251
|
The Cellular Immunotherapy Revolution: Arming the Immune System for Precision Therapy. Trends Immunol 2019; 40:292-309. [DOI: 10.1016/j.it.2019.02.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/07/2019] [Accepted: 02/11/2019] [Indexed: 12/30/2022]
|
252
|
Attias M, Al-Aubodah T, Piccirillo CA. Mechanisms of human FoxP3 + T reg cell development and function in health and disease. Clin Exp Immunol 2019; 197:36-51. [PMID: 30864147 PMCID: PMC6591147 DOI: 10.1111/cei.13290] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2019] [Indexed: 12/18/2022] Open
Abstract
Regulatory T (Treg) cells represent an essential component of peripheral tolerance. Given their potently immunosuppressive functions that is orchestrated by the lineage‐defining transcription factor forkhead box protein 3 (FoxP3), clinical modulation of these cells in autoimmunity and cancer is a promising therapeutic target. However, recent evidence in mice and humans indicates that Treg cells represent a phenotypically and functionally heterogeneic population. Indeed, both suppressive and non‐suppressive Treg cells exist in human blood that are otherwise indistinguishable from one another using classical Treg cell markers such as CD25 and FoxP3. Moreover, murine Treg cells display a degree of plasticity through which they acquire the trafficking pathways needed to home to tissues containing target effector T (Teff) cells. However, this plasticity can also result in Treg cell lineage instability and acquisition of proinflammatory Teff cell functions. Consequently, these dysfunctional CD4+FoxP3+ T cells in human and mouse may fail to maintain peripheral tolerance and instead support immunopathology. The mechanisms driving human Treg cell dysfunction are largely undefined, and obscured by the scarcity of reliable immunophenotypical markers and the disregard paid to Treg cell antigen‐specificity in functional assays. Here, we review the mechanisms controlling the stability of the FoxP3+ Treg cell lineage phenotype. Particular attention will be paid to the developmental and functional heterogeneity of human Treg cells, and how abrogating these mechanisms can lead to lineage instability and Treg cell dysfunction in diseases like immunodysregulation polyendocrinopathy enteropathy X‐linked (IPEX) syndrome, type 1 diabetes, rheumatoid arthritis and cancer.
Collapse
Affiliation(s)
- M Attias
- Program in Infectious Diseases and Immunology in Global Health, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.,Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada.,Centre of Excellence in Translational Immunology (CETI), Montréal, Québec, Canada
| | - T Al-Aubodah
- Program in Infectious Diseases and Immunology in Global Health, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.,Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada.,Centre of Excellence in Translational Immunology (CETI), Montréal, Québec, Canada
| | - C A Piccirillo
- Program in Infectious Diseases and Immunology in Global Health, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.,Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada.,Centre of Excellence in Translational Immunology (CETI), Montréal, Québec, Canada
| |
Collapse
|
253
|
Xie YQ, Arik H, Wei L, Zheng Y, Suh H, Irvine DJ, Tang L. Redox-responsive interleukin-2 nanogel specifically and safely promotes the proliferation and memory precursor differentiation of tumor-reactive T-cells. Biomater Sci 2019; 7:1345-1357. [PMID: 30698174 PMCID: PMC6435399 DOI: 10.1039/c8bm01556b] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Interleukin-2 (IL-2) is a potent T-cell mitogen that can adjuvant anti-cancer adoptive T-cell transfer (ACT) immunotherapy by promoting T-cell engraftment. However, the clinical applications of IL-2 in combination with ACT are greatly hindered by the severe adverse effects such as vascular leak syndrome (VLS). Here, we developed a synthetic delivery strategy for IL-2 via backpacking redox-responsive IL-2/Fc nanogels (NGs) to the plasma membrane of adoptively transferred T-cells. The NGs prepared by traceless chemical cross-linking of cytokine proteins selectively released the cargos in response to T-cell receptor activation upon antigen recognition in tumors. We found that IL-2/Fc delivered by T-cell surface-bound NGs expanded transferred tumor-reactive T-cells 80-fold more than the free IL-2/Fc of an equivalent dose administered systemically and showed no effects on tumor-infiltrating regulatory T-cell expansion. Intriguingly, IL-2/Fc NG backpacks that facilitated a sustained and slow release of IL-2/Fc also promoted the CD8+ memory precursor differentiation and induced less T-cell exhaustion in vitro compared to free IL-2/Fc. The controlled responsive delivery of IL-2/Fc enabled the safe administration of repeated doses of the stimulant cytokine with no overt toxicity and improved efficacy against melanoma metastases in a mice model.
