251
|
Augmenter of liver regeneration (ALR) gene therapy attenuates CCl₄-induced liver injury and fibrosis in rats. Biochem Biophys Res Commun 2011; 415:152-6. [PMID: 22033404 DOI: 10.1016/j.bbrc.2011.10.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 10/09/2011] [Indexed: 01/09/2023]
Abstract
Liver fibrosis represents a process of healing and scarring in response to chronic liver injury. Augmenter of liver regeneration (ALR) has been shown to protect hepatocytes from various toxins. The aim of this study was to investigate the effects of ALR gene therapy on liver injury and fibrosis induced by CCl(4) in rats and further explore the underlying mechanisms. Human ALR expression plasmid was delivered via the tail vein. ALR gene therapy might protect the liver from CCl(4)-induced injury and fibrogenesis by attenuating the mitochondrial dysfunction, suppressing oxidative stress, and inhibiting activation of HSCs. This report demonstrated that ALR gene therapy protected against the ATP loss, increased the activity of ATPase, decreased intrahepatic reactive oxygen species level, and down-regulated transforming growth factor-β1, platelet-derived growth factor-BB, and α-smooth muscle actin expression. Following gene transfer liver function tests were significantly improved. In brief, ALR gene therapy might be an effective therapeutic reagent for liver fibrosis with potential clinical applications.
Collapse
|
252
|
Li JF, Lu GF, Zou YY. Demethylbellidifolin inhibits proliferation and activation of hepatic stellate cells. J INVEST SURG 2011; 24:171-7. [PMID: 21675853 DOI: 10.3109/08941939.2011.568593] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The effects of demethylbellidifolin (DMB), a xanthone compound extracted from Swertia davidi Franch, on activation of hepatic stellate cells (HSC) were investigated. Rat HSC line HSC-T6 cultured in vitro showed an activated status, which expressed α-smooth muscle actin (α-SMA) and synthesized collagen I. Treated with different concentrations (10, 20, or 40 μM) of DMB for 12 -48 hr could markedly inhibit cell proliferation reflected by MTT and [(3)H]thymidine incorporation assays, and downregulate the expressions of both α-SMA and collagen I in HSC-T6 cells. Also, such treatment concentration-dependently downregulated both mRNA and protein expressions of transforming growth factor-β1 (TGF-β1) and connective tissue growth factor (CTGF). The expression of peroxisome proliferator-activated receptor-γ (PPAR-γ) was very low in activated HSC-T6, which could be significantly upregulated by treatment with DMB. Furthermore, PPAR-γ antagonist PD68235 (5-20 μM) markedly blocked these effects of DMB mentioned above. In summary, DMB inhibits HSC proliferation and activation, which may be related to activating PPAR-γ-mediated pathway.
Collapse
|
253
|
Morsy MA, Abdalla AM, Mahmoud AM, Abdelwahab SA, Mahmoud ME. Protective effects of curcumin, α-lipoic acid, and N-acetylcysteine against carbon tetrachloride-induced liver fibrosis in rats. J Physiol Biochem 2011; 68:29-35. [PMID: 21986891 DOI: 10.1007/s13105-011-0116-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 09/01/2011] [Indexed: 12/20/2022]
Abstract
Liver fibrosis is a major health problem that can lead to the development of liver cirrhosis and hepatocellular carcinoma. On the other hand, several antioxidants have been shown to possess protective effect against liver fibrosis. Therefore, in the present work, the effectiveness of curcumin, α-lipoic acid, and N-acetylcysteine in protecting against carbon tetrachloride (CCl(4))-induced liver fibrosis as well as the mechanism(s) implicated in this protective effect was studied. The antioxidants used in this study resulted in hepatoprotective effect as evident by substantial decreases in collagen deposition in histopathological examinations in addition to significant decrease in serum levels of alanine aminotransferase, aspartate aminotransferase, gamma glutamyl transpeptidase, bilirubin, and transforming growth factor-alpha (TGF-α) as well as hepatic malondialdehyde concentration, with a concurrent increase in serum matrix metalloproteinase-13 (MMP-13) and hepatic reduced glutathione (GSH) levels as compared to CCl(4) fibrotic group. In conclusion, curcumin, α-lipoic acid, and N-acetylcysteine protect rats against CCl(4)-induced liver fibrosis most possibly through their antioxidant activities and their capacities to induce MMP-13 and to inhibit TGF-α levels.
Collapse
Affiliation(s)
- Mohamed A Morsy
- Department of Pharmacology, El-Minia University, El-Minia, Egypt.
| | | | | | | | | |
Collapse
|
254
|
Gupta SC, Prasad S, Kim JH, Patchva S, Webb LJ, Priyadarsini IK, Aggarwal BB. Multitargeting by curcumin as revealed by molecular interaction studies. Nat Prod Rep 2011; 28:1937-55. [PMID: 21979811 DOI: 10.1039/c1np00051a] [Citation(s) in RCA: 435] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Curcumin (diferuloylmethane), the active ingredient in turmeric (Curcuma longa), is a highly pleiotropic molecule with anti-inflammatory, anti-oxidant, chemopreventive, chemosensitization, and radiosensitization activities. The pleiotropic activities attributed to curcumin come from its complex molecular structure and chemistry, as well as its ability to influence multiple signaling molecules. Curcumin has been shown to bind by multiple forces directly to numerous signaling molecules, such as inflammatory molecules, cell survival proteins, protein kinases, protein reductases, histone acetyltransferase, histone deacetylase, glyoxalase I, xanthine oxidase, proteasome, HIV1 integrase, HIV1 protease, sarco (endo) plasmic reticulum Ca(2+) ATPase, DNA methyltransferases 1, FtsZ protofilaments, carrier proteins, and metal ions. Curcumin can also bind directly to DNA and RNA. Owing to its β-diketone moiety, curcumin undergoes keto-enol tautomerism that has been reported as a favorable state for direct binding. The functional groups on curcumin found suitable for interaction with other macromolecules include the α, β-unsaturated β-diketone moiety, carbonyl and enolic groups of the β-diketone moiety, methoxy and phenolic hydroxyl groups, and the phenyl rings. Various biophysical tools have been used to monitor direct interaction of curcumin with other proteins, including absorption, fluorescence, Fourier transform infrared (FTIR) and circular dichroism (CD) spectroscopy, surface plasmon resonance, competitive ligand binding, Forster type fluorescence resonance energy transfer (FRET), radiolabeling, site-directed mutagenesis, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), immunoprecipitation, phage display biopanning, electron microscopy, 1-anilino-8-naphthalene-sulfonate (ANS) displacement, and co-localization. Molecular docking, the most commonly employed computational tool for calculating binding affinities and predicting binding sites, has also been used to further characterize curcumin's binding sites. Furthermore, the ability of curcumin to bind directly to carrier proteins improves its solubility and bioavailability. In this review, we focus on how curcumin directly targets signaling molecules, as well as the different forces that bind the curcumin-protein complex and how this interaction affects the biological properties of proteins. We will also discuss various analogues of curcumin designed to bind selective targets with increased affinity.
Collapse
Affiliation(s)
- Subash C Gupta
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, 77030, USA
| | | | | | | | | | | | | |
Collapse
|
255
|
El-Agamy DS, Shebl AM, Said SA. Prevention and treatment of Schistosoma mansoni-induced liver fibrosis in mice. Inflammopharmacology 2011; 19:307-16. [DOI: 10.1007/s10787-011-0092-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 08/24/2011] [Indexed: 12/21/2022]
|
256
|
Bisht S, Khan MA, Bekhit M, Bai H, Cornish T, Mizuma M, Rudek MA, Zhao M, Maitra A, Ray B, Lahiri D, Maitra A, Anders RA. A polymeric nanoparticle formulation of curcumin (NanoCurc™) ameliorates CCl4-induced hepatic injury and fibrosis through reduction of pro-inflammatory cytokines and stellate cell activation. J Transl Med 2011; 91:1383-95. [PMID: 21691262 PMCID: PMC3345948 DOI: 10.1038/labinvest.2011.86] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Plant-derived polyphenols such as curcumin hold promise as a therapeutic agent in the treatment of chronic liver diseases. However, its development is plagued by poor aqueous solubility resulting in poor bioavailability. To circumvent the suboptimal bioavailability of free curcumin, we have developed a polymeric nanoparticle formulation of curcumin (NanoCurc™) that overcomes this major pitfall of the free compound. In this study, we show that NanoCurc™ results in sustained intrahepatic curcumin levels that can be found in both hepatocytes and non-parenchymal cells. NanoCurc™ markedly inhibits carbon tetrachloride-induced liver injury, production of pro-inflammatory cytokines and fibrosis. It also enhances antioxidant levels in the liver and inhibits pro-fibrogenic transcripts associated with activated myofibroblasts. Finally, we show that NanoCurc™ directly induces stellate cell apoptosis in vitro. Our results suggest that NanoCurc™ might be an effective therapy for patients with chronic liver disease.
