251
|
Grandjean L, Gilman RH, Martin L, Soto E, Castro B, Lopez S, Coronel J, Castillo E, Alarcon V, Lopez V, San Miguel A, Quispe N, Asencios L, Dye C, Moore DAJ. Transmission of Multidrug-Resistant and Drug-Susceptible Tuberculosis within Households: A Prospective Cohort Study. PLoS Med 2015; 12:e1001843; discussion e1001843. [PMID: 26103620 PMCID: PMC4477882 DOI: 10.1371/journal.pmed.1001843] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 05/15/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The "fitness" of an infectious pathogen is defined as the ability of the pathogen to survive, reproduce, be transmitted, and cause disease. The fitness of multidrug-resistant tuberculosis (MDRTB) relative to drug-susceptible tuberculosis is cited as one of the most important determinants of MDRTB spread and epidemic size. To estimate the relative fitness of drug-resistant tuberculosis cases, we compared the incidence of tuberculosis disease among the household contacts of MDRTB index patients to that among the contacts of drug-susceptible index patients. METHODS AND FINDINGS This 3-y (2010-2013) prospective cohort household follow-up study in South Lima and Callao, Peru, measured the incidence of tuberculosis disease among 1,055 household contacts of 213 MDRTB index cases and 2,362 household contacts of 487 drug-susceptible index cases. A total of 35/1,055 (3.3%) household contacts of 213 MDRTB index cases developed tuberculosis disease, while 114/2,362 (4.8%) household contacts of 487 drug-susceptible index patients developed tuberculosis disease. The total follow-up time for drug-susceptible tuberculosis contacts was 2,620 person-years, while the total follow-up time for MDRTB contacts was 1,425 person-years. Using multivariate Cox regression to adjust for confounding variables including contact HIV status, contact age, socio-economic status, and index case sputum smear grade, the hazard ratio for tuberculosis disease among MDRTB household contacts was found to be half that for drug-susceptible contacts (hazard ratio 0.56, 95% CI 0.34-0.90, p = 0.017). The inference of transmission in this study was limited by the lack of genotyping data for household contacts. Capturing incident disease only among household contacts may also limit the extrapolation of these findings to the community setting. CONCLUSIONS The low relative fitness of MDRTB estimated by this study improves the chances of controlling drug-resistant tuberculosis. However, fitter multidrug-resistant strains that emerge over time may make this increasingly difficult.
Collapse
Affiliation(s)
- Louis Grandjean
- Wellcome Centre for Clinical Tropical Medicine, Imperial College London, London, United Kingdom
- Universidad Peruana Cayetano Heredia, Lima, Peru
- TB Centre, London School of Hygiene & Tropical Medicine, London, United Kingdom
- * E-mail:
| | - Robert H. Gilman
- Universidad Peruana Cayetano Heredia, Lima, Peru
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Laura Martin
- Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Esther Soto
- Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - Sonia Lopez
- Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - Edith Castillo
- Laboratorio de Mycobacteriologia, Dirección Regional de Salud–Región Callao, Lima, Peru
| | | | - Virginia Lopez
- Estrategia Sanitaria Nacional de Prevención y Control de la Tuberculosis and Laboratorio de Mycobacteriologia, Dirección de Salud II–Lima Sur, Lima, Peru
| | - Angela San Miguel
- Estrategia Sanitaria Nacional de Prevención y Control de la Tuberculosis and Laboratorio de Mycobacteriologia, Dirección de Salud II–Lima Sur, Lima, Peru
| | | | | | - Christopher Dye
- Office for HIV/AIDS, Malaria, Tuberculosis and Neglected Tropical Diseases, World Health Organization, Geneva, Switzerland
| | - David A. J. Moore
- Universidad Peruana Cayetano Heredia, Lima, Peru
- TB Centre, London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
252
|
Direct DNA Extraction from Mycobacterium tuberculosis Frozen Stocks as a Reculture-Independent Approach to Whole-Genome Sequencing. J Clin Microbiol 2015; 53:2716-9. [PMID: 26019203 DOI: 10.1128/jcm.00662-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 05/17/2015] [Indexed: 11/20/2022] Open
Abstract
Culturing before DNA extraction represents a major time-consuming step in whole-genome sequencing of slow-growing bacteria, such as Mycobacterium tuberculosis. We report a workflow to extract DNA from frozen isolates without reculturing. Prepared libraries and sequence data were comparable with results from recultured aliquots of the same stocks.
Collapse
|
253
|
Rifampicin-resistance, rpoB polymorphism and RNA polymerase genetic engineering. J Biotechnol 2015; 202:60-77. [DOI: 10.1016/j.jbiotec.2014.11.024] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 11/22/2014] [Accepted: 11/26/2014] [Indexed: 01/22/2023]
|
254
|
Regmi SM, Chaiprasert A, Kulawonganunchai S, Tongsima S, Coker OO, Prammananan T, Viratyosin W, Thaipisuttikul I. Whole genome sequence analysis of multidrug-resistant Mycobacterium tuberculosis Beijing isolates from an outbreak in Thailand. Mol Genet Genomics 2015; 290:1933-41. [DOI: 10.1007/s00438-015-1048-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 04/07/2015] [Indexed: 12/11/2022]
|
255
|
Convergent evolution toward an improved growth rate and a reduced resistance range in Prochlorococcus strains resistant to phage. Proc Natl Acad Sci U S A 2015; 112:E2191-200. [PMID: 25922520 DOI: 10.1073/pnas.1420347112] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Prochlorococcus is an abundant marine cyanobacterium that grows rapidly in the environment and contributes significantly to global primary production. This cyanobacterium coexists with many cyanophages in the oceans, likely aided by resistance to numerous co-occurring phages. Spontaneous resistance occurs frequently in Prochlorococcus and is often accompanied by a pleiotropic fitness cost manifested as either a reduced growth rate or enhanced infection by other phages. Here, we assessed the fate of a number of phage-resistant Prochlorococcus strains, focusing on those with a high fitness cost. We found that phage-resistant strains continued evolving toward an improved growth rate and a narrower resistance range, resulting in lineages with phenotypes intermediate between those of ancestral susceptible wild-type and initial resistant substrains. Changes in growth rate and resistance range often occurred in independent events, leading to a decoupling of the selection pressures acting on these phenotypes. These changes were largely the result of additional, compensatory mutations in noncore genes located in genomic islands, although genetic reversions were also observed. Additionally, a mutator strain was identified. The similarity of the evolutionary pathway followed by multiple independent resistant cultures and clones suggests they undergo a predictable evolutionary pathway. This process serves to increase both genetic diversity and infection permutations in Prochlorococcus populations, further augmenting the complexity of the interaction network between Prochlorococcus and its phages in nature. Last, our findings provide an explanation for the apparent paradox of a multitude of resistant Prochlorococcus cells in nature that are growing close to their maximal intrinsic growth rates.
Collapse
|
256
|
Pál C, Papp B, Lázár V. Collateral sensitivity of antibiotic-resistant microbes. Trends Microbiol 2015; 23:401-7. [PMID: 25818802 DOI: 10.1016/j.tim.2015.02.009] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/09/2015] [Accepted: 02/23/2015] [Indexed: 11/15/2022]
Abstract
Understanding how evolution of microbial resistance towards a given antibiotic influences susceptibility to other drugs is a challenge of profound importance. By combining laboratory evolution, genome sequencing, and functional analyses, recent works have charted the map of evolutionary trade-offs between antibiotics and have explored the underlying molecular mechanisms. Strikingly, mutations that caused multidrug resistance in bacteria simultaneously enhanced sensitivity to many other unrelated drugs (collateral sensitivity). Here, we explore how this emerging research sheds new light on resistance mechanisms and the way it could be exploited for the development of alternative antimicrobial strategies.
Collapse
Affiliation(s)
- Csaba Pál
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, Szeged, Hungary.
| | - Balázs Papp
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Viktória Lázár
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, Szeged, Hungary
| |
Collapse
|
257
|
Tazzyman SJ, Hall AR. Lytic phages obscure the cost of antibiotic resistance in Escherichia coli. ISME JOURNAL 2015; 9:809-20. [PMID: 25268496 DOI: 10.1038/ismej.2014.176] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 08/21/2014] [Accepted: 08/25/2014] [Indexed: 01/07/2023]
Abstract
The long-term persistence of antibiotic-resistant bacteria depends on their fitness relative to other genotypes in the absence of drugs. Outside the laboratory, viruses that parasitize bacteria (phages) are ubiquitous, but costs of antibiotic resistance are typically studied in phage-free experimental conditions. We used a mathematical model and experiments with Escherichia coli to show that lytic phages strongly affect the incidence of antibiotic resistance in drug-free conditions. Under phage parasitism, the likelihood that antibiotic-resistant genetic backgrounds spread depends on their initial frequency, mutation rate and intrinsic growth rate relative to drug-susceptible genotypes, because these parameters determine relative rates of phage-resistance evolution on different genetic backgrounds. Moreover, the average cost of antibiotic resistance in terms of intrinsic growth in the antibiotic-free experimental environment was small relative to the benefits of an increased mutation rate in the presence of phages. This is consistent with our theoretical work indicating that, under phage selection, typical costs of antibiotic resistance can be outweighed by realistic increases in mutability if drug resistance and hypermutability are genetically linked, as is frequently observed in clinical isolates. This suggests the long-term distribution of antibiotic resistance depends on the relative rates at which different lineages adapt to other types of selection, which in the case of phage parasitism is probably extremely common, as well as costs of resistance inferred by classical in vitro methods.
Collapse
Affiliation(s)
| | - Alex R Hall
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
258
|
Perron GG, Inglis RF, Pennings PS, Cobey S. Fighting microbial drug resistance: a primer on the role of evolutionary biology in public health. Evol Appl 2015; 8:211-22. [PMID: 25861380 PMCID: PMC4380916 DOI: 10.1111/eva.12254] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 02/18/2015] [Indexed: 01/03/2023] Open
Abstract
Although microbes have been evolving resistance to antimicrobials for millennia, the spread of resistance in pathogen populations calls for the development of new drugs and treatment strategies. We propose that successful, long-term resistance management requires a better understanding of how resistance evolves in the first place. This is an opportunity for evolutionary biologists to engage in public health, a collaboration that has substantial precedent. Resistance evolution has been an important tool for developing and testing evolutionary theory, especially theory related to the genetic basis of new traits and constraints on adaptation. The present era is no exception. The articles in this issue highlight the breadth of current research on resistance evolution and also its challenges. In this introduction, we review the conceptual advances that have been achieved from studying resistance evolution and describe a path forward.