Collapse
Affiliation(s)
- Yu-Qing Xie
- Institute of Bioengineering, École polytechnique fédérale de Lausanne (EPFL), Lausanne, SwitzerlandCH-1015.
| | | | | | | | | | | | | |
Collapse
|
254
|
Abbas AK, Trotta E, R Simeonov D, Marson A, Bluestone JA. Revisiting IL-2: Biology and therapeutic prospects. Sci Immunol 2019; 3:3/25/eaat1482. [PMID: 29980618 DOI: 10.1126/sciimmunol.aat1482] [Citation(s) in RCA: 427] [Impact Index Per Article: 71.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/07/2018] [Indexed: 12/13/2022]
Abstract
Interleukin-2 (IL-2), the first cytokine that was molecularly cloned, was shown to be a T cell growth factor essential for the proliferation of T cells and the generation of effector and memory cells. On the basis of this activity, the earliest therapeutic application of IL-2 was to boost immune responses in cancer patients. Therefore, it was a surprise that genetic deletion of the cytokine or its receptor led not only to the expected immune deficiency but also to systemic autoimmunity and lymphoproliferation. Subsequent studies established that IL-2 is essential for the maintenance of Foxp3+ regulatory T cells (Treg cells), and in its absence, there is a profound deficiency of Treg cells and resulting autoimmunity. We now know that IL-2 promotes the generation, survival, and functional activity of Treg cells and thus has dual and opposing functions: maintaining Treg cells to control immune responses and stimulating conventional T cells to promote immune responses. It is well documented that certain IL-2 conformations result in selective targeting of Treg cells by increasing reliance on CD25 binding while compromising CD122 binding. Recent therapeutic strategies have emerged to use IL-2, monoclonal antibodies to IL-2, or IL-2 variants to boost Treg cell numbers and function to treat autoimmune diseases while dealing with the continuing challenges to minimize the generation of effector and memory cells, natural killer cells, and other innate lymphoid populations.
Collapse
Affiliation(s)
- Abul K Abbas
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA.
| | - Eleonora Trotta
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
| | - Dimitre R Simeonov
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA.,Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Alexander Marson
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA.,Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jeffrey A Bluestone
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
255
|
Thangavelu G, Blazar BR. Achievement of Tolerance Induction to Prevent Acute Graft-vs.-Host Disease. Front Immunol 2019; 10:309. [PMID: 30906290 PMCID: PMC6419712 DOI: 10.3389/fimmu.2019.00309] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/06/2019] [Indexed: 01/04/2023] Open
Abstract
Acute graft-vs.-host disease (GVHD) limits the efficacy of allogeneic hematopoietic stem cell transplantation (allo-HSCT), a main therapy to treat various hematological disorders. Despite rapid progress in understanding GVHD pathogenesis, broad immunosuppressive agents are most often used to prevent and remain the first line of therapy to treat GVHD. Strategies enhancing immune tolerance in allo-HSCT would permit reductions in immunosuppressant use and their associated undesirable side effects. In this review, we discuss the mechanisms responsible for GVHD and advancement in strategies to achieve immune balance and tolerance thereby avoiding GVHD and its complications.
Collapse
Affiliation(s)
- Govindarajan Thangavelu
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | - Bruce R Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
256
|
Immunoreceptor Engineering and Synthetic Cytokine Signaling for Therapeutics. Trends Immunol 2019; 40:258-272. [DOI: 10.1016/j.it.2019.01.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/11/2019] [Accepted: 01/13/2019] [Indexed: 12/25/2022]
|
257
|
Tang A, Harding F. The challenges and molecular approaches surrounding interleukin-2-based therapeutics in cancer. Cytokine X 2019. [PMCID: PMC7885892 DOI: 10.1016/j.cytox.2018.100001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
IL2-based cancer therapies are limited by their toxicity and pleiotropy. Current engineering approaches target IL2 half-life and cell/receptor specificity. IL2 may enhance the efficacy of checkpoint inhibitors and CAR-T-based therapies.
Interleukin-2 has had a long history as a promising cancer therapeutic, being capable of eliciting complete and durable remissions in patients with metastatic renal cell carcinoma and metastatic melanoma. Despite high toxicity and efficacy limited to only certain patient subpopulations and cancer types, the prospective use of novel, engineered IL2 formats in combination with the presently expanding repertoire of immuno-oncological targets remains very encouraging. This is possible due to the significant research efforts in the IL2 field that have yielded critical structural and biological insights that have made IL2 more effective and more broadly applicable in the clinic. In this review, we discuss some of the molecular approaches that have been used to further improve IL2 therapy for cancer.