Collapse
Affiliation(s)
- Savita Bisht
- Department of Pathology, Division of GI and Liver Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
257
|
Ulbricht C, Basch E, Barrette EP, Boon H, Chao W, Costa D, Higdon ER, Isaac R, Lynch M, Papaliodis G, Grimes Serrano JM, Varghese M, Vora M, Windsor R, Woods J. Turmeric(Curcuma longa): An Evidence-Based Systematic Review by the Natural Standard Research Collaboration. ACTA ACUST UNITED AC 2011. [DOI: 10.1089/act.2011.17409] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Catherine Ulbricht
- The Natural Standard Research Collaboration, in Somerville, Massachusetts, is a senior attending pharmacist at Massachusetts General Hospital, and is an adjunct/assistant clinical professor at many universities
| | - Ethan Basch
- The Natural Standard Research Collaboration, is a medical oncologist and professor at Memorial Sloan-Kettering Cancer Center in New York, New York, and is on the faculty at Weill Cornell Medical College in New York, New York
| | - Ernie-Paul Barrette
- The Division of Infectious Diseases at Washington University School of Medicine in St. Louis, Missouri
| | - Heather Boon
- The Leslie Dan Faculty of Pharmacy at the University of Toronto in Ontario, Canada, is a founding chair and principal investigator of the Canadian Interdisciplinary Network for CAM Research (IN-CAM) in Calgary, Alberta, Canada, and is co-chair of Health Canada’s Expert Advisory Committee for Natural Health Products in Ottawa, Ontario, Canada
| | | | | | | | | | | | - George Papaliodis
- The Immunology and Uveitis Service at Massachusetts Eye and Ear Infirmary in Boston, Massachusetts, and is on the faculty at Massachusetts General Hospital in Boston, Massachusetts
| | | | | | | | | | - Jen Woods
- A publications editor, all at the Natural Standard Research Collaboration
| |
Collapse
|
258
|
Molecular pathogenesis of hepatic fibrosis and current therapeutic approaches. Chem Biol Interact 2011; 193:225-31. [PMID: 21803030 DOI: 10.1016/j.cbi.2011.07.001] [Citation(s) in RCA: 189] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 07/05/2011] [Accepted: 07/06/2011] [Indexed: 12/11/2022]
Abstract
The pathogenesis of hepatic fibrosis involves significant deposition of fibrilar collagen and other extracellular matrix proteins. It is a rather dynamic process of wound healing in response to a variety of persistent liver injury caused by factors such as ethanol intake, viral infection, drugs, toxins, cholestasis, and metabolic disorders. Liver fibrosis distorts the hepatic architecture, decreases the number of endothelial cell fenestrations and causes portal hypertension. Key events are the activation and transformation of quiescent hepatic stellate cells into myofibroblast-like cells with the subsequent up-regulation of proteins such as α-smooth muscle actin, interstitial collagens, matrix metalloproteinases, tissue inhibitor of metalloproteinases, and proteoglycans. Oxidative stress is a major contributing factor to the onset of liver fibrosis and it is typically associated with a decrease in the antioxidant defense. Currently, there is no effective therapy for advanced liver fibrosis. In its early stages, liver fibrosis is reversible upon cessation of the causative agent. In this review, we discuss some aspects on the etiology of liver fibrosis, the cells involved, the molecular pathogenesis, and the current therapeutic approaches.
Collapse
|
259
|
Dual effects of curcumin on neuronal oxidative stress in the presence of Cu(II). Food Chem Toxicol 2011; 49:1578-83. [DOI: 10.1016/j.fct.2011.04.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 03/31/2011] [Accepted: 04/01/2011] [Indexed: 01/07/2023]
|
260
|
Weng TC, Shen CC, Chiu YT, Lin YL, Huang YT. Effects of armepavine against hepatic fibrosis induced by thioacetamide in rats. Phytother Res 2011; 26:344-53. [PMID: 21717514 DOI: 10.1002/ptr.3539] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2010] [Accepted: 04/15/2011] [Indexed: 01/01/2023]
Abstract
The aim of this study was to investigate if armepavine (Arm, C₁₉H₂₃O₃N) could exert inhibitory effects against hepatic fibrosis in rats. A cell line of rat hepatic stellate cells (HSC-T6) was stimulated with tumour necrosis factor-α (TNF-α) to evaluate the inhibitory effects of Arm. Rats were injected with thioacetamide (TAA; 300 mg/kg, intraperitoneally) thrice a week for 4 weeks to induce hepatic fibrosis, with Arm (3 or 10 mg/kg) given by gavage twice a day. Liver sections were taken for western blotting, fibrosis scoring and immunofluorescence staining. Arm (1-10 µm) concentration-dependently attenuated TNF-α-stimulated: (i) protein expressions of α-smooth muscle actin (α-SMA), collagen type I and angiopoietin-1; (ii) H₂O₂ production; and (iii) NF-κB, JunD and C/EBPß (cytidine-cytidine-adenosine-adenosine-thymidine (CCAAT)/enhancer binding protein-ß (EBPß)) nuclear translocations in HSC-T6 cells. In vivo Arm treatment significantly reduced plasma aspartate transaminase and alanine transaminase levels, hepatic α-SMA expression and collagen contents, and fibrosis scores of TAA-injected rats. Moreover, Arm treatment decreased α-SMA- and NF-κB-positive cells in immunohistochemical staining, and mRNA expression levels of IL-6, TGF-ß1, TIMP-1, col1α2, iNOS and ICAM-1 genes, but up-regulated the metallothionein gene in the livers of TAA-injected rats. Our results indicated that Arm exerted both in vitro and in vivo antifibrotic effects in rats, with inhibition of NF-κB, JunD and C/EBPß pathways.
Collapse
Affiliation(s)
- Ting-Chun Weng
- Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
261
|
Tu CT, Han B, Liu HC, Zhang SC. Curcumin protects mice against concanavalin A-induced hepatitis by inhibiting intrahepatic intercellular adhesion molecule-1 (ICAM-1) and CXCL10 expression. Mol Cell Biochem 2011; 358:53-60. [PMID: 21695461 DOI: 10.1007/s11010-011-0920-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 06/07/2011] [Indexed: 12/20/2022]
Abstract
The effect of curcumin on liver injury caused by Concanavalin A (Con A) has not been carefully examined. This study was designed to evaluate the protective effect of curcumin on Con A-induced hepatitis in mice. Liver injured mice received curcumin by gavage at a dose of 200 mg/kg body weight before Con A intravenous administration. Curcumin was effective in reducing the elevated plasma levels of aminotransferases and the incidence of liver necrosis compared with Con A-injected control group. Enzyme-linked immunosorbent assay (ELISA) showed that curcumin suppressed proinflammatory cytokines such as tumor necrosis factor (TNF)-α, interferon (IFN)-γ, and interleukin (IL)-4 production in Con A-injected mice. The reduced severity of hepatitis in curcumin pretreated mice correlated with decrease in numbers of liver CD4(+) T cells but not CD8(+) T cells by immunohistochemical analysis. Furthermore, the expression levels of intercellular adhesion molecule-1 (ICAM-1) and the interferon-inducible chemokine CXCL10 in hepatic tissue were significantly decreased by curcumin pretreatment. In conclusion, curcumin pretreatment protects against T cell-mediated hepatitis in mice.
Collapse
Affiliation(s)
- Chuan-tao Tu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, People's Republic of China.
| | | | | | | |
Collapse
|
262
|
Zhang Y, Guo J, Dong H, Zhao X, Zhou L, Li X, Liu J, Niu Y. Hydroxysafflor yellow A protects against chronic carbon tetrachloride-induced liver fibrosis. Eur J Pharmacol 2011; 660:438-44. [DOI: 10.1016/j.ejphar.2011.04.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 04/04/2011] [Accepted: 04/12/2011] [Indexed: 01/22/2023]
|
263
|
Pan LH, Lu J, Luo JP, Zha XQ, Wang JH. Preventive effect of a galactoglucomannan (GGM) from Dendrobium huoshanense on selenium-induced liver injury and fibrosis in rats. ACTA ACUST UNITED AC 2011; 64:899-904. [PMID: 21530204 DOI: 10.1016/j.etp.2011.04.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 03/14/2011] [Accepted: 04/05/2011] [Indexed: 11/18/2022]
Abstract
This study was carried out to investigate the preventive effects of galactoglucomannan (GGM), a homogeneous polysaccharide from Dendrobium huoshanense, on liver injury and fibrosis induced by sodium selenite. Sprague-Dawley rats injected subcutaneously with sodium selenite at the dosage of 3.28 mgkg(-1) b.wt. were set as the model groups. Rats treated with sodium selenite at the dosage of 3.28 mgkg(-1) b.wt. and GGM at 50-200 mgkg(-1) b.wt. were set as the prevention groups. Biochemical and histological analysis showed that GGM significantly ameliorated selenite-induced liver injury and fibrosis in rats. Oral administration of GGM effectively attenuated the toxicity of selenite to liver tissue, which was judged both by the decreased activities of serum hepatic enzymes, including alanine aminotransferase (ALT), aspartate aminotransferase (AST) and lactate dehydrogenase (LDH), and by liver histopathological examination. Meanwhile, GGM also reduced the levels of H(2)O(2) and malondialdehyde (MDA), elevated the levels of GSH, restored the fluidity of hepatic plasma membrane, and retained the activities of endogenous enzymes including superoxide dismutase (SOD), catalase (CAT) and glutathione S-transferase (GST). The prevention of selenite-induced liver injury and fibrosis by GGM was further supported by the reduced expression of transforming growth factor-β1 (TGF-β1) and type I collagen. These results suggested that GGM may be developed into a novel antifibrotic agent for the prevention of liver injury and fibrosis.
