251
|
Belzil VV, Gendron TF, Petrucelli L. RNA-mediated toxicity in neurodegenerative disease. Mol Cell Neurosci 2012; 56:406-19. [PMID: 23280309 DOI: 10.1016/j.mcn.2012.12.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 12/19/2012] [Accepted: 12/21/2012] [Indexed: 12/12/2022] Open
Abstract
Cellular viability depends upon the well-orchestrated functions carried out by numerous protein-coding and non-coding RNAs, as well as RNA-binding proteins. During the last decade, it has become increasingly evident that abnormalities in RNA processing represent a common feature among many neurodegenerative diseases. In "RNAopathies", which include diseases caused by non-coding repeat expansions, RNAs exert toxicity via diverse mechanisms: RNA foci formation, bidirectional transcription, and the production of toxic RNAs and proteins by repeat associated non-ATG translation. The mechanisms of toxicity in "RNA-binding proteinopathies", diseases in which RNA-binding proteins like TDP-43 and FUS play a prominent role, have yet to be fully elucidated. Nonetheless, both loss of function of the RNA binding protein, and a toxic gain of function resulting from its aggregation, are thought to be involved in disease pathogenesis. As part of the special issue on RNA and Splicing Regulation in Neurodegeneration, this review intends to explore the diverse RNA-related mechanisms contributing to neurodegeneration, with a special emphasis on findings emerging from animal models.
Collapse
Affiliation(s)
- Veronique V Belzil
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | | | | |
Collapse
|
252
|
Santoro M, Masciullo M, Pietrobono R, Conte G, Modoni A, Bianchi MLE, Rizzo V, Pomponi MG, Tasca G, Neri G, Silvestri G. Molecular, clinical, and muscle studies in myotonic dystrophy type 1 (DM1) associated with novel variant CCG expansions. J Neurol 2012; 260:1245-57. [PMID: 23263591 DOI: 10.1007/s00415-012-6779-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 11/22/2012] [Accepted: 11/28/2012] [Indexed: 12/15/2022]
Abstract
We assessed clinical, molecular and muscle histopathological features in five unrelated Italian DM1 patients carrying novel variant pathological expansions containing CCG interruptions within the 3'-end of the CTG array at the DMPK locus, detected by bidirectional triplet primed PCR (TP-PCR) and sequencing. Three patients had a negative DM1 testing by routine long-range PCR; the other two patients were identified among 100 unrelated DM1 cases and re-evaluated to estimate the prevalence of variant expansions. The overall prevalence was 4.8 % in our study cohort. There were no major clinical differences between variant and non-variant DM1 patients, except for cognitive involvement. Muscle RNA-FISH, immunofluorescence for MBNL1 and RT-PCR analysis documented the presence of ribonuclear inclusions, their co-localization with MBNL1, and an aberrant splicing pattern involved in DM1 pathogenesis, without any obvious differences between variant and non-variant DM1 patients. Therefore, this study shows that the CCG interruptions at the 3'-end of expanded DMPK alleles do not produce qualitative effects on the RNA-mediated toxic gain-of-function in DM1 muscle tissues. Finally, our results support the conclusion that different patterns of CCG interruptions within the CTG array could modulate the DM1 clinical phenotype, variably affecting the mutational dynamics of the variant repeat.
Collapse
|
253
|
Childs-Disney JL, Parkesh R, Nakamori M, Thornton CA, Disney MD. Rational design of bioactive, modularly assembled aminoglycosides targeting the RNA that causes myotonic dystrophy type 1. ACS Chem Biol 2012; 7:1984-93. [PMID: 23130637 DOI: 10.1021/cb3001606] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Myotonic dystrophy type 1 (DM1) is caused when an expanded r(CUG) repeat (r(CUG)(exp)) binds the RNA splicing regulator muscleblind-like 1 protein (MBNL1) as well as other proteins. Previously, we reported that modularly assembled small molecules displaying a 6'-N-5-hexynoate kanamycin A RNA-binding module (K) on a peptoid backbone potently inhibit the binding of MBNL1 to r(CUG)(exp). However, these parent compounds are not appreciably active in cell-based models of DM1. The lack of potency was traced to suboptimal cellular permeability and localization. To improve these properties, second-generation compounds that are conjugated to a d-Arg(9) molecular transporter were synthesized. These modified compounds enter cells in higher concentrations than the parent compounds and are efficacious in cell-based DM1 model systems at low micromolar concentrations. In particular, they improve three defects that are the hallmarks of DM1: a translational defect due to nuclear retention of transcripts containing r(CUG)(exp); pre-mRNA splicing defects due to inactivation of MBNL1; and the formation of nuclear foci. The best compound in cell-based studies was tested in a mouse model of DM1. Modest improvement of pre-mRNA splicing defects was observed. These studies suggest that a modular assembly approach can afford bioactive compounds that target RNA.
Collapse
Affiliation(s)
- Jessica L. Childs-Disney
- Department
of Chemistry, Scripps Florida, 130 Scripps
Way, Jupiter, Florida
33458, United States
| | - Raman Parkesh
- Department
of Chemistry, Scripps Florida, 130 Scripps
Way, Jupiter, Florida
33458, United States
| | - Masayuki Nakamori
- Department
of Neurology, University of Rochester,
Rochester, New York 14642,
United States
| | - Charles A. Thornton
- Department
of Neurology, University of Rochester,
Rochester, New York 14642,
United States
| | - Matthew D. Disney
- Department
of Chemistry, Scripps Florida, 130 Scripps
Way, Jupiter, Florida
33458, United States
| |
Collapse
|
254
|
Abstract
The bcl-x gene appears to play a critical role in regulating apoptosis in the developing and mature CNS and following CNS injury. Two isoforms of Bcl-x are produced as a result of alternative pre-mRNA splicing: Bcl-x(L) (the long form) is anti-apoptotic, while Bcl-x(S) (short form) is pro-apoptotic. Despite the antagonistic activities of these two isoforms, little is known about how regulation of alternative splicing of bcl-x may mediate neural cell apoptosis. Here, we report that apoptotic stimuli (staurosporine or C2-ceramide) reciprocally altered Bcl-x splicing in neural cells, decreasing Bcl-x(L) while increasing Bcl-x(S). Specific knockdown of Bcl-x(S) attenuated apoptosis. To further define regulatory elements that influenced Bcl-x splicing, a Bcl-x minigene was constructed. Deletional analysis revealed several consensus sequences within intron 2 that altered splicing. We found that the splicing factor, CUG-binding-protein-1 (CUGBP1), bound to a consensus sequence close to the Bcl-x(L) 5' splice site, altering the Bcl-x(L)/Bcl-x(S) ratio and influencing cell death. In vivo, neonatal hypoxia-ischemia reciprocally altered Bcl-x pre-mRNA splicing, similar to the in vitro studies. Manipulation of the splice isoforms using viral gene transfer of Bcl-x(S) shRNA into the hippocampus of rats before neonatal hypoxia-ischemia decreased vulnerability to injury. Moreover, alterations in nuclear CUGBP1 preceded Bcl-x splicing changes. These results suggest that alternative pre-mRNA splicing may be an important regulatory mechanism for cell death after acute neurological injury and may potentially provide novel targets for intervention.
Collapse
|
255
|
Jones K, Wei C, Iakova P, Bugiardini E, Schneider-Gold C, Meola G, Woodgett J, Killian J, Timchenko NA, Timchenko LT. GSK3β mediates muscle pathology in myotonic dystrophy. J Clin Invest 2012; 122:4461-72. [PMID: 23160194 DOI: 10.1172/jci64081] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 09/21/2012] [Indexed: 02/01/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a complex neuromuscular disease characterized by skeletal muscle wasting, weakness, and myotonia. DM1 is caused by the accumulation of CUG repeats, which alter the biological activities of RNA-binding proteins, including CUG-binding protein 1 (CUGBP1). CUGBP1 is an important skeletal muscle translational regulator that is activated by cyclin D3-dependent kinase 4 (CDK4). Here we show that mutant CUG repeats suppress Cdk4 signaling by increasing the stability and activity of glycogen synthase kinase 3β (GSK3β). Using a mouse model of DM1 (HSA(LR)), we found that CUG repeats in the 3' untranslated region (UTR) of human skeletal actin increase active GSK3β in skeletal muscle of mice, prior to the development of skeletal muscle weakness. Inhibition of GSK3β in both DM1 cell culture and mouse models corrected cyclin D3 levels and reduced muscle weakness and myotonia in DM1 mice. Our data predict that compounds normalizing GSK3β activity might be beneficial for improvement of muscle function in patients with DM1.
Collapse
Affiliation(s)
- Karlie Jones
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
256
|
Jung DW, Williams DR. Reawakening atlas: chemical approaches to repair or replace dysfunctional musculature. ACS Chem Biol 2012; 7:1773-90. [PMID: 23043623 DOI: 10.1021/cb3003368] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Muscle diseases are major health concerns. For example, ischemic heart disease is the third most common cause of death. Cell therapy is an attractive approach for treating muscle diseases, although this is hampered by the need to generate large numbers of functional muscle cells. Small molecules have become established as attractive tools for modulating cell behavior and, in this review, we discuss the recent, rapid research advances made in the development of small molecule methods to facilitate the production of functional cardiac, skeletal, and smooth muscle cells. We also describe how new developments in small molecule strategies for muscle disease aim to induce repair and remodelling of the damaged tissues in situ. Recent progress has been made in developing small molecule cocktails that induce skeletal muscle regeneration, and these are discussed in a broader context, because a similar phenomenon occurs in the early stages of salamander appendage regeneration. Although formidable technical hurdles still remain, these new advances in small molecule-based methodologies should provide hope that cell therapies for patients suffering from muscle disease can be developed in the near future.
Collapse
Affiliation(s)
- Da-Woon Jung
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, 1 Oryong-Dong,
Buk-Gu, Gwangju 500-712, Republic of Korea
| | - Darren R. Williams
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, 1 Oryong-Dong,
Buk-Gu, Gwangju 500-712, Republic of Korea
| |
Collapse
|
257
|
Tabebordbar M, Wang ET, Wagers AJ. Skeletal muscle degenerative diseases and strategies for therapeutic muscle repair. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2012; 8:441-75. [PMID: 23121053 DOI: 10.1146/annurev-pathol-011811-132450] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Skeletal muscle is a highly specialized, postmitotic tissue that must withstand chronic mechanical and physiological stress throughout life to maintain proper contractile function. Muscle damage or disease leads to progressive weakness and disability, and manifests in more than 100 different human disorders. Current therapies to treat muscle degenerative diseases are limited mostly to the amelioration of symptoms, although promising new therapeutic directions are emerging. In this review, we discuss the pathological basis for the most common muscle degenerative diseases and highlight new and encouraging experimental and clinical opportunities to prevent or reverse these afflictions.
