251
|
Torres L, Kammerman J, Hahn AD, Zha W, Nagle SK, Johnson K, Sandbo N, Meyer K, Schiebler M, Fain SB. "Structure-Function Imaging of Lung Disease Using Ultrashort Echo Time MRI". Acad Radiol 2019; 26:431-441. [PMID: 30658930 DOI: 10.1016/j.acra.2018.12.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 12/19/2018] [Accepted: 12/21/2018] [Indexed: 12/14/2022]
Abstract
RATIONALE AND OBJECTIVES The purpose of this review is to acquaint the reader with recent advances in ultrashort echo time (UTE) magnetic resonance imaging (MRI) of the lung and its implications for pulmonary MRI when used in conjunction with functional MRI technique. MATERIALS AND METHODS We provide an overview of recent technical advances of UTE and explore the advantages of combined structure-function pulmonary imaging in the context of restrictive and obstructive pulmonary diseases such as idiopathic pulmonary fibrosis (IPF) and cystic fibrosis (CF). RESULTS UTE MRI clearly shows the lung parenchymal changes due to IPF and CF. The use of UTE MRI, in conjunction with established functional lung MRI in chronic lung diseases, will serve to mitigate the need for computed tomography in children. CONCLUSION Current limitations of UTE MRI include long scan times, poor delineation of thin-walled structures (e.g. cysts and reticulation) due to limited spatial resolution, low signal to noise ratio, and imperfect motion compensation. Despite these limitations, UTE MRI can now be considered as an alternative to multidetector computed tomography for the longitudinal follow-up of the morphological changes from lung diseases in neonates, children, and young adults, particularly as a complement to the unique functional capabilities of MRI.
Collapse
|
252
|
Bruijnen T, Stemkens B, Lagendijk JJW, van den Berg CAT, Tijssen RHN. Multiresolution radial MRI to reduce IDLE time in pre-beam imaging on an MR-Linac (MR-RIDDLE). Phys Med Biol 2019; 64:055011. [PMID: 30630156 DOI: 10.1088/1361-6560/aafd6b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Online adaptive MR-guided radiation therapy improves treatment quality at the expense of considerable longer treatment time. The treatment lengthening partially originates from the preparatory (pre-beam) MR imaging required to encode all the information needed for contour propagation, contour adaptation and replanning. MRI requires several minutes of scan time before the encoded information is converted to usable images, which results in long idle times before the first clinical tasks are performed. In this study we propose a novel imaging sequence, called MR-RIDDLE, that reduces the idle time and therefore speeds-up the workflow in online MR-guided radiation therapy. MR-RIDDLE enables multiresolution image reconstruction to commence during data acquisition where low resolution images are available within one minute, after which the data collection continuous for subsequent high-resolution image updates. We demonstrate that the low resolution images can be used to accurately propagate contours from the pre-treatment scan. For abdominothoracic tumours MR-RIDDLE inherently captures a motion-blurred representation of the mid-position, which we were able to deblur using a combination of an internal motion surrogate and auto-adaptive soft-gating filters. Our results demonstrate that MR-RIDDLE provides a robust, flexible and time-efficient strategy for pre-beam imaging, even for cases with large respiratory movements or baseline shifts within the acquisition. We anticipate that this novel concept of parallelising the MR imaging and the clinical tasks has the potential to considerably speed-up and streamline the online MR-guided radiation therapy workflow.
Collapse
Affiliation(s)
- Tom Bruijnen
- Department of Radiotherapy, Universitair Medical Center Utrecht, Utrecht, The Netherlands. Computational Imaging Group for MRI diagnostics and therapy, Centre for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
253
|
Garau N, Via R, Meschini G, Lee D, Keall P, Riboldi M, Baroni G, Paganelli C. A ROI-based global motion model established on 4DCT and 2D cine-MRI data for MRI-guidance in radiation therapy. Phys Med Biol 2019; 64:045002. [PMID: 30625459 DOI: 10.1088/1361-6560/aafcec] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In-room magnetic resonance imaging (MRI) allows the acquisition of fast 2D cine-MRI centered in the tumor for advanced motion management in radiotherapy. To achieve 3D information during treatment, patient-specific motion models can be considered the most viable solution. However, conventional global motion models are built using a single motion surrogate, independently from the anatomical location. In this work, we present a novel motion model based on regions of interest (ROIs) established on 4D computed tomography (4DCT) and 2D cine-MRI, aiming at accurately compensating for changes during treatment. In the planning phase, a motion model is built on a 4DCT dataset, through 3D deformable image registration (DIR). ROIs are then defined and correlated with motion fields derived by 2D DIR between CT slices centered in the tumor. In the treatment phase, the model is applied to in-room cine-MRI data to compensate for organ motion in a multi-modal framework, aiming at estimating a time-resolved 3DCT. The method is validated on a digital phantom and tested on two lung patients. Analysis is performed by considering different anatomical planes (coronal, sagittal and a combination of the two) and evaluating the performance of the method on tumor and diaphragm. For the phantom study, the ROI-based model results in a uniform median error on both diaphragm and tumor below 1.5 mm. For what concerns patients, median errors on both diaphragm and tumor are around 2 mm (maximum patient resolution), confirming the capability of the method to regionally compensate for motion. A novel ROI-based motion model is proposed as an integral part of an envisioned clinical MRI-guided workflow aiming at enhanced image guidance compared to conventional strategies.
Collapse
Affiliation(s)
- Noemi Garau
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano, Italy. Author to whom any correspondence should be addressed
| | | | | | | | | | | | | | | |
Collapse
|
254
|
Cruz G, Jaubert O, Schneider T, Botnar RM, Prieto C. Rigid motion-corrected magnetic resonance fingerprinting. Magn Reson Med 2019; 81:947-961. [PMID: 30229558 PMCID: PMC6519164 DOI: 10.1002/mrm.27448] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 06/06/2018] [Accepted: 06/13/2018] [Indexed: 12/30/2022]
Abstract
PURPOSE Develop a method for rigid body motion-corrected magnetic resonance fingerprinting (MRF). METHODS MRF has shown some robustness to abrupt motion toward the end of the acquisition. Here, we study the effects of different types of rigid body motion during the acquisition on MRF and propose a novel approach to correct for this motion. The proposed method (MC-MRF) follows 4 steps: (1) sliding window reconstruction is performed to produce high-quality auxiliary dynamic images; (2) rotation and translation motion is estimated from the dynamic images by image registration; (3) estimated motion is used to correct acquired k-space data with corresponding rotations and phase shifts; and (4) motion-corrected data are reconstructed with low-rank inversion. MC-MRF was validated in a standard T1 /T2 phantom and 2D in vivo brain acquisitions in 7 healthy subjects. Additionally, the effect of through-plane motion in 2D MC-MRF was investigated. RESULTS Simulation results show that motion in MRF can introduce artifacts in T1 and T2 maps, depending when it occurs. MC-MRF improved parametric map quality in all phantom and in vivo experiments with in-plane motion, comparable to the no-motion ground truth. Reduced parametric map quality, even after motion correction, was observed for acquisitions with through-plane motion, particularly for smaller structures in T2 maps. CONCLUSION Here, a novel method for motion correction in MRF (MC-MRF) is proposed, which improves parametric map quality and accuracy in comparison to no-motion correction approaches. Future work will include validation of 3D MC-MRF to enable also through-plane motion correction.
Collapse
Affiliation(s)
- Gastão Cruz
- King’s College London, School of Biomedical Engineering and Imaging SciencesLondonUnited Kingdom
| | - Olivier Jaubert
- King’s College London, School of Biomedical Engineering and Imaging SciencesLondonUnited Kingdom
| | | | - Rene M. Botnar
- King’s College London, School of Biomedical Engineering and Imaging SciencesLondonUnited Kingdom
- Pontificia Universidad Católica de Chile, Escuela de IngenieríaSantiagoChile
| | - Claudia Prieto
- King’s College London, School of Biomedical Engineering and Imaging SciencesLondonUnited Kingdom
- Pontificia Universidad Católica de Chile, Escuela de IngenieríaSantiagoChile
| |
Collapse
|
255
|
Edelman RR, Koktzoglou I. Noncontrast MR angiography: An update. J Magn Reson Imaging 2019; 49:355-373. [PMID: 30566270 PMCID: PMC6330154 DOI: 10.1002/jmri.26288] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/24/2018] [Accepted: 07/26/2018] [Indexed: 12/12/2022] Open
Abstract
Both computed tomography (CT) angiography (CTA) and contrast-enhanced MR angiography (CEMRA) have proven to be useful and accurate cross-sectional imaging modalities over a wide range of vascular territories and vascular disorders. A key advantage of MRA is that, unlike CTA, it can be performed without the administration of a contrast agent. In this review article we consider the motivations for using noncontrast MRA, potential contrast mechanisms, imaging techniques, advantages, and drawbacks with respect to CTA and CEMRA, and the level of evidence for using the various MRA techniques. In addition, we explore new developments that promise to expand the reliability and range of clinical applications for noncontrast MRA, along with functional MRA capabilities not available with CTA or CEMRA. Level of Evidence: 1 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2019;49:355-373.
Collapse
Affiliation(s)
- Robert R. Edelman
- Radiology, Northshore University HealthSystem, Evanston, IL
- Radiology, Northwestern Memorial Hospital, Chicago, IL
| | - Ioannis Koktzoglou
- Radiology, Northshore University HealthSystem, Evanston, IL
- Radiology, University of Chicago Pritzker School of Medicine, Chicago, IL
| |
Collapse
|
256
|
Hamilton JI, Jiang Y, Ma D, Chen Y, Lo WC, Griswold M, Seiberlich N. Simultaneous multislice cardiac magnetic resonance fingerprinting using low rank reconstruction. NMR IN BIOMEDICINE 2019; 32:e4041. [PMID: 30561779 PMCID: PMC7755311 DOI: 10.1002/nbm.4041] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 10/02/2018] [Accepted: 10/25/2018] [Indexed: 05/02/2023]
Abstract
This study introduces a technique for simultaneous multislice (SMS) cardiac magnetic resonance fingerprinting (cMRF), which improves the slice coverage when quantifying myocardial T1, T2 , and M0 . The single-slice cMRF pulse sequence was modified to use multiband (MB) RF pulses for SMS imaging. Different RF phase schedules were used to excite each slice, similar to POMP or CAIPIRINHA, which imparts tissues with a distinguishable and slice-specific magnetization evolution over time. Because of the high net acceleration factor (R = 48 in plane combined with the slice acceleration), images were first reconstructed with a low rank technique before matching data to a dictionary of signal timecourses generated by a Bloch equation simulation. The proposed method was tested in simulations with a numerical relaxation phantom. Phantom and in vivo cardiac scans of 10 healthy volunteers were also performed at 3 T. With single-slice acquisitions, the mean relaxation times obtained using the low rank cMRF reconstruction agree with reference values. The low rank method improves the precision in T1 and T2 for both single-slice and SMS cMRF, and it enables the acquisition of maps with fewer artifacts when using SMS cMRF at higher MB factors. With this technique, in vivo cardiac maps were acquired from three slices simultaneously during a breathhold lasting 16 heartbeats. SMS cMRF improves the efficiency and slice coverage of myocardial T1 and T2 mapping compared with both single-slice cMRF and conventional cardiac mapping sequences. Thus, this technique is a first step toward whole-heart simultaneous T1 and T2 quantification with cMRF.
Collapse
Affiliation(s)
- Jesse I. Hamilton
- Dept. of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Corresponding author at 10900 Euclid Avenue, Wickenden 516, Cleveland, OH, 44106, USA,
| | - Yun Jiang
- Dept. of Radiology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Dan Ma
- Dept. of Radiology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Yong Chen
- Dept. of Radiology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Wei-Ching Lo
- Dept. of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Mark Griswold
- Dept. of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Dept. of Radiology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Nicole Seiberlich
- Dept. of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Dept. of Radiology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| |
Collapse
|
257
|
Pfister J, Blaimer M, Kullmann WH, Bartsch AJ, Jakob PM, Breuer FA. Simultaneous T 1 and T 2 measurements using inversion recovery TrueFISP with principle component-based reconstruction, off-resonance correction, and multicomponent analysis. Magn Reson Med 2019; 81:3488-3502. [PMID: 30687949 DOI: 10.1002/mrm.27657] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 12/14/2018] [Accepted: 12/16/2018] [Indexed: 01/14/2023]
Abstract
PURPOSE To improve the reconstruction quality for quantitative T1 and T2 measurements using the inversion recovery (IR) TrueFISP sequence and to demonstrate the potential for multicomponent analysis. METHODS The iterative reconstruction method takes advantage of the high redundancy in the smooth exponential signals using principle component analysis (PCA). Multicomponent information is preserved and allows voxel-by-voxel computation of relaxation time spectra with an inverse Laplace transform. Off-resonance effects are analytically and numerically investigated and a correction approach is presented. RESULTS Single-shot IR TrueFISP in vivo measurements on healthy volunteers demonstrate the improved reconstruction performance compared to a view sharing (k-space weighted image contrast [KWIC]) reconstruction. Especially, tissue components with short apparent relaxation times T1 * are not filtered out and can be identified in the relaxation time spectra. These components include myelin in the human brain (T1 * ≈ 130 ms) and extra cranial subcutaneous fat. CONCLUSION The PCA-based reconstruction method improves the temporal accuracy and preserves multicomponent information. Spatially resolved relaxation time spectra can be obtained and allow the identification of tissue types with short, apparent relaxation times.