Collapse
Affiliation(s)
- Li-Hua Pan
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
| | | | | | | | | |
Collapse
|
264
|
Guimarães MR, Coimbra LS, de Aquino SG, Spolidorio LC, Kirkwood KL, Rossa C. Potent anti-inflammatory effects of systemically administered curcumin modulate periodontal disease in vivo. J Periodontal Res 2011; 46:269-79. [PMID: 21306385 PMCID: PMC3086370 DOI: 10.1111/j.1600-0765.2010.01342.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND OBJECTIVE Curcumin is a plant-derived dietary spice with various biological activities, including anticarcinogenic and anti-inflammatory effects. Its therapeutic applications have been studied in a variety of conditions, including rheumatoid arthritis, colon cancer and depression, but no studies have evaluated the effects of curcumin on periodontal disease in vivo. MATERIAL AND METHODS Experimental periodontal disease was induced in rats by placing cotton ligatures around both lower first molars. Curcumin was given to the rats by the intragastric route daily at two dosages (30 and 100 mg/kg) for 15 d. Control animals received ligatures but only the corn oil vehicle by gavage, and no treatment-negative control animals were included. Bone resorption was assessed by micro-computed tomography, and the inflammatory status was evaluated by stereometric analysis. Both RT-qPCR and ELISA were used to determine the expression of interleukin-6, tumor necrosis factor-α and prostaglandin E(2) synthase in the gingival tissues. Modulation of p38 MAPK and nuclear factor-κB activation were assessed by western blotting. RESULTS Bone resorption was effectively induced in the experimental period, but it was not affected by either dose of curcumin. Curcumin effectively inhibited cytokine gene expression at both the mRNA and the protein level and produced a dose-dependent inhibition of the activation of nuclear factor-κB in the gingival tissues. Activation of p38 MAPK was not inhibited by curcumin. Curcumin-treated animals also presented a marked reduction of the inflammatory cell infiltrate and increased collagen content and fibroblastic cell numbers. CONCLUSION Curcumin did not prevent alveolar bone resorption, but its potent anti-inflammatory effect suggests that it may have a therapeutic potential in periodontal diseases.
Collapse
Affiliation(s)
- M R Guimarães
- Department of Diagnosis and Surgery, Faculdade de Odontologia de Araraquara-Univ Estadual Paulista (UNESP), Araraquara, SP, Brazil
| | | | | | | | | | | |
Collapse
|
265
|
Lin MS, Lee YH, Chiu WT, Hung KS. Curcumin Provides Neuroprotection After Spinal Cord Injury. J Surg Res 2011; 166:280-9. [DOI: 10.1016/j.jss.2009.07.001] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Revised: 06/23/2009] [Accepted: 07/03/2009] [Indexed: 01/12/2023]
|
266
|
Abstract
Curcumin (diferuloylmethane), an orange-yellow component of turmeric or curry powder, is a polyphenol natural product isolated from the rhizome of the plant Curcuma longa. For centuries, curcumin has been used in some medicinal preparation or used as a food-coloring agent. In recent years, extensive in vitro and in vivo studies suggested curcumin has anticancer, antiviral, antiarthritic, anti-amyloid, antioxidant, and anti-inflammatory properties. The underlying mechanisms of these effects are diverse and appear to involve the regulation of various molecular targets, including transcription factors (such as nuclear factor-kB), growth factors (such as vascular endothelial cell growth factor), inflammatory cytokines (such as tumor necrosis factor, interleukin 1 and interleukin 6), protein kinases (such as mammalian target of rapamycin, mitogen-activated protein kinases, and Akt) and other enzymes (such as cyclooxygenase 2 and 5 lipoxygenase). Thus, due to its efficacy and regulation of multiple targets, as well as its safety for human use, curcumin has received considerable interest as a potential therapeutic agent for the prevention and/or treatment of various malignant diseases, arthritis, allergies, Alzheimer's disease, and other inflammatory illnesses. This review summarizes various in vitro and in vivo pharmacological aspects of curcumin as well as the underlying action mechanisms. The recently identified molecular targets and signaling pathways modulated by curcumin are also discussed here.
Collapse
Affiliation(s)
- Hongyu Zhou
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
| | - Christopher S. Beevers
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
| |
Collapse
|
267
|
Lin J, Chen A. Curcumin diminishes the impacts of hyperglycemia on the activation of hepatic stellate cells by suppressing membrane translocation and gene expression of glucose transporter-2. Mol Cell Endocrinol 2011; 333:160-71. [PMID: 21195127 PMCID: PMC3039105 DOI: 10.1016/j.mce.2010.12.028] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 11/22/2010] [Accepted: 12/20/2010] [Indexed: 01/23/2023]
Abstract
Diabetes is featured by elevated levels of blood glucose, i.e. hyperglycemia, which might be a risk factor for hepatic fibrogenesis in patients with non-alcoholic steatohepatitis. Hepatic stellate cells (HSCs) are the major effectors during hepatic fibrogenesis. This study was designed to evaluate impacts of high levels of glucose on HSC activation, assess roles of the phytochemical curcumin in attenuating the glucose impacts, and elucidate underlying mechanisms. In this report, levels of intracellular glucose were measured. Contents and gene expression of glucose transporter-2 (GLUT2) in cell fractions were examined. Levels of cellular glutathione and oxidative stress were analyzed. We observed that high levels of glucose induced cell proliferation, type I collagen production and expression of genes relevant to HSC activation, and elevated intracellular glucose levels in cultured HSCs. Curcumin eliminated the stimulatory impacts. Curcumin abrogated the membrane translocation of GLUT2 by interrupting the p38 MAPK signaling pathway. In addition, curcumin suppressed glut2 expression by stimulating the activity of peroxisome proliferator-activated receptor-gamma (PPARγ) and de novo synthesis of glutathione. In conclusion, hyperglycemia stimulated HSC activation in vitro by increasing intracellular glucose, which was eliminated by curcumin by blocking the membrane translocation of GLUT2 and suppressing glut2 expression. The latter was mediated by activating PPARγ and attenuating oxidative stress. Our results presented evidence to impacts of hyperglycemia on stimulating HSC activation and hepatic fibrogenesis, and provided novel insights into the mechanisms by which curcumin eliminated the hyperglycemia-caused HSC activation and potential therapeutic strategies for treatment of diabetes-associated hepatic fibrogenesis.
Collapse
Affiliation(s)
- Jianguo Lin
- Department of Pathology, School of Medicine, Saint Louis University, St. Louis. MO
| | - Anping Chen
- Department of Pathology, School of Medicine, Saint Louis University, St. Louis. MO
| |
Collapse
|
268
|
Rajasekaran SA. Therapeutic potential of curcumin in gastrointestinal diseases. World J Gastrointest Pathophysiol 2011; 2:1-14. [PMID: 21607160 PMCID: PMC3097964 DOI: 10.4291/wjgp.v2.i1.1] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 11/25/2010] [Accepted: 12/02/2010] [Indexed: 02/06/2023] Open
Abstract
Curcumin, also known as diferuloylmethane, is derived from the plant Curcuma longa and is the active ingredient of the spice turmeric. The therapeutic activities of curcumin for a wide variety of diseases such as diabetes, allergies, arthritis and other chronic and inflammatory diseases have been known for a long time. More recently, curcumin’s therapeutic potential for preventing and treating various cancers is being recognized. As curcumin’s therapeutic promise is being explored more systematically in various diseases, it has become clear that, due to its increased bioavailability in the gastrointestinal tract, curcumin may be particularly suited to be developed to treat gastrointestinal diseases. This review summarizes some of the current literature of curcumin’s anti-inflammatory, anti-oxidant and anti-cancer potential in inflammatory bowel diseases, hepatic fibrosis and gastrointestinal cancers.
Collapse
|
269
|
Tang Y, Chen A. Curcumin prevents leptin raising glucose levels in hepatic stellate cells by blocking translocation of glucose transporter-4 and increasing glucokinase. Br J Pharmacol 2011; 161:1137-49. [PMID: 20977462 DOI: 10.1111/j.1476-5381.2010.00956.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Hyperleptinemia is commonly found in obese patients, associated with non-alcoholic steatohepatitis and hepatic fibrosis. Hepatic stellate cells (HSCs) are the most relevant effectors during hepatic fibrogenesis. We recently reported that leptin stimulated HSC activation, which was eliminated by curcumin, a phytochemical from turmeric. This study was designed to explore the underlying mechanisms, focusing on their effects on intracellular glucose in HSCs. We hypothesized that leptin stimulated HSC activation by elevating the level of intracellular glucose, which was eliminated by curcumin by inhibiting the membrane translocation of glucose transporter-4 (GLUT4) and inducing the conversion of glucose to glucose-6-phosphate (G-6-P). EXPERIMENTAL APPROACH Levels of intracellular glucose were measured in rat HSCs and immortalized human hepatocytes. Contents of GLUT4 in cell fractions were analysed by Western blotting analyses. Activation of signalling pathways was assessed by comparing phosphorylation levels of protein kinases. KEY RESULTS Leptin elevated the level of intracellular glucose in cultured HSCs, which was diminished by curcumin. Curcumin suppressed the leptin-induced membrane translocation of GLUT4 by interrupting the insulin receptor substrates/phosphatidyl inositol 3-kinase/AKT signalling pathway. Furthermore, curcumin stimulated glucokinase activity, increasing conversion of glucose to G-6-P. CONCLUSIONS AND IMPLICATIONS Curcumin prevented leptin from elevating levels of intracellular glucose in activated HSCs in vitro by inhibiting the membrane translocation of GLUT4 and stimulating glucose conversion, leading to the inhibition of HSC activation. Our results provide novel insights into mechanisms of curcumin in inhibiting leptin-induced HSC activation.
