251
|
Guan Y, Ding L, Jiang J, Shentu Y, Zhao W, Zhao K, Zhang X, Song A, Chen S, Chen F. Overexpression of the CmJAZ1-like gene delays flowering in Chrysanthemum morifolium. HORTICULTURE RESEARCH 2021; 8:87. [PMID: 33795661 PMCID: PMC8016864 DOI: 10.1038/s41438-021-00525-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/23/2021] [Accepted: 03/01/2021] [Indexed: 05/11/2023]
Abstract
Chrysanthemum (Chrysanthemum morifolium) is one of the four major cut-flower plants worldwide and possesses both high ornamental value and cultural connotation. As most chrysanthemum varieties flower in autumn, it is costly to achieve annual production. JAZ genes in the TIFY family are core components of the jasmonic acid (JA) signaling pathway; in addition to playing a pivotal role in plant responses to defense, they are also widely implicated in regulating plant development processes. Here, we characterized the TIFY family gene CmJAZ1-like from the chrysanthemum cultivar 'Jinba'. CmJAZ1-like localizes in the nucleus and has no transcriptional activity in yeast. Tissue expression pattern analysis indicated that CmJAZ1-like was most active in the root and shoot apex. Overexpressing CmJAZ1-like with Jas domain deletion in chrysanthemum resulted in late flowering. RNA-Seq analysis of the overexpression lines revealed some differentially expressed genes (DEGs) involved in flowering, such as the homologs of the flowering integrators FT and SOC1, an FUL homolog involved in flower meristem identity, AP2 domain-containing transcription factors, MADS box genes, and autonomous pathway-related genes. Based on KEGG pathway enrichment analysis, the differentially transcribed genes were enriched in carbohydrate metabolic and fatty acid-related pathways, which are notable for their role in flowering in plants. This study preliminarily verified the function of CmJAZ1-like in chrysanthemum flowering, and the results can be used in molecular breeding programs aimed at flowering time regulation of chrysanthemum.
Collapse
Affiliation(s)
- Yunxiao Guan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lian Ding
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuanyue Shentu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenqian Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kunkun Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xue Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Aiping Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Sumei Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
252
|
Wang Y, Jiang H, Mao Z, Liu W, Jiang S, Xu H, Su M, Zhang J, Wang N, Zhang Z, Chen X. Ethylene increases the cold tolerance of apple via the MdERF1B-MdCIbHLH1 regulatory module. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:379-393. [PMID: 33497017 DOI: 10.1111/tpj.15170] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 01/09/2021] [Accepted: 01/13/2021] [Indexed: 05/15/2023]
Abstract
Cold stress has always been a major abiotic factor affecting the yield and quality of temperate fruit crops. Ethylene plays a critical regulatory role in the cold stress response, but the underlying molecular mechanisms remain elusive. Here, we revealed that ethylene positively modulates apple responses to cold stress. Treatment with 1-aminocyclopropane-1-carboxylate (an ethylene precursor) and aminoethoxyvinylglycine (an ethylene biosynthesis inhibitor) respectively increased and decreased the cold tolerance of apple seedlings. Consistent with the positive effects of ethylene on cold stress responses, a low-temperature treatment rapidly induced ethylene release and the expression of MdERF1B, which encodes an ethylene signaling activator, in apple seedlings. Overexpression of MdERF1B significantly increased the cold tolerance of apple plant materials (seedlings and calli) and Arabidopsis thaliana seedlings. A quantitative real-time PCR analysis indicated that MdERF1B upregulates the expression of the cold-responsive gene MdCBF1 in apple seedlings. Moreover, MdCIbHLH1, which functions upstream of CBF-dependent pathways, enhanced the binding of MdERF1B to target gene promoters as well as the consequent transcriptional activation. The stability of MdERF1B-MdCIbHLH1 was affected by cold stress and ethylene. Furthermore, MdERF1B interacted with the promoters of two genes critical for ethylene biosynthesis, MdACO1 and MdERF3. The resulting upregulated expression of these genes promoted ethylene production. However, the downregulated MdCIbHLH1 expression in MdERF1B-overexpressing apple calli significantly inhibited ethylene production. These findings imply that MdERF1B-MdCIbHLH1 is a potential regulatory module that integrates the cold and ethylene signaling pathways in apple.
Collapse
Affiliation(s)
- Yicheng Wang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, China
- College of Horticulture Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Huiyan Jiang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, China
- College of Horticulture Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Zuolin Mao
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, China
- College of Horticulture Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Wenjun Liu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, China
- College of Horticulture Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Shenghui Jiang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, China
- College of Horticulture Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Haifeng Xu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, China
- College of Horticulture Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Mengyu Su
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, China
- College of Horticulture Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Jing Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, China
- College of Horticulture Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Nan Wang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, China
- College of Horticulture Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Zongying Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, China
- College of Horticulture Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Xuesen Chen
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, China
- College of Horticulture Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| |
Collapse
|
253
|
Zhao B, Liu Q, Wang B, Yuan F. Roles of Phytohormones and Their Signaling Pathways in Leaf Development and Stress Responses. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3566-3584. [PMID: 33739096 DOI: 10.1021/acs.jafc.0c07908] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Phytohormones participate in various processes over the course of a plant's lifecycle. In addition to the five classical phytohormones (auxins, cytokinins, gibberellins, abscisic acid, and ethylene), phytohormones such as brassinosteroids, jasmonic acid, salicylic acid, strigolactones, and peptides also play important roles in plant growth and stress responses. Given the highly interconnected nature of phytohormones during plant development and stress responses, it is challenging to study the biological function of a single phytohormone in isolation. In the current Review, we describe the combined functions and signaling cascades (especially the shared points and pathways) of various phytohormones in leaf development, in particular, during leaf primordium initiation and the establishment of leaf polarity and leaf morphology as well as leaf development under various stress conditions. We propose a model incorporating the roles of multiple phytohormones in leaf development and stress responses to illustrate the underlying combinatorial signaling pathways. This model provides a reference for breeding stress-resistant crops.
Collapse
Affiliation(s)
- Boqing Zhao
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong 250014, P. R. China
| | - Qingyun Liu
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong 250014, P. R. China
| | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong 250014, P. R. China
| | - Fang Yuan
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong 250014, P. R. China
| |
Collapse
|
254
|
DNA hypomethylation in tetraploid rice potentiates stress-responsive gene expression for salt tolerance. Proc Natl Acad Sci U S A 2021; 118:2023981118. [PMID: 33771925 DOI: 10.1073/pnas.2023981118] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Polyploidy is a prominent feature for genome evolution in many animals and all flowering plants. Plant polyploids often show enhanced fitness in diverse and extreme environments, but the molecular basis for this remains elusive. Soil salinity presents challenges for many plants including agricultural crops. Here we report that salt tolerance is enhanced in tetraploid rice through lower sodium uptake and correlates with epigenetic regulation of jasmonic acid (JA)-related genes. Polyploidy induces DNA hypomethylation and potentiates genomic loci coexistent with many stress-responsive genes, which are generally associated with proximal transposable elements (TEs). Under salt stress, the stress-responsive genes including those in the JA pathway are more rapidly induced and expressed at higher levels in tetraploid than in diploid rice, which is concurrent with increased jasmonoyl isoleucine (JA-Ile) content and JA signaling to confer stress tolerance. After stress, elevated expression of stress-responsive genes in tetraploid rice can induce hypermethylation and suppression of the TEs adjacent to stress-responsive genes. These induced responses are reproducible in a recurring round of salt stress and shared between two japonica tetraploid rice lines. The data collectively suggest a feedback relationship between polyploidy-induced hypomethylation in rapid and strong stress response and stress-induced hypermethylation to repress proximal TEs and/or TE-associated stress-responsive genes. This feedback regulation may provide a molecular basis for selection to enhance adaptation of polyploid plants and crops during evolution and domestication.
Collapse
|
255
|
Fang P, Wang Y, Wang M, Wang F, Chi C, Zhou Y, Zhou J, Shi K, Xia X, Foyer CH, Yu J. Crosstalk between Brassinosteroid and Redox Signaling Contributes to the Activation of CBF Expression during Cold Responses in Tomato. Antioxidants (Basel) 2021; 10:antiox10040509. [PMID: 33805859 PMCID: PMC8064343 DOI: 10.3390/antiox10040509] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/10/2021] [Accepted: 03/15/2021] [Indexed: 11/16/2022] Open
Abstract
Brassinosteroids (BRs) play a critical role in plant responses to stress. However, the interplay of BRs and reactive oxygen species signaling in cold stress responses remains unclear. Here, we demonstrate that a partial loss of function in the BR biosynthesis gene DWARF resulted in lower whilst overexpression of DWARF led to increased levels of C-REPEAT BINDING FACTOR (CBF) transcripts. Exposure to cold stress increased BR synthesis and led to an accumulation of brassinazole-resistant 1 (BZR1), a central component of BR signaling. Mutation of BZR1 compromised the cold- and BR-dependent increases in CBFs and RESPIRATORY BURST OXIDASE HOMOLOG 1(RBOH1) transcripts, as well as preventing hydrogen peroxide (H2O2) accumulation in the apoplast. Cold- and BR-induced BZR1 bound to the promoters of CBF1, CBF3 and RBOH1 and promoted their expression. Significantly, suppression of RBOH1 expression compromised cold- and BR-induced accumulation of BZR1 and related increases in CBF transcripts. Moreover, RBOH1-dependent H2O2 production regulated BZR1 accumulation and the levels of CBF transcripts by influencing glutathione homeostasis. Taken together, these results demonstrate that crosstalk between BZR1 and reactive oxygen species mediates cold- and BR-activated CBF expression, leading to cold tolerance in tomato (Solanum lycopersicum).
Collapse
Affiliation(s)
- Pingping Fang
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; (P.F.); (Y.W.); (M.W.); (F.W.); (C.C.); (Y.Z.); (J.Z.); (K.S.); (X.X.)
| | - Yu Wang
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; (P.F.); (Y.W.); (M.W.); (F.W.); (C.C.); (Y.Z.); (J.Z.); (K.S.); (X.X.)
| | - Mengqi Wang
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; (P.F.); (Y.W.); (M.W.); (F.W.); (C.C.); (Y.Z.); (J.Z.); (K.S.); (X.X.)
| | - Feng Wang
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; (P.F.); (Y.W.); (M.W.); (F.W.); (C.C.); (Y.Z.); (J.Z.); (K.S.); (X.X.)
| | - Cheng Chi
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; (P.F.); (Y.W.); (M.W.); (F.W.); (C.C.); (Y.Z.); (J.Z.); (K.S.); (X.X.)
| | - Yanhong Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; (P.F.); (Y.W.); (M.W.); (F.W.); (C.C.); (Y.Z.); (J.Z.); (K.S.); (X.X.)
- Key Laboratory of Horticultural Plants Growth and Development, Agricultural Ministry of China, Yuhangtang Road 866, Hangzhou 310058, China
| | - Jie Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; (P.F.); (Y.W.); (M.W.); (F.W.); (C.C.); (Y.Z.); (J.Z.); (K.S.); (X.X.)
| | - Kai Shi
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; (P.F.); (Y.W.); (M.W.); (F.W.); (C.C.); (Y.Z.); (J.Z.); (K.S.); (X.X.)
| | - Xiaojian Xia
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; (P.F.); (Y.W.); (M.W.); (F.W.); (C.C.); (Y.Z.); (J.Z.); (K.S.); (X.X.)
| | - Christine Helen Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, UK;
| | - Jingquan Yu
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; (P.F.); (Y.W.); (M.W.); (F.W.); (C.C.); (Y.Z.); (J.Z.); (K.S.); (X.X.)
- Key Laboratory of Horticultural Plants Growth and Development, Agricultural Ministry of China, Yuhangtang Road 866, Hangzhou 310058, China
- Correspondence: ; Tel.: +86-571-88982351
| |
Collapse
|
256
|
Liu H, Timko MP. Jasmonic Acid Signaling and Molecular Crosstalk with Other Phytohormones. Int J Mol Sci 2021; 22:ijms22062914. [PMID: 33805647 PMCID: PMC8000993 DOI: 10.3390/ijms22062914] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 12/15/2022] Open
Abstract
Plants continually monitor their innate developmental status and external environment and make adjustments to balance growth, differentiation and stress responses using a complex and highly interconnected regulatory network composed of various signaling molecules and regulatory proteins. Phytohormones are an essential group of signaling molecules that work through a variety of different pathways conferring plasticity to adapt to the everchanging developmental and environmental cues. Of these, jasmonic acid (JA), a lipid-derived molecule, plays an essential function in controlling many different plant developmental and stress responses. In the past decades, significant progress has been made in our understanding of the molecular mechanisms that underlie JA metabolism, perception, signal transduction and its crosstalk with other phytohormone signaling pathways. In this review, we discuss the JA signaling pathways starting from its biosynthesis to JA-responsive gene expression, highlighting recent advances made in defining the key transcription factors and transcriptional regulatory proteins involved. We also discuss the nature and degree of crosstalk between JA and other phytohormone signaling pathways, highlighting recent breakthroughs that broaden our knowledge of the molecular bases underlying JA-regulated processes during plant development and biotic stress responses.