Collapse
|
258
|
陈 莉, 金 彤, 宁 春, 王 素, 王 立, 林 敬. [Anti-tumor and immune-modulating effect of Jiawei Sijunzi decoction in mice bearing hepatoma H22 tumor]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:241-248. [PMID: 30890515 PMCID: PMC6765632 DOI: 10.12122/j.issn.1673-4254.2019.02.18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Indexed: 01/24/2023]
Abstract
OBJECTIVE To investigate the antitumor activity of Jiawei Sijunzi decoction and study its liver and kidney toxicity and its effect on the immune system in a tumor-bearing mouse model. METHODS Hepatoma H22 tumor-bearing mouse models were randomized into model group, cyclophosphamide (CTX) group, and low-, moderate-, and high-dose Jiawei Sijunzi decoction groups (JW-L, JW-M, and JW-H groups, respectively). The antitumor activity of Jiawei Sijunzi decoction was assessed by calculating the tumor inhibition rate and pathological observation of the tumor tissues. Immunohistochemistry was used to detect the expressions of Bax, Bcl-2, Bax/Bcl-2 and caspase-3 in the tumors. The liver and kidney toxicity of Jiawei Sijunzi decoction was analyzed by evaluating the biochemical indicators of liver and kidney functions. The immune function of the tumor-bearing mice were assessed by calculating the immune organ index, testing peripheral blood routines, and detection of serum IL-2 and TNF-α levels using enzyme-linked immunosorbent assay. RESULTS Compared with that in the model group, the tumor mass in CTX, JW-M and JW-H groups were all significantly reduced (P < 0.05) with cell rupture and necrosis in the tumors. Immunohistochemistry revealed obviously up-regulated expressions of Bax and caspase-3 and down- regulated expression of Bcl-2 protein with an increased Bax/Bcl-2 ratio in CTX, JW-M and JW-H groups. Treatment with Jiawei Sijunzi decoction significantly reduced Cr, BUN, AST and ALT levels, improved the immune organ index, increased peripheral blood leukocytes, erythrocytes and hemoglobin levels, and up-regulated the levels of TNF-α and IL-2 in the tumor-bearing mice. These changes were especially significant in JW-H group when compared with the parameters in the model group (P < 0.01). CONCLUSIONS Jiawei Sijunzi decoction has a strong anti-tumor activity and can improve the liver and kidney functions of tumor-bearing mice. Its anti-tumor effect may be attributed to the up-regulation of Bax, caspase-3, TNF-α and IL-2 levels and the down-regulation of Bcl-2 expression as well as the enhancement of the non-specific immune function.
Collapse
Affiliation(s)
- 莉媚 陈
- 南方医科大学中医药学院,广东 广州 510515School of Chinese Medicine, Southern Medical University, Guangzhou 510515, China
- 南方医科大学珠江医院药剂科,广东 广州 510282Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - 彤 金
- 南方医科大学中医药学院,广东 广州 510515School of Chinese Medicine, Southern Medical University, Guangzhou 510515, China
- 南方医科大学珠江医院药剂科,广东 广州 510282Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - 春桃 宁
- 南方医科大学珠江医院药剂科,广东 广州 510282Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - 素丽 王
- 广州白云山潘高寿药业股份有限公司,广东 广州 511400Guangzhou Baiyun Mountain Pangaoshou Pharmaceutical Co. Ltd., Guangzhou 511400, China
| | - 立杰 王
- 南方医科大学珠江医院药剂科,广东 广州 510282Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - 敬明 林
- 南方医科大学珠江医院药剂科,广东 广州 510282Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| |
Collapse
|
259
|
Emerging technologies in protein interface engineering for biomedical applications. Curr Opin Biotechnol 2019; 60:82-88. [PMID: 30802788 DOI: 10.1016/j.copbio.2019.01.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/26/2018] [Accepted: 01/21/2019] [Indexed: 12/27/2022]
Abstract
Protein interactions communicate critical information from the environment into cells to orchestrate functional responses relevant to health and disease. Whereas the natural repertoire of protein interfaces is finite, biomolecular engineering tools provide access to an unlimited scope of potential interactions that can be custom-designed for affinity, specificity, mechanism, or other properties of interest. This review highlights recent developments in protein interface engineering that offer insight into human physiology to inform the design of new pharmaceuticals, with a particular focus on immunotherapeutics. We cover three innovative and translationally promising approaches: (1) reprogramming receptor oligomerization to manipulate signaling pathways; (2) computational protein interface design strategies; and (3) engineering bioorthogonal protein interaction networks.
Collapse
|
260
|
Dwyer CJ, Knochelmann HM, Smith AS, Wyatt MM, Rangel Rivera GO, Arhontoulis DC, Bartee E, Li Z, Rubinstein MP, Paulos CM. Fueling Cancer Immunotherapy With Common Gamma Chain Cytokines. Front Immunol 2019; 10:263. [PMID: 30842774 PMCID: PMC6391336 DOI: 10.3389/fimmu.2019.00263] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 01/30/2019] [Indexed: 12/16/2022] Open
Abstract
Adoptive T cell transfer therapy (ACT) using tumor infiltrating lymphocytes or lymphocytes redirected with antigen receptors (CAR or TCR) has revolutionized the field of cancer immunotherapy. Although CAR T cell therapy mediates robust responses in patients with hematological malignancies, this approach has been less effective for treating patients with solid tumors. Additionally, toxicities post T cell infusion highlight the need for safer ACT protocols. Current protocols traditionally expand T lymphocytes isolated from patient tumors or from peripheral blood to large magnitudes in the presence of high dose IL-2 prior to infusion. Unfortunately, this expansion protocol differentiates T cells to a full effector or terminal phenotype in vitro, consequently reducing their long-term survival and antitumor effectiveness in vivo. Post-infusion, T cells face further obstacles limiting their persistence and function within the suppressive tumor microenvironment. Therapeutic manipulation of T cells with common γ chain cytokines, which are critical growth factors for T cells, may be the key to bypass such immunological hurdles. Herein, we discuss the primary functions of the common γ chain cytokines impacting T cell survival and memory and then elaborate on how these distinct cytokines have been used to augment T cell-based cancer immunotherapy.