Collapse
Affiliation(s)
- Youcai Tang
- Department of Pathology, School of Medicine, Saint Louis University, 1100 S.Grand Boulevard, St Louis, MO 63104, USA
| | | |
Collapse
|
270
|
Wang Z, Wang J, Hu C, Cao W, Shen X, Wu M, Shen L, Wu S. The effect of down-regulation of Smad3 by RNAi on hepatic stellate cells and a carbon tetrachloride-induced rat model of hepatic fibrosis. Braz J Med Biol Res 2011; 44:91-9. [PMID: 21103786 DOI: 10.1590/s0100-879x2010007500132] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 11/12/2001] [Indexed: 01/17/2023] Open
Affiliation(s)
- Z.R. Wang
- Soochow University, China; The fifth People’s Hospital of Suzhou, China
| | | | | | - W.G. Cao
- The fifth People’s Hospital of Suzhou, China
| | - X.J. Shen
- The fifth People’s Hospital of Suzhou, China
| | - M.Y. Wu
- The fifth People’s Hospital of Suzhou, China
| | | | | |
Collapse
|
271
|
Qiao H, Han H, Hong D, Ren Z, Chen Y, Zhou C. Protective effects of baicalin on carbon tetrachloride induced liver injury by activating PPARγ and inhibiting TGFβ1. PHARMACEUTICAL BIOLOGY 2011; 49:38-45. [PMID: 20687787 DOI: 10.3109/13880209.2010.493179] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
CONTEXT Traditional Chinese herbal medicines have attracted considerable attention in many countries with treatment of several end-stage liver diseases. OBJECTIVE The present study investigated the protective effects of baicalin on hepatotoxicity and hepatic fibrosis and explored the role of transforming growth factor β1 (TGFβ1) and peroxisome proliferator activated receptors γ (PPARγ) on the rat liver injury model. MATERIALS AND METHODS The rat liver injury model was introduced by subcutaneous injection of carbon tetrachloride (CCl(4)) for 8 weeks. At week 5, rats were treated with baicalin of different doses or silymarin. Detection of biochemical indicators, histological analysis, and enzyme-linked immunosorbent assays were employed to evaluate severity of liver inflammation, and western blotting and RT-PCR assay were performed to evaluate TGFβ1 and PPARγ pathway related proteins and gene expression. RESULTS The administration of baicalin could significantly improve histological changes of CCl(4) treated rat livers and return biochemical indicators for liver injury to nearly baseline level. In addition, the increased expression of TGFβ1 was markedly suppressed by baicalin, and decreased expression of PPARγ was also dramatically elevated by baicalin as well. The hepatoprotective effects of baicalin may be conferred by elevating the level of PPARγ contributing to down-regulation of TGFβ1 signaling pathway and suppression of hepatic stellate cell activation. CONCLUSIONS The studies demonstrated that baicalin is a potent and promising antifibrotic drug in the treatment of hepatic fibrosis.
Collapse
Affiliation(s)
- Hongxiang Qiao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | | | | | | | | | | |
Collapse
|
272
|
Yu M, Zhang W, Qin L, Tian L, Zhou C. Enhancement of P-glycoprotein expression by hepatocyte transplantation in carbon tetrachloride-induced rat liver. Anat Rec (Hoboken) 2010; 293:1167-74. [PMID: 20583260 DOI: 10.1002/ar.21160] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The multidrug resistance protein P-glycoprotein (P-gp) is physiologically expressed at the bile canalicular membrane of the liver, where it participates in the biliary excretion of various lipophilic drugs. Chronic exposure to carbon tetrachloride (CCI(4)) is known to induce hepatic fibrosis resulting in hepatotoxicity. This study focuses on the effects of CCI(4) and hepatic transplantation (HT) on the P-gp expressions in rat liver. Male SD rats were treated with CCI(4) to induce liver damage for 3, 7, 14, 21, and 28 days, respectively. Immunohistochemistry revealed that P-gp was widely distributed in the liver and was spread from the cytoplasm to cell membrane of the rat liver. Western blot showed remarkable increase of P-gp expression in 3 days CCI(4)-treated rats, whereas, a continuous decrease in the P-gp expression was seen in 7, 14, 21, and 28 days CCI(4)-treated rats. After HT with cells from the normal rat liver, the level of P-gp increased comparing with those from the sham operation. Blood biochemistry showed decreased levels of serum alanine transaminase, aspartate transaminase, and alkaline phosphatase and increased serum levels of triglyceride and total protein, which indicated the improved function of the liver damaged by CCI(4). These results illustrate the variation of the expression of P-gp in CCI(4)-induced hepatic damage and an increase of P-gp level after HT in the toxic liver induced by CCI(4). We hypothesized that P-gp may play a protective role in the process of liver injury. HT can be beneficial to ameliorate the rat liver functional damage induced by CCI(4).
Collapse
Affiliation(s)
- Ming Yu
- Department of Anatomy and Embryology, Peking University Health Science Center, Haidian District, Beijing, China
| | | | | | | | | |
Collapse
|
273
|
Radical scavenging abilities and hepatoprotective effect of [N, N′-Bis (salicylidene) ethane-1, 2-diaminato] oxovanadium (IV) complex in CCl4-treated rats. ACTA ACUST UNITED AC 2010; 62:533-8. [DOI: 10.1016/j.etp.2009.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Revised: 07/01/2009] [Accepted: 07/05/2009] [Indexed: 11/19/2022]
|
274
|
Tang Y, Chen A. Curcumin protects hepatic stellate cells against leptin-induced activation in vitro by accumulating intracellular lipids. Endocrinology 2010; 151:4168-77. [PMID: 20660066 PMCID: PMC2940502 DOI: 10.1210/en.2010-0191] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Obesity and type II diabetes mellitus are often associated with hyperleptinemia and commonly accompanied by nonalcoholic steatohepatitis, which could cause hepatic fibrosis. During hepatic fibrogenesis, the major effectors hepatic stellate cells (HSCs) become active, coupling with depletion of cellular lipid droplets and downexpression of genes relevant to lipid accumulation. Accumulating evidence supports the proposal that recovering the accumulation of lipids would inhibit HSC activation. We recently reported that leptin stimulated HSC activation, which was eliminated by curcumin, a phytochemical from turmeric. The current study was designed to explore the underlying mechanisms, focusing on their effects on the level of intracellular lipids. We hypothesized that one of the mechanisms by which leptin stimulated HSC activation was to stimulate the depletion of intracellular lipids, which could be abrogated by curcumin by inducing expression of genes relevant to lipid accumulation. In this report, we observed that leptin dose dependently reduced levels of intracellular fatty acids and triglycerides in passaged HSCs, which were eliminated by curcumin. The phytochemical abrogated the impact of leptin on inhibiting the activity of AMP-activated protein kinase (AMPK) in HSCs in vitro. The activation of AMPK resulted in inducing expression of genes relevant to lipid accumulation and increasing intracellular lipids in HSCs in vitro. In summary, curcumin eliminated stimulatory effects of leptin on HSC activation and increased AMPK activity, leading to inducing expression of genes relevant to lipid accumulation and elevating the level of intracellular lipids. These results provide novel insights into mechanisms of curcumin in inhibiting leptin-induced HSC activation.
Collapse
Affiliation(s)
- Youcai Tang
- Department of Pathology, School of Medicine, Saint Louis University, St. Louis, Missouri 63104, USA
| | | |
Collapse
|
275
|
Leukamenin F suppresses liver fibrogenesis by inhibiting both hepatic stellate cell proliferation and extracellular matrix production. Acta Pharmacol Sin 2010; 31:839-48. [PMID: 20562900 DOI: 10.1038/aps.2010.64] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
AIM To investigate the inhibitory effect of the natural product Leukamenin F on liver fibrosis and explore its potential underlying mechanisms. METHODS Carbon tetrachloride (CCl(4))-treated mouse model in vivo and in hepatic stellate cells (HSC) in vitro were used. The effect on CCl(4)-induced liver fibrosis was studied using histochemical and biochemical analysis, while the inhibition on HSC was assessed using cell proliferation/apoptosis assay and collagen I production using real-time PCR. The inhibitory effects of Leukamenin F on Akt/mTOR/p70S6K and TGFbeta/Smad pathways was studied using Western blot and cell image analysis. RESULTS Leukamenin F (0.1-1 mg/kg, ip, q.d.x28) significantly reduced alpha-SMA and collagen specific Sirius red staining areas in CCl(4) -treated mouse livers. This compound at 1-2 micromol/L dose-dependently inhibited alpha-SMA expression, cell proliferation and type I procollagen mRNA expression in activated HSC. Furthermore it inhibited the Akt/mTOR/p70S6K pathway and suppressed TGFbeta -induced Smad2/Smad3 phosphorylation and nuclear translocation in HSC. CONCLUSION Our results demonstrated that Leukamenin F could attenuate CCl(4)-induced liver fibrogenesis in mice as an efficient inhibitor against both HSC proliferation and ECM production. This natural product provides a valuable structural hint for the development of anti-liver fibrosis reagents.
Collapse
|
276
|
Wu SJ, Tam KW, Tsai YH, Chang CC, Chao JCJ. Curcumin and saikosaponin a inhibit chemical-induced liver inflammation and fibrosis in rats. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2010; 38:99-111. [PMID: 20128048 DOI: 10.1142/s0192415x10007695] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Curcumin and saikosaponin A as antioxidants improve antioxidant status. This study investigated the anti-inflammatory and antifibrotic actions of curcumin and saikosaponin A on CCl(4)-induced liver damage. Sprague-Dawley rats were randomly divided into control, CCl(4), CCl(4)+ curcumin (0.005%; CU), CCl(4) + saikosaponin A (0.004%; SS), and CCl(4) + curcumin + saikosaponin A (0.005% + 0.004%; CU + SS) groups. Carbon tetrachloride (40% in olive oil) at a dose of 0.75 ml/kg was injected intraperitoneally once a week. Curcumin and saikosaponin A were supplemented alone or in combination with diet 1 week before CCl(4) injection for 8 weeks. After 8-week supplementation, histopathological results showed hepatic collagen deposition was significantly reduced in the CU and SS groups, and activated nuclear factor-kappa B expression induced by CCl(4) in the liver was significantly inhibited by curcumin and/or saikosaponin A. Hepatic proinflammatory cytokines tumor necrosis factor-alpha, interleukin-1beta, and interleukin-6 were significantly inhibited, and anti-inflammatory cytokine interleukin-10 was significantly increased by supplementation with curcumin and/or saikosaponin A. Additionally, curcumin and/or saikosaponin A significantly reduced the increased levels of hepatic transforming growth factor-beta1 and hydroxyproline after CCl(4) treatment. Therefore, supplementation with curcumin and/or saikosaponin A suppress inflammation and fibrogenesis in rats with CCl(4)-induced liver injury. However, the combination has no additive effects on anti-inflammation and antifibrosis.