Collapse
Affiliation(s)
- Julian Pfister
- Magnetic Resonance and X-ray Imaging Department, Fraunhofer Development Center for X-Ray Technology (EZRT), Würzburg, Germany.,Department of Experimental Physics V, University of Würzburg, Würzburg, Germany.,Institute of Medical Engineering Schweinfurt, University of Applied Sciences Würzburg-Schweinfurt, Schweinfurt, Germany
| | - Martin Blaimer
- Magnetic Resonance and X-ray Imaging Department, Fraunhofer Development Center for X-Ray Technology (EZRT), Würzburg, Germany
| | - Walter H Kullmann
- Institute of Medical Engineering Schweinfurt, University of Applied Sciences Würzburg-Schweinfurt, Schweinfurt, Germany
| | - Andreas J Bartsch
- Department of Neuroradiology, University of Heidelberg, Heidelberg, Germany.,Department of Neuroradiology, University Hospital Würzburg, Würzburg, Germany.,WIN/FMRIB Centre, Department of Clinical Neurology, University of Oxford, Oxford, UK.,Radiologie Bamberg, Bamberg, Germany
| | - Peter M Jakob
- Department of Experimental Physics V, University of Würzburg, Würzburg, Germany
| | - Felix A Breuer
- Magnetic Resonance and X-ray Imaging Department, Fraunhofer Development Center for X-Ray Technology (EZRT), Würzburg, Germany
| |
Collapse
|
258
|
Roh AT, Xiao Z, Cheng JY, Vasanawala SS, Loening AM. Conical ultrashort echo time (UTE) MRI in the evaluation of pediatric acute appendicitis. Abdom Radiol (NY) 2019; 44:22-30. [PMID: 30066168 DOI: 10.1007/s00261-018-1705-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE Magnetic resonance imaging (MRI) sequences with conical k-space trajectories are able to decrease motion artifacts while achieving ultrashort echo times (UTE). We assessed the performance of free-breathing conical UTE MRI in the evaluation of the pediatric pelvis for suspected appendicitis. METHODS Our retrospective review of 84 pediatric patients who underwent MRI for suspected appendicitis compared three contrast-enhanced sequences: free-breathing conical UTE, breath-hold three-dimensional (3D) spoiled gradient echo (BH-SPGR), and free-breathing high-resolution 3D SPGR (FB-SPGR). Two radiologists performed blinded and independent evaluations of each sequence for image quality (four point scale), anatomic delineation (four point scale), and diagnostic confidence (five point scale). Subsequently, the three sequences were directly compared for overall image quality (- 3 to + 3 scale). Scores were compared using Kruskal-Wallis and Wilcoxon signed-rank tests. RESULTS UTE demonstrated significantly better perceived signal-to-noise ratio (SNR) and fewer artifacts than BH-SPGR and FB-SPGR (means of 3.6 and 3.4, 3.4 and 3.2, 3.1 and 2.7, respectively; p < 0.0006). BH-SPGR and FB-SPGR demonstrated significantly better contrast than UTE (means of 3.6, 3.4, and 3.2, respectively; p < 0.03). In the remaining categories, UTE performed significantly better than FB-SPGR (p < 0.00001), while there was no statistical difference between UTE and BH-SPGR. Direct paired comparisons of overall image quality demonstrated the readers significantly preferred UTE over both BH-SPGR (mean + 0.5, p < 0.00001) and FB-SPGR (mean + 1.2, p < 0.00001). CONCLUSIONS In the evaluation of suspected appendicitis, free-breathing conical UTE MRI performed better in the assessed metrics than FB-SPGR. When compared to BH-SPGR, UTE demonstrated superior perceived SNR and fewer artifacts.
Collapse
Affiliation(s)
- Albert T Roh
- Radiology, Stanford University, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Zhibo Xiao
- Radiology, First Affiliated Hospital, Chongqing, China
| | - Joseph Y Cheng
- Radiology, Stanford University, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | | | - Andreas M Loening
- Radiology, Stanford University, 300 Pasteur Drive, Stanford, CA, 94305, USA.
| |
Collapse
|
259
|
Winkel DJ, Heye TJ, Benz MR, Glessgen CG, Wetterauer C, Bubendorf L, Block TK, Boll DT. Compressed Sensing Radial Sampling MRI of Prostate Perfusion: Utility for Detection of Prostate Cancer. Radiology 2019; 290:702-708. [PMID: 30599102 DOI: 10.1148/radiol.2018180556] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Purpose To investigate the diagnostic performance of a dual-parameter approach by combining either volumetric interpolated breath-hold examination (VIBE)- or golden-angle radial sparse parallel (GRASP)-derived dynamic contrast agent-enhanced (DCE) MRI with established diffusion-weighted imaging (DWI) compared with traditional single-parameter evaluations on the basis of DWI alone. Materials and Methods Ninety-four male participants (66 years ± 7 [standard deviation]) were prospectively evaluated at 3.0-T MRI for clinical suspicion of prostate cancer. Included were 101 peripheral zone prostate cancer lesions. Histopathologic confirmation at MRI transrectal US fusion biopsy was matched with normal contralateral prostate parenchyma. MRI was performed with diffusion weighting and DCE by using GRASP (temporal resolution, 2.5 seconds) or VIBE (temporal resolution, 10 seconds). Perfusion (influx forward volume transfer constant [Ktrans] and rate constant [Kep]) and apparent diffusion coefficient (ADC) parameters were determined by tumor volume analysis. Areas under the receiver operating characteristic curve were compared for both sequences. Results Evaluated were 101 prostate cancer lesions (GRASP, 61 lesions; VIBE, 40 lesions). In a combined analysis, diffusion and perfusion parameters ADC with Ktrans or Kep acquired with GRASP had higher diagnostic performance compared with diffusion characteristics alone (area under the curve, 0.97 ± 0.02 [standard error] vs 0.93 ± 0.03; P < .006 and .021, respectively), whereas ADC with perfusion parameters acquired with VIBE had no additional benefit (area under the curve, 0.94 ± 0.03 vs 0.93 ± 0.04; P = .18and .50, respectively, for combination of ADC with Ktrans and Kep). Conclusion If used in a dual-parameter model, incorporating diffusion and perfusion characteristics, the golden-angle radial sparse parallel acquisition technique improves the diagnostic performance of multiparametric MRI examinations of the prostate. This effect could not be observed combining diffusing with perfusion parameters acquired with volumetric interpolated breath-hold examination. © RSNA, 2018.
Collapse
Affiliation(s)
- David J Winkel
- From the Department of Radiology (D.J.W., T.J.H., M.R.B., C.G.G., D.T.B.), Department of Urology (C.W.), and Institute of Pathology (L.B.), University Hospital of Basel, 4031 Basel, Switzerland; and Center for Advanced Imaging Innovation and Research, Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY (T.K.B.)
| | - Tobias J Heye
- From the Department of Radiology (D.J.W., T.J.H., M.R.B., C.G.G., D.T.B.), Department of Urology (C.W.), and Institute of Pathology (L.B.), University Hospital of Basel, 4031 Basel, Switzerland; and Center for Advanced Imaging Innovation and Research, Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY (T.K.B.)
| | - Matthias R Benz
- From the Department of Radiology (D.J.W., T.J.H., M.R.B., C.G.G., D.T.B.), Department of Urology (C.W.), and Institute of Pathology (L.B.), University Hospital of Basel, 4031 Basel, Switzerland; and Center for Advanced Imaging Innovation and Research, Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY (T.K.B.)
| | - Carl G Glessgen
- From the Department of Radiology (D.J.W., T.J.H., M.R.B., C.G.G., D.T.B.), Department of Urology (C.W.), and Institute of Pathology (L.B.), University Hospital of Basel, 4031 Basel, Switzerland; and Center for Advanced Imaging Innovation and Research, Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY (T.K.B.)
| | - Christian Wetterauer
- From the Department of Radiology (D.J.W., T.J.H., M.R.B., C.G.G., D.T.B.), Department of Urology (C.W.), and Institute of Pathology (L.B.), University Hospital of Basel, 4031 Basel, Switzerland; and Center for Advanced Imaging Innovation and Research, Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY (T.K.B.)
| | - Lukas Bubendorf
- From the Department of Radiology (D.J.W., T.J.H., M.R.B., C.G.G., D.T.B.), Department of Urology (C.W.), and Institute of Pathology (L.B.), University Hospital of Basel, 4031 Basel, Switzerland; and Center for Advanced Imaging Innovation and Research, Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY (T.K.B.)
| | - Tobias K Block
- From the Department of Radiology (D.J.W., T.J.H., M.R.B., C.G.G., D.T.B.), Department of Urology (C.W.), and Institute of Pathology (L.B.), University Hospital of Basel, 4031 Basel, Switzerland; and Center for Advanced Imaging Innovation and Research, Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY (T.K.B.)
| | - Daniel T Boll
- From the Department of Radiology (D.J.W., T.J.H., M.R.B., C.G.G., D.T.B.), Department of Urology (C.W.), and Institute of Pathology (L.B.), University Hospital of Basel, 4031 Basel, Switzerland; and Center for Advanced Imaging Innovation and Research, Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY (T.K.B.)
| |
Collapse
|
260
|
Okell TW. Combined angiography and perfusion using radial imaging and arterial spin labeling. Magn Reson Med 2019; 81:182-194. [PMID: 30024066 PMCID: PMC6282709 DOI: 10.1002/mrm.27366] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 03/28/2018] [Accepted: 04/25/2018] [Indexed: 11/24/2022]
Abstract
PURPOSE To demonstrate the feasibility of a novel noninvasive MRI technique for the comprehensive evaluation of blood flow to the brain: combined angiography and perfusion using radial imaging and arterial spin labeling (CAPRIA). METHODS In the CAPRIA pulse sequence, blood labeled with a pseudocontinuous arterial spin labeling pulse train is continuously imaged as it flows through the arterial tree and into the brain tissue using a golden ratio radial readout. From a single raw data set, this flexible imaging approach allows the reconstruction of both high spatial/temporal resolution angiographic images with a high undersampling factor and low spatial/temporal resolution perfusion images with a low undersampling factor. The sparse and high SNR nature of angiographic images ensures that radial undersampling artifacts are relatively benign, even when using a simple regridding image reconstruction. Pulse sequence parameters were optimized through sampling efficiency calculations and the numerical evaluation of modified pseudocontinuous arterial spin labeling signal models. A comparison was made against conventional pseudocontinuous arterial spin labeling angiographic and perfusion acquisitions. RESULTS 2D CAPRIA data in healthy volunteers demonstrated the feasibility of this approach, with good vessel visualization in the angiographic images and clear tissue perfusion signal when reconstructed at 108-ms and 252-ms temporal resolution, respectively. Images were qualitatively similar to those from conventional acquisitions, but CAPRIA had significantly higher SNR efficiency (48% improvement on average, P = 0.02). CONCLUSION The CAPRIA technique shows potential for the efficient evaluation of both macrovascular blood flow and tissue perfusion within a single scan, with potential applications in a range of cerebrovascular diseases.
Collapse
Affiliation(s)
- Thomas W. Okell
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUnited Kingdom
| |
Collapse
|
261
|
Zhang J, Feng L, Otazo R, Kim SG. Rapid dynamic contrast-enhanced MRI for small animals at 7T using 3D ultra-short echo time and golden-angle radial sparse parallel MRI. Magn Reson Med 2019; 81:140-152. [PMID: 30058079 PMCID: PMC6258350 DOI: 10.1002/mrm.27357] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/02/2018] [Accepted: 04/22/2018] [Indexed: 01/18/2023]
Abstract
PURPOSE To develop a rapid dynamic contrast-enhanced MRI method with high spatial and temporal resolution for small-animal imaging at 7 Tesla. METHODS An ultra-short echo time (UTE) pulse sequence using a 3D golden-angle radial sampling was implemented to achieve isotropic spatial resolution with flexible temporal resolution. Continuously acquired radial spokes were grouped into subsets for image reconstruction using a multicoil compressed sensing approach (Golden-angle RAdial Sparse Parallel; GRASP). The proposed 3D-UTE-GRASP method with high temporal and spatial resolutions was tested using 7 mice with GL261 intracranial glioma models. RESULTS Iterative reconstruction with different temporal resolutions and regularization factors λ showed that, in all cases, the cost function decreased to less than 2.5% of its starting value within 20 iterations. The difference between the time-intensity curves of 3D-UTE-GRASP and nonuniform fast Fourier transform (NUFFT) images was minimal when λ was 1% of the maximum signal intensity of the initial NUFFT images. The 3D isotropic images were used to generate pharmacokinetic parameter maps to show the detailed images of the tumor characteristics in 3D and also to show longitudinal changes during tumor growth. CONCLUSION This feasibility study demonstrated that the proposed 3D-UTE-GRASP method can be used for effective measurement of the 3D spatial heterogeneity of tumor pharmacokinetic parameters.
