251
|
Ng HP, Zhou Y, Song K, Hodges CA, Drumm ML, Wang G. Neutrophil-mediated phagocytic host defense defect in myeloid Cftr-inactivated mice. PLoS One 2014; 9:e106813. [PMID: 25184794 PMCID: PMC4153692 DOI: 10.1371/journal.pone.0106813] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 08/05/2014] [Indexed: 02/02/2023] Open
Abstract
Cystic fibrosis (CF) is a common and deadly inherited disease, caused by mutations in the CFTR gene that encodes a cAMP-activated chloride channel. One outstanding manifestation of the disease is the persistent bacterial infection and inflammation in the lung, which claims over 90% of CF mortality. It has been debated whether neutrophil-mediated phagocytic innate immunity has any intrinsic defect that contributes to the host lung defense failure. Here we compared phagosomal CFTR targeting, hypochlorous acid (HOCl) production, and microbial killing of the neutrophils from myeloid Cftr-inactivated (Myeloid-Cftr-/-) mice and the non-inactivated control (Cftrfl10) mice. We found that the mutant CFTR that lacked Exon-10 failed to target to the neutrophil phagosomes. This dysfunction resulted in impaired intraphagosomal HOCl production and neutrophil microbial killing. In vivo lung infection with a lethal dose of Pseudomonas aeruginosa caused significantly higher mortality in the myeloid CF mice than in the controls. The myeloid-Cftr-/- lungs were deficient in bacterial clearance, and had sustained neutrophilic inflammation and stalled transition from early to late immunity. These manifestations recapitulated the symptoms of human CF lungs. The data altogether suggest that myeloid CFTR expression is critical to normal host lung defense. CFTR dysfunction in neutrophils compromises the phagocytic innate immunity, which may predispose CF lungs to infection.
Collapse
Affiliation(s)
- Hang Pong Ng
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Yun Zhou
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Kejing Song
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Craig A. Hodges
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Mitchell L. Drumm
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Guoshun Wang
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
- Department of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
252
|
Pseudomonas aeruginosa triggers CFTR-mediated airway surface liquid secretion in swine trachea. Proc Natl Acad Sci U S A 2014; 111:12930-5. [PMID: 25136096 DOI: 10.1073/pnas.1406414111] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive genetic disorder caused by mutations in the gene encoding for the anion channel cystic fibrosis transmembrane conductance regulator (CFTR). Several organs are affected in CF, but most of the morbidity and mortality comes from lung disease. Recent data show that the initial consequence of CFTR mutation is the failure to eradicate bacteria before the development of inflammation and airway remodeling. Bacterial clearance depends on a layer of airway surface liquid (ASL) consisting of both a mucus layer that traps, kills, and inactivates bacteria and a periciliary liquid layer that keeps the mucus at an optimum distance from the underlying epithelia, to maximize ciliary motility and clearance of bacteria. The airways in CF patients and animal models of CF demonstrate abnormal ASL secretion and reduced antimicrobial properties. Thus, it has been proposed that abnormal ASL secretion in response to bacteria may facilitate the development of the infection and inflammation that characterize CF airway disease. Whether the inhalation of bacteria triggers ASL secretion, and the role of CFTR, have never been tested, however. We developed a synchrotron-based imaging technique to visualize the ASL layer and measure the effect of bacteria on ASL secretion. We show that the introduction of Pseudomonas aeruginosa and other bacteria into the lumen of intact isolated swine tracheas triggers CFTR-dependent ASL secretion by the submucosal glands. This response requires expression of the bacterial protein flagellin. In patients with CF, the inhalation of bacteria would fail to trigger ASL secretion, leading to infection and inflammation.
