251
|
Cairns TC, Studholme DJ, Talbot NJ, Haynes K. New and Improved Techniques for the Study of Pathogenic Fungi. Trends Microbiol 2015; 24:35-50. [PMID: 26549580 DOI: 10.1016/j.tim.2015.09.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 09/29/2015] [Accepted: 09/30/2015] [Indexed: 02/05/2023]
Abstract
Fungal pathogens pose serious threats to human, plant, and ecosystem health. Improved diagnostics and antifungal strategies are therefore urgently required. Here, we review recent developments in online bioinformatic tools and associated interactive data archives, which enable sophisticated comparative genomics and functional analysis of fungal pathogens in silico. Additionally, we highlight cutting-edge experimental techniques, including conditional expression systems, recyclable markers, RNA interference, genome editing, compound screens, infection models, and robotic automation, which are promising to revolutionize the study of both human and plant pathogenic fungi. These novel techniques will allow vital knowledge gaps to be addressed with regard to the evolution of virulence, host-pathogen interactions and antifungal drug therapies in both the clinic and agriculture. This, in turn, will enable delivery of improved diagnosis and durable disease-control strategies.
Collapse
Affiliation(s)
- Timothy C Cairns
- Institut für Biotechnologie, Technische Universität Berlin, Gustav-Meyer Allee 22, Berlin, Germany.
| | | | | | - Ken Haynes
- Biosciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| |
Collapse
|
252
|
Roy S, Thompson D. Evolution of regulatory networks in Candida glabrata: learning to live with the human host. FEMS Yeast Res 2015; 15:fov087. [PMID: 26449820 DOI: 10.1093/femsyr/fov087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2015] [Indexed: 12/12/2022] Open
Abstract
The opportunistic human fungal pathogen Candida glabrata is second only to C. albicans as the cause of Candida infections and yet is more closely related to Saccharomyces cerevisiae. Recent advances in functional genomics technologies and computational approaches to decipher regulatory networks, and the comparison of these networks among these and other Ascomycete species, have revealed both unique and shared strategies in adaptation to a human commensal/opportunistic pathogen lifestyle and antifungal drug resistance in C. glabrata. Recently, several C. glabrata sister species in the Nakeseomyces clade representing both human associated (commensal) and environmental isolates have had their genomes sequenced and analyzed. This has paved the way for comparative functional genomics studies to characterize the regulatory networks in these species to identify informative patterns of conservation and divergence linked to phenotypic evolution in the Nakaseomyces lineage.
Collapse
Affiliation(s)
- Sushmita Roy
- Department of Biostatistics and Medical Informatics, University of Wisconsin Madison, Madison, WI 53715, USA Wisconsin Institute for Discovery, University of Wisconsin, Madison, WI 53715, USA
| | - Dawn Thompson
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
253
|
Abstract
Candida species are the most prevalent human fungal pathogens, with Candida albicans being the most clinically relevant species. Candida albicans resides as a commensal of the human gastrointestinal tract but is a frequent cause of opportunistic mucosal and systemic infections. Investigation of C. albicans virulence has traditionally relied on candidate gene approaches, but recent advances in functional genomics have now facilitated global, unbiased studies of gene function. Such studies include comparative genomics (both between and within Candida species), analysis of total RNA expression, and regulation and delineation of protein-DNA interactions. Additionally, large collections of mutant strains have begun to aid systematic screening of clinically relevant phenotypes. Here, we will highlight the development of functional genomics in C. albicans and discuss the use of these approaches to addressing both commensalism and pathogenesis in this species.
Collapse
|
254
|
Schuster M, Schweizer G, Reissmann S, Kahmann R. Genome editing in Ustilago maydis using the CRISPR-Cas system. Fungal Genet Biol 2015; 89:3-9. [PMID: 26365384 DOI: 10.1016/j.fgb.2015.09.001] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 09/01/2015] [Accepted: 09/02/2015] [Indexed: 12/26/2022]
Abstract
This communication describes the establishment of the type II bacterial CRISPR-Cas9 system to efficiently disrupt target genes in the fungal maize pathogen Ustilago maydis. A single step transformation of a self-replicating plasmid constitutively expressing the U. maydis codon-optimized cas9 gene and a suitable sgRNA under control of the U. maydis U6 snRNA promoter was sufficient to induce genome editing. On average 70% of the progeny of a single transformant were disrupted within the respective b gene. Without selection the self-replicating plasmid was lost rapidly allowing transient expression of the CRISPR-Cas9 system to minimize potential long-term negative effects of Cas9. This technology will be an important advance for the simultaneous disruption of functionally redundant genes and gene families to investigate their contribution to virulence of U. maydis.