Collapse
Affiliation(s)
- Jin Zhang
- Center for Biomedical Imaging (CBI), Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University School of Medicine, New York, NY, United States
| | - Li Feng
- Center for Biomedical Imaging (CBI), Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University School of Medicine, New York, NY, United States
| | - Ricardo Otazo
- Center for Biomedical Imaging (CBI), Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University School of Medicine, New York, NY, United States
| | - Sungheon Gene Kim
- Center for Biomedical Imaging (CBI), Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University School of Medicine, New York, NY, United States
| |
Collapse
|
262
|
Kim YC. Fast upper airway magnetic resonance imaging for assessment of speech production and sleep apnea. PRECISION AND FUTURE MEDICINE 2018. [DOI: 10.23838/pfm.2018.00100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
263
|
Steeden JA, Kowalik GT, Tann O, Hughes M, Mortensen KH, Muthurangu V. Real-time assessment of right and left ventricular volumes and function in children using high spatiotemporal resolution spiral bSSFP with compressed sensing. J Cardiovasc Magn Reson 2018; 20:79. [PMID: 30518390 PMCID: PMC6282387 DOI: 10.1186/s12968-018-0500-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 10/23/2018] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Real-time cardiovascular magnetic resonance (CMR) assessment of ventricular volumes and function enables data acquisition during free-breathing. The requirement for high spatiotemporal resolution in children necessitates the use of highly accelerated imaging techniques. METHODS A novel real-time balanced steady state free precession (bSSFP) spiral sequence reconstructed using Compressed Sensing (CS) was prospectively validated against the breath-hold clinical standard for assessment of ventricular volumes in 60 children with congenital heart disease. Qualitative image scoring, quantitative image quality, as well as evaluation of biventricular volumes was performed. Standard BH and real-time measures were compared using the paired t-test and agreement for volumetric measures were evaluated using Bland Altman analysis. RESULTS Acquisition time for the entire short axis stack (~ 13 slices) using the spiral real-time technique was ~ 20 s, compared to ~ 348 s for the standard breath hold technique. Qualitative scores reflected more residual aliasing artefact (p < 0.001) and lower edge definition (p < 0.001) in spiral real-time images than standard breath hold images, with lower quantitative edge sharpness and estimates of image contrast (p < 0.001). There was a small but statistically significant (p < 0.05) overestimation of left ventricular (LV) end-systolic volume (1.0 ± 3.5 mL), and underestimation of LV end-diastolic volume (- 1.7 ± 4.6 mL), LV stroke volume (- 2.6 ± 4.8 mL) and LV ejection fraction (- 1.5 ± 3.0%) using the real-time technique. We also observed a small underestimation of right ventricular stroke volume (- 1.8 ± 4.9 mL) and ejection fraction (- 1.4 ± 3.7%) using the real-time imaging technique. No difference in inter-observer or intra-observer variability were observed between the BH and real-time sequences. CONCLUSIONS Real-time bSSFP imaging using spiral trajectories combined with a compressed sensing reconstruction showed good agreement for quantification of biventricular metrics in children with heart disease, despite slightly lower image quality. This technique holds the potential for free breathing data acquisition, with significantly shorter scan times in children.
Collapse
Affiliation(s)
- Jennifer A. Steeden
- UCL Centre for Cardiovascular Imaging, Institute of Cardiovascular Science, University College London, 30 Guildford Street, London, WC1N 1EH UK
| | - Grzegorz T. Kowalik
- UCL Centre for Cardiovascular Imaging, Institute of Cardiovascular Science, University College London, 30 Guildford Street, London, WC1N 1EH UK
| | - Oliver Tann
- Cardiorespiratory Unit, Great Ormond Street Hospital for Children, London, WC1N 3JH UK
| | - Marina Hughes
- Cardiorespiratory Unit, Great Ormond Street Hospital for Children, London, WC1N 3JH UK
| | - Kristian H. Mortensen
- Cardiorespiratory Unit, Great Ormond Street Hospital for Children, London, WC1N 3JH UK
| | - Vivek Muthurangu
- UCL Centre for Cardiovascular Imaging, Institute of Cardiovascular Science, University College London, 30 Guildford Street, London, WC1N 1EH UK
| |
Collapse
|
264
|
Yu Z, Zhao T, Assländer J, Lattanzi R, Sodickson DK, Cloos MA. Exploring the sensitivity of magnetic resonance fingerprinting to motion. Magn Reson Imaging 2018; 54:241-248. [PMID: 30193953 PMCID: PMC6215476 DOI: 10.1016/j.mri.2018.09.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 09/01/2018] [Accepted: 09/04/2018] [Indexed: 11/19/2022]
Abstract
PURPOSE To explore the motion sensitivity of magnetic resonance fingerprinting (MRF), we performed experiments with different types of motion at various time intervals during multiple scans. Additionally, we investigated the possibility to correct the motion artifacts based on redundancy in MRF data. METHODS A radial version of the FISP-MRF sequence was used to acquire one transverse slice through the brain. Three subjects were instructed to move in different patterns (in-plane rotation, through-plane wiggle, complex movements, adjust head position, and pretend itch) during different time intervals. The potential to correct motion artifacts in MRF by removing motion-corrupted data points from the fingerprints and dictionary was evaluated. RESULTS Morphological structures were well preserved in multi-parametric maps despite subject motion. Although the bulk T1 values were not significantly affected by motion, fine structures were blurred when in-plane motion was present during the first part of the scan. On the other hand, T2 values showed a considerable deviation from the motion-free results, especially when through-plane motion was present in the middle of the scan (-44% on average). Explicitly removing the motion-corrupted data from the scan partially restored the T2 values (-10% on average). CONCLUSION Our experimental results showed that different kinds of motion have distinct effects on the precision and effective resolution of the parametric maps measured with MRF. Although MRF-based acquisitions can be relatively robust to motion effects occurring at the beginning or end of the sequence, relying on redundancy in the data alone is not sufficient to assure the accuracy of the multi-parametric maps in all cases.
Collapse
Affiliation(s)
- Zidan Yu
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA; Center for Advanced Imaging Innovation and Research (CAI(2)R), Department of Radiology, New York University School of Medicine, New York, NY, USA; The Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY, USA.
| | - Tiejun Zhao
- Center for Advanced Imaging Innovation and Research (CAI(2)R), Department of Radiology, New York University School of Medicine, New York, NY, USA; Siemens Medical Solutions USA Inc., 40 Liberty Boulevard, Malvern, PA 19355, USA
| | - Jakob Assländer
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA; Center for Advanced Imaging Innovation and Research (CAI(2)R), Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Riccardo Lattanzi
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA; Center for Advanced Imaging Innovation and Research (CAI(2)R), Department of Radiology, New York University School of Medicine, New York, NY, USA; The Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY, USA
| | - Daniel K Sodickson
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA; Center for Advanced Imaging Innovation and Research (CAI(2)R), Department of Radiology, New York University School of Medicine, New York, NY, USA; The Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY, USA
| | - Martijn A Cloos
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA; Center for Advanced Imaging Innovation and Research (CAI(2)R), Department of Radiology, New York University School of Medicine, New York, NY, USA; The Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
265
|
Zhang X, Xie G, Lu N, Zhu Y, Wei Z, Su S, Shi C, Yan F, Liu X, Qiu B, Fan Z. 3D self-gated cardiac cine imaging at 3 Tesla using stack-of-stars bSSFP with tiny golden angles and compressed sensing. Magn Reson Med 2018; 81:3234-3244. [PMID: 30474151 DOI: 10.1002/mrm.27612] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 10/25/2018] [Accepted: 10/29/2018] [Indexed: 12/25/2022]
Abstract
PURPOSE To develop and evaluate an accelerated 3D self-gated cardiac cine imaging technique at 3 Tesla without the use of external electrocardiogram triggering or respiratory gating. METHODS A 3D stack-of-stars balanced steady-state free precession sequence with a tiny golden angle sampling scheme was developed to reduced eddy current effect-related artefacts at 3 Tesla. Respiratory and cardiac motion were derived from a central 5-point self-gating signal extraction approach. The data acquired around the end-expiration phases were then sorted into individual cardiac bins and used for reconstruction with compressed sensing. To evaluate the performance of the proposed method, image quality (1: the best; 4: the worst) was quantitatively compared using both the proposed method and the conventional 3D golden-angle self-gated method. Linear regression and Bland-Altman analysis were used to assess the functional measurements agreement between the proposed method and the routine 2D breath-hold multi-slice technique. RESULTS Compared to the conventional 3D golden-angle self-gated method, the proposed method yielded images with much less streaking artifact and higher myocardium edge sharpness (0.50 ± 0.06 vs. 0.45 ± 0.05, P = 0.004). The proposed method provided an inferior image quality score to the routine 2D technique (2.13 ± 0.35 vs. 1.38 ± 0.52, P = 0.063) but a superior one to the conventional self-gated method (2.13 ± 0.35 vs. 3.13 ± 0.64, P = 0.031). Left ventricular functional measurements between the proposed method and routine 2D technique were all well in agreement. CONCLUSION This study presents a novel self-gating approach to realize rapid 3D cardiac cine imaging at 3 Tesla.
Collapse
Affiliation(s)
- Xiaoyong Zhang
- Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, People's Republic of China.,MR Collaborations NE Asia, Siemens Healthcare, Shenzhen, People's Republic of China
| | - Guoxi Xie
- Paul C. Lauterber Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China.,Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Na Lu
- Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Yanchun Zhu
- Paul C. Lauterber Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
| | - Zijun Wei
- Paul C. Lauterber Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
| | - Shi Su
- Paul C. Lauterber Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
| | - Caiyun Shi
- Paul C. Lauterber Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
| | - Fei Yan
- Paul C. Lauterber Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
| | - Xin Liu
- Paul C. Lauterber Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
| | - Bensheng Qiu
- Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, People's Republic of China
| | - Zhaoyang Fan
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California.,Departments of Medicine and Bioengineering, University of California, Los Angeles, California
| |
Collapse
|
266
|
Rincón-Domínguez T, Menini A, Solana AB, Fischer A, Kudielka G, Haase A, Burschka D. Accelerated multi-snapshot free-breathing B1+ mapping based on the dual refocusing echo acquisition mode technique (DREAM): An alternative to measure RF nonuniformity for cardiac MRI. J Magn Reson Imaging 2018; 49:499-507. [DOI: 10.1002/jmri.26234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 06/06/2018] [Indexed: 12/28/2022] Open
Affiliation(s)
| | | | | | | | | | - Axel Haase
- Technische Universität München; Munich Germany
| | | |
Collapse
|
267
|
Gensler D, Salinger T, Düring M, Lorenz K, Jahns R, Wech T, Frantz S, Ertl G, Jakob PM, Nordbeck P. Real-time Triggered RAdial Single-Shot Inversion recovery for arrhythmia-insensitive myocardial T1 mapping: motion phantom validation and in vivo comparison. Magn Reson Med 2018; 81:1714-1725. [PMID: 30417940 DOI: 10.1002/mrm.27526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/24/2018] [Accepted: 08/20/2018] [Indexed: 11/11/2022]
Abstract
PURPOSE Cardiac T1 mapping has become an increasingly important imaging technique, contributing novel diagnostic options. However, currently utilized methods are often associated with accuracy problems because of heart rate variations and cardiac arrhythmia, limiting their value in clinical routine. This study aimed to introduce an improved arrhythmia-related robust T1 mapping sequence called RT-TRASSI (real-time Triggered RAdial Single-Shot Inversion recovery). METHODS All measurements were performed on a 3.0T whole-body imaging system. A real-time feedback algorithm for arrhythmia detection was implemented into the previously described pulse sequence. A programmable motion phantom was constructed and measurements with different simulated arrhythmias arranged. T1 mapping accuracy and susceptibility to artifacts were analyzed. In addition, in vivo measurements and comparisons with 3 prevailing T1 mapping sequences (MOLLI, ShMOLLI, and SASHA) were carried out to investigate the occurrence of artifacts. RESULTS In the motion phantom measurements, RT-TRASSI showed excellent agreement with predetermined reference T1 values. Percentage scattering of the T1 values ranged from -0.6% to +1.9% in sinus rhythm and -1.0% to +3.1% for high-grade arrhythmias. In vivo, RT-TRASSI showed diagnostic image quality with only 6% of the acquired T1 maps including image artifacts. In contrast, more than 40% of the T1 maps acquired with MOLLI, ShMOLLI, or SASHA included motion artifacts. CONCLUSION Accuracy issues because of heart rate variability and arrhythmia are a prevailing problem in current cardiac T1 mapping techniques. With RT-TRASSI, artifacts can be minimized because of the short acquisition time and effective real-time feedback, avoiding potential data acquisition during systolic heart phase.