Collapse
|
253
|
Affiliation(s)
- Manu Jain
- 1 Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | | |
Collapse
|
254
|
Shamsuddin AKM, Quinton PM. Native small airways secrete bicarbonate. Am J Respir Cell Mol Biol 2014; 50:796-804. [PMID: 24224935 DOI: 10.1165/rcmb.2013-0418oc] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Since the discovery of Cl(-) impermeability in cystic fibrosis (CF) and the cloning of the responsible channel, CF pathology has been widely attributed to a defect in epithelial Cl(-) transport. However, loss of bicarbonate (HCO3(-)) transport also plays a major, possibly more critical role in CF pathogenesis. Even though HCO3(-) transport is severely affected in the native pancreas, liver, and intestines in CF, we know very little about HCO3(-) secretion in small airways, the principle site of morbidity in CF. We used a novel, mini-Ussing chamber system to investigate the properties of HCO3(-) transport in native porcine small airways (∼ 1 mm φ). We assayed HCO3(-) transport across small airway epithelia as reflected by the transepithelial voltage, conductance, and equivalent short-circuit current with bilateral 25-mM HCO3(-) plus 125-mM NaGlu Ringer's solution in the presence of luminal amiloride (10 μM). Under these conditions, because no major transportable anions other than HCO3(-) were present, we took the equivalent short-circuit current to be a direct measure of active HCO3(-) secretion. Applying selective agonists and inhibitors, we show constitutive HCO3(-) secretion in small airways, which can be stimulated significantly by β-adrenergic- (cAMP) and purinergic (Ca(2+)) -mediated agonists, independently. These results indicate that two separate components for HCO3(-) secretion, likely via CFTR- and calcium-activated chloride channel-dependent processes, are physiologically regulated for likely roles in mucus clearance and antimicrobial innate defenses of small airways.
Collapse
Affiliation(s)
- A K M Shamsuddin
- 1 Department of Pediatrics, University of California San Diego, La Jolla, California; and
| | | |
Collapse
|
255
|
Abstract
Cystic fibrosis (CF) remains the most common fatal hereditary lung disease. The discovery of the cystic fibrosis transmembrane conductance regulator (CFTR) gene 25 years ago set the stage for: 1) unravelling the molecular and cellular basis of CF lung disease; 2) the generation of animal models to study in vivo pathogenesis; and 3) the development of mutation-specific therapies that are now becoming available for a subgroup of patients with CF. This article highlights major advances in our understanding of how CFTR dysfunction causes chronic mucus obstruction, neutrophilic inflammation and bacterial infection in CF airways. Furthermore, we focus on recent breakthroughs and remaining challenges of novel therapies targeting the basic CF defect, and discuss the next steps to be taken to make disease-modifying therapies available to a larger group of patients with CF, including those carrying the most common mutation ΔF508-CFTR. Finally, we will summarise emerging evidence indicating that acquired CFTR dysfunction may be implicated in the pathogenesis of chronic obstructive pulmonary disease, suggesting that lessons learned from CF may be applicable to common airway diseases associated with mucus plugging.