Collapse
|
257
|
Li H, Guo Y, Lan Z, Xu K, Chang J, Ahammed GJ, Ma J, Wei C, Zhang X. Methyl jasmonate mediates melatonin-induced cold tolerance of grafted watermelon plants. HORTICULTURE RESEARCH 2021; 8:57. [PMID: 33750773 PMCID: PMC7943586 DOI: 10.1038/s41438-021-00496-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 01/09/2021] [Accepted: 01/14/2021] [Indexed: 05/20/2023]
Abstract
Root-shoot communication has a critical role in plant adaptation to environmental stress. Grafting is widely applied to enhance the abiotic stress tolerance of many horticultural crop species; however, the signal transduction mechanism involved in this tolerance remains unknown. Here, we show that pumpkin- or figleaf gourd rootstock-enhanced cold tolerance of watermelon shoots is accompanied by increases in the accumulation of melatonin, methyl jasmonate (MeJA), and hydrogen peroxide (H2O2). Increased melatonin levels in leaves were associated with both increased melatonin in rootstocks and MeJA-induced melatonin biosynthesis in leaves of plants under cold stress. Exogenous melatonin increased the accumulation of MeJA and H2O2 and enhanced cold tolerance, while inhibition of melatonin accumulation attenuated rootstock-induced MeJA and H2O2 accumulation and cold tolerance. MeJA application induced H2O2 accumulation and cold tolerance, but inhibition of JA biosynthesis abolished rootstock- or melatonin-induced H2O2 accumulation and cold tolerance. Additionally, inhibition of H2O2 production attenuated MeJA-induced tolerance to cold stress. Taken together, our results suggest that melatonin is involved in grafting-induced cold tolerance by inducing the accumulation of MeJA and H2O2. MeJA subsequently increases melatonin accumulation, forming a self-amplifying feedback loop that leads to increased H2O2 accumulation and cold tolerance. This study reveals a novel regulatory mechanism of rootstock-induced cold tolerance.
Collapse
Affiliation(s)
- Hao Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Yanliang Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Zhixiang Lan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Kai Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Jingjing Chang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Golam Jalal Ahammed
- College of Horticulture and Plant Protection, Henan University of Science and Technology, 471023, Luoyang, Henan, China
| | - Jianxiang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Chunhua Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Xian Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, 712100, Yangling, Shaanxi, China.
- State Key Laboratory of Vegetable Germplasm Innovation, 300384, Tianjin, China.
| |
Collapse
|
258
|
Li Y, Cao K, Li N, Zhu G, Fang W, Chen C, Wang X, Guo J, Wang Q, Ding T, Wang J, Guan L, Wang J, Liu K, Guo W, Arús P, Huang S, Fei Z, Wang L. Genomic analyses provide insights into peach local adaptation and responses to climate change. Genome Res 2021; 31:592-606. [PMID: 33687945 PMCID: PMC8015852 DOI: 10.1101/gr.261032.120] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 01/25/2021] [Indexed: 01/30/2023]
Abstract
The environment has constantly shaped plant genomes, but the genetic bases underlying how plants adapt to environmental influences remain largely unknown. We constructed a high-density genomic variation map of 263 geographically representative peach landraces and wild relatives. A combination of whole-genome selection scans and genome-wide environmental association studies (GWEAS) was performed to reveal the genomic bases of peach adaptation to diverse climates. A total of 2092 selective sweeps that underlie local adaptation to both mild and extreme climates were identified, including 339 sweeps conferring genomic pattern of adaptation to high altitudes. Using genome-wide environmental association studies (GWEAS), a total of 2755 genomic loci strongly associated with 51 specific environmental variables were detected. The molecular mechanism underlying adaptive evolution of high drought, strong UVB, cold hardiness, sugar content, flesh color, and bloom date were revealed. Finally, based on 30 yr of observation, a candidate gene associated with bloom date advance, representing peach responses to global warming, was identified. Collectively, our study provides insights into molecular bases of how environments have shaped peach genomes by natural selection and adds candidate genes for future studies on evolutionary genetics, adaptation to climate changes, and breeding.
Collapse
Affiliation(s)
- Yong Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China.,National Horticulture Germplasm Resources Center, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China.,Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430000, China
| | - Ke Cao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China.,National Horticulture Germplasm Resources Center, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Nan Li
- Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Gengrui Zhu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China.,National Horticulture Germplasm Resources Center, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Weichao Fang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China.,National Horticulture Germplasm Resources Center, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Changwen Chen
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Xinwei Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Jian Guo
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Qi Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Tiyu Ding
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Jiao Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Liping Guan
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Junxiu Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Kuozhan Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Wenwu Guo
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430000, China
| | - Pere Arús
- IRTA-Centre de Recerca en Agrigenòmica (CSIC-IRTA-UAB-UB), Barcelona 08193, Spain
| | - Sanwen Huang
- Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York 14853, USA.,U.S. Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, New York 14853, USA
| | - Lirong Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China.,National Horticulture Germplasm Resources Center, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| |
Collapse
|
259
|
Prerostova S, Dobrev PI, Knirsch V, Jarosova J, Gaudinova A, Zupkova B, Prášil IT, Janda T, Brzobohatý B, Skalák J, Vankova R. Light Quality and Intensity Modulate Cold Acclimation in Arabidopsis. Int J Mol Sci 2021; 22:ijms22052736. [PMID: 33800491 PMCID: PMC7962961 DOI: 10.3390/ijms22052736] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/24/2021] [Accepted: 03/04/2021] [Indexed: 01/04/2023] Open
Abstract
Plant survival in temperate zones requires efficient cold acclimation, which is strongly affected by light and temperature signal crosstalk, which converge in modulation of hormonal responses. Cold under low light conditions affected Arabidopsis responses predominantly in apices, possibly because energy supplies were too limited for requirements of these meristematic tissues, despite a relatively high steady-state quantum yield. Comparing cold responses at optimal light intensity and low light, we found activation of similar defence mechanisms—apart from CBF1–3 and CRF3–4 pathways, also transient stimulation of cytokinin type-A response regulators, accompanied by fast transient increase of trans-zeatin in roots. Upregulated expression of components of strigolactone (and karrikin) signalling pathway indicated involvement of these phytohormones in cold responses. Impaired response of phyA, phyB, cry1 and cry2 mutants reflected participation of these photoreceptors in acquiring freezing tolerance (especially cryptochrome CRY1 at optimal light intensity and phytochrome PHYA at low light). Efficient cold acclimation at optimal light was associated with upregulation of trans-zeatin in leaves and roots, while at low light, cytokinin (except cis-zeatin) content remained diminished. Cold stresses induced elevation of jasmonic acid and salicylic acid (in roots). Low light at optimal conditions resulted in strong suppression of cytokinins, jasmonic and salicylic acid.
Collapse
Affiliation(s)
- Sylva Prerostova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojova 263, 16502 Prague, Czech Republic; (P.I.D.); (V.K.); (J.J.); (A.G.); (B.Z.); (R.V.)
- Correspondence:
| | - Petre I. Dobrev
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojova 263, 16502 Prague, Czech Republic; (P.I.D.); (V.K.); (J.J.); (A.G.); (B.Z.); (R.V.)
| | - Vojtech Knirsch
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojova 263, 16502 Prague, Czech Republic; (P.I.D.); (V.K.); (J.J.); (A.G.); (B.Z.); (R.V.)
| | - Jana Jarosova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojova 263, 16502 Prague, Czech Republic; (P.I.D.); (V.K.); (J.J.); (A.G.); (B.Z.); (R.V.)
| | - Alena Gaudinova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojova 263, 16502 Prague, Czech Republic; (P.I.D.); (V.K.); (J.J.); (A.G.); (B.Z.); (R.V.)
| | - Barbara Zupkova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojova 263, 16502 Prague, Czech Republic; (P.I.D.); (V.K.); (J.J.); (A.G.); (B.Z.); (R.V.)
| | - Ilja T. Prášil
- Division of Genetics and Crop Breeding, Crop Research Institute, Drnovska 507, 16100 Prague, Czech Republic;
| | - Tibor Janda
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research, ELKH, Brunszvik u. 2, 2462 Martonvásár, Hungary;
| | - Břetislav Brzobohatý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 61300 Brno, Czech Republic; (B.B.); (J.S.)
| | - Jan Skalák
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 61300 Brno, Czech Republic; (B.B.); (J.S.)
- CEITEC—Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Radomira Vankova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojova 263, 16502 Prague, Czech Republic; (P.I.D.); (V.K.); (J.J.); (A.G.); (B.Z.); (R.V.)
| |
Collapse
|
260
|
An JP, Wang XF, Zhang XW, You CX, Hao YJ. Apple B-box protein BBX37 regulates jasmonic acid mediated cold tolerance through the JAZ-BBX37-ICE1-CBF pathway and undergoes MIEL1-mediated ubiquitination and degradation. THE NEW PHYTOLOGIST 2021; 229:2707-2729. [PMID: 33119890 DOI: 10.1111/nph.17050] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/23/2020] [Indexed: 05/03/2023]
Abstract
The plant hormone jasmonic acid (JA) is involved in the cold stress response, and the inducer of CBF expression 1 (ICE1)- C-repeat binding factor (CBF) regulatory cascade plays a key role in the regulation of cold stress tolerance. In this study, we showed that a novel B-box (BBX) protein MdBBX37 positively regulates JA-mediated cold-stress resistance in apple. We found that MdBBX37 bound to the MdCBF1 and MdCBF4 promoters to activate their transcription, and also interacted with MdICE1 to enhance the transcriptional activity of MdICE1 on MdCBF1, thus promoting its cold tolerance. Two JA signaling repressors, MdJAZ1 and MdJAZ2 (JAZ, JAZMONATE ZIM-DOMAIN), interacted with MdBBX37 to repress the transcriptional activity of MdBBX37 on MdCBF1 and MdCBF4, and also interfered with the interaction between MdBBX37 and MdICE1, thus negatively regulating JA-mediated cold tolerance. E3 ligase MdMIEL1 (MIEL1, MYB30-Interacting E3 Ligase1) reduced MdBBX37-improved cold resistance by mediating ubiquitination and degradation of the MdBBX37 protein. The data reveal that MIEL1 and JAZ proteins co-regulate JA-mediated cold stress tolerance through the BBX37-ICE1-CBF module in apple. These results will aid further examination of the post-translational modification of BBX proteins and the regulatory mechanism of JA-mediated cold stress tolerance.
Collapse
Affiliation(s)
- Jian-Ping An
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Xiao-Fei Wang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Xiao-Wei Zhang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Chun-Xiang You
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Yu-Jin Hao
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| |
Collapse
|
261
|
Ming R, Zhang Y, Wang Y, Khan M, Dahro B, Liu JH. The JA-responsive MYC2-BADH-like transcriptional regulatory module in Poncirus trifoliata contributes to cold tolerance by modulation of glycine betaine biosynthesis. THE NEW PHYTOLOGIST 2021; 229:2730-2750. [PMID: 33131086 DOI: 10.1111/nph.17063] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/26/2020] [Indexed: 05/15/2023]
Abstract
Glycine betaine (GB) is known to accumulate in plants exposed to cold, but the underlying molecular mechanisms and associated regulatory network remain unclear. Here, we demonstrated that PtrMYC2 of Poncirus trifoliata integrates the jasmonic acid (JA) signal to modulate cold-induced GB accumulation by directly regulating PtrBADH-l, a betaine aldehyde dehydrogenase (BADH)-like gene. PtrBADH-l was identified based on transcriptome and expression analysis in P. trifoliata. Overexpression and VIGS (virus-induced gene silencing)-mediated knockdown showed that PtrBADH-l plays a positive role in cold tolerance and GB synthesis. Yeast one-hybrid library screening using PtrBADH-l promoter as baits unraveled PtrMYC2 as an interacting candidate. PtrMYC2 was confirmed to directly bind to two G-box cis-acting elements within PtrBADH-l promoter and acts as a transcriptional activator. In addition, PtrMYC2 functions positively in cold tolerance through modulation of GB synthesis by regulating PtrBADH-l expression. Interestingly, we found that GB accumulation under cold stress was JA-dependent and that PtrMYC2 orchestrates JA-mediated PtrBADH-l upregulation and GB accumulation. This study sheds new light on the roles of MYC2 homolog in modulating GB synthesis. In particular, we propose a transcriptional regulatory module PtrMYC2-PtrBADH-l to advance the understanding of molecular mechanisms underlying the GB accumulation under cold stress.
Collapse
Affiliation(s)
- Ruhong Ming
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yang Zhang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yue Wang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Madiha Khan
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bachar Dahro
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ji-Hong Liu
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
262
|
Chen L, Zhang L, Xiang S, Chen Y, Zhang H, Yu D. The transcription factor WRKY75 positively regulates jasmonate-mediated plant defense to necrotrophic fungal pathogens. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1473-1489. [PMID: 33165597 PMCID: PMC7904156 DOI: 10.1093/jxb/eraa529] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/02/2020] [Indexed: 05/04/2023]
Abstract
Necrotrophic fungi cause devastating diseases in both horticultural and agronomic crops, but our understanding of plant defense responses against these pathogens is still limited. In this study, we demonstrated that WRKY75 positively regulates jasmonate (JA)-mediated plant defense against necrotrophic fungal pathogens Botrytis cinerea and Alternaria brassicicola, and also affects the sensitivity of plants to JA-inhibited seed germination and root growth. Quantitative analysis indicated that several JA-associated genes, such as OCTADECANOID-RESPONSIVE ARABIDOPSIS (ORA59) and PLANT DEFENSIN 1.2A (PDF1.2), were significantly reduced in expression in wrky75 mutants, and enhanced in WRKY75 overexpressing transgenic plants. Immunoprecipitation assays revealed that WRKY75 directly binds to the promoter of ORA59 and represses itstranscription. In vivo and in vitro experiments suggested that WRKY75 interacts with several JASMONATE ZIM-domain proteins, repressors of the JA signaling pathway. We determined that JASMONATE-ZIM-DOMAIN PROTEIN 8 (JAZ8) represses the transcriptional function of WRKY75, thereby attenuating the expression of its regulation. Overexpression of JAZ8 repressed plant defense responses to B. cinerea. Our study provides evidence that WRKY75 functions as a critical component of the JA-mediated signaling pathway to positively regulate Arabidopsis defense responses to necrotrophic pathogens.