Collapse
Affiliation(s)
- Daniel Gensler
- Comprehensive Heart Failure Center (CHFC), University Hospital Würzburg, Würzburg, Germany.,Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Tim Salinger
- Comprehensive Heart Failure Center (CHFC), University Hospital Würzburg, Würzburg, Germany.,Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Markus Düring
- Experimental Physics 5, University of Würzburg, Würzburg, Germany
| | - Kristina Lorenz
- Comprehensive Heart Failure Center (CHFC), University Hospital Würzburg, Würzburg, Germany.,Department of Biomedical Research, Leibniz Institute for Analytical Sciences (ISAS) e.V, Dortmund, Germany
| | - Roland Jahns
- Comprehensive Heart Failure Center (CHFC), University Hospital Würzburg, Würzburg, Germany.,Interdisciplinary Bank of Biomaterials and Data (IBDW), University Hospital Würzburg, Würzburg, Germany
| | - Tobias Wech
- Comprehensive Heart Failure Center (CHFC), University Hospital Würzburg, Würzburg, Germany.,Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany
| | - Stefan Frantz
- Comprehensive Heart Failure Center (CHFC), University Hospital Würzburg, Würzburg, Germany.,Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Georg Ertl
- Comprehensive Heart Failure Center (CHFC), University Hospital Würzburg, Würzburg, Germany.,Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Peter M Jakob
- Experimental Physics 5, University of Würzburg, Würzburg, Germany
| | - Peter Nordbeck
- Comprehensive Heart Failure Center (CHFC), University Hospital Würzburg, Würzburg, Germany.,Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
268
|
Hong T, Han D, Kim D. Simultaneous estimation of PD, T1, T2, T2*, and ∆B0using magnetic resonance fingerprinting with background gradient compensation. Magn Reson Med 2018; 81:2614-2623. [DOI: 10.1002/mrm.27556] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Taehwa Hong
- Department of Electrical and Electronic Engineering Yonsei University Seoul Korea
| | - Dongyeob Han
- Department of Electrical and Electronic Engineering Yonsei University Seoul Korea
| | - Dong‐Hyun Kim
- Department of Electrical and Electronic Engineering Yonsei University Seoul Korea
| |
Collapse
|
269
|
Hamilton JI, Jiang Y, Ma D, Lo WC, Gulani V, Griswold M, Seiberlich N. Investigating and reducing the effects of confounding factors for robust T 1 and T 2 mapping with cardiac MR fingerprinting. Magn Reson Imaging 2018; 53:40-51. [PMID: 29964183 PMCID: PMC7755105 DOI: 10.1016/j.mri.2018.06.018] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 01/04/2023]
Abstract
This study aims to improve the accuracy and consistency of T1 and T2 measurements using cardiac MR Fingerprinting (cMRF) by investigating and accounting for the effects of confounding factors including slice profile, inversion and T2 preparation pulse efficiency, and B1+. The goal is to understand how measurements with different pulse sequences are affected by these factors. This can be used to determine which factors must be taken into account for accurate measurements, and which may be mitigated by the selection of an appropriate pulse sequence. Simulations were performed using a numerical cardiac phantom to assess the accuracy of over 600 cMRF sequences with different flip angles, TRs, and preparation pulses. A subset of sequences, including one with the lowest errors in T1 and T2 maps, was used in subsequent analyses. Errors due to non-ideal slice profile, preparation pulse efficiency, and B1+ were quantified in Bloch simulations. Corrections for these effects were included in the dictionary generation and demonstrated in phantom and in vivo cardiac imaging at 3 T. Neglecting to model slice profile and preparation pulse efficiency led to underestimated T1 and overestimated T2 for most cMRF sequences. Sequences with smaller maximum flip angles were less affected by slice profile and B1+. Simulating all corrections in the dictionary improved the accuracy of T1 and T2 phantom measurements, regardless of acquisition pattern. More consistent myocardial T1 and T2 values were measured using different sequences after corrections. Based on these results, a pulse sequence which is minimally affected by confounding factors can be selected, and the appropriate residual corrections included for robust T1 and T2 mapping.
Collapse
Affiliation(s)
- Jesse I Hamilton
- Dept. of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.
| | - Yun Jiang
- Dept. of Radiology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.
| | - Dan Ma
- Dept. of Radiology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.
| | - Wei-Ching Lo
- Dept. of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.
| | - Vikas Gulani
- Dept. of Radiology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.
| | - Mark Griswold
- Dept. of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA; Dept. of Radiology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.
| | - Nicole Seiberlich
- Dept. of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA; Dept. of Radiology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.
| |
Collapse
|
270
|
Cai X, Epstein FH. Free-breathing cine DENSE MRI using phase cycling with matchmaking and stimulated-echo image-based navigators. Magn Reson Med 2018; 80:1907-1921. [PMID: 29607538 PMCID: PMC6107388 DOI: 10.1002/mrm.27199] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 02/19/2018] [Accepted: 03/06/2018] [Indexed: 01/17/2023]
Abstract
PURPOSE This study aimed to develop a self-navigated method for free-breathing spiral cine displacement encoding with stimulated echoes (DENSE), a myocardial strain imaging technique that uses phase-cycling for artifact suppression. The method needed to address 2 consequences of motion for DENSE: striping artifacts from incomplete suppression of the T1 -relaxation echo and blurring. METHODS The method identifies phase-cycled spiral interleaves at matched respiratory phases by minimizing the residual signal due to T1 relaxation after phase-cycling subtraction. Next, the method reconstructs image-based navigators from matched phase-cycled interleaves that are comprised of the stimulated echo (ste-iNAVs). Ste-iNAVs are used for motion estimation and compensation of k-space data. The method was demonstrated in phantoms and compared to diaphragm-based navigator (dNAV) and conventional iNAV (c-iNAV) methods for the reconstruction of free-breathing volunteer data sets (N = 10). RESULTS Phantom experiments demonstrated that the proposed method removes striping artifacts and blurring due to motion. Volunteer results showed that respiratory motion measured by ste-iNAVs was better correlated than c-iNAVs to dNAV data (R2 = 0.82 ± 0.03 vs. 0.70 ± 0.05, P < 0.05). Match-making reconstructions of free-breathing data sets achieved lower residual T1 -relaxation echo energy (1.04 ± 0.01 vs. 1.18 ± 0.04 for dNAV and 1.18 ± 0.03 for c-iNAV, P < 0.05), higher apparent SNR (11.93 ± 1.05 vs. 10.68 ± 1.06 for dNAV and 10.66 ± 0.99 for c-iNAV, P < 0.05), and better phase quality (0.147 ± 0.012 vs. 0.166 ± 0.017 for dNAV, P = 0.06, and 0.168 ± 0.015 for c-iNAV, P < 0.05) than dNAV and c-iNAV methods. CONCLUSION For free-breathing cine DENSE, the proposed method addresses both types of breathing-induced artifacts and provides better quality images than conventional dNAV and iNAV methods.
Collapse
Affiliation(s)
- Xiaoying Cai
- Biomedical Engineering, University of Virginia, Charlottesville, VA, United States
| | - Frederick H. Epstein
- Biomedical Engineering, University of Virginia, Charlottesville, VA, United States
- Radiology, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
271
|
Chava R, Assis F, Herzka D, Kolandaivelu A. Segmented radial cardiac MRI during arrhythmia using retrospective electrocardiogram and respiratory gating. Magn Reson Med 2018; 81:1726-1738. [PMID: 30362588 DOI: 10.1002/mrm.27533] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 08/21/2018] [Accepted: 08/23/2018] [Indexed: 01/21/2023]
Abstract
PURPOSE To improve segmented cardiac MRI image quality during arrhythmia. METHODS Electrocardiogram (ECG) and respiratory waveforms were recorded during imaging. Imaging readouts were retrospectively classified into heartbeat-types based on the RR interval of the current and preceding beats, QRS morphology, and respiratory phase. Image data were sorted by these classifiers to generate separate cine images of different heartbeat-types during sinus rhythm and arrhythmia. A simulation study evaluated the efficiency of K-space sampling over a range of heart rhythms, heart rates, and respiratory rates. In vivo imaging was performed in volunteers with sinus rhythm, swine with arrhythmia simulated by pacing, and a human subject with spontaneous premature beats. RESULTS K-space sampling uniformity and image quality incrementally improve with additional occurrences of the desired normal sinus or arrhythmia heartbeat-type. To approach the image quality of breath-hold imaging, sufficiently restrictive gating parameters are required. Compared with real-time imaging, retrospective gated images had reduced noise and improved sharpness while maintaining desired cine temporal resolution. Variations of cardiac function between arrhythmia heartbeats could be observed in arrhythmia imaging cases that are not captured by conventional segmented imaging. CONCLUSION Retrospective ECG and respiratory gating permits imaging of various heartbeats during arrhythmia with fewer resolution restrictions compared to real-time imaging. For a fixed imaging time, imaging quality depends on frequency of the imaged heartbeat-type. Imaging additional heartbeats permits incremental improvement in image quality.
Collapse
Affiliation(s)
- Raghuram Chava
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Fabrizio Assis
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Daniel Herzka
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Aravindan Kolandaivelu
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
272
|
Stemkens B, Paulson ES, Tijssen RHN. Nuts and bolts of 4D-MRI for radiotherapy. ACTA ACUST UNITED AC 2018; 63:21TR01. [DOI: 10.1088/1361-6560/aae56d] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
273
|
Maier O, Schoormans J, Schloegl M, Strijkers GJ, Lesch A, Benkert T, Block T, Coolen BF, Bredies K, Stollberger R. Rapid T 1 quantification from high resolution 3D data with model-based reconstruction. Magn Reson Med 2018; 81:2072-2089. [PMID: 30346053 PMCID: PMC6588000 DOI: 10.1002/mrm.27502] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 12/25/2022]
Abstract
Purpose Magnetic resonance imaging protocols for the assessment of quantitative information suffer from long acquisition times since multiple measurements in a parametric dimension are required. To facilitate the clinical applicability, accelerating the acquisition is of high importance. To this end, we propose a model‐based optimization framework in conjunction with undersampling 3D radial stack‐of‐stars data. Theory and Methods High resolution 3D T1 maps are generated from subsampled data by employing model‐based reconstruction combined with a regularization functional, coupling information from the spatial and parametric dimension, to exploit redundancies in the acquired parameter encodings and across parameter maps. To cope with the resulting non‐linear, non‐differentiable optimization problem, we propose a solution strategy based on the iteratively regularized Gauss‐Newton method. The importance of 3D‐spectral regularization is demonstrated by a comparison to 2D‐spectral regularized results. The algorithm is validated for the variable flip angle (VFA) and inversion recovery Look‐Locker (IRLL) method on numerical simulated data, MRI phantoms, and in vivo data. Results Evaluation of the proposed method using numerical simulations and phantom scans shows excellent quantitative agreement and image quality. T1 maps from accelerated 3D in vivo measurements, e.g. 1.8 s/slice with the VFA method, are in high accordance with fully sampled reference reconstructions. Conclusions The proposed algorithm is able to recover T1 maps with an isotropic resolution of 1 mm3 from highly undersampled radial data by exploiting structural similarities in the imaging volume and across parameter maps.
Collapse
Affiliation(s)
- Oliver Maier
- Institute of Medical Engineering, Graz University of Technology, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| | - Jasper Schoormans
- Department of Biomedical Engineering and Physics, Academic Medical Center, Amsterdam Zuidoost, The Netherlands
| | - Matthias Schloegl
- Institute of Medical Engineering, Graz University of Technology, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| | - Gustav J Strijkers
- Department of Biomedical Engineering and Physics, Academic Medical Center, Amsterdam Zuidoost, The Netherlands
| | - Andreas Lesch
- Institute of Medical Engineering, Graz University of Technology, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| | - Thomas Benkert
- Center for Advanced Imaging Innovation and Research, New York University School of Medicine, New York, New York.,Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine, New York, New York
| | - Tobias Block
- Center for Advanced Imaging Innovation and Research, New York University School of Medicine, New York, New York.,Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine, New York, New York
| | - Bram F Coolen
- Department of Biomedical Engineering and Physics, Academic Medical Center, Amsterdam Zuidoost, The Netherlands
| | - Kristian Bredies
- BioTechMed-Graz, Graz, Austria.,Institute for Mathematics and Scientific Computing, University of Graz, Graz, Austria
| | - Rudolf Stollberger
- Institute of Medical Engineering, Graz University of Technology, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| |
Collapse
|
274
|
Kim YC, Min JH, Kim YK, Lee SJ, Ahn S, Kim E, Peeters H. Intra-individual comparison of gadolinium-enhanced MRI using pseudo-golden-angle radial acquisition with gadoxetic acid-enhanced MRI for diagnosis of HCCs using LI-RADS. Eur Radiol 2018; 29:2058-2068. [PMID: 30324388 DOI: 10.1007/s00330-018-5771-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/23/2018] [Accepted: 09/17/2018] [Indexed: 02/07/2023]
Abstract
OBJECTIVES To determine the usefulness of extracellular contrast agent (ECA)-enhanced multiphasic liver magnetic resonance imaging (MRI) using a pseudo-golden-angle radial acquisition scheme by intra-individual comparison with gadoxetic acid-MRI (EOB-MRI) with regard to image quality and the diagnosis of hepatocellular carcinoma (HCC). MATERIALS AND METHODS This prospective study enrolled 15 patients with 18 HCCs who underwent EOB-MRI using a Cartesian approach and ECA-MRI using the pseudo-golden-angle radial acquisition scheme (free-breathing continuous data acquisition for 64 s following ECA injection, generating six images). Two reviewers evaluated the arterial and portal phases of each MRI for artifacts, organ sharpness, and conspicuity of intrahepatic vessels and the hepatic tumors. A Liver Imaging Reporting and Data System category was also assigned to each lesion. RESULTS There were no differences in the subjective image quality analysis between the arterial phases of two MRIs (p > 0.05). However, ghosting artifact was seen only in EOB-MRI (N = 3). Six HCCs showed different signal intensities in the arterial phase or portal phase between the two MRIs; five HCCs showed arterial hyperenhancement on ECA-MRI, but not on EOB-MRI. The capsule was observed in 15 HCCs on ECA-MRI and 6 HCCs on EOB-MRI. Five and one HCC were assigned as LR-5 and LR-4 with ECA-MRI and LR-4 and LR-3 with EOB-MRI, respectively. CONCLUSION Free-breathing ECA-enhanced multiphasic liver MRI using a pseudo-golden-angle radial acquisition was more sensitive in detecting arterial hyperenhancement of HCC than conventional EOB-MRI, and the image quality was acceptable. KEY POINTS • The pseudo-golden-angle radial acquisition scheme can be applied to perform free-breathing multiphasic dynamic liver MRI. • Adopting the pseudo-golden-angle radial acquisition scheme can improve the detection of arterial enhancement of HCC. • The pseudo-golden-angle radial acquisition scheme enables motion-free liver MRI.
