251
|
Deposition of Copper on Poly(Lactide) Non-Woven Fabrics by Magnetron Sputtering-Fabrication of New Multi-Functional, Antimicrobial Composite Materials. MATERIALS 2020; 13:ma13183971. [PMID: 32911707 PMCID: PMC7558068 DOI: 10.3390/ma13183971] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 12/21/2022]
Abstract
The paper presents the method of synthesis; physico-technical and biological characterization of a new composite material (PLA–Cu0) obtained by sputter deposition of copper on melt-blown poly(lactide) (PLA) non-woven fabrics. The analysis of these biofunctionalized non-woven fabrics included: ultraviolet/visible (UV/VIS) transmittance; scanning electron microscopy/energy-dispersive spectroscopy (SEM/EDS); attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy; ability to block UV radiation; filtration parameters (air permeability); and tensile testing. The functionalized non-woven composite materials were subjected to antimicrobial tests against colonies of Gram-negative (Escherichia coli), Gram-positive (Staphylococcus aureus) bacteria and antifungal tests against the Chaetomium globosum fungal mould species. The antibacterial and antifungal activity of PLA–Cu0 suggests potential applications as an antimicrobial material.
Collapse
|
252
|
Zinc-loaded palygorskite nanocomposites for catheter coating with excellent antibacterial and anti-biofilm properties. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124965] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
253
|
Goel S, Hawi S, Goel G, Thakur VK, Agrawal A, Hoskins C, Pearce O, Hussain T, Upadhyaya HM, Cross G, Barber AH. Resilient and agile engineering solutions to address societal challenges such as coronavirus pandemic. MATERIALS TODAY. CHEMISTRY 2020; 17:100300. [PMID: 32835154 PMCID: PMC7254035 DOI: 10.1016/j.mtchem.2020.100300] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/17/2020] [Accepted: 05/19/2020] [Indexed: 05/02/2023]
Abstract
The world is witnessing tumultuous times as major economic powers including the US, UK, Russia, India, and most of Europe continue to be in a state of lockdown. The worst-hit sectors due to this lockdown are sales, production (manufacturing), transport (aerospace and automotive) and tourism. Lockdowns became necessary as a preventive measure to avoid the spread of the contagious and infectious "Coronavirus Disease 2019" (COVID-19). This newly identified disease is caused by a new strain of the virus being referred to as Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS CoV-2; formerly called 2019-nCoV). We review the current medical and manufacturing response to COVID-19, including advances in instrumentation, sensing, use of lasers, fumigation chambers and development of novel tools such as lab-on-the-chip using combinatorial additive and subtractive manufacturing techniques and use of molecular modelling and molecular docking in drug and vaccine discovery. We also offer perspectives on future considerations on climate change, outsourced versus indigenous manufacturing, automation, and antimicrobial resistance. Overall, this paper attempts to identify key areas where manufacturing can be employed to address societal challenges such as COVID-19.
Collapse
Affiliation(s)
- Saurav Goel
- School of Engineering, London South Bank University, 103 Borough Road, London, SE10AA, UK
- School of Aerospace, Transport and Manufacturing, Cranfield University, Bedford, MK43 0AL, UK
- Department of Mechanical Engineering, Shiv Nadar University, Gautam Budh Nagar, 201314, India
| | - Sara Hawi
- School of Aerospace, Transport and Manufacturing, Cranfield University, Bedford, MK43 0AL, UK
| | - Gaurav Goel
- School of Engineering, London South Bank University, 103 Borough Road, London, SE10AA, UK
| | - Vijay Kumar Thakur
- Department of Mechanical Engineering, Shiv Nadar University, Gautam Budh Nagar, 201314, India
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, Edinburgh, EH9 3JG, UK
| | - Anupam Agrawal
- Mays Business School, Texas A&M University, College Station, TX, USA
| | - Clare Hoskins
- Pure and Applied Chemistry, University of Strathclyde, Glasgow, G1 1RD, UK
| | - Oliver Pearce
- Orthopaedic Department, Milton Keynes University Hospital, MK65 LD, UK
| | - Tanvir Hussain
- Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK
| | - Hari M Upadhyaya
- School of Engineering, London South Bank University, 103 Borough Road, London, SE10AA, UK
| | - Graham Cross
- Adama Innovations Limited, Dublin 2, Ireland
- CRANN Nanoscience Institute, School of Physics, Trinity College, Dublin 2, Ireland
| | - Asa H Barber
- School of Engineering, London South Bank University, 103 Borough Road, London, SE10AA, UK
| |
Collapse
|
254
|
Green and cost-effective synthesis of copper nanoparticles by extracts of non-edible and waste plant materials from Vaccinium species: Characterization and antimicrobial activity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 119:111453. [PMID: 33321590 DOI: 10.1016/j.msec.2020.111453] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/10/2020] [Accepted: 08/25/2020] [Indexed: 12/22/2022]
Abstract
The aim of this work was the green synthesis of copper nanoparticles (Cu-NPs) using aqueous extracts of (i) bilberry (Vaccinium myrtillus L.) waste residues from the production of fruit juices and (ii) non-edible "false bilberry" fruits (Vaccinium uliginosum L. subsp. gaultherioides). Different cupric salts (CuCl2, Cu(CH3COO)2 and Cu(NO3)2) were used for the synthesis. The formation of stable nanoparticles (CuNPs) was assessed by transmission electron microscopy and the oxidation state of copper in these aggregates was followed by X-ray photoelectron spectroscopy. The polyphenol composition of the extracts was characterized, before and after the synthesis, using spectrophotometric methods (i.e. total soluble polyphenols and total monomeric anthocyanins) and high-performance liquid chromatography coupled with tandem mass spectrometry (i.e. individual anthocyanins). Polyphenol concentration in the extracts was found to decrease after the synthesis, indicating their active participation to the processes, which led to the formation of Cu-NPs. The antimicrobial activity of Cu-NPs, berry extracts, and cupric ion solutions were analysed by broth microdilution and time-kill assays, on prokaryotic and eukaryotic models. The antimicrobial activity of Cu-NPs, especially those derived from bilberry waste residues, appeared to be higher for both Gram-negative and Gram-positive bacteria, and for fungi, compared to the ones of its single components (cupric salts and berry extracts). Therefore, Cu-NPs from the green synthesis here proposed can be considered as a cost-effective sanitization tool with a wide spectrum of action.
Collapse
|
255
|
Dual-function membranes based on alginate/methyl cellulose composite for control drug release and proliferation enhancement of fibroblast cells. Int J Biol Macromol 2020; 164:2831-2841. [PMID: 32853615 DOI: 10.1016/j.ijbiomac.2020.08.171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/29/2020] [Accepted: 08/21/2020] [Indexed: 12/31/2022]
Abstract
Membranes based on natural polymers are highly promising therapies for skin damaged sites as they can mimic its biological microstructure to support the fibroblasts cells survival and proliferation. In addition, these membranes could be loaded with active molecules that help in skin regeneration and eliminate the potential bacterial infection. This research aims to formulate novel medicated membranes for controlled release and cytocompatibility elevation of fibroblast cells for engineering of soft tissue. Pre-formulation researches have been conducted for membranes of sodium alginate (Alg)/methyl cellulose (MC) that used loaded with undoped, Bi doped and Bi, Cu co-doped SrTiO3 using solvent casting technique. In addition, another group of these membranes were loaded with DOXycycline antibiotic (DOX) as model drug as well as for eliminating the potential bacterial infections. The prepared membranes were evaluated by XRD, SEM-EDX, FTIR, Zetasizer, and swelling behaviour was also tested. Profiles of the released drug were determined using phosphate-buffered saline (PBS) (pH 7.4) at 37 °C for 30 days. The investigation of the cytocompatibility and proliferation of fibroblast cells with the prepared membranes were conducted. The XRD, FTIR and SEM data recognised the possible interaction that takes place among Alg and MC, through presence of hydrogen bonds. Existence of the nano-particles within the membrane polymer matrix enhanced the membrane stability and enhanced the drug release rate (from 20 to 45%). Medication release mechanism elucidated that DOX was released from all the fabricated membranes through the relaxation of polymer matrix that takes place after swelling. The filler type and/or dopant type possess no remarkable influence on the cytotoxicity of the membranes against the investigated cells when compared to their individual influence on the same cells. Cells attachments results have revealed an impressive effect for DOX-loaded membranes on the cells affinity and growth. These membranes are recommended for treatments of skin infections.
Collapse
|
256
|
Jang J, Lee JM, Oh SB, Choi Y, Jung HS, Choi J. Development of Antibiofilm Nanocomposites: Ag/Cu Bimetallic Nanoparticles Synthesized on the Surface of Graphene Oxide Nanosheets. ACS APPLIED MATERIALS & INTERFACES 2020; 12:35826-35834. [PMID: 32667802 DOI: 10.1021/acsami.0c06054] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
There are numerous issues associated with bacteria, particularly biofilms, which exhibit a strong resistance to antibiotics. This is currently considered an urgent global issue owing to the lack of effective treatments. Graphene oxide (GO) nanosheets are two-dimensional carbon materials that are available as a substrate for metal nanoparticles and have a lower release rate of metal ions than free metal nanoparticles by regulating the oxidation of metal nanoparticles, which is known to reduce the cytotoxicity caused by the free metal nanoparticles. Over centuries, metal particles, including Ag and Cu, have been considered as antibacterial agents. In this study, Ag and Cu bimetallic nanoparticles on a GO surface (Ag/Cu/GO) were synthesized using a chemical reduction method, and their antimicrobial effects against several bacterial species were demonstrated. Ag/Cu/GO nanocomposites were characterized by transmission electron microscopy and energy-dispersive X-ray spectroscopy. The in vitro cytotoxicity of an Ag/Cu/GO nanocomposite was evaluated in human dermal fibroblasts, and its antibacterial activity against Methylobacterium spp., Sphingomonas spp., and Pseudomonas aeruginosa (P. aeruginosa) was also tested. The synthesized Ag/Cu/GO nanocomposite was able to eradicate all three bacterial species at a concentration that was harmless to human cells. In addition, Ag/Cu/GO successfully removed a biofilm originated from the culturing of P. aeruginosa in a microchannel with a dynamic flow. In a small-animal model, a biofilm-infected skin wound was healed quickly and efficiently by the topical application of Ag/Cu/GO. The Ag/Cu/GO nanocomposites reported in this study could be used to effectively remove antibiotic-resistant bacteria and treat diseases in the skin or wound due to bacterial infections and biofilm formation.
Collapse
Affiliation(s)
- Jaehee Jang
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Jong-Min Lee
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Oral Science Research Center, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
| | - Sang-Bin Oh
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Oral Science Research Center, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
| | - Yonghyun Choi
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Han-Sung Jung
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Oral Science Research Center, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
| | - Jonghoon Choi
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
257
|
Moreira Martins PM, Gong T, de Souza AA, Wood TK. Copper Kills Escherichia coli Persister Cells. Antibiotics (Basel) 2020; 9:antibiotics9080506. [PMID: 32806704 PMCID: PMC7459663 DOI: 10.3390/antibiotics9080506] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 02/04/2023] Open
Abstract
Due to their reduced metabolism, persister cells can survive most antimicrobial treatments, which usually rely on corrupting active biochemical pathways. Therefore, molecules that kill bacterial persisters should function in a metabolism-independent manner. Some anti-persister compounds have been found previously, such as the DNA-crosslinkers mitomycin C and cisplatin, but more effective and lower cost alternatives are needed. Copper alloys have been used since ancient times due to their antimicrobial properties, and they are still used in agriculture to control plant bacterial diseases. By stopping transcription with rifampicin and by treating with ampicillin to remove non-persister cells, we created a population that consists solely of Escherichia coli persister cells. Using this population of persister cells, we demonstrate that cupric compounds kill E. coli persister cells. Hence, copper ions may be used in controlling the spread of important bacterial strains that withstand treatment with conventional antimicrobials by forming persister cells.