Collapse
Affiliation(s)
- Gabriel G Perron
- Department of Biology, Bard College Annandale-on-Hudson, NY, USA
| | - R Fredrik Inglis
- Department of Biology, Washington University in St. Louis St. Louis, MO, USA
| | - Pleuni S Pennings
- Department of Biology, San Francisco State University San Francisco, CA, USA
| | - Sarah Cobey
- Department of Ecology and Evolution, University of Chicago Chicago, IL, USA
| |
Collapse
|
259
|
Whole genome sequencing based characterization of extensively drug-resistant Mycobacterium tuberculosis isolates from Pakistan. PLoS One 2015; 10:e0117771. [PMID: 25719196 PMCID: PMC4342168 DOI: 10.1371/journal.pone.0117771] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 12/29/2014] [Indexed: 02/07/2023] Open
Abstract
Improved molecular diagnostic methods for detection drug resistance in Mycobacterium tuberculosis (MTB) strains are required. Resistance to first- and second- line anti-tuberculous drugs has been associated with single nucleotide polymorphisms (SNPs) in particular genes. However, these SNPs can vary between MTB lineages therefore local data is required to describe different strain populations. We used whole genome sequencing (WGS) to characterize 37 extensively drug-resistant (XDR) MTB isolates from Pakistan and investigated 40 genes associated with drug resistance. Rifampicin resistance was attributable to SNPs in the rpoB hot-spot region. Isoniazid resistance was most commonly associated with the katG codon 315 (92%) mutation followed by inhA S94A (8%) however, one strain did not have SNPs in katG, inhA or oxyR-ahpC. All strains were pyrazimamide resistant but only 43% had pncA SNPs. Ethambutol resistant strains predominantly had embB codon 306 (62%) mutations, but additional SNPs at embB codons 406, 378 and 328 were also present. Fluoroquinolone resistance was associated with gyrA 91-94 codons in 81% of strains; four strains had only gyrB mutations, while others did not have SNPs in either gyrA or gyrB. Streptomycin resistant strains had mutations in ribosomal RNA genes; rpsL codon 43 (42%); rrs 500 region (16%), and gidB (34%) while six strains did not have mutations in any of these genes. Amikacin/kanamycin/capreomycin resistance was associated with SNPs in rrs at nt1401 (78%) and nt1484 (3%), except in seven (19%) strains. We estimate that if only the common hot-spot region targets of current commercial assays were used, the concordance between phenotypic and genotypic testing for these XDR strains would vary between rifampicin (100%), isoniazid (92%), flouroquinolones (81%), aminoglycoside (78%) and ethambutol (62%); while pncA sequencing would provide genotypic resistance in less than half the isolates. This work highlights the importance of expanded targets for drug resistance detection in MTB isolates.
Collapse
|
260
|
Sola C. Clustured regularly interspersed short palindromic repeats (CRISPR) genetic diversity studies as a mean to reconstruct the evolution of the Mycobacterium tuberculosis complex. Tuberculosis (Edinb) 2015; 95 Suppl 1:S159-66. [PMID: 25748060 DOI: 10.1016/j.tube.2015.02.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The natural history of tuberculosis may be tackled by various means, among which the record of molecular scars that have been registered by the Mycobacterium tuberculosis complex (MTBC) genomes transmitted from patient to patient for tens of thousands years and possibly more. Recently discovered polymorphic loci, the CRISPR sequences, are indirect witnesses of the historical phage-bacteria struggle, and may be related to the time when the ancestor of today's tubercle bacilli were environmental bacteria, i.e. before becoming intracellular parasites. In this article, we present what are CRISPRs and try to summarize almost 20 years of research results obtained using the genetic diversity of the CRISPR loci in MTBC as a perspective for studying new models. We show that the study of the diversity of CRISPR sequences, thanks to «spoligotyping», has played a great role in our global understanding of the population structure of MTBC.
Collapse
Affiliation(s)
- Christophe Sola
- Institut de Biologie Intégrative de la Cellule (I2BC), CEA, CNRS, Université Paris-Saclay, Orsay, France.
| |
Collapse
|
261
|
Ford CB, Funt JM, Abbey D, Issi L, Guiducci C, Martinez DA, Delorey T, Li BY, White TC, Cuomo C, Rao RP, Berman J, Thompson DA, Regev A. The evolution of drug resistance in clinical isolates of Candida albicans. eLife 2015; 4:e00662. [PMID: 25646566 PMCID: PMC4383195 DOI: 10.7554/elife.00662] [Citation(s) in RCA: 213] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 12/18/2014] [Indexed: 12/31/2022] Open
Abstract
Candida albicans is both a member of the healthy human microbiome
and a major pathogen in immunocompromised individuals. Infections are typically
treated with azole inhibitors of ergosterol biosynthesis often leading to drug
resistance. Studies in clinical isolates have implicated multiple mechanisms in
resistance, but have focused on large-scale aberrations or candidate genes, and do
not comprehensively chart the genetic basis of adaptation. Here, we leveraged
next-generation sequencing to analyze 43 isolates from 11 oral candidiasis patients.
We detected newly selected mutations, including single-nucleotide polymorphisms
(SNPs), copy-number variations and loss-of-heterozygosity (LOH) events. LOH events
were commonly associated with acquired resistance, and SNPs in 240 genes may be
related to host adaptation. Conversely, most aneuploidies were transient and did not
correlate with drug resistance. Our analysis also shows that isolates also varied in
adherence, filamentation, and virulence. Our work reveals new molecular mechanisms
underlying the evolution of drug resistance and host adaptation. DOI:http://dx.doi.org/10.7554/eLife.00662.001 Nearly all humans are infected with the fungus Candida albicans. In
most people, the infection does not produce any symptoms because their immune system
is able to counteract the fungus' attempts to spread around the body. However, if the
balance between fungal attack and body defence fails, the fungus is able to spread,
which can lead to serious disease that is fatal in 42% of cases. How does C. albicans outcompete the body's defences to cause
disease? This is a pertinent question because the most effective antifungal
medicines—including the drug fluconazole—do not kill the fungus; they
only stop it from growing. This gives the fungus time to develop resistance to the
drug by becoming able to quickly replace the fungal proteins the drug destroys, or to
efficiently remove the drug from its cells. In this study, Ford et al. studied the changes that occur in the DNA of C.
albicans over time in patients who are being treated with fluconazole.
Ford et al. took 43 samples of C. albicans from 11 patients with
weakened immune systems. The experiments show that the fungus samples collected early
on were more sensitive to the drug than the samples collected later. In most cases, the genetic data suggest that the infections begin with a single
fungal cell; the cells in the later samples are its offspring. Despite this, there is
a lot of genetic variation between samples from the same patient, which indicates
that the fungus is under pressure to become more resistant to the drug. There were
240 genes—including those that can alter the surface on the fungus cells to
make it better at evading the host immune system—in which small changes
occurred over time in three or more patients. Laboratory tests revealed that many of
these genes are likely important for the fungus to survive in an animal host in the
presence of the drug. C. albicans cells usually have two genetically distinct copies of
every gene. Ford et al. found that for some genes—including some that make
surface components or are involved in expelling drugs from cells—the loss of
genetic information from one copy, so that both copies become identical, is linked to
resistance to fluconazole. However, the gain of whole or partial
chromosomes—which contain large numbers of genes—is not linked to
resistance, but may provide additional genetic material for generating diversity in
the yeast population that may help the cells to evolve resistance in the future. These experiments have identified many new candidate genes that are important for
drug resistance and evading the host immune system, and which could be used to guide
the development of new therapeutics to treat these life-threatening infections. DOI:http://dx.doi.org/10.7554/eLife.00662.002
Collapse
Affiliation(s)
- Christopher B Ford
- Department of Biology, Broad Institute of MIT and Harvard, Cambridge, United States
| | - Jason M Funt
- Department of Biology, Broad Institute of MIT and Harvard, Cambridge, United States
| | - Darren Abbey
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, United States
| | - Luca Issi
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, United States
| | | | | | - Toni Delorey
- Broad Institute of MIT and Harvard, Cambridge, United States
| | - Bi Yu Li
- Broad Institute of MIT and Harvard, Cambridge, United States
| | - Theodore C White
- School of Biological Sciences, University of Missouri at Kansas City, Kansas City, United States
| | - Christina Cuomo
- Broad Institute of MIT and Harvard, Cambridge, United States
| | - Reeta P Rao
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, United States
| | - Judith Berman
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, United States
| | - Dawn A Thompson
- Broad Institute of MIT and Harvard, Cambridge, United States
| | - Aviv Regev
- Department of Biology, Broad Institute of MIT and Harvard, Cambridge, United States
| |
Collapse
|
262
|
Hill J, O’Meara T, Cowen L. Fitness Trade-Offs Associated with the Evolution of Resistance to Antifungal Drug Combinations. Cell Rep 2015; 10:809-819. [DOI: 10.1016/j.celrep.2015.01.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 11/28/2014] [Accepted: 12/31/2014] [Indexed: 12/15/2022] Open
|
263
|
MacLean RC, Vogwill T. Limits to compensatory adaptation and the persistence of antibiotic resistance in pathogenic bacteria. EVOLUTION MEDICINE AND PUBLIC HEALTH 2014; 2015:4-12. [PMID: 25535278 PMCID: PMC4323496 DOI: 10.1093/emph/eou032] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Antibiotic resistance carries a fitness cost that could potentially limit the spread of resistance in bacterial pathogens. In spite of this cost, a large number of experimental evolution studies have found that resistance is stably maintained in the absence of antibiotics as a result of compensatory evolution. Clinical studies, on the other hand, have found that resistance in pathogen populations usually declines after antibiotic use is stopped, suggesting that compensatory adaptation is not effective in vivo. In this article, we argue that this disagreement arises because there are limits to compensatory adaptation in nature that are not captured by the design of current laboratory selection experiments. First, clinical treatment fails to eradicate antibiotic-sensitive strains, and competition between sensitive and resistant strains leads to the rapid loss of resistance following treatment. Second, laboratory studies overestimate the efficacy of compensatory adaptation in nature by failing to capture costs associated with compensatory mutations. Taken together, these ideas can potentially reconcile evolutionary theory with the clinical dynamics of antibiotic resistance and guide the development of strategies for containing resistance in clinical pathogens.