Collapse
Affiliation(s)
- Yoon-Chul Kim
- Clinical Research Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Ji Hye Min
- Department of Radiology, Chungnam National University Hospital, Chungnam National University College of Medicine, 282 Munhwa-ro, Jung-gu, Daejeon, 35015, Republic of Korea
| | - Young Kon Kim
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Ilwon-Ro, Gangnam-gu, Seoul, 06351, Republic of Korea.
| | - Soon Jin Lee
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Ilwon-Ro, Gangnam-gu, Seoul, 06351, Republic of Korea
| | - Soohyun Ahn
- Department of Mathematics, Ajou University, Suwon, Republic of Korea
| | - Eunju Kim
- MR Clinical Scientist Philips Korea, Sowol-ro 2-gil, Joong-gu, Seoul, Republic of Korea
| | - Hans Peeters
- MR Clinical Scientist Philips Netherlands: Veenpluis 4-6, Building QR-0.113, 5684 PC , Best, Netherlands
| |
Collapse
|
275
|
A Spatiotemporal-Constrained Sorting Method for Motion-Robust 4D-MRI: A Feasibility Study. Int J Radiat Oncol Biol Phys 2018; 103:758-766. [PMID: 30321690 DOI: 10.1016/j.ijrobp.2018.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 09/18/2018] [Accepted: 10/05/2018] [Indexed: 11/21/2022]
Abstract
PURPOSE To develop a spatiotemporal-constrained sorting technique for motion-robust 4 dimensional-magnetic resonance imaging. METHODS AND MATERIALS This sorting method implemented 2 new approaches for 4-dimensional imaging: (1) an optimized sparse k-space acquisition trajectory with self-gating signal derivation, and (2) a retrospective k-space sorting for reconstruction using a novel spatiotemporal-constrained strategy to minimize breathing variation-induced motion artifacts. Such sorting was regularized by a spatiotemporal index. Volumetric reconstruction was implemented iteratively with a secnd-order total generalized variation penalty. The proposed method was evaluated and compared with the conventional phase-sorting and amplitude-sorting methods in 2 studies. In a computer simulation study, 6 abdominal motion scenarios, including 2 cosine and 4 patient breathing motion patterns, were studied. Reconstruction accuracy was evaluated quantitatively in reference to the ground truth by average image relative error (IRE) in 10 phases and target Dice similarity coefficients (DSCs) in end-of-exhalation/inhalation phases. In addition, the proposed method was evaluated using a custom-made motion phantom. Reconstruction accuracy was evaluated by motion range measurement and image quality comparison in both fast and slow breathing motions. RESULTS In the simulation study, stitching motion artifacts in restricted images were lessened using the proposed method compared with those using the conventional methods. The average IRE and target DSC (end-of-exhalation/inhalation) were 0.031 and 0.95/0.94, respectively, suggesting better motion reconstruction accuracy than the phase-sorted method (IRE, 0.057; DSC, 0.89/0.89) and the amplitude-sorted method (IRE, 0.048; DSC, 0.91/0.88). In the phantom study, the moving target reconstructed by the proposed method demonstrated better rendering with less edge blurring. With fast breathing motion, the range measured using the proposed method was more accurate than that of the phase-sorted method and was comparable to the result of amplitude-sorted method and ground truths. CONCLUSIONS Preliminary results suggested that the proposed sorting technique could reconstruct high-quality images and accurate motion estimation with reduced artifacts in 4 dimensional-magnetic resonance imaging.
Collapse
|
276
|
Comparison of four dimensional computed tomography and magnetic resonance imaging in abdominal radiotherapy planning. PHYSICS & IMAGING IN RADIATION ONCOLOGY 2018; 7:70-75. [PMID: 33458408 PMCID: PMC7807635 DOI: 10.1016/j.phro.2018.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 09/21/2018] [Accepted: 09/21/2018] [Indexed: 12/25/2022]
Abstract
Background and Purpose Four-dimensional (4D) computed tomography (CT) is widely used in radiotherapy (RT) planning and remains the current standard for motion evaluation. We assess a 4D magnetic resonance imaging (MRI) sequence in terms of motion and image quality in a phantom, healthy volunteers and patients undergoing RT. Materials and Methods The 4D-MRI sequence is a prototype T1-weighted 3D gradient echo with radial acquisition with self-gating. The accuracy of the 4D-MRI respiratory sorting based method was assessed using a MRI-CT compatible respiratory simulation phantom. In volunteers, abdominal viscera were evaluated for artefact, noise, structure delineation and overall image quality using a previously published four-point scoring system. In patients undergoing abdominal RT, the tumour (or a surrogate) was utilized to assess the range of motion on both 4D-CT and 4D-MRI. Furthermore, imaging quality was evaluated for both 4D-CT and 4D-MRI. Results In phantom studies 4D-MRI demonstrated amplitude of motion error of less than 0.2 mm for five, seven and ten bins. 4D-MRI provided excellent image quality for liver, kidney and pancreas. In patients, the median amplitude of motion seen on 4D-CT and 4D-MRI was 11.2 mm (range 2.8–20.3 mm) and 10.1 mm (range 0.7–20.7 mm) respectively. The median difference in amplitude between 4D-CT and 4D-MRI was −0.6 mm (range −3.4–5.2 mm). 4D-MRI demonstrated superior edge detection (median score 3 versus 1) and overall image quality (median score 2 versus 1) compared to 4D-CT. Conclusions The prototype 4D-MRI sequence demonstrated promising results and may be used in abdominal targeting, motion gating, and towards implementing MRI-based adaptive RT.
Collapse
|
277
|
Weller DS, Salerno M, Meyer CH. Content-aware compressive magnetic resonance image reconstruction. Magn Reson Imaging 2018; 52:118-130. [PMID: 29935257 PMCID: PMC6102097 DOI: 10.1016/j.mri.2018.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 06/11/2018] [Accepted: 06/13/2018] [Indexed: 11/25/2022]
Abstract
This paper describes an adaptive approach to regularizing model-based reconstructions in magnetic resonance imaging to account for local structure or image content. In conjunction with common models like wavelet and total variation sparsity, this content-aware regularization avoids oversmoothing or compromising image features while suppressing noise and incoherent aliasing from accelerated imaging. To evaluate this regularization approach, the experiments reconstruct images from single- and multi-channel, Cartesian and non-Cartesian, brain and cardiac data. These reconstructions combine common analysis-form regularizers and autocalibrating parallel imaging (when applicable). In most cases, the results show widespread improvement in structural similarity and peak-signal-to-error ratio relative to the fully sampled images. These results suggest that this content-aware regularization can preserve local image structures such as edges while providing denoising power superior to sparsity-promoting or sparsity-reweighted regularization.
Collapse
Affiliation(s)
| | - Michael Salerno
- University of Virginia, Charlottesville, VA 22904, USA; University of Virginia Health System, Charlottesville, VA 22908, USA.
| | - Craig H Meyer
- University of Virginia, Charlottesville, VA 22904, USA.
| |
Collapse
|
278
|
Haji-Valizadeh H, Collins JD, Aouad PJ, Serhal AM, Lindley MD, Pang J, Naresh NK, Carr JC, Kim D. Accelerated, free-breathing, noncontrast, electrocardiograph-triggered, thoracic MR angiography with stack-of-stars k-space sampling and GRASP reconstruction. Magn Reson Med 2018; 81:524-532. [PMID: 30229565 DOI: 10.1002/mrm.27409] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/08/2018] [Accepted: 05/30/2018] [Indexed: 01/03/2023]
Abstract
PURPOSE To develop an accelerated, free-breathing, noncontrast, electrocardiograph-triggered, thoracic MR angiography (NC-MRA) pulse sequence capable of achieving high spatial resolution at clinically acceptable scan time and test whether it produces clinically acceptable image quality in patients with suspected aortic disease. METHODS We modified a "coronary" MRA pulse sequence to use a stack-of-stars k-space sampling pattern and combined it with golden-angle radial sparse parallel (GRASP reconstruction to enable self-navigation of respiratory motion and high data acceleration. The performance of the proposed NC-MRA was evaluated in 13 patients, where clinical standard contrast-enhanced MRA (CE-MRA) was used as control. For visual analysis, two readers graded the conspicuity of vessel lumen, artifacts, and noise level on a 5-point scale (overall score index = sum of three scores). The aortic diameters were measured at seven standardized locations. The mean visual scores, inter-observer variability, and vessel diameters were compared using appropriate statistical tests. RESULTS The overall mean visual score index (12.1 ± 1.7 for CE-MRA versus 12.1 ± 1.0 for NC-MRA) scores were not significantly different (P > 0.16). The two readers' scores were significantly different for CE-MRA (P = 0.01) but not for NC-MRA (P = 0.21). The mean vessel diameters were not significantly different, except at the proximal aortic arch (P < 0.03). The mean diameters were strongly correlated (R2 ≥ 0.96) and in good agreement (absolute mean difference ≤ 0.01 cm and 95% confidence interval ≤ 0.62 cm). CONCLUSION This study shows that the proposed NC-MRA produces clinically acceptable image quality in patients at high spatial resolution (1.5 mm × 1.5 mm × 1.5 mm) and clinically acceptable scan time (~6 min).
Collapse
Affiliation(s)
- Hassan Haji-Valizadeh
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois.,Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Jeremy D Collins
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Pascale J Aouad
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Ali M Serhal
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Marc D Lindley
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona
| | - Jianing Pang
- Siemens Medical Solutions USA Inc, Chicago, Illinois
| | - Nivedita K Naresh
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - James C Carr
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Daniel Kim
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois.,Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
279
|
Becker KM, Schulz‐Menger J, Schaeffter T, Kolbitsch C. Simultaneous high‐resolution cardiac T
1
mapping and cine imaging using model‐based iterative image reconstruction. Magn Reson Med 2018; 81:1080-1091. [DOI: 10.1002/mrm.27474] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 06/08/2018] [Accepted: 07/09/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Kirsten M. Becker
- Physikalisch‐Technische Bundesanstalt (PTB) Braunschweig and Berlin Germany
| | - Jeanette Schulz‐Menger
- Charité‐Universitätsmedizin Berlin Freie Universität Berlin, Humboldt‐Universität zu Berlin Berlin Institute of Health, DZHK Berlin Germany
- Working Group Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center Charité Medical Faculty Max‐Delbrueck Center for Molecular Medicine HELIOS Klinikum Berlin Buch Department of Cardiology and Nephrology Berlin Germany
| | - Tobias Schaeffter
- Physikalisch‐Technische Bundesanstalt (PTB) Braunschweig and Berlin Germany
- Division of Imaging Sciences and Biomedical Engineering King's College London London United Kingdom
| | - Christoph Kolbitsch
- Physikalisch‐Technische Bundesanstalt (PTB) Braunschweig and Berlin Germany
- Division of Imaging Sciences and Biomedical Engineering King's College London London United Kingdom
| |
Collapse
|
280
|
Wyatt CR, Smith TB, Sammi MK, Rooney WD, Guimaraes AR. Multi-parametric T 2 * magnetic resonance fingerprinting using variable echo times. NMR IN BIOMEDICINE 2018; 31:e3951. [PMID: 30011109 DOI: 10.1002/nbm.3951] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/29/2018] [Accepted: 05/01/2018] [Indexed: 06/08/2023]
Abstract
The use of quantitative imaging biomarkers in the imaging of various disease states, including cancer and neurodegenerative disease, has increased in recent years. T1 , T2 , and T2 * relaxation time constants have been shown to be affected by tissue structure or contrast infusion. Acquiring these biomarkers simultaneously in a multi-parametric acquisition could provide more robust detection of tissue changes in various disease states including neurodegeneration and cancer. Traditional magnetic resonance fingerprinting (MRF) has been shown to provide quick, quantitative mapping of T1 and T2 relaxation time constants. In this study, T2 * relaxation is added to the MRF framework using variable echo times (TE). To demonstrate the feasibility of the method and compare incremental and golden angle spiral rotations, simulated phantom data was fit using the proposed method. Additionally, T1 /T2 /T2 */δf MRF as well as conventional T1 , T2 , and T2 * acquisitions were acquired in agar phantoms and the brains of three healthy volunteers. Golden angle spiral rotation was found to reduce inaccuracy resulting from off resonance effects. Strong correlations were found between conventional and MRF values in the T1 , T2 , and T2 * relaxation time constants of the agar phantoms and healthy volunteers. In this study, T2 * relaxation has been incorporated into the MRF framework by using variable echo times, while still fitting for T1 and T2 relaxation time constants. In addition to fitting these relaxation time constants, a novel method for fitting and correcting off resonance effects has been developed.
Collapse
Affiliation(s)
- Cory R Wyatt
- Advanced Imaging Research Center, Oregon Health & Sciences University, Portland, OR, USA
- Department of Diagnostic Radiology, Oregon Health & Sciences University, Portland, OR, USA
| | - Travis B Smith
- Advanced Imaging Research Center, Oregon Health & Sciences University, Portland, OR, USA
- Casey Eye Institute, Oregon Health & Sciences University, Portland, OR, USA
| | - Manoj K Sammi
- Advanced Imaging Research Center, Oregon Health & Sciences University, Portland, OR, USA
| | - William D Rooney
- Advanced Imaging Research Center, Oregon Health & Sciences University, Portland, OR, USA
| | - Alexander R Guimaraes
- Advanced Imaging Research Center, Oregon Health & Sciences University, Portland, OR, USA
- Department of Diagnostic Radiology, Oregon Health & Sciences University, Portland, OR, USA
| |
Collapse
|
281
|
Gajjar P, Jørgensen JS, Godinho JRA, Johnson CG, Ramsey A, Withers PJ. New software protocols for enabling laboratory based temporal CT. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:093702. [PMID: 30278752 DOI: 10.1063/1.5044393] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/12/2018] [Indexed: 05/25/2023]
Abstract
Temporal micro-computed tomography (CT) allows the non-destructive quantification of processes that are evolving over time in 3D. Despite the increasing popularity of temporal CT, the practical implementation and optimisation can be difficult. Here, we present new software protocols that enable temporal CT using commercial laboratory CT systems. The first protocol drastically reduces the need for periodic intervention when making time-lapse experiments, allowing a large number of tomograms to be collected automatically. The automated scanning at regular intervals needed for uninterrupted time-lapse CT is demonstrated by analysing the germination of a mung bean (vigna radiata), whilst the synchronisation with an in situ rig required for interrupted time-lapse CT is highlighted using a shear cell to observe granular segregation. The second protocol uses golden-ratio angular sampling with an iterative reconstruction scheme and allows the number of projections in a reconstruction to be changed as sample evolution occurs. This overcomes the limitation of the need to know a priori what the best time window for each scan is. The protocol is evaluated by studying barite precipitation within a porous column, allowing a comparison of spatial and temporal resolution of reconstructions with different numbers of projections. Both of the protocols presented here have great potential for wider application, including, but not limited to, in situ mechanical testing, following battery degradation and chemical reactions.