Collapse
Affiliation(s)
- Marcus A Mall
- Dept of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), University of Heidelberg, Member of the German Center for Lung Research (DZL), Heidelberg, Germany Division of Paediatric Pulmonology and Allergy and Cystic Fibrosis Center, Dept of Paediatrics, University of Heidelberg, Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Dominik Hartl
- Paediatric Infectiology and Immunology, Dept of Pediatrics, University of Tübingen, Tübingen, Germany
| |
Collapse
|
256
|
Henderson AG, Ehre C, Button B, Abdullah LH, Cai LH, Leigh MW, DeMaria GC, Matsui H, Donaldson SH, Davis CW, Sheehan JK, Boucher RC, Kesimer M. Cystic fibrosis airway secretions exhibit mucin hyperconcentration and increased osmotic pressure. J Clin Invest 2014; 124:3047-60. [PMID: 24892808 DOI: 10.1172/jci73469] [Citation(s) in RCA: 263] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The pathogenesis of mucoinfective lung disease in cystic fibrosis (CF) patients likely involves poor mucus clearance. A recent model of mucus clearance predicts that mucus flow depends on the relative mucin concentration of the mucus layer compared with that of the periciliary layer; however, mucin concentrations have been difficult to measure in CF secretions. Here, we have shown that the concentration of mucin in CF sputum is low when measured by immunologically based techniques, and mass spectrometric analyses of CF mucins revealed mucin cleavage at antibody recognition sites. Using physical size exclusion chromatography/differential refractometry (SEC/dRI) techniques, we determined that mucin concentrations in CF secretions were higher than those in normal secretions. Measurements of partial osmotic pressures revealed that the partial osmotic pressure of CF sputum and the retained mucus in excised CF lungs were substantially greater than the partial osmotic pressure of normal secretions. Our data reveal that mucin concentration cannot be accurately measured immunologically in proteolytically active CF secretions; mucins are hyperconcentrated in CF secretions; and CF secretion osmotic pressures predict mucus layer-dependent osmotic compression of the periciliary liquid layer in CF lungs. Consequently, mucin hypersecretion likely produces mucus stasis, which contributes to key infectious and inflammatory components of CF lung disease.
Collapse
|
257
|
Development of an ex vivo porcine lung model for studying growth, virulence, and signaling of Pseudomonas aeruginosa. Infect Immun 2014; 82:3312-23. [PMID: 24866798 PMCID: PMC4136229 DOI: 10.1128/iai.01554-14] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Research into chronic infection by bacterial pathogens, such as Pseudomonas aeruginosa, uses various in vitro and live host models. While these have increased our understanding of pathogen growth, virulence, and evolution, each model has certain limitations. In vitro models cannot recapitulate the complex spatial structure of host organs, while experiments on live hosts are limited in terms of sample size and infection duration for ethical reasons; live mammal models also require specialized facilities which are costly to run. To address this, we have developed an ex vivo pig lung (EVPL) model for quantifying Pseudomonas aeruginosa growth, quorum sensing (QS), virulence factor production, and tissue damage in an environment that mimics a chronically infected cystic fibrosis (CF) lung. In a first test of our model, we show that lasR mutants, which do not respond to 3-oxo-C12-homoserine lactone (HSL)-mediated QS, exhibit reduced virulence factor production in EVPL. We also show that lasR mutants grow as well as or better than a corresponding wild-type strain in EVPL. lasR mutants frequently and repeatedly arise during chronic CF lung infection, but the evolutionary forces governing their appearance and spread are not clear. Our data are not consistent with the hypothesis that lasR mutants act as social “cheats” in the lung; rather, our results support the hypothesis that lasR mutants are more adapted to the lung environment. More generally, this model will facilitate improved studies of microbial disease, especially studies of how cells of the same and different species interact in polymicrobial infections in a spatially structured environment.
Collapse
|
258
|
Calle EA, Ghaedi M, Sundaram S, Sivarapatna A, Tseng MK, Niklason LE. Strategies for whole lung tissue engineering. IEEE Trans Biomed Eng 2014; 61:1482-96. [PMID: 24691527 PMCID: PMC4126648 DOI: 10.1109/tbme.2014.2314261] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Recent work has demonstrated the feasibility of using decellularized lung extracellular matrix scaffolds to support the engineering of functional lung tissue in vitro. Rendered acellular through the use of detergents and other reagents, the scaffolds are mounted in organ-specific bioreactors where cells in the scaffold are provided with nutrients and appropriate mechanical stimuli such as ventilation and perfusion. Though initial studies are encouraging, a great deal remains to be done to advance the field and transition from rodent lungs to whole human tissue engineered lungs. To do so, a variety of hurdles must be overcome. In particular, a reliable source of human-sized scaffolds, as well as a method of terminal sterilization of scaffolds, must be identified. Continued research in lung cell and developmental biology will hopefully help identify the number and types of cells that will be required to regenerate functional lung tissue. Finally, bioreactor designs must be improved in order to provide more precise ventilation stimuli and vascular perfusion in order to avoid injury to or death of the cells cultivated within the scaffold. Ultimately, the success of efforts to engineer a functional lung in vitro will critically depend on the ability to create a fully endothelialized vascular network that provides sufficient barrier function and alveolar-capillary surface area to exchange gas at rates compatible with healthy lung function.