Collapse
Affiliation(s)
- R Craig MacLean
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| | - Tom Vogwill
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| |
Collapse
|
264
|
Linking system-wide impacts of RNA polymerase mutations to the fitness cost of rifampin resistance in Pseudomonas aeruginosa. mBio 2014; 5:e01562. [PMID: 25491352 PMCID: PMC4324240 DOI: 10.1128/mbio.01562-14] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Fitness costs play a key role in the evolutionary dynamics of antibiotic resistance in bacteria by generating selection against resistance in the absence of antibiotics. Although the genetic basis of antibiotic resistance is well understood, the precise molecular mechanisms linking the genetic basis of resistance to its fitness cost remain poorly characterized. Here, we examine how the system-wide impacts of mutations in the RNA polymerase (RNAP) gene rpoB shape the fitness cost of rifampin resistance in Pseudomonas aeruginosa. Rifampin resistance mutations reduce transcriptional efficiency, and this explains 76% of the variation in fitness among rpoB mutants. The pleiotropic consequence of rpoB mutations is that mutants show altered relative transcript levels of essential genes. We find no evidence that global transcriptional responses have an impact on the fitness cost of rifampin resistance as revealed by transcriptome sequencing (RNA-Seq). Global changes in the transcriptional profiles of rpoB mutants compared to the transcriptional profile of the rifampin-sensitive ancestral strain are subtle, demonstrating that the transcriptional regulatory network of P. aeruginosa is robust to the decreased transcriptional efficiency associated with rpoB mutations. On a smaller scale, we find that rifampin resistance mutations increase the expression of RNAP due to decreased termination at an attenuator upstream from rpoB, and we argue that this helps to minimize the cost of rifampin resistance by buffering against reduced RNAP activity. In summary, our study shows that it is possible to dissect the molecular mechanisms underpinning variation in the cost of rifampin resistance and highlights the importance of genome-wide buffering of relative transcript levels in providing robustness against resistance mutations. Antibiotic resistance mutations carry fitness costs. Relative to the characteristics of their antibiotic-sensitive ancestors, resistant mutants show reduced growth rates and competitive abilities. Fitness cost plays an important role in the evolution of antibiotic resistance in the absence of antibiotics; however, the molecular mechanisms underlying these fitness costs is not well understood. We applied a systems-level approach to dissect the molecular underpinnings of the fitness costs associated with rifampin resistance in P. aeruginosa and showed that most of the variation in fitness cost can be explained by the direct effect of resistance mutations on the enzymatic activity of the mutated gene. Pleiotropic changes in transcriptional profiles are subtle at a genome-wide scale, suggesting that the gene regulatory network of P. aeruginosa is robust in the face of the direct effects of resistance mutations.
Collapse
|
265
|
Bergval I, Coll F, Schuitema A, de Ronde H, Mallard K, Pain A, McNerney R, Clark TG, Anthony RM. A proportion of mutations fixed in the genomes of in vitro selected isogenic drug-resistant Mycobacterium tuberculosis mutants can be detected as minority variants in the parent culture. FEMS Microbiol Lett 2014; 362:1-7. [PMID: 25670707 DOI: 10.1093/femsle/fnu037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We studied genomic variation in a previously selected collection of isogenic Mycobacterium tuberculosis laboratory strains subjected to one or two rounds of antibiotic selection. Whole genome sequencing analysis identified eleven single, unique mutations (four synonymous, six non-synonymous, one intergenic), in addition to drug resistance-conferring mutations, that were fixed in the genomes of six monoresistant strains. Eight loci, present as minority variants (five non-synonymous, three synonymous) in the genome of the susceptible parent strain, became fixed in the genomes of multiple daughter strains. None of these mutations are known to be involved with drug resistance. Our results confirm previously observed genomic stability for M. tuberculosis, although the parent strain had accumulated allelic variants at multiple locations in an antibiotic-free in vitro environment. It is therefore likely to assume that these so-called hitchhiking mutations were co-selected and fixed in multiple daughter strains during antibiotic selection. The presence of multiple allelic variations, accumulated under non-selective conditions, which become fixed during subsequent selective steps, deserves attention. The wider availability of 'deep' sequencing methods could help to detect multiple bacterial (sub)populations within patients with high resolution and would therefore be useful in assisting in the detailed investigation of transmission chains.
Collapse
Affiliation(s)
- Indra Bergval
- KIT Biomedical Research, Royal Tropical Institute, Meibergdreef 39, 1105 AZ Amsterdam, Netherlands
| | - Francesc Coll
- London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom
| | - Anja Schuitema
- KIT Biomedical Research, Royal Tropical Institute, Meibergdreef 39, 1105 AZ Amsterdam, Netherlands
| | - Hans de Ronde
- KIT Biomedical Research, Royal Tropical Institute, Meibergdreef 39, 1105 AZ Amsterdam, Netherlands
| | - Kim Mallard
- London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom
| | - Arnab Pain
- King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Ruth McNerney
- London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom
| | - Taane G Clark
- London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom
| | - Richard M Anthony
- KIT Biomedical Research, Royal Tropical Institute, Meibergdreef 39, 1105 AZ Amsterdam, Netherlands
| |
Collapse
|
266
|
Vogwill T, Kojadinovic M, Furió V, MacLean RC. Testing the role of genetic background in parallel evolution using the comparative experimental evolution of antibiotic resistance. Mol Biol Evol 2014; 31:3314-23. [PMID: 25228081 PMCID: PMC4245821 DOI: 10.1093/molbev/msu262] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Parallel evolution is the independent evolution of the same phenotype or genotype in response to the same selection pressure. There are examples of parallel molecular evolution across divergent genetic backgrounds, suggesting that genetic background may not play an important role in determining the outcome of adaptation. Here, we measure the influence of genetic background on phenotypic and molecular adaptation by combining experimental evolution with comparative analysis. We selected for resistance to the antibiotic rifampicin in eight strains of bacteria from the genus Pseudomonas using a short term selection experiment. Adaptation occurred by 47 mutations at conserved sites in rpoB, the target of rifampicin, and due to the high diversity of possible mutations the probability of within-strain parallel evolution was low. The probability of between-strain parallel evolution was only marginally lower, because different strains substituted similar rpoB mutations. In contrast, we found that more than 30% of the phenotypic variation in the growth rate of evolved clones was attributable to among-strain differences. Parallel molecular evolution across strains resulted in divergent phenotypic evolution because rpoB mutations had different effects on growth rate in different strains. This study shows that genetic divergence between strains constrains parallel phenotypic evolution, but had little detectable impact on the molecular basis of adaptation in this system.
Collapse
Affiliation(s)
- Tom Vogwill
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Mila Kojadinovic
- CNRS, Aix-Marseille Université, Laboratoire de Bioénergétique et Ingénierie des Protéines, UMR 7281, IMM, Marseille, France
| | - Victoria Furió
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - R Craig MacLean
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
267
|
Perdigão J, Silva H, Machado D, Macedo R, Maltez F, Silva C, Jordao L, Couto I, Mallard K, Coll F, Hill-Cawthorne GA, McNerney R, Pain A, Clark TG, Viveiros M, Portugal I. Unraveling Mycobacterium tuberculosis genomic diversity and evolution in Lisbon, Portugal, a highly drug resistant setting. BMC Genomics 2014; 15:991. [PMID: 25407810 PMCID: PMC4289236 DOI: 10.1186/1471-2164-15-991] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 11/06/2014] [Indexed: 12/04/2022] Open
Abstract
Background Multidrug- (MDR) and extensively drug resistant (XDR) tuberculosis (TB) presents a challenge to disease control and elimination goals. In Lisbon, Portugal, specific and successful XDR-TB strains have been found in circulation for almost two decades. Results In the present study we have genotyped and sequenced the genomes of 56 Mycobacterium tuberculosis isolates recovered mostly from Lisbon. The genotyping data revealed three major clusters associated with MDR-TB, two of which are associated with XDR-TB. Whilst the genomic data contributed to elucidate the phylogenetic positioning of circulating MDR-TB strains, showing a high predominance of a single SNP cluster group 5. Furthermore, a genome-wide phylogeny analysis from these strains, together with 19 publicly available genomes of Mycobacterium tuberculosis clinical isolates, revealed two major clades responsible for M/XDR-TB in the region: Lisboa3 and Q1 (LAM). The data presented by this study yielded insights on microevolution and identification of novel compensatory mutations associated with rifampicin resistance in rpoB and rpoC. The screening for other structural variations revealed putative clade-defining variants. One deletion in PPE41, found among Lisboa3 isolates, is proposed to contribute to immune evasion and as a selective advantage. Insertion sequence (IS) mapping has also demonstrated the role of IS6110 as a major driver in mycobacterial evolution by affecting gene integrity and regulation. Conclusions Globally, this study contributes with novel genome-wide phylogenetic data and has led to the identification of new genomic variants that support the notion of a growing genomic diversity facing both setting and host adaptation. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-991) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Isabel Portugal
- Centro de Patogénese Molecular, URIA, Faculdade de Farmácia da Universidade de Lisboa, Av, Prof, Gama Pinto, 1649-003 Lisboa, Portugal.
| |
Collapse
|
268
|
Eldholm V, Norheim G, von der Lippe B, Kinander W, Dahle UR, Caugant DA, Mannsåker T, Mengshoel AT, Dyrhol-Riise AM, Balloux F. Evolution of extensively drug-resistant Mycobacterium tuberculosis from a susceptible ancestor in a single patient. Genome Biol 2014; 15:490. [PMID: 25418686 PMCID: PMC4223161 DOI: 10.1186/s13059-014-0490-3] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 10/08/2014] [Indexed: 11/29/2022] Open
Abstract
Background Mycobacterium tuberculosis is characterized by a low mutation rate and a lack of genetic recombination. Yet, the rise of extensively resistant strains paints a picture of a microbe with an impressive adaptive potential. Here we describe the first documented case of extensively drug-resistant tuberculosis evolved from a susceptible ancestor within a single patient. Results Genome sequences of nine serial M. tuberculosis isolates from the same patient uncovered a dramatic turnover of competing lineages driven by the emergence, and subsequent fixation or loss of single nucleotide polymorphisms. For most drugs, resistance arose through independent emergence of mutations in more than one clone, of which only one ultimately prevailed as the clone carrying it expanded, displacing the other clones in the process. The vast majority of mutations identified over 3.5 years were either involved in drug resistance or hitchhiking in the genetic background of these. Additionally, RNA-sequencing of isolates grown in the absence of drug challenge revealed that the efflux-associated iniBAC operon was up-regulated over time, whereas down-regulated genes include those involved in mycolic acid synthesis. Conclusions We observed both rapid acquisitions of resistance to antimicrobial compounds mediated by individual mutations as well as a gradual increase in fitness in the presence of antibiotics, likely driven by stable gene expression reprogramming. The rapid turnover of resistance mutations and hitchhiking neutral mutations has major implications for inferring tuberculosis transmission events in situations where drug resistance evolves within transmission chains. Electronic supplementary material The online version of this article (doi:10.1186/s13059-014-0490-3) contains supplementary material, which is available to authorized users.