Collapse
Affiliation(s)
- Mohammadsharif Tabebordbar
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| | | | | |
Collapse
|
258
|
Disney MD, Liu B, Yang WY, Sellier C, Tran T, Charlet-Berguerand N, Childs-Disney JL. A small molecule that targets r(CGG)(exp) and improves defects in fragile X-associated tremor ataxia syndrome. ACS Chem Biol 2012; 7:1711-8. [PMID: 22948243 DOI: 10.1021/cb300135h] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The development of small molecule chemical probes or therapeutics that target RNA remains a significant challenge despite the great interest in such compounds. The most significant barrier to compound development is defining which chemical and RNA motif spaces interact specifically. Herein, we describe a bioactive small molecule probe that targets expanded r(CGG) repeats, or r(CGG)(exp), that causes Fragile X-associated Tremor Ataxia Syndrome (FXTAS). The compound was identified by using information on the chemotypes and RNA motifs that interact. Specifically, 9-hydroxy-5,11-dimethyl-2-(2-(piperidin-1-yl)ethyl)-6H-pyrido[4,3-b]carbazol-2-ium binds the 5'CGG/3'GGC motifs in r(CGG)(exp) and disrupts a toxic r(CGG)(exp)-protein complex in vitro. Structure-activity relationship studies determined that the alkylated pyridyl and phenolic side chains are important chemotypes that drive molecular recognition of r(CGG)(exp). Importantly, the compound is efficacious in FXTAS model cellular systems as evidenced by its ability to improve FXTAS-associated pre-mRNA splicing defects and to reduce the size and number of r(CGG)(exp)-containing nuclear foci. This approach may establish a general strategy to identify lead ligands that target RNA while also providing a chemical probe to dissect the varied mechanisms by which r(CGG)(exp) promotes toxicity.
Collapse
Affiliation(s)
- Matthew D. Disney
- Department of Chemistry, The Kellogg School of Science and Engineering, The Scripps Research Institute, Scripps Florida, 130
Scripps Way 3A1, Jupiter, Florida 33458, United States
| | - Biao Liu
- Department of Chemistry, The Kellogg School of Science and Engineering, The Scripps Research Institute, Scripps Florida, 130
Scripps Way 3A1, Jupiter, Florida 33458, United States
| | - Wang-Yong Yang
- Department of Chemistry, The Kellogg School of Science and Engineering, The Scripps Research Institute, Scripps Florida, 130
Scripps Way 3A1, Jupiter, Florida 33458, United States
| | - Chantal Sellier
- Institut de Génétique
et de Biologie Moléculaire et Cellulaire (IGBMC), Institut
National de la Santé et de la Recherche Médicale (INSERM)
U964, Centre National de la Recherche Scientifique (CNRS) UMR7104, University of Strasbourg, Illkirch, France
| | - Tuan Tran
- Department of Chemistry, The Kellogg School of Science and Engineering, The Scripps Research Institute, Scripps Florida, 130
Scripps Way 3A1, Jupiter, Florida 33458, United States
- Department of Chemistry, University at Buffalo, Buffalo, New York 14620, United
States
| | - Nicolas Charlet-Berguerand
- Institut de Génétique
et de Biologie Moléculaire et Cellulaire (IGBMC), Institut
National de la Santé et de la Recherche Médicale (INSERM)
U964, Centre National de la Recherche Scientifique (CNRS) UMR7104, University of Strasbourg, Illkirch, France
| | - Jessica L. Childs-Disney
- Department of Chemistry, The Kellogg School of Science and Engineering, The Scripps Research Institute, Scripps Florida, 130
Scripps Way 3A1, Jupiter, Florida 33458, United States
| |
Collapse
|
259
|
Udd B, Krahe R. The myotonic dystrophies: molecular, clinical, and therapeutic challenges. Lancet Neurol 2012; 11:891-905. [DOI: 10.1016/s1474-4422(12)70204-1] [Citation(s) in RCA: 334] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
260
|
Combinatorial mutagenesis of MBNL1 zinc fingers elucidates distinct classes of regulatory events. Mol Cell Biol 2012; 32:4155-67. [PMID: 22890842 DOI: 10.1128/mcb.00274-12] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The RNA binding protein and alternative splicing factor Muscleblind-like 1 (MBNL1) has been a topic of intense study due to its role in myotonic dystrophy (DM) pathogenesis. MBNL1 contains four zinc finger (ZF) RNA binding domains arranged in two pairs. Through combinatorial mutagenesis of the ZF domains, we demonstrate that the pairs of ZFs have differential affinity for RNA and subsequently differential splicing activities. We evaluated splicing and binding activity for six MBNL1-mediated splicing events and found that the splicing activity profiles for the ZF mutants vary among transcripts. Clustering analysis of splicing profiles revealed that two distinct classes of MBNL1 pre-mRNA substrates exist. For some of the RNA transcripts tested, binding and splicing activity of the ZF mutants correlated. However, for some transcripts it appears that MBNL1 exerts robust splicing activity in the absence of RNA binding. We demonstrate that functionally distinct classes of MBNL1-mediated splicing events exist as defined by requirements for ZF-RNA interactions.
Collapse
|
261
|
Pre-mRNA splicing in disease and therapeutics. Trends Mol Med 2012; 18:472-82. [PMID: 22819011 DOI: 10.1016/j.molmed.2012.06.006] [Citation(s) in RCA: 338] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 06/12/2012] [Accepted: 06/18/2012] [Indexed: 01/18/2023]
Abstract
In metazoans, alternative splicing of genes is essential for regulating gene expression and contributing to functional complexity. Computational predictions, comparative genomics, and transcriptome profiling of normal and diseased tissues indicate that an unexpectedly high fraction of diseases are caused by mutations that alter splicing. Mutations in cis elements cause missplicing of genes that alter gene function and contribute to disease pathology. Mutations of core spliceosomal factors are associated with hematolymphoid neoplasias, retinitis pigmentosa, and microcephalic osteodysplastic primordial dwarfism type 1 (MOPD1). Mutations in the trans regulatory factors that control alternative splicing are associated with autism spectrum disorder, amyotrophic lateral sclerosis (ALS), and various cancers. In addition to discussing the disorders caused by these mutations, this review summarizes therapeutic approaches that have emerged to correct splicing of individual genes or target the splicing machinery.
Collapse
|
262
|
Tamjar J, Katorcha E, Popov A, Malinina L. Structural dynamics of double-helical RNAs composed of CUG/CUG- and CUG/CGG-repeats. J Biomol Struct Dyn 2012; 30:505-23. [PMID: 22731704 DOI: 10.1080/07391102.2012.687517] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Human genetic trinucleotide repeat expansion diseases (TREDs) are characterized by triplet repeat expansions, most frequently found as CNG-tracts in genome. At RNA level, such expansions suggestively result in formation of double-helical hairpins that become a potential source for small RNAs involved in RNA interference (RNAi). Here, we present three crystal structures of RNA fragments composed of triplet repeats CUG and CGG/CUG, as well as two crystal structures of same triplets in a protein-bound state. We show that both 20mer pG(CUG)(6)C and 19mer pGG(CGG)(3)(CUG)(2)CC form A-RNA duplexes, in which U·U or G·U mismatches are flanked/stabilized by two consecutive Watson-Crick G·C base pairs resulting in high-stacking GpC steps in every third position of the duplex. Despite interruption of this regularity in another 19mer, p(CGG)(3)C(CUG)(3), the oligonucleotide still forms regular double-helical structure, characterized, however, by 12 bp (rather than 11 bp) per turn. Analysis of newly determined molecular structures reveals the dynamic aspects of U·U and G·U mismatching within CNG-repetitive A-RNA and in a protein-bound state, as well as identifies an additional mode of U·U pairing essential for its dynamics and sheds the light on possible role of regularity of trinucleotide repeats for double-helical RNA structure. Findings are important for understanding the structural behavior of CNG-repetitive RNA double helices implicated in TREDs.
Collapse
Affiliation(s)
- Jevgenia Tamjar
- Structural Biology Unit, CIC bioGUNE, Technology Park of Bizkaia, Derio-Bilbao 48160, Spain
| | | | | | | |
Collapse
|
263
|
Ogawa Y, Hagiwara M. Challenges to congenital genetic disorders with “RNA-targeting” chemical compounds. Pharmacol Ther 2012; 134:298-305. [DOI: 10.1016/j.pharmthera.2012.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 01/24/2012] [Indexed: 11/16/2022]
|
264
|
Childs-Disney JL, Hoskins J, Rzuczek SG, Thornton CA, Disney MD. Rationally designed small molecules targeting the RNA that causes myotonic dystrophy type 1 are potently bioactive. ACS Chem Biol 2012; 7:856-62. [PMID: 22332923 DOI: 10.1021/cb200408a] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
RNA is an important drug target, but it is difficult to design or discover small molecules that modulate RNA function. In the present study, we report that rationally designed, modularly assembled small molecules that bind the RNA that causes myotonic dystrophy type 1 (DM1) are potently bioactive in cell culture models. DM1 is caused when an expansion of r(CUG) repeats, or r(CUG)(exp), is present in the 3' untranslated region (UTR) of the dystrophia myotonica protein kinase (DMPK) mRNA. r(CUG)(exp) folds into a hairpin with regularly repeating 5'CUG/3'GUC motifs and sequesters muscleblind-like 1 protein (MBNL1). A variety of defects are associated with DM1, including (i) formation of nuclear foci, (ii) decreased translation of DMPK mRNA due to its nuclear retention, and (iii) pre-mRNA splicing defects due to inactivation of MBNL1, which controls the alternative splicing of various pre-mRNAs. Previously, modularly assembled ligands targeting r(CUG)(exp) were designed using information in an RNA motif-ligand database. These studies showed that a bis-benzimidazole (H) binds the 5'CUG/3'GUC motif in r(CUG)(exp.) Therefore, we designed multivalent ligands to bind simultaneously multiple copies of this motif in r(CUG)(exp). Herein, we report that the designed compounds improve DM1-associated defects including improvement of translational and pre-mRNA splicing defects and the disruption of nuclear foci. These studies may establish a foundation to exploit other RNA targets in genomic sequence.