Collapse
|
277
|
Abstract
Activated hepatic stellate cells (HSCs), the major source of the collagens involved in fibrosis and non-alcoholic fatty liver disease (NAFLD), undergo a profound loss of lipid and vitamin A storage capacity, as a consequence of a decline in expression of 'adipogenic' transcription factors such as peroxisome proliferator-activated receptor-gamma (PPARgamma). By contrast, hepatocytes undergo a micro- and macro-vesicular steatosis, reflecting the accumulation of triacylglycerol, and associated with chronic inflammation and fibrosis. These paradoxical findings are extended in this issue: Kang and Chen demonstrate that while low-density lipoproteins (LDL) can activate HSCs, curcumin can inhibit this process by activation of PPARgamma, which not only represses gene expression of SREBP-2 and LDLR, but via induction of expression of SREBP-1c, restores the lipid storage capacity characteristic of quiescent HSCs, suggesting that curcumin may be of therapeutic usage in protecting against liver steatosis and fibrosis.
Collapse
Affiliation(s)
- Annette Graham
- Vascular Biology Group, Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, UK.
| |
Collapse
|
278
|
Abstract
Nonalcoholic steatohepatitis is characterized by the association of steatosis with hepatic cell injury, lobular inflammation and fibrosis. Curcumin is known for its antioxidant, anti-inflammatory and antifibrotic properties. The aim of this study was to test whether the administration of curcumin limits fibrogenic evolution in a murine model of nonalcoholic steatohepatitis. Male C57BL/6 mice were divided into four groups and fed a diet deficient in methionine and choline (MCD) or the same diet supplemented with methionine and choline for as long as 10 weeks. Curcumin (25 microg per mouse) or its vehicle (DMSO) was administered intraperitoneally every other day. Fibrosis was assessed by Sirius red staining and histomorphometry. Intrahepatic gene expression was measured by quantitative PCR. Hepatic oxidative stress was evaluated by staining for 8-OH deoxyguanosine. Myofibroblastic hepatic stellate cells (HSCs) were isolated from normal human liver tissue. The increase in serum ALT caused by the MCD diet was significantly reduced by curcumin after 4 weeks. Administration of the MCD diet was associated with histological steatosis and necro-inflammation, and this latter was significantly reduced in mice receiving curcumin. Curcumin also inhibited the generation of hepatic oxidative stress. Fibrosis was evident after 8 or 10 weeks of MCD diet and was also significantly reduced by curcumin. Curcumin decreased the intrahepatic gene expression of monocyte chemoattractant protein-1, CD11b, procollagen type I and tissue inhibitor of metalloprotease (TIMP)-1, together with protein levels of alpha-smooth muscle-actin, a marker of fibrogenic cells. In addition, curcumin reduced the generation of reactive oxygen species in cultured HSCs and inhibited the secretion of TIMP-1 both in basal conditions and after the induction of oxidative stress. In conclusion, curcumin administration effectively limits the development and progression of fibrosis in mice with experimental steatohepatitis, and reduces TIMP-1 secretion and oxidative stress in cultured stellate cells.
Collapse
|
279
|
Lin J, Zheng S, Chen A. Curcumin attenuates the effects of insulin on stimulating hepatic stellate cell activation by interrupting insulin signaling and attenuating oxidative stress. J Transl Med 2009; 89:1397-409. [PMID: 19841616 PMCID: PMC2787823 DOI: 10.1038/labinvest.2009.115] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Hyperinsulinemia associated with type II diabetes mellitus (T2DM) is a risk factor for non-alcoholic steatohepatitis (NASH) and hepatic fibrosis. Hepatic stellate cells (HSCs) are the major effectors in collagen production during hepatic fibrogenesis. Elevated levels of insulin stimulate HSC activation. In addition to its anti-diabetic effects, the antioxidant curcumin, the yellow pigment in curry from turmeric, suppresses HSC activation and protects the liver from fibrogenesis in vitro and in vivo. This study aims at evaluating the effect of curcumin on insulin-induced HSC activation and further elucidating the underlying mechanisms. We report that curcumin dose-dependently eliminates insulin-induced HSC activation by suppressing expression of type I collagen gene and other key genes relevant to HSC activation. Additional experiments indicate that curcumin interrupts insulin signaling in HSCs by reducing the phosphorylation level of insulin receptor (InsR) and suppressing gene expression of InsR. Furthermore, curcumin attenuates insulin-induced oxidative stress in HSCs by inducing gene expression of glutamate-cysteine ligase (GCL), leading to de novo synthesis of glutathione and the suppression of gene expression of InsR. These results support our initial hypothesis that curcumin inhibits the effects of insulin on stimulating HSC activation by interrupting insulin signaling and attenuating oxidative stress. Our results provide novel insights into the mechanisms by which curcumin inhibits the insulin-induced HSC activation.
Collapse
Affiliation(s)
| | | | - Anping Chen
- CORRESPONDING AUTHOR: Anping Chen, Ph. D. Department of Pathology, School of Medicine, Saint Louis University, 1100 S. Grand Blvd, Room 215, Edward A. Doisy Research Center, St. Louis, MO 63104, USA. Tel: 314-977-7832; Fax: 314-977-8499;
| |
Collapse
|
280
|
Kang Q, Chen A. Curcumin inhibits srebp-2 expression in activated hepatic stellate cells in vitro by reducing the activity of specificity protein-1. Endocrinology 2009; 150:5384-94. [PMID: 19808779 PMCID: PMC2795713 DOI: 10.1210/en.2009-0517] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Elevated levels of cholesterol/low-density lipoprotein (LDL) are a risk factor for the development of nonalcoholic steatohepatitis and its associated hepatic fibrosis. However, underlying mechanisms remain elusive. We previously reported that curcumin induced gene expression of peroxisome proliferator-activated receptor (PPAR)-gamma and stimulated its activity, leading to the inhibition of the activation of hepatic stellate cells (HSCs), the major effector cells during hepatic fibrogenesis. We recently showed that curcumin suppressed gene expression of LDL receptor in activated HSCs in vitro by repressing gene expression of the transcription factor sterol regulatory element binding protein-2 (SREBP-2), leading to the reduction in the level of intracellular cholesterol in HSCs and to the attenuation of the stimulatory effects of LDL on HSCs activation. The current study aimed at exploring molecular mechanisms by which curcumin inhibits srebp-2 expression in HSCs. Promoter deletion assays, mutagenesis assays, and EMSAs localize a specificity protein-1 (SP-1) binding GC-box in the srebp-2 promoter, which is responsible for enhancing the promoter activity and responding to curcumin in HSCs. Curcumin suppresses gene expression of SP-1 and reduces its trans-activation activity, which are mediated by the activation of PPARgamma. The inhibitory effect of curcumin on SP-1 binding to the GC-box is confirmed by chromatin immuno-precipitation. In summary, our results demonstrate that curcumin inhibits srebp-2 expression in cultured HSCs by activating PPARgamma and reducing the SP-1 activity, leading to the repression of ldlr expression. These results provide novel insights into molecular mechanisms by which curcumin inhibits LDL-induced HSC activation.
Collapse
Affiliation(s)
- Qiaohua Kang
- Department of Pathology, School of Medicine, Saint Louis University, St. Louis, Missouri 63104, USA
| | | |
Collapse
|
281
|
Kang Q, Chen A. Curcumin eliminates oxidized LDL roles in activating hepatic stellate cells by suppressing gene expression of lectin-like oxidized LDL receptor-1. J Transl Med 2009; 89:1275-90. [PMID: 19736547 PMCID: PMC2783367 DOI: 10.1038/labinvest.2009.93] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Type II diabetes mellitus (T2DM) is often accompanied by non-alcoholic steatohepatitis (NASH) and associated with hypercholesterolemia, that is, increased levels of plasma low-density lipoprotein (LDL) and oxidized LDL (ox-LDL). Approximately one-third of NASH develops hepatic fibrosis. The role of hypercholesterolemia in T2DM and NASH-associated hepatic fibrogenesis remains obscure. We previously reported that the phytochemical curcumin inhibited the activation of hepatic stellate cells (HSCs), the major effector cells during hepatic fibrogenesis, and protected the liver from fibrogenesis in vitro and in vivo. The aims of this study are to evaluate the role of ox-LDL in activation of HSCs, to assess curcumin effects on eliminating the role of ox-LDL, and to further explore the underlying mechanisms. In this report, we observe that ox-LDL alters the expression of genes closely relevant to HSC activation, which is eliminated by curcumin. Curcumin suppresses gene expression of lectin-like oxidized LDL receptor-1 (LOX-1), leading to the blockade of the transport of extracellular ox-LDL into cells. This suppressive effect of curcumin results from the interruption of Wnt signaling and the activation of peroxisome proliferator-activated receptor-gamma (PPARgamma). In conclusion, these results support our initial hypothesis and demonstrate that ox-LDL stimulates HSC activation, which is eliminated by curcumin by suppressing lox-1 expression by interrupting Wnt signaling and stimulating PPARgamma activity. These results provide novel insights into the role of ox-LDL in T2DM and NASH-associated hepatic fibrogenesis and mechanisms by which curcumin suppresses ox-LDL-induced HSC activation, as well as the implication of curcumin in the treatment of T2DM and NASH-associated hepatic fibrosis.