Collapse
|
269
|
Brandis G, Pietsch F, Alemayehu R, Hughes D. Comprehensive phenotypic characterization of rifampicin resistance mutations in Salmonella provides insight into the evolution of resistance in Mycobacterium tuberculosis. J Antimicrob Chemother 2014; 70:680-5. [PMID: 25362573 DOI: 10.1093/jac/dku434] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVES Mutations in the β-subunit of RNA polymerase (RNAP), encoded by rpoB, are responsible for rifampicin resistance (Rif(R)). Although many mutations in rpoB can reduce susceptibility, only a few are frequent amongst Rif(R) clinical Mycobacterium tuberculosis (MTB) isolates. It has been suggested that there is a negative correlation between the fitness costs of Rif(R) mutations and their respective clinical frequency, but so far comparable fitness cost measurements have only been conducted for a very limited number of Rif(R) mutations. We tested this hypothesis using Salmonella and Mycobacterium smegmatis as model organisms. METHODS We constructed 122 different Rif(R) mutations in Salmonella. MICs and relative fitness costs in the presence and absence of rifampicin were determined for each mutant, including for a smaller number of Rif(R) M. smegmatis strains. Results were compared with available mutation frequency data from clinical MTB isolates. RESULTS (i) Rif(R) mutations frequently found in MTB isolates have a fitness cost in Salmonella Typhimurium and M. smegmatis. (ii) Clinically frequent Rif(R) mutations have a high rifampicin MIC. (iii) There is a strong correlation between the magnitude of the fitness cost of a Rif(R) mutation in Salmonella Typhimurium or M. smegmatis and the frequency with which that mutation is associated with secondary (putative compensatory) mutations in RNAP of clinical MTB isolates. CONCLUSIONS This suggests that the success of Rif(R) mutations in clinical MTB isolates may be dependent not only on a low initial fitness cost, but rather the results of three factors: (i) a high rifampicin MIC; (ii) a relatively low initial fitness cost; and (iii) the ability to additionally acquire compensatory mutations selected to further reduce fitness cost.
Collapse
Affiliation(s)
- Gerrit Brandis
- Department of Medical Biochemistry and Microbiology, Box 582 Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Franziska Pietsch
- Department of Medical Biochemistry and Microbiology, Box 582 Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Rahel Alemayehu
- Department of Medical Biochemistry and Microbiology, Box 582 Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Diarmaid Hughes
- Department of Medical Biochemistry and Microbiology, Box 582 Biomedical Center, Uppsala University, Uppsala, Sweden
| |
Collapse
|
270
|
Form of an evolutionary tradeoff affects eco-evolutionary dynamics in a predator-prey system. Proc Natl Acad Sci U S A 2014; 111:16035-40. [PMID: 25336757 DOI: 10.1073/pnas.1406357111] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Evolution on a time scale similar to ecological dynamics has been increasingly recognized for the last three decades. Selection mediated by ecological interactions can change heritable phenotypic variation (i.e., evolution), and evolution of traits, in turn, can affect ecological interactions. Hence, ecological and evolutionary dynamics can be tightly linked and important to predict future dynamics, but our understanding of eco-evolutionary dynamics is still in its infancy and there is a significant gap between theoretical predictions and empirical tests. Empirical studies have demonstrated that the presence of genetic variation can dramatically change ecological dynamics, whereas theoretical studies predict that eco-evolutionary dynamics depend on the details of the genetic variation, such as the form of a tradeoff among genotypes, which can be more important than the presence or absence of the genetic variation. Using a predator-prey (rotifer-algal) experimental system in laboratory microcosms, we studied how different forms of a tradeoff between prey defense and growth affect eco-evolutionary dynamics. Our experimental results show for the first time to our knowledge that different forms of the tradeoff produce remarkably divergent eco-evolutionary dynamics, including near fixation, near extinction, and coexistence of algal genotypes, with quantitatively different population dynamics. A mathematical model, parameterized from completely independent experiments, explains the observed dynamics. The results suggest that knowing the details of heritable trait variation and covariation within a population is essential for understanding how evolution and ecology will interact and what form of eco-evolutionary dynamics will result.
Collapse
|
271
|
Diversity and evolution of Mycobacterium tuberculosis: moving to whole-genome-based approaches. Cold Spring Harb Perspect Med 2014; 4:a021188. [PMID: 25190252 DOI: 10.1101/cshperspect.a021188] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Genotyping of clinical Mycobacterium tuberculosis complex (MTBC) strains has become a standard tool for epidemiological tracing and for the investigation of the local and global strain population structure. Of special importance is the analysis of the expansion of multidrug (MDR) and extensively drug-resistant (XDR) strains. Classical genotyping and, more recently, whole-genome sequencing have revealed that the strains of the MTBC are more diverse than previously anticipated. Globally, several phylogenetic lineages can be distinguished whose geographical distribution is markedly variable. Strains of particular (sub)lineages, such as Beijing, seem to be more virulent and associated with enhanced resistance levels and fitness, likely fueling their spread in certain world regions. The upcoming generalization of whole-genome sequencing approaches will expectedly provide more comprehensive insights into the molecular and epidemiological mechanisms involved and lead to better diagnostic and therapeutic tools.
Collapse
|
272
|
Dymova MA, Cherednichenko AG, Alkhovik OI, Khrapov EA, Petrenko TI, Filipenko ML. Characterization of extensively drug-resistant Mycobacterium tuberculosis isolates circulating in Siberia. BMC Infect Dis 2014; 14:478. [PMID: 25186134 PMCID: PMC4161839 DOI: 10.1186/1471-2334-14-478] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 08/29/2014] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The spread of multidrug-resistant (MDR) and extensively drug-resistant (XDR) Mycobacterium tuberculosis compromises effective control of tuberculosis (TB) in Siberia. Early identification of drug-resistant isolates is, therefore, crucial for effective treatment of this disease. The aim of this study was to conduct drug susceptibility testing and identify mutations in drug resistance genes in clinical isolates of M. tuberculosis from some TB patients presenting for treatment in Siberia. METHODS Thirty randomly selected clinical isolates of M. tuberculosis were obtained from the Novosibirsk Research Institute of Tuberculosis, Russia. Isolates were screened for drug resistance and characterized by variable number of tandem repeats (VNTR)-typing using 15 standard and four additional loci. Deligotyping on multiple large sequences was performed using 10 loci. RESULTS Twenty-nine of the isolates were assigned XDR status. Twenty-eight isolates belonged to the M. tuberculosis Beijing family, from which 11 isolates were considered the M11 type (39%), two the M2 type (7%), and one the M33 type (3%). Seventeen isolates (60.7%) from this family exhibited unique genetic patterns. The remaining two isolates belonged to the Latino-American Mediterranean family. Gene sequences (rpoB, katG, rrs, rpsL, tlyA, gidB, gyrA, gyrB) were analyzed to identify mutations that confer resistance to rifampicin, isoniazid, amikacin, kanamycin, capreomycin, and ofloxacin. The most common mutations among the XDR isolates were S531L in RpoB, S315T in KatG, various codon 94 mutations in gyrA, A90V in GyrA, K43R in RpsL, and 1401 A → G in rrs; these confer resistance to rifampicin, isoniazid, ofloxacin, streptomycin and kanamycin/capreomycin, respectively. There was high congruence between the two typing methods (VNTR typing and deligotyping) and RD105, RD149, RD152, RD181, and RD207 regions of difference were absent from the 28 Beijing family isolates. CONCLUSIONS Deligotyping can be used for rapid and reliable screening of M. tuberculosis isolates, followed by more in-depth genotyping. Identification of Beijing family isolates with extensive drug resistance confirms that such strains have epidemiological importance in Siberia. Rapid detection of mutations that lead to drug resistance should facilitate selection of effective drug therapies, and the development of early prevention strategies to combat this infection.
Collapse
Affiliation(s)
- Maya A Dymova
- />Institute of Chemical Biology and Fundamental Medicine (ICBFM), Siberian Branch of The Russian Academy of Sciences (SB RAS), Novosibirsk, Russia
- />Novosibirsk State University (NSU), Novosibirsk, Russia
| | - Andrey G Cherednichenko
- />Ministry of Public Health and Social Development of The Russian Federation (NRIT), Novosibirsk Research Institute of Tuberculosis, Novosibirsk, Russia
| | - Olga I Alkhovik
- />Ministry of Public Health and Social Development of The Russian Federation (NRIT), Novosibirsk Research Institute of Tuberculosis, Novosibirsk, Russia
| | - Eugeny A Khrapov
- />Institute of Chemical Biology and Fundamental Medicine (ICBFM), Siberian Branch of The Russian Academy of Sciences (SB RAS), Novosibirsk, Russia
| | - Tatjana I Petrenko
- />Ministry of Public Health and Social Development of The Russian Federation (NRIT), Novosibirsk Research Institute of Tuberculosis, Novosibirsk, Russia
| | - Maxim L Filipenko
- />Institute of Chemical Biology and Fundamental Medicine (ICBFM), Siberian Branch of The Russian Academy of Sciences (SB RAS), Novosibirsk, Russia
- />Novosibirsk State University (NSU), Novosibirsk, Russia
| |
Collapse
|
273
|
Das Adhikari AK, Qureshi MT, Kar RK, Bhat PJ. Perturbation of the interaction between Gal4p and Gal80p of the Saccharomyces cerevisiae GAL switch results in altered responses to galactose and glucose. Mol Microbiol 2014; 94:202-17. [PMID: 25135592 DOI: 10.1111/mmi.12757] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2014] [Indexed: 11/30/2022]
Abstract
In S. cerevisiae, following the Whole Genome Duplication (WGD), GAL1-encoded galactokinase retained its signal transduction function but lost basal expression. On the other hand, its paralogue GAL3, lost kinase activity but retained its signalling function and basal expression, thus making it indispensable for the rapid induction of the S. cerevisiae GAL switch. However, a gal3Δ strain exhibits delayed growth kinetics due to the redundant signalling function of GAL1. The subfunctionalization between the paralogues GAL1 and GAL3 is due to expression divergence and is proposed to be due to the alteration in the Upstream Activating Sequences (UASG ). We demonstrate that the GAL switch becomes independent of GAL3 by altering the interaction between Gal4p and Gal80p without altering the configuration of UASG . In addition to the above, the altered switch of S. cerevisiae loses ultrasensitivity and stringent glucose repression. These changes caused an increase in fitness in the disaccharide melibiose at the expense of a decrease in fitness in galactose. The above altered features of the ScGAL switch are similar to the features of the GAL switch of K. lactis that diverged from S. cerevisiae before the WGD.