Collapse
Affiliation(s)
- Paula Maria Moreira Martins
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802, USA; (P.M.M.M.); (T.G.)
- Biotechnology Lab, Centro de Citricultura Sylvio Moreira, Instituto Agronômico de Campinas, Cordeirópolis-SP 13490-970, Brazil;
| | - Ting Gong
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802, USA; (P.M.M.M.); (T.G.)
| | - Alessandra A. de Souza
- Biotechnology Lab, Centro de Citricultura Sylvio Moreira, Instituto Agronômico de Campinas, Cordeirópolis-SP 13490-970, Brazil;
| | - Thomas K. Wood
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802, USA; (P.M.M.M.); (T.G.)
- Correspondence:
| |
Collapse
|
258
|
Hutasoit N, Kennedy B, Hamilton S, Luttick A, Rahman Rashid RA, Palanisamy S. Sars-CoV-2 (COVID-19) inactivation capability of copper-coated touch surface fabricated by cold-spray technology. MANUFACTURING LETTERS 2020; 25:93-97. [PMID: 32904558 PMCID: PMC7455544 DOI: 10.1016/j.mfglet.2020.08.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/31/2020] [Accepted: 08/19/2020] [Indexed: 05/06/2023]
Abstract
In this work, cold-spray technique was employed for rapid coating of copper on in-use steel parts. The primary intention was to alleviate the tendency of SARS-CoV-2 (COVID-19) virus to linger longer on touch surfaces that attract high-to-medium volume human contact, such as the push plates used in publicly accessed buildings and hospitals. The viricidal activity test revealed that 96% of the virus was inactivated within 2-hrs, which was substantially shorter than the time required for stainless steel to inactivate the virus to the same level. Moreover, it was found that the copper-coated samples significantly reduces the lifetime of COVID-19 virus to less than 5-hrs. The capability of the cold-spray technique to generate antiviral copper coating on the existing touch surface eliminates the need for replacing the entire touch surface application with copper material. Furthermore, with a short manufacturing time to produce coatings, the re-deployment of copper-coated parts can be accomplished in minutes, thereby resulting in significant cost savings. This work showcases the capability of cold-spray as a potential copper-coating solution for different in-use parts and components that can act as sources for the spread of the virus.
Collapse
Affiliation(s)
- Novana Hutasoit
- Department of Mechanical and Product Design Engineering, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | | | | | | | - Rizwan Abdul Rahman Rashid
- Department of Mechanical and Product Design Engineering, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Suresh Palanisamy
- Department of Mechanical and Product Design Engineering, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| |
Collapse
|
259
|
Ikram M, Umar E, Raza A, Haider A, Naz S, Ul-Hamid A, Haider J, Shahzadi I, Hassan J, Ali S. Dye degradation performance, bactericidal behavior and molecular docking analysis of Cu-doped TiO 2 nanoparticles. RSC Adv 2020; 10:24215-24233. [PMID: 35516171 PMCID: PMC9055104 DOI: 10.1039/d0ra04851h] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 06/18/2020] [Indexed: 11/21/2022] Open
Abstract
Copper-doped TiO2 was prepared with a sol-gel chemical method. Various concentrations (3, 6, and 9 wt%) of Cu dopant were employed. Several techniques were implemented to assess the structural, optical, morphological and chemical properties of the synthesized samples. Evaluation of elemental composition using SEM-EDS and XRF techniques showed the presence of dopant element in the prepared samples. XRD analysis confirmed the presence of anatase (TiO2) phase with interstitial doping. Incorporation of dopant was observed to enhance the crystallinity and increase the crystallite size of the synthesized products. SAED profiles revealed a high degree of crystallinity in the prepared specimens, which was also evident in the XRD spectra. Optical properties studied using UV-vis spectroscopy depicted a shift of the maximum absorption to the visible region (redshift) that signified a reduction in the band gap energy of Cu-doped TiO2 samples. Examination of morphological features with scanning and high-resolution transmission electron microscopes revealed the formation of spherical nanoparticles with a tendency to agglomerate with increasing dopant concentration. Molecular vibrations and the formation of Ti-O-Ti bonds were revealed through FTIR spectra. PL spectroscopy recorded the trapping efficiency and migration of charge carriers, which exhibited electron-hole recombination behavior. Doped nanostructures showed enhanced bactericidal performance and synergism against S. aureus and E. coli. In summary, Cu-doped TiO2 nanostructures were observed to impede bacteria effectively, which is deemed beneficial in overcoming ailments caused by pathogens such as microbial etiologies. Furthermore, molecular docking analysis was conducted to study the interaction of Cu-doped TiO2 nanoparticles with multiple proteins namely β-lactamase (binding score: -4.91 kcal mol-1), ddlB (binding score: -5.67 kcal mol-1) and FabI (binding score: -6.13 kcal mol-1) as possible targets with active site residues. Dye degradation/reduction of control and Cu-doped samples were studied through absorption spectroscopy. The obtained outcomes of the performed experiment indicated that the photocatalytic activity of Cu-TiO2 enhanced with increasing dopant concentration, which is thought to be due to a decreased rate of electron-hole pair recombination. Consequently, it is suggested that Cu-TiO2 can be exploited as an effective candidate for antibacterial and dye degradation applications.
Collapse
Affiliation(s)
- M Ikram
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore Punjab 54000 Pakistan +923005406667
| | - E Umar
- Department of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University 14 Ali Road Lahore Pakistan
| | - A Raza
- Department of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University 14 Ali Road Lahore Pakistan
| | - A Haider
- Department of Clinical Medicine and Surgery, University of Veterinary and Animal Sciences Lahore 54000 Punjab Pakistan
| | - S Naz
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences Tianjin 300308 China
| | - A Ul-Hamid
- Center for Engineering Research, Research Institute, King Fahd University of Petroleum & Minerals Dhahran 31261 Saudi Arabia
| | - J Haider
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences Tianjin 300308 China
| | - I Shahzadi
- College of Pharmacy, University of the Punjab Lahore 54000 Pakistan
| | - J Hassan
- Department of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University 14 Ali Road Lahore Pakistan
| | - S Ali
- Department of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University 14 Ali Road Lahore Pakistan
| |
Collapse
|
260
|
Hausrath AC, Ramirez NA, Ly AT, McEvoy MM. The bacterial copper resistance protein CopG contains a cysteine-bridged tetranuclear copper cluster. J Biol Chem 2020; 295:11364-11376. [PMID: 32571874 DOI: 10.1074/jbc.ra120.013907] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/08/2020] [Indexed: 01/31/2023] Open
Abstract
CopG is an uncharacterized protein ubiquitous in Gram-negative bacteria whose gene frequently occurs in clusters of copper resistance genes and can be recognized by the presence of a conserved CxCC motif. To investigate its contribution to copper resistance, here we undertook a structural and biochemical characterization of the CopG protein from Pseudomonas aeruginosa Results from biochemical analyses of CopG purified under aerobic conditions indicate that it is a green copper-binding protein that displays absorbance maxima near 411, 581, and 721 nm and is monomeric in solution. Determination of the three-dimensional structure by X-ray crystallography revealed that CopG consists of a thioredoxin domain with a C-terminal extension that contributes to metal binding. We noted that adjacent to the CxCC motif is a cluster of four copper ions bridged by cysteine sulfur atoms. Structures of CopG in two oxidation states support the assignment of this protein as an oxidoreductase. On the basis of these structural and spectroscopic findings and also genetic evidence, we propose that CopG has a role in interconverting Cu(I) and Cu(II) to minimize toxic effects and facilitate export by the Cus RND transporter efflux system.
Collapse
Affiliation(s)
- Andrew C Hausrath
- Institute for Society and Genetics, University of California, Los Angeles, California, USA.,Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California, USA
| | - Nicholas A Ramirez
- Molecular Biology Institute, University of California, Los Angeles, California, USA
| | - Alan T Ly
- Institute for Society and Genetics, University of California, Los Angeles, California, USA
| | - Megan M McEvoy
- Institute for Society and Genetics, University of California, Los Angeles, California, USA .,Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California, USA.,Molecular Biology Institute, University of California, Los Angeles, California, USA
| |
Collapse
|
261
|
Yaqub A, Malkani N, Shabbir A, Ditta SA, Tanvir F, Ali S, Naz M, Kazmi SAR, Ullah R. Novel Biosynthesis of Copper Nanoparticles Using Zingiber and Allium sp. with Synergic Effect of Doxycycline for Anticancer and Bactericidal Activity. Curr Microbiol 2020; 77:2287-2299. [PMID: 32535649 DOI: 10.1007/s00284-020-02058-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 05/25/2020] [Indexed: 01/28/2023]
Abstract
Copper nanoparticles (CuNPs), due to their cost-effective synthesis, interesting properties, and a wide range of applications in conductive inks, cooling fluids, biomedical field, and catalysis, have attracted the attention of scientific community in recent years. The aim of the present study was to develop and characterize antibacterial and anticancer CuNPs synthesized via chemical and biological methods, and further synthesize CuNPs conjugated with doxycycline to study their synergic effect. During the chemical synthesis, ascorbic acid was used as a stabilizing agent, while Zingiber officinale and Allium sativum-derived extracts were used during the biological methods for synthesis of CuNPs. Characterization of CuNPs was performed by transmission electron microscopy (TEM), UV-visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), and X-ray crystallography (XRD). Antimicrobial evaluation of the nanomaterials against Pseudomonas aeruginosa and Escherichia coli was performed by using disk diffusion method, while anticancer behavior against HeLa and HepG2 cell lines was studied by MTT assay. TEM revealed spherical-shaped nanoparticles with mean size of 22.70 ± 5.67, 35.01 ± 5.84, and 19.02 ± 2.41 nm for CuNPs, Gin-CuNPs, and Gar-CuNPs, respectively, and surface plasmon resonance peaks were obtained at 570 nm, 575 nm, and 610 nm for CuNPs, Gar-CuNPs, and Gin-CuNPs, respectively. The results of FTIR confirmed the consumption of biomolecules from the plant extracts for the synthesis of CuNPs. XRD analysis also confirmed synthesis of CuNPs. Doxycycline-conjugated NPs exhibited more antibacterial effects than doxycycline or CuNPs alone. Copper nanoparticles prepared by biological synthesis are cost-effective and eco-friendly as compared to their chemical counterparts. The chemically synthesized nanoparticles displayed more significant antimicrobial activity when capped with doxycycline than Z. officinale and A. sativum-mediated CuNPs; however, green-synthesized nanoparticles showed greater anticancer activity than their chemical counterparts.