Collapse
Affiliation(s)
- Mariana Schuster
- Max Planck Institute for Terrestrial Microbiology, Department of Organismic Interactions, Karl-von-Frisch-Strasse 10, 35043 Marburg, Germany
| | - Gabriel Schweizer
- Max Planck Institute for Terrestrial Microbiology, Department of Organismic Interactions, Karl-von-Frisch-Strasse 10, 35043 Marburg, Germany
| | - Stefanie Reissmann
- Max Planck Institute for Terrestrial Microbiology, Department of Organismic Interactions, Karl-von-Frisch-Strasse 10, 35043 Marburg, Germany
| | - Regine Kahmann
- Max Planck Institute for Terrestrial Microbiology, Department of Organismic Interactions, Karl-von-Frisch-Strasse 10, 35043 Marburg, Germany.
| |
Collapse
|
255
|
The Candida albicans ATO Gene Family Promotes Neutralization of the Macrophage Phagolysosome. Infect Immun 2015; 83:4416-26. [PMID: 26351284 DOI: 10.1128/iai.00984-15] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 08/28/2015] [Indexed: 01/24/2023] Open
Abstract
Candida albicans is an opportunistic human fungal pathogen that causes a variety of diseases, ranging from superficial mucosal to life-threatening systemic infections, the latter particularly in patients with defects in innate immune function. C. albicans cells phagocytosed by macrophages undergo a dramatic change in their metabolism in which amino acids are a key nutrient. We have shown that amino acid catabolism allows the cell to neutralize the phagolysosome and initiate hyphal growth. We show here that members of the 10-gene ATO family, which are induced by phagocytosis or the presence of amino acids in an Stp2-dependent manner and encode putative acetate or ammonia transporters, are important effectors of this pH change in vitro and in macrophages. When grown with amino acids as the sole carbon source, the deletion of ATO5 or the expression of a dominant-negative ATO1(G53D) allele results in a delay in alkalinization, a defect in hyphal formation, and a reduction in the amount of ammonia released from the cell. These strains also form fewer hyphae after phagocytosis, have a reduced ability to escape macrophages, and reside in more acidic phagolysosomal compartments than wild-type cells. Furthermore, overexpression of many of the 10 ATO genes accelerates ammonia release, and an ato5Δ ATO1(G53D) double mutant strain has additive alkalinization and ammonia release defects. Taken together, these results indicate that the Ato protein family is a key mediator of the metabolic changes that allow C. albicans to overcome the macrophage innate immunity barrier.
Collapse
|
256
|
Ho HL, Haynes K. Candida glabrata: new tools and technologies-expanding the toolkit. FEMS Yeast Res 2015; 15:fov066. [PMID: 26205243 PMCID: PMC4629792 DOI: 10.1093/femsyr/fov066] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/29/2015] [Accepted: 07/15/2015] [Indexed: 12/11/2022] Open
Abstract
In recent years, there has been a noticeable rise in fungal infections related to non-albicans Candida species, including Candida glabrata which has both intrinsic resistance to and commonly acquired resistance to azole antifungals. Phylogenetically, C. glabrata is more closely related to the mostly non-pathogenic model organism Saccharomyces cerevisiae than to other Candida species. Despite C. glabrata's designation as a pathogen by Wickham in 1957, relatively little is known about its mechanism of virulence. Over the past few years, technology to analyse the molecular basis of infection has developed rapidly, and here we briefly review the major advances in tools and technologies available to explore and investigate the virulence of C. glabrata that have occurred over the past decade.