Collapse
Affiliation(s)
- Jessica L. Childs-Disney
- The Kellogg
School of Science
and Engineering, Department of Chemistry, The Scripps Research Institute, Scripps Florida, 130 Scripps Way #3A1, Jupiter, Florida
33458, United States
| | - Jason Hoskins
- Department
of Neurology, University of Rochester,
Rochester, New York 14642,
United States
| | - Suzanne G. Rzuczek
- The Kellogg
School of Science
and Engineering, Department of Chemistry, The Scripps Research Institute, Scripps Florida, 130 Scripps Way #3A1, Jupiter, Florida
33458, United States
| | - Charles A. Thornton
- Department
of Neurology, University of Rochester,
Rochester, New York 14642,
United States
| | - Matthew D. Disney
- The Kellogg
School of Science
and Engineering, Department of Chemistry, The Scripps Research Institute, Scripps Florida, 130 Scripps Way #3A1, Jupiter, Florida
33458, United States
| |
Collapse
|
265
|
Suzuki H, Takeuchi M, Sugiyama A, Alam AK, Vu LT, Sekiyama Y, Dam HC, Ohki SY, Tsukahara T. Alternative splicing produces structural and functional changes in CUGBP2. BMC BIOCHEMISTRY 2012; 13:6. [PMID: 22433174 PMCID: PMC3368720 DOI: 10.1186/1471-2091-13-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 03/20/2012] [Indexed: 02/04/2023]
Abstract
Background CELF/Bruno-like proteins play multiple roles, including the regulation of alternative splicing and translation. These RNA-binding proteins contain two RNA recognition motif (RRM) domains at the N-terminus and another RRM at the C-terminus. CUGBP2 is a member of this family of proteins that possesses several alternatively spliced exons. Results The present study investigated the expression of exon 14, which is an alternatively spliced exon and encodes the first half of the third RRM of CUGBP2. The ratio of exon 14 skipping product (R3δ) to its inclusion was reduced in neuronal cells induced from P19 cells and in the brain. Although full length CUGBP2 and the CUGBP2 R3δ isoforms showed a similar effect on the inclusion of the smooth muscle (SM) exon of the ACTN1 gene, these isoforms showed an opposite effect on the skipping of exon 11 in the insulin receptor gene. In addition, examination of structural changes in these isoforms by molecular dynamics simulation and NMR spectrometry suggested that the third RRM of R3δ isoform was flexible and did not form an RRM structure. Conclusion Our results suggest that CUGBP2 regulates the splicing of ACTN1 and insulin receptor by different mechanisms. Alternative splicing of CUGBP2 exon 14 contributes to the regulation of the splicing of the insulin receptor. The present findings specifically show how alternative splicing events that result in three-dimensional structural changes in CUGBP2 can lead to changes in its biological activity.
Collapse
Affiliation(s)
- Hitoshi Suzuki
- Center for Nano Materials and Technology, Japan Advanced Institute of Science and Technology, Ishikawa 923-1292, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
266
|
Parkesh R, Childs-Disney JL, Nakamori M, Kumar A, Wang E, Wang T, Hoskins J, Tran T, Housman D, Thornton CA, Disney MD. Design of a bioactive small molecule that targets the myotonic dystrophy type 1 RNA via an RNA motif-ligand database and chemical similarity searching. J Am Chem Soc 2012; 134:4731-42. [PMID: 22300544 PMCID: PMC3306011 DOI: 10.1021/ja210088v] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Myotonic dystrophy type 1 (DM1) is a triplet repeating disorder caused by expanded CTG repeats in the 3'-untranslated region of the dystrophia myotonica protein kinase (DMPK) gene. The transcribed repeats fold into an RNA hairpin with multiple copies of a 5'CUG/3'GUC motif that binds the RNA splicing regulator muscleblind-like 1 protein (MBNL1). Sequestration of MBNL1 by expanded r(CUG) repeats causes splicing defects in a subset of pre-mRNAs including the insulin receptor, the muscle-specific chloride ion channel, sarco(endo)plasmic reticulum Ca(2+) ATPase 1, and cardiac troponin T. Based on these observations, the development of small-molecule ligands that target specifically expanded DM1 repeats could be of use as therapeutics. In the present study, chemical similarity searching was employed to improve the efficacy of pentamidine and Hoechst 33258 ligands that have been shown previously to target the DM1 triplet repeat. A series of in vitro inhibitors of the RNA-protein complex were identified with low micromolar IC(50)'s, which are >20-fold more potent than the query compounds. Importantly, a bis-benzimidazole identified from the Hoechst query improves DM1-associated pre-mRNA splicing defects in cell and mouse models of DM1 (when dosed with 1 mM and 100 mg/kg, respectively). Since Hoechst 33258 was identified as a DM1 binder through analysis of an RNA motif-ligand database, these studies suggest that lead ligands targeting RNA with improved biological activity can be identified by using a synergistic approach that combines analysis of known RNA-ligand interactions with chemical similarity searching.
Collapse
Affiliation(s)
- Raman Parkesh
- Department of Chemistry, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458
| | | | - Masayuki Nakamori
- Department of Neurology, University of Rochester, Rochester, NY 14642
| | - Amit Kumar
- Department of Chemistry, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458
| | - Eric Wang
- Department of Biology, Massachusetts Institute of Technology, 31 Ames Street, 68-132, Cambridge, MA 02139
| | - Thomas Wang
- Department of Biology, Massachusetts Institute of Technology, 31 Ames Street, 68-132, Cambridge, MA 02139
| | - Jason Hoskins
- Department of Neurology, University of Rochester, Rochester, NY 14642
| | - Tuan Tran
- Department of Chemistry, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458
| | - David Housman
- Department of Biology, Massachusetts Institute of Technology, 31 Ames Street, 68-132, Cambridge, MA 02139
| | | | - Matthew D. Disney
- Department of Chemistry, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458
| |
Collapse
|
267
|
RNase H-mediated degradation of toxic RNA in myotonic dystrophy type 1. Proc Natl Acad Sci U S A 2012; 109:4221-6. [PMID: 22371589 DOI: 10.1073/pnas.1117019109] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1) is an RNA-dominant disease caused by abnormal transcripts containing expanded CUG repeats. The CUG transcripts aggregate in the nucleus to form RNA foci and lead to nuclear depletion of Muscleblind-like 1 (MBNL1) and stabilized expression of CUGBP Elav like family 1 (CELF1), both of which are splicing regulatory proteins. The imbalance of these proteins results in misregulation of alternative splicing and neuromuscular abnormalities. Here, we report the use of antisense oligonucleotides (ASOs) as a therapeutic approach to target the pathogenic RNA in DM1. We designed chimeric ASOs, termed gapmers, containing modified nucleic acid residues to induce RNase H-mediated degradation of CUG-repeat transcripts. The gapmers selectively knockdown expanded CUG transcripts and are sufficient to disrupt RNA foci both in cell culture and mouse models for DM1. Furthermore, combination of gapmers with morpholino ASOs that help release binding of MBNL1 to the toxic RNA can potentially enhance the knockdown effect. Additional optimization will be required for systemic delivery; however, our study provides an alternative strategy for the use of ASOs in DM1 therapy.
Collapse
|
268
|
Repression of nuclear CELF activity can rescue CELF-regulated alternative splicing defects in skeletal muscle models of myotonic dystrophy. PLOS CURRENTS 2012; 4:RRN1305. [PMID: 22453899 PMCID: PMC3286860 DOI: 10.1371/currents.rrn1305] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 02/24/2012] [Indexed: 02/02/2023]
Abstract
Myotonic dystrophy type 1 (DM1) is caused by the expansion of CUG repeats in the 3’ UTR of DMPK transcripts. DM1 pathogenesis has been attributed in part to alternative splicing dysregulation via elevation of CUG-BP, Elav-like family member 1 (CELF1). Several therapeutic approaches have been tested in cells and mice, but no previous studies had specifically targeted CELF1. Here, we show that repressing CELF activity rescues CELF-dependent alternative splicing in cell culture and transgenic mouse models of DM1. CELF-independent splicing, however, remained dysregulated. These data highlight both the potential and limitations of targeting CELF1 for the treatment of DM1.
Collapse
|
269
|
Tan H, Xu Z, Jin P. Role of noncoding RNAs in trinucleotide repeat neurodegenerative disorders. Exp Neurol 2012; 235:469-75. [PMID: 22309832 DOI: 10.1016/j.expneurol.2012.01.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 01/11/2012] [Accepted: 01/19/2012] [Indexed: 11/25/2022]
Abstract
Increasingly complex networks of noncoding RNAs are being found to play important and diverse roles in the regulation of gene expression throughout the genome. Many lines of evidence are linking mutations and dysregulations of noncoding RNAs to a host of human diseases, and noncoding RNAs have been implicated in the molecular pathogenesis of some neurodegenerative disorders. The expansion of trinucleotide repeats is now recognized as a major cause of neurological disorders. Here we will review our current knowledge of the proposed mechanisms behind the involvement of noncoding RNAs in the molecular pathogenesis of neurodegenerative disorders, particularly the sequestration of specific RNA-binding proteins, the regulation of antisense transcripts, and the role of the microRNA pathway in the context of known neurodegenerative disorders caused by the expansion of trinucleotide repeats.
Collapse
Affiliation(s)
- Huiping Tan
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
270
|
Abstract
RNAs are underexploited targets for small molecule drugs or chemical probes of function. This may be due, in part, to a fundamental lack of understanding of the types of small molecules that bind RNA specifically and the types of RNA motifs that specifically bind small molecules. In this review, we describe recent advances in the development and design of small molecules that bind to RNA and modulate function that aim to fill this void.