Collapse
Affiliation(s)
- Ligang Chen
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, China
| | - Liping Zhang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Shengyuan Xiang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanli Chen
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haiyan Zhang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Diqiu Yu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
- Correspondence:
| |
Collapse
|
263
|
Kolupaev YE, Yastreb TO. Jasmonate Signaling and Plant Adaptation to Abiotic Stressors (Review). APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s0003683821010117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
264
|
Boldizsár Á, Soltész A, Tanino K, Kalapos B, Marozsán-Tóth Z, Monostori I, Dobrev P, Vankova R, Galiba G. Elucidation of molecular and hormonal background of early growth cessation and endodormancy induction in two contrasting Populus hybrid cultivars. BMC PLANT BIOLOGY 2021; 21:111. [PMID: 33627081 PMCID: PMC7905644 DOI: 10.1186/s12870-021-02828-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 01/06/2021] [Indexed: 06/02/2023]
Abstract
BACKGROUND Over the life cycle of perennial trees, the dormant state enables the avoidance of abiotic stress conditions. The growth cycle can be partitioned into induction, maintenance and release and is controlled by complex interactions between many endogenous and environmental factors. While phytohormones have long been linked with dormancy, there is increasing evidence of regulation by DAM and CBF genes. To reveal whether the expression kinetics of CBFs and their target PtDAM1 is related to growth cessation and endodormancy induction in Populus, two hybrid poplar cultivars were studied which had known differential responses to dormancy inducing conditions. RESULTS Growth cessation, dormancy status and expression of six PtCBFs and PtDAM1 were analyzed. The 'Okanese' hybrid cultivar ceased growth rapidly, was able to reach endodormancy, and exhibited a significant increase of several PtCBF transcripts in the buds on the 10th day. The 'Walker' cultivar had delayed growth cessation, was unable to enter endodormancy, and showed much lower CBF expression in buds. Expression of PtDAM1 peaked on the 10th day only in the buds of 'Okanese'. In addition, PtDAM1 was not expressed in the leaves of either cultivar while leaf CBFs expression pattern was several fold higher in 'Walker', peaking at day 1. Leaf phytohormones in both cultivars followed similar profiles during growth cessation but differentiated based on cytokinins which were largely reduced, while the Ox-IAA and iP7G increased in 'Okanese' compared to 'Walker'. Surprisingly, ABA concentration was reduced in leaves of both cultivars. However, the metabolic deactivation product of ABA, phaseic acid, exhibited an early peak on the first day in 'Okanese'. CONCLUSIONS Our results indicate that PtCBFs and PtDAM1 have differential kinetics and spatial localization which may be related to early growth cessation and endodormancy induction under the regime of low night temperature and short photoperiod in poplar. Unlike buds, PtCBFs and PtDAM1 expression levels in leaves were not associated with early growth cessation and dormancy induction under these conditions. Our study provides new evidence that the degradation of auxin and cytokinins in leaves may be an important regulatory point in a CBF-DAM induced endodormancy. Further investigation of other PtDAMs in bud tissue and a study of both growth-inhibiting and the degradation of growth-promoting phytohormones is warranted.
Collapse
Affiliation(s)
- Ákos Boldizsár
- Department of Plant Molecular Biology, Agricultural Institute, Centre for Agricultural Research, ELKH, Martonvásár, H-2462 Hungary
| | - Alexandra Soltész
- Department of Plant Molecular Biology, Agricultural Institute, Centre for Agricultural Research, ELKH, Martonvásár, H-2462 Hungary
| | - Karen Tanino
- Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK S7N 5A8 Canada
| | - Balázs Kalapos
- Department of Plant Molecular Biology, Agricultural Institute, Centre for Agricultural Research, ELKH, Martonvásár, H-2462 Hungary
| | - Zsuzsa Marozsán-Tóth
- Department of Plant Molecular Biology, Agricultural Institute, Centre for Agricultural Research, ELKH, Martonvásár, H-2462 Hungary
| | - István Monostori
- Department of Plant Molecular Biology, Agricultural Institute, Centre for Agricultural Research, ELKH, Martonvásár, H-2462 Hungary
| | - Petre Dobrev
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, 165 02 Czech Republic
| | - Radomira Vankova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, 165 02 Czech Republic
| | - Gábor Galiba
- Department of Plant Molecular Biology, Agricultural Institute, Centre for Agricultural Research, ELKH, Martonvásár, H-2462 Hungary
- Festetics Doctoral School, Georgikon Campus, Szent István University, Keszthely, H-8360 Hungary
| |
Collapse
|
265
|
Li N, Euring D, Cha JY, Lin Z, Lu M, Huang LJ, Kim WY. Plant Hormone-Mediated Regulation of Heat Tolerance in Response to Global Climate Change. FRONTIERS IN PLANT SCIENCE 2021; 11:627969. [PMID: 33643337 DOI: 10.3389/fpls.2020.627969/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/30/2020] [Indexed: 05/28/2023]
Abstract
Agriculture is largely dependent on climate and is highly vulnerable to climate change. The global mean surface temperatures are increasing due to global climate change. Temperature beyond the physiological optimum for growth induces heat stress in plants causing detrimental and irreversible damage to plant development, growth, as well as productivity. Plants have evolved adaptive mechanisms in response to heat stress. The classical plant hormones, such as auxin, abscisic acid (ABA), brassinosteroids (BRs), cytokinin (CK), salicylic acid (SA), jasmonate (JA), and ethylene (ET), integrate environmental stimuli and endogenous signals to regulate plant defensive response to various abiotic stresses, including heat. Exogenous applications of those hormones prior or parallel to heat stress render plants more thermotolerant. In this review, we summarized the recent progress and current understanding of the roles of those phytohormones in defending plants against heat stress and the underlying signal transduction pathways. We also discussed the implication of the basic knowledge of hormone-regulated plant heat responsive mechanism to develop heat-resilient plants as an effective and efficient way to cope with global warming.
Collapse
Affiliation(s)
- Ning Li
- State Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, College of Forestry, Central South University of Forestry and Technology, Hunan, China
| | - Dejuan Euring
- Forest Botany and Tree Physiology, University of Göttingen, Göttingen, Germany
| | - Joon Yung Cha
- Division of Applied Life Science (BK21PLUS), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Zeng Lin
- State Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, College of Forestry, Central South University of Forestry and Technology, Hunan, China
| | - Mengzhu Lu
- Laboratory of Forest Genetics and Plant Breeding, College of Forestry, Central South University of Forestry and Technology, Hunan, China
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Zhejiang, China
| | - Li-Jun Huang
- State Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, College of Forestry, Central South University of Forestry and Technology, Hunan, China
- Laboratory of Forest Genetics and Plant Breeding, College of Forestry, Central South University of Forestry and Technology, Hunan, China
| | - Woe Yeon Kim
- Division of Applied Life Science (BK21PLUS), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| |
Collapse
|
266
|
Wei Y, Zhu B, Liu W, Cheng X, Lin D, He C, Shi H. Heat shock protein 90 co-chaperone modules fine-tune the antagonistic interaction between salicylic acid and auxin biosynthesis in cassava. Cell Rep 2021; 34:108717. [PMID: 33535044 DOI: 10.1016/j.celrep.2021.108717] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/27/2020] [Accepted: 01/12/2021] [Indexed: 11/29/2022] Open
Abstract
Heat shock protein 90 (HSP90) is an important molecular chaperone in plants. However, HSP90-mediated plant immune response remains elusive in cassava. In this study, cassava bacterial blight (CBB) induces the expression of MeHsf8, which directly targets MeHSP90.9 to activate its expression and immune response. Further identification of SHI-related sequence 1 (MeSRS1) and MeWRKY20 as MeHSP90.9 co-chaperones revealed the underlying mechanism of MeHSP90.9-mediated immune response. MeHSP90.9 interacts with MeSRS1 and MeWRKY20 to promote their transcriptional activation of salicylic acid (SA) biosynthetic gene avrPphB Susceptible 3 (MePBS3) and tryptophan metabolic gene N-acetylserotonin O-methyltransferase 2 (MeASMT2), respectively, so as to activate SA biosynthesis but inhibit tryptophan-derived auxin biosynthesis. Notably, genetic experiments confirmed that overexpressing MePBS3 and MeASMT2 could rescue the effects of silencing MeHsf8-MeHSP90.9 on disease resistance. This study highlights the dual regulation of SA and auxin biosynthesis by MeHSP90.9, providing the mechanistic understanding of MeHSP90.9 client partners in plant immunity.
Collapse
Affiliation(s)
- Yunxie Wei
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan 570228, China
| | - Binbin Zhu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan 570228, China
| | - Wen Liu
- Key Laboratory of Three Gorges Regional Plant Genetics & Germplasm Enhancement (CTGU)/Biotechnology Research Center, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei 443002, China
| | - Xiao Cheng
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan 570228, China
| | - Daozhe Lin
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan 570228, China
| | - Chaozu He
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan 570228, China
| | - Haitao Shi
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan 570228, China.
| |
Collapse
|
267
|
Villacampa A, Ciska M, Manzano A, Vandenbrink JP, Kiss JZ, Herranz R, Medina FJ. From Spaceflight to Mars g-Levels: Adaptive Response of A. Thaliana Seedlings in a Reduced Gravity Environment Is Enhanced by Red-Light Photostimulation. Int J Mol Sci 2021; 22:E899. [PMID: 33477454 PMCID: PMC7830483 DOI: 10.3390/ijms22020899] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/10/2021] [Accepted: 01/14/2021] [Indexed: 12/31/2022] Open
Abstract
The response of plants to the spaceflight environment and microgravity is still not well understood, although research has increased in this area. Even less is known about plants' response to partial or reduced gravity levels. In the absence of the directional cues provided by the gravity vector, the plant is especially perceptive to other cues such as light. Here, we investigate the response of Arabidopsis thaliana 6-day-old seedlings to microgravity and the Mars partial gravity level during spaceflight, as well as the effects of red-light photostimulation by determining meristematic cell growth and proliferation. These experiments involve microscopic techniques together with transcriptomic studies. We demonstrate that microgravity and partial gravity trigger differential responses. The microgravity environment activates hormonal routes responsible for proliferation/growth and upregulates plastid/mitochondrial-encoded transcripts, even in the dark. In contrast, the Mars gravity level inhibits these routes and activates responses to stress factors to restore cell growth parameters only when red photostimulation is provided. This response is accompanied by upregulation of numerous transcription factors such as the environmental acclimation-related WRKY-domain family. In the long term, these discoveries can be applied in the design of bioregenerative life support systems and space farming.
Collapse
Affiliation(s)
- Alicia Villacampa
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain; (A.V.); (M.C.); (A.M.)
| | - Malgorzata Ciska
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain; (A.V.); (M.C.); (A.M.)
| | - Aránzazu Manzano
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain; (A.V.); (M.C.); (A.M.)
| | | | - John Z. Kiss
- Department of Biology, University of North Carolina-Greensboro, Greensboro, NC 27402, USA;
| | - Raúl Herranz
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain; (A.V.); (M.C.); (A.M.)
| | - F. Javier Medina
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain; (A.V.); (M.C.); (A.M.)
| |
Collapse
|
268
|
Transcriptional Analysis of C-Repeat Binding Factors in Fruit of Citrus Species with Differential Sensitivity to Chilling Injury during Postharvest Storage. Int J Mol Sci 2021; 22:ijms22020804. [PMID: 33467390 PMCID: PMC7830921 DOI: 10.3390/ijms22020804] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/05/2021] [Accepted: 01/12/2021] [Indexed: 12/16/2022] Open
Abstract
Citrus fruit are sensitive to chilling injury (CI) during cold storage, a peel disorder that causes economic losses. C-repeat binding factors (CBFs) are related to cold acclimation and tolerance in different plants. To explore the role of Citrus CBFs in fruit response to cold, an in silico study was performed, revealing three genes (CBF1, CBF2, and CBF3) whose expression in CI sensitive and tolerant cultivars was followed. Major changes occurred at the early stages of cold exposure (1-5 d). Interestingly, CBF1 was the most stimulated gene in the peel of CI-tolerant cultivars (Lisbon lemon, Star Ruby grapefruit, and Navelina orange), remaining unaltered in sensitive cultivars (Meyer lemon, Marsh grapefruit, and Salustiana orange). Results suggest a positive association of CBF1 expression with cold tolerance in Citrus cultivars (except for mandarins), whereas the expression of CBF2 or CBF3 genes did not reveal a clear relationship with the susceptibility to CI. Light avoidance during fruit growth reduced postharvest CI in most sensitive cultivars, associated with a rapid and transient enhance in the expression of the three CBFs. Results suggest that CBFs-dependent pathways mediate at least part of the cold tolerance responses in sensitive Citrus, indicating that CBF1 participates in the natural tolerance to CI.
Collapse
|
269
|
Devireddy AR, Zandalinas SI, Fichman Y, Mittler R. Integration of reactive oxygen species and hormone signaling during abiotic stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:459-476. [PMID: 33015917 DOI: 10.1111/tpj.15010] [Citation(s) in RCA: 173] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/16/2020] [Accepted: 09/21/2020] [Indexed: 05/03/2023]
Abstract
Each year, abiotic stress conditions such as drought, heat, salinity, cold and particularly their different combinations, inflict a heavy toll on crop productivity worldwide. The effects of these adverse conditions on plant productivity are becoming ever more alarming in recent years in light of the increased rate and intensity of global climatic changes. Improving crop tolerance to abiotic stress conditions requires a deep understanding of the response of plants to changes in their environment. This response is dependent on early and late signal transduction events that involve important signaling molecules such as reactive oxygen species (ROS), different plant hormones and other signaling molecules. It is the integration of these signaling events, mediated by an interplay between ROS and different plant hormones that orchestrates the plant response to abiotic stress and drive changes in transcriptomic, metabolic and proteomic networks that lead to plant acclimation and survival. Here we review some of the different studies that address hormone and ROS integration during the response of plants to abiotic stress. We further highlight the integration of ROS and hormone signaling during early and late phases of the plant response to abiotic stress, the key role of respiratory burst oxidase homologs in the integration of ROS and hormone signaling during these phases, and the involvement of hormone and ROS in systemic signaling events that lead to systemic acquired acclimation. Lastly, we underscore the need to understand the complex interactions that occur between ROS and different plant hormones during stress combinations.