Collapse
Affiliation(s)
- Connor J Dwyer
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States.,Department of Dermatology and Dermatologic Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - Hannah M Knochelmann
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States.,Department of Dermatology and Dermatologic Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - Aubrey S Smith
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States.,Department of Dermatology and Dermatologic Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - Megan M Wyatt
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States.,Department of Dermatology and Dermatologic Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - Guillermo O Rangel Rivera
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States.,Department of Dermatology and Dermatologic Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - Dimitrios C Arhontoulis
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States.,Department of Dermatology and Dermatologic Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - Eric Bartee
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
| | - Zihai Li
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
| | - Mark P Rubinstein
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States.,Department of Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - Chrystal M Paulos
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States.,Department of Dermatology and Dermatologic Surgery, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
261
|
Mann EH, Gabryšová L, Pfeffer PE, O'Garra A, Hawrylowicz CM. High-Dose IL-2 Skews a Glucocorticoid-Driven IL-17 +IL-10 + Memory CD4 + T Cell Response towards a Single IL-10-Producing Phenotype. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 202:684-693. [PMID: 30598515 PMCID: PMC6341182 DOI: 10.4049/jimmunol.1800697] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 10/26/2018] [Indexed: 12/30/2022]
Abstract
Glucocorticoids are known to increase production of the anti-inflammatory cytokine IL-10, and this action is associated with their clinical efficacy in asthmatics. However, glucocorticoids also enhance the synthesis of IL-17A by PBMCs, which, in excess, is associated with increased asthma severity and glucocorticoid-refractory disease. In this study, we show that the glucocorticoid dexamethasone significantly increased IL-10 production by human memory CD4+ T cells from healthy donors, as assessed by intracellular cytokine staining. In addition, dexamethasone increased production of IL-17A, IL-17F, and IL-22, with the most striking enhancement in cells coproducing Th17-associated cytokines together with IL-10. Of note, an increase in IFN-γ+IL-10+ cells was also observed despite overall downregulation of IFN-γ production. These dexamethasone-driven IL-10+ cells, and predominantly the IL-17+IL-10+ double-producing cells, were markedly refractory to the inhibitory effect of dexamethasone on proliferation and IL-2Rα expression, which facilitated their preferential IL-2-dependent expansion. Although lower concentrations of exogenous IL-2 promoted IL-10+ cells coproducing proinflammatory cytokines, higher IL-2 doses, both alone and in combination with dexamethasone, increased the proportion of single IL-10+ T cells. Thus, glucocorticoid-induced IL-10 is only accompanied by an increase of IL-17 in a low IL-2 setting, which is, nevertheless, likely to be protective owing to the induction of regulatory IL-17+IL-10+-coproducing cells. These findings open new avenues of investigation with respect to the role of IL-2 in glucocorticoid responsiveness that have potential implications for optimizing the benefit/risk ratio of glucocorticoids in the clinic.
Collapse
Affiliation(s)
- Elizabeth H Mann
- Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, King's College London, London SE1 9RT, United Kingdom
- Laboratory of Immunoregulation and Infection, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Leona Gabryšová
- Laboratory of Immunoregulation and Infection, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Paul E Pfeffer
- Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, King's College London, London SE1 9RT, United Kingdom
- William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom; and
| | - Anne O'Garra
- Laboratory of Immunoregulation and Infection, The Francis Crick Institute, London NW1 1AT, United Kingdom
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London SW3 6LY, United Kingdom
| | - Catherine M Hawrylowicz
- Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, King's College London, London SE1 9RT, United Kingdom;
| |
Collapse
|
262
|
Lee ES, Shin JM, Son S, Ko H, Um W, Song SH, Lee JA, Park JH. Recent Advances in Polymeric Nanomedicines for Cancer Immunotherapy. Adv Healthc Mater 2019; 8:e1801320. [PMID: 30666822 DOI: 10.1002/adhm.201801320] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/08/2018] [Indexed: 12/20/2022]
Abstract
Immunotherapy has emerged as a promising approach to treat cancer, since it facilitates eradication of cancer by enhancing innate and/or adaptive immunity without using cytotoxic drugs. Of the immunotherapeutic approaches, significant clinical potentials are shown in cancer vaccination, immune checkpoint therapy, and adoptive cell transfer. Nevertheless, conventional immunotherapies often involve immune-related adverse effects, such as liver dysfunction, hypophysitis, type I diabetes, and neuropathy. In an attempt to address these issues, polymeric nanomedicines are extensively investigated in recent years. In this review, recent advances in polymeric nanomedicines for cancer immunotherapy are highlighted and thoroughly discussed in terms of 1) antigen presentation, 2) activation of antigen-presenting cells and T cells, and 3) promotion of effector cells. Also, the future perspectives to develop ideal nanomedicines for cancer immunotherapy are provided.