Collapse
Affiliation(s)
| | - Anping Chen
- Corresponding Author: Anping Chen, Ph. D., Department of Pathology, School of Medicine, Saint Louis University, 1100 S. Grand Blvd, Room 215, Edward A. Doisy Research Center, St. Louis, MO 63104, USA. Tel: 314-977-7832; Fax: 314-977-8499; E-mail:
| |
Collapse
|
282
|
Goo MJ, Ki MR, Lee HR, Yang HJ, Yuan DW, Hong IH, Park JK, Hong KS, Han JY, Hwang OK, Kim DH, Do SH, Cohn RD, Jeong KS. Helicobacter pylori promotes hepatic fibrosis in the animal model. J Transl Med 2009; 89:1291-303. [PMID: 19736546 DOI: 10.1038/labinvest.2009.90] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Helicobacter pylori infection has been reported to be very common in patients with chronic liver diseases, including cirrhosis. To elucidate the pathological effect of H. pylori infection on the progression of hepatic fibrosis, C57BL/6 mice and Sprague-Dawley rats were orally inoculated with H. pylori, and hepatic fibrosis was induced with carbon tetrachloride (CCl(4)) administration. We observed the histopathological changes and the presence of H. pylori genes by PCR in the liver. Significant increase in the fibrotic score as well as in serum alanine aminotransferase and aspartate aminotransferase levels was shown in the CCl(4)+H. pylori group compared with that in the CCl(4)-treated group. Compared with the CCl(4)-treated group, alpha-smooth muscle actin and transforming growth factor-beta1 were enhanced; however, senescence marker protein-30, a multifunctional protein protecting hepatocytes against oxidative stress and apoptosis, was suppressed in the CCl(4)+H. pylori group. The 16S rRNA (400 bp) was demonstrated by PCR for H. pylori genes from genomic DNA extracted from the liver, and H. pylori-infected mice showed 93.8% (15 of 16) seropositivity by contrast with seronegativity in all H. pylori-noninfected mice. In addition, immunohistochemical study against H. pylori showed positive antigen fragments in the liver of the infected groups. Consequently, our data suggest that H. pylori infection could be an important contributing infectious factor to the development of liver cirrhosis.
Collapse
Affiliation(s)
- Moon-Jung Goo
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, Buk-ku 702-701, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
283
|
Inhibitory effects of armepavine against hepatic fibrosis in rats. J Biomed Sci 2009; 16:78. [PMID: 19723340 PMCID: PMC2741443 DOI: 10.1186/1423-0127-16-78] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Accepted: 09/02/2009] [Indexed: 12/15/2022] Open
Abstract
Activation of hepatic stellate cells (HSCs) plays a crucial role in liver fibrogenesis. armepavine (Arm, C19H23O3N), an active compound from Nelumbo nucifera, has been shown to exert immunosuppressive effects on T lymphocytes and on lupus nephritic mice. The aim of this study was to investigate whether Arm could exert anti-hepatic fibrogenic effects in vitro and in vivo. A cell line of rat HSCs (HSC-T6) was stimulated with tumor necrosis factor-α (TNF-α) or lipopolysaccharide (LPS) to evaluate the inhibitory effects of Arm. An in vivo therapeutic study was conducted in bile duct-ligated (BDL) rats. BDL rats were given Arm (3 or 10 mg/kg) by gavage twice daily for 3 weeks starting from the onset of BDL. Liver sections were taken for fibrosis scoring, immuno-fluorescence staining and quantitative real-time mRNA measurements. In vitro, Arm (1-10 μM) concentration-dependently attenuated TNF-α- and LPS-stimulated α-SMA protein expression and AP-1 activation by HSC-T6 cells without adverse cytotoxicity. Arm also suppressed TNF-α-induced collagen collagen deposition, NFκB activation and MAPK (p38, ERK1/2, and JNK) phosphorylations. In vivo, Arm treatment significantly reduced plasma AST and ALT levels, hepatic α-SMA expression and collagen contents, and fibrosis scores of BDL rats as compared with vehicle treatment. Moreover, Arm attenuated the mRNA expression levels of col 1α2, TGF-β1, TIMP-1, ICAM-1, iNOS, and IL-6 genes, but up-regulated metallothionein genes. Our study results showed that Arm exerted both in vitro and in vivo antifibrotic effects in rats, possibly through anti-NF-κB activation pathways.
Collapse
|
284
|
Fujimiya T, Liu J, Kojima H, Shirafuji S, Kimura H, Fujimiya M. Pathological roles of bone marrow-derived stellate cells in a mouse model of alcohol-induced fatty liver. Am J Physiol Gastrointest Liver Physiol 2009; 297:G451-60. [PMID: 19608736 DOI: 10.1152/ajpgi.00055.2009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chronic alcohol consumption activates hepatic stellate cells (HSCs) and causes fatty degeneration in the liver. However, the origin of HSCs and the mechanism of fatty changes of the liver have not been fully elucidated. Here, we examined the roles of bone marrow-derived cells (BMDCs) in a mouse model with chronic alcohol consumption. We performed bone marrow transplantation from transgenic mice expressing green fluorescence protein (GFP) to female wild-type and ROSA mice (B6.129S7-Gt 26Sor/J, transgenic mice expressing beta-galactosidase, beta-gal) and treated them with ethanol (EtOH) for 8 or 16 wk. GFP-expressing BMDCs increased in the liver with EtOH treatment in a time-dependent manner. In response to excess alcohol consumption, approximately 68% of the BMDCs became activated HSCs in that they expressed alpha-smooth muscle actin. Meanwhile, approximately 67% and approximately 66% of these BMDCs expressed Tnf-alpha and transforming growth factor (Tgf)-beta1, respectively, and the activities were further supported by the excessive mRNA expression of Tnf-alpha and Tgf-beta1 in RT-PCR, respectively. Cell fusion occurs between BMDCs and nonparenchymal cells but scarcely occurs between BMDCs and hepatocytes, demonstrated by double staining of beta-gal/GFP and further supported by the Y-chromosome staining. The EtOH withdrawal normalized most of the abnormalities produced by chronic alcohol consumption. These results indicate that excess alcohol consumption stimulates both the homing of HSCs from the bone marrow and their profibrogenic cytokine production in a mouse model of alcohol-induced fatty liver disease.
Collapse
Affiliation(s)
- Tatsuya Fujimiya
- Department of Legal Medicine, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | | | | | | | | | | |
Collapse
|
285
|
Lin YL, Lin CY, Chi CW, Huang YT. Study on antifibrotic effects of curcumin in rat hepatic stellate cells. Phytother Res 2009; 23:927-32. [PMID: 19152370 DOI: 10.1002/ptr.2764] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Suppression of activation or fibrogenesis and induction of apoptosis, in hepatic stellate cells (HSCs) have been proposed as therapeutic strategies against liver fibrosis. Curcumin, an active compound isolated from yellow curry pigment of turmeric (Curcuma longa Linn), has been demonstrated to be an effective anti-inflammatory and antioxidant compound. In this study, we investigated the in vitro antifibrogenic effects of curcumin on HSCs at the concentration range of (1-40 microM). A cell line of rat HSCs (HSC-T6) was stimulated with transforming growth factor-beta1 (TGF-beta1). The inhibitory effects of curcumin (1.25 approximately 10 microM) on fibrosis-related markers including alpha-smooth muscle actin (alpha-SMA) and collagen were assessed. In addition, the induction effects of curcumin (20 approximately 40 microM) on apoptosis in HSC-T6 cells were also assessed by Hoechst and propidium iodide stains. Curcumin (1.25 approximately 10 microM) concentration-dependently suppressed TGF-beta1-induced alpha-SMA expression and collagen deposition in HSC-T6 cells, without cytotoxicity. Whereas, higher concentrations of curcumin (20 approximately 40 microM) induced cell apoptosis and cytochrome c release in HSC-T6 cells. Our results suggest that curcumin exerted antifibrotic effects, possibly through two different mechanisms depending on its concentrations. At lower concentrations (1.25 approximately 10 microM), curcumin exerted antifibrogenic effects, whereas at higher concentrations (20 approximately 40 microM), curcumin exerted induction of apoptosis in HSCs.
Collapse
Affiliation(s)
- Yun-Lian Lin
- National Research Institute of Chinese Medicine, Taipei 112, Taiwan
| | | | | | | |
Collapse
|
286
|
Kang Q, Chen A. Curcumin suppresses expression of low-density lipoprotein (LDL) receptor, leading to the inhibition of LDL-induced activation of hepatic stellate cells. Br J Pharmacol 2009; 157:1354-67. [PMID: 19594758 DOI: 10.1111/j.1476-5381.2009.00261.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE Obesity is often accompanied by hypercholesterolemia characterized by elevated levels of plasma low-density lipoprotein (LDL) and associated with non-alcoholic steatohepatitis, which could progress to hepatic fibrosis. Hepatic stellate cells (HSCs) are the major effectors of hepatic fibrogenesis. This study aims to clarify effects of LDL on activation of HSC, to evaluate roles of curcumin in suppressing these effects and to further elucidate the underlying molecular mechanisms. EXPERIMENTAL APPROACHES HSCs were prepared from rats and cell proliferation was measured by cell proliferation assays (MTS assays). Transient transfection assays were performed to evaluate gene promoter activities. Real-time polymerase chain reaction and Western blotting were used to analyse the expression of genes. KEY RESULTS LDL stimulated HSC activation in vitro, which was attenuated by curcumin. Curcumin reduced the abundance of LDL receptor (LDLR) in activated HSCs, decreasing cellular cholesterol. Curcumin-dependent activation of peroxisome proliferator-activated receptor-gamma (PPARgamma) differentially regulated the expression of the transcription factors, sterol regulatory element-binding proteins (SREBPs), in activated HSCs, resulting in the suppression of LDLR gene expression. CONCLUSIONS AND IMPLICATIONS Curcumin suppressed LDLR gene expression in activated HSCs in vitro by activating PPARgamma and differentially regulating gene expression of SREBPs, reducing cellular cholesterol and attenuating the stimulatory effects of LDL on HSC activation. These results provide novel insights into the roles and mechanisms of curcumin in the inhibition of LDL-induced HSC activation. This curcumin, a constituent of turmeric, may be useful in preventing hypercholesterolemia-associated hepatic fibrogenesis.