Collapse
Affiliation(s)
- Akshay Kumar Das Adhikari
- Laboratory of Molecular Genetics, Department of Bioscience and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | | | | | | |
Collapse
|
274
|
Melnyk AH, Wong A, Kassen R. The fitness costs of antibiotic resistance mutations. Evol Appl 2014; 8:273-83. [PMID: 25861385 PMCID: PMC4380921 DOI: 10.1111/eva.12196] [Citation(s) in RCA: 401] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 07/10/2014] [Indexed: 01/07/2023] Open
Abstract
Antibiotic resistance is increasing in pathogenic microbial populations and is thus a major threat to public health. The fate of a resistance mutation in pathogen populations is determined in part by its fitness. Mutations that suffer little or no fitness cost are more likely to persist in the absence of antibiotic treatment. In this review, we performed a meta-analysis to investigate the fitness costs associated with single mutational events that confer resistance. Generally, these mutations were costly, although several drug classes and species of bacteria on average did not show a cost. Further investigations into the rate and fitness values of compensatory mutations that alleviate the costs of resistance will help us to better understand both the emergence and management of antibiotic resistance in clinical settings.
Collapse
Affiliation(s)
- Anita H Melnyk
- Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa Ottawa, ON, Canada
| | - Alex Wong
- Department of Biology, Carleton University Ottawa, ON, Canada
| | - Rees Kassen
- Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa Ottawa, ON, Canada
| |
Collapse
|
275
|
Bhatter P, Chatterjee A, Mistry N. Kinetics of recA and recX induction in drug-susceptible and MDR clinical strains of Mycobacterium tuberculosis. J Antimicrob Chemother 2014; 69:3199-202. [DOI: 10.1093/jac/dku319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
276
|
Stern A, Bianco S, Yeh MT, Wright C, Butcher K, Tang C, Nielsen R, Andino R. Costs and benefits of mutational robustness in RNA viruses. Cell Rep 2014; 8:1026-36. [PMID: 25127138 DOI: 10.1016/j.celrep.2014.07.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 05/18/2014] [Accepted: 07/11/2014] [Indexed: 12/19/2022] Open
Abstract
The accumulation of mutations in RNA viruses is thought to facilitate rapid adaptation to changes in the environment. However, most mutations have deleterious effects on fitness, especially for viruses. Thus, tolerance to mutations should determine the nature and extent of genetic diversity that can be maintained in the population. Here, we combine population genetics theory, computer simulation, and experimental evolution to examine the advantages and disadvantages of tolerance to mutations, also known as mutational robustness. We find that mutational robustness increases neutral diversity and, as expected, can facilitate adaptation to a new environment. Surprisingly, under certain conditions, robustness may also be an impediment for viral adaptation, if a highly diverse population contains a large proportion of previously neutral mutations that are deleterious in the new environment. These findings may inform therapeutic strategies that cause extinction of otherwise robust viral populations.
Collapse
Affiliation(s)
- Adi Stern
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Simone Bianco
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA; IBM Research-Almaden, Industrial and Applied Genomics, 650 Harry Road, San Jose, CA 95120-6099, USA
| | - Ming Te Yeh
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Caroline Wright
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kristin Butcher
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Chao Tang
- Center for Quantitative Biology, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Rasmus Nielsen
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Statistics, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Raul Andino
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
277
|
Transient Darwinian selection in Salmonella enterica serovar Paratyphi A during 450 years of global spread of enteric fever. Proc Natl Acad Sci U S A 2014; 111:12199-204. [PMID: 25092320 DOI: 10.1073/pnas.1411012111] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Multiple epidemic diseases have been designated as emerging or reemerging because the numbers of clinical cases have increased. Emerging diseases are often suspected to be driven by increased virulence or fitness, possibly associated with the gain of novel genes or mutations. However, the time period over which humans have been afflicted by such diseases is only known for very few bacterial pathogens, and the evidence for recently increased virulence or fitness is scanty. Has Darwinian (diversifying) selection at the genomic level recently driven microevolution within bacterial pathogens of humans? Salmonella enterica serovar Paratyphi A is a major cause of enteric fever, with a microbiological history dating to 1898. We identified seven modern lineages among 149 genomes on the basis of 4,584 SNPs in the core genome and estimated that Paratyphi A originated 450 y ago. During that time period, the effective population size has undergone expansion, reduction, and recent expansion. Mutations, some of which inactivate genes, have occurred continuously over the history of Paratyphi A, as has the gain or loss of accessory genes. We also identified 273 mutations that were under Darwinian selection. However, most genetic changes are transient, continuously being removed by purifying selection, and the genome of Paratyphi A has not changed dramatically over centuries. We conclude that Darwinian selection is not responsible for increased frequency of enteric fever and suggest that environmental changes may be more important for the frequency of disease.
Collapse
|
278
|
Trauner A, Borrell S, Reither K, Gagneux S. Evolution of drug resistance in tuberculosis: recent progress and implications for diagnosis and therapy. Drugs 2014; 74:1063-72. [PMID: 24962424 PMCID: PMC4078235 DOI: 10.1007/s40265-014-0248-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Drug-resistant tuberculosis is a growing threat to global public health. Recent efforts to understand the evolution of drug resistance have shown that changes in drug-target interactions are only the first step in a longer adaptive process. The emergence of transmissible drug-resistant Mycobacterium tuberculosis is the result of a multitude of additional genetic mutations, many of which interact, a phenomenon known as epistasis. The varied effects of these epistatic interactions include compensating for the reduction of the biological cost associated with the development of drug resistance, increasing the level of resistance, and possibly accommodating broader changes in the physiology of resistant bacteria. Knowledge of these processes and our ability to detect them as they happen informs the development of diagnostic tools and better control strategies. In particular, the use of whole genome sequencing combined with surveillance efforts in the field could provide a powerful instrument to prevent future epidemics of drug-resistant tuberculosis.
Collapse
Affiliation(s)
- Andrej Trauner
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Sonia Borrell
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Klaus Reither
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Sebastien Gagneux
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
279
|
Corno G, Coci M, Giardina M, Plechuk S, Campanile F, Stefani S. Antibiotics promote aggregation within aquatic bacterial communities. Front Microbiol 2014; 5:297. [PMID: 25071728 PMCID: PMC4077313 DOI: 10.3389/fmicb.2014.00297] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 05/29/2014] [Indexed: 11/13/2022] Open
Abstract
The release of antibiotics (AB) into the environment poses several threats for human health due to potential development of AB-resistant natural bacteria. Even though the use of low-dose antibiotics has been promoted in health care and farming, significant amounts of AB are observed in aquatic environments. Knowledge on the impact of AB on natural bacterial communities is missing both in terms of spread and evolution of resistance mechanisms, and of modifications of community composition and productivity. New approaches are required to study the response of microbial communities rather than individual resistance genes. In this study a chemostat-based experiment with 4 coexisting bacterial strains has been performed to mimicking the response of a freshwater bacterial community to the presence of antibiotics in low and high doses. Bacterial abundance rapidly decreased by 75% in the presence of AB, independently of their concentration, and remained constant until the end of the experiment. The bacterial community was mainly dominated by Aeromonas hydrophila and Brevundimonas intermedia while the other two strains, Micrococcus luteus and Rhodococcus sp. never exceed 10%. Interestingly, the bacterial strains, which were isolated at the end of the experiment, were not AB-resistant, while reassembled communities composed of the 4 strains, isolated from treatments under AB stress, significantly raised their performance (growth rate, abundance) in the presence of AB compared to the communities reassembled with strains isolated from the treatment without AB. By investigating the phenotypic adaptations of the communities subjected to the different treatments, we found that the presence of AB significantly increased co-aggregation by 5-6 fold. These results represent the first observation of co-aggregation as a successful strategy of AB resistance based on phenotype in aquatic bacterial communities, and can represent a fundamental step in the understanding of the effects of AB in aquatic ecosystems.
Collapse
Affiliation(s)
- Gianluca Corno
- Microbial Ecology Group, Institute of Ecosystem Study, National Research Council Verbania, Italy
| | - Manuela Coci
- Microbial Ecology Group, Institute of Ecosystem Study, National Research Council Verbania, Italy ; Laboratory of Molecular Microbiology and Antibiotic Resistance, Department of Bio-Medical Sciences, University of Catania Catania, Italy
| | - Marco Giardina
- Microbial Ecology Group, Institute of Ecosystem Study, National Research Council Verbania, Italy ; Laboratory of Molecular Microbiology and Antibiotic Resistance, Department of Bio-Medical Sciences, University of Catania Catania, Italy
| | - Sonia Plechuk
- Microbial Ecology Group, Institute of Ecosystem Study, National Research Council Verbania, Italy ; Laboratory of Molecular Microbiology and Antibiotic Resistance, Department of Bio-Medical Sciences, University of Catania Catania, Italy
| | - Floriana Campanile
- Laboratory of Molecular Microbiology and Antibiotic Resistance, Department of Bio-Medical Sciences, University of Catania Catania, Italy
| | - Stefania Stefani
- Laboratory of Molecular Microbiology and Antibiotic Resistance, Department of Bio-Medical Sciences, University of Catania Catania, Italy
| |
Collapse
|
280
|
Imamovic L, Sommer MOA. Use of collateral sensitivity networks to design drug cycling protocols that avoid resistance development. Sci Transl Med 2014; 5:204ra132. [PMID: 24068739 DOI: 10.1126/scitranslmed.3006609] [Citation(s) in RCA: 307] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
New drug deployment strategies are imperative to address the problem of drug resistance, which is limiting the management of infectious diseases and cancers. We evolved resistance in Escherichia coli toward 23 drugs used clinically for treating bacterial infections and mapped the resulting collateral sensitivity and resistance profiles, revealing a complex collateral sensitivity network. On the basis of these data, we propose a new treatment framework--collateral sensitivity cycling--in which drugs with compatible collateral sensitivity profiles are used sequentially to treat infection and select against drug resistance development. We identified hundreds of such drug sets and demonstrated that the antibiotics gentamicin and cefuroxime can be deployed cyclically such that the treatment regimen selected against resistance to either drug. We then validated our findings with related bacterial pathogens. These results provide proof of principle for collateral sensitivity cycling as a sustainable treatment paradigm that may be generally applicable to infectious diseases and cancer.