Collapse
Affiliation(s)
- Lirui Guan
- Department of Chemistry, The Kellogg School of Science
and Technology, The Scripps Research Institute, Scripps Florida, 130 Scripps Way #3A1, Jupiter, Florida 33458,
United States
| | - Matthew D. Disney
- Department of Chemistry, The Kellogg School of Science
and Technology, The Scripps Research Institute, Scripps Florida, 130 Scripps Way #3A1, Jupiter, Florida 33458,
United States
| |
Collapse
|
271
|
CUGBP1 and MBNL1 preferentially bind to 3' UTRs and facilitate mRNA decay. Sci Rep 2012; 2:209. [PMID: 22355723 PMCID: PMC3250574 DOI: 10.1038/srep00209] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 12/08/2011] [Indexed: 11/10/2022] Open
Abstract
CUGBP1 and MBNL1 are developmentally regulated RNA-binding proteins that are causally associated with myotonic dystrophy type 1. We globally determined the in vivo RNA-binding sites of CUGBP1 and MBNL1. Interestingly, CUGBP1 and MBNL1 are both preferentially bound to 3′ UTRs. Analysis of CUGBP1- and MBNL1-bound 3′ UTRs demonstrated that both factors mediate accelerated mRNA decay and temporal profiles of expression arrays supported this. Role of CUGBP1 on accelerated mRNA decay has been previously reported, but the similar function of MBNL1 has not been reported to date. It is well established that CUGBP1 and MBNL1 regulate alternative splicing. Screening by exon array and validation by RT-PCR revealed position dependence of CUGBP1- and MBNL1-binding sites on the resulting alternative splicing pattern. This study suggests that regulation of CUGBP1 and MBNL1 is essential for accurate control of destabilization of a broad spectrum of mRNAs as well as of alternative splicing events.
Collapse
|
272
|
Kalafateli M, Triantos C, Tsamandas A, Kounadis G, Labropoulou-Karatza C. Abnormal liver function tests in a patient with myotonic dystrophy type 1. Ann Hepatol 2012. [PMID: 22166572 DOI: 10.1016/s1665-2681(19)31497-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Myotonic dystrophy type 1, also known as Steinert's disease, is a multisystemic disorder with significant genetic and clinical heterogeneity. Apart from skeletal muscles' myotonia and wasting, a variety of system organs can be affected. We report on a 49 years old female patient with unremarkable medical and family history, who presented with elevated liver enzymes without signs or symptoms of chronic liver disease neither neurological features. Initial assessment, including liver biopsy, did not reveal the cause of these abnormalities. Eight months later, she complained for disequilibrium and eventually electromyography confirmed the diagnosis of Steinert's disease. Steinert's disease should be considered in the differential diagnosis of patients with elevated liver enzymes, as long as abnormal liver tests may be the initial presentation. The pathophysiological mechanism of this abnormality remains unclear.
Collapse
Affiliation(s)
- Maria Kalafateli
- Department of Gastroenterology, University Hospital of Patras, Greece.
| | | | | | | | | |
Collapse
|
273
|
Laurent FX, Sureau A, Klein AF, Trouslard F, Gasnier E, Furling D, Marie J. New function for the RNA helicase p68/DDX5 as a modifier of MBNL1 activity on expanded CUG repeats. Nucleic Acids Res 2011; 40:3159-71. [PMID: 22156369 PMCID: PMC3326330 DOI: 10.1093/nar/gkr1228] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Myotonic Dystrophy type I (DM1) is caused by an abnormal expansion of CTG triplets in the 3′ UTR of the dystrophia myotonica protein kinase (DMPK) gene, leading to the aggregation of the mutant transcript in nuclear RNA foci. The expanded mutant transcript promotes the sequestration of the MBNL1 splicing factor, resulting in the misregulation of a subset of alternative splicing events. In this study, we identify the DEAD-box RNA helicase p68 (DDX5) in complexes assembled onto in vitro-transcribed CUG repeats. We showed that p68 colocalized with RNA foci in cells expressing the 3′UTR of the DMPK gene containing expanded CTG repeats. We found that p68 increased MBNL1 binding onto pathological repeats and the stem–loop structure regulatory element within the cardiac Troponin T (TNNT2) pre-mRNA, splicing of which is misregulated in DM1. Mutations in the helicase core of p68 prevented both the stimulatory effect of the protein on MBNL1 binding and the colocalization of p68 with CUG repeats, suggesting that remodeling of RNA secondary structure by p68 facilitates MBNL1 binding. We also found that the competence of p68 for regulating TNNT2 exon 5 inclusion depended on the integrity of MBNL1 binding sites. We propose that p68 acts as a modifier of MBNL1 activity on splicing targets and pathogenic RNA.
Collapse
Affiliation(s)
- François-Xavier Laurent
- Centre de Génétique Moléculaire, CNRS, UPR 3404, Avenue de Terrasse, 91198 Gif-sur-Yvette, Université Paris-Sud, Orsay, France
| | | | | | | | | | | | | |
Collapse
|
274
|
Tang ZZ, Yarotskyy V, Wei L, Sobczak K, Nakamori M, Eichinger K, Moxley RT, Dirksen RT, Thornton CA. Muscle weakness in myotonic dystrophy associated with misregulated splicing and altered gating of Ca(V)1.1 calcium channel. Hum Mol Genet 2011; 21:1312-24. [PMID: 22140091 DOI: 10.1093/hmg/ddr568] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Myotonic dystrophy type 1 and type 2 (DM1 and DM2) are genetic diseases in which mutant transcripts containing expanded CUG or CCUG repeats cause cellular dysfunction by altering the processing or metabolism of specific mRNAs and miRNAs. The toxic effects of mutant RNA are mediated partly through effects on proteins that regulate alternative splicing. Here we show that alternative splicing of exon 29 (E29) of Ca(V)1.1, a calcium channel that controls skeletal muscle excitation-contraction coupling, is markedly repressed in DM1 and DM2. The extent of E29 skipping correlated with severity of weakness in tibialis anterior muscle of DM1 patients. Two splicing factors previously implicated in DM1, MBNL1 and CUGBP1, participated in the regulation of E29 splicing. In muscle fibers of wild-type mice, the Ca(V)1.1 channel conductance and voltage sensitivity were increased by splice-shifting oligonucleotides that induce E29 skipping. In contrast to human DM1, expression of CUG-expanded RNA caused only a modest increase in E29 skipping in mice. However, forced skipping of E29 in these mice, to levels approaching those observed in human DM1, aggravated the muscle pathology as evidenced by increased central nucleation. Together, these results indicate that DM-associated splicing defects alter Ca(V)1.1 function, with potential for exacerbation of myopathy.
Collapse
Affiliation(s)
- Zhen Zhi Tang
- Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
275
|
Larsen J, Pettersson OJ, Jakobsen M, Thomsen R, Pedersen CB, Hertz JM, Gregersen N, Corydon TJ, Jensen TG. Myoblasts generated by lentiviral mediated MyoD transduction of myotonic dystrophy type 1 (DM1) fibroblasts can be used for assays of therapeutic molecules. BMC Res Notes 2011; 4:490. [PMID: 22078098 PMCID: PMC3226528 DOI: 10.1186/1756-0500-4-490] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 11/11/2011] [Indexed: 11/28/2022] Open
Abstract
Background Myotonic dystrophy type 1 (DM1) is the most common muscle dystrophy in adults. The disease is caused by a triplet expansion in the 3'end of the myotonic dystrophy protein kinase (DMPK) gene. In order to develop a human cell model for investigation of possible effects of antisense and RNAi effector molecules we have used lentiviral mediated myoD-forced myogenesis of DM1 patient fibroblasts. Findings Transduced fibroblasts show a multinuclear phenotype and express the differentiation marker myogenin. Furthermore, fluorescence in situ hybridization (FISH) analysis revealed a statistical significant increase in the amount of nuclear foci in DM1 patient fibroblasts after myogenesis. Finally, no nuclear foci were found after treatment with oligonucleotides targeting the repeat expansions. Conclusions The abundance of nuclear foci in DM1 patient fibroblasts increase following myogenesis, as visualized by FISH analysis. Foci were eradicated after treatment with antisense oligonucleotides. Thus, we propose that the current cell model is suitable for testing of novel treatment modalities.
Collapse
Affiliation(s)
- Jan Larsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|
276
|
Rhodes JD, Lott MC, Russell SL, Moulton V, Sanderson J, Wormstone IM, Broadway DC. Activation of the innate immune response and interferon signalling in myotonic dystrophy type 1 and type 2 cataracts. Hum Mol Genet 2011; 21:852-62. [DOI: 10.1093/hmg/ddr515] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
277
|
Paul S, Dansithong W, Jog SP, Holt I, Mittal S, Brook JD, Morris GE, Comai L, Reddy S. Expanded CUG repeats Dysregulate RNA splicing by altering the stoichiometry of the muscleblind 1 complex. J Biol Chem 2011; 286:38427-38438. [PMID: 21900255 PMCID: PMC3207417 DOI: 10.1074/jbc.m111.255224] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 08/29/2011] [Indexed: 01/27/2023] Open
Abstract
To understand the role of the splice regulator muscleblind 1 (MBNL1) in the development of RNA splice defects in myotonic dystrophy I (DM1), we purified RNA-independent MBNL1 complexes from normal human myoblasts and examined the behavior of these complexes in DM1 myoblasts. Antibodies recognizing MBNL1 variants (MBNL1(CUG)), which can sequester in the toxic CUG RNA foci that develop in DM1 nuclei, were used to purify MBNL1(CUG) complexes from normal myoblasts. In normal myoblasts, MBNL1(CUG) bind 10 proteins involved in remodeling ribonucleoprotein complexes including hnRNP H, H2, H3, F, A2/B1, K, L, DDX5, DDX17, and DHX9. Of these proteins, only MBNL1(CUG) colocalizes extensively with DM1 CUG foci (>80% of foci) with its partners being present in <10% of foci. Importantly, the stoichiometry of MBNL1(CUG) complexes is altered in DM1 myoblasts, demonstrating an increase in the steady state levels of nine of its partner proteins. These changes are recapitulated by the expression of expanded CUG repeat RNA in Cos7 cells. Altered stoichiometry of MBNL1(CUG) complexes results from aberrant protein synthesis or stability and is unlinked to PKCα function. Modeling these changes in normal myoblasts demonstrates that increased levels of hnRNP H, H2, H3, F, and DDX5 independently dysregulate splicing in overlapping RNA subsets. Thus expression of expanded CUG repeats alters the stoichiometry of MBNL1(CUG) complexes to allow both the reinforcement and expansion of RNA processing defects.