Collapse
Affiliation(s)
- Eun Sook Lee
- Department of Health Sciences and Technology; SAIHST; Sungkyunkwan University; Suwon 16419 Republic of Korea
| | - Jung Min Shin
- School of Chemical Engineering; College of Engineering; Sungkyunkwan University; Suwon 16419 Republic of Korea
| | - Soyoung Son
- Department of Health Sciences and Technology; SAIHST; Sungkyunkwan University; Suwon 16419 Republic of Korea
| | - Hyewon Ko
- Department of Health Sciences and Technology; SAIHST; Sungkyunkwan University; Suwon 16419 Republic of Korea
| | - Wooram Um
- Department of Health Sciences and Technology; SAIHST; Sungkyunkwan University; Suwon 16419 Republic of Korea
| | - Seok Ho Song
- School of Chemical Engineering; College of Engineering; Sungkyunkwan University; Suwon 16419 Republic of Korea
| | - Jae Ah Lee
- School of Chemical Engineering; College of Engineering; Sungkyunkwan University; Suwon 16419 Republic of Korea
| | - Jae Hyung Park
- Department of Health Sciences and Technology; SAIHST; Sungkyunkwan University; Suwon 16419 Republic of Korea
- School of Chemical Engineering; College of Engineering; Sungkyunkwan University; Suwon 16419 Republic of Korea
| |
Collapse
|
263
|
Silva DA, Yu S, Ulge UY, Spangler JB, Jude KM, Labão-Almeida C, Ali LR, Quijano-Rubio A, Ruterbusch M, Leung I, Biary T, Crowley SJ, Marcos E, Walkey CD, Weitzner BD, Pardo-Avila F, Castellanos J, Carter L, Stewart L, Riddell SR, Pepper M, Bernardes GJL, Dougan M, Garcia KC, Baker D. De novo design of potent and selective mimics of IL-2 and IL-15. Nature 2019; 565:186-191. [PMID: 30626941 PMCID: PMC6521699 DOI: 10.1038/s41586-018-0830-7] [Citation(s) in RCA: 367] [Impact Index Per Article: 61.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 11/15/2018] [Indexed: 12/28/2022]
Abstract
We describe a de novo computational approach for designing proteins that recapitulate the binding sites of natural cytokines, but are otherwise unrelated in topology or amino acid sequence. We use this strategy to design mimics of the central immune cytokine interleukin-2 (IL-2) that bind to the IL-2 receptor βγc heterodimer (IL-2Rβγc) but have no binding site for IL-2Rα (also called CD25) or IL-15Rα (also known as CD215). The designs are hyper-stable, bind human and mouse IL-2Rβγc with higher affinity than the natural cytokines, and elicit downstream cell signalling independently of IL-2Rα and IL-15Rα. Crystal structures of the optimized design neoleukin-2/15 (Neo-2/15), both alone and in complex with IL-2Rβγc, are very similar to the designed model. Neo-2/15 has superior therapeutic activity to IL-2 in mouse models of melanoma and colon cancer, with reduced toxicity and undetectable immunogenicity. Our strategy for building hyper-stable de novo mimetics could be applied generally to signalling proteins, enabling the creation of superior therapeutic candidates.
Collapse
Affiliation(s)
- Daniel-Adriano Silva
- Institute for Protein Design, University of Washington, Seattle, WA, USA.
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
| | - Shawn Yu
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Umut Y Ulge
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Jamie B Spangler
- Departments of Biomedical Engineering and Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Kevin M Jude
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Carlos Labão-Almeida
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Lestat R Ali
- Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Alfredo Quijano-Rubio
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Mikel Ruterbusch
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
| | - Isabel Leung
- Fred Hutchinson Cancer Research Center, Clinical Research Division, Seattle, WA, USA
| | - Tamara Biary
- Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Stephanie J Crowley
- Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Enrique Marcos
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Carl D Walkey
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Brian D Weitzner
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Fátima Pardo-Avila
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Javier Castellanos
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Lauren Carter
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Lance Stewart
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Stanley R Riddell
- Fred Hutchinson Cancer Research Center, Clinical Research Division, Seattle, WA, USA
| | - Marion Pepper
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
| | - Gonçalo J L Bernardes
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Michael Dougan
- Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - K Christopher Garcia
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| | - David Baker
- Institute for Protein Design, University of Washington, Seattle, WA, USA.
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
264
|
Young A, Quandt Z, Bluestone JA. The Balancing Act between Cancer Immunity and Autoimmunity in Response to Immunotherapy. Cancer Immunol Res 2018; 6:1445-1452. [PMID: 30510057 PMCID: PMC6281171 DOI: 10.1158/2326-6066.cir-18-0487] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The explosion in novel cancer immunotherapies has resulted in extraordinary clinical successes in the treatment of multiple cancers. Checkpoint inhibitors (CPIs) that target negative regulatory molecules have become standard of care. However, with the growing use of CPIs, alone or in combination with chemotherapy, targeted therapies, or other immune modulators, a significant increase in immune-related adverse events (irAEs) has emerged. The wide-ranging and currently unpredictable spectrum of CPI-induced irAEs can lead to profound pathology and, in some cases, death. Growing evidence indicates that many irAEs are a consequence of a breakdown in self-tolerance, but the influence of genetics, the environment, and the mechanisms involved remains unclear. This review explores key questions in this emerging field, summarizing preclinical and clinical experiences with this new generation of cancer drugs, the growing understanding of the role of the immune response in mediating these toxicities, the relationship of CPI-induced autoimmunity to conventional autoimmune diseases, and insights into the mechanism of irAE development and treatment.