Collapse
Affiliation(s)
- Elizabeth A. Calle
- Department of Biomedical Engineering, Yale University, New Haven, CT 06519 USA
| | - Mahboobe Ghaedi
- Department of Anesthesia, Yale University, New Haven, CT 06519 USA
| | - Sumati Sundaram
- Department of Anesthesia, Yale University, New Haven, CT 06519 USA
| | - Amogh Sivarapatna
- Department of Biomedical Engineering, Yale University, New Haven, CT 06519 USA
| | - Michelle K. Tseng
- Department of Biomedical Engineering, Yale University, New Haven, CT 06519 USA
| | - Laura E. Niklason
- Department of Anesthesia and Department of Biomedical Engineering, Yale University, New Haven, CT 06519 USA
| |
Collapse
|
259
|
Sun X, Olivier AK, Yi Y, Pope CE, Hayden HS, Liang B, Sui H, Zhou W, Hager KR, Zhang Y, Liu X, Yan Z, Fisher JT, Keiser NW, Song Y, Tyler SR, Goeken JA, Kinyon JM, Radey MC, Fligg D, Wang X, Xie W, Lynch TJ, Kaminsky PM, Brittnacher MJ, Miller SI, Parekh K, Meyerholz DK, Hoffman LR, Frana T, Stewart ZA, Engelhardt JF. Gastrointestinal pathology in juvenile and adult CFTR-knockout ferrets. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:1309-1322. [PMID: 24637292 PMCID: PMC4005986 DOI: 10.1016/j.ajpath.2014.01.035] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 01/27/2014] [Accepted: 01/30/2014] [Indexed: 02/07/2023]
Abstract
Cystic fibrosis (CF) is a multiorgan disease caused by loss of a functional cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel in many epithelia of the body. Here we report the pathology observed in the gastrointestinal organs of juvenile to adult CFTR-knockout ferrets. CF gastrointestinal manifestations included gastric ulceration, intestinal bacterial overgrowth with villous atrophy, and rectal prolapse. Metagenomic phylogenetic analysis of fecal microbiota by deep sequencing revealed considerable genotype-independent microbial diversity between animals, with the majority of taxa overlapping between CF and non-CF pairs. CF hepatic manifestations were variable, but included steatosis, necrosis, biliary hyperplasia, and biliary fibrosis. Gallbladder cystic mucosal hyperplasia was commonly found in 67% of CF animals. The majority of CF animals (85%) had pancreatic abnormalities, including extensive fibrosis, loss of exocrine pancreas, and islet disorganization. Interestingly, 2 of 13 CF animals retained predominantly normal pancreatic histology (84% to 94%) at time of death. Fecal elastase-1 levels from these CF animals were similar to non-CF controls, whereas all other CF animals evaluated were pancreatic insufficient (<2 μg elastase-1 per gram of feces). These findings suggest that genetic factors likely influence the extent of exocrine pancreas disease in CF ferrets and have implications for the etiology of pancreatic sufficiency in CF patients. In summary, these studies demonstrate that the CF ferret model develops gastrointestinal pathology similar to CF patients.