Collapse
Affiliation(s)
- Parmesh Gajjar
- Henry Moseley X-Ray Imaging Facility, School of Materials, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Jakob S Jørgensen
- Henry Moseley X-Ray Imaging Facility, School of Materials, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Jose R A Godinho
- Henry Moseley X-Ray Imaging Facility, School of Materials, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Chris G Johnson
- School of Mathematics, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Andrew Ramsey
- Nikon Metrology Inc., 12701 Grand River Avenue, Brighton, Michigan 48116, USA
| | - Philip J Withers
- Henry Moseley X-Ray Imaging Facility, School of Materials, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
282
|
van Osch MJ, Teeuwisse WM, Chen Z, Suzuki Y, Helle M, Schmid S. Advances in arterial spin labelling MRI methods for measuring perfusion and collateral flow. J Cereb Blood Flow Metab 2018; 38:1461-1480. [PMID: 28598243 PMCID: PMC6120125 DOI: 10.1177/0271678x17713434] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
With the publication in 2015 of the consensus statement by the perfusion study group of the International Society for Magnetic Resonance in Medicine (ISMRM) and the EU-COST action 'ASL in dementia' on the implementation of arterial spin labelling MRI (ASL) in a clinical setting, the development of ASL can be considered to have become mature and ready for clinical prime-time. In this review article new developments and remaining issues will be discussed, especially focusing on quantification of ASL as well as on new technological developments of ASL for perfusion imaging and flow territory mapping. Uncertainty of the achieved labelling efficiency in pseudo-continuous ASL (pCASL) as well as the presence of arterial transit time artefacts, can be considered the main remaining challenges for the use of quantitative cerebral blood flow (CBF) values. New developments in ASL centre around time-efficient acquisition of dynamic ASL-images by means of time-encoded pCASL and diversification of information content, for example by combined 4D-angiography with perfusion imaging. Current vessel-encoded and super-selective pCASL-methodology have developed into easily applied flow-territory mapping methods providing relevant clinical information with highly similar information content as digital subtraction angiography (DSA), the current clinical standard. Both approaches seem therefore to be ready for clinical use.
Collapse
Affiliation(s)
- Matthias Jp van Osch
- 1 Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.,2 Leiden Institute of Brain and Cognition, Leiden University, Leiden, The Netherlands
| | - Wouter M Teeuwisse
- 1 Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.,2 Leiden Institute of Brain and Cognition, Leiden University, Leiden, The Netherlands
| | - Zhensen Chen
- 3 Department of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Yuriko Suzuki
- 1 Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Michael Helle
- 4 Philips GmbH Innovative Technologies, Research Laboratories, Hamburg, Germany
| | - Sophie Schmid
- 1 Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.,2 Leiden Institute of Brain and Cognition, Leiden University, Leiden, The Netherlands
| |
Collapse
|
283
|
Tang S, Fernandez-Granda C, Lannuzel S, Bernstein B, Lattanzi R, Cloos M, Knoll F, Assländer J. Multicompartment Magnetic Resonance Fingerprinting. INVERSE PROBLEMS 2018; 34:094005. [PMID: 30880863 PMCID: PMC6415771 DOI: 10.1088/1361-6420/aad1c3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Magnetic resonance fingerprinting (MRF) is a technique for quantitative estimation of spin- relaxation parameters from magnetic-resonance data. Most current MRF approaches assume that only one tissue is present in each voxel, which neglects intravoxel structure, and may lead to artifacts in the recovered parameter maps at boundaries between tissues. In this work, we propose a multicompartment MRF model that accounts for the presence of multiple tissues per voxel. The model is fit to the data by iteratively solving a sparse linear inverse problem at each voxel, in order to express the measured magnetization signal as a linear combination of a few elements in a precomputed fingerprint dictionary. Thresholding-based methods commonly used for sparse recovery and compressed sensing do not perform well in this setting due to the high local coherence of the dictionary. Instead, we solve this challenging sparse-recovery problem by applying reweighted-𝓁1-norm regularization, implemented using an efficient interior-point method. The proposed approach is validated with simulated data at different noise levels and undersampling factors, as well as with a controlled phantom-imaging experiment on a clinical magnetic-resonance system.
Collapse
Affiliation(s)
- Sunli Tang
- Courant Institute of Mathematical Sciences, New York University
| | - Carlos Fernandez-Granda
- Courant Institute of Mathematical Sciences, New York University
- Center for Data Science, New York University
| | - Sylvain Lannuzel
- Center for Data Science, New York University
- École CentraleSup´elec
| | - Brett Bernstein
- Courant Institute of Mathematical Sciences, New York University
| | - Riccardo Lattanzi
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine
- Center for Advanced Imaging and Innovation Research (CAIR) Department of Radiology, New York University School of Medicine
| | - Martijn Cloos
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine
- Center for Advanced Imaging and Innovation Research (CAIR) Department of Radiology, New York University School of Medicine
| | - Florian Knoll
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine
- Center for Advanced Imaging and Innovation Research (CAIR) Department of Radiology, New York University School of Medicine
| | - Jakob Assländer
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine
- Center for Advanced Imaging and Innovation Research (CAIR) Department of Radiology, New York University School of Medicine
| |
Collapse
|
284
|
Armstrong T, Liu D, Martin T, Masamed R, Janzen C, Wong C, Chanlaw T, Devaskar SU, Sung K, Wu HH. 3D R 2 * mapping of the placenta during early gestation using free-breathing multiecho stack-of-radial MRI at 3T. J Magn Reson Imaging 2018; 49:291-303. [PMID: 30142239 DOI: 10.1002/jmri.26203] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 05/08/2018] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Multiecho gradient-echo Cartesian MRI characterizes placental oxygenation by quantifying R 2 * . Previous research was performed at 1.5T using breath-held 2D imaging during later gestational age (GA). PURPOSE To evaluate the accuracy and repeatability of a free-breathing (FB) 3D multiecho gradient-echo stack-of-radial technique (radial) for placental R 2 * mapping at 3T and report placental R 2 * during early GA. STUDY TYPE Prospective. POPULATION Thirty subjects with normal pregnancies and three subjects with ischemic placental disease (IPD) were scanned twice: between 14-18 and 19-23 weeks GA. FIELD STRENGTH 3T. SEQUENCE FB radial. ASSESSMENT Linear correlation (concordance coefficient, ρc ) and Bland-Altman analyses (mean difference, MD) were performed to evaluate radial R 2 * mapping accuracy compared to Cartesian in a phantom. Radial R 2 * mapping repeatability was characterized using the coefficient of repeatability (CR) between back-to-back scans. The mean and spatial coefficient of variation (CV) of R 2 * was determined for all subjects, and separately for anterior and posterior placentas, at each GA range. STATISTICAL TESTS ρc was tested for significance. Differences in mean R 2 * and CV were tested using Wilcoxon Signed-Rank and Rank-Sum tests. P < 0.05 was considered significant. Z-scores for the IPD subjects were determined. RESULTS FB radial demonstrated accurate (ρc ≥0.996; P < 0.001; |MD|<0.2s-1 ) and repeatable (CR<4s-1 ) R 2 * mapping in a phantom, and repeatable (CR≤4.6s-1 ) R 2 * mapping in normal subjects. At 3T, placental R 2 * mean ± standard deviation was 12.9s-1 ± 2.7s-1 for 14-18 and 13.2s-1 ± 1.9s-1 for 19-23 weeks GA. The CV was significantly greater (P = 0.043) at 14-18 (0.63 ± 0.12) than 19-23 (0.58 ± 0.13) weeks GA. At 19-23 weeks, the CV was significantly lower (P < 0.001) for anterior (0.49 ± 0.08) than posterior (0.67 ± 0.11) placentas. One IPD subject had a lower mean R 2 * than normal subjects at both GA ranges (Z<-2). DATA CONCLUSION FB radial provides accurate and repeatable 3D R 2 * mapping for the entire placenta at 3T during early GA. LEVEL OF EVIDENCE 2 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2019;49:291-303.
Collapse
Affiliation(s)
- Tess Armstrong
- Department of Radiological Sciences, University of California Los Angeles, Los Angeles, California, USA.,Department of Physics and Biology in Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Dapeng Liu
- Department of Radiological Sciences, University of California Los Angeles, Los Angeles, California, USA
| | - Thomas Martin
- Department of Radiological Sciences, University of California Los Angeles, Los Angeles, California, USA.,Department of Physics and Biology in Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Rinat Masamed
- Department of Radiological Sciences, University of California Los Angeles, Los Angeles, California, USA
| | - Carla Janzen
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Cass Wong
- Department of Radiological Sciences, University of California Los Angeles, Los Angeles, California, USA
| | - Teresa Chanlaw
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Sherin U Devaskar
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Kyunghyun Sung
- Department of Radiological Sciences, University of California Los Angeles, Los Angeles, California, USA.,Department of Physics and Biology in Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Holden H Wu
- Department of Radiological Sciences, University of California Los Angeles, Los Angeles, California, USA.,Department of Physics and Biology in Medicine, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
285
|
Fast Interleaved Multislice T1 Mapping: Model-Based Reconstruction of Single-Shot Inversion-Recovery Radial FLASH. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2018; 2018:2560964. [PMID: 30186361 PMCID: PMC6110002 DOI: 10.1155/2018/2560964] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/18/2018] [Indexed: 12/20/2022]
Abstract
Purpose To develop a high-speed multislice T1 mapping method based on a single-shot inversion-recovery (IR) radial FLASH acquisition and a regularized model-based reconstruction. Methods Multislice radial k-space data are continuously acquired after a single nonselective inversion pulse using a golden-angle sampling scheme in a spoke-interleaved manner with optimized flip angles. Parameter maps and coil sensitivities of each slice are estimated directly from highly undersampled radial k-space data using a model-based nonlinear inverse reconstruction in conjunction with joint sparsity constraints. The performance of the method has been validated using a numerical and experimental T1 phantom as well as demonstrated for studies of the human brain and liver at 3T. Results The proposed method allows for 7 simultaneous T1 maps of the brain at 0.5 × 0.5 × 4 mm3 resolution within a single IR experiment of 4 s duration. Phantom studies confirm similar accuracy and precision as obtained for a single-slice acquisition. For abdominal applications, the proposed method yields three simultaneous T1 maps at 1.25 × 1.25 × 6 mm3 resolution within a 4 s breath hold. Conclusion Rapid, robust, accurate, and precise multislice T1 mapping may be achieved by combining the advantages of a model-based nonlinear inverse reconstruction, radial sampling, parallel imaging, and compressed sensing.
Collapse
|
286
|
Cruz G, Schneider T, Bruijnen T, Gaspar AS, Botnar RM, Prieto C. Accelerated magnetic resonance fingerprinting using soft-weighted key-hole (MRF-SOHO). PLoS One 2018; 13:e0201808. [PMID: 30092033 PMCID: PMC6084944 DOI: 10.1371/journal.pone.0201808] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 07/23/2018] [Indexed: 11/28/2022] Open
Abstract
Object To develop a novel approach for highly accelerated Magnetic Resonance Fingerprinting (MRF) acquisition. Materials and methods The proposed method combines parallel imaging, soft-gating and key-hole approaches to highly accelerate MRF acquisition. Slowly varying flip angles (FA), commonly used during MRF acquisition, lead to a smooth change in the signal contrast of consecutive time-point images. This assumption enables sharing of high frequency data between different time-points, similar to what is done in some dynamic MR imaging methods such as key-hole. The proposed approach exploits this information using a SOft-weighted key-HOle (MRF-SOHO) reconstruction to achieve high acceleration factors and/or increased resolution without compromising image quality or increasing scan time. MRF-SOHO was validated on a standard T1/T2 phantom and in in-vivo brain acquisitions reconstructing T1, T2 and proton density parametric maps. Results Accelerated MRF-SOHO using less data per time-point and less time-point images enabled a considerable reduction in scan time (up to 4.6x), while obtaining similar T1 and T2 accuracy and precision when compared to zero-filled MRF reconstruction. For the same number of spokes and time-points, the proposed method yielded an enhanced performance in quantifying parameters than the zero-filled MRF reconstruction, which was verified with 2, 1 and 0.7 (sub-millimetre) resolutions. Conclusion The proposed MRF-SOHO enabled a 4.6x scan time reduction for an in-plane spatial resolution of 2x2 mm2 when compared to zero-filled MRF and enabled sub-millimetric (0.7x0.7 mm2) resolution MRF.