Collapse
Affiliation(s)
- Arabella Young
- Diabetes Center and Sean N. Parker Autoimmune Research Laboratory, University of California San Francisco, San Francisco, California
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Zoe Quandt
- Diabetes Center and Sean N. Parker Autoimmune Research Laboratory, University of California San Francisco, San Francisco, California
- Division of Endocrinology, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Jeffrey A Bluestone
- Diabetes Center and Sean N. Parker Autoimmune Research Laboratory, University of California San Francisco, San Francisco, California.
- Parker Institute for Cancer Immunotherapy, San Francisco, California
| |
Collapse
|
265
|
Regulatory T-cell therapy for autoimmune and autoinflammatory diseases: The next frontier. J Allergy Clin Immunol 2018; 142:1710-1718. [DOI: 10.1016/j.jaci.2018.10.015] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/12/2018] [Accepted: 10/19/2018] [Indexed: 02/08/2023]
|
266
|
Steinbach K, Vincenti I, Merkler D. Resident-Memory T Cells in Tissue-Restricted Immune Responses: For Better or Worse? Front Immunol 2018; 9:2827. [PMID: 30555489 PMCID: PMC6284001 DOI: 10.3389/fimmu.2018.02827] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/15/2018] [Indexed: 12/13/2022] Open
Abstract
Tissue-resident-memory CD8+ T cells (TRM) have been described as a non-circulating memory T cell subset that persists at sites of previous infection. While TRM in all non-lymphoid organs probably share a core signature differentiation pathway, certain aspects of their maintenance and effector functions may vary. It is well-established that TRM provide long-lived protective immunity through immediate effector function and accelerated recruitment of circulating immune cells. Besides immune defense against pathogens, other immunological roles of TRM are less well-studied. Likewise, evidence of a putative detrimental role of TRM for inflammatory diseases is only beginning to emerge. In this review, we discuss the protective and harmful role of TRM in organ-specific immunity and immunopathology as well as prospective implications for immunomodulatory therapy.
Collapse
Affiliation(s)
- Karin Steinbach
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Ilena Vincenti
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Doron Merkler
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland.,Division of Clinical Pathology, Geneva University Hospital, Geneva, Switzerland
| |
Collapse
|
267
|
André P, Denis C, Soulas C, Bourbon-Caillet C, Lopez J, Arnoux T, Bléry M, Bonnafous C, Gauthier L, Morel A, Rossi B, Remark R, Breso V, Bonnet E, Habif G, Guia S, Lalanne AI, Hoffmann C, Lantz O, Fayette J, Boyer-Chammard A, Zerbib R, Dodion P, Ghadially H, Jure-Kunkel M, Morel Y, Herbst R, Narni-Mancinelli E, Cohen RB, Vivier E. Anti-NKG2A mAb Is a Checkpoint Inhibitor that Promotes Anti-tumor Immunity by Unleashing Both T and NK Cells. Cell 2018; 175:1731-1743.e13. [PMID: 30503213 PMCID: PMC6292840 DOI: 10.1016/j.cell.2018.10.014] [Citation(s) in RCA: 865] [Impact Index Per Article: 123.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/03/2018] [Accepted: 10/02/2018] [Indexed: 02/08/2023]
Abstract
Checkpoint inhibitors have revolutionized cancer treatment. However, only a minority of patients respond to these immunotherapies. Here, we report that blocking the inhibitory NKG2A receptor enhances tumor immunity by promoting both natural killer (NK) and CD8+ T cell effector functions in mice and humans. Monalizumab, a humanized anti-NKG2A antibody, enhanced NK cell activity against various tumor cells and rescued CD8+ T cell function in combination with PD-x axis blockade. Monalizumab also stimulated NK cell activity against antibody-coated target cells. Interim results of a phase II trial of monalizumab plus cetuximab in previously treated squamous cell carcinoma of the head and neck showed a 31% objective response rate. Most common adverse events were fatigue (17%), pyrexia (13%), and headache (10%). NKG2A targeting with monalizumab is thus a novel checkpoint inhibitory mechanism promoting anti-tumor immunity by enhancing the activity of both T and NK cells, which may complement first-generation immunotherapies against cancer. Blocking NKG2A unleashes both T and NK cell effector functions Combined blocking of the NKG2A and the PD-1 axis promotes anti-tumor immunity Blocking NKG2A and triggering CD16 illustrates the efficacy of dual checkpoint therapy
Collapse
Affiliation(s)
- Pascale André
- Innate Pharma, 117 Avenue de Luminy, 13009 Marseille, France.