Collapse
Affiliation(s)
- Xingshen Sun
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa
| | | | - Yaling Yi
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa
| | - Christopher E Pope
- Department of Pediatrics, University of Washington, Seattle, Washington; Department of Microbiology, University of Washington, Seattle, Washington
| | - Hillary S Hayden
- Department of Microbiology, University of Washington, Seattle, Washington
| | - Bo Liang
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa
| | - Hongshu Sui
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa
| | - Weihong Zhou
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa
| | - Kyle R Hager
- Department of Microbiology, University of Washington, Seattle, Washington
| | - Yulong Zhang
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa
| | - Xiaoming Liu
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa
| | - Ziying Yan
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa
| | - John T Fisher
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa
| | - Nicholas W Keiser
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa
| | - Yi Song
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa
| | - Scott R Tyler
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa
| | - J Adam Goeken
- Department of Pathology, University of Iowa, Iowa City, Iowa
| | - Joann M Kinyon
- Department of Veterinary Diagnostic & Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa
| | - Matthew C Radey
- Department of Microbiology, University of Washington, Seattle, Washington
| | - Danielle Fligg
- Department of Veterinary Diagnostic & Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa
| | - Xiaoyan Wang
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa
| | - Weiliang Xie
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa
| | - Thomas J Lynch
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa
| | - Paul M Kaminsky
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa
| | | | - Samuel I Miller
- Department of Microbiology, University of Washington, Seattle, Washington; Department of Genome Sciences, University of Washington, Seattle, Washington; Department of Medicine, University of Washington, Seattle, Washington
| | - Kalpaj Parekh
- Department of Cardiothoracic Surgery, University of Iowa, Iowa City, Iowa
| | | | - Lucas R Hoffman
- Department of Pediatrics, University of Washington, Seattle, Washington; Department of Microbiology, University of Washington, Seattle, Washington
| | - Timothy Frana
- Department of Veterinary Diagnostic & Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa
| | - Zoe A Stewart
- Department of Surgery, University of Iowa, Iowa City, Iowa
| | - John F Engelhardt
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa.
| |
Collapse
|
260
|
Wang Y, Wrennall JA, Cai Z, Li H, Sheppard DN. Understanding how cystic fibrosis mutations disrupt CFTR function: from single molecules to animal models. Int J Biochem Cell Biol 2014; 52:47-57. [PMID: 24727426 DOI: 10.1016/j.biocel.2014.04.001] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 04/01/2014] [Accepted: 04/02/2014] [Indexed: 12/21/2022]
Abstract
Defective epithelial ion transport is the hallmark of the life-limiting genetic disease cystic fibrosis (CF). This abnormality is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), the ATP-binding cassette transporter that functions as a ligand-gated anion channel. Since the identification of the CFTR gene, almost 2000 disease-causing mutations associated with a spectrum of clinical phenotypes have been reported, but the majority remain poorly characterised. Studies of a small number of mutations including the most common, F508del-CFTR, have identified six general mechanisms of CFTR dysfunction. Here, we review selectively progress to understand how CF mutations disrupt CFTR processing, stability and function. We explore CFTR structure and function to explain the molecular mechanisms of CFTR dysfunction and highlight new knowledge of disease pathophysiology emerging from large animal models of CF. Understanding CFTR dysfunction is crucial to the development of transformational therapies for CF patients.
Collapse
Affiliation(s)
- Yiting Wang
- School of Physiology and Pharmacology, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Joe A Wrennall
- School of Physiology and Pharmacology, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Zhiwei Cai
- School of Physiology and Pharmacology, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Hongyu Li
- School of Physiology and Pharmacology, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - David N Sheppard
- School of Physiology and Pharmacology, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK.