Collapse
Affiliation(s)
- Amith R Devireddy
- Division of Plant Sciences, College of Agriculture, Food and Natural Resources, and Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center University of Missouri, 1201 Rollins St, Columbia, MO, 65201, USA
| | - Sara I Zandalinas
- Division of Plant Sciences, College of Agriculture, Food and Natural Resources, and Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center University of Missouri, 1201 Rollins St, Columbia, MO, 65201, USA
| | - Yosef Fichman
- Division of Plant Sciences, College of Agriculture, Food and Natural Resources, and Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center University of Missouri, 1201 Rollins St, Columbia, MO, 65201, USA
| | - Ron Mittler
- Division of Plant Sciences, College of Agriculture, Food and Natural Resources, and Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center University of Missouri, 1201 Rollins St, Columbia, MO, 65201, USA
- Department of Surgery, University of Missouri School of Medicine, Christopher S. Bond Life Sciences Center University of Missouri, 1201 Rollins St, Columbia, MO, 65211, USA
| |
Collapse
|
270
|
Zhang L, Chen WS, Lv ZY, Sun WJ, Jiang R, Chen JF, Ying X. Phytohormones jasmonic acid, salicylic acid, gibberellins, and abscisic acid are key mediators of plant secondary metabolites. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2021. [DOI: 10.4103/wjtcm.wjtcm_20_21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
271
|
Feng Y, Fu X, Han L, Xu C, Liu C, Bi H, Ai X. Nitric Oxide Functions as a Downstream Signal for Melatonin-Induced Cold Tolerance in Cucumber Seedlings. FRONTIERS IN PLANT SCIENCE 2021; 12:686545. [PMID: 34367212 PMCID: PMC8343141 DOI: 10.3389/fpls.2021.686545] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 06/21/2021] [Indexed: 05/21/2023]
Abstract
Melatonin (MT) and nitric oxide (NO) are two multifunctional signaling molecules that are involved in the response of plants to abiotic stresses. However, how MT and NO synergize in response to cold stress affecting plants is still not clear. In this study, we found that endogenous MT accumulation under cold stress was positively correlated with cold tolerance in different varieties of cucumber seedlings. The data presented here also provide evidence that endogenous NO is involved in the response to cold stress. About 100 μM MT significantly increased the nitrate reductase (NR) activity, NR-relative messenger RNA (mRNA) expression, and endogenous NO accumulation in cucumber seedlings. However, 75 μM sodium nitroprusside (SNP, a NO donor) showed no significant effect on the relative mRNA expression of tryptophan decarboxylase (TDC), tryptamine-5-hydroxylase (T5H), serotonin-N-acetyltransferase (SNAT), or acetylserotonin O-methyltransferase (ASMT), the key genes for MT synthesis and endogenous MT levels. Compared with H2O treatment, both MT and SNP decreased electrolyte leakage (EL), malondialdehyde (MDA), and reactive oxygen species (ROS) accumulation by activating the antioxidant system and consequently mitigated cold damage in cucumber seedlings. MT and SNP also enhanced photosynthetic carbon assimilation, which was mainly attributed to an increase in the activity and mRNA expression of the key enzymes in the Calvin-Benson cycle. Simultaneously, MT- and SNP-induced photoprotection for both photosystem II (PSII) and photosystem I (PSI) in cucumber seedlings, by stimulating the PsbA (D1) protein repair pathway and ferredoxin-mediated NADP+ photoreduction, respectively. Moreover, exogenous MT and SNP markedly upregulated the expression of chilling response genes, such as inducer of CBF expression (ICE1), C-repeat-binding factor (CBF1), and cold-responsive (COR47). MT-induced cold tolerance was suppressed by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO, a specific scavenger of NO). However, p-chlorophenylalanine (p-CPA, a MT synthesis inhibitor) did not affect NO-induced cold tolerance. Thus, novel results suggest that NO acts as a downstream signal in the MT-induced plant tolerance to cold stress.
Collapse
|
272
|
Xiang W, Wang HW, Sun DW. Phytohormones in postharvest storage of fruit and vegetables: mechanisms and applications. Crit Rev Food Sci Nutr 2020; 61:2969-2983. [PMID: 33356468 DOI: 10.1080/10408398.2020.1864280] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
As a ubiquitous and essential part of phytophysiology, phytohormones have attracted tremendous attention for effective regulation of development and senescence of agricultural products. However, the postharvest mechanisms of phytohormones have not been thoroughly understood. This review provides an overview of common phytohormones for extending the shelf life of fruit and vegetables. The modulation principles are discussed in detail based on defence gene expression activation, sensitivity of senescence-related phytohormones inhibition, antioxidant enzymes activity stimulation, and cell membrane integrity maintenance. The applications of jasmonates, salicylic acids, cytokinins, gibberellins, polyamines, and brassinosteroids in preserving fruit and vegetables based on defence signaling network stimulation, senescence-related phytohormones expression or sensitivity repression, as well as antioxidant system enhancement and cell membrane integrity sustentation are introduced. The challenges and problems to be solved are discussed, and new trends of expanding lifespan by combining phytohormones with other treatments are also suggested. Although phytohormones have been demonstrated to have promising efforts in maintaining agricultural products, more novel and effective combination treatments should be developed to complement each other.
Collapse
Affiliation(s)
- Wenjuan Xiang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Hsiao-Wen Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Ireland
| |
Collapse
|
273
|
The AP2/ERF Gene Family in Triticum durum: Genome-Wide Identification and Expression Analysis under Drought and Salinity Stresses. Genes (Basel) 2020; 11:genes11121464. [PMID: 33297327 PMCID: PMC7762271 DOI: 10.3390/genes11121464] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 12/27/2022] Open
Abstract
Members of the AP2/ERF transcription factor family play critical roles in plant development, biosynthesis of key metabolites, and stress response. A detailed study was performed to identify TtAP2s/ERFs in the durum wheat (Triticum turgidum ssp. durum) genome, which resulted in the identification of 271 genes distributed on chromosomes 1A-7B. By carrying 27 genes, chromosome 6A had the highest number of TtAP2s/ERFs. Furthermore, a duplication assay of TtAP2s/ERFs demonstrated that 70 duplicated gene pairs had undergone purifying selection. According to RNA-seq analysis, the highest expression levels in all tissues and in response to stimuli were associated with DRF and ERF subfamily genes. In addition, the results revealed that TtAP2/ERF genes have tissue-specific expression patterns, and most TtAP2/ERF genes were significantly induced in the root tissue. Additionally, 13 TtAP2/ERF genes (six ERFs, three DREBs, two DRFs, one AP2, and one RAV) were selected for further analysis via qRT-PCR of their potential in coping with drought and salinity stresses. The TtAP2/ERF genes belonging to the DREB subfamily were markedly induced under both drought-stress and salinity-stress conditions. Furthermore, docking simulations revealed several residues in the pocket sites of the proteins associated with the stress response, which may be useful in future site-directed mutagenesis studies to increase the stress tolerance of durum wheat. This study could provide valuable insights for further evolutionary and functional assays of this important gene family in durum wheat.
Collapse
|
274
|
Pan J, Hu Y, Wang H, Guo Q, Chen Y, Howe GA, Yu D. Molecular Mechanism Underlying the Synergetic Effect of Jasmonate on Abscisic Acid Signaling during Seed Germination in Arabidopsis. THE PLANT CELL 2020; 32:3846-3865. [PMID: 33023956 PMCID: PMC7721325 DOI: 10.1105/tpc.19.00838] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 08/18/2020] [Accepted: 10/06/2020] [Indexed: 05/03/2023]
Abstract
Abscisic acid (ABA) is known to suppress seed germination and post-germinative growth of Arabidopsis (Arabidopsis thaliana), and jasmonate (JA) enhances ABA function. However, the molecular mechanism underlying the crosstalk between the ABA and JA signaling pathways remains largely elusive. Here, we show that exogenous coronatine, a JA analog structurally similar to the active conjugate jasmonate-isoleucine, significantly enhances the delayed seed germination response to ABA. Disruption of the JA receptor CORONATINE INSENSITIVE1 or accumulation of the JA signaling repressor JASMONATE ZIM-DOMAIN (JAZ) reduced ABA signaling, while jaz mutants enhanced ABA responses. Mechanistic investigations revealed that several JAZ repressors of JA signaling physically interact with ABSCISIC ACID INSENSITIVE3 (ABI3), a critical transcription factor that positively modulates ABA signaling, and that JAZ proteins repress the transcription of ABI3 and ABI5. Further genetic analyses showed that JA activates ABA signaling and requires functional ABI3 and ABI5. Overexpression of ABI3 and ABI5 simultaneously suppressed the ABA-insensitive phenotypes of the coi1-2 mutant and JAZ-accumulating (JAZ-ΔJas) plants. Together, our results reveal a previously uncharacterized signaling module in which JAZ repressors of the JA pathway regulate the ABA-responsive ABI3 and ABI5 transcription factors to integrate JA and ABA signals during seed germination and post-germinative growth.
Collapse
Affiliation(s)
- Jinjing Pan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- College of Tobacco Science, Yunnan Agricultural University, Kunming, Yunnan 650201, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanru Hu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
| | - Houping Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
| | - Qiang Guo
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
| | - Yani Chen
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
| | - Gregg A Howe
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
| | - Diqiu Yu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
| |
Collapse
|
275
|
Liu L, Zhang J, Xu J, Li Y, Guo L, Wang Z, Zhang X, Zhao B, Guo YD, Zhang N. CRISPR/Cas9 targeted mutagenesis of SlLBD40, a lateral organ boundaries domain transcription factor, enhances drought tolerance in tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 301:110683. [PMID: 33218644 DOI: 10.1016/j.plantsci.2020.110683] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/10/2020] [Accepted: 09/13/2020] [Indexed: 05/19/2023]
Abstract
The LATERAL ORGAN BOUNDARIES DOMAIN (LBD)-containing genes are plant-specific genes that play important roles in lateral organ development. In this study, we identified LBD40 (Solyc02g085910), which belongs to subfamily II of the LBD family of genes in tomato. LBD40 was highly expressed in roots and fruit. LBD40 expression was significantly induced by PEG and salt. Moreover, SlLBD40 expression was induced by methyl jasmonate treatment, while SlLBD40 expression could not be induced in the jasmonic acid-insensitive1 (jai1) mutant or MYC2-silenced plants, in which jasmonic acid (JA) signaling was disrupted. These findings demonstrate that SlLBD40 expression was dependent on JA signaling and that it might be downstream of SlMYC2, which is the master transcription factor in the JA signal transduction pathway. Overexpressing and CRISPR/Cas9 mediated knockout transgenic tomato plants were generated to explore SlLBD40 function. The drought tolerance test showed that two SlLBD40 knockout lines wilted slightly, while SlLBD40 overexpressing plants suffered severe wilting. The statistical water loss rate and midday leaf water potential also confirmed that knockout of SlLBD40 improved the water-holding ability of tomato under drought conditions. Taken together, our study demonstrates that SlLBD40, involved in JA signaling, was a negative regulator of drought tolerance and that knockout of SlLBD40 enhanced drought tolerance in tomato. This study also provides a novel function of SlLBD40, which belongs to subfamily II of LBD genes.
Collapse
Affiliation(s)
- Lun Liu
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Jialong Zhang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Jiayi Xu
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yafei Li
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Luqin Guo
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Zhirong Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xichun Zhang
- College of Plant Science & Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Bing Zhao
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yang-Dong Guo
- College of Horticulture, China Agricultural University, Beijing, 100193, China.
| | - Na Zhang
- College of Horticulture, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
276
|
Lee JG, Yi G, Choi JH, Lee EJ. Analyses of targeted/untargeted metabolites and reactive oxygen species of pepper fruits provide insights into seed browning induced by chilling. Food Chem 2020; 332:127406. [PMID: 32615387 DOI: 10.1016/j.foodchem.2020.127406] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 06/17/2020] [Accepted: 06/20/2020] [Indexed: 02/06/2023]
Abstract
Hot peppers are sensitive to low temperature, and seed browning significantly reduces the fruit quality. This study aims to clarify the mechanisms of seed browning in terms of metabolite changes. Metabolites were analysed during a 30-day-storage period at 2 °C and 10 °C. Gamma-aminobutyric acid, tyrosine, phenylalanine, and isoleucine concentrations were significantly higher at 2 °C storage than at 10 °C. Reactive oxygen species (ROS) generation was associated with seed browning. Transcription of jasmonic acid synthesis and ROS scavenging genes were higher in hot peppers stored at 2 °C than those stored at 10 °C. This study elucidated the mechanisms underlying seed browning and chill damage in hot peppers during storage at low temperatures and our findings may help improve hot peppers' quality following harvesting.
Collapse
Affiliation(s)
- Jeong Gu Lee
- Department of Plant Science, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Gibum Yi
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeong Hee Choi
- Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Eun Jin Lee
- Department of Plant Science, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
277
|
Pan DY, Fu X, Zhang XW, Liu FJ, Bi HG, Ai XZ. Hydrogen sulfide is required for salicylic acid-induced chilling tolerance of cucumber seedlings. PROTOPLASMA 2020; 257:1543-1557. [PMID: 32621044 DOI: 10.1007/s00709-020-01531-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 06/29/2020] [Indexed: 05/03/2023]
Abstract
Salicylic acid (SA) and hydrogen sulfide (H2S) have been proved to be multifunctional signal molecules to participate in the response of plants to abiotic stresses. However, it is still unclear whether there is interaction between SA and H2S in response to chilling intensity of cucumber seedlings. Here, we found SA was sensitive to chilling intensity. Under normal condition, NaHS (H2S donor) or removing endogenous H2S with hypotaurine (HT, a specific scavenger of H2S) and DL-propargylglycine (PAG, a specific inhibitor of H2S) has no effect on endogenous SA level; however, SA induced endogenous H2S content and activated the activities and mRNA level of L-/D-cysteine desulfhydrase (L-/D-CD), and inhibiting endogenous SA with paclobutrazol (PAC) or 2-aminoindan-2-phosphonic acid (AIP) blocked this effect, implying H2S may play a role after SA signal. Further studies showed that both SA and NaHS notably alleviated chilling injury, which was evidenced by lower electrolyte leakage (EL), MDA content, and ROS accumulation, compared with H2O treatment. Of note, SA and H2S improved the activities and mRNA level of antioxidant enzymes (SOD, POD, CAT, APX, and GR) as well as the contents of AsA and GSH. Additionally, the chilling-response genes (ICE, CBF1, and COR) were obviously upregulated by exogenous SA and NaHS. However, the positive effect of SA on chilling tolerance was inhibited by HT, whereas PAC or AIP did not affect NaHS-induced chilling tolerance. Taken together, the data reveals that H2S acts as a downstream signal of SA-induced chilling tolerance of cucumber via modulating antioxidant system and chilling-response genes.