| | - Caroline Denis
- Innate Pharma, 117 Avenue de Luminy, 13009 Marseille, France
| | - Caroline Soulas
- Innate Pharma, 117 Avenue de Luminy, 13009 Marseille, France
| | | | - Julie Lopez
- Innate Pharma, 117 Avenue de Luminy, 13009 Marseille, France
| | - Thomas Arnoux
- Innate Pharma, 117 Avenue de Luminy, 13009 Marseille, France
| | - Mathieu Bléry
- Innate Pharma, 117 Avenue de Luminy, 13009 Marseille, France
| | | | | | - Ariane Morel
- Innate Pharma, 117 Avenue de Luminy, 13009 Marseille, France
| | - Benjamin Rossi
- Innate Pharma, 117 Avenue de Luminy, 13009 Marseille, France
| | - Romain Remark
- Innate Pharma, 117 Avenue de Luminy, 13009 Marseille, France
| | - Violette Breso
- Innate Pharma, 117 Avenue de Luminy, 13009 Marseille, France
| | - Elodie Bonnet
- Innate Pharma, 117 Avenue de Luminy, 13009 Marseille, France
| | - Guillaume Habif
- Innate Pharma, 117 Avenue de Luminy, 13009 Marseille, France
| | - Sophie Guia
- Aix Marseille Université, INSERM, CNRS, Centre d'Immunologie de Marseille-Luminy, 13009 Marseille, France
| | - Ana Ines Lalanne
- Unité INSERM U932, Immunité et Cancer, Institut Curie, 75248 Paris Cedex 5, France
| | - Caroline Hoffmann
- Unité INSERM U932, Immunité et Cancer, Institut Curie, 75248 Paris Cedex 5, France; Service ORL et Chirurgie cervico-faciale, Institut Curie, 75248 Paris Cedex 5, France
| | - Olivier Lantz
- Unité INSERM U932, Immunité et Cancer, Institut Curie, 75248 Paris Cedex 5, France
| | | | | | - Robert Zerbib
- Innate Pharma, 117 Avenue de Luminy, 13009 Marseille, France
| | - Pierre Dodion
- Innate Pharma, 117 Avenue de Luminy, 13009 Marseille, France
| | - Hormas Ghadially
- MedImmune, Ltd., Aaron Klug Building, Granta Park, Cambridge, CB21 6GH, UK
| | | | - Yannis Morel
- Innate Pharma, 117 Avenue de Luminy, 13009 Marseille, France
| | - Ronald Herbst
- MedImmune, LLC, One MedImmune Way, Gaithersburg, MD 20878, USA
| | - Emilie Narni-Mancinelli
- Aix Marseille Université, INSERM, CNRS, Centre d'Immunologie de Marseille-Luminy, 13009 Marseille, France
| | - Roger B Cohen
- Abramson Cancer Center, 3400 Civic Center Boulevard West Pavilion, Philadelphia, PA, USA
| | - Eric Vivier
- Innate Pharma, 117 Avenue de Luminy, 13009 Marseille, France; Aix Marseille Université, INSERM, CNRS, Centre d'Immunologie de Marseille-Luminy, 13009 Marseille, France; Service d'Immunologie, Marseille Immunopole, Hôpital de la Timone, Assistance Publique-Hôpitaux de Marseille, 13005 Marseille, France.
| |
Collapse
|
268
|
Bucktrout SL, Bluestone JA, Ramsdell F. Recent advances in immunotherapies: from infection and autoimmunity, to cancer, and back again. Genome Med 2018; 10:79. [PMID: 30376867 PMCID: PMC6208073 DOI: 10.1186/s13073-018-0588-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
For at least 300 years the immune system has been targeted to improve human health. Decades of work advancing immunotherapies against infection and autoimmunity paved the way for the current explosion in cancer immunotherapies. Pathways targeted for therapeutic intervention in autoimmune diseases can be modulated in the opposite sense in malignancy and infectious disease. We discuss the basic principles of the immune response, how these are co-opted in chronic infection and malignancy, and how these can be harnessed to treat disease. T cells are at the center of immunotherapy. We consider the complexity of T cell functional subsets, differentiation states, and extrinsic and intrinsic influences in the design, success, and lessons from immunotherapies. The integral role of checkpoints in the immune response is highlighted by the rapid advances in FDA approvals and the use of therapeutics that target the CTLA-4 and PD-1/PD-L1 pathways. We discuss the distinct and overlapping mechanisms of CTLA-4 and PD-1 and how these can be translated to combination immunotherapy treatments. Finally, we discuss how the successes and challenges in cancer immunotherapies, such as the collateral damage of immune-related adverse events following checkpoint inhibition, are informing treatment of autoimmunity, infection, and malignancy.
Collapse
Affiliation(s)
- Samantha L Bucktrout
- Parker Institute of Cancer Immunotherapy, 1 Letterman Drive, San Francisco, CA, USA.
| | - Jeffrey A Bluestone
- Parker Institute of Cancer Immunotherapy, 1 Letterman Drive, San Francisco, CA, USA.,Diabetes Center, University of California, San Francisco, San Francisco, CA, 94129, USA
| | - Fred Ramsdell
- Parker Institute of Cancer Immunotherapy, 1 Letterman Drive, San Francisco, CA, USA.
| |
Collapse
|
269
|
Kippner LE, Kemp ML. Oscillatory IL-2 stimulus reveals pertinent signaling timescales of T cell responsiveness. PLoS One 2018; 13:e0203759. [PMID: 30226854 PMCID: PMC6143248 DOI: 10.1371/journal.pone.0203759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 08/27/2018] [Indexed: 11/05/2022] Open
Abstract
Cell response to extracellular ligand is affected not only by ligand availability, but also by pre-existing cell-to-cell variability that enables a range of responses within a cell population. We developed a computational model that incorporates cell heterogeneity in order to investigate Jurkat T cell response to time dependent extracellular IL-2 stimulation. Our model predicted preferred timing of IL-2 oscillatory input for maximizing downstream intracellular STAT5 nuclear translocation. The modeled cytokine exposure was replicated experimentally through the use of a microfluidic platform that enabled the parallelized capture of dynamic single cell response to precisely delivered pulses of IL-2 stimulus. The in vitro results demonstrate that single cell response profiles vary with pulsatile IL-2 input at pre-equilibrium levels. These observations confirmed our model predictions that Jurkat cells have a preferred range of extracellular IL-2 fluctuations, in which downstream response is rapidly initiated. Further investigation into this filtering behavior could increase our understanding of how pre-existing cellular states within immune cell populations enable a systems response within a preferred range of ligand fluctuations, and whether the observed cytokine range corresponds to in vivo conditions.