| |
Collapse
|
261
|
Davis BT, Wang XJ, Rohret JA, Struzynski JT, Merricks EP, Bellinger DA, Rohret FA, Nichols TC, Rogers CS. Targeted disruption of LDLR causes hypercholesterolemia and atherosclerosis in Yucatan miniature pigs. PLoS One 2014; 9:e93457. [PMID: 24691380 PMCID: PMC3972179 DOI: 10.1371/journal.pone.0093457] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 03/05/2014] [Indexed: 01/18/2023] Open
Abstract
Recent progress in engineering the genomes of large animals has spurred increased interest in developing better animal models for diseases where current options are inadequate. Here, we report the creation of Yucatan miniature pigs with targeted disruptions of the low-density lipoprotein receptor (LDLR) gene in an effort to provide an improved large animal model of familial hypercholesterolemia and atherosclerosis. Yucatan miniature pigs are well established as translational research models because of similarities to humans in physiology, anatomy, genetics, and size. Using recombinant adeno-associated virus-mediated gene targeting and somatic cell nuclear transfer, male and female LDLR+/− pigs were generated. Subsequent breeding of heterozygotes produced LDLR−/− pigs. When fed a standard swine diet (low fat, no cholesterol), LDLR+/− pigs exhibited a moderate, but consistent increase in total and LDL cholesterol, while LDLR−/− pigs had considerably elevated levels. This severe hypercholesterolemia in homozygote animals resulted in atherosclerotic lesions in the coronary arteries and abdominal aorta that resemble human atherosclerosis. These phenotypes were more severe and developed over a shorter time when fed a diet containing natural sources of fat and cholesterol. LDLR-targeted Yucatan miniature pigs offer several advantages over existing large animal models including size, consistency, availability, and versatility. This new model of cardiovascular disease could be an important resource for developing and testing novel detection and treatment strategies for coronary and aortic atherosclerosis and its complications.
Collapse
Affiliation(s)
- Bryan T. Davis
- Exemplar Genetics, Coralville, Iowa, United States of America
| | - Xiao-Jun Wang
- Exemplar Genetics, Coralville, Iowa, United States of America
| | - Judy A. Rohret
- Exemplar Genetics, Coralville, Iowa, United States of America
| | | | - Elizabeth P. Merricks
- Departments of Medicine and Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Dwight A. Bellinger
- Departments of Medicine and Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Frank A. Rohret
- Exemplar Genetics, Coralville, Iowa, United States of America
| | - Timothy C. Nichols
- Departments of Medicine and Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | | |
Collapse
|
262
|
Ehre C, Ridley C, Thornton DJ. Cystic fibrosis: an inherited disease affecting mucin-producing organs. Int J Biochem Cell Biol 2014; 52:136-45. [PMID: 24685676 DOI: 10.1016/j.biocel.2014.03.011] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 02/28/2014] [Accepted: 03/17/2014] [Indexed: 02/01/2023]
Abstract
Our current understanding of cystic fibrosis (CF) has revealed that the biophysical properties of mucus play a considerable role in the pathogenesis of the disease in view of the fact that most mucus-producing organs are affected in CF patients. In this review, we discuss the potential causal relationship between altered cystic fibrosis transmembrane conductance regulator (CFTR) function and the production of mucus with abnormal biophysical properties in the intestine and lungs, highlighting what has been learned from cell cultures and animal models that mimic CF pathogenesis. A similar cascade of events, including mucus obstruction, infection and inflammation, is common to all epithelia affected by impaired surface hydration. Hence, the main structural components of mucus, namely the polymeric, gel-forming mucins, are critical to the onset of the disease. Defective CFTR leads to epithelial surface dehydration, altered pH/electrolyte composition and mucin concentration. Further, it can influence mucin transition from the intracellular to extracellular environment, potentially resulting in aberrant mucus gel formation. While defective HCO3(-) production has long been identified as a feature of CF, it has only recently been considered as a key player in the transition phase of mucins. We conclude by examining the influence of mucins on the biophysical properties of CF sputum and discuss existing and novel therapies aimed at removing mucus from the lungs. This article is part of a Directed Issue entitled: Cystic Fibrosis: From o-mics to cell biology, physiology, and therapeutic advances.