Collapse
Affiliation(s)
- Atif Yaqub
- Department of Zoology, Government College University, Lahore, 54000, Pakistan.
| | - Naila Malkani
- Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Arifa Shabbir
- Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Sarwar Allah Ditta
- Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Fouzia Tanvir
- Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Shaista Ali
- Department of Chemistry, Government College University, Lahore, 54000, Pakistan
| | - Misbah Naz
- Department of Chemistry, Government College University, Lahore, 54000, Pakistan
| | | | - Rehan Ullah
- Department of Zoology, Government College University, Lahore, 54000, Pakistan
| |
Collapse
|
262
|
Understanding the Antipathogenic Performance of Nanostructured and Conventional Copper Cold Spray Material Consolidations and Coated Surfaces. CRYSTALS 2020. [DOI: 10.3390/cryst10060504] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The role of high strain rate and severe plastic deformation, microstructure, electrochemical behavior, surface chemistry and surface roughness were characterized for two copper cold spray material consolidations, which were produced from conventionally gas-atomized copper powder as well as spray-dried copper feedstock, during the course of this work. The motivation underpinning this work centers upon the development of a more robust understanding of the microstructural features and properties of the conventional copper and nanostructured copper coatings as they relate to antipathogenic contact killing and inactivation applications. Prior work has demonstrated greater antipathogenic efficacy with respect to the nanostructured coating versus the conventional coating. Thus, microstructural analysis was performed in order to establish differences between the two coatings that their respective pathogen kill rates could be attributed to. Results from advanced laser-induced projectile impact testing, X-ray diffraction, scanning electron microscopy, electron backscatter diffraction, scanning transmission microscopy, nanoindentation, energy-dispersive X-ray spectroscopy, nanoindentation, confocal microscopy, atomic force microscopy, linear polarization, X-ray photoelectron spectroscopy, electrochemical impedance spectroscopy and copper ion release assaying were performed during the course of this research.
Collapse
|
263
|
Maertens L, Coninx I, Claesen J, Leys N, Matroule JY, Van Houdt R. Copper Resistance Mediates Long-Term Survival of Cupriavidus metallidurans in Wet Contact With Metallic Copper. Front Microbiol 2020; 11:1208. [PMID: 32582116 PMCID: PMC7284064 DOI: 10.3389/fmicb.2020.01208] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/12/2020] [Indexed: 11/13/2022] Open
Abstract
Metallic copper to combat bacterial proliferation in drinking water systems is being investigated as an attractive alternative to existing strategies. A potential obstacle to this approach is the induction of metal resistance mechanisms in contaminating bacteria, that could severely impact inactivation efficacy. Thus far, the role of these resistance mechanisms has not been studied in conditions relevant to drinking water systems. Therefore, we evaluated the inactivation kinetics of Cupriavidus metallidurans CH34 in contact with metallic copper in drinking water. Viability and membrane permeability were examined for 9 days through viable counts and flow cytometry. After an initial drop in viable count, a significant recovery was observed starting after 48 h. This behavior could be explained by either a recovery from an injured/viable-but-non-culturable state or regrowth of surviving cells metabolizing lysed cells. Either hypothesis would necessitate an induction of copper resistance mechanisms, since no recovery was seen in a CH34 mutant strain lacking metal resistance mechanisms, while being more pronounced when copper resistance mechanisms were pre-induced. Interestingly, no biofilms were formed on the copper surface, while extensive biofilm formation was observed on the stainless steel control plates. When CH34 cells in water were supplied with CuSO4, a similar initial decrease in viable counts was observed, but cells recovered fully after 7 days. In conclusion, we have shown that long-term bacterial survival in the presence of a copper surface is possible upon the induction of metal resistance mechanisms. This observation may have important consequences in the context of the increasing use of copper as an antimicrobial surface, especially in light of potential co-selection for metal and antimicrobial resistance.
Collapse
Affiliation(s)
- Laurens Maertens
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- Research Unit in Microorganisms Biology (URBM), Narilis Institute, University of Namur, Namur, Belgium
| | - Ilse Coninx
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Jürgen Claesen
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Natalie Leys
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Jean-Yves Matroule
- Research Unit in Microorganisms Biology (URBM), Narilis Institute, University of Namur, Namur, Belgium
| | - Rob Van Houdt
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| |
Collapse
|
264
|
Larrañeta E, Dominguez-Robles J, Lamprou DA. Additive Manufacturing Can Assist in the Fight Against COVID-19 and Other Pandemics and Impact on the Global Supply Chain. 3D PRINTING AND ADDITIVE MANUFACTURING 2020; 7:100-103. [PMID: 36655198 PMCID: PMC9586229 DOI: 10.1089/3dp.2020.0106] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The high demand on medical devices and personal protective equipment (PPE) during the COVID-19 crisis left millions of health care professionals unprotected in the middle of this situation, as governments around the world were not prepared for such pandemic. The three-dimensional printing (3DP) community, from universities to 3DP enthusiasts with printers at home, was there to support hospitals from day 1 on this demand by providing PPE and other medical supplies (e.g., face shields and valves for respiratory machines). This editorial covers the importance of 3DP in the fight against COVID-19 and how this can be used to tackle potential pandemics and support the supply chain.
Collapse
Affiliation(s)
- Eneko Larrañeta
- School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | | | - Dimitrios A. Lamprou
- School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
- Address correspondence to: Dimitrios A. Lamprou, School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Medical Biology Centre, Belfast BT9 7BL, United Kingdom
| |
Collapse
|
265
|
Wojciechowska A, Szuster‐Ciesielska A, Sztandera M, Bregier‐Jarzębowska R, Jarząb A, Rojek T, Komarnicka UK, Bojarska‐Junak A, Jezierska J. L‐argininato copper(II) complexes in solution exert significant selective anticancer and antimicrobial activities. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5698] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Agnieszka Wojciechowska
- Faculty of Chemistry Wrocław University of Science and Technology Wyb. Wyspiańskiego 27 Wrocław 50‐370 Poland
| | | | - Monika Sztandera
- Department of Virology and Immunology M. Curie‐Skłodowska University Akademicka 19 Lublin 20‐033 Poland
| | | | - Anna Jarząb
- Institute of Immunology and Experimental Therapy Polish Academy of Sciences R. Weigla 12 Wrocław 53‐114 Poland
| | - Tomasz Rojek
- Faculty of Chemistry Wrocław University of Science and Technology Wyb. Wyspiańskiego 27 Wrocław 50‐370 Poland
| | | | - Agnieszka Bojarska‐Junak
- Chair and Department of Clinical Immunology Medical University of Lublin Chodźki 4a Lublin 20‐093 Poland
| | - Julia Jezierska
- Faculty of Chemistry University of Wrocław Joliot‐Curie 14 Wrocław 50‐383 Poland
| |
Collapse
|
266
|
Hasan J, Xu Y, Yarlagadda T, Schuetz M, Spann K, Yarlagadda PK. Antiviral and Antibacterial Nanostructured Surfaces with Excellent Mechanical Properties for Hospital Applications. ACS Biomater Sci Eng 2020; 6:3608-3618. [PMID: 33463169 DOI: 10.1021/acsbiomaterials.0c00348] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
With the rise of bacterial and viral infections including the recent outbreak of coronavirus, the requirement for novel antimicrobial strategies is also rising with urgency. To solve this problem, we have used a wet etching technique to fabricate 23 nm wide nanostructures randomly aligned as ridges on aluminum (Al) 6063 alloy surfaces. The surfaces were etched for 0.5, 1, and 3 h. The surfaces were characterized using scanning electron microscopy, energy-dispersive X-ray spectroscopy, contact angle goniometry, nanoindentation and atomic force microscopy. Strains of the Gram negative bacteria Pseudomonas aeruginosa and the Gram positive bacteria Staphylococcus aureus were used to evaluate the bacterial attachment behavior. For the first time, common respiratory viruses, respiratory syncytial virus (RSV) and rhinovirus (RV), were investigated for antiviral activity on nanostructured surfaces. It was found that the etched Al surfaces were hydrophilic and the nanoscale roughness enhanced with the etching time with Rrms ranging from 69.9 to 995 nm. Both bacterial cells of P. aeruginosa and S. aureus were physically deformed and were nonviable upon attachment after 3 h on the etched Al 6063 surface. This nanoscale surface topography inactivated 92 and 87% of the attached P. aeruginosa and S. aureus cells, respectively. The recovery of infectious RSV was also reduced significantly within 2 h of exposure to the nanostructured surfaces compared to the smooth Al control surfaces. There was a 3-4 log10 reduction in the viability counts of rhinovirus after 24 h on the nanostructured surfaces. The nanostructured surfaces exhibited excellent durability as the surfaces sustained 1000 cycles of 2000 μN load without any damage. This is the first report that has shown the combined antibacterial and antiviral property of the nanostructured surface with excellent nanomechanical properties that could be potentially significant for use in hospital environments to stop the spread of infections arising from physical surfaces.
Collapse
Affiliation(s)
- Jafar Hasan
- Science and Engineering Faculty, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Yanan Xu
- Institute for Future Environments, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Tejasri Yarlagadda
- Institute of Health Biomedical Innovation (IHBI), Faculty of Health, Queensland University of Technology, Brisbane, Queensland 4000, Australia.,School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Michael Schuetz
- Institute of Health Biomedical Innovation (IHBI), Faculty of Health, Queensland University of Technology, Brisbane, Queensland 4000, Australia.,Jamieson Trauma Institute, Metro North Hospital and Health Service, Herston, Queensland 4029, Australia
| | - Kirsten Spann
- Institute of Health Biomedical Innovation (IHBI), Faculty of Health, Queensland University of Technology, Brisbane, Queensland 4000, Australia.,School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Prasad Kdv Yarlagadda
- Science and Engineering Faculty, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| |
Collapse
|
267
|
Castro-Muñoz R. The Role of New Inorganic Materials in Composite Membranes for Water Disinfection. MEMBRANES 2020; 10:E101. [PMID: 32422940 PMCID: PMC7281186 DOI: 10.3390/membranes10050101] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 01/22/2023]
Abstract
Today, there is an increasing interest in improving the physicochemical properties of polymeric membranes by merging the membranes with different inorganic materials. These so-called composite membranes have been implemented in different membrane-based technologies (e.g., microfiltration, ultrafiltration, nanofiltration, membrane bioreactors, among others) for water treatment and disinfection. This is because such inorganic materials (such as TiO2-, ZnO-, Ag-, and Cu-based nanoparticles, carbon-based materials, to mention just a few) can improve the separation performance of membranes and also some other properties, such as antifouling, mechanical, thermal, and physical and chemical stability. Moreover, such materials display specific biological activity towards viruses, bacteria, and protozoa, showing enhanced water disinfection properties. Therefore, the aim of this review is to collect the latest advances (in the last five years) in using composite membranes and new hybrid materials for water disinfection, paying particular emphasis on relevant results and new hydride composites together with their preparation protocols. Moreover, this review addresses the main mechanism of action of different conventional and novel inorganic materials toward biologically active matter.
Collapse
Affiliation(s)
- Roberto Castro-Muñoz
- Tecnologico de Monterrey, Campus Toluca. Avenida Eduardo Monroy Cárdenas 2000 San Antonio Buenavista, 50110 Toluca de Lerdo, Mexico
| |
Collapse
|
268
|
Validation of a Worst-Case Scenario Method Adapted to the Healthcare Environment for Testing the Antibacterial Effect of Brass Surfaces and Implementation on Hospital Antibiotic-Resistant Strains. Antibiotics (Basel) 2020; 9:antibiotics9050245. [PMID: 32408519 PMCID: PMC7277655 DOI: 10.3390/antibiotics9050245] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/06/2020] [Accepted: 05/09/2020] [Indexed: 01/23/2023] Open
Abstract
The evaluation of antibacterial activity of metal surfaces can be carried out using various published guidelines which do not always agree with each other on technical conditions and result interpretation. Moreover, these technical conditions are sometimes remote from real-life ones, especially those found in health-care facilities, and do not include a variety of antibiotic-resistant strains. A worst-case scenario protocol adapted from published guidelines was validated on two reference strains (Staphylococcus aureus ATCC 6538 and Enterobacter aerogenes ATCC 13048). This protocol was designed to be as close as possible to a healthcare facility environment, including a much shorter exposure-time than the one recommended in guidelines, and evaluated the impact of parameters such as the method used to prepare inocula, seed on the surface, and recover bacteria following exposure. It was applied to a panel of 12 antibiotic-resistant strains (methicillin resistant, vancomycin-resistant, beta-lactamase, and carbapenemase producing strains as well as efflux pump-overexpressing ones) chosen as representative of the main bacteria causing hospital acquired infections. Within a 5-min exposure time, the tested brass surface displayed an antibacterial effect meeting a reduction cut-off of 99% compared to stainless steel, whatever the resistance mechanism harbored by the bacteria.