Collapse
Affiliation(s)
- Sharan Paul
- Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, California 90033
| | - Warunee Dansithong
- Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, California 90033
| | - Sonali P Jog
- Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, California 90033
| | - Ian Holt
- Wolfson Centre for Inherited Neuromuscular Disease, Robert Jones and Agnes Hunt Orthopedic Hospital, Oswestry SY10 7AG, United Kingdom; Institute for Science and Technology in Medicine, Keele University, Keele ST5 5BG, United Kingdom
| | - Saloni Mittal
- Institute of Genetics, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, United Kingdom
| | - J David Brook
- Institute of Genetics, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, United Kingdom
| | - Glenn E Morris
- Wolfson Centre for Inherited Neuromuscular Disease, Robert Jones and Agnes Hunt Orthopedic Hospital, Oswestry SY10 7AG, United Kingdom; Institute for Science and Technology in Medicine, Keele University, Keele ST5 5BG, United Kingdom
| | - Lucio Comai
- Department Molecular Microbiology and Immunology, Institute for Genetic Medicine, University of Southern California, Los Angeles, California 90033.
| | - Sita Reddy
- Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, California 90033.
| |
Collapse
|
278
|
Renoux AJ, Todd PK. Neurodegeneration the RNA way. Prog Neurobiol 2011; 97:173-89. [PMID: 22079416 DOI: 10.1016/j.pneurobio.2011.10.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 10/06/2011] [Accepted: 10/27/2011] [Indexed: 02/09/2023]
Abstract
The expression, processing, transport and activities of both coding and non-coding RNAs play critical roles in normal neuronal function and differentiation. Over the past decade, these same pathways have come under scrutiny as potential contributors to neurodegenerative disease. Here we focus broadly on the roles of RNA and RNA processing in neurodegeneration. We first discuss a set of "RNAopathies", where non-coding repeat expansions drive pathogenesis through a surprisingly diverse set of mechanisms. We next explore an emerging class of "RNA binding proteinopathies" where redistribution and aggregation of the RNA binding proteins TDP-43 or FUS contribute to a potentially broad range of neurodegenerative disorders. Lastly, we delve into the potential contributions of alterations in both short and long non-coding RNAs to neurodegenerative illness.
Collapse
Affiliation(s)
- Abigail J Renoux
- Department of Molecular and Integrative Physiology, University of Michigan, 4005 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
279
|
Kumar A, Park H, Fang P, Parkesh R, Guo M, Nettles KW, Disney MD. Myotonic dystrophy type 1 RNA crystal structures reveal heterogeneous 1 × 1 nucleotide UU internal loop conformations. Biochemistry 2011; 50:9928-35. [PMID: 21988728 DOI: 10.1021/bi2013068] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
RNA internal loops often display a variety of conformations in solution. Herein, we visualize conformational heterogeneity in the context of the 5'CUG/3'GUC repeat motif present in the RNA that causes myotonic dystrophy type 1 (DM1). Specifically, two crystal structures of a model DM1 triplet repeating construct, 5'r[UUGGGC(CUG)(3)GUCC](2), refined to 2.20 and 1.52 Å resolution are disclosed. Here, differences in the orientation of the 5' dangling UU end between the two structures induce changes in the backbone groove width, which reveals that noncanonical 1 × 1 nucleotide UU internal loops can display an ensemble of pairing conformations. In the 2.20 Å structure, CUGa, the 5' UU forms a one hydrogen-bonded pair with a 5' UU of a neighboring helix in the unit cell to form a pseudoinfinite helix. The central 1 × 1 nucleotide UU internal loop has no hydrogen bonds, while the terminal 1 × 1 nucleotide UU internal loops each form a one-hydrogen bond pair. In the 1.52 Å structure, CUGb, the 5' UU dangling end is tucked into the major groove of the duplex. While the canonically paired bases show no change in base pairing, in CUGb the terminal 1 × 1 nucleotide UU internal loops now form two hydrogen-bonded pairs. Thus, the shift in the major groove induced by the 5' UU dangling end alters noncanonical base patterns. Collectively, these structures indicate that 1 × 1 nucleotide UU internal loops in DM1 may sample multiple conformations in vivo. This observation has implications for the recognition of this RNA, and other repeating transcripts, by protein and small molecule ligands.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Chemistry, The Scripps Research Institute, Scripps Florida, Jupiter, Florida 33458, United States
| | | | | | | | | | | | | |
Collapse
|
280
|
Krzyzosiak WJ, Sobczak K, Wojciechowska M, Fiszer A, Mykowska A, Kozlowski P. Triplet repeat RNA structure and its role as pathogenic agent and therapeutic target. Nucleic Acids Res 2011; 40:11-26. [PMID: 21908410 PMCID: PMC3245940 DOI: 10.1093/nar/gkr729] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This review presents detailed information about the structure of triplet repeat RNA and addresses the simple sequence repeats of normal and expanded lengths in the context of the physiological and pathogenic roles played in human cells. First, we discuss the occurrence and frequency of various trinucleotide repeats in transcripts and classify them according to the propensity to form RNA structures of different architectures and stabilities. We show that repeats capable of forming hairpin structures are overrepresented in exons, which implies that they may have important functions. We further describe long triplet repeat RNA as a pathogenic agent by presenting human neurological diseases caused by triplet repeat expansions in which mutant RNA gains a toxic function. Prominent examples of these diseases include myotonic dystrophy type 1 and fragile X-associated tremor ataxia syndrome, which are triggered by mutant CUG and CGG repeats, respectively. In addition, we discuss RNA-mediated pathogenesis in polyglutamine disorders such as Huntington's disease and spinocerebellar ataxia type 3, in which expanded CAG repeats may act as an auxiliary toxic agent. Finally, triplet repeat RNA is presented as a therapeutic target. We describe various concepts and approaches aimed at the selective inhibition of mutant transcript activity in experimental therapies developed for repeat-associated diseases.
Collapse
Affiliation(s)
- Wlodzimierz J Krzyzosiak
- Laboratory of Cancer Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland.
| | | | | | | | | | | |
Collapse
|
281
|
Jones K, Jin B, Iakova P, Huichalaf C, Sarkar P, Schneider-Gold C, Schoser B, Meola G, Shyu AB, Timchenko N, Timchenko L. RNA Foci, CUGBP1, and ZNF9 are the primary targets of the mutant CUG and CCUG repeats expanded in myotonic dystrophies type 1 and type 2. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:2475-89. [PMID: 21889481 DOI: 10.1016/j.ajpath.2011.07.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 06/29/2011] [Accepted: 07/11/2011] [Indexed: 01/02/2023]
Abstract
Expansions of noncoding CUG and CCUG repeats in myotonic dystrophies type 1 (DM1) and DM2 cause complex molecular pathology, the features of which include accumulation of RNA aggregates and misregulation of the RNA-binding proteins muscleblind-like 1 (MBNL1) and CUG-binding protein 1 (CUGBP1). CCUG repeats also decrease amounts of the nucleic acid binding protein ZNF9. Using tetracycline (Tet)-regulated monoclonal cell models that express CUG and CCUG repeats, we found that low levels of long CUG and CCUG repeats result in nuclear and cytoplasmic RNA aggregation with a simultaneous increase of CUGBP1 and a reduction of ZNF9. Elevation of CUGBP1 and reduction of ZNF9 were also observed before strong aggregation of the mutant CUG/CCUG repeats. Degradation of CUG and CCUG repeats normalizes ZNF9 and CUGBP1 levels. Comparison of short and long CUG and CCUG RNAs showed that great expression of short repeats form foci and alter CUGBP1 and ZNF9; however, long CUG/CCUG repeats misregulate CUGBP1 and ZNF9 much faster than high levels of the short repeats. These data suggest that correction of DM1 and DM2 might be achieved by complete and efficient degradation of CUG and CCUG repeats or by a simultaneous disruption of CUG/CCUG foci and correction of CUGBP1 and ZNF9.
Collapse
Affiliation(s)
- Karlie Jones
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
282
|
Dasgupta T, Ladd AN. The importance of CELF control: molecular and biological roles of the CUG-BP, Elav-like family of RNA-binding proteins. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 3:104-21. [PMID: 22180311 DOI: 10.1002/wrna.107] [Citation(s) in RCA: 178] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
RNA processing is important for generating protein diversity and modulating levels of protein expression. The CUG-BP, Elav-like family (CELF) of RNA-binding proteins regulate several steps of RNA processing in the nucleus and cytoplasm, including pre-mRNA alternative splicing, C to U RNA editing, deadenylation, mRNA decay, and translation. In vivo, CELF proteins have been shown to play roles in gametogenesis and early embryonic development, heart and skeletal muscle function, and neurosynaptic transmission. Dysregulation of CELF-mediated programs has been implicated in the pathogenesis of human diseases affecting the heart, skeletal muscles, and nervous system.
Collapse
Affiliation(s)
- Twishasri Dasgupta
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | |
Collapse
|
283
|
Koebis M, Ohsawa N, Kino Y, Sasagawa N, Nishino I, Ishiura S. Alternative splicing of myomesin 1 gene is aberrantly regulated in myotonic dystrophy type 1. Genes Cells 2011; 16:961-72. [PMID: 21794030 DOI: 10.1111/j.1365-2443.2011.01542.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Myotonic dystrophy type 1 (DM1) is a multisystemic disease caused by a CTG repeat expansion in the 3'-UTR of dystrophia myotonica-protein kinase. Aberrant regulation of alternative splicing is a characteristic feature of DM. Dozens of genes have been found to be abnormally spliced; however, few reported splicing abnormalities explain the phenotypes of DM1 patients. Thus, we hypothesized that other, unknown abnormal splicing events exist. Here, by using exon array, we identified aberrant inclusion of myomesin 1 (MYOM1) exon 17a as a novel splicing abnormality in DM1 muscle. A cellular splicing assay with a MYOM1 minigene revealed that not only MBNL1-3 but also CELF1 and 2 decreased the inclusion of MYOM1 exon 17a in HEK293T cells. Expression of expanded CUG repeat impeded MBNL1 activity but did not affect CELF1 activity on the splicing of MYOM1 minigene. Our results suggest that the downregulation of MBNL proteins should lead to the abnormal splicing of MYOM1 exon 17a in DM1 muscle.