Collapse
Affiliation(s)
- Hsueh-lui Ho
- Biosciences, University of Exeter, Stocker Road, Exeter, Devon EX4 4QD, UK
| | - Ken Haynes
- Biosciences, University of Exeter, Stocker Road, Exeter, Devon EX4 4QD, UK
| |
Collapse
|
257
|
Mitochondrial Activity and Cyr1 Are Key Regulators of Ras1 Activation of C. albicans Virulence Pathways. PLoS Pathog 2015; 11:e1005133. [PMID: 26317337 PMCID: PMC4552728 DOI: 10.1371/journal.ppat.1005133] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 08/05/2015] [Indexed: 12/25/2022] Open
Abstract
Candida albicans is both a major fungal pathogen and a member of the commensal human microflora. The morphological switch from yeast to hyphal growth is associated with disease and many environmental factors are known to influence the yeast-to-hyphae switch. The Ras1-Cyr1-PKA pathway is a major regulator of C. albicans morphogenesis as well as biofilm formation and white-opaque switching. Previous studies have shown that hyphal growth is strongly repressed by mitochondrial inhibitors. Here, we show that mitochondrial inhibitors strongly decreased Ras1 GTP-binding and activity in C. albicans and similar effects were observed in other Candida species. Consistent with there being a connection between respiratory activity and GTP-Ras1 binding, mutants lacking complex I or complex IV grew as yeast in hypha-inducing conditions, had lower levels of GTP-Ras1, and Ras1 GTP-binding was unaffected by respiratory inhibitors. Mitochondria-perturbing agents decreased intracellular ATP concentrations and metabolomics analyses of cells grown with different respiratory inhibitors found consistent perturbation of pyruvate metabolism and the TCA cycle, changes in redox state, increased catabolism of lipids, and decreased sterol content which suggested increased AMP kinase activity. Biochemical and genetic experiments provide strong evidence for a model in which the activation of Ras1 is controlled by ATP levels in an AMP kinase independent manner. The Ras1 GTPase activating protein, Ira2, but not the Ras1 guanine nucleotide exchange factor, Cdc25, was required for the reduction of Ras1-GTP in response to inhibitor-mediated reduction of ATP levels. Furthermore, Cyr1, a well-characterized Ras1 effector, participated in the control of Ras1-GTP binding in response to decreased mitochondrial activity suggesting a revised model for Ras1 and Cyr1 signaling in which Cyr1 and Ras1 influence each other and, together with Ira2, seem to form a master-regulatory complex necessary to integrate different environmental and intracellular signals, including metabolic status, to decide the fate of cellular morphology. Candida albicans is a successful fungal commensal and pathogen of humans. It is a polymorphic organism and the ability to switch from yeast to hyphal growth is associated with the commensal-to-pathogen switch. Previous research identified the Ras1-cAMP-protein kinase A pathway as a key regulator of hyphal growth. Here, we report that mitochondrial activity plays a key role in Ras1 activation, as respiratory inhibition decreased Ras1 activity and Ras1-dependent filamentation. We found that intracellular ATP modulates Ras1 activity through a pathway involving the GTPase activating protein Ira2 and the adenylate cyclase Cyr1. Based on our data the canonical Ras1 signaling model in C. albicans needs to be restructured in such a way that Cyr1 is no longer placed downstream of Ras1 but rather in a major signaling node with Ras1 and Ira2. Our studies suggest that the energy status of the cell is the most important signal involved in the decision of C. albicans to undergo the yeast-to-hyphae switch or express genes associated with the hyphal morphology as low intracellular ATP or associated cues override several hypha-inducing signals. Future studies will show if this knowledge can be used to develop therapies that would favor benign host-Candida interactions by promoting low Ras1 activity.
Collapse
|
258
|
Development of the CRISPR/Cas9 System for Targeted Gene Disruption in Aspergillus fumigatus. EUKARYOTIC CELL 2015; 14:1073-80. [PMID: 26318395 DOI: 10.1128/ec.00107-15] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 08/20/2015] [Indexed: 12/26/2022]
Abstract
Low rates of homologous recombination have broadly encumbered genetic studies in the fungal pathogen Aspergillus fumigatus. The CRISPR/Cas9 system of bacteria has recently been developed for targeted mutagenesis of eukaryotic genomes with high efficiency and, importantly, through a mechanism independent of homologous repair machinery. As this new technology has not been developed for use in A. fumigatus, we sought to test its feasibility for targeted gene disruption in this organism. As a proof of principle, we first demonstrated that CRISPR/Cas9 can indeed be used for high-efficiency (25 to 53%) targeting of the A. fumigatus polyketide synthase gene (pksP), as evidenced by the generation of colorless (albino) mutants harboring the expected genomic alteration. We further demonstrated that the constitutive expression of the Cas9 nuclease by itself is not deleterious to A. fumigatus growth or virulence, thus making the CRISPR system compatible with studies involved in pathogenesis. Taken together, these data demonstrate that CRISPR can be utilized for loss-of-function studies in A. fumigatus and has the potential to bolster the genetic toolbox for this important pathogen.