Collapse
Affiliation(s)
- Dong-Yun Pan
- State Key Laboratory of Crop Biology; Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huang huai Region; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Xin Fu
- State Key Laboratory of Crop Biology; Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huang huai Region; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Xiao-Wei Zhang
- State Key Laboratory of Crop Biology; Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huang huai Region; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Feng-Jiao Liu
- State Key Laboratory of Crop Biology; Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huang huai Region; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Huan-Gai Bi
- State Key Laboratory of Crop Biology; Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huang huai Region; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| | - Xi-Zhen Ai
- State Key Laboratory of Crop Biology; Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huang huai Region; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| |
Collapse
|
278
|
Verma RK, Kumar VVS, Yadav SK, Kumar TS, Rao MV, Chinnusamy V. Overexpression of Arabidopsis ICE1 enhances yield and multiple abiotic stress tolerance in indica rice. PLANT SIGNALING & BEHAVIOR 2020; 15:1814547. [PMID: 32924751 PMCID: PMC7664797 DOI: 10.1080/15592324.2020.1814547] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 05/04/2023]
Abstract
ICE1 (Inducer of CBF Expression 1), a MYC-type bHLH transcription factor, is a regulator of cold tolerance in Arabidopsis. Indica rice, which occupies the major rice cultivated area, is highly sensitive to cold stress. Hence in this study, Arabidopsis ICE1 (AtICE1) was overexpressed in indica rice to analyze its role in reproductive stage cold and other abiotic stress tolerance to indica rice. AtICE1 was overexpressed by using stress inducible AtRD29A promoter in mega rice cv. MTU1010. Under cold stress conditions, AtICE1 overexpression lines showed lower accumulation of MDA and H2O2, higher membrane stability, and thus higher seedling survival rate than the WT plants. Expression levels of OsDREB1A, OsMYB3R2, and OsTPP1 were significantly higher in transgenics as compared with WT under cold stress conditions. AtICE1 transgenic rice plants produced 44-60% higher grain yield as compared with WT plants under control conditions in three independent experiments. Of the three AtICE1 overexpression lines, two lines produced significantly higher grain yield as compared with WT plants after recovery from cold, salt and drought stresses. AtICE1 overexpression lines showed significantly higher stomatal density and conductance under non-stress conditions. qRT-PCR analysis showed that expression levels of stomatal pathway genes viz., OsSPCH1, OsSPCH2, OsSCR1, OsSCRM1, OsSCRM2 and OsMUTE were significantly higher in AtICE1 transgenics as compared with WT plants. The components of water use viz., stomatal conductance, photosynthesis, and instantaneous WUE were higher in transgenics as compared with WT plants. The results showed that AtICE1 confers multiple stress tolerance to indica rice, and the role of ICE1 in stress tolerance and stomatal development is conserved across species.
Collapse
Affiliation(s)
- Rakesh Kumar Verma
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
- Department of Botany, School of Life Sciences, Bharathidasan University Tiruchirappalli, Tiruchirappalli, India
| | - Vinjamuri Venkata Santosh Kumar
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
- Department of Botany, School of Life Sciences, Bharathidasan University Tiruchirappalli, Tiruchirappalli, India
| | - Shashank Kumar Yadav
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Thiruppathi Senthil Kumar
- Department of Botany, School of Life Sciences, Bharathidasan University Tiruchirappalli, Tiruchirappalli, India
| | - Mandali Venkateswara Rao
- Department of Botany, School of Life Sciences, Bharathidasan University Tiruchirappalli, Tiruchirappalli, India
| | - Viswanathan Chinnusamy
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
279
|
He X, Kang Y, Li W, Liu W, Xie P, Liao L, Huang L, Yao M, Qian L, Liu Z, Guan C, Guan M, Hua W. Genome-wide identification and functional analysis of the TIFY gene family in the response to multiple stresses in Brassica napus L. BMC Genomics 2020; 21:736. [PMID: 33092535 PMCID: PMC7583176 DOI: 10.1186/s12864-020-07128-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 10/08/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND TIFY is a plant-specific protein family with a diversity of functions in plant development and responses to stress and hormones, which contains JASMONATE ZIM-domain (JAZ), TIFY, PPD and ZML subfamilies. Despite extensive studies of TIFY family in many other species, TIFY has not yet been characterized in Brassica napus. RESULTS In this study, we identified 77, 36 and 39 TIFY family genes in the genome of B. napus, B. rapa and B. oleracea, respectively. Results of the phylogenetic analysis indicated the 170 TIFY proteins from Arabidopsis, B. napus, B. rapa and B. oleracea could be divided into 11 groups: seven JAZ groups, one PPD group, one TIFY group, and two ZIM/ZML groups. The molecular evolutionary analysis showed that TIFY genes were conserved in Brassicaceae species. Gene expression profiling and qRT-PCR revealed that different groups of BnaTIFY members have distinct spatiotemporal expression patterns in normal conditions or following treatment with different abiotic/biotic stresses and hormones. The BnaJAZ subfamily genes were predominantly expressed in roots and up-regulated by NaCl, PEG, freezing, methyl jasmonate (MeJA), salicylic acid (SA) and Sclerotinia sclerotiorum in leaves, suggesting that they have a vital role in hormone signaling to regulate multiple stress tolerance in B. napus. CONCLUSIONS The extensive annotation and expression analysis of the BnaTIFY genes contributes to our understanding of the functions of these genes in multiple stress responses and phytohormone crosstalk in B. napus.
Collapse
Affiliation(s)
- Xin He
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha, 410128, Hunan, China.,Oil Crops Research, Hunan Agricultural University, Changsha, 410128, Hunan, China.,Hunan Branch of National Oilseed Crops Improvement Center, Changsha, 410128, Hunan, China
| | - Yu Kang
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Wenqian Li
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Wei Liu
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Pan Xie
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Li Liao
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Luyao Huang
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Min Yao
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Lunwen Qian
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Zhongsong Liu
- Oil Crops Research, Hunan Agricultural University, Changsha, 410128, Hunan, China.,Hunan Branch of National Oilseed Crops Improvement Center, Changsha, 410128, Hunan, China
| | - Chunyun Guan
- Oil Crops Research, Hunan Agricultural University, Changsha, 410128, Hunan, China.,Hunan Branch of National Oilseed Crops Improvement Center, Changsha, 410128, Hunan, China
| | - Mei Guan
- Oil Crops Research, Hunan Agricultural University, Changsha, 410128, Hunan, China. .,Hunan Branch of National Oilseed Crops Improvement Center, Changsha, 410128, Hunan, China.
| | - Wei Hua
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha, 410128, Hunan, China. .,Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, China.
| |
Collapse
|
280
|
Lee JG, Yi G, Seo J, Kang BC, Choi JH, Lee EJ. Jasmonic acid and ERF family genes are involved in chilling sensitivity and seed browning of pepper fruit after harvest. Sci Rep 2020; 10:17949. [PMID: 33087820 PMCID: PMC7577993 DOI: 10.1038/s41598-020-75055-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/09/2020] [Indexed: 11/09/2022] Open
Abstract
Pepper (Capsicum annuum L.) fruit is sensitive to temperatures below 10 °C, which severely diminish fruit quality during cold chain distribution. Seed browning was a major chilling symptom in 36 genotypes of C. annuum fruit screened after storage at 2 °C for 3 weeks. Among them, pepper fruits of chilling-insensitive 'UZB-GJG-1999-51' and -sensitive 'C00562' were treated at 2 °C for 0 or 24 h, respectively. Analyses of integrated transcriptome-metabolome and relative gene expression in seeds obtained from the two genotypes were conducted to identify key factors involved in the seed browning induced by chilling. The relative contents of branched-chain amino acids such as leucine, isoleucine, and valine were significantly increased after chilling. Transcriptome identification showed 3,140 differentially expressed genes (log twofold change > 1.0 and FDR-corrected p value < 0.05) affected by chilling between the two genotypes. Particularly, genes related to jasmonic acid synthesis and signaling were differentially expressed. A regulatory network of jasmonic acid synthesis and signaling, and regulation of ERF family genes might contribute to chilling response in pepper fruit. The results of this study may help facilitate further studies to develop chilling-insensitive peppers and could be a basis for improving postharvest fruit quality.
Collapse
Affiliation(s)
- Jeong Gu Lee
- Depatment of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Gibum Yi
- Depatment of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.,Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jieun Seo
- Depatment of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Byoung-Cheorl Kang
- Depatment of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.,Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jeong Hee Choi
- Korea Food Research Institute, Wanju-gun, Jeollabuk-do, 55365, Republic of Korea
| | - Eun Jin Lee
- Depatment of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea. .,Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
281
|
Jia S, Yobi A, Naldrett MJ, Alvarez S, Angelovici R, Zhang C, Holding DR. Deletion of maize RDM4 suggests a role in endosperm maturation as well as vegetative and stress-responsive growth. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5880-5895. [PMID: 32667993 DOI: 10.1093/jxb/eraa325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/10/2020] [Indexed: 06/11/2023]
Abstract
Opaque kernels in maize may result from mutations in many genes, such as OPAQUE-2. In this study, a maize null mutant of RNA-DIRECTED DNA METHYLATION 4 (RDM4) showed an opaque kernel phenotype, as well as plant developmental delay, male sterility, and altered response to cold stress. We found that in opaque kernels, all zein proteins were reduced and amino acid content was changed, including increased lysine. Transcriptomic and proteomic analysis confirmed the zein reduction and proteomic rebalancing of non-zein proteins, which was quantitatively and qualitatively different from opaque-2. Global transcriptional changes were found in endosperm and leaf, including many transcription factors and tissue-specific expressed genes. Furthermore, of the more than 8000 significantly differentially expressed genes in wild type in response to cold, a significant proportion (25.9% in moderate cold stress and 40.8% in near freezing stress) were not differentially expressed in response to cold in rdm4, suggesting RDM4 may participate in regulation of abiotic stress tolerance. This initial characterization of maize RDM4 provides a basis for further investigating its function in endosperm and leaf, and as a regulator of normal and stress-responsive development.
Collapse
Affiliation(s)
- Shangang Jia
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
- Key Laboratory of Pratacultural Science, Beijing Municipality, Beijing, China
- Department of Agronomy and Horticulture, Center for Plant Science Innovation, Beadle Center for Biotechnology, University of Nebraska, Lincoln, NE, USA
| | - Abou Yobi
- Bond Life Sciences Center, Division of Biological Sciences, Interdisciplinary Plant Group, University of Missouri, Columbia, MO, USA
| | - Michael J Naldrett
- Proteomics and Metabolomics Core facility, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Sophie Alvarez
- Proteomics and Metabolomics Core facility, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Ruthie Angelovici
- Bond Life Sciences Center, Division of Biological Sciences, Interdisciplinary Plant Group, University of Missouri, Columbia, MO, USA
| | - Chi Zhang
- School of Biological Sciences, Center for Plant Science Innovation, Beadle Center for Biotechnology, University of Nebraska, Lincoln, NE, USA
| | - David R Holding
- Department of Agronomy and Horticulture, Center for Plant Science Innovation, Beadle Center for Biotechnology, University of Nebraska, Lincoln, NE, USA
| |
Collapse
|
282
|
Martínez-Fernández I, Menezes de Moura S, Alves-Ferreira M, Ferrándiz C, Balanzà V. Identification of Players Controlling Meristem Arrest Downstream of the FRUITFULL-APETALA2 Pathway. PLANT PHYSIOLOGY 2020; 184:945-959. [PMID: 32778534 PMCID: PMC7536680 DOI: 10.1104/pp.20.00800] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 07/28/2020] [Indexed: 05/09/2023]
Abstract
The end of the reproductive phase in monocarpic plants is determined by a coordinated arrest of all active meristems, a process known as global proliferative arrest (GPA). GPA is linked to the correlative control exerted by developing seeds and, possibly, the establishment of strong source-sink relationships. It has been proposed that the meristems that undergo arrest at the end of the reproductive phase behave at the transcriptomic level as dormant meristems, with low mitotic activity and high expression of abscisic acid response genes. Meristem arrest is also controlled genetically. In Arabidopsis (Arabidopsis thaliana), the MADS-box transcription factor FRUITFULL induces GPA by directly repressing genes of the APETALA2 (AP2) clade. The AP2 genes maintain shoot apical meristem (SAM) activity in part by keeping WUSCHEL expression active, but the mechanisms downstream of this pathway remain elusive. To identify target genes, we performed a transcriptomic analysis, inducing AP2 activity in meristems close to arrest. Our results suggest that AP2 controls meristem arrest by repressing genes related to axillary bud dormancy in the SAM and negative regulators of cytokinin signaling. In addition, our analysis indicates that genes involved in the response to environmental signals also respond to AP2, suggesting that it could modulate the end of flowering by controlling responses to both endogenous and exogenous signals. Our results support the previous observation that at the end of the reproductive phase the arrested SAM behaves as a dormant meristem, and they strongly support AP2 as a master regulator of this process.