Collapse
Affiliation(s)
- Camille Ehre
- CF/Pulmonary Research & Treatment Centre, The University of North Carolina at Chapel Hill, USA.
| | - Caroline Ridley
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, UK
| | - David J Thornton
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, UK
| |
Collapse
|
263
|
Jones CJ, Newsom D, Kelly B, Irie Y, Jennings LK, Xu B, Limoli DH, Harrison JJ, Parsek MR, White P, Wozniak DJ. ChIP-Seq and RNA-Seq reveal an AmrZ-mediated mechanism for cyclic di-GMP synthesis and biofilm development by Pseudomonas aeruginosa. PLoS Pathog 2014; 10:e1003984. [PMID: 24603766 PMCID: PMC3946381 DOI: 10.1371/journal.ppat.1003984] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Accepted: 01/23/2014] [Indexed: 11/28/2022] Open
Abstract
The transcription factor AmrZ regulates genes important for P. aeruginosa virulence, including type IV pili, extracellular polysaccharides, and the flagellum; however, the global effect of AmrZ on gene expression remains unknown, and therefore, AmrZ may directly regulate many additional genes that are crucial for infection. Compared to the wild type strain, a ΔamrZ mutant exhibits a rugose colony phenotype, which is commonly observed in variants that accumulate the intracellular second messenger cyclic diguanylate (c-di-GMP). Cyclic di-GMP is produced by diguanylate cyclases (DGC) and degraded by phosphodiesterases (PDE). We hypothesized that AmrZ limits the intracellular accumulation of c-di-GMP through transcriptional repression of gene(s) encoding a DGC. In support of this, we observed elevated c-di-GMP in the ΔamrZ mutant compared to the wild type strain. Consistent with other strains that accumulate c-di-GMP, when grown as a biofilm, the ΔamrZ mutant formed larger microcolonies than the wild-type strain. This enhanced biofilm formation was abrogated by expression of a PDE. To identify potential target DGCs, a ChIP-Seq was performed and identified regions of the genome that are bound by AmrZ. RNA-Seq experiments revealed the entire AmrZ regulon, and characterized AmrZ as an activator or repressor at each binding site. We identified an AmrZ-repressed DGC-encoding gene (PA4843) from this cohort, which we named AmrZ dependent cyclase A (adcA). PAO1 overexpressing adcA accumulates 29-fold more c-di-GMP than the wild type strain, confirming the cyclase activity of AdcA. In biofilm reactors, a ΔamrZ ΔadcA double mutant formed smaller microcolonies than the single ΔamrZ mutant, indicating adcA is responsible for the hyper biofilm phenotype of the ΔamrZ mutant. This study combined the techniques of ChIP-Seq and RNA-Seq to define the comprehensive regulon of a bifunctional transcriptional regulator. Moreover, we identified a c-di-GMP mediated mechanism for AmrZ regulation of biofilm formation and chronicity. Pathogenic bacteria such as Pseudomonas aeruginosa utilize a wide variety of systems to sense and respond to the changing conditions during an infection. When a stress is sensed, signals are transmitted to impact expression of many genes that allow the bacterium to adapt to the changing conditions. AmrZ is a protein that regulates production of several virulence-associated gene products, though we predicted that its role in virulence was more expansive than previously described. Transcription factors such as AmrZ often affect the expression of a gene by binding and promoting or inhibiting expression of the target gene. Two global techniques were utilized to determine where AmrZ binds in the genome, and what effect AmrZ has once bound. This approach revealed that AmrZ represses the production of a signaling molecule called cyclic diguanylate, which is known to induce the formation of difficult to treat communities of bacteria called biofilms. This study also identified many novel targets of AmrZ to promote future studies of this regulator. Collectively, these data can be utilized to develop treatments to inhibit biofilm formation during devastating chronic infections.