Collapse
|
269
|
Forensic touch DNA recovery from metal surfaces – A review. Sci Justice 2020; 60:206-215. [DOI: 10.1016/j.scijus.2020.01.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/20/2020] [Accepted: 01/26/2020] [Indexed: 12/23/2022]
|
270
|
Tranter D, Filipuzzi I, Lochmann T, Knapp B, Kellosalo J, Estoppey D, Pistorius D, Meissner A, Paavilainen VO, Hoepfner D. Kendomycin Cytotoxicity against Bacterial, Fungal, and Mammalian Cells Is Due to Cation Chelation. JOURNAL OF NATURAL PRODUCTS 2020; 83:965-971. [PMID: 32182062 PMCID: PMC7497661 DOI: 10.1021/acs.jnatprod.9b00826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Indexed: 06/10/2023]
Abstract
Kendomycin is a small-molecule natural product that has gained significant attention due to reported cytotoxicity against pathogenic bacteria and fungi as well as a number of cancer cell lines. Despite significant biomedical interest and attempts to reveal its mechanism of action, the cellular target of kendomycin remains disputed. Herein it is shown that kendomycin induces cellular responses indicative of cation stress comparable to the effects of established iron chelators. Furthermore, addition of excess iron and copper attenuated kendomycin cytotoxicity in bacteria, yeast, and mammalian cells. Finally, NMR analysis demonstrated a direct interaction with cations, corroborating a close link between the observed kendomycin polypharmacology across different species and modulation of iron and/or copper levels.
Collapse
Affiliation(s)
- Dale Tranter
- Institute
of Biotechnology, University of Helsinki, Helsinki, 00014, Finland
| | - Ireos Filipuzzi
- Novartis
Institutes for BioMedical Research, 4056 Basel, Switzerland
| | - Thomas Lochmann
- Novartis
Institutes for BioMedical Research, 4056 Basel, Switzerland
| | - Britta Knapp
- Novartis
Institutes for BioMedical Research, 4056 Basel, Switzerland
| | - Juho Kellosalo
- Institute
of Biotechnology, University of Helsinki, Helsinki, 00014, Finland
| | - David Estoppey
- Novartis
Institutes for BioMedical Research, 4056 Basel, Switzerland
| | - Dominik Pistorius
- Novartis
Institutes for BioMedical Research, 4056 Basel, Switzerland
| | - Axel Meissner
- Novartis
Institutes for BioMedical Research, 4056 Basel, Switzerland
| | | | - Dominic Hoepfner
- Novartis
Institutes for BioMedical Research, 4056 Basel, Switzerland
| |
Collapse
|
271
|
Schuhladen K, Stich L, Schmidt J, Steinkasserer A, Boccaccini AR, Zinser E. Cu, Zn doped borate bioactive glasses: antibacterial efficacy and dose-dependent in vitro modulation of murine dendritic cells. Biomater Sci 2020; 8:2143-2155. [PMID: 32248211 DOI: 10.1039/c9bm01691k] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Among emerging biomaterials, bioactive glasses (BGs) are being widely explored for various applications in tissue engineering. However, the effects of BGs (in particular BG ionic dissolution products) on immune cells and specifically on dendritic cells (DCs), which are the most potent antigen-presenting cells of the immune system, have not been previously investigated in detail. Such interactions between BGs and DCs must be assessed as a novel biocompatibility criterion for biomaterials, since, with the increased application possibilities of BGs, the modulation of the immune system may induce potential complications and undesired side effects. Indeed, the effects of BG exposure on specific immune cells are not well understood. Thus, in this study we investigated, for the first time, the effect of borate BGs doped with biologically active ions on specific immune cells, such as DCs and we further investigated the antibacterial properties of these borate BGs. The compositions of the borate BGs (B3) were based on the well-known 13-93 (silicate) composition by replacing silica with boron trioxide and by adding copper (3 wt%) and/or zinc (1 wt%). By performing an agar diffusion test, the antibacterial effect depending on the compositions of the borate BGs could be proved. Furthermore we found a dose-dependent immune modulation of DCs after treatment with borate BGs, especially when the borate BGs contained Zn and/or Cu. Depending on the ion concentration and the rise in pH, the phenotype and function of DCs were modified. While at low doses B3 and Zn-doped B3 BGs had no impact on DC viability, Cu containing BGs strongly affected cell viability. Furthermore, the surface expression of DC-specific activation markers, such as the major histocompatibility complex (MHC)-II, CD86 and CD80, was modulated. In addition, also DC mediated T-cell proliferation was remarkably reduced when treated with high doses of B3-Cu and B3-Cu-Zn BGs. Interestingly, the release of inflammatory cytokines increased after incubation with B3 and B3-Zn BGs compared to mock-treated DCs. Considering the essential role of DCs in the modulation and regulation of immune responses, these findings provide first evidence of phenotypic and functional consequences regarding the exposure of DCs to BGs in vitro.
Collapse
Affiliation(s)
- Katharina Schuhladen
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany.
| | | | | | | | | | | |
Collapse
|
272
|
The antimicrobial and cytotoxic effects of a copper-loaded zinc oxide phosphate cement. Clin Oral Investig 2020; 24:3899-3909. [PMID: 32198658 PMCID: PMC7544705 DOI: 10.1007/s00784-020-03257-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 03/06/2020] [Indexed: 01/25/2023]
Abstract
Objectives Evidence about modifications of dental luting materials to minimize biological failure at the “marginal gap” between teeth and fixed prosthodontics is scarce. We compared a copper-modified (Co-ZOP) and a conventional zinc oxide phosphate cement (ZOP) in terms of antimicrobial and cytotoxic potentials in vitro and in vivo. Materials and methods Specimens of ZOP and Co-ZOP were characterized by the mean arithmetic roughness (Ra) and surface free energy (SFE). Powder components were examined using scanning electron microscopy (SEM). Energy-dispersive X-ray spectroscopy (EDX) showed elemental material compositions. In vitro microbial adhesion was shown using SEM, luminescence, and fluorescence assays. CCK-8 assays of mouse fibroblasts (L929) and human gingival fibroblasts (GF-1) were performed after 6, 24, and 48 h of specimen incubation. In vivo, ZOP and Co-ZOP specimens were applied intraorally for 12 h; biofilm accumulation was shown using SEM. Results Ra of ZOP and Co-ZOP showed no significant differences; SFE was significantly higher for Co-ZOP. EDX exhibited minor copper radiation for Co-ZOP, none for ZOP. In vitro fungal adhesion to Co-ZOP was significantly higher than to ZOP; in vitro streptococcal adhesion, cytotoxicity, and in vivo biofilm formation were not significantly different. Conclusions Co-ZOP showed low surface allocations of copper with no improved antimicrobial properties compared with conventional ZOP in vitro or in vivo. Clinical relevance Antimicrobial effects and low cytotoxicity of biomaterials are important for the clinical outcome. Based on our in vitro and in vivo results, no clinical recommendation can be given for the tested Co-ZOP.
Collapse
|
273
|
Breijyeh Z, Jubeh B, Karaman R. Resistance of Gram-Negative Bacteria to Current Antibacterial Agents and Approaches to Resolve It. Molecules 2020; 25:E1340. [PMID: 32187986 PMCID: PMC7144564 DOI: 10.3390/molecules25061340] [Citation(s) in RCA: 635] [Impact Index Per Article: 127.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/12/2020] [Accepted: 03/12/2020] [Indexed: 12/18/2022] Open
Abstract
Antimicrobial resistance represents an enormous global health crisis and one of the most serious threats humans face today. Some bacterial strains have acquired resistance to nearly all antibiotics. Therefore, new antibacterial agents are crucially needed to overcome resistant bacteria. In 2017, the World Health Organization (WHO) has published a list of antibiotic-resistant priority pathogens, pathogens which present a great threat to humans and to which new antibiotics are urgently needed the list is categorized according to the urgency of need for new antibiotics as critical, high, and medium priority, in order to guide and promote research and development of new antibiotics. The majority of the WHO list is Gram-negative bacterial pathogens. Due to their distinctive structure, Gram-negative bacteria are more resistant than Gram-positive bacteria, and cause significant morbidity and mortality worldwide. Several strategies have been reported to fight and control resistant Gram-negative bacteria, like the development of antimicrobial auxiliary agents, structural modification of existing antibiotics, and research into and the study of chemical structures with new mechanisms of action and novel targets that resistant bacteria are sensitive to. Research efforts have been made to meet the urgent need for new treatments; some have succeeded to yield activity against resistant Gram-negative bacteria by deactivating the mechanism of resistance, like the action of the β-lactamase Inhibitor antibiotic adjuvants. Another promising trend was by referring to nature to develop naturally derived agents with antibacterial activity on novel targets, agents such as bacteriophages, DCAP(2-((3-(3,6-dichloro-9H-carbazol-9-yl)-2-hydroxypropyl)amino)-2(hydroxymethyl)propane1,3-diol, Odilorhabdins (ODLs), peptidic benzimidazoles, quorum sensing (QS) inhibitors, and metal-based antibacterial agents.
Collapse
Affiliation(s)
| | | | - Rafik Karaman
- Department of Bioorganic & Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Quds University, Jerusalem P.O. Box 20002, Palestine; (Z.B.); (B.J.)
| |
Collapse
|
274
|
Emelyanenko AM, Kaminskii VV, Pytskii IS, Domantovsky AG, Emelyanenko KA, Aleshkin AV, Boinovich LB. Antibacterial Properties of Superhydrophilic Textured Copper in Contact with Bacterial Suspensions. Bull Exp Biol Med 2020; 168:488-491. [PMID: 32146628 DOI: 10.1007/s10517-020-04737-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Indexed: 11/26/2022]
Abstract
The method of pulsed laser processing with a nanosecond pulse duration was employed to obtain a nanotexture on the surface of copper alloys. The effect of the obtained micro- and nanotexture on the bactericidal properties of the surface upon its contact with suspensions containing of E. coli K12 C600 or K. pneumoniae 811 cells in a nutrient medium were studied. The evolution of cell morphology after on the nanotextured surface was analyzed using scanning electron microscopy, and changes in biological fluid during this contact were studied by mass spectrometry. It was shown that massive death of bacterial cells both in the suspension and on the nanotextured surface was determined by combined toxic effects of the hierarchically textured surface and high concentration of Cu2+ ions in the medium.