Collapse
Affiliation(s)
- Lejla Imamovic
- Department of Systems Biology, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | | |
Collapse
|
281
|
Zetola NM, Modongo C, Moonan PK, Ncube R, Matlhagela K, Sepako E, Collman RG, Bisson GP. Clinical outcomes among persons with pulmonary tuberculosis caused by Mycobacterium tuberculosis isolates with phenotypic heterogeneity in results of drug-susceptibility tests. J Infect Dis 2014; 209:1754-63. [PMID: 24443546 PMCID: PMC4017367 DOI: 10.1093/infdis/jiu040] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 12/18/2013] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Patients with multidrug-resistant (MDR) tuberculosis may have phenotypic heterogeneity in results of drug-susceptibility tests (DSTs). However, the impact of this on clinical outcomes among patients treated for MDR tuberculosis is unknown. METHODS Phenotypic DST heterogeneity was defined as presence of at least 1 Mycobacterium tuberculosis isolate susceptible to rifampicin and isoniazid recovered <3 months after MDR tuberculosis treatment initiation from a patient with previous documented tuberculosis due to M. tuberculosis resistant to at least rifampicin and isoniazid. The primary outcome was defined as good (ie, cure or treatment completion) or poor (ie, treatment failure, treatment default, or death). A secondary outcome was time to culture conversion. Cox proportional hazard models were used to determine the association between phenotypic DST heterogeneity and outcomes. RESULTS Phenotypic DST heterogeneity was identified in 33 of 475 patients (7%) with MDR tuberculosis. Poor outcome occurred in 126 patients (28%). Overall, patients with MDR tuberculosis who had phenotypic DST heterogeneity were at greater risk of poor outcome than those with MDR tuberculosis but no phenotypic DST heterogeneity (adjusted hazard ratio [aHR], 2.1; 95% confidence interval [CI], 1.2-3.6). Among HIV-infected patients with MDR tuberculosis, the adjusted hazard for a poor outcome for those with phenotypic DST heterogeneity was 2.4 (95% CI, 1.3-4.2) times that for those without phenotypic DST heterogeneity, whereas among HIV-negative patients with MDR tuberculosis, the adjusted hazard for those with phenotypic DST heterogeneity was 1.5 (95% CI, .5-4.3) times that for those without phenotypic DST heterogeneity. HIV-infected patients with MDR tuberculosis with phenotypic DST heterogeneity also had a longer time to culture conversion than with HIV-infected patients with MDR tuberculosis without phenotypic DST heterogeneity (aHR, 2.9; 95% CI, 1.4-6.0). CONCLUSIONS Phenotypic DST heterogeneity among persons with HIV infection who are being treated for MDR tuberculosis is associated with poor outcomes and longer times to culture conversion.
Collapse
Affiliation(s)
- Nicola M. Zetola
- Division of Infectious Diseases
- Botswana–University of Pennsylvania Partnership
- Department of Medicine
- Princess Marina Referral Hospital
| | - Chawangwa Modongo
- Botswana–University of Pennsylvania Partnership
- Princess Marina Referral Hospital
| | | | - Ronald Ncube
- Botswana National Tuberculosis Programme, Gaborone, Botswana
| | | | - Enoch Sepako
- Department of Biological Sciences, University of Botswana
| | - Ronald G. Collman
- Division of Pulmonary and Critical Care Medicine, University of Pennsylvania, Philadelphia
| | - Gregory P. Bisson
- Division of Infectious Diseases
- Botswana–University of Pennsylvania Partnership
| |
Collapse
|
282
|
Naidoo C, Pillay M. Increased in vitro fitness of multi- and extensively drug-resistant F15/LAM4/KZN strains of Mycobacterium tuberculosis. Clin Microbiol Infect 2014; 20:O361-9. [DOI: 10.1111/1469-0691.12415] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 08/07/2013] [Accepted: 09/27/2013] [Indexed: 11/29/2022]
|
283
|
Romero MM, Basile JI, López B, Ritacco V, Barrera L, Sasiain MDC, Alemán M. Outbreaks of Mycobacterium tuberculosis MDR strains differentially induce neutrophil respiratory burst involving lipid rafts, p38 MAPK and Syk. BMC Infect Dis 2014; 14:262. [PMID: 24886274 PMCID: PMC4049492 DOI: 10.1186/1471-2334-14-262] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 05/07/2014] [Indexed: 11/16/2022] Open
Abstract
Background Neutrophils (PMN) are the first cells to infiltrate the lung after infection, and they play a significant protective role in the elimination of pathogen, by releasing preformed oxidants and proteolytic enzymes from granules and generating ROS, thus limiting inflammation by succumbing to apoptosis. In a previous study, we found marked differences in ROS-induced apoptosis between two Mycobacterium tuberculosis (Mtb) strains, M and Ra, representative of widespread Mtb families in South America, i.e. Haarlem and Latin-American Mediterranean (LAM), being strain M able to generate further drug resistance and to disseminate aggressively. Methods In this study we evaluate the nature of bacteria-PMN interaction by assessing ROS production, apoptosis, lipid raft coalescence, and phagocytosis induced by Mtb strains. Results Dectin-1 and TLR2 participate in Mtb-induced ROS generation and apoptosis in PMN involving p38 MAPK and Syk activation with the participation of a TLR2-dependent coalescence of lipid rafts. Further, ROS production occurs during the phagocytosis of non-opsonized bacteria and involves α-glucans on the capsule. In contrast, strain M lacks the ability to induce ROS because of: 1) a reduced phagocytosis and 2) a failure in coalescence of lipid raft. Conclusions The differences in wall composition could explain the success of some strains which stay unnoticed by the host through inhibition of apoptosis and ROS but making possible its replication inside PMN as a potential evasion mechanism. Innate immune responses elicited by Mtb strain-to-strain variations need to be considered in TB vaccine development.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mercedes Alemán
- Inmunologia de enfermedades respiratorias, IMEX-CONTICET-ANM, Buenos Aires, Argentina.
| |
Collapse
|
284
|
Abstract
Although theoretically attractive, the reversibility of resistance has proven difficult in practice, even though antibiotic resistance mechanisms induce a fitness cost to the bacterium. Associated resistance to other antibiotics and compensatory mutations seem to ameliorate the effect of antibiotic interventions in the community. In this paper the current understanding of the concepts of reversibility of antibiotic resistance and the interventions performed in hospitals and in the community are reviewed.
Collapse
Affiliation(s)
- Martin Sundqvist
- Department of Laboratory Medicine, Clinical Microbiology, Örebro University Hospital, Örebro, Sweden
| |
Collapse
|
285
|
Reduced virulence of an extensively drug-resistant outbreak strain of Mycobacterium tuberculosis in a murine model. PLoS One 2014; 9:e94953. [PMID: 24733050 PMCID: PMC3986381 DOI: 10.1371/journal.pone.0094953] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 03/20/2014] [Indexed: 12/15/2022] Open
Abstract
Bacterial drug resistance is often associated with a fitness cost. Large outbreaks of multidrug-resistant (MDR) and extensively drug-resistant (XDR) TB have been described that predominately affect persons with HIV infection. We obtained four closely-related Mycobacterium tuberculosis strains (genotype F15/LAM4/KZN) from an outbreak in KwaZulu-Natal (KZN), South Africa, including drug-sensitive, MDR, and XDR clinical isolates. We compared the virulence of these strains in a murine model of aerosol M. tuberculosis infection for four phenotypes: (1) competitive in vivo growth in lung and spleen, (2) non-competitive in vivo growth in lung and spleen, (3) murine survival time, and (4) lung pathology. When mixtures of sensitive, MDR, and XDR KZN strains were aerosolized (competitive model), lung CFUs were similar at 60 days after infection, and spleen CFUs were ordered as follows: sensitive > MDR > XDR. When individual strains were aerosolized (non-competitive model), modest differences in lung and spleen CFUs were observed with the same ordering. C57BL/6, C3H/FeJ, and SCID mice all survived longer after infection with MDR as compared to sensitive strains. SCID mice infected with an XDR strain survived longer than those infected with MDR or sensitive strains. Lung pathology was reduced after XDR TB infection compared to sensitive or MDR TB infection. In summary, increasing degrees of drug resistance were associated with decreasing murine virulence in this collection of KZN strains as measured by all four virulence phenotypes. The predominance of HIV-infected patients in MDR and XDR TB outbreaks may be explained by decreased virulence of these strains in humans.
Collapse
|
286
|
Matteelli A, Roggi A, Carvalho ACC. Extensively drug-resistant tuberculosis: epidemiology and management. Clin Epidemiol 2014; 6:111-8. [PMID: 24729727 PMCID: PMC3979688 DOI: 10.2147/clep.s35839] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The advent of antibiotics for the treatment of tuberculosis (TB) represented a major breakthrough in the fight against the disease. However, since its first use, antibiotic therapy has been associated with the emergence of resistance to drugs. The incorrect use of anti-TB drugs, either due to prescription errors, low patient compliance, or poor quality of drugs, led to the widespread emergence of Mycobacterium tuberculosis strains with an expanding spectrum of resistance. The spread of multidrug-resistant (MDR) strains (ie, strains resistant to both isoniazid and rifampicin) has represented a major threat to TB control since the 1990s. In 2006, the first cases of MDR strains with further resistance to fluoroquinolone and injectable drugs were described and named extensively drug-resistant TB (XDR-TB). The emergence of XDR-TB strains is a result of mismanagement of MDR cases, and treatment relies on drugs that are less potent and more toxic than those used to treat drug-susceptible or MDR strains. Furthermore, treatment success is lower and mortality higher than achieved in MDR-TB cases, and the number of drugs necessary in the intensive phase of treatment may be higher than the four drugs recommended for MDR-TB. Linezolid may represent a valuable drug to treat cases of XDR-TB. Delamanid, bedaquiline, and PA-824 are new anti-TB agents in the development pipeline that have the potential to enhance the cure rate of XDR-TB. The best measures to prevent new cases of XDR-TB are the correct management of MDR-TB patients, early detection, and proper treatment of existing patients with XDR-TB.