Collapse
Affiliation(s)
- Michinori Koebis
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Japan
| | | | | | | | | | | |
Collapse
|
284
|
Llamusí B, Artero R. Molecular Effects of the CTG Repeats in Mutant Dystrophia Myotonica Protein Kinase Gene. Curr Genomics 2011; 9:509-16. [PMID: 19516957 PMCID: PMC2694559 DOI: 10.2174/138920208786847944] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 06/18/2008] [Accepted: 06/24/2008] [Indexed: 11/22/2022] Open
Abstract
Myotonic Dystrophy type 1 (DM1) is a multi-system disorder characterized by muscle wasting, myotonia, cardiac conduction defects, cataracts, and neuropsychological dysfunction. DM1 is caused by expansion of a CTG repeat in the 3´untranslated region (UTR) of the Dystrophia Myotonica Protein Kinase (DMPK) gene. A body of work demonstrates that DMPK mRNAs containing abnormally expanded CUG repeats are toxic to several cell types. A core mechanism underlying symptoms of DM1 is that mutant DMPK RNA interferes with the developmentally regulated alternative splicing of defined pre-mRNAs. Expanded CUG repeats fold into ds(CUG) hairpins that sequester nuclear proteins including human Muscleblind-like (MBNL) and hnRNP H alternative splicing factors. DM1 cells activate CELF family member CUG-BP1 protein through hyperphosphorylation and stabilization in the cell nucleus. CUG-BP1 and MBNL1 proteins act antagonistically in exon selection in several pre-mRNA transcripts, thus MBNL1 sequestration and increase in nuclear activity of CUG-BP1 both act synergistically to missplice defined transcripts. Mutant DMPK-mediated effect on subcellular localization, and defective phosphorylation of cytoplasmic CUG-BP1, have additionally been linked to defective translation of p21 and MEF2A in DM1, possibly explaining delayed differentiation of DM1 muscle cells. Mutant DMPK transcripts bind and sequester transcription factors such as Specificity protein 1 leading to reduced transcription of selected genes. Recently, transcripts containing long hairpin structures of CUG repeats have been shown to be a Dicer ribonuclease target and Dicer-induced downregulation of the mutant DMPK transcripts triggers silencing effects on RNAs containing long complementary repeats. In summary, mutant DMPK transcripts alter gene transcription, alternative splicing, and translation of specific gene transcripts, and have the ability to trigger gene-specific silencing effects in DM1 cells. Therapies aimed at reversing these gene expression alterations should prove effective ways to treat DM1.
Collapse
Affiliation(s)
- Beatriz Llamusí
- Department of Genetics, University of Valencia, Doctor Moliner, 50, E46100 Burjasot, Valencia, Spain
| | | |
Collapse
|
285
|
Klein AF, Gasnier E, Furling D. Gain of RNA function in pathological cases: Focus on myotonic dystrophy. Biochimie 2011; 93:2006-12. [PMID: 21763392 DOI: 10.1016/j.biochi.2011.06.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 06/23/2011] [Indexed: 12/21/2022]
Abstract
Expansion of repeated sequences in non-coding regions of different genes causes a number of inherited diseases including myotonic dystrophies, Huntington disease-like 2, Fragile X tremor/ataxia syndrome and spinocerebellar ataxia 8, 10, 12, 31. Involvement of an RNA gain-of-function mechanism in pathological case has been described and studied in-depth in myotonic dystrophy type 1 (DM1). This inherited neuromuscular disorder is caused by a (CTG)n >50 expansion in the 3' non-coding region of the dystrophia myotonica-protein kinase (DMPK) gene. Expanded CUG transcripts (CUGexp-RNAs) are sequestered in the nucleus within small aggregates and interfere with the regulatory splicing activities of MBNL1 and CELF1 RNA-binding proteins, leading to the misregulation of the alternative splicing of several transcripts. Despite the relevance of aberrant splicing events in this complex pathology, the CUGexp-RNAs trans-dominant effects alter other splicing-independent processes that may also contribute to DM1 pathogenesis. This review will focus on toxic RNA gain-of-function as a pathologic mechanism for DM1 and other repeat expansion disorders.
Collapse
Affiliation(s)
- A F Klein
- UPMC Univ Paris 06, UM 76, F-75013 Paris, France
| | | | | |
Collapse
|
286
|
Wojciechowska M, Krzyzosiak WJ. Cellular toxicity of expanded RNA repeats: focus on RNA foci. Hum Mol Genet 2011; 20:3811-21. [PMID: 21729883 PMCID: PMC3168290 DOI: 10.1093/hmg/ddr299] [Citation(s) in RCA: 177] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Discrete and punctate nuclear RNA foci are characteristic molecular hallmarks of pathogenesis in myotonic dystrophy type 1 and type 2. Intranuclear RNA inclusions of distinct morphology have also been found in fragile X-associated tremor ataxia syndrome, Huntington's disease-like 2, spinocerebellar ataxias type 8, type 10 and type 31. These neurological diseases are associated with the presence of abnormally long simple repeat expansions in their respective genes whose expression leads to the formation of flawed transcripts with altered metabolisms. Expanded CUG, CCUG, CGG, CAG, AUUCU and UGGAA repeats are associated with the diseases and accumulate in nuclear foci, as demonstrated in variety of cells and tissues of human and model organisms. These repeat RNA foci differ in size, shape, cellular abundance and protein composition and their formation has a negative impact on cellular functions. This review summarizes the efforts of many laboratories over the past 15 years to characterize nuclear RNA foci that are recognized as important triggers in the mutant repeat RNA toxic gain-of-function mechanisms of pathogenesis in neurological disorders.
Collapse
Affiliation(s)
- Marzena Wojciechowska
- Laboratory of Cancer Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | | |
Collapse
|
287
|
Gomes-Pereira M, Cooper TA, Gourdon G. Myotonic dystrophy mouse models: towards rational therapy development. Trends Mol Med 2011; 17:506-17. [PMID: 21724467 DOI: 10.1016/j.molmed.2011.05.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 05/04/2011] [Accepted: 05/17/2011] [Indexed: 01/26/2023]
Abstract
DNA repeat expansions can result in the production of toxic RNA. RNA toxicity has been best characterised in the context of myotonic dystrophy. Nearly 20 mouse models have contributed significant and complementary insights into specific aspects of this novel disease mechanism. These models provide a unique resource to test pharmacological, anti-sense, and gene-therapy therapeutic strategies that target specific events of the pathobiological cascade. Further proof-of-principle concept studies and preclinical experiments require critical and thorough analysis of the multiple myotonic dystrophy transgenic lines available. This review provides in-depth assessment of the molecular and phenotypic features of these models and their contribution towards the dissection of disease mechanisms, and compares them with the human condition. More importantly, it provides critical assessment of their suitability and limitations for preclinical testing of emerging therapeutic strategies.
Collapse
Affiliation(s)
- Mário Gomes-Pereira
- Inserm U781, Université Paris Descartes, Faculté de Medicine Necker Enfants Malades, Paris, France.
| | | | | |
Collapse
|
288
|
Wojciechowska M, Krzyzosiak WJ. CAG repeat RNA as an auxiliary toxic agent in polyglutamine disorders. RNA Biol 2011; 8:565-71. [PMID: 21593608 DOI: 10.4161/rna.8.4.15397] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Over 20 genetic loci with abnormal expansions of short tandem repeats have been associated with human hereditary neurological diseases. Of these, specific trinucleotide repeats located in non-coding and coding regions of individual genes implicated in these disorders are strongly overrepresented. Expansions of CTG, CGG and CAG repeats are linked to, respectively, myotonic dystrophy type 1 (DM1), fragile X-associated tremor/ataxia syndrome (FXTAS), as well as Huntington's disease (HD) and a number of spinocerebellar ataxias (SCAs). Expanded CAG repeats in translated exons trigger the most disorders for which a protein gain-of-function mechanism has been proposed to explain neurodegeneration by polyglutamine-rich (poly-Q) proteins. However, the results of last years showed that RNA composed of mutated CAG repeats can also be toxic and contribute to pathogenesis of polyglutamine disorders through an RNA-mediated gain-of-function mechanism. This mechanism has been best characterized in the non-coding repeat disorder DM1 and is also implicated in several other diseases, such as FXTAS, spinocerebellar ataxia type 8 (SCA8), Huntington's disease-like 2 (HDL2), as well as in myotonic dystrophy type 2 (DM2), spinocerebellar ataxia type 10 (SCA10) and type 31 (SCA31). In this review, we summarize recent findings that emphasize the participation of coding mutant CAG repeat RNA in the pathogenesis of polyglutamine disorders, and we discuss the basis of an RNA gain-of-function model in non-coding diseases such as DM1, FXTAS and SCA8.
Collapse
Affiliation(s)
- Marzena Wojciechowska
- Laboratory of Cancer Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | | |
Collapse
|
289
|
Halees AS, Hitti E, Al-Saif M, Mahmoud L, Vlasova-St Louis IA, Beisang DJ, Bohjanen PR, Khabar K. Global assessment of GU-rich regulatory content and function in the human transcriptome. RNA Biol 2011; 8:681-91. [PMID: 21691152 DOI: 10.4161/rna.8.4.16283] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Unlike AU-rich elements (AREs) that are largely present in the 3'UTRs of many unstable mammalian mRNAs, the function and abundance of GU-rich elements (GREs) are poorly understood. We performed a genome-wide analysis and found that at least 5% of human genes contain GREs in their 3'UTRs with functional over-representation in genes involved in transcription, nucleic acid metabolism, developmental processes, and neurogenesis. GREs have similar sequence clustering patterns with AREs such as overlapping GUUUG pentamers and enrichment in 3'UTRs. Functional analysis using T-cell mRNA expression microarray data confirms correlation with mRNA destabilization. Reporter assays show that compared to AREs the ability of GREs to destabilize mRNA is modest and does not increase with the increasing number of overlapping pentamers. Naturally occurring GREs within U-rich contexts were more potent in destabilizing GFP reporter mRNAs than synthetic GREs with perfectly overlapping pentamers. Overall, we find that GREs bear a resemblance to AREs in sequence patterns but they regulate a different repertoire of genes and have different dynamics of mRNA decay. A dedicated resource on all GRE-containing genes of the human, mouse and rat genomes can be found at brp.kfshrc.edu.sa/GredOrg.