Collapse
Affiliation(s)
- A M Emelyanenko
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia.
| | - V V Kaminskii
- G. N. Gabrichevsky Research Institute for Epidemiology and Microbiology, Federal Service on Surveillance for Consumer Rights Protection and Human Well-Being, Moscow, Russia
| | - I S Pytskii
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| | - A G Domantovsky
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| | - K A Emelyanenko
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| | - A V Aleshkin
- G. N. Gabrichevsky Research Institute for Epidemiology and Microbiology, Federal Service on Surveillance for Consumer Rights Protection and Human Well-Being, Moscow, Russia
| | - L B Boinovich
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
275
|
Saraiva M, Moreira Filho A, Vasconcelos P, Nascimento P, Azevedo P, Freitas Neto O, Givisiez P, Gebreyes W, Oliveira C. Chemical treatment of poultry litter affects the conjugation of plasmid-mediated extended-spectrum beta-lactamase resistance genes in E. coli. J APPL POULTRY RES 2020. [DOI: 10.1016/j.japr.2019.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
276
|
Superhydrophobic copper in biological liquids: Antibacterial activity and microbiologically induced or inhibited corrosion. Colloids Surf B Biointerfaces 2020; 185:110622. [DOI: 10.1016/j.colsurfb.2019.110622] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/14/2019] [Accepted: 10/28/2019] [Indexed: 12/16/2022]
|
277
|
Taheri Kal-Koshvandi A, Ahghari MR, Maleki A. Design and antibacterial activity assessment of “green” synthesized 1,4-disubstituted 1,2,3-triazoles via an Fe 3O 4/silicalite-1/PVA/Cu( i) nanocomposite catalyzed three component reaction. NEW J CHEM 2020. [DOI: 10.1039/d0nj01984d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The preparation of an Fe3O4/silicalite-1/PVA/Cu(i) bionanocomposite is presented, completely characterized and applied for the green synthesis of 1,4-disubstituted-1,2,3-triazoles.
Collapse
Affiliation(s)
- Afsaneh Taheri Kal-Koshvandi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry
- Iran University of Science and Technology
- Tehran 16846-13114
- Iran
| | - Mohammad Reza Ahghari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry
- Iran University of Science and Technology
- Tehran 16846-13114
- Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry
- Iran University of Science and Technology
- Tehran 16846-13114
- Iran
| |
Collapse
|
278
|
Ding Z, Wang Y, Zhou Q, Ding Z, Liu J, He Q, Zhang H. Microstructure, Wettability, Corrosion Resistance and Antibacterial Property of Cu-MTa 2O 5 Multilayer Composite Coatings with Different Cu Incorporation Contents. Biomolecules 2019; 10:E68. [PMID: 31906220 PMCID: PMC7022678 DOI: 10.3390/biom10010068] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/29/2019] [Accepted: 12/29/2019] [Indexed: 12/21/2022] Open
Abstract
Bacterial infection and toxic metal ions releasing are the challenges in the clinical application of Ti6Al4V alloy implant materials. Copper is a kind of long-acting, broad-spectrum and safe antibacterial element, and Ta2O5 has good corrosion resistance, wear-resistance and biocompatibility, they are considered and chosen as a potential coating candidate for implant surface modification. In this paper, magnetron sputtering technology was used to prepare copper doped Ta2O5 multilayer composite coating Cu-Ta2O5/Ta2O5/Ta2O5-TiO2/TiO2/Ti (Cu-MTa2O5 for short) on Ti6Al4V alloy surface, for studying the effect of copper incorporation on the microstructure, wettability, anticorrosion and antibacterial activities of the composite coating. The results showed that Cu-MTa2O5 coating obviously improves the hydrophobicity, corrosion resistance and antibacterial property of Ti6Al4V alloy. In the coating, both copper and Ta2O5 exhibit an amorphous structure and copper mainly presents as an oxidation state (Cu2O and CuO). With the increase of the doping amount of copper, the grain size, roughness, and hydrophobicity of the modified surface of Ti6Al4V alloy are increased. Electrochemical experiment results demonstrated that the corrosion resistance of Cu-MTa2O5 coated Ti6Al4V alloy slightly decreased with the increase of copper concentration, but this coating still acts strong anticorrosion protection for Ti6Al4V alloy. Moreover, the Cu-MTa2O5 coating can kill more than 97% of Staphylococcus aureus in 24 h, and the antibacterial rate increases with the increase of copper content. Therefore, Cu-MTa2O5 composite coating is a good candidate for improving anticorrosion and antibacterial properties of Ti6Al4V alloy implant medical devices.
Collapse
Affiliation(s)
- Zeliang Ding
- School of Mechanical Engineering, Hunan University of Technology, Zhuzhou 412007, China; (Y.W.); (Q.Z.); (H.Z.)
| | - Yi Wang
- School of Mechanical Engineering, Hunan University of Technology, Zhuzhou 412007, China; (Y.W.); (Q.Z.); (H.Z.)
| | - Quan Zhou
- School of Mechanical Engineering, Hunan University of Technology, Zhuzhou 412007, China; (Y.W.); (Q.Z.); (H.Z.)
| | - Ziyu Ding
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China;
| | - Jun Liu
- School of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China;
| | - Quanguo He
- School of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China;
| | - Haibo Zhang
- School of Mechanical Engineering, Hunan University of Technology, Zhuzhou 412007, China; (Y.W.); (Q.Z.); (H.Z.)
| |
Collapse
|
279
|
Ma Y, Yu H, Liu W, Qin Y, Xing R, Li P. Integrated proteomics and metabolomics analysis reveals the antifungal mechanism of the C-coordinated O-carboxymethyl chitosan Cu(II) complex. Int J Biol Macromol 2019; 155:1491-1509. [PMID: 31751736 DOI: 10.1016/j.ijbiomac.2019.11.127] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/06/2019] [Accepted: 11/14/2019] [Indexed: 12/31/2022]
Abstract
With wide application in agriculture, copper fungicides have undergone three stages of development: inorganic copper, synthetic organic copper, and natural organic copper. Using chitin/chitosan (CS) as a substrate, the natural organic copper fungicide C-coordinated O-carboxymethyl chitosan Cu(II) complex (O-CSLn-Cu) was developed in the laboratory. Taking Phytophthora capsici Leonian as an example, we explored the antifungal mechanism of O-CSLn-Cu by combining tandem mass tag (TMT)-based proteomics with non-targeted liquid chromatography-mass spectrometry (LC-MS)-based metabolomics. A total of 1172 differentially expressed proteins were identified by proteomics analysis. According to the metabolomics analysis, 93 differentially metabolites were identified. Acetyl-CoA-related and membrane localized proteins showed significant differences in the proteomics analysis. Most of the differential expressed metabolites were distributed in the cytoplasm, followed by mitochondria. The integrated analysis revealed that O-CSLn-Cu could induce the "Warburg effect", with increased glycolysis in the cytoplasm and decreased metabolism in the mitochondria. Therefore, P. capsici Leonian had to compensate for ATP loss in the TCA cycle by increasing the glycolysis rate. However, this metabolic shift could not prevent the death of P. capsici Leonian. To verify this hypothesis, a series of biological experiments, such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), and enzyme activity measurements were carried out. The results suggest that O-CSLn-Cu causes mitochondrial injury, which consequently leads to excessive ROS levels and insufficient ATP levels, thereby killing P. capsici Leonian.
Collapse
Affiliation(s)
- Yuzhen Ma
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huahua Yu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China.
| | - Weixiang Liu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Yukun Qin
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Ronge Xing
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Pengcheng Li
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China.
| |
Collapse
|
280
|
Ciacotich N, Kragh KN, Lichtenberg M, Tesdorpf JE, Bjarnsholt T, Gram L. In Situ Monitoring of the Antibacterial Activity of a Copper-Silver Alloy Using Confocal Laser Scanning Microscopy and pH Microsensors. GLOBAL CHALLENGES (HOBOKEN, NJ) 2019; 3:1900044. [PMID: 31692989 PMCID: PMC6827527 DOI: 10.1002/gch2.201900044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/27/2019] [Indexed: 06/10/2023]
Abstract
The antibacterial efficacy of a copper-silver alloy coating under conditions resembling build up of dry surface bacterial biofilms is successfully demonstrated according to US EPA test methods with a ≥99.9% reduction of test organisms over a 24 h period. A tailor-made confocal imaging protocol is designed to visualize in situ the killing of bacterial biofilms at the copper-silver alloy surface and monitor the kinetics for 100 min. The copper-silver alloy coating eradicates a biofilm of Gram-positive bacteria within 5 min while a biofilm of Gram-negative bacteria are killed more slowly. In situ pH monitoring indicates a 2-log units increase at the interface between the metallic surface and bacterial biofilm; however, the viability of the bacteria is not directly affected by this raise (pH 8.0-9.5) when tested in buffer. The OH- production, as a result of the interaction between the electrochemically active surface and the bacterial biofilm under environmental conditions, is thus one aspect of the contact-mediated killing of the copper-silver alloy coating and not the direct cause of the observed antibacterial efficacy. The combination of oxidation of bacterial cells, release of copper ions, and local pH raise characterizes the antibacterial activity of the copper-silver alloy-coated dry surface.
Collapse
Affiliation(s)
- Nicole Ciacotich
- Elplatek A/SBybjergvej 7DK‐3060EspergærdeDenmark
- Department of Biotechnology and BiomedicineTechnical University of DenmarkSøltofts Plads Bldg. 221DK‐2800Kgs LyngbyDenmark
| | - Kasper Nørskov Kragh
- Department of Immunology and MicrobiologyCosterton Biofilm CenterFaculty of Health and Medical SciencesUniversity of CopenhagenBlegdamsvej 3BDK‐2200Copenhagen NDenmark
| | - Mads Lichtenberg
- Department of Immunology and MicrobiologyCosterton Biofilm CenterFaculty of Health and Medical SciencesUniversity of CopenhagenBlegdamsvej 3BDK‐2200Copenhagen NDenmark
| | - Jens Edward Tesdorpf
- Department of Biotechnology and BiomedicineTechnical University of DenmarkSøltofts Plads Bldg. 221DK‐2800Kgs LyngbyDenmark
| | - Thomas Bjarnsholt
- Department of Clinical MicrobiologyRigshospitaletJuliane Maries vej 222100Copenhagen ØDenmark
| | - Lone Gram
- Department of Biotechnology and BiomedicineTechnical University of DenmarkSøltofts Plads Bldg. 221DK‐2800Kgs LyngbyDenmark
| |
Collapse
|
281
|
Luo J, Hein C, Ghanbaja J, Pierson JF, Mücklich F. Bacteria accumulate copper ions and inhibit oxide formation on copper surface during antibacterial efficiency test. Micron 2019; 127:102759. [PMID: 31585250 DOI: 10.1016/j.micron.2019.102759] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/23/2019] [Accepted: 09/23/2019] [Indexed: 12/11/2022]
Abstract
Copper surface after antibacterial test against E. coli was examined in the aspect of corrosion. Results from scanning electron microscope (SEM), grazing incidence X-ray diffractometer (GIXRD) and Raman spectroscopy together confirmed less oxidation on copper surface with the presence of E. coli. The inhibition of the cuprous oxide (Cu2O) layer instead ensured the continuous exposure of copper surface, letting localised corrosion attacks observable and causing a stronger release of copper ions. These phenomena are attributed to the fact that E. coli act as ions reservoirs since high amount of copper accumulation were found by energy dispersive X-ray spectroscopy (EDS).