Collapse
Affiliation(s)
- Gastao Cruz
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- * E-mail:
| | | | - Tom Bruijnen
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Andreia S. Gaspar
- Institute for Systems and Robotics / Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - René M. Botnar
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia Prieto
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
287
|
Borman PTS, Tijssen RHN, Bos C, Moonen CTW, Raaymakers BW, Glitzner M. Characterization of imaging latency for real-time MRI-guided radiotherapy. ACTA ACUST UNITED AC 2018; 63:155023. [DOI: 10.1088/1361-6560/aad2b7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
288
|
Bonanno G, Hays AG, Weiss RG, Schär M. Self-gated golden angle spiral cine MRI for coronary endothelial function assessment. Magn Reson Med 2018; 80:560-570. [PMID: 29282752 PMCID: PMC5910207 DOI: 10.1002/mrm.27060] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 12/01/2017] [Accepted: 12/05/2017] [Indexed: 01/28/2023]
Abstract
PURPOSE Depressed coronary endothelial function (CEF) is a marker for atherosclerotic disease, an independent predictor of cardiovascular events, and can be quantified non-invasively with ECG-triggered spiral cine MRI combined with isometric handgrip exercise (IHE). However, MRI-CEF measures can be hindered by faulty ECG-triggering, leading to prolonged breath-holds and degraded image quality. Here, a self-gated golden angle spiral method (SG-GA) is proposed to eliminate the need for ECG during cine MRI. METHODS SG-GA was tested against retrospectively ECG-gated golden angle spiral MRI (ECG-GA) and gold-standard ECG-triggered spiral cine MRI (ECG-STD) in 10 healthy volunteers. CEF data were obtained from cross-sectional images of the proximal right and left coronary arteries in a 3T scanner. Self-gating heart rates were compared to those from simultaneous ECG-gating. Coronary vessel sharpness and cross-sectional area (CSA) change with IHE were compared among the 3 methods. RESULTS Self-gating precision, accuracy, and correlation-coefficient were 7.7 ± 0.5 ms, 9.1 ± 0.7 ms, and 0.93 ± 0.01, respectively (mean ± standard error). Vessel sharpness by SG-GA was equal or higher than ECG-STD (rest: 63.0 ± 1.7% vs. 61.3 ± 1.3%; exercise: 62.6 ± 1.3% vs. 56.7 ± 1.6%, P < 0.05). CSA changes were in agreement among the 3 methods (ECG-STD = 8.7 ± 4.0%, ECG-GA = 9.6 ± 3.1%, SG-GA = 9.1 ± 3.5%, P = not significant). CONCLUSION CEF measures can be obtained with the proposed self-gated high-quality cine MRI method even when ECG is faulty or not available. Magn Reson Med 80:560-570, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Gabriele Bonanno
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD
- Division of MR Research, Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD
| | - Allison G. Hays
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD
| | - Robert G. Weiss
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD
- Division of MR Research, Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD
| | - Michael Schär
- Division of MR Research, Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
289
|
Darçot E, Yerly J, Colotti R, Masci PG, Chaptinel J, Feliciano H, Bianchi V, van Heeswijk RB. Accelerated and high-resolution cardiac T 2 mapping through peripheral k-space sharing. Magn Reson Med 2018; 81:220-233. [PMID: 30058085 DOI: 10.1002/mrm.27374] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 04/26/2018] [Accepted: 05/01/2018] [Indexed: 12/15/2022]
Abstract
PURPOSE To develop high-spatial-resolution cardiac T2 mapping that allows for a reduced acquisition time while maintaining its precision. We implemented and optimized a new golden-angle radial T2 mapping technique named SKRATCH (Shared k-space Radial T2 Characterization of the Heart) that shares k-space peripheries of T2 -weighted images while preserving their contrasts. METHODS Six SKRATCH variants (gradient-recalled echo and balanced SSFP, free-breathing and breath-held, with and without a saturation preparation) were implemented, and their precision was compared with a navigator-gated reference technique in phantoms and 22 healthy volunteers at 3 T. The optimal breath-held SKRATCH technique was applied in a small cohort of patients with subacute myocardial infarction. RESULTS The faster free-breathing SKRATCH technique reduced the acquisition time by 52.4%, while maintaining the precision and spatial resolution of the reference technique. Similarly, the most precise and robust breath-held SKRATCH technique demonstrated homogenous T2 values that did not significantly differ from the navigator-gated reference (T2 = 39.9 ± 3.4 ms versus 39.5 ± 3.4 ms, P > .20, respectively). All infarct patients demonstrated a large T2 elevation in the ischemic regions of the myocardium. CONCLUSION The optimized SKRATCH technique enabled the accelerated acquisition of high-spatial-resolution T2 maps, was validated in healthy adult volunteers, and was successfully applied to a small initial group of patients.
Collapse
Affiliation(s)
- Emeline Darçot
- Department of Radiology, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jérôme Yerly
- Department of Radiology, University Hospital and University of Lausanne, Lausanne, Switzerland.,Center for Biomedical Imaging, Lausanne and Geneva, Switzerland
| | - Roberto Colotti
- Department of Radiology, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Pier Giorgio Masci
- Center for Cardiac Magnetic Resonance, Cardiology Service, Lausanne University Hospital, Lausanne, Switzerland
| | - Jerome Chaptinel
- Department of Radiology, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Helene Feliciano
- Department of Radiology, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Veronica Bianchi
- Department of Radiology, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Ruud B van Heeswijk
- Department of Radiology, University Hospital and University of Lausanne, Lausanne, Switzerland.,Center for Biomedical Imaging, Lausanne and Geneva, Switzerland
| |
Collapse
|
290
|
The Influence of Radial Undersampling Schemes on Compressed Sensing in Cardiac DTI. SENSORS 2018; 18:s18072388. [PMID: 30041419 PMCID: PMC6069122 DOI: 10.3390/s18072388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 07/09/2018] [Accepted: 07/12/2018] [Indexed: 12/16/2022]
Abstract
Diffusion tensor imaging (DTI) is known to suffer from long acquisition time, which greatly limits its practical and clinical use. Undersampling of k-space data provides an effective way to reduce the amount of data to acquire while maintaining image quality. Radial undersampling is one of the most popular non-Cartesian k-space sampling schemes, since it has relatively lower sensitivity to motion than Cartesian trajectories, and artifacts from linear reconstruction are more noise-like. Therefore, radial imaging is a promising strategy of undersampling to accelerate acquisitions. The purpose of this study is to investigate various radial sampling schemes as well as reconstructions using compressed sensing (CS). In particular, we propose two randomly perturbed radial undersampling schemes: golden-angle and random angle. The proposed methods are compared with existing radial undersampling methods, including uniformity-angle, randomly perturbed uniformity-angle, golden-angle, and random angle. The results on both simulated and real human cardiac diffusion weighted (DW) images show that, for the same amount of k-space data, randomly sampling around a random radial line results in better reconstruction quality for DTI indices, such as fractional anisotropy (FA), mean diffusivities (MD), and that the randomly perturbed golden-angle undersampling yields the best results for cardiac CS-DTI image reconstruction.
Collapse
|
291
|
Hopkinson G, Lockwood P, Dolbear G. Evaluation of an equilibrium phase free-breathing dynamic contrast-enhanced MRI prototype sequence compared to traditional breath-held MRI acquisition in liver oncology patients. Radiography (Lond) 2018; 24:211-218. [PMID: 29976333 DOI: 10.1016/j.radi.2018.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/22/2017] [Accepted: 01/03/2018] [Indexed: 01/16/2023]
Abstract
INTRODUCTION Magnetic Resonance Imaging (MRI) is a commonly used for diagnosing metastatic liver disease. When patients are unable to achieve the necessary arrested respiration required during image acquisition, image artefacts occur that affect image quality and diagnostic value. The main contribution of this study is the evaluation of a novel prototype technique that allows a specific sub-group of patients to breathe freely throughout the acquisition of dynamic contrast enhanced equilibrium phase MRI of the liver. METHODS The study compared a traditional single phase of arrested respiration T1-weighted (T1W) fat saturated (FatSat) volumetric interpolated breath-hold sequence (VIBE) with a novel free-breathing T1W 3D Radial VIBE prototype sequence. A cohort of patients (n = 30) with known hepatic metastases who demonstrated difficulty in complying with the instructions for arrested inspiration were scanned. Both sets of data were compared for diagnostic quality using a Likert scale questionnaire by specialist Oncology Radiologists (n = 2). RESULTS Higher scores for all image quality criteria, including the presence of artefact (2.6 ± 0.57; p < 0.001), lesion conspicuity (2.9 ± 0.35; p < 0.001) and visibility of intra-hepatic vessels (2.8 ± 0.37; p < 0.001) were found using the free-breathing sequence (13.5 ± 1.94; p < 0.001 t = 13.31; df 29; p < 0.001) than the breath hold phase (8.1 ± 2.06), confirmed with kappa (k-0.023; p-0.050). CONCLUSIONS The results demonstrated a 39.5% improvement in overall image quality using the T1W 3D Radial VIBE prototype sequence, and have the potential to improve patient experience and reduce image artefacts during MRI imaging of this sub-group of patients.
Collapse
Affiliation(s)
- G Hopkinson
- The Royal Marsden NHS Foundation Trust, 203 Fulham Rd, Chelsea, London, UK
| | - P Lockwood
- Clinical and Medical Sciences Research Hub, School of Allied Health Professions, Canterbury Christ Church University, Kent, UK.
| | - G Dolbear
- Clinical and Medical Sciences Research Hub, School of Allied Health Professions, Canterbury Christ Church University, Kent, UK
| |
Collapse
|
292
|
Chiew M, Graedel NN, Miller KL. Recovering task fMRI signals from highly under-sampled data with low-rank and temporal subspace constraints. Neuroimage 2018; 174:97-110. [PMID: 29501875 PMCID: PMC5953310 DOI: 10.1016/j.neuroimage.2018.02.062] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 02/26/2018] [Accepted: 02/28/2018] [Indexed: 01/08/2023] Open
Abstract
Recent developments in highly accelerated fMRI data acquisition have employed low-rank and/or sparsity constraints for image reconstruction, as an alternative to conventional, time-independent parallel imaging. When under-sampling factors are high or the signals of interest are low-variance, however, functional data recovery can be poor or incomplete. We introduce a method for improving reconstruction fidelity using external constraints, like an experimental design matrix, to partially orient the estimated fMRI temporal subspace. Combining these external constraints with low-rank constraints introduces a new image reconstruction model that is analogous to using a mixture of subspace-decomposition (PCA/ICA) and regression (GLM) models in fMRI analysis. We show that this approach improves fMRI reconstruction quality in simulations and experimental data, focusing on the model problem of detecting subtle 1-s latency shifts between brain regions in a block-design task-fMRI experiment. Successful latency discrimination is shown at acceleration factors up to R = 16 in a radial-Cartesian acquisition. We show that this approach works with approximate, or not perfectly informative constraints, where the derived benefit is commensurate with the information content contained in the constraints. The proposed method extends low-rank approximation methods for under-sampled fMRI data acquisition by leveraging knowledge of expected task-based variance in the data, enabling improvements in the speed and efficiency of fMRI data acquisition without the loss of subtle features.
Collapse
Affiliation(s)
- Mark Chiew
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom.
| | - Nadine N Graedel
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom
| | - Karla L Miller
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom
| |
Collapse
|
293
|
Quantitative Perfusion Analysis of the Rectum Using Golden-Angle Radial Sparse Parallel Magnetic Resonance Imaging: Initial Experience and Comparison to Time-Resolved Angiography With Interleaved Stochastic Trajectories. Invest Radiol 2018. [PMID: 28622248 DOI: 10.1097/rli.0000000000000397] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVES Purpose of this study was to compare the quality of perfusion maps obtained from prototypical free-breathing magnetic resonance imaging (MRI) with continuous golden-angle radial sampling and iterative reconstruction (GRASP) to conventional acquisition using time-resolved angiography with interleaved stochastic trajectories (TWIST) in patients with rectal cancer. MATERIAL AND METHODS Forty cases were included for retrospective analysis. Twenty of the patients received routine multiparametric MRI at 3 T for rectal cancer staging, including perfusion measurement with GRASP or TWIST (10 patients for each technique, including 5 prechemoradiation and 5 postchemoradiation). Twenty patients without history of rectal disease served as control group (10 GRASP, 10 TWIST). GRASP images were reconstructed at temporal resolution of 3.45 seconds (21 spokes/frame). A voxel-by-voxel deconvolution approach was used to determine rectal plasma flow (mL/100 mL per minute). Regions of interest were placed at 3 levels within the tumor and normal rectum (lower, middle, and upper part). The quality of morphologic images, perfusion maps, and arterial input function were scored by 2 blinded radiologists. Independent t tests were applied. RESULTS Three patients of the TWIST control group had to be excluded due to technical failure of the sequence. Significantly higher scores for the perfusion maps and arterial input functions (total cohort) were obtained using GRASP (P < 0.05). Artifacts in the perfusion maps were rated significantly lower than for TWIST (P < 0.05). In the healthy rectum cohort, the average plasma flow of normal rectal wall was 31.78 ± 7.39 mL/100 mL per minute with GRASP, compared with 77.62 ± 34.08 mL/100 mL per minute with TWIST, indicating much lower variance for GRASP. Plasma flow values obtained with both methods enabled distinguishing between normal rectal wall and rectal cancer, both before and after chemoradiation. Morphologic image quality was generally higher with GRASP (P < 0.01). CONCLUSIONS GRASP perfusion imaging can distinguish between normal rectum and rectal cancers with higher image quality and less variance than TWIST. Additional morphologic assessment with high spatial resolution from the GRASP acquisition may increase the accuracy and diagnostic confidence of the examination.