Collapse
Affiliation(s)
- Anason S Halees
- The BioMolecular Research Program at King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | | | | | | | | | | | | | | |
Collapse
|
290
|
Rau F, Freyermuth F, Fugier C, Villemin JP, Fischer MC, Jost B, Dembele D, Gourdon G, Nicole A, Duboc D, Wahbi K, Day JW, Fujimura H, Takahashi MP, Auboeuf D, Dreumont N, Furling D, Charlet-Berguerand N. Misregulation of miR-1 processing is associated with heart defects in myotonic dystrophy. Nat Struct Mol Biol 2011; 18:840-5. [PMID: 21685920 DOI: 10.1038/nsmb.2067] [Citation(s) in RCA: 210] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 04/07/2011] [Indexed: 12/23/2022]
Abstract
Myotonic dystrophy is an RNA gain-of-function disease caused by expanded CUG or CCUG repeats, which sequester the RNA binding protein MBNL1. Here we describe a newly discovered function for MBNL1 as a regulator of pre-miR-1 biogenesis and find that miR-1 processing is altered in heart samples from people with myotonic dystrophy. MBNL1 binds to a UGC motif located within the loop of pre-miR-1 and competes for the binding of LIN28, which promotes pre-miR-1 uridylation by ZCCHC11 (TUT4) and blocks Dicer processing. As a consequence of miR-1 loss, expression of GJA1 (connexin 43) and CACNA1C (Cav1.2), which are targets of miR-1, is increased in both DM1- and DM2-affected hearts. CACNA1C and GJA1 encode the main calcium- and gap-junction channels in heart, respectively, and we propose that their misregulation may contribute to the cardiac dysfunctions observed in affected persons.
Collapse
Affiliation(s)
- Frédérique Rau
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
291
|
Misregulated alternative splicing of BIN1 is associated with T tubule alterations and muscle weakness in myotonic dystrophy. Nat Med 2011; 17:720-5. [DOI: 10.1038/nm.2374] [Citation(s) in RCA: 247] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Accepted: 04/06/2011] [Indexed: 01/11/2023]
|
292
|
p21(WAF1/CIP1) upregulation through the stress granule-associated protein CUGBP1 confers resistance to bortezomib-mediated apoptosis. PLoS One 2011; 6:e20254. [PMID: 21637851 PMCID: PMC3102688 DOI: 10.1371/journal.pone.0020254] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 04/28/2011] [Indexed: 12/24/2022] Open
Abstract
Background p21WAF1/CIP1 is a well known cyclin-dependent kinase inhibitor induced by various stress stimuli. Depending on the stress applied, p21 upregulation can either promote apoptosis or prevent against apoptotic injury. The stress-mediated induction of p21 involves not only its transcriptional activation but also its posttranscriptional regulation, mainly through stabilization of p21 mRNA levels. We have previously reported that the proteasome inhibitor MG132 induces the stabilization of p21 mRNA, which correlates with the formation of cytoplasmic RNA stress granules. The mechanism underlying p21 mRNA stabilization, however, remains unknown. Methodology/Principal Findings We identified the stress granules component CUGBP1 as a factor required for p21 mRNA stabilization following treatment with bortezomib ( = PS-341/Velcade). This peptide boronate inhibitor of the 26S proteasome is very efficient for the treatment of myelomas and other hematological tumors. However, solid tumors are sometimes refractory to bortezomib treatment. We found that depleting CUGBP1 in cancer cells prevents bortezomib-mediated p21 upregulation. FISH experiments combined to mRNA stability assays show that this effect is largely due to a mistargeting of p21 mRNA in stress granules leading to its degradation. Altering the expression of p21 itself, either by depleting CUGBP1 or p21, promotes bortezomib-mediated apoptosis. Conclusions/Significance We propose that one key mechanism by which apoptosis is inhibited upon treatment with chemotherapeutic drugs might involve upregulation of the p21 protein through CUGBP1.
Collapse
|
293
|
Machuca-Tzili LE, Buxton S, Thorpe A, Timson CM, Wigmore P, Luther PK, Brook JD. Zebrafish deficient for Muscleblind-like 2 exhibit features of myotonic dystrophy. Dis Model Mech 2011; 4:381-92. [PMID: 21303839 PMCID: PMC3097459 DOI: 10.1242/dmm.004150] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Accepted: 12/16/2010] [Indexed: 02/03/2023] Open
Abstract
Myotonic dystrophy (DM; also known as dystrophia myotonica) is an autosomal dominant disorder that affects the heart, eyes, brain and endocrine system, but the predominant symptoms are neuromuscular, with progressive muscle weakness and wasting. DM presents in two forms, DM1 and DM2, both of which are caused by nucleotide repeat expansions: CTG in the DMPK gene for DM1 and CCTG in ZNF9 (CNBP) for DM2. Previous studies have shown that the mutant mRNAs containing the transcribed CUG or CCUG repeats are retained within the nuclei of cells from individuals with DM, where they bind and sequester the muscleblind-like proteins MBNL1, MBNL2 and MBNL3. It has been proposed that the sequestration of these proteins plays a key role in determining the classic features of DM. However, the functions of each of the three MBNL genes are not completely understood. We have generated a zebrafish knockdown model in which we demonstrate that a lack of mbnl2 function causes morphological abnormalities at the eye, heart, brain and muscle levels, supporting an essential role for mbnl2 during embryonic development. Major features of DM are replicated in our model, including muscle defects and splicing abnormalities. We found that the absence of mbnl2 causes disruption to the organization of myofibrils in skeletal and heart muscle of zebrafish embryos, and a reduction in the amount of both slow and fast muscle fibres. Notably, our findings included altered splicing patterns of two transcripts whose expression is also altered in DM patients: clcn1 and tnnt2. The studies described herein provide broader insight into the functions of MBNL2. They also lend support to the hypothesis that the sequestration of this protein is an important determinant in DM pathophysiology, and imply a direct role of MBNL2 in splicing regulation of specific transcripts, which, when altered, contributes to the DM phenotype.
Collapse
MESH Headings
- Alternative Splicing/drug effects
- Alternative Splicing/genetics
- Animals
- Base Sequence
- Bone and Bones/abnormalities
- Bone and Bones/drug effects
- Bone and Bones/metabolism
- Bone and Bones/pathology
- Embryo, Nonmammalian/abnormalities
- Embryo, Nonmammalian/metabolism
- Embryo, Nonmammalian/pathology
- Embryo, Nonmammalian/ultrastructure
- Gene Expression Regulation, Developmental/drug effects
- Gene Knockdown Techniques
- Humans
- Molecular Sequence Data
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscle, Skeletal/ultrastructure
- Myocardium/metabolism
- Myocardium/pathology
- Myotonic Dystrophy/metabolism
- Myotonic Dystrophy/pathology
- Oligonucleotides, Antisense/pharmacology
- Phenotype
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Zebrafish/embryology
- Zebrafish/genetics
- Zebrafish/metabolism
- Zebrafish Proteins/deficiency
- Zebrafish Proteins/genetics
- Zebrafish Proteins/metabolism
Collapse
Affiliation(s)
- Laura E. Machuca-Tzili
- Institute of Genetics, University of Nottingham, Queen’s Medical Centre, Nottingham, NG7 2UH, UK
| | - Sarah Buxton
- Institute of Genetics, University of Nottingham, Queen’s Medical Centre, Nottingham, NG7 2UH, UK
| | - Aaran Thorpe
- School of Biomedical Sciences, University of Nottingham, Queen’s Medical Centre, Nottingham, NG7 2UH, UK
| | - Cathy M. Timson
- Section of Biological Nanosciences, National Heart and Lung Institute, Sir Alexander Fleming Building, Imperial College, London, SW7 2AZ, UK
| | - Peter Wigmore
- School of Biomedical Sciences, University of Nottingham, Queen’s Medical Centre, Nottingham, NG7 2UH, UK
| | - Pradeep K. Luther
- Section of Biological Nanosciences, National Heart and Lung Institute, Sir Alexander Fleming Building, Imperial College, London, SW7 2AZ, UK
| | - J. David Brook
- Institute of Genetics, University of Nottingham, Queen’s Medical Centre, Nottingham, NG7 2UH, UK
| |
Collapse
|
294
|
Ohsawa N, Koebis M, Suo S, Nishino I, Ishiura S. Alternative splicing of PDLIM3/ALP, for α-actinin-associated LIM protein 3, is aberrant in persons with myotonic dystrophy. Biochem Biophys Res Commun 2011; 409:64-9. [PMID: 21549096 DOI: 10.1016/j.bbrc.2011.04.106] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2011] [Accepted: 04/22/2011] [Indexed: 12/23/2022]
Abstract
Myotonic dystrophy type 1 (DM1) is an autosomal dominant disorder of muscular dystrophy characterized by muscle weakness and wasting. DM1 is caused by expansion of CTG repeats in the 3'-untranslated region (3'-UTR) of DM protein kinase (DMPK) gene. Since CUG-repeat RNA transcribed from the expansion of CTG repeats traps RNA-binding proteins that regulate alternative splicing, several abnormalities of alternative splicing are detected in DM1, and the abnormal splicing of important genes results in the appearance of symptoms. In this study, we identify two abnormal splicing events for actinin-associated LIM protein 3 (PDLIM3/ALP) and fibronectin 1 (FN1) in the skeletal muscles of DM1 patients. From the analysis of the abnormal PDLIM3 splicing, we propose that ZASP-like motif-deficient PDLIM3 causes the muscular symptoms in DM. PDLIM3 binds α-actinin 2 in the Z-discs of muscle, and the ZASP-like motif is needed for this interaction. Moreover, in adult humans, PDLIM3 expression is highest in skeletal muscles, and PDLIM3 splicing in skeletal muscles is regulated during human development.