Collapse
Affiliation(s)
- Jiaqi Luo
- Functional Materials, Saarland University, Germany; Université de Lorraine, CNRS, IJL, F-54000, Nancy, France.
| | - Christina Hein
- Inorganic Solid State Chemistry, Saarland University, Germany
| | | | | | | |
Collapse
|
282
|
Predoi D, Iconaru SL, Predoi MV, Stan GE, Buton N. Synthesis, Characterization, and Antimicrobial Activity of Magnesium-Doped Hydroxyapatite Suspensions. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1295. [PMID: 31514280 PMCID: PMC6781056 DOI: 10.3390/nano9091295] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 09/03/2019] [Accepted: 09/06/2019] [Indexed: 01/01/2023]
Abstract
Obtaining nanoscale materials has allowed for the miniaturization of components, which has led to the possibility of achieving more efficient devices with faster functions and much lower costs. While hydroxyapatite [HAp, Ca10(PO4)6(OH)2] is considered the most widely used material for medical applications in orthopedics, dentistry, and general surgery, the magnesium (Mg) is viewed as a promising biodegradable and biocompatible implant material. Furthermore, Mg is regarded as a strong candidate for developing medical implants due to its biocompatibility and antimicrobial properties against gram-positive and gram-negative bacteria. For this study, magnesium-doped hydroxyapatite (Ca10-xMgx (PO4)6 (OH)2, xMg = 0.1), 10MgHAp, suspensions were successfully obtained by an adapted and simple chemical co-precipitation method. The information regarding the stability of the nanosized 10MgHAp particles suspension obtained by ζ-potential analysis were confirmed for the first time by a non-destructive ultrasound-based technique. Structural and morphological studies of synthesized 10MgHAp were conducted by X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy in attenuated total reflectance (ATR) mode and scanning electron microscopy (SEM). The XRD analysis of the 10MgHAp samples confirmed that a single crystalline phase associated to HAp with an average grain size about 93.3 nm was obtained. The FTIR-ATR spectra revealed that the 10MgHAp sample presented broader IR bands with less visible peaks when compared to a well-crystallized pure HAp. The SEM results evidenced uniform MgHAp nanoparticles with spherical shape. The antimicrobial activity of the 10MgHAp suspension against gram-positive strains (Staphylococcus aureus ATCC 25923, Enterococcus faecalis ATCC 29212), gram-negative strains (Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853), as well as a fungal strain (Candida albicans ATCC 90029) were evaluated.
Collapse
Affiliation(s)
- Daniela Predoi
- National Institute of Materials Physics, 405A Atomistilor Street, P.O. Box MG7, 077125 Magurele, Romania.
| | - Simona Liliana Iconaru
- National Institute of Materials Physics, 405A Atomistilor Street, P.O. Box MG7, 077125 Magurele, Romania.
| | - Mihai Valentin Predoi
- University Politehnica of Bucharest, BN 002, 313 Splaiul Independentei, Sector 6, 10023 Bucharest, Romania.
| | - George E Stan
- National Institute of Materials Physics, 405A Atomistilor Street, P.O. Box MG7, 077125 Magurele, Romania.
| | - Nicolas Buton
- HORIBA Jobin Yvon S.A.S., 6-18, Rue du Canal, 91165 Longjumeau CEDEX, France.
| |
Collapse
|
283
|
Jacukowicz-Sobala I, Kociołek-Balawejder E, Stanisławska E, Dworniczek E, Seniuk A. Antimicrobial activity of anion exchangers containing cupric compounds against Enterococcus faecalis. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.05.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
284
|
Subedi P, Paxman JJ, Wang G, Ukuwela AA, Xiao Z, Heras B. The Scs disulfide reductase system cooperates with the metallochaperone CueP in Salmonella copper resistance. J Biol Chem 2019; 294:15876-15888. [PMID: 31444272 DOI: 10.1074/jbc.ra119.010164] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/21/2019] [Indexed: 12/31/2022] Open
Abstract
The human pathogen Salmonella enterica serovar Typhimurium (S Typhimurium) contains a complex disulfide bond (Dsb) catalytic machinery. This machinery encompasses multiple Dsb thiol-disulfide oxidoreductases that mediate oxidative protein folding and a less-characterized suppressor of copper sensitivity (scs) gene cluster, associated with increased tolerance to copper. To better understand the function of the Salmonella Scs system, here we characterized two of its key components, the membrane protein ScsB and the periplasmic protein ScsC. Our results revealed that these two proteins form a redox pair in which the electron transfer from the periplasmic domain of ScsB (n-ScsB) to ScsC is thermodynamically driven. We also demonstrate that the Scs reducing pathway remains separate from the Dsb oxidizing pathways and thereby avoids futile redox cycles. Additionally, we provide new insight into the molecular mechanism underlying Scs-mediated copper tolerance in Salmonella We show that both ScsB and ScsC can bind toxic copper(I) with femtomolar affinities and transfer it to the periplasmic copper metallochaperone CueP. Our results indicate that the Salmonella Scs machinery has evolved a dual mode of action, capable of transferring reducing power to the oxidizing periplasm and protecting against copper stress by cooperating with the cue regulon, a major copper resistance mechanism in Salmonella. Overall, these findings expand our understanding of the functional diversity of Dsb-like systems, ranging from those mediating oxidative folding of proteins required for infection to those contributing to defense mechanisms against oxidative stress and copper toxicity, critical traits for niche adaptation and survival.
Collapse
Affiliation(s)
- Pramod Subedi
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Kingsbury Drive, Bundoora, Victoria 3083, Australia
| | - Jason J Paxman
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Kingsbury Drive, Bundoora, Victoria 3083, Australia
| | - Geqing Wang
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Kingsbury Drive, Bundoora, Victoria 3083, Australia
| | - Ashwinie A Ukuwela
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Zhiguang Xiao
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia.,Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Begoña Heras
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Kingsbury Drive, Bundoora, Victoria 3083, Australia
| |
Collapse
|
285
|
Singh N, Paknikar KM, Rajwade J. Gene expression is influenced due to 'nano' and 'ionic' copper in pre-formed Pseudomonas aeruginosa biofilms. ENVIRONMENTAL RESEARCH 2019; 175:367-375. [PMID: 31153105 DOI: 10.1016/j.envres.2019.05.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 06/09/2023]
Abstract
Today, researchers across the globe suggest the use of antimicrobial coatings containing copper nanoparticles (CuNPs) complementing the traditional protocols to prevent hospital-acquired infections (HAIs). Since Pseudomonas aeruginosa is one of the commonest opportunistic pathogens, we assessed the anti-biofilm activity of CuNPs in P. aeruginosa MTCC 3541 and compared it with Cu2+ (copper sulphate) since the latter continues to be used as an antimicrobial-of-choice in food industries, agriculture and water treatment. In this study, we synthesized and characterized stable poly-acrylic acid (PAA) coated CuNPs with a size of 66-150 nm and zeta potential -13 mV. Pseudomonas aeruginosa MTCC 3541 biofilms were highly resistant to both CuNPs and Cu2+ (minimum biofilm inhibitory concentration, MBIC 300 and >600 μg/mL respectively). Scanning electron microscopy revealed alterations in cell morphology upon treatment with CuNPs. A closer analysis of the biofilm-specific gene expression (qRT-PCR) revealed that CuNPs downregulated the genes involved in biofilm matrix formation, motility, efflux, membrane lipoprotein synthesis and DNA replication. Both, CuNPs and Cu2+ up regulated copper resistance and biofilm dispersion genes. Copper did not affect the bacterial communication system as evidenced by downregulation of the negative regulator of quorum sensing. The gene expression analysis reveals multiple cellular targets for CuNPs and ionic Cu. The present study highlights the fact that CuNPs affect the membrane functions adversely damaging the cell surface. In pre-formed biofilms, CuNPs were more toxic and displayed distinct responses attributable due to 'nano' and 'ionic' copper. Our findings thus support the use of CuNPs for curbing HAIs.
Collapse
Affiliation(s)
- Nimisha Singh
- Nanobioscience Group, Agharkar Research Institute, G. G. Agarkar Road, Pune, 411 004, Maharashtra, India; Savitribai Phule Pune University, Ganeshkind Road, Pune, 41107, Maharashtra, India
| | - Kishore M Paknikar
- Nanobioscience Group, Agharkar Research Institute, G. G. Agarkar Road, Pune, 411 004, Maharashtra, India; Savitribai Phule Pune University, Ganeshkind Road, Pune, 41107, Maharashtra, India.
| | - Jyutika Rajwade
- Nanobioscience Group, Agharkar Research Institute, G. G. Agarkar Road, Pune, 411 004, Maharashtra, India; Savitribai Phule Pune University, Ganeshkind Road, Pune, 41107, Maharashtra, India.
| |
Collapse
|
286
|
Kociołek-Balawejder E, Stanisławska E, Dworniczek E, Seniuk A, Jacukowicz-Sobala I, Winiarska K. Cu2O doped gel-type anion exchanger obtained by reduction of brochantite deposit and its antimicrobial activity. REACT FUNCT POLYM 2019. [DOI: 10.1016/j.reactfunctpolym.2019.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
287
|
Abstract
The prevention of infectious diseases is a global challenge where multidrug-resistant bacteria or "superbugs" pose a serious threat to worldwide public health. Microtopographic surfaces have attracted much attention as they represent a biomimetic and nontoxic surface antibacterial strategy to replace biocides. The antimicrobial effect of such natural and biomimetic surface nanostructures involves a physical approach which eradicates bacteria via the structural features of the surfaces without any release of biocides or chemicals. These recent developments present a significant proof-of-concept and a powerful tool in which cellular adhesion and death caused by a physical approach, can be controlled by the micro/nanotopology of such surfaces. This represents an innovative direction of development of clean, effective and nonresistant antimicrobial surfaces. The minireview will cover novel approaches for the construction of nanostructures on surfaces in order to create antimicrobial surface in an environmentally friendly, nontoxic manner.
Collapse
Affiliation(s)
- Guangshun Yi
- a Institute of Bioengineering and Nanotechnology, The Nanos , Singapore , Singapore
| | - Siti Nurhanna Riduan
- a Institute of Bioengineering and Nanotechnology, The Nanos , Singapore , Singapore
| | - Yuan Yuan
- a Institute of Bioengineering and Nanotechnology, The Nanos , Singapore , Singapore
| | - Yugen Zhang
- a Institute of Bioengineering and Nanotechnology, The Nanos , Singapore , Singapore
| |
Collapse
|
288
|
Tavakoli A, Hashemzadeh MS. Inhibition of herpes simplex virus type 1 by copper oxide nanoparticles. J Virol Methods 2019; 275:113688. [PMID: 31271792 DOI: 10.1016/j.jviromet.2019.113688] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 06/30/2019] [Accepted: 07/01/2019] [Indexed: 01/24/2023]
Abstract
There are accumulating reports of the emergence of drug-resistant strains of HSV-1 that have become a barrier to successful treatment of HSV-1 infection. Therefore, there is a pressing need to identify and evaluate alternative antiherpetic agents. The aim of the present study was to investigate the effect of copper oxide nanoparticles (CuO-NPs) on HSV-1 infection. The MTT assay was applied to examine the cytotoxic effects of CuO-NPs on Vero cells. Antiherpetic potency was determined using the TCID50 and quantitative Real-Time PCR assays. To evaluate the inhibitory impact of CuO-NPs on the expression of viral antigens, an indirect immunofluorescence assay (IFA) was performed. Acyclovir was used as a reference drug in all experiments. Exposure of HSV-1 with CuO-NPs at the highest non-toxic concentration (100 μg/mL) resulted in 2.8 log10 TCID50 reduction in infectious virus titer as compared with virus control (P < 0.0001). This concentration of CuO-NPs was associated with 83.3% inhibition rate, which was estimated based on the HSV-1 viral load compared to virus control. Our findings demonstrated that CuO-NPs are associated with a significant antiviral potency against HSV-1. This feature shows strong potential for CuO-NPs to be used in topical formulations for the treatment of orolabial or genital herpetic lesions.