Collapse
|
294
|
Kowalik GT, Steeden JA, Atkinson D, Montalt-Tordera J, Mortensen KH, Muthurangu V. Golden ratio stack of spirals for flexible angiographic imaging: Proof of concept in congenital heart disease. Magn Reson Med 2018; 81:90-101. [PMID: 29802643 DOI: 10.1002/mrm.27353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 04/19/2018] [Accepted: 04/19/2018] [Indexed: 11/11/2022]
Abstract
PURPOSE In this study, a golden ratio stack of spiral (GRASS) sequence that used both golden step and golden angle ordering was implemented. The aim was to demonstrate that GRASS acquisitions could be flexibly reconstructed as both cardiac-gated and time-resolved angiograms. METHODS Image quality of time-resolved and cardiac-gated reconstructions of the GRASS sequence were compared to 3 conventional stack of spirals (SoS) acquisitions in an in silico model. In 10 patients, the GRASS sequence was compared to conventional breath hold angiography (BH-MRA) in terms of image quality and for vessel measurement. Vessel measurements were also compared to cine images. RESULTS In the cardiac-gated in silico model, the image quality of GRASS was superior to regular and golden-angle with regular step SoS approaches. In the time-resolved model, GRASS image quality was comparable to the golden-angle with regular step technique and superior to regular SoS acquisitions. In patients, there was no difference in qualitative image scores between GRASS and BH-MRA, but SNR was lower. There was good agreement in vessel measurements between the GRASS reconstructions and conventional MR techniques (BH-MRA: 29.8 ± 5.6 mm, time-resolved GRASS-MRA: 29.9 ± 5.4 mm, SSFP diastolic: 29.4 ± 5.8 mm, cardiac-gated GRASS-MRA diastolic: 29.5 ± 5.5 mm, P > 0.87). CONCLUSION We have demonstrated that the GRASS acquisition enables flexible reconstruction of the same raw data as both time-resolved and cardiac-gated volumes. This may enable better interrogation of anatomy in congenital heart disease.
Collapse
Affiliation(s)
- Grzegorz Tomasz Kowalik
- UCL Institute of Cardiovascular Science, Centre for Cardiovascular Imaging, London, United Kingdom
| | - Jennifer Anne Steeden
- UCL Institute of Cardiovascular Science, Centre for Cardiovascular Imaging, London, United Kingdom
| | - David Atkinson
- University College London, Centre for Medical Imaging, Wolfson House, London, United Kingdom
| | - Javier Montalt-Tordera
- UCL Institute of Cardiovascular Science, Centre for Cardiovascular Imaging, London, United Kingdom
| | | | - Vivek Muthurangu
- UCL Institute of Cardiovascular Science, Centre for Cardiovascular Imaging, London, United Kingdom.,Great Ormond Street Hospital for Children, Great Ormond Street, London, United Kingdom
| |
Collapse
|
295
|
Comprehensive Dynamic Contrast-Enhanced 3D Magnetic Resonance Imaging of the Breast With Fat/Water Separation and High Spatiotemporal Resolution Using Radial Sampling, Compressed Sensing, and Parallel Imaging. Invest Radiol 2018; 52:583-589. [PMID: 28398929 DOI: 10.1097/rli.0000000000000375] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES The aim of this study was to assess the applicability of Dixon radial volumetric encoding (Dixon-RAVE) for comprehensive dynamic contrast-enhanced 3D magnetic resonance imaging (MRI) of the breast using a combination of radial sampling, model-based fat/water separation, compressed sensing, and parallel imaging. MATERIALS AND METHODS In this Health Insurance Portability and Accountability Act-compliant prospective study, 24 consecutive patients underwent bilateral breast MRI, including both conventional fat-suppressed and non-fat-suppressed precontrast T1-weighted volumetric interpolated breath-hold examination (VIBE). Afterward, 1 continuous Dixon-RAVE scan was performed with the proposed approach while the contrast agent was injected. This scan was immediately followed by the acquisition of 4 conventional fat-saturated VIBE scans. From the comprehensive Dixon-RAVE data set, different image contrasts were reconstructed that are comparable to the separate conventional VIBE scans.Two radiologists independently rated image quality, conspicuity of fibroglandular tissue from fat (FG), and degree of fat suppression (FS) on a 5-point Likert-type scale for the following 3 comparisons: precontrast fat-suppressed (pre-FS), precontrast non-fat-suppressed (pre-NFS), and dynamic fat-suppressed (dyn-FS) images. RESULTS When scores were averaged over readers, Dixon-RAVE achieved significantly higher (P < 0.001) degree of fat suppression compared with VIBE, for both pre-FS (4.25 vs 3.67) and dyn-FS (4.10 vs 3.46) images. Although Dixon-RAVE had lower image quality score compared with VIBE for the pre-FS (3.56 vs 3.67, P = 0.490), the pre-NFS (3.54 vs 3.88, P = 0.009), and the dyn-FS images (3.06 vs 3.67, P < 0.001), acceptable or better diagnostic quality was achieved (score ≥ 3). The FG score for Dixon-RAVE in comparison to VIBE was significantly higher for the pre-FS image (4.23 vs 3.85, P = 0.044), lower for the pre-NFS image (3.98 vs 4.25, P = 0.054), and higher for the dynamic fat-suppressed image (3.90 vs 3.85, P = 0.845). CONCLUSIONS Dixon-RAVE can serve as a one-stop-shop approach for comprehensive T1-weighted breast MRI with diagnostic image quality, high spatiotemporal resolution, reduced overall scan time, and improved fat suppression compared with conventional imaging.
Collapse
|
296
|
Zhang B, Sodickson DK, Cloos MA. A high-impedance detector-array glove for magnetic resonance imaging of the hand. Nat Biomed Eng 2018; 2:570-577. [PMID: 30854251 PMCID: PMC6405230 DOI: 10.1038/s41551-018-0233-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Densely packed resonant structures used for magnetic resonance imaging (MRI), such as nuclear magnetic resonance phased-array detectors, suffer from resonant inductive coupling, which restricts coil design to fixed geometries, imposes performance limitations, and narrows the scope of MRI experiments to motionless subjects. Here, we report the design of high-impedance detectors, and the fabrication and performance of a wearable detector array for MRI of the hand, that cloak themselves from electrodynamic interactions with neighboring elements. We experimentally verified that the detectors do not suffer from signal-to-noise degradation mechanisms typically observed with the use of traditional low-impedance elements. The detectors are adaptive and can accommodate movement, providing access to the imaging of soft-tissue biomechanics with unprecedented flexibility. The design of the wearable detector glove exemplifies the potential of high-impedance detectors in enabling a wide range of applications that are not well suited to traditional coil designs.
Collapse
Affiliation(s)
- Bei Zhang
- Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine, New York, NY, USA. .,Center for Advanced Imaging Innovation and Research, New York University School of Medicine, New York, NY, USA.
| | - Daniel K Sodickson
- Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine, New York, NY, USA.,Center for Advanced Imaging Innovation and Research, New York University School of Medicine, New York, NY, USA.,Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY, USA.,Tech4Health, NYU Langone Health, New York, NY, USA
| | - Martijn A Cloos
- Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine, New York, NY, USA. .,Center for Advanced Imaging Innovation and Research, New York University School of Medicine, New York, NY, USA. .,Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY, USA. .,Tech4Health, NYU Langone Health, New York, NY, USA.
| |
Collapse
|
297
|
Monitoring skeletal muscle chronic fatty degenerations with fast T1-mapping. Eur Radiol 2018; 28:4662-4668. [PMID: 29713767 DOI: 10.1007/s00330-018-5433-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/05/2018] [Accepted: 03/16/2018] [Indexed: 10/17/2022]
Abstract
OBJECTIVES To develop a fast, high-resolution T1-mapping sequence dedicated to skeletal muscle imaging, and to evaluate the potential of T1 as a robust and sensitive biomarker for the monitoring of chronic fatty degenerations in a dystrophic disease. METHODS The magnetic resonance imaging sequence consisted of the acquisition of a 1,000-radial-spokes FLASH echo-train following magnetisation inversion, resulting in 10s scan time per slice. Temporal image series were reconstructed using compressed sensing and T1 maps were computed using Bloch simulations. Ten healthy volunteers and 30 patients suffering from Becker muscular dystrophy (BMD) participated in this prospective study, in order to evaluate the repeatability, the precision and the sensitivity of the proposed approach. Intramuscular fat fraction (FF) was also measured using a standard three-point Dixon method. The protocol was approved by a local ethics committee. RESULTS The mean T1 evaluated in the thighs muscles of healthy volunteers was 1,199 ± 45 ms, with a coefficient of reproducibility of 2.3%. Mean T1 values were statistically decreased in the thighs of BMD patients and were linearly correlated with intramuscular FF (R = -0.98). CONCLUSIONS T1-mapping is a good candidate for fast, sensitive and quantitative monitoring of fatty infiltrations in neuromuscular disorders. KEY POINTS • A T1 mapping sequence dedicated to skeletal muscle imaging was implemented. • The acquisition time was 10 s per slice. • Muscle T1 values were significantly decreased in dystrophic muscles compared to healthy muscles. • T1 values correlated with intramuscular fat fraction measured by three-point Dixon. • T1 represents an alternative biomarker for monitoring fatty infiltrations in neuromuscular disorders.
Collapse
|
298
|
Ruppert K, Amzajerdian F, Hamedani H, Xin Y, Loza L, Achekzai T, Duncan IF, Profka H, Siddiqui S, Pourfathi M, Cereda MF, Kadlecek S, Rizi RR. Rapid assessment of pulmonary gas transport with hyperpolarized 129Xe MRI using a 3D radial double golden-means acquisition with variable flip angles. Magn Reson Med 2018; 80:2439-2448. [PMID: 29682792 DOI: 10.1002/mrm.27217] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 03/20/2018] [Accepted: 03/24/2018] [Indexed: 12/15/2022]
Abstract
PURPOSE To demonstrate the feasibility of using a 3D radial double golden-means acquisition with variable flip angles to monitor pulmonary gas transport in a single breath hold with hyperpolarized xenon-129 MRI. METHODS Hyperpolarized xenon-129 MRI scans with interleaved gas-phase and dissolved-phase excitations were performed using a 3D radial double golden-means acquisition in mechanically ventilated rabbits. The flip angle was either held fixed at 15 ° or 5 °, or it was varied linearly in ascending or descending order between 5 ° and 15 ° over a sampling interval of 1000 spokes. Dissolved-phase and gas-phase images were reconstructed at high resolution (32 × 32 × 32 matrix size) using all 1000 spokes, or at low resolution (22 × 22 × 22 matrix size) using 400 spokes at a time in a sliding-window fashion. Based on these sliding-window images, relative change maps were obtained using the highest mean flip angle as the reference, and aggregated pixel-based changes were tracked. RESULTS Although the signal intensities in the dissolve-phase maps were mostly constant in the fixed flip-angle acquisitions, they varied significantly as a function of average flip angle in the variable flip-angle acquisitions. The latter trend reflects the underlying changes in observed dissolve-phase magnetization distribution due to pulmonary gas uptake and transport. CONCLUSION 3D radial double golden-means acquisitions with variable flip angles provide a robust means for rapidly assessing lung function during a single breath hold, thereby constituting a particularly valuable tool for imaging uncooperative or pediatric patient populations.
Collapse
Affiliation(s)
- Kai Ruppert
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Faraz Amzajerdian
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hooman Hamedani
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Yi Xin
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Luis Loza
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Tahmina Achekzai
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ian F Duncan
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Harrilla Profka
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sarmad Siddiqui
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mehrdad Pourfathi
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Maurizio F Cereda
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Stephen Kadlecek
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Rahim R Rizi
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
299
|
Benkert T, Mugler JP, Rigie DS, Sodickson DK, Chandarana H, Block KT. Hybrid T 2 - and T 1 -weighted radial acquisition for free-breathing abdominal examination. Magn Reson Med 2018; 80:1935-1948. [PMID: 29656522 DOI: 10.1002/mrm.27200] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 02/14/2018] [Accepted: 03/09/2018] [Indexed: 12/13/2022]
Abstract
PURPOSE Most clinical MR examinations require acquisition of different image contrasts. For abdominal exams, the scans are conventionally performed as separate acquisitions using respiratory gating or repeated breath holding, which can be time-inefficient and challenging for patients. Here, a hybrid imaging approach is described that creates T2 - and T1 -weighted images from a single scan and allows for free-breathing acquisition. THEORY AND METHODS T2 -weighted data is collected using 3D fast spin-echo (FSE) acquisition with motion-robust radial stack-of-stars sampling. The wait time between the FSE trains is used to acquire T1 -weighted gradient-echo (GRE) data. Improved robustness is achieved by extracting a respiratory signal from the GRE data and using it for motion-weighted reconstruction. RESULTS As validated in simulations and phantom scans, GRE acquisition in the wait time has minor effect on the signal strength and contrast. Volunteer scans at 1.5T showed that T2 - and T1 -weighted hybrid imaging is feasible during free-breathing. Furthermore, it has been demonstrated in a patient that hybrid imaging with T1 -weighted Dixon acquisition is possible. CONCLUSION The described hybrid sequence enables comprehensive T2 - and T1 -weighted imaging in a single scan. In addition to free-breathing abdominal examination, it promises value for clinical applications that are frequently affected by motion artifacts.
Collapse
Affiliation(s)
- Thomas Benkert
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, New York.,Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York
| | - John P Mugler
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia
| | - David S Rigie
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, New York.,Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York
| | - Daniel K Sodickson
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, New York.,Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York
| | - Hersh Chandarana
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, New York.,Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York
| | - Kai Tobias Block
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, New York.,Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York
| |
Collapse
|
300
|
Single-shot late Gd enhancement imaging of myocardial infarction with retrospectively adjustable contrast and heart-phase. Magn Reson Imaging 2018; 47:48-53. [DOI: 10.1016/j.mri.2017.10.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 10/23/2017] [Accepted: 10/31/2017] [Indexed: 12/12/2022]
|