Collapse
Affiliation(s)
- Natsumi Ohsawa
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Japan
| | | | | | | | | |
Collapse
|
295
|
Expression of a dominant negative CELF protein in vivo leads to altered muscle organization, fiber size, and subtype. PLoS One 2011; 6:e19274. [PMID: 21541285 PMCID: PMC3082560 DOI: 10.1371/journal.pone.0019274] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 03/31/2011] [Indexed: 12/11/2022] Open
Abstract
Background CUG-BP and ETR-3-like factor (CELF) proteins regulate tissue- and developmental stage-specific alternative splicing in striated muscle. We previously demonstrated that heart muscle-specific expression of a nuclear dominant negative CELF protein in transgenic mice (MHC-CELFΔ) effectively disrupts endogenous CELF activity in the heart in vivo, resulting in impaired cardiac function. In this study, transgenic mice that express the dominant negative protein under a skeletal muscle-specific promoter (Myo-CELFΔ) were generated to investigate the role of CELF-mediated alternative splicing programs in normal skeletal muscle. Methodology/Principal Findings Myo-CELFΔ mice exhibit modest changes in CELF-mediated alternative splicing in skeletal muscle, accompanied by a reduction of endomysial and perimysial spaces, an increase in fiber size variability, and an increase in slow twitch muscle fibers. Weight gain and mean body weight, total number of muscle fibers, and overall muscle strength were not affected. Conclusions/Significance Although these findings demonstrate that CELF activity contributes to the normal alternative splicing of a subset of muscle transcripts in vivo, the mildness of the effects in Myo-CELFΔ muscles compared to those in MHC-CELFΔ hearts suggests CELF activity may be less determinative for alternative splicing in skeletal muscle than in heart muscle. Nonetheless, even these small changes in CELF-mediated splicing regulation were sufficient to alter muscle organization and muscle fiber properties affected in myotonic dystrophy. This lends further evidence to the hypothesis that dysregulation of CELF-mediated alternative splicing programs may be responsible for the disruption of these properties during muscle pathogenesis.
Collapse
|
296
|
van Putten M, Aartsma-Rus A. Opportunities and challenges for the development of antisense treatment in neuromuscular disorders. Expert Opin Biol Ther 2011; 11:1025-37. [PMID: 21510827 DOI: 10.1517/14712598.2011.579098] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
INTRODUCTION Neuromuscular disorders are diseases of the musculature and/or the nervous system, generally leading to loss of muscle function. They are a frequent cause of disability and treatment options are often only symptomatic. Interestingly, for a number of neuromuscular disorders the application of antisense oligonucleotides has therapeutic potential. AREAS COVERED The authors describe how this approach is exploited for different neuromuscular diseases, focusing on literature published in the past 10 years. For each disease the opportunities of this approach, the state of the art, and current challenges are described. EXPERT OPINION A lot of progress has been made in the development of antisense-mediated approaches during recent years and they may become clinically applicable in the near future.
Collapse
Affiliation(s)
- Maaike van Putten
- Leiden University Medical Center, Department of Human Genetics, The Netherlands
| | | |
Collapse
|
297
|
Fernandez-Costa JM, Llamusi MB, Garcia-Lopez A, Artero R. Alternative splicing regulation by Muscleblind proteins: from development to disease. Biol Rev Camb Philos Soc 2011; 86:947-58. [PMID: 21489124 DOI: 10.1111/j.1469-185x.2011.00180.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Regulated use of exons in pre-mRNAs, a process known as alternative splicing, strongly contributes to proteome diversity. Alternative splicing is finely regulated by factors that bind specific sequences within the precursor mRNAs. Members of the Muscleblind (Mbl) family of splicing factors control critical exon use changes during the development of specific tissues, particularly heart and skeletal muscle. Muscleblind homologs are only found in metazoans from Nematoda to mammals. Splicing targets and recognition mechanisms are also conserved through evolution. In this recognition, Muscleblind CCCH-type zinc finger domains bind to intronic motifs in pre-mRNA targets in which the protein can either activate or repress splicing of nearby exons, depending on the localization of the binding motifs relative to the regulated alternative exon. In humans, the Muscleblind-like 1 (MBNL1) proteins play a critical role in hereditary diseases caused by microsatellite expansions, particularly myotonic dystrophy type 1 (DM1), in which depletion of MBNL1 activity through sequestration explains most misregulated alternative splicing events, at least in murine models. Because of the involvement of these proteins in human diseases, further understanding of the molecular mechanisms by which MBNL1 regulates splicing will help design therapies to revert pathological splicing alterations. Here we summarize the most relevant findings on this family of proteins in recent years, focusing on recently described functional motifs, transcriptional regulation of Muscleblind, regulatory activity on splicing, and involvement in human diseases.
Collapse
|
298
|
The Muscular Dystrophies: Distinct Pathogenic Mechanisms Invite Novel Therapeutic Approaches. Curr Rheumatol Rep 2011; 13:199-207. [DOI: 10.1007/s11926-011-0178-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
299
|
Wang LC, Chen KY, Pan H, Wu CC, Chen PH, Liao YT, Li C, Huang ML, Hsiao KM. Muscleblind participates in RNA toxicity of expanded CAG and CUG repeats in Caenorhabditis elegans. Cell Mol Life Sci 2011; 68:1255-67. [PMID: 20848157 PMCID: PMC11114631 DOI: 10.1007/s00018-010-0522-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 08/06/2010] [Accepted: 08/30/2010] [Indexed: 01/22/2023]
Abstract
We have utilized Caenorhabditis elegans as a model to investigate the toxicity and underlying mechanism of untranslated CAG repeats in comparison to CUG repeats. Our results indicate that CAG repeats can be toxic at the RNA level in a length-dependent manner, similar to that of CUG repeats. Both CAG and CUG repeats of toxic length form nuclear foci and co-localize with C. elegans muscleblind (CeMBL), implying that CeMBL may play a role in repeat RNA toxicity. Consistently, the phenotypes of worms expressing toxic CAG and CUG repeats, including shortened life span and reduced motility rate, were partially reversed by CeMbl over-expression. These results provide the first experimental evidence to show that the RNA toxicity induced by expanded CAG and CUG repeats can be mediated, at least in part, through the functional alteration of muscleblind in worms.
Collapse
Affiliation(s)
- Li-Chun Wang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, 402 Taiwan
| | - Kuan-Yu Chen
- Institute of Biotechnology, National Cheng Kung University, Tainan, 701 Taiwan
| | - Huichin Pan
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, 402 Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, 402 Taiwan
| | - Chia-Chieh Wu
- Institute of Molecular Biology, National Chung Cheng University, Chia-Yi, 621 Taiwan
| | - Po-Hsuan Chen
- Institute of Molecular Biology, National Chung Cheng University, Chia-Yi, 621 Taiwan
| | - Yuan-Ting Liao
- Institute of Molecular Biology, National Chung Cheng University, Chia-Yi, 621 Taiwan
| | - Chin Li
- Institute of Molecular Biology, National Chung Cheng University, Chia-Yi, 621 Taiwan
- Department of Life Science, National Chung Cheng University, 168, University Road, Min-Hsiung, Chia-Yi, 62102 Taiwan, ROC
| | - Min-Lang Huang
- Institute of Molecular Biology, National Chung Cheng University, Chia-Yi, 621 Taiwan
- Department of Life Science, National Chung Cheng University, 168, University Road, Min-Hsiung, Chia-Yi, 62102 Taiwan, ROC
| | - Kuang-Ming Hsiao
- Institute of Molecular Biology, National Chung Cheng University, Chia-Yi, 621 Taiwan
- Department of Life Science, National Chung Cheng University, 168, University Road, Min-Hsiung, Chia-Yi, 62102 Taiwan, ROC
| |
Collapse
|
300
|
Dhaenens CM, Tran H, Frandemiche ML, Carpentier C, Schraen-Maschke S, Sistiaga A, Goicoechea M, Eddarkaoui S, Van Brussels E, Obriot H, Labudeck A, Gevaert MH, Fernandez-Gomez F, Charlet-Berguerand N, Deramecourt V, Maurage CA, Buée L, Lopez de Munain A, Sablonnière B, Caillet-Boudin ML, Sergeant N. Mis-splicing of Tau exon 10 in myotonic dystrophy type 1 is reproduced by overexpression of CELF2 but not by MBNL1 silencing. Biochim Biophys Acta Mol Basis Dis 2011; 1812:732-42. [PMID: 21439371 DOI: 10.1016/j.bbadis.2011.03.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 03/16/2011] [Accepted: 03/17/2011] [Indexed: 12/13/2022]
Abstract
Tau is the proteinaceous component of intraneuronal aggregates common to neurodegenerative diseases called Tauopathies, including myotonic dystrophy type 1. In myotonic dystrophy type 1, the presence of microtubule-associated protein Tau aggregates is associated with a mis-splicing of Tau. A toxic gain-of-function at the ribonucleic acid level is a major etiological factor responsible for the mis-splicing of several transcripts in myotonic dystrophy type 1. These are probably the consequence of a loss of muscleblind-like 1 (MBNL1) function or gain of CUGBP1 and ETR3-like factor 1 (CELF1) splicing function. Whether these two dysfunctions occur together or separately and whether all mis-splicing events in myotonic dystrophy type 1 brain result from one or both of these dysfunctions remains unknown. Here, we analyzed the splicing of Tau exons 2 and 10 in the brain of myotonic dystrophy type 1 patients. Two myotonic dystrophy type 1 patients showed a mis-splicing of exon 10 whereas exon 2-inclusion was reduced in all myotonic dystrophy type 1 patients. In order to determine the potential factors responsible for exon 10 mis-splicing, we studied the effect of the splicing factors muscleblind-like 1 (MBNL1), CUGBP1 and ETR3-like factor 1 (CELF1), CUGBP1 and ETR3-like factor 2 (CELF2), and CUGBP1 and ETR3-like factor 4 (CELF4) or a dominant-negative CUGBP1 and ETR-3 like factor (CELF) factor on Tau exon 10 splicing by ectopic expression or siRNA. Interestingly, the inclusion of Tau exon 10 is reduced by CUGBP1 and ETR3-like factor 2 (CELF2) whereas it is insensitive to the loss-of-function of muscleblind-like 1 (MBNL1), CUGBP1 and ETR3-like factor 1 (CELF1) gain-of-function, or a dominant-negative of CUGBP1 and ETR-3 like factor (CELF) factor. Moreover, we observed an increased expression of CUGBP1 and ETR3-like factor 2 (CELF2) only in the brain of myotonic dystrophy type 1 patients with a mis-splicing of exon 10. Taken together, our results indicate the occurrence of a mis-splicing event in myotonic dystrophy type 1 that is induced neither by a loss of muscleblind-like 1 (MBNL1) function nor by a gain of CUGBP1 and ETR3-like factor 1 (CELF1) function but is rather associated to CUGBP1 and ETR3-like factor 2 (CELF2) gain-of-function.
Collapse
Affiliation(s)
- C M Dhaenens
- Inserm, U837-1, Alzheimer & Tauopathies, place de Verdun, F-59045 Lille, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|