Collapse
Affiliation(s)
- Ahmad Tavakoli
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
289
|
Halbus AF, Horozov TS, Paunov VN. Self-grafting copper oxide nanoparticles show a strong enhancement of their anti-algal and anti-yeast action. NANOSCALE ADVANCES 2019; 1:2323-2336. [PMID: 36131971 PMCID: PMC9417314 DOI: 10.1039/c9na00099b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 04/27/2019] [Indexed: 06/10/2023]
Abstract
We have developed and tested copper oxide nanoparticles (CuONPs) grafted with (3-glycidyloxypropyl)trimethoxysilane (GLYMO) and coupled with 4-hydroxyphenylboronic acid (4-HPBA), which provides a very strong boost of their action as anti-algal and anti-yeast agents. The boronic acid terminal groups on the surface of the CuONPs/GLYMO/4-HPBA can form reversible covalent bonds with the diol groups of glycoproteins and carbohydrates expressed on the cell surface where they bind and accumulate, which is not based on electrostatic adhesion. Results showed that, the impact of the 4-HPBA grafted CuONPs on microalgae (C. reinhardtii) and yeast (S. cerevisiae) is several hundred percent higher than that of bare CuONPs and CuONPs/GLYMO at the same particle concentration. SEM and TEM imaging revealed that 4-HPBA-functionalized CuONPs nanoparticles can accumulate more on the cell walls than non-functionalized CuONPs. We found a marked increase of the 4-HPBA functionalized CuONPs action on these microorganisms at shorter incubation times compared with the bare CuONPs at the same conditions. We also showed that the anti-algal action of CuONPs/GLYMO/4-HPBA can be controlled by the concentration of glucose in the media and that the effect is reversible as glucose competes with the diol residues on the algal cell walls for the HPBA groups on the CuONPs. Our experiments with human cell lines incubated with CuONPs/GLYMO/4-HPBA indicated a lack of measurable loss of cell viability at particle concentrations which are effective as anti-algal agents. CuONPs/GLYMO/4-HPBA can be used to drastically reduce the overall CuO concentration in anti-algal and anti-yeast formulations while strongly increasing their efficiency.
Collapse
Affiliation(s)
- Ahmed F Halbus
- Department of Chemistry and Biochemistry, University of Hull Hull HU67RX UK +44 (0)1482 465660
- Department of Chemistry, College of Science, University of Babylon Hilla Iraq
| | - Tommy S Horozov
- Department of Chemistry and Biochemistry, University of Hull Hull HU67RX UK +44 (0)1482 465660
| | - Vesselin N Paunov
- Department of Chemistry and Biochemistry, University of Hull Hull HU67RX UK +44 (0)1482 465660
| |
Collapse
|
290
|
Weber DJ, Rutala WA, Sickbert-Bennett EE, Kanamori H, Anderson D. Continuous room decontamination technologies. Am J Infect Control 2019; 47S:A72-A78. [PMID: 31146855 DOI: 10.1016/j.ajic.2019.03.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The contaminated surface environment in the rooms of hospitalized patients is an important risk factor for the colonization and infection of patients with multidrug-resistant pathogens. Improved terminal cleaning and disinfection have been demonstrated to reduce the incidence of health care-associated infections. In the United States, hospitals generally perform daily cleaning and disinfection of patient rooms. However, cleaning and disinfection are limited by the presence of the patient in room (eg, current ultraviolet devices and hydrogen peroxide systems cannot be used) and the fact that after disinfection pathogenic bacteria rapidly recolonize surfaces and medical devices/equipment. For this reason, there has been great interest in developing methods of continuous room disinfection and/or "self-disinfecting" surfaces. This study will review the research on self-disinfecting surfaces (eg, copper-coated surfaces and persistent chemical disinfectants) and potential new room disinfection methods (eg, "blue light" and diluted hydrogen peroxide systems).
Collapse
|
291
|
Copper-containing glass ceramic with high antimicrobial efficacy. Nat Commun 2019; 10:1979. [PMID: 31040286 PMCID: PMC6491652 DOI: 10.1038/s41467-019-09946-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 04/08/2019] [Indexed: 02/07/2023] Open
Abstract
Hospital acquired infections (HAIs) and the emergence of antibiotic resistant strains are major threats to human health. Copper is well known for its high antimicrobial efficacy, including the ability to kill superbugs and the notorious ESKAPE group of pathogens. We sought a material that maintains the antimicrobial efficacy of copper while minimizing the downsides – cost, appearance and metallic properties – that limit application. Here we describe a copper-glass ceramic powder as an additive for antimicrobial surfaces; its mechanism is based on the controlled release of copper (I) ions (Cu1+) from cuprite nanocrystals that form in situ in the water labile phase of the biphasic glass ceramic. Latex paints containing copper-glass ceramic powder exhibit ≥99.9% reduction in S. aureus, P. aeruginosa, K. aerogenes and E. Coli colony counts when evaluated by the US EPA test method for efficacy of copper-alloy surfaces as sanitizer, approaching that of benchmark metallic copper. Copper is well known for its high antimicrobial efficacy; however, cost, appearance and metallic properties limit application. Here the authors describe a stable, water dispersible copper-glass ceramic powder with long-term antimicrobial activity as an additive for antimicrobial surfaces.
Collapse
|
292
|
Ghosh R, Swart O, Westgate S, Miller BL, Yates MZ. Antibacterial Copper-Hydroxyapatite Composite Coatings via Electrochemical Synthesis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:5957-5966. [PMID: 30951314 DOI: 10.1021/acs.langmuir.9b00919] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Antibacterial copper-hydroxyapatite (Cu-HA) composite coatings on titanium were synthesized using a novel process consisting of two consecutive electrochemical reactions. In the first stage, HA nanocrystals were grown on titanium using the cathodic electrolytic synthesis. The HA-coated titanium was then used as the cathode in a second reaction stage to electrochemically reduce Cu2+ ions in solution to metallic Cu nanoparticles. Reaction conditions were found that result in nanoscale Cu particles growing on the surface of the HA crystals. The two-stage synthesis allows facile control of copper content in the HA coatings. Antibacterial activity was measured by culturing Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive) in the presence of coatings having varying copper contents. The coatings displayed copper concentration-dependent antibacterial activity against both types of bacteria, likely due to the slow release of copper ions from the coatings. The observation of antibacterial activity from a relatively low loading of copper on the bioactive HA support suggests that multifunctional implant coatings can be developed to supplement or supplant prophylactic antibiotics used in implant surgery that are responsible for creating resistant bacteria strains.
Collapse
Affiliation(s)
- Rashmi Ghosh
- Department of Chemical Engineering , University of Rochester , Rochester , New York 14623 , United States
| | - Oliver Swart
- Department of Dermatology , University of Rochester , Rochester , New York 14611 , United States
| | - Sabrina Westgate
- Department of Chemical Engineering , University of Rochester , Rochester , New York 14623 , United States
| | - Benjamin L Miller
- Department of Dermatology , University of Rochester , Rochester , New York 14611 , United States
| | - Matthew Z Yates
- Department of Chemical Engineering , University of Rochester , Rochester , New York 14623 , United States
- Laboratory for Laser Energetics , University of Rochester , Rochester , New York 14627 , United States
| |
Collapse
|
293
|
Sèbe G, Simon A, Dhuiège B, Faure C. Cu2+-loaded cellulose micro-beads applied to the direct patterning of metallic surfaces using a fast and convenient process. Carbohydr Polym 2019; 207:492-501. [DOI: 10.1016/j.carbpol.2018.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 11/18/2018] [Accepted: 12/10/2018] [Indexed: 11/30/2022]
|
294
|
Muriana PM, Eager J, Wellings B, Morgan B, Nelson J, Kushwaha K. Evaluation of Antimicrobial Interventions against E. coli O157:H7 on the Surface of Raw Beef to Reduce Bacterial Translocation during Blade Tenderization. Foods 2019; 8:foods8020080. [PMID: 30791620 PMCID: PMC6406433 DOI: 10.3390/foods8020080] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/04/2019] [Accepted: 02/15/2019] [Indexed: 11/17/2022] Open
Abstract
The US Department of Agriculture, Food Safety Inspection Service (USDA-FSIS) considers mechanically-tenderized beef as “non-intact” and a food safety concern because of the potential for translocation of surface Escherichia coli O157:H7 into the interior of the meat that may be cooked “rare or medium-rare” and consumed. We evaluated 14 potential spray interventions on E. coli O157:H7-inoculated lean beef wafers (~106 CFU/cm2, n = 896) passing through a spray system (18 s dwell time, ~40 pounds per square inch, PSI) integrated into the front end of a Ross TC-700MC tenderizer. Inoculated and processed beef wafers were stomached with D/E neutralizing broth and plated immediately, or were held in refrigerated storage for 1-, 7-, or 14-days prior to microbial enumeration. Seven antimicrobials that showed better performance in preliminary screening on beef wafers were selected for further testing on beef subprimals in conjunction with blade tenderization. Boneless top sirloin beef subprimals were inoculated at ~2 × 104 CFU/cm2 with a four-strain cocktail of E. coli O157:H7 and passed once, lean side up, through an integrated spray system and blade tenderizer. Core samples obtained from each subprimal were examined for the presence/absence of E. coli O157:H7. The absence of E. coli O157:H7 in core samples correlated with the ability of the antimicrobials to reduce bacterial levels on the surface of beef prior to blade tenderization.
Collapse
Affiliation(s)
- Peter M Muriana
- Robert M. Kerr Food & Agricultural Products Center, Oklahoma State University, Stillwater, OK 74078-6055, USA.
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078-6055, USA.
| | - Jackie Eager
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078-6055, USA.
| | - Brent Wellings
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078-6055, USA.
| | - Brad Morgan
- Performance Food Group, 2205 Tanglewood Circle, Stillwater, OK 74074, USA.
| | - Jacob Nelson
- Robert M. Kerr Food & Agricultural Products Center, Oklahoma State University, Stillwater, OK 74078-6055, USA.
| | - Kalpana Kushwaha
- Robert M. Kerr Food & Agricultural Products Center, Oklahoma State University, Stillwater, OK 74078-6055, USA.
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078-6055, USA.
| |
Collapse
|
295
|
Boinovich LB, Kaminsky VV, Domantovsky AG, Emelyanenko KA, Aleshkin AV, Zulkarneev ER, Kiseleva IA, Emelyanenko AM. Bactericidal Activity of Superhydrophobic and Superhydrophilic Copper in Bacterial Dispersions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:2832-2841. [PMID: 30685974 DOI: 10.1021/acs.langmuir.8b03817] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A method based on nanosecond laser processing was used to design superhydrophilic and superhydrophobic copper substrates. Three different protocols were used to analyze the evolution of the bactericidal activity of the copper substrates with different wettability. Scanning electron microscopy was used to study the variation of cell morphology after the attachment to superhydrophilic and superhydrophobic surfaces. The dispersions of Escherichia coli K12 C600 and Klebsiella pneumoniae 811 in Luria Bertani broth in contact with the superhydrophilic copper surface showed enhanced bacterial inactivation, associated with toxic action of both hierarchically textured copper surface and high content of Cu2+ ions in the dispersion medium. In contrast, the bacterial dispersions in contact with the superhydrophobic copper substrates demonstrated an increase in cell concentration with time until the development of corrosion processes. The resistance of bacterial cells to contact the copper substrates is discussed on the basis of surface forces, determining the primary adhesion and of the protective action of a superhydrophobic state of the surface against electrochemical and biological corrosion.