Collapse
Affiliation(s)
- Irene Martínez-Fernández
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de Valencia, 46022 Valencia, Spain
| | - Stéfanie Menezes de Moura
- Department of Genetics, Universidade Federal do Rio de Janeiro, Prédio do Centro do Ciências da Saúde-Instituto de Biologia, Rio de Janeiro, RJ 219410-970, Brazil
| | - Marcio Alves-Ferreira
- Department of Genetics, Universidade Federal do Rio de Janeiro, Prédio do Centro do Ciências da Saúde-Instituto de Biologia, Rio de Janeiro, RJ 219410-970, Brazil
| | - Cristina Ferrándiz
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de Valencia, 46022 Valencia, Spain
| | - Vicente Balanzà
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de Valencia, 46022 Valencia, Spain
| |
Collapse
|
283
|
Liu B, Wang XY, Cao Y, Arora R, Zhou H, Xia YP. Factors affecting freezing tolerance: a comparative transcriptomics study between field and artificial cold acclimations in overwintering evergreens. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:2279-2300. [PMID: 32593208 DOI: 10.1111/tpj.14899] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 06/09/2020] [Accepted: 06/12/2020] [Indexed: 05/06/2023]
Abstract
Cold acclimation (CA) is a well-known strategy employed by plants to enhance freezing tolerance (FT) in winter. Global warming could disturb CA and increase the potential for winter freeze-injury. Thus, developing robust FT through complete CA is essential. To explore the molecular mechanisms of CA in woody perennials, we compared field and artificial CAs. Transcriptomic data showed that photosynthesis/photoprotection and fatty acid metabolism pathways were specifically enriched in field CA; carbohydrate metabolism, secondary metabolism and circadian rhythm pathways were commonly enriched in both field and artificial CAs. When compared with plants in vegetative growth in the chamber, we found that the light signals with warm air temperatures in the fall might induce the accumulation of leaf abscisic acid (ABA) and jasmonic acid (JA) concentrations, and activate Ca2+ , ABA and JA signaling transductions in plants. With the gradual cooling occurrence in winter, more accumulation of anthocyanin, chlorophyll degradation, closure/degradation of photosystem II reaction centers, and substantial accumulation of glucose and fructose contributed to obtaining robust FT during field CA. Moreover, we observed that in Rhododendron 'Elsie Lee', ABA and JA decreased in winter, which may be due to the strong requirement of zeaxanthin for rapid thermal dissipation and unsaturated fatty acids for membrane fluidity. Taken together, our results indicate that artificial CA has limitations to understand the field CA and field light signals (like short photoperiod, light intensity and/or light quality) before the low temperature in fall might be essential for complete CA.
Collapse
Affiliation(s)
- Bing Liu
- Department of Horticulture, College of Agriculture and Biotechnology, Genomics and Genetic Engineering Laboratory of Ornamental Plants, Zhejiang University, 866 Yuhangtang Road, Zhejiang, 310058, P. R. China
| | - Xiu-Yun Wang
- Department of Horticulture, College of Agriculture and Biotechnology, Genomics and Genetic Engineering Laboratory of Ornamental Plants, Zhejiang University, 866 Yuhangtang Road, Zhejiang, 310058, P. R. China
| | - Yan Cao
- Department of Horticulture, College of Agriculture and Biotechnology, Genomics and Genetic Engineering Laboratory of Ornamental Plants, Zhejiang University, 866 Yuhangtang Road, Zhejiang, 310058, P. R. China
| | - Rajeev Arora
- Department of Horticulture, Iowa State University, Ames, IA, 50010, USA
| | - Hong Zhou
- Department of Horticulture, College of Agriculture and Biotechnology, Genomics and Genetic Engineering Laboratory of Ornamental Plants, Zhejiang University, 866 Yuhangtang Road, Zhejiang, 310058, P. R. China
| | - Yi-Ping Xia
- Department of Horticulture, College of Agriculture and Biotechnology, Genomics and Genetic Engineering Laboratory of Ornamental Plants, Zhejiang University, 866 Yuhangtang Road, Zhejiang, 310058, P. R. China
| |
Collapse
|
284
|
Schluttenhofer C. Origin and evolution of jasmonate signaling. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 298:110542. [PMID: 32771155 DOI: 10.1016/j.plantsci.2020.110542] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 05/15/2023]
Abstract
Jasmonate (JA) signaling is a key mediator of plant development and defense which arose during plants transition from an aqueous to terrestrial environment. Elucidating the evolution of JA signaling is important for understanding plant development, defense, and production of specialized metabolites. The lineage of key protein domains characterizing JA signaling factors was traced to identify the origins of CORONITINE INSENSITIVE 1 (COI1), JASMONATE ZIM-DOMAIN (JAZ), NOVEL INTERACTOR OF JAZ, MYC2, TOPLESS, and MEDIATOR SUBUNIT 25. Charophytes do not possess genes encoding key JA signaling components, including COI1, JAZ, MYC2, and the JAZ-interacting bHLH factors, yet their orthologs are present in bryophytes. TIFY family genes were found in charophyta and chlorophya algae. JAZs evolved from ZIM genes of the TIFY family through changes to several key amino acids. Dating placed the origin of JA signaling 515 to 473 million years ago during the middle Cambrian to early Ordovician periods. This time is known for rapid biodiversification and mass extinction events. An increased predation from the diversifying and changing fauna may have driven evolution of JA signaling and plant defense.
Collapse
Affiliation(s)
- Craig Schluttenhofer
- Agriculture Research and Development Program, 1400 Brush Row Road, Wilberforce OH, 45384, USA.
| |
Collapse
|
285
|
Luo L, Kong X, Gao Z, Zheng Y, Yang Y, Li X, Yang D, Geng Y, Yang Y. Comparative transcriptome analysis reveals ecological adaption of cold tolerance in northward invasion of Alternanthera philoxeroides. BMC Genomics 2020; 21:532. [PMID: 32741374 PMCID: PMC7430914 DOI: 10.1186/s12864-020-06941-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 07/23/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Alternanthera philoxeroides (alligator weed) is a highly invasive alien plant that has continuously and successfully expanded from the tropical to the temperate regions of China via asexual reproduction. During this process, the continuous decrease in temperature has been a key limiting environmental factor. RESULTS In this study, we provide a comprehensive analysis of the cold tolerance of alligator weed via transcriptomics. The transcriptomic differences between the southernmost population and the northernmost population of China were compared at different time points of cold treatments. GO enrichment and KEGG pathway analyses showed that the alligator weed transcriptional response to cold stress is associated with genes encoding protein kinases, transcription factors, plant-pathogen interactions, plant hormone signal transduction and metabolic processes. Although members of the same gene family were often expressed in both populations, the levels of gene expression between them varied. Further ChIP experiments indicated that histone epigenetic modification changes at the candidate transcription factor gene loci are accompanied by differences in gene expression in response to cold, without variation in the coding sequences of these genes in these two populations. These results suggest that histone changes may contribute to the cold-responsive gene expression divergence between these two populations to provide the most beneficial response to chilling stimuli. CONCLUSION We demonstrated that the major alterations in gene expression levels belonging to the main cold-resistance response processes may be responsible for the divergence in the cold resistance of these two populations. During this process, histone modifications in cold-responsive genes have the potential to drive the major alterations in cold adaption necessary for the northward expansion of alligator weed.
Collapse
Affiliation(s)
- Landi Luo
- School of Ecology and Environmental Science, Institute of Ecology and Geobotany, Yunnan University, Kunming, 650504, China
| | - Xiangxiang Kong
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.,Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Zean Gao
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.,Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Zheng
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.,Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunqiang Yang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.,Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Xiong Li
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.,Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Danni Yang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.,Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yupeng Geng
- School of Ecology and Environmental Science, Institute of Ecology and Geobotany, Yunnan University, Kunming, 650504, China.
| | - Yongping Yang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China. .,Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
286
|
Feng G, Yoo M, Davenport R, Boatwright JL, Koh J, Chen S, Barbazuk WB. Jasmonate induced alternative splicing responses in Arabidopsis. PLANT DIRECT 2020; 4:e00245. [PMID: 32875268 PMCID: PMC7450174 DOI: 10.1002/pld3.245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 06/04/2020] [Accepted: 06/24/2020] [Indexed: 05/14/2023]
Abstract
Jasmonate is an essential phytohormone regulating plant growth, development, and defense. Alternative splicing (AS) in jasmonate ZIM-domain (JAZ) repressors is well-characterized and plays an important role in jasmonate signaling regulation. However, it is unknown whether other genes in the jasmonate signaling pathway are regulated by AS. We explore the potential for AS regulation in three Arabidopsis genotypes (WT, jaz2, jaz7) in response to methyl jasmonate (MeJA) treatment with respect to: (a) differential AS, (b) differential miRNA targeted AS, and (c) AS isoforms with novel functions. AS events identified from transcriptomic data were validated with proteomic data. Protein interaction networks identified two genes, SKIP and ALY4 whose products have both DNA- and RNA-binding affinities, as potential key regulators mediating jasmonate signaling and AS regulation. We observed cases where AS alone, or AS and transcriptional regulation together, can influence gene expression in response to MeJA. Twenty-one genes contain predicted miRNA target sites subjected to AS, which implies that AS is coupled to miRNA regulation. We identified 30 cases where alternatively spliced isoforms may have novel functions. For example, AS of bHLH160 generates an isoform without a basic domain, which may convert it from an activator to a repressor. Our study identified potential key regulators in AS regulation of jasmonate signaling pathway. These findings highlight the importance of AS regulation in the jasmonate signaling pathway, both alone and in collaboration with other regulators. SIGNIFICANCE STATEMENT By exploring alternative splicing, we demonstrate its regulation in the jasmonate signaling pathway alone or in collaboration with other posttranscriptional regulations such as nonsense and microRNA-mediated decay. A signal transduction network model for alternative splicing in jasmonate signaling pathway was generated, contributing to our understanding for this important, prevalent, but relatively unexplored regulatory mechanism in plants.
Collapse
Affiliation(s)
- Guanqiao Feng
- Plant Molecular and Cellular Biology ProgramUniversity of FloridaGainesvilleFLUSA
| | - Mi‐Jeong Yoo
- Department of BiologyUniversity of FloridaGainesvilleFLUSA
| | - Ruth Davenport
- Department of BiologyUniversity of FloridaGainesvilleFLUSA
| | | | - Jin Koh
- The Interdisciplinary Center for Biotechnology Research (ICBR)University of FloridaGainesvilleFLUSA
| | - Sixue Chen
- Plant Molecular and Cellular Biology ProgramUniversity of FloridaGainesvilleFLUSA
- Department of BiologyUniversity of FloridaGainesvilleFLUSA
- The Interdisciplinary Center for Biotechnology Research (ICBR)University of FloridaGainesvilleFLUSA
- The Genetics InstituteUniversity of FloridaGainesvilleFLUSA
| | - W. Brad Barbazuk
- Plant Molecular and Cellular Biology ProgramUniversity of FloridaGainesvilleFLUSA
- Department of BiologyUniversity of FloridaGainesvilleFLUSA
- The Interdisciplinary Center for Biotechnology Research (ICBR)University of FloridaGainesvilleFLUSA
- The Genetics InstituteUniversity of FloridaGainesvilleFLUSA
| |
Collapse
|
287
|
Transcriptomic Profiling of Young Cotyledons Response to Chilling Stress in Two Contrasting Cotton ( Gossypium hirsutum L.) Genotypes at the Seedling Stage. Int J Mol Sci 2020; 21:ijms21145095. [PMID: 32707667 PMCID: PMC7404027 DOI: 10.3390/ijms21145095] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/14/2020] [Accepted: 07/17/2020] [Indexed: 12/19/2022] Open
Abstract
Young cotyledons of cotton seedlings are most susceptible to chilling stress. To gain insight into the potential mechanism of cold tolerance of young cotton cotyledons, we conducted physiological and comparative transcriptome analysis of two varieties with contrasting phenotypes. The evaluation of chilling injury of young cotyledons among 74 cotton varieties revealed that H559 was the most tolerant and YM21 was the most sensitive. The physiological analysis found that the ROS scavenging ability was lower, and cell membrane damage was more severe in the cotyledons of YM21 than that of H559 under chilling stress. RNA-seq analysis identified a total of 44,998 expressed genes and 19,982 differentially expressed genes (DEGs) in young cotyledons of the two varieties under chilling stress. Weighted gene coexpression network analysis (WGCNA) of all DEGs revealed four significant modules with close correlation with specific samples. The GO-term enrichment analysis found that lots of genes in H559-specific modules were involved in plant resistance to abiotic stress. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that pathways such as plant hormone signal transduction, MAPK signaling, and plant–pathogen interaction were related to chilling stress response. A total of 574 transcription factors and 936 hub genes in these modules were identified. Twenty hub genes were selected for qRT-PCR verification, revealing the reliability and accuracy of transcriptome data. These findings will lay a foundation for future research on the molecular mechanism of cold tolerance in cotyledons of cotton.
Collapse
|
288
|
Kong W, Zhang C, Qiang Y, Zhong H, Zhao G, Li Y. Integrated RNA-Seq Analysis and Meta-QTLs Mapping Provide Insights into Cold Stress Response in Rice Seedling Roots. Int J Mol Sci 2020; 21:ijms21134615. [PMID: 32610550 PMCID: PMC7369714 DOI: 10.3390/ijms21134615] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 12/20/2022] Open
Abstract
Rice (Oryza sativa L.) is a widely cultivated food crop around the world, especially in Asia. However, rice seedlings often suffer from cold stress, which affects their growth and yield. Here, RNA-seq analysis and Meta-QTLs mapping were performed to understand the molecular mechanisms underlying cold tolerance in the roots of 14-day-old seedlings of rice (RPY geng, cold-tolerant genotype). A total of 4779 of the differentially expressed genes (DEGs) were identified, including 2457 up-regulated and 2322 down-regulated DEGs. The GO, COG, KEEG, and Mapman enrichment results of DEGs revealed that DEGs are mainly involved in carbohydrate transport and metabolism, signal transduction mechanisms (plant hormone signal transduction), biosynthesis, transport and catabolism of secondary metabolites (phenylpropanoid biosynthesis), defense mechanisms, and large enzyme families mechanisms. Notably, the AP2/ERF-ERF, NAC, WRKY, MYB, C2H2, and bHLH transcription factors participated in rice’s cold–stress response and tolerance. On the other hand, we mapped the identified DEGs to 44 published cold–stress-related genes and 41 cold-tolerant Meta-QTLs regions. Of them, 12 DEGs were the published cold–stress-related genes and 418 DEGs fell into the cold-tolerant Meta-QTLs regions. In this study, the identified DEGs and the putative molecular regulatory network can provide insights for understanding the mechanism of cold stress tolerance in rice. In addition, DEGs in KEGG term-enriched terms or cold-tolerant Meta-QTLs will help to secure key candidate genes for further functional studies on the molecular mechanism of cold stress response in rice.