Collapse
Affiliation(s)
- Qiaohua Kang
- Department of Pathology, School of Medicine, Saint Louis University, St. Louis, MO 63104, USA
| | | |
Collapse
|
287
|
Mann J, Mann DA. Transcriptional regulation of hepatic stellate cells. Adv Drug Deliv Rev 2009; 61:497-512. [PMID: 19393271 DOI: 10.1016/j.addr.2009.03.011] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Accepted: 03/10/2009] [Indexed: 02/08/2023]
Abstract
Hepatic stellate cell (HSC) activation is a process of cellular transdifferentiation in which, upon liver injury, the quiescent vitamin A storing perisinusoidal HSC is converted into a wound-healing myofibroblast and acquires potent pro-inflammatory and pro-fibrogenic activities. This remarkable phenotypic transformation is underpinned by changes in the expression of a vast number of genes. In this review we survey current knowledge of the transcription factors that either control HSC activation or which regulate specific fibrogenic functions of the activated HSC such as collagen expression, proliferation and resistance to apoptosis.
Collapse
|
288
|
Pongchaidecha A, Lailerd N, Boonprasert W, Chattipakorn N. Effects of curcuminoid supplement on cardiac autonomic status in high-fat–induced obese rats. Nutrition 2009; 25:870-8. [DOI: 10.1016/j.nut.2009.02.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Revised: 02/11/2009] [Accepted: 02/12/2009] [Indexed: 11/30/2022]
|
289
|
Tang Y, Zheng S, Chen A. Curcumin eliminates leptin's effects on hepatic stellate cell activation via interrupting leptin signaling. Endocrinology 2009; 150:3011-20. [PMID: 19299451 PMCID: PMC2703516 DOI: 10.1210/en.2008-1601] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nonalcoholic steatohepatitis (NASH) is commonly found in patients with obesity and is often accompanied with abnormally elevated levels of plasma leptin, i.e. hyperleptinemia. A relatively high population of NASH patients develops hepatic fibrosis, even cirrhosis. Hepatic stellate cells (HSCs) are the major effector cells during liver fibrogenesis and could be activated by leptin. The antioxidant curcumin, a phytochemical from turmeric, has been shown to suppress HSC activation in vitro and in vivo. This project is to evaluate the effect of curcumin on leptin-induced HSC activation and to elucidate the underlying mechanisms. We hypothesize that curcumin abrogates the stimulatory effect of leptin on HSC activation by interrupting leptin signaling and attenuating leptin-induced oxidative stress. Curcumin eliminates the stimulatory effects of leptin on regulating expression of genes closely relevant to HSC activation. Curcumin interrupts leptin signaling by reducing phosphorylation levels of leptin receptor (Ob-R) and its downstream intermediators. In addition, curcumin suppresses gene expression of Ob-R in HSCs, which requires the activation of endogenous peroxisome proliferator-activated receptor-gamma and de novo synthesis of glutathione. In conclusion, our results demonstrate that curcumin abrogates the stimulatory effect of leptin on HSC activation in vitro by reducing the phosphorylation level of Ob-R, stimulating peroxisome proliferator-activated receptor-gamma activity, and attenuating oxidative stress, leading to the suppression of Ob-R gene expression and interruption of leptin signaling. These results provide novel insights into therapeutic mechanisms of curcumin in inhibiting HSC activation and intervening liver fibrogenesis associated with hyperleptinemia in NASH patients.
Collapse
Affiliation(s)
- Youcai Tang
- Department of Pathology, School of Medicine, Saint Louis University, 1100 S. Grand Boulevard, St. Louis, Missouri 63104, USA
| | | | | |
Collapse
|
290
|
Lee MK, Kim SH, Yang H, Lim DY, Ryu JH, Lee ES, Jew SS, Park HG, Sung SH, Kim YC. Asiatic Acid Derivatives Protect Primary Cultures of Rat Hepatocytes against Carbon Tetrachloride-Induced Injury via the Cellular Antioxidant System. Nat Prod Commun 2009. [DOI: 10.1177/1934578x0900400605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We attempted to elucidate the hepatoprotective mechanism of two asiatic acid (AS) derivatives, 3β,23-dihydroxyurs-2-oxo-12-ene-28-oic acid (AS-10) and 3β,23-dihydroxyurs-12-ene-28-oic acid (AS-14), which exhibited significant protective activity against carbon tetrachloride (CCl4)-induced hepatotoxicity in primary cultures of rat hepatocytes. Our findings showed that AS-10 and AS-14 preserved the level of glutathione and the activities of antioxidant enzymes such as glutathione reductase, glutathione peroxidase, superoxide dismutase and catalase. In addition, these compounds ameliorated lipid peroxidation, as demonstrated by a reduction in the production of malondialdehyde. Furthermore, AS-10 and AS-14 did not restore the reduced total GSH level by BSO, indicating that the hepatoprotective activities of these compounds may be involved, in part, by regulating GSH synthesis. From these results, we suggest that both AS-10 and AS-14 exerted their hepatoprotective activities against CCl4-induced injury by preserving the cellular antioxidative defense system.
Collapse
Affiliation(s)
- Mi Kyeong Lee
- College of Pharmacy and Research Institute of Pharmaceutical Science, Seoul National University, 599 Gwanak-Ro, Gwanak-Gu, Seoul 151-742, Republic of Korea
| | - Seung Hyun Kim
- College of Pharmacy and Research Institute of Pharmaceutical Science, Seoul National University, 599 Gwanak-Ro, Gwanak-Gu, Seoul 151-742, Republic of Korea
| | - Hyekyung Yang
- College of Pharmacy and Research Institute of Pharmaceutical Science, Seoul National University, 599 Gwanak-Ro, Gwanak-Gu, Seoul 151-742, Republic of Korea
| | - Doo-Yeon Lim
- College of Pharmacy and Research Institute of Pharmaceutical Science, Seoul National University, 599 Gwanak-Ro, Gwanak-Gu, Seoul 151-742, Republic of Korea
| | - Je-Ho Ryu
- College of Pharmacy and Research Institute of Pharmaceutical Science, Seoul National University, 599 Gwanak-Ro, Gwanak-Gu, Seoul 151-742, Republic of Korea
| | - Eung Seok Lee
- College of Pharmacy, Yeungnam University, 214-1 Dae-Dong, Gyeongsan 712-749, Republic of Korea
| | - Sang-Sup Jew
- College of Pharmacy and Research Institute of Pharmaceutical Science, Seoul National University, 599 Gwanak-Ro, Gwanak-Gu, Seoul 151-742, Republic of Korea
| | - Hyeung-Guen Park
- College of Pharmacy and Research Institute of Pharmaceutical Science, Seoul National University, 599 Gwanak-Ro, Gwanak-Gu, Seoul 151-742, Republic of Korea
| | - Sang Hyun Sung
- College of Pharmacy and Research Institute of Pharmaceutical Science, Seoul National University, 599 Gwanak-Ro, Gwanak-Gu, Seoul 151-742, Republic of Korea
| | - Young Choong Kim
- College of Pharmacy and Research Institute of Pharmaceutical Science, Seoul National University, 599 Gwanak-Ro, Gwanak-Gu, Seoul 151-742, Republic of Korea
| |
Collapse
|
291
|
Bustanji Y, Taha MO, Almasri IM, Al-Ghussein MAS, Mohammad MK, Alkhatib HS. Inhibition of glycogen synthase kinase by curcumin: Investigation by simulated molecular docking and subsequent in vitro/in vivo evaluation. J Enzyme Inhib Med Chem 2009; 24:771-778. [PMID: 18720192 DOI: 10.1080/14756360802364377] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Curcumin was investigated as an inhibitor of glycogen synthase kinase-3beta (GSK-3beta) in an attempt to explain some of its interesting multiple pharmacological effects, such as its anti-diabetic, anti-inflammatory, anti-cancer, anti-malarial and anti-alzheimer's properties. The investigation included simulated docking experiments to fit curcumin within the binding pocket of GSK-3beta followed by experimental in vitro and in vivo validations. Curcumin was found to optimally fit within the binding pocket of GSK-3beta via several attractive interactions with key amino acids. Experimentally, curcumin was found to potently inhibit GSK-3beta (IC50 = 66.3 nM). Furthermore, our in vivo experiments illustrated that curcumin significantly increases liver glycogen in fasting Balb/c mice. Our findings strongly suggest that the diverse pharmacological activities of curcumin are at least partially mediated by inhibition of GSK-3beta.