Collapse
Affiliation(s)
- Ludmila B Boinovich
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry , Russian Academy of Sciences , Leninsky prospect 31 bldg. 4 , 119071 Moscow , Russia
| | - Valery V Kaminsky
- G. N. Gabrichevsky Research Institute for Epidemiology and Microbiology , 10 Admiral Makarov Street , 125212 Moscow , Russia
| | - Alexandr G Domantovsky
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry , Russian Academy of Sciences , Leninsky prospect 31 bldg. 4 , 119071 Moscow , Russia
| | - Kirill A Emelyanenko
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry , Russian Academy of Sciences , Leninsky prospect 31 bldg. 4 , 119071 Moscow , Russia
| | - Andrey V Aleshkin
- G. N. Gabrichevsky Research Institute for Epidemiology and Microbiology , 10 Admiral Makarov Street , 125212 Moscow , Russia
| | - Eldar R Zulkarneev
- G. N. Gabrichevsky Research Institute for Epidemiology and Microbiology , 10 Admiral Makarov Street , 125212 Moscow , Russia
| | - Irina A Kiseleva
- G. N. Gabrichevsky Research Institute for Epidemiology and Microbiology , 10 Admiral Makarov Street , 125212 Moscow , Russia
| | - Alexandre M Emelyanenko
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry , Russian Academy of Sciences , Leninsky prospect 31 bldg. 4 , 119071 Moscow , Russia
| |
Collapse
|
296
|
Bukhtiyarova PA, Antsiferov DV, Brasseur G, Avakyan MR, Frank YA, Ikkert OP, Pimenov NV, Tuovinen OH, Karnachuk OV. Isolation, characterization, and genome insights into an anaerobic sulfidogenic Tissierella bacterium from Cu-bearing coins. Anaerobe 2019; 56:66-77. [PMID: 30776428 DOI: 10.1016/j.anaerobe.2019.02.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 01/27/2019] [Accepted: 02/14/2019] [Indexed: 01/19/2023]
Abstract
Recent reports on antimicrobial effects of metallic Cu prompted this study of anaerobic microbial communities on copper surfaces. Widely circulating copper-containing coinage was used as a potential source for microorganisms that had had human contact and were tolerant to copper. This study reports on the isolation, characterization, and genome of an anaerobic sulfidogenic Tissierella sp. P1from copper-containing brass coinage. Dissimilatory (bi)sulfite reductase dsrAB present in strain P1 genome and the visible absorbance around 630 nm in the cells suggested the presence of a desulfoviridin-type protein. However, the sulfate reduction rate measurements with 35SO42- did not confirm the dissimilatory sulfate reduction by the strain. The P1 genome lacks APS reductase, sulfate adenylyltransferase, DsrC, and DsrMK necessary for dissimilatory sulfate reduction. The isolate produced up to 0.79 mM H2S during growth, possibly due to cysteine synthase (CysK) and/or cysteine desulfhydrase (CdsH) activities, encoded in the genome. The strain can tolerate up to 2.4 mM Cu2+(150 mg/l) in liquid medium, shows affinity to metallic copper, and can survive on copper-containing coins up to three days under ambient air and dry conditions. The genome sequence of strain P1 contained cutC, encoding a copper resistance protein, which distinguishes it from all other Tissierella strains with published genomes.
Collapse
Affiliation(s)
- Polina A Bukhtiyarova
- Laboratory of Biochemistry and Molecular Biology, Tomsk State University, Tomsk, Russia
| | - Dmitry V Antsiferov
- Laboratory of Biochemistry and Molecular Biology, Tomsk State University, Tomsk, Russia
| | - Gael Brasseur
- Laboratoire de Chimie Bactérienne, CNRS, Mediterranean Institute of Microbiology, Marseille, France
| | - Marat R Avakyan
- Laboratory of Biochemistry and Molecular Biology, Tomsk State University, Tomsk, Russia
| | - Yulia A Frank
- Laboratory of Biochemistry and Molecular Biology, Tomsk State University, Tomsk, Russia
| | - Olga P Ikkert
- Laboratory of Biochemistry and Molecular Biology, Tomsk State University, Tomsk, Russia
| | - Nikolay V Pimenov
- Winogradsky Institute of Microbiology, Russian Academy of Sciences, Moscow, Russia
| | - Olli H Tuovinen
- Department of Microbiology, Ohio State University, Columbus, OH, 43210, USA
| | - Olga V Karnachuk
- Laboratory of Biochemistry and Molecular Biology, Tomsk State University, Tomsk, Russia.
| |
Collapse
|
297
|
Rau JV, Curcio M, Raucci MG, Barbaro K, Fasolino I, Teghil R, Ambrosio L, De Bonis A, Boccaccini AR. Cu-Releasing Bioactive Glass Coatings and Their in Vitro Properties. ACS APPLIED MATERIALS & INTERFACES 2019; 11:5812-5820. [PMID: 30653295 DOI: 10.1021/acsami.8b19082] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Bioactive glasses are well-known materials suitable for bone-related applications thanks to their biocompatibility and osteoconductivity. In order to improve their in vivo performance, the modification of the glass composition by adding ions with specific biological functions is required. As copper (Cu) possesses antibacterial properties, in this study, 5 wt % of CuO has been added to the 45S5 bioactive glass composition. The investigation of the effect of the Cu-containing bioactive glass on cellular behavior has revealed that the presence of Cu induces an early differentiation of human mesenchymal stem cells through osteoblast phenotype, promotes the expression of anti-inflammatory interleukin, and reduces proinflammatory interleukin expression. With the aim to produce coatings with antibacterial properties, the Cu-containing bioactive glass was used as the target material for the pulsed laser deposition (PLD) of bioactive thin films. PLD experiments were carried out at different substrate temperatures to study the effect on the film's characteristics. All of the films are compact, crack-free, and characterized by a rough morphology and good wettability. The in vitro bioactivity was demonstrated by the apatite growth on the coating surface, after soaking in simulated body fluid, revealed by Raman spectroscopy and scanning electron microscopy-energy dispersive X-ray analyses. The antibacterial study proved that the material showed more effective activity against three Gram-negative bacteria ( Pseudomonas aeruginosa, Escherichia coli, Salmonella enterica) rather than against Gram-positive bacteria ( Staphylococcus aureus).
Collapse
Affiliation(s)
- Julietta V Rau
- Istituto di Struttura della Materia , Consiglio Nazionale delle Ricerche (ISM-CNR) , Via del Fosso del Cavaliere , 100-00133 Rome , Italy
| | - Mariangela Curcio
- Dipartimento di Scienze , Università della Basilicata , Via dell'Ateneo Lucano , 10-85100 Potenza , Italy
| | - Maria Grazia Raucci
- Institute of Polymers, Composites and Biomaterials , National Research Council of Italy (IPCB-CNR) , Mostra d'Oltremare Pad. 20-Viale J.F. Kennedy , 54-80125 Naples , Italy
| | - Katia Barbaro
- Istituto Zooprofilattico Sperimentale Lazio e Toscana "M. Aleandri" , Via Appia Nuova , 1411-00178 Rome , Italy
| | - Ines Fasolino
- Institute of Polymers, Composites and Biomaterials , National Research Council of Italy (IPCB-CNR) , Mostra d'Oltremare Pad. 20-Viale J.F. Kennedy , 54-80125 Naples , Italy
| | - Roberto Teghil
- Dipartimento di Scienze , Università della Basilicata , Via dell'Ateneo Lucano , 10-85100 Potenza , Italy
| | - Luigi Ambrosio
- Institute of Polymers, Composites and Biomaterials , National Research Council of Italy (IPCB-CNR) , Mostra d'Oltremare Pad. 20-Viale J.F. Kennedy , 54-80125 Naples , Italy
| | - Angela De Bonis
- Dipartimento di Scienze , Università della Basilicata , Via dell'Ateneo Lucano , 10-85100 Potenza , Italy
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering , University of Erlangen-Nuremberg , Cauerstr. 6 , 91058 Erlangen , Germany
| |
Collapse
|
298
|
Synthesis and structural characterization of antimicrobial binuclear copper(II) coordination compounds bridged by hydroxy- and/or thiodipropionic acid. J Inorg Biochem 2019; 191:8-20. [DOI: 10.1016/j.jinorgbio.2018.10.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/19/2018] [Accepted: 10/23/2018] [Indexed: 11/22/2022]
|
299
|
Porta E, Cogliati S, Francisco M, Roldán MV, Mamana N, Grau R, Pellegri N. Stable Colloidal Copper Nanoparticles Functionalized with Siloxane Groups and Their Microbicidal Activity. J Inorg Organomet Polym Mater 2019. [DOI: 10.1007/s10904-018-01071-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
300
|
Douglas LM, Konopka JB. Plasma membrane architecture protects Candida albicans from killing by copper. PLoS Genet 2019; 15:e1007911. [PMID: 30633741 PMCID: PMC6345494 DOI: 10.1371/journal.pgen.1007911] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 01/24/2019] [Accepted: 12/20/2018] [Indexed: 12/21/2022] Open
Abstract
The ability to resist copper toxicity is important for microbial pathogens to survive attack by innate immune cells. A sur7Δ mutant of the fungal pathogen Candida albicans exhibits decreased virulence that correlates with increased sensitivity to copper, as well as defects in other stress responses and morphogenesis. Previous studies indicated that copper kills sur7Δ cells by a mechanism distinct from the known resistance pathways involving the Crp1 copper exporter or the Cup1 metallothionein. Since Sur7 resides in punctate plasma membrane domains known as MCC/eisosomes, we examined overexpression of SUR7 and found that it rescued the copper sensitivity of a mutant that fails to form MCC/eisosomes (pil1Δ lsp1Δ), indicating that these domains act to facilitate Sur7 function. Genetic screening identified new copper-sensitive mutants, the strongest of which were similar to sur7Δ in having altered plasma membranes due to defects in membrane trafficking, cortical actin, and morphogenesis (rvs161Δ, rvs167Δ, and arp2Δ arp3Δ). Consistent with the mutants having altered plasma membrane organization, they were all more readily permeabilized by copper, which is known to bind phosphatidylserine and phosphatidylethanolamine and cause membrane damage. Although these phospholipids are normally localized to the intracellular leaflet of the plasma membrane, their exposure on the surface of the copper-sensitive mutants was indicated by increased susceptibility to membrane damaging agents that bind to these phospholipids. Increased copper sensitivity was also detected for a drs2Δ mutant, which lacks a phospholipid flippase that is involved in maintaining phospholipid asymmetry. Copper binds phosphatidylserine with very high affinity, and deleting CHO1 to prevent phosphatidylserine synthesis rescued the copper sensitivity of sur7Δ cells, confirming a major role for phosphatidylserine in copper sensitivity. These results highlight how proper plasma membrane architecture protects fungal pathogens from copper and attack by the immune system, thereby opening up new avenues for therapeutic intervention. The transition metal copper is used by the innate immune system to attack microbial pathogens. To better understand how the human fungal pathogen Candida albicans resists this type of stress, we screened for mutants that were more susceptible to killing by copper. Interestingly, we identified a new class of copper-sensitive mutants whose plasma membranes are more readily permeabilized by copper. The common characteristic of these new copper-sensitive mutants is that they have an altered cell surface, which weakened their resistance to copper. These results help to explain the toxic effects of copper and suggest novel therapeutic strategies for fungal infections.
Collapse
Affiliation(s)
- Lois M. Douglas
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
| | - James B. Konopka
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
- * E-mail:
| |
Collapse
|