Collapse
|
259
|
Prieto D, Pla J. Distinct stages during colonization of the mouse gastrointestinal tract by Candida albicans. Front Microbiol 2015; 6:792. [PMID: 26300861 PMCID: PMC4525673 DOI: 10.3389/fmicb.2015.00792] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 07/21/2015] [Indexed: 11/13/2022] Open
Abstract
Candida albicans is a member of the human microbiota, colonizing both the vaginal and gastrointestinal tracts. This yeast is devoid of a life style outside the human body and the mechanisms underlying the adaptation to the commensal status remain to be determined. Using a model of mouse gastrointestinal colonization, we show here that C. albicans stably colonizes the mouse gut in about 3 days starting from a dose as low as 100 cells, reaching steady levels of around 107 cells/g of stools. Using fluorescently labeled strains, we have assessed the competition between isogenic populations from different sources in cohoused animals. We show that long term (15 days) colonizing cells have increased fitness in the gut niche over those grown in vitro or residing in the gut for 1–3 days. Therefore, two distinct states, proliferation and adaptation, seem to exist in the adaptation of this fungus to the mouse gut, a result with potential significance in the prophylaxis and treatment of Candida infections.
Collapse
Affiliation(s)
- Daniel Prieto
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid Madrid, Spain
| | - Jesús Pla
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid Madrid, Spain
| |
Collapse
|
260
|
Candida albicans mutant construction and characterization of selected virulence determinants. J Microbiol Methods 2015; 115:153-65. [DOI: 10.1016/j.mimet.2015.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 06/09/2015] [Accepted: 06/10/2015] [Indexed: 11/22/2022]
|
261
|
Matsu-ura T, Baek M, Kwon J, Hong C. Efficient gene editing in Neurospora crassa with CRISPR technology. Fungal Biol Biotechnol 2015; 2:4. [PMID: 28955455 PMCID: PMC5611662 DOI: 10.1186/s40694-015-0015-1] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 07/02/2015] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Efficient gene editing is a critical tool for investigating molecular mechanisms of cellular processes and engineering organisms for numerous purposes ranging from biotechnology to medicine. Recently developed RNA-guided CRISPR/Cas9 technology has been used for efficient gene editing in various organisms, but has not been tested in a model filamentous fungus, Neurospora crassa. FINDINGS In this report, we demonstrate efficient gene replacement in a model filamentous fungus, Neurospora crassa, with the CRISPR/Cas9 system. We utilize Cas9 endonuclease and single crRNA:tracrRNA chimeric guide RNA (gRNA) to: (1) replace the endogenous promoter of clr-2 with the β-tubulin promoter, and (2) introduce a codon optimized fire fly luciferase under the control of the gsy-1 promoter at the csr-1 locus. CLR-2 is one of the core transcription factors that regulate the expression of cellulases, and GSY-1 regulates the conversion of glucose into glycogen. We show that the β-tubulin promoter driven clr-2 strain shows increased expression of cellulases, and gsy-1-luciferase reporter strain can be easily screened with a bioluminescence assay. CONCLUSION CRISPR/Cas9 system works efficiently in Neurospora crassa, which may be adapted to Neurospora natural isolates and other filamentous fungi. It will be beneficial for the filamentous fungal research community to take advantage of CRISPR/Cas9 tool kits that enable genetic perturbations including gene replacement and insertions.
Collapse
Affiliation(s)
- Toru Matsu-ura
- Department of Molecular and Cellular Physiology, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267-0576 USA
| | - Mokryun Baek
- Department of Molecular and Cellular Physiology, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267-0576 USA
| | - Jungin Kwon
- Department of Molecular and Cellular Physiology, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267-0576 USA
| | - Christian Hong
- Department of Molecular and Cellular Physiology, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267-0576 USA
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-3026 USA
| |
Collapse
|
262
|
|