Collapse
Affiliation(s)
- Linda E. Kippner
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States of America
| | - Melissa L. Kemp
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
270
|
Kroger CJ, Clark M, Ke Q, Tisch RM. Therapies to Suppress β Cell Autoimmunity in Type 1 Diabetes. Front Immunol 2018; 9:1891. [PMID: 30166987 PMCID: PMC6105696 DOI: 10.3389/fimmu.2018.01891] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 07/31/2018] [Indexed: 12/12/2022] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease that is generally considered to be T cell-driven. Accordingly, most strategies of immunotherapy for T1D prevention and treatment in the clinic have targeted the T cell compartment. To date, however, immunotherapy has had only limited clinical success. Although certain immunotherapies have promoted a protective effect, efficacy is often short-term and acquired immunity may be impacted. This has led to the consideration of combining different approaches with the goal of achieving a synergistic therapeutic response. In this review, we will discuss the status of various T1D therapeutic strategies tested in the clinic, as well as possible combinatorial approaches to restore β cell tolerance.
Collapse
Affiliation(s)
- Charles J Kroger
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Matthew Clark
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Qi Ke
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Roland M Tisch
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
271
|
|
272
|
Choudhry H, Helmi N, Abdulaal WH, Zeyadi M, Zamzami MA, Wu W, Mahmoud MM, Warsi MK, Rasool M, Jamal MS. Prospects of IL-2 in Cancer Immunotherapy. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9056173. [PMID: 29854806 PMCID: PMC5960517 DOI: 10.1155/2018/9056173] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/25/2018] [Accepted: 03/29/2018] [Indexed: 01/04/2023]
Abstract
IL-2 is a powerful immune growth factor and it plays important role in sustaining T cell response. The potential of IL-2 in expanding T cells without loss of functionality has led to its early use in cancer immunotherapy. IL-2 has been reported to induce complete and durable regressions in cancer patients but immune related adverse effects have been reported (irAE). The present review discusses the prospects of IL-2 in immunotherapy for cancer.
Collapse
Affiliation(s)
- Hani Choudhry
- Department of Biochemistry, Cancer Metabolism and Epigenetic Unit, Faculty of Science, Cancer and Mutagenesis Unit, King Fahd Center for Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nawal Helmi
- Department of Biochemistry, Cancer Metabolism and Epigenetic Unit, Faculty of Science, Cancer and Mutagenesis Unit, King Fahd Center for Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Wesam H. Abdulaal
- Department of Biochemistry, Cancer Metabolism and Epigenetic Unit, Faculty of Science, Cancer and Mutagenesis Unit, King Fahd Center for Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mustafa Zeyadi
- Department of Biochemistry, Cancer Metabolism and Epigenetic Unit, Faculty of Science, Cancer and Mutagenesis Unit, King Fahd Center for Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mazin A. Zamzami
- Department of Biochemistry, Cancer Metabolism and Epigenetic Unit, Faculty of Science, Cancer and Mutagenesis Unit, King Fahd Center for Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Wei Wu
- Department of Medicine, University of California, San Francisco, CA 94143, USA
| | - Maged Mostafa Mahmoud
- King Fahd Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Molecular Genetics and Enzymology, Division of Human Genetics and Genome Research, National Research Center, Giza, Egypt
| | | | - Mahmood Rasool
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad S. Jamal
- King Fahd Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
273
|
The perfect match. Nat Rev Drug Discov 2018; 17:313. [DOI: 10.1038/nrd.2018.62] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
274
|
Surolia I, Pillai S. The right angle on IL-2 therapy. Sci Immunol 2018; 3:3/22/eaat6418. [PMID: 29626173 DOI: 10.1126/sciimmunol.aat6418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Engineered cytokines are able to improve immunotherapy in mouse tumor models.
Collapse
Affiliation(s)
- Ira Surolia
- Division of Hematology-Oncology, Columbia University Medical Center, New York, NY 10032, USA. Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Department of Medicine, Harvard University, Cambridge, MA 02139, USA.
| | - Shiv Pillai
- Division of Hematology-Oncology, Columbia University Medical Center, New York, NY 10032, USA. Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Department of Medicine, Harvard University, Cambridge, MA 02139, USA.
| |
Collapse
|
275
|
Research Highlights. Nat Biotechnol 2018. [DOI: 10.1038/nbt.4117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
276
|
Affiliation(s)
- Crystal L Mackall
- Department of Pediatrics and Medicine, and Stanford Cancer Institute, 265 Campus Way, G3141A, Stanford University, Stanford, CA, USA.
| |
Collapse
|