Collapse
Affiliation(s)
- Alberto Matteelli
- Institute of Infectious and Tropical Diseases, WHO Collaborating Centre for TB/HIV Co-Infection, University of Brescia, Brescia, Italy
| | - Alberto Roggi
- Institute of Infectious and Tropical Diseases, WHO Collaborating Centre for TB/HIV Co-Infection, University of Brescia, Brescia, Italy
| | - Anna CC Carvalho
- Laboratory of Innovations in Therapies, Education and Bioproducts (LITEB), Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| |
Collapse
|
287
|
|
288
|
|
289
|
Dheda K, Gumbo T, Gandhi NR, Murray M, Theron G, Udwadia Z, Migliori GB, Warren R. Global control of tuberculosis: from extensively drug-resistant to untreatable tuberculosis. THE LANCET RESPIRATORY MEDICINE 2014; 2:321-38. [PMID: 24717628 DOI: 10.1016/s2213-2600(14)70031-1] [Citation(s) in RCA: 205] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Extensively drug-resistant tuberculosis is a burgeoning global health crisis mainly affecting economically active young adults, and has high mortality irrespective of HIV status. In some countries such as South Africa, drug-resistant tuberculosis represents less than 3% of all cases but consumes more than a third of the total national budget for tuberculosis, which is unsustainable and threatens to destabilise national tuberculosis programmes. However, concern about drug-resistant tuberculosis has been eclipsed by that of totally and extremely drug-resistant tuberculosis--ie, resistance to all or nearly all conventional first-line and second-line antituberculosis drugs. In this Review, we discuss the epidemiology, pathogenesis, diagnosis, management, implications for health-care workers, and ethical and medicolegal aspects of extensively drug-resistant tuberculosis and other resistant strains. Finally, we discuss the emerging problem of functionally untreatable tuberculosis, and the issues and challenges that it poses to public health and clinical practice. The emergence and growth of highly resistant strains of tuberculosis make the development of new drugs and rapid diagnostics for tuberculosis--and increased funding to strengthen global control efforts, research, and advocacy--even more pressing.
Collapse
Affiliation(s)
- Keertan Dheda
- Lung Infection and Immunity Unit, Division of Pulmonology and UCT Lung Institute, Department of Medicine, University of Cape Town, Cape Town, South Africa; Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa.
| | - Tawanda Gumbo
- Office of Global Health and Department of Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Neel R Gandhi
- Departments of Epidemiology, Global Health, and Infectious Diseases, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Megan Murray
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, MA, USA
| | - Grant Theron
- Lung Infection and Immunity Unit, Division of Pulmonology and UCT Lung Institute, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | | | - G B Migliori
- WHO Collaborating Centre for TB and Lung Diseases, Fondazione S Maugeri, Care and Research Institute, Tradate, Italy
| | - Robin Warren
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, MRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| |
Collapse
|
290
|
De Beer JL, Ködmön C, van der Werf MJ, van Ingen J, van Soolingen D, the ECDC MDR-TB molecular surveillance project participants C. Molecular surveillance of multi- and extensively drug-resistant tuberculosis transmission in the European Union from 2003 to 2011. Euro Surveill 2014; 19. [DOI: 10.2807/1560-7917.es2014.19.11.20742] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The European Centre for Disease Prevention and Control (ECDC) initiated a project on the molecular surveillance of multi- and extensively drug-resistant tuberculosis (MDR-/XDR-TB) transmission in the European Union (EU) in the period from 2009 to 2011. In total, 2,092 variable number of tandem repeat (VNTR) patterns of MDR-/XDR-TB Mycobacterium tuberculosis isolates were collected, originating from 24 different countries in the period 2003 to 2011. Of the collected VNTR patterns, 45% (n=941) could be assigned to one of the 79 European multiple-country molecular fingerprint clusters and 50% of those (n=470) belonged to one extremely large cluster caused by Beijing strains of one genotype. We conclude that international transmission of MDR-/XDR-TB plays an important role in the EU, especially in the eastern part, and is significantly related to the spread of one strain or clone of the Beijing genotype. Implementation of international cluster investigation in EU countries should reveal underlying factors of transmission, and show how TB control can be improved regarding case finding, contact tracing, infection control and treatment in order to prevent further spread of MDR-/XDR-TB in the EU.
Collapse
Affiliation(s)
- J L De Beer
- National Tuberculosis Reference Laboratory, Laboratory for Infectious Diseases and Perinatal Screening (LIS), Centre for Infectious Disease Control (CIB), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - C Ködmön
- European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - M J van der Werf
- European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - J van Ingen
- Department of Medical Microbiology, Department of Medical Microbiology Nijmegen, The Netherlands
| | - D van Soolingen
- National Tuberculosis Reference Laboratory, Laboratory for Infectious Diseases and Perinatal Screening (LIS), Centre for Infectious Disease Control (CIB), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Department of Pulmonary Diseases, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- Department of Medical Microbiology, Department of Medical Microbiology Nijmegen, The Netherlands
| | | |
Collapse
|
291
|
Koch A, Mizrahi V, Warner DF. The impact of drug resistance on Mycobacterium tuberculosis physiology: what can we learn from rifampicin? Emerg Microbes Infect 2014; 3:e17. [PMID: 26038512 PMCID: PMC3975073 DOI: 10.1038/emi.2014.17] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 12/12/2013] [Accepted: 12/30/2013] [Indexed: 01/08/2023]
Abstract
The emergence of drug-resistant pathogens poses a major threat to public health. Although influenced by multiple factors, high-level resistance is often associated with mutations in target-encoding or related genes. The fitness cost of these mutations is, in turn, a key determinant of the spread of drug-resistant strains. Rifampicin (RIF) is a frontline anti-tuberculosis agent that targets the rpoB-encoded β subunit of the DNA-dependent RNA polymerase (RNAP). In Mycobacterium tuberculosis (Mtb), RIF resistance (RIF(R)) maps to mutations in rpoB that are likely to impact RNAP function and, therefore, the ability of the organism to cause disease. However, while numerous studies have assessed the impact of RIF(R) on key Mtb fitness indicators in vitro, the consequences of rpoB mutations for pathogenesis remain poorly understood. Here, we examine evidence from diverse bacterial systems indicating very specific effects of rpoB polymorphisms on cellular physiology, and consider these observations in the context of Mtb. In addition, we discuss the implications of these findings for the propagation of clinically relevant RIF(R) mutations. While our focus is on RIF, we also highlight results which suggest that drug-independent effects might apply to a broad range of resistance-associated mutations, especially in an obligate pathogen increasingly linked with multidrug resistance.
Collapse
Affiliation(s)
- Anastasia Koch
- Medical Research Council/National Health Laboratory Service/University of Cape Town Molecular Mycobacteriology Research Unit, Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, Institute of Infectious Disease and Molecular Medicine and Department of Clinical Laboratory Sciences, University of Cape Town , Cape Town 7701, South Africa
| | - Valerie Mizrahi
- Medical Research Council/National Health Laboratory Service/University of Cape Town Molecular Mycobacteriology Research Unit, Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, Institute of Infectious Disease and Molecular Medicine and Department of Clinical Laboratory Sciences, University of Cape Town , Cape Town 7701, South Africa
| | - Digby F Warner
- Medical Research Council/National Health Laboratory Service/University of Cape Town Molecular Mycobacteriology Research Unit, Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, Institute of Infectious Disease and Molecular Medicine and Department of Clinical Laboratory Sciences, University of Cape Town , Cape Town 7701, South Africa
| |
Collapse
|
292
|
Song T, Park Y, Shamputa IC, Seo S, Lee SY, Jeon HS, Choi H, Lee M, Glynne RJ, Barnes SW, Walker JR, Batalov S, Yusim K, Feng S, Tung CS, Theiler J, Via LE, Boshoff HIM, Murakami KS, Korber B, Barry CE, Cho SN. Fitness costs of rifampicin resistance in Mycobacterium tuberculosis are amplified under conditions of nutrient starvation and compensated by mutation in the β' subunit of RNA polymerase. Mol Microbiol 2014; 91:1106-19. [PMID: 24417450 DOI: 10.1111/mmi.12520] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2014] [Indexed: 12/31/2022]
Abstract
Rifampicin resistance, a defining attribute of multidrug-resistant tuberculosis, is conferred by mutations in the β subunit of RNA polymerase. Sequencing of rifampicin-resistant (RIF-R) clinical isolates of Mycobacterium tuberculosis revealed, in addition to RIF-R mutations, enrichment of potential compensatory mutations around the double-psi β-barrel domain of the β' subunit comprising the catalytic site and the exit tunnel for newly synthesized RNA. Sequential introduction of the resistance allele followed by the compensatory allele in isogenic Mycobacterium smegmatis showed that these mutations respectively caused and compensated a starvation enhanced growth defect by altering RNA polymerase activity. While specific combinations of resistance and compensatory alleles converged in divergent lineages, other combinations recurred among related isolates suggesting transmission of compensated RIF-R strains. These findings suggest nutrient poor growth conditions impose larger selective pressure on RIF-R organisms that results in the selection of compensatory mutations in a domain involved in catalysis and starvation control of RNA polymerase transcription.
Collapse
Affiliation(s)
- Taeksun Song
- International Tuberculosis Research Center, Changwon, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
293
|
Jansen G, Barbosa C, Schulenburg H. Experimental evolution as an efficient tool to dissect adaptive paths to antibiotic resistance. Drug Resist Updat 2014; 16:96-107. [PMID: 24594007 DOI: 10.1016/j.drup.2014.02.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Antibiotic treatments increasingly fail due to rapid dissemination of drug resistance. Comparative genomics of clinical isolates highlights the role of de novo adaptive mutations and horizontal gene transfer (HGT) in the acquisition of resistance. Yet it cannot fully describe the selective pressures and evolutionary trajectories that yielded today's problematic strains. Experimental evolution offers a compelling addition to such studies because the combination of replicated experiments under tightly controlled conditions with genomics of intermediate time points allows real-time reconstruction of evolutionary trajectories. Recent studies thus established causal links between antibiotic deployment therapies and the course and timing of mutations, the cost of resistance and the likelihood of compensating mutations. They particularly underscored the importance of long-term effects. Similar investigations incorporating horizontal gene transfer (HGT) are wanting, likely because of difficulties associated with its integration into experiments. In this review, we describe current advances in experimental evolution of antibiotic resistance and reflect on ways to incorporate horizontal gene transfer into the approach. We contend it provides a powerful tool for systematic and highly controlled dissection of evolutionary paths to antibiotic resistance that needs to be taken into account for the development of sustainable anti-bacterial treatment strategies.