Collapse
|
289
|
Wang L, Wu Y, Tian Y, Dai T, Xie G, Xu Y, Chen F. Overexpressing Jatropha curcas CBF2 in Nicotiana benthamiana improved plant tolerance to drought stress. Gene 2020; 742:144588. [PMID: 32179173 DOI: 10.1016/j.gene.2020.144588] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 02/07/2023]
Abstract
Jatropha curcas is an important bioenergy oil plant, and often planted on barren land to save the area of arable land. It is significant to improve the adaptability of J. curcas to various abiotic stresses. In the present study, we transferred a J. curcas gene, encoding a CBF2 transcription factor, into Nicotiana benthamiana. Under drought treatment, the JcCBF2 transgenic lines showed improved survival rate, leaf water retention and active oxygen scavenging capacity, but reduced photosynthesis and transpiration rate, suggesting that JcCBF2 played an important role in improving plant drought tolerance. Overexpressing JcCBF2 decreased leaf area and increased leaf thickness. To explore the possible mechanisms for the change of leaf anatomical structure, the leaves of wild-type and overexpression lines under drought stress were RNA sequenced. Genes involved in the plant hormones signal transduction were found to be enriched. Cytokinin and indole-3-acetic acid were the major plant hormones whose abundance increased. Quantitative RT-PCR analysis showed expression of NbMYB21, NbMYB86 and NbMYB44 and both abscisic acid (ABA) and jasmonic acid (JA) related genes in the overexpression lines were increased under drought stress. These results indicated that JcCBF2 was able to positively regulate plant drought response by changing the leaf anatomical structure and possibly through JA and ABA signalling pathways. Our work may help us to understand the drought tolerant mechanism.
Collapse
Affiliation(s)
- Linghui Wang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Yan Wu
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Yinshuai Tian
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Tingwei Dai
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Guilan Xie
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Ying Xu
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Fang Chen
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
290
|
Nehela Y, Killiny N. The unknown soldier in citrus plants: polyamines-based defensive mechanisms against biotic and abiotic stresses and their relationship with other stress-associated metabolites. PLANT SIGNALING & BEHAVIOR 2020; 15:1761080. [PMID: 32408848 PMCID: PMC8570725 DOI: 10.1080/15592324.2020.1761080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 05/07/2023]
Abstract
Citrus plants are challenged by a broad diversity of abiotic and biotic stresses, which definitely alter their growth, development, and productivity. In order to survive the various stressful conditions, citrus plants relay on multi-layered adaptive strategies, among which is the accumulation of stress-associated metabolites that play vital and complex roles in citrus defensive responses. These metabolites included amino acids, organic acids, fatty acids, phytohormones, polyamines (PAs), and other secondary metabolites. However, the contribution of PAs pathways in citrus defense responses is poorly understood. In this review article, we will discuss the recent metabolic, genetic, and molecular evidence illustrating the potential roles of PAs in citrus defensive responses against biotic and abiotic stressors. We believe that PAs-based defensive role, against biotic and abiotic stress in citrus, is involving the interaction with other stress-associated metabolites, particularly phytohormones. The knowledge gained so far about PAs-based defensive responses in citrus underpins our need for further genetic manipulation of PAs biosynthetic genes to produce transgenic citrus plants with modulated PAs content that may enhance the tolerance of citrus plants against stressful conditions. In addition, it provides valuable information for the potential use of PAs or their synthetic analogs and their emergence as a promising approach to practical applications in citriculture to enhance stress tolerance in citrus plants.
Collapse
Affiliation(s)
- Yasser Nehela
- Citrus Research and Education Center and Department of Plant Pathology, IFAS, University of Florida, Lake Alfred, FL, USA
| | - Nabil Killiny
- Citrus Research and Education Center and Department of Plant Pathology, IFAS, University of Florida, Lake Alfred, FL, USA
| |
Collapse
|
291
|
The Role of Stress-Responsive Transcription Factors in Modulating Abiotic Stress Tolerance in Plants. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10060788] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Abiotic stresses, such as drought, high temperature, and salinity, affect plant growth and productivity. Furthermore, global climate change may increase the frequency and severity of abiotic stresses, suggesting that development of varieties with improved stress tolerance is critical for future sustainable crop production. Improving stress tolerance requires a detailed understanding of the hormone signaling and transcriptional pathways involved in stress responses. Abscisic acid (ABA) and jasmonic acid (JA) are key stress-response hormones in plants, and some stress-responsive transcription factors such as ABFs and MYCs function as direct components of ABA and JA signaling, playing a pivotal role in plant tolerance to abiotic stress. In addition, extensive studies have identified other stress-responsive transcription factors belonging to the NAC, AP2/ERF, MYB, and WRKY families that mediate plant response and tolerance to abiotic stress. These suggest that transcriptional regulation of stress-responsive genes is an essential step to determine the mechanisms underlying plant stress responses and tolerance to abiotic stress, and that these transcription factors may be important targets for development of crops with enhanced abiotic stress tolerance. In this review, we briefly describe the mechanisms underlying plant abiotic stress responses, focusing on ABA and JA metabolism and signaling pathways. We then summarize the diverse array of transcription factors involved in plant responses to abiotic stress, while noting their potential applications for improvement of stress tolerance.
Collapse
|
292
|
Cai G, Wang Y, Tu G, Chen P, Luan S, Lan W. Type A2 BTB Members Decrease the ABA Response during Seed Germination by Affecting the Stability of SnRK2.3 in Arabidopsis. Int J Mol Sci 2020; 21:ijms21093153. [PMID: 32365749 PMCID: PMC7246803 DOI: 10.3390/ijms21093153] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/23/2020] [Accepted: 04/27/2020] [Indexed: 11/16/2022] Open
Abstract
The Arabidopsis genome comprises eighty genes encoding BTB (broad-complex, tramtrack, and bric-a-brac) family proteins that are characterized with the BTB domain and that potentially serve as substrate adaptors for cullin-based E3-ligases. In addition to the BTB domain, most BTB proteins also contain various other interaction motifs that probably act as target recognition elements. Here, we report three members of the BTB-A2 subfamily that distinctly only contain the BTB domain, BTB-A2.1, BTB-A2.2, and BTB-A2.3, that negatively regulates abscisic acid (ABA) signaling in Arabidopsis. BTB-A2.1, BTB-A2.2, and BTB-A2.3 encoded cytoplasm- and nucleus-localized proteins and displayed highly overlapping expression patterns in Arabidopsis tissues. Disruption of these three genes, but not single or double mutants, resulted in a decrease in ABA-induced inhibition of seed germination. Further analyses demonstrated the expression levels of these three genes were up-regulated by ABA, and their mutation increased ABA signalling. Importantly, protein-protein interaction assays showed that these three BTB-A2 proteins physically interacted with SnRK2.3. Moreover, biochemical and genetic assays indicated that BTB-A2.1, BTB-A2.2, and BTB-A2.3 decreased the stability of SnRK2.3 and attenuated the SnRK2.3 responsible for the ABA hypersensitive phenotype of seed germination. This report thus reveals that BTB-A2s serve as negative regulators for balancing the intensity of ABA signaling during seed germination.
Collapse
Affiliation(s)
- Guohua Cai
- State Key Laboratory for Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing 210093, China; (G.C.); (G.T.); (P.C.)
| | - Yuan Wang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai 201602, China;
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Guoqing Tu
- State Key Laboratory for Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing 210093, China; (G.C.); (G.T.); (P.C.)
| | - Pengwang Chen
- State Key Laboratory for Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing 210093, China; (G.C.); (G.T.); (P.C.)
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
- Correspondence: (S.L.); (W.L.); Tel.: +86-025-8968-1357 (W.L.)
| | - Wenzhi Lan
- State Key Laboratory for Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing 210093, China; (G.C.); (G.T.); (P.C.)
- Correspondence: (S.L.); (W.L.); Tel.: +86-025-8968-1357 (W.L.)
| |
Collapse
|
293
|
Cai G, Wang Y, Yan W, Luan S, Lan W. Choline transporter-like 1 (CTL1) positively regulates apical hook development in etiolated Arabidopsis seedlings. Biochem Biophys Res Commun 2020; 525:491-497. [PMID: 32111354 DOI: 10.1016/j.bbrc.2020.02.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 11/30/2022]
Abstract
Ethylene is a gaseous phytohormone that is perceived by two-component histidine kinase-type receptors. Recent studies identified choline transporter-like 1 (CTL1) essential for Arabidopsis growth and development, including apical hook development in the etiolated seedlings. Here, we report that CTL1 contributes to apical hook development by enhancing ethylene response. The expression of CTL1 was highly correlated with the intensity of ethylene response and was enriched in the apical hook, cotyledon tip and hypocotyl. Genetic analysis showed that the dark-grown ctl1 mutant displayed a defect in ethylene-induced apical hook development as compared with the wild type. Accordingly, the expression of ethylene signaling reporter EBS::GUS in ctl1 mutant was greatly reduced in leaves, apical hook, hypocotyl and root, suggesting that the disruption of CTL1 impairs the ethylene signaling. Furthermore, protein-protein interaction assays demonstrated that CTL1 may interact with ethylene receptors, including ETR1, ETR2, ERS1, ERS2. Importantly, the abundance of CTL1 was diminished when ETR1 was disrupted upon ethylene response. Taken together, our results suggest that CTL1 functions as a positive regulator in ethylene signaling which in turn contributes to apical hook development of etiolated plant seedlings.
Collapse
Affiliation(s)
- Guohua Cai
- State Key Laboratory for Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210093, PR China
| | - Yuan Wang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai, 201602, PR China
| | - Wenwen Yan
- State Key Laboratory for Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210093, PR China
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA.
| | - Wenzhi Lan
- State Key Laboratory for Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210093, PR China.
| |
Collapse
|
294
|
Weng Y, Ge L, Jia S, Mao P, Ma X. Cyclophilin AtROC1 S58F confers Arabidopsis cold tolerance by modulating jasmonic acid signaling and antioxidant metabolism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 152:81-89. [PMID: 32388423 DOI: 10.1016/j.plaphy.2020.04.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/31/2020] [Accepted: 04/09/2020] [Indexed: 06/11/2023]
Abstract
Cyclophilins (CYPs), a class of proteins with a conserved peptidyl-prolyl cis-trans isomerase domain, are widely involved in the regulation of plant growth and development, as well as in the response to abiotic stresses including cold. In our previous study, we identified an Arabidopsis gain-of-function mutant ROC1S58F with enhanced cold-tolerance and enhanced expression of jasmonic acid (JA) and oxidative stress responsive genes. Here, we show the underlying molecular mechanisms for the improved cold tolerance observed in the ROC1S58F mutant. Compared to the WT, the ROC1S58F mutant showed an increased survival rates and a reduced level of electrolyte leakage and endogenous JA content under the freezing treatment. Correspondingly, the JA biosynthesis genes (AtAOC1 and AtOPR3) and signaling genes (AtJAZ5, AtJAZ10 and AtMYB15) are down-regulated in the ROC1S58F mutant compared with the WT. Moreover, both the transcripts and activities of the ROS-scavenging enzymes (SOD/POD/MDHAR) increased in cold-stressed ROC1S58F mutant, which might mitigate the ROS-induced oxidative stress and contribute to the mutant freezing tolerance. Taken together, our findings indicate that AtROC1S58F confers Arabidopsis freezing tolerance by modulating JA signaling and antioxidant metabolism jointly. This research thus provides a molecular mechanism for AtROC1S58F-conferred freezing resistance in Arabidopsis and offers guidance for crop breeding towards an improved cold tolerance.
Collapse
Affiliation(s)
- Yinyin Weng
- College of Grassland Science and Technology, China Agricultural University, Beijing, 10093, China; Key Laboratory of Pratacultural Science, Beijing Municipality, Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.
| | - Lingqiao Ge
- College of Grassland Science and Technology, China Agricultural University, Beijing, 10093, China; Key Laboratory of Pratacultural Science, Beijing Municipality, Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.
| | - Shangang Jia
- College of Grassland Science and Technology, China Agricultural University, Beijing, 10093, China; Key Laboratory of Pratacultural Science, Beijing Municipality, Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.
| | - Peisheng Mao
- College of Grassland Science and Technology, China Agricultural University, Beijing, 10093, China; Key Laboratory of Pratacultural Science, Beijing Municipality, Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.
| | - Xiqing Ma
- College of Grassland Science and Technology, China Agricultural University, Beijing, 10093, China; Key Laboratory of Pratacultural Science, Beijing Municipality, Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.
| |
Collapse
|
295
|
Zhao J, Quan P, Liu H, Li L, Qi S, Zhang M, Zhang B, Li H, Zhao Y, Ma B, Han M, Zhang H, Xing L. Transcriptomic and Metabolic Analyses Provide New Insights into the Apple Fruit Quality Decline during Long-Term Cold Storage. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4699-4716. [PMID: 32078318 DOI: 10.1021/acs.jafc.9b07107] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Long-term low-temperature conditioning (LT-LTC) decreases apple fruit quality, but the underlying physiological and molecular basis is relatively uncharacterized. We identified 12 clusters of differentially expressed genes (DEGs) involved in multiple biological processes (i.e., sugar, malic acid, fatty acid, lipid, complex phytohormone, and stress-response pathways). The expression levels of genes in sugar pathways were correlated with decreasing starch levels during LT-LTC. Specifically, starch-synthesis-related genes (e.g., BE, SBE, and GBSS genes) exhibited downregulated expression, whereas sucrose-metabolism-related gene expression levels were up- or downregulated. The expression levels of genes in the malic acid pathway (ALMT9, AATP1, and AHA2) were upregulated, as well as the content of malic acid in apple fruit during LT-LTC. A total of 151 metabolites, mainly related to amino acids and their isoforms, amines, organic acids, fatty acids, sugars, and polyols, were identified during LT-LTC. Additionally, 35 organic-acid-related metabolites grouped into three clusters, I (3), II (22), and III (10), increased in abundance during LT-LTC. Multiple phytohormones regulated the apple fruit chilling injury response. The ethylene (ET) and abscisic acid (ABA) levels increased at CS2 and CS3, and jasmonate (JA) levels also increased during LT-LTC. Furthermore, the expression levels of genes involved in ET, ABA, and JA synthesis and response pathways were upregulated. Finally, some key transcription factor genes (MYB, bHLH, ERF, NAC, and bZIP genes) related to the apple fruit cold acclimation response were differentially expressed. Our results suggest that the multilayered mechanism underlying apple fruit deterioration during LT-LTC is a complex, transcriptionally regulated process involving cell structures, sugars, lipids, hormones, and transcription factors.