Collapse
Affiliation(s)
- Yasser Bustanji
- Faculty of Pharmacy, University of Jordan, Amman, 11942, Jordan.
| | | | | | | | | | | |
Collapse
|
292
|
Ghosh SS, Massey HD, Krieg R, Fazelbhoy ZA, Ghosh S, Sica DA, Fakhry I, Gehr TWB. Curcumin ameliorates renal failure in 5/6 nephrectomized rats: role of inflammation. Am J Physiol Renal Physiol 2009; 296:F1146-57. [DOI: 10.1152/ajprenal.90732.2008] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
TNF-α and NF-κB play important roles in the development of inflammation in chronic renal failure (CRF). In hepatic cells, curcumin is shown to antagonize TNF-α-elicited NF-κB activation. In this study, we hypothesized that if inflammation plays a key role in renal failure then curcumin should be effective in improving CRF. The effectiveness of curcumin was compared with enalapril, a compound known to ameliorate human and experimental CRF. Investigation was conducted in Sprague-Dawley rats where CRF was induced by 5/6 nephrectomy (Nx). The Nx animals were divided into untreated (Nx), curcumin-treated (curcumin), and enalapril-treated (enalapril) groups. Sham-operated animals served as a control. Renal dysfunction in the Nx group, as evidenced by elevated blood urea nitrogen, plasma creatinine, proteinuria, segmental sclerosis, and tubular dilatation, was significantly reduced by curcumin and enalapril treatment. However, only enalapril significantly improved blood pressure. Compared with the control, the Nx animals had significantly higher plasma and kidney TNF-α, which was associated with NF-κB activation and macrophage infiltration in the kidney. These changes were effectively antagonized by curcumin and enalapril treatment. The decline in the anti-inflammatory peroxisome proliferator-activated receptor γ (PPARγ) seen in Nx animals was also counteracted by curcumin and enalapril. Studies in mesangial cells were carried out to further establish that the anti-inflammatory effect of curcumin in vivo was mediated essentially by antagonizing TNF-α. Curcumin dose dependently antagonized the TNF-α-mediated decrease in PPARγ and blocked transactivation of NF-κB and repression of PPARγ, indicating that the anti-inflamatory property of curcumin may be responsible for alleviating CRF in Nx animals.
Collapse
|
293
|
Girish C, Pradhan SC. Drug development for liver diseases: focus on picroliv, ellagic acid and curcumin. Fundam Clin Pharmacol 2009; 22:623-32. [PMID: 19049667 DOI: 10.1111/j.1472-8206.2008.00618.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The use of herbal drugs for the treatment of liver diseases has a long tradition in many eastern countries. The easy accessibility without the need for laborious pharmaceutical synthesis has drawn increased attention towards herbal medicines. Few herbal preparations exist as standardized extracts with major known ingredients or even as pure compounds. Some of the herbals, which show promising activity, are ellagic acid for antifibrotic treatment, phyllanthin for treating chronic hepatitis B, glycyrrhizin to treat chronic viral hepatitis and picroliv for liver regeneration. These compounds, which have proven antioxidant, antiviral or anticarcinogenic properties, can serve as primary compounds for further development as hepatoprotective drugs. This review provides the chemistry, pharmacology and future aspects of picroliv, ellagic acid and curcumin with focus on hepatoprotective properties. These phytochemicals may prove to be very useful in the treatment of hepatotoxicity induced by viral agents, toxic drugs and plant poisons. The high safety profile may be an added advantage. However, poor bioavailability and temperature and light sensitivity can reduce the efficacy of drugs like curcumin. In future, the derivatives or new combinations of these drugs may prove to be useful.
Collapse
Affiliation(s)
- C Girish
- Department of Pharmacology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry 605 006, India.
| | | |
Collapse
|
294
|
Reyes-Gordillo K, Segovia J, Shibayama M, Tsutsumi V, Vergara P, Moreno MG, Muriel P. Curcumin prevents and reverses cirrhosis induced by bile duct obstruction or CCl4 in rats: role of TGF-beta modulation and oxidative stress. Fundam Clin Pharmacol 2008; 22:417-27. [PMID: 18705752 DOI: 10.1111/j.1472-8206.2008.00611.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Curcumin is a phytophenolic compound, which is highly efficacious for treating several inflammatory diseases. The aim of this study was to evaluate the efficacy of curcumin in preventing or reversing liver cirrhosis. A 4-week bile duct ligation (BDL) rat model was used to test the ability of curcumin (100 mg/kg, p.o., daily) to prevent cirrhosis. To reverse cirrhosis, CCl(4) was administered chronically for 3 months, and then it was withdrawn and curcumin administered for 2 months. Alanine aminotransferase, gamma-glutamyl transpeptidase, liver histopathology, bilirubin, glycogen, reduced and oxidized glutathione, and TGF-beta (mRNA and protein) levels were assessed. Curcumin preserved normal values of markers of liver damage in BDL rats. Fibrosis, assessed by measuring hydroxyproline levels and histopathology, increased nearly fivefold after BDL and this effect was partially but significantly prevented by curcumin. BDL increased transforming growth factor-beta (TGF-beta) levels (mRNA and proteins), while curcumin partially suppressed this mediator of fibrosis. Curcumin also partially reversed the fibrosis induced by CCl(4). Curcumin was effective in preventing and reversing cirrhosis, probably by its ability of reducing TGF-beta expression. These data suggest that curcumin might be an effective antifibrotic and fibrolitic drug in the treatment of chronic hepatic diseases.
Collapse
Affiliation(s)
- Karina Reyes-Gordillo
- Sección Externa de Farmacología, Cinvestav-IPN., Apdo. Postal 14-740, México 07000, D.F. México
| | | | | | | | | | | | | |
Collapse
|
295
|
The Nrf2 transcription factor protects from toxin-induced liver injury and fibrosis. J Transl Med 2008; 88:1068-78. [PMID: 18679376 DOI: 10.1038/labinvest.2008.75] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The liver is frequently exposed to insults, including toxic chemicals and alcohol, viral infection or metabolic overload. Although it can fully regenerate after acute injury, chronic liver damage causes liver fibrosis and cirrhosis, which can result in complete liver failure. In this study, we demonstrate that the NF-E2-related factor 2 (Nrf2) transcription factor protects the liver from acute and chronic toxin-mediated damage. Repair of the liver injury that occurs after a single treatment with the hepatotoxin carbon tetrachloride (CCl(4)) was severely delayed in Nrf2-deficient mice. The defect in repair was accompanied by an enhanced and prolonged inflammatory and profibrotic response. After long-term CCl(4) treatment, liver fibrosis was strongly aggravated in the Nrf2 knockout mice and inflammation was enhanced. We demonstrate that these abnormalities are at least in part due to the reduced expression of known and novel Nrf2 target genes in hepatocytes, which encode enzymes involved in the detoxification of CCl(4) and its metabolites. These results suggest that activation of Nrf2 may be a novel strategy to prevent or ameliorate toxin-induced liver injury and fibrosis.
Collapse
|
296
|
Curcumin inhibits proliferation, invasion, angiogenesis and metastasis of different cancers through interaction with multiple cell signaling proteins. Cancer Lett 2008; 269:199-225. [PMID: 18479807 DOI: 10.1016/j.canlet.2008.03.009] [Citation(s) in RCA: 732] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2008] [Revised: 03/16/2008] [Accepted: 03/03/2008] [Indexed: 12/23/2022]
Abstract
Because most cancers are caused by dysregulation of as many as 500 different genes, agents that target multiple gene products are needed for prevention and treatment of cancer. Curcumin, a yellow coloring agent in turmeric, has been shown to interact with a wide variety of proteins and modify their expression and activity. These include inflammatory cytokines and enzymes, transcription factors, and gene products linked with cell survival, proliferation, invasion, and angiogenesis. Curcumin has been found to inhibit the proliferation of various tumor cells in culture, prevents carcinogen-induced cancers in rodents, and inhibits the growth of human tumors in xenotransplant or orthotransplant animal models either alone or in combination with chemotherapeutic agents or radiation. Several phase I and phase II clinical trials indicate that curcumin is quite safe and may exhibit therapeutic efficacy. These aspects of curcumin are discussed further in detail in this review.
Collapse
|
297
|
Lin J, Chen A. Activation of peroxisome proliferator-activated receptor-gamma by curcumin blocks the signaling pathways for PDGF and EGF in hepatic stellate cells. J Transl Med 2008; 88:529-40. [PMID: 18332871 PMCID: PMC2673570 DOI: 10.1038/labinvest.2008.20] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
During hepatic fibrogenesis, reduction in the abundance of peroxisome proliferator-activated receptor-gamma (PPARgamma) is accompanied by activation of mitogenic signaling for platelet-derived growth factor (PDGF) and epidermal growth factor (EGF) in hepatic stellate cells (HSCs), the major effector cells. We previously reported that curcumin, the yellow pigment in curry, interrupted PDGF and EGF signaling, stimulated PPARgamma gene expression, and enhanced its activity, leading to inhibition of cell proliferation of activated HSC in vitro and in vivo. The aim of this study was to elucidate the underlying mechanisms. We hypothesized that the enhancement of PPARgamma activity by curcumin might result in the interruption of PDGF and EGF signaling. Our experiments demonstrated that curcumin, with different treatment strategies, showed different efficiencies in the inhibition of PDGF- or EGF-stimulated HSC proliferation. Further experiments observed that curcumin dose dependently reduced gene expression of PDGF and EGF receptors (ie, PDGF-betaR and EGFR), which required PPARgamma activation. The activation of PPARgamma by its agonist suppressed pdgf-betar and egfr expression in HSC. In addition, curcumin reduced the phosphorylation levels of PDGF-betaR and EGFR, as well as their downstream signaling cascades, including ERK1/2 and JNK1/2. Moreover, activation of PPARgamma induced gene expression of glutamate-cysteine ligase, the rate-limiting enzyme in de novo synthesis of the major intracellular antioxidant, glutathione. De novo synthesis of glutathione was required for curcumin to suppress pdgf-betar and egfr expression in activated HSCs. Our results collectively demonstrated that enhancement of PPARgamma activity by curcumin interrupted PDGF and EGF signaling in activated HSCs by reducing the phosphorylation levels of PDGF-betaR and EGFR, and by suppressing the receptor gene expression. These results provide novel insights into the mechanisms of curcumin in the inhibition of HSC activation and the suppression of hepatic fibrogenesis.
Collapse
Affiliation(s)
- Jianguo Lin
- Department of Pathology, School of Medicine, Saint Louis University, St Louis, MO 63104, USA
| | | |
Collapse
|