understanding biological processes during organogenesis. Lateral root formation is an example of the successful application of live-cell imaging approaches to understand various aspects of developmental events in plants, including cell fate determination, cell proliferation, cell-to-cell interaction and cell wall modification. Here I review the recent progress in understanding the molecular mechanisms of lateral root formation and the contribution of live-cell imaging approaches.
Collapse
Affiliation(s)
- Tatsuaki Goh
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Japan
| |
Collapse
|