Collapse
Affiliation(s)
- Juan Zhao
- College of Mechanical and Electronic Engineering, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
- Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture Rural Affairs, 712100 Xianyang, Yangling, Shaanxi, P. R. China
- Shaanxi Key Laboratory of Agriculture Information Perception and Intelligent Service, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| | - Pengkun Quan
- College of Mechanical and Electronic Engineering, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| | - Hangkong Liu
- College of Horticulture, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| | - Lei Li
- College of Mechanical and Electronic Engineering, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| | - Siyan Qi
- College of Horticulture, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| | - Mengsheng Zhang
- College of Mechanical and Electronic Engineering, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| | - Bo Zhang
- College of Mechanical and Electronic Engineering, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| | - Hao Li
- College of Mechanical and Electronic Engineering, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| | - Yanru Zhao
- College of Mechanical and Electronic Engineering, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
- Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture Rural Affairs, 712100 Xianyang, Yangling, Shaanxi, P. R. China
- Shaanxi Key Laboratory of Agriculture Information Perception and Intelligent Service, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| | - Baiquan Ma
- College of Horticulture, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| | - Mingyu Han
- College of Horticulture, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| | - Haihui Zhang
- College of Mechanical and Electronic Engineering, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
- Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture Rural Affairs, 712100 Xianyang, Yangling, Shaanxi, P. R. China
- Shaanxi Key Laboratory of Agriculture Information Perception and Intelligent Service, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| | - Libo Xing
- College of Horticulture, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
- Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture Rural Affairs, 712100 Xianyang, Yangling, Shaanxi, P. R. China
- Shaanxi Key Laboratory of Agriculture Information Perception and Intelligent Service, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| |
Collapse
|
296
|
Wingler A, Tijero V, Müller M, Yuan B, Munné-Bosch S. Interactions between sucrose and jasmonate signalling in the response to cold stress. BMC PLANT BIOLOGY 2020; 20:176. [PMID: 32321430 PMCID: PMC7178619 DOI: 10.1186/s12870-020-02376-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/31/2020] [Indexed: 05/23/2023]
Abstract
BACKGROUND Jasmonates play an important role in plant stress and defence responses and are also involved in the regulation of anthocyanin synthesis in response to sucrose availability. Here we explore the signalling interactions between sucrose and jasmonates in response to cold stress in Arabidopsis. RESULTS Sucrose and cold treatments increased anthocyanin content additively. Comprehensive profiling of phytohormone contents demonstrated that jasmonates, salicylic acid and abscisic acid contents increased in response to sucrose treatment in plants grown on agar, but remained considerably lower than in plants grown in compost. The gibberellin GA3 accumulated in response to sucrose treatment but only at warm temperature. The role of jasmonate signalling was explored using the jasmonate response mutants jar1-1 and coi1-16. While the jar1-1 mutant lacked jasmonate-isoleucine and jasmonate-leucine, it accumulated 12-oxo-phytodienoic acid at low temperature on agar medium. Altered patterns of abscisic acid accumulation and higher sugar contents were found in the coi1-16 mutant when grown in compost. Both mutants were able to accumulate anthocyanin and to cold acclimate, but the jar-1-1 mutant showed a larger initial drop in whole-rosette photosystem II efficiency upon transfer to low temperature. CONCLUSIONS Hormone contents are determined by interactions between temperature and sucrose supply. Some of these effects may be caused indirectly through senescence initiation in response to sucrose availability. During cold stress, the adjustments of hormone contents may compensate for impaired jasmonate signalling, enabling cold acclimation and anthocyanin accumulation in Arabidopsis jasmonate response mutants, e.g. through antagonistic interactions between gibberellin and jasmonate signalling.
Collapse
Affiliation(s)
- Astrid Wingler
- School of Biological, Earth & Environmental Sciences and Environmental Research Institute, University College Cork, Distillery Fields, North Mall, Cork, Ireland.
| | - Verónica Tijero
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Avinguda Diagonal 643, 08028, Barcelona, Spain
| | - Maren Müller
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Avinguda Diagonal 643, 08028, Barcelona, Spain
| | - Benqi Yuan
- School of Biological, Earth & Environmental Sciences and Environmental Research Institute, University College Cork, Distillery Fields, North Mall, Cork, Ireland
- Present address: Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Avinguda Diagonal 643, 08028, Barcelona, Spain
| |
Collapse
|
297
|
Ding Y, Shi Y, Yang S. Molecular Regulation of Plant Responses to Environmental Temperatures. MOLECULAR PLANT 2020; 13:544-564. [PMID: 32068158 DOI: 10.1016/j.molp.2020.02.004] [Citation(s) in RCA: 357] [Impact Index Per Article: 71.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 05/19/2023]
Abstract
Temperature is a key factor governing the growth and development, distribution, and seasonal behavior of plants. The entire plant life cycle is affected by environmental temperatures. Plants grow rapidly and exhibit specific changes in morphology under mild average temperature conditions, a response termed thermomorphogenesis. When exposed to chilling or moist chilling low temperatures, flowering or seed germination is accelerated in some plant species; these processes are known as vernalization and cold stratification, respectively. Interestingly, once many temperate plants are exposed to chilling temperatures for some time, they can acquire the ability to resist freezing stress, a process termed cold acclimation. In the face of global climate change, heat stress has emerged as a frequent challenge, which adversely affects plant growth and development. In this review, we summarize and discuss recent progress in dissecting the molecular mechanisms regulating plant thermomorphogenesis, vernalization, and responses to extreme temperatures. We also discuss the remaining issues that are crucial for understanding the interactions between plants and temperature.
Collapse
Affiliation(s)
- Yanglin Ding
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yiting Shi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
298
|
Jiang W, Pan R, Wu C, Xu L, Abdelaziz ME, Oelmüller R, Zhang W. Piriformospora indica enhances freezing tolerance and post-thaw recovery in Arabidopsis by stimulating the expression of CBF genes. PLANT SIGNALING & BEHAVIOR 2020; 15:1745472. [PMID: 32228382 PMCID: PMC7194378 DOI: 10.1080/15592324.2020.1745472] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/22/2020] [Accepted: 02/24/2020] [Indexed: 05/21/2023]
Abstract
The root endophytic fungus Piriformospora indica plays an important role in increasing abiotic stress tolerance of its host plants. To explore the impact of P. indica on freezing tolerance, Arabidopsis seedlings were co-cultivated with P. indica exposed to -6°C for 6 h. Freezing stress decreased the survival rate, electrolyte leakage, leaf temperature, water potential and chlorophyll fluorescence of Arabidopsis plants in comparison to the controls. P. indica colonizion reduced the negative effects of freezing, and the plants contained also higher amounts of soluble proteins, proline and ascorbic acid during the post-thaw recovery period (4°C; 12 h). In contrast, the H2O2 and malondialdehyde levels were reduced in seedlings colonized by the fungus. The brassinolide (BR) and abscisic acid (ABA) levels dramatically increased and the transcript levels of several crucial freezing-stress related genes (CBFs, CORs, BZR1, SAG1 and PYL6) were higher in inoculated plants during the post-thaw recovery period. Finally, inocculated mutants impaired in the freezing tolerance response (such as ice1 for INDUCER OF CBF EXPRESSION1, a crucial basic helix-loop-helix transcription factor for the cold-response pathway in Arabidopsis, cbf1, -2, -3 for C-REPEAT-Binding Factor, cor47 and -15 for COLD-REGULATED and siz1 encoding the SUMO E3 LIGASE) showed better survival rates and higher expression levels of freezing-related target genes after freezing compared to the inocculated controls. Our results demonstrate that P. indica confers freezing tolerance and better post-thaw recovery in Arabidopsis, and stimulates the expression of several genes involved in the CBF-dependent pathway.
Collapse
Affiliation(s)
- Wei Jiang
- Hubei Collaborative Innovation Center for Grain Industry/Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, China
| | - Rui Pan
- Hubei Collaborative Innovation Center for Grain Industry/Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, China
| | - Chu Wu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Le Xu
- Hubei Collaborative Innovation Center for Grain Industry/Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, China
| | | | - Ralf Oelmüller
- Mischer-Institute, Plant Physiology, Friedrich-Schiller-University Jena, Jena, Germany
| | - Wenying Zhang
- Hubei Collaborative Innovation Center for Grain Industry/Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, China
- CONTACT Wenying Zhang Hubei Collaborative Innovation Center for Grain Industry/Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, China
| |
Collapse
|
299
|
Wang F, Chen X, Dong S, Jiang X, Wang L, Yu J, Zhou Y. Crosstalk of PIF4 and DELLA modulates CBF transcript and hormone homeostasis in cold response in tomato. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:1041-1055. [PMID: 31584235 PMCID: PMC7061876 DOI: 10.1111/pbi.13272] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/16/2019] [Accepted: 09/29/2019] [Indexed: 05/02/2023]
Abstract
The ability to interpret daily and seasonal fluctuations, latitudinal and vegetation canopy variations in light and temperature signals is essential for plant survival. However, the precise molecular mechanisms transducing the signals from light and temperature perception to maintain plant growth and adaptation remain elusive. We show that far-red light induces PHYTOCHROME-INTERACTING TRANSCRIPTION 4 (SlPIF4) accumulation under low-temperature conditions via phytochrome A in Solanum lycopersicum (tomato). Reverse genetic approaches revealed that knocking out SlPIF4 increases cold susceptibility, while overexpressing SlPIF4 enhances cold tolerance in tomato plants. SlPIF4 not only directly binds to the promoters of the C-REPEAT BINDING FACTOR (SlCBF) genes and activates their expression but also regulates plant hormone biosynthesis and signals, including abscisic acid, jasmonate and gibberellin (GA), in response to low temperature. Moreover, SlPIF4 directly activates the SlDELLA gene (GA-INSENSITIVE 4, SlGAI4) under cold stress, and SlGAI4 positively regulates cold tolerance. Additionally, SlGAI4 represses accumulation of the SlPIF4 protein, thus forming multiple coherent feed-forward loops. Our results reveal that plants integrate light and temperature signals to better adapt to cold stress through shared hormone pathways and transcriptional regulators, which may provide a comprehensive understanding of plant growth and survival in a changing environment.
Collapse
Affiliation(s)
- Feng Wang
- Department of HorticultureZhejiang UniversityHangzhouChina
- Present address:
College of HorticultureShenyang Agricultural UniversityShenyangChina
| | - Xiaoxiao Chen
- Department of HorticultureZhejiang UniversityHangzhouChina
| | - Sangjie Dong
- Department of HorticultureZhejiang UniversityHangzhouChina
| | - Xiaochun Jiang
- Department of HorticultureZhejiang UniversityHangzhouChina
| | - Lingyu Wang
- Department of HorticultureZhejiang UniversityHangzhouChina
| | - Jingquan Yu
- Department of HorticultureZhejiang UniversityHangzhouChina
- Key Laboratory of Plant GrowthDevelopment and Quality ImprovementAgricultural Ministry of ChinaHangzhouChina
| | - Yanhong Zhou
- Department of HorticultureZhejiang UniversityHangzhouChina
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative BiologyHangzhouChina
| |
Collapse
|
300
|
Han X, Zhang M, Yang M, Hu Y. Arabidopsis JAZ Proteins Interact with and Suppress RHD6 Transcription Factor to Regulate Jasmonate-Stimulated Root Hair Development. THE PLANT CELL 2020; 32:1049-1062. [PMID: 31988260 PMCID: PMC7145492 DOI: 10.1105/tpc.19.00617] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/26/2019] [Accepted: 01/23/2020] [Indexed: 05/04/2023]
Abstract
Root hairs arise from trichoblasts and are crucial for plant anchorage, nutrient acquisition, and environmental interactions. The phytohormone jasmonate is known to regulate root hair development in Arabidopsis (Arabidopsis thaliana), but little is known about the molecular mechanism underlying jasmonate modulation in this process. Here, we show that the application of exogenous jasmonate significantly stimulated root hair elongation, but, on the contrary, blocking the perception or signaling of jasmonate resulted in defective root hairs. Jasmonate consistently elevated the expression levels of several crucial genes positively involved in root hair growth. Mechanistic investigation revealed that JASMONATE ZIM-DOMAIN (JAZ) proteins, critical repressors of jasmonate signaling, physically interacted with ROOT HAIR DEFECTIVE 6 (RHD6) and RHD6 LIKE1 (RSL1), two transcription factors that are essential for root hair development. JAZ proteins inhibited the transcriptional function of RHD6 and interfered with the interaction of RHD6 with RSL1. Genetic analysis indicated that jasmonate promoted root hair growth in a RHD6/RSL1-dependent manner. Moreover, overexpression of RHD6 largely rescued the root hair defects of JAZ-accumulating plants. Collectively, our study reveals a key signaling module in which JAZ repressors of the jasmonate pathway directly modulate RHD6 and RSL1 transcription factors to integrate jasmonate signaling and the root hair developmental process.
Collapse
Affiliation(s)
- Xiao Han
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
| | - Minghui Zhang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Milian Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanru Hu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
| |
Collapse
|