Collapse
Affiliation(s)
- Gunther Jansen
- Department of Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrechts University of Kiel, Germany.
| | - Camilo Barbosa
- Department of Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrechts University of Kiel, Germany
| | - Hinrich Schulenburg
- Department of Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrechts University of Kiel, Germany
| |
Collapse
|
294
|
Dowdy DW, Dye C, Cohen T. Data needs for evidence-based decisions: a tuberculosis modeler's 'wish list'. Int J Tuberc Lung Dis 2014; 17:866-77. [PMID: 23743307 DOI: 10.5588/ijtld.12.0573] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Infectious disease models are important tools for understanding epidemiology and supporting policy decisions for disease control. In the case of tuberculosis (TB), such models have informed our understanding and control strategies for over 40 years, but the primary assumptions of these models--and their most urgent data needs--remain obscure to many TB researchers and control officers. The structure and parameter values of TB models are informed by observational studies and experiments, but the evidence base in support of these models remains incomplete. Speaking from the perspective of infectious disease modelers addressing the broader TB research and control communities, we describe the basic structure common to most TB models and present a 'wish list' that would improve the evidence foundation upon which these models are built. As a comprehensive TB research agenda is formulated, we argue that the data needs of infectious disease models--our primary long-term decision-making tools--should figure prominently.
Collapse
Affiliation(s)
- D W Dowdy
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | | | | |
Collapse
|
295
|
Banerjee R, Schecter GF, Flood J, Porco TC. Extensively drug-resistant tuberculosis: new strains, new challenges. Expert Rev Anti Infect Ther 2014; 6:713-24. [DOI: 10.1586/14787210.6.5.713] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
296
|
Monedero I, Caminero JA. MDR-/XDR-TB management: what it was, current standards and what is ahead. Expert Rev Respir Med 2014; 3:133-45. [PMID: 20477307 DOI: 10.1586/ers.09.6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ignacio Monedero
- MDR-TB Unit, Tuberculosis Division, International Union against Tuberculosis and Lung Disease (The Union), 75006 Paris, France.
| | | |
Collapse
|
297
|
Mycobacterial mistranslation is necessary and sufficient for rifampicin phenotypic resistance. Proc Natl Acad Sci U S A 2014; 111:1132-7. [PMID: 24395793 DOI: 10.1073/pnas.1317580111] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Errors are inherent in all biological systems. Errors in protein translation are particularly frequent giving rise to a collection of protein quasi-species, the diversity of which will vary according to the error rate. As mistranslation rates rise, these new proteins could produce new phenotypes, although none have been identified to date. Here, we find that mycobacteria substitute glutamate for glutamine and aspartate for asparagine at high rates under specific growth conditions. Increasing the substitution rate results in remarkable phenotypic resistance to rifampicin, whereas decreasing mistranslation produces increased susceptibility to the antibiotic. These phenotypic changes are reflected in differential susceptibility of RNA polymerase to the drug. We propose that altering translational fidelity represents a unique form of environmental adaptation.
Collapse
|
298
|
Denkinger CM, Pai M, Dowdy DW. Do we need to detect isoniazid resistance in addition to rifampicin resistance in diagnostic tests for tuberculosis? PLoS One 2014; 9:e84197. [PMID: 24404155 PMCID: PMC3880287 DOI: 10.1371/journal.pone.0084197] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 11/12/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Multidrug-resistant tuberculosis (MDR-TB) is resistant to both rifampicin (RIF) and isoniazid (INH). Whereas many TB diagnostics detect RIF-resistance, few detect INH-monoresistance, which is common and may increase risk of acquired MDR-TB. Whether inclusion of INH-resistance in a first-line rapid test for TB would have an important impact on MDR-TB rates remains uncertain. METHODS WE DEVELOPED A TRANSMISSION MODEL TO EVALUATE THREE TESTS IN A POPULATION SIMILAR TO THAT OF INDIA: a rapid molecular test for TB, the same test plus RIF-resistance detection ("TB+RIF"), and detection of RIF and INH-resistance ("TB+RIF/INH"). Our primary outcome was the prevalence of INH-resistant and MDR-TB at ten years. RESULTS Compared to the TB test alone and assuming treatment of all diagnosed MDR cases, the TB+RIF test reduced the prevalence of MDR-TB among all TB cases from 5.5% to 3.8% (30.6% reduction, 95% uncertainty range, UR: 17-54%). Despite using liberal assumptions about the impact of INH-monoresistance on treatment outcomes and MDR-TB acquisition, expansion from TB+RIF to TB+RIF/INH lowered this prevalence only from 3.8% to 3.6% further (4% reduction, 95% UR: 3-7%) and INH-monoresistant TB from 15.8% to 15.1% (4% reduction, 95% UR: (-8)-19%). CONCLUSION When added to a rapid test for TB plus RIF-resistance, detection of INH-resistance has minimal impact on transmission of TB, MDR-TB, and INH-monoresistant TB.
Collapse
Affiliation(s)
- Claudia M. Denkinger
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- McGill International TB Centre & Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, Quebec, Canada
| | - Madhukar Pai
- McGill International TB Centre & Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, Quebec, Canada
- Respiratory Epidemiology & Clinical Research Unit, Montreal Chest Institute, Montreal, Montreal, Quebec, Canada
| | - David W. Dowdy
- Department of Epidemiology, Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- Center for Tuberculosis Research, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
299
|
Zhang QG. Exposure to phages has little impact on the evolution of bacterial antibiotic resistance on drug concentration gradients. Evol Appl 2014; 7:394-402. [PMID: 24665341 PMCID: PMC3962299 DOI: 10.1111/eva.12136] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 10/31/2013] [Indexed: 01/05/2023] Open
Abstract
The use of phages for treating bacterial pathogens has recently been advocated as an alternative to antibiotic therapy. Here, we test a hypothesis that bacteria treated with phages may show more limited evolution of antibiotic resistance as the fitness costs of resistance to phages may add to those of antibiotic resistance, further reducing the growth performance of antibiotic-resistant bacteria. We did this by studying the evolution of phage-exposed and phage-free Pseudomonas fluorescens cultures on concentration gradients of single drugs, including cefotaxime, chloramphenicol, and kanamycin. During drug treatment, the level of bacterial antibiotic resistance increased through time and was not affected by the phage treatment. Exposure to phages did not cause slower growth in antibiotic-resistant bacteria, although it did so in antibiotic-susceptible bacteria. We observed significant reversion of antibiotic resistance after drug use being terminated, and the rate of reversion was not affected by the phage treatment. The results suggest that the fitness costs caused by resistance to phages are unlikely to be an important constraint on the evolution of bacterial antibiotic resistance in heterogeneous drug environments. Further studies are needed for the interaction of fitness costs of antibiotic resistance with other factors.
Collapse
Affiliation(s)
- Quan-Guo Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology and MOE Key Laboratory for Biodiversity Science and Ecological Engineering, Beijing Normal University Beijing, China
| |
Collapse
|
300
|
Baker S, Duy PT, Nga TVT, Dung TTN, Phat VV, Chau TT, Turner AK, Farrar J, Boni MF. Fitness benefits in fluoroquinolone-resistant Salmonella Typhi in the absence of antimicrobial pressure. eLife 2013; 2:e01229. [PMID: 24327559 PMCID: PMC3857714 DOI: 10.7554/elife.01229] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Fluoroquinolones (FQ) are the recommended antimicrobial treatment for typhoid, a severe systemic infection caused by the bacterium Salmonella enterica serovar Typhi. FQ-resistance mutations in S. Typhi have become common, hindering treatment and control efforts. Using in vitro competition experiments, we assayed the fitness of eleven isogenic S. Typhi strains with resistance mutations in the FQ target genes, gyrA and parC. In the absence of antimicrobial pressure, 6 out of 11 mutants carried a selective advantage over the antimicrobial-sensitive parent strain, indicating that FQ resistance in S. Typhi is not typically associated with fitness costs. Double-mutants exhibited higher than expected fitness as a result of synergistic epistasis, signifying that epistasis may be a critical factor in the evolution and molecular epidemiology of S. Typhi. Our findings have important implications for the management of drug-resistant S. Typhi, suggesting that FQ-resistant strains would be naturally maintained even if fluoroquinolone use were reduced. DOI:http://dx.doi.org/10.7554/eLife.01229.001 The fluoroquinolones are a group of antimicrobials that are used to treat a variety of life-threatening bacterial infections, including typhoid fever. Before the introduction of antimicrobials, the mortality rate from typhoid fever was 10–20%. Prompt treatment with fluoroquinolones has reduced this to less than 1%, and has also decreased the severity of symptoms suffered by people with the disease. Now, however, the usefulness of many antimicrobials, including the fluoroquinolones, is threatened by the evolution of antimicrobial resistance within the bacterial populations being treated. Drug resistance in bacteria typically arises through specific mutations, or following the acquisition of antimicrobial resistance genes from other bacteria. It is thought that the frequent use of antimicrobials in human and animal health puts selective pressure on bacterial populations, allowing bacterial strains with mutations or genes that confer antimicrobial resistance to survive, while bacterial strains that are sensitive to the antimicrobials die out. At first it was thought that specific mutations conferring antimicrobial resistance came at a fitness cost, which would mean that such mutations would be rare in the absence of antimicrobials. Now, based on research into typhoid fever, Baker et al. describe a system in which the majority of evolutionary routes to drug resistance are marked by significant fitness benefits, even in the absence of antimicrobial exposure. Typhoid is caused by a bacterial pathogen known as Salmonella Typhi, and mutations in two genes—gyrA and parC—result in resistance to fluoroquinolones. Baker et al. show that mutations in these genes confer a measurable fitness advantage over strains without these mutations, even in the absence of exposure to fluoroquinolones. Moreover, strains with two mutations in one of these genes exhibited a higher than predicted fitness, suggesting that there is a synergistic interaction between the two mutations. This work challenges the dogma that antimicrobial resistant organisms have a fitness disadvantage in the absence of antimicrobials, and suggests that increasing resistance to the fluoroquinolones is not solely driven by excessive use of this important group of drugs. DOI:http://dx.doi.org/10.7554/eLife.01229.002
Collapse
Affiliation(s)
- Stephen Baker
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam
| | | | | | | | | | | | | | | | | |
Collapse
|