Collapse
Affiliation(s)
- Christopher J. Jones
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, California, United States of America
- Department of Infection and Immunity and Center for Microbial Interface Biology, Ohio State University, Columbus, Ohio, United States of America
| | - David Newsom
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Benjamin Kelly
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Yasuhiko Irie
- Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath, United Kingdom
| | - Laura K. Jennings
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Binjie Xu
- Department of Microbiology, Ohio State University, Columbus, Ohio, United States of America
| | - Dominique H. Limoli
- Department of Infection and Immunity and Center for Microbial Interface Biology, Ohio State University, Columbus, Ohio, United States of America
| | - Joe J. Harrison
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Matthew R. Parsek
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Peter White
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Daniel J. Wozniak
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, California, United States of America
- Department of Microbiology, Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
264
|
Early cystic fibrosis lung disease: Role of airway surface dehydration and lessons from preventive rehydration therapies in mice. Int J Biochem Cell Biol 2014; 52:174-9. [PMID: 24561284 DOI: 10.1016/j.biocel.2014.02.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 02/07/2014] [Accepted: 02/10/2014] [Indexed: 02/04/2023]
Abstract
Cystic fibrosis (CF) lung disease starts in the first months of life and remains one of the most common fatal hereditary diseases. Early therapeutic interventions may provide an opportunity to prevent irreversible lung damage and improve outcome. Airway surface dehydration is a key disease mechanism in CF, however, its role in the in vivo pathogenesis and as therapeutic target in early lung disease remains poorly understood. Mice with airway-specific overexpression of the epithelial Na(+) channel (βENaC-Tg) recapitulate airway surface dehydration and phenocopy CF lung disease. Recent studies in neonatal βENaC-Tg mice demonstrated that airway surface dehydration produces early mucus plugging in the absence of mucus hypersecretion, which triggers airway inflammation, promotes bacterial infection and causes early mortality. Preventive rehydration therapy with hypertonic saline or amiloride effectively reduced mucus plugging and mortality in neonatal βENaC-Tg mice. These results support clinical testing of preventive/early rehydration strategies in infants and young children with CF.
Collapse
|
265
|
Berkebile AR, McCray PB. Effects of airway surface liquid pH on host defense in cystic fibrosis. Int J Biochem Cell Biol 2014; 52:124-9. [PMID: 24560894 DOI: 10.1016/j.biocel.2014.02.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 02/01/2014] [Accepted: 02/11/2014] [Indexed: 01/27/2023]
Abstract
Cystic fibrosis is a lethal genetic disorder characterized by viscous mucus and bacterial colonization of the airways. Airway surface liquid represents a first line of pulmonary defense. Studies in humans and animal models of cystic fibrosis indicate that the pH of airway surface liquid is reduced in the absence of cystic fibrosis transmembrane conductance regulator function. Many aspects of the innate host defense system of the airways are pH sensitive, including antimicrobial peptide/protein activity, the rheological properties of secreted mucins, mucociliary clearance, and the activity of proteases. This review will focus on how changes in airway surface liquid pH may contribute to the host defense defect in cystic fibrosis soon after birth. Understanding how changes in pH impact mucosal immunity may lead to new therapies that can modify the airway surface liquid environment, improve airway defenses, and alter the disease course.
Collapse
Affiliation(s)
- Abigail R Berkebile
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Paul B McCray
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
266
|
Adam RJ, Michalski AS, Bauer C, Abou Alaiwa MH, Gross TJ, Awadalla MS, Bouzek DC, Gansemer ND, Taft PJ, Hoegger MJ, Diwakar A, Ochs M, Reinhardt JM, Hoffman EA, Beichel RR, Meyerholz DK, Stoltz DA. Air trapping and airflow obstruction in newborn cystic fibrosis piglets. Am J Respir Crit Care Med 2014; 188:1434-41. [PMID: 24168209 DOI: 10.1164/rccm.201307-1268oc] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
RATIONALE Air trapping and airflow obstruction are being increasingly identified in infants with cystic fibrosis. These findings are commonly attributed to airway infection, inflammation, and mucus buildup. OBJECTIVES To learn if air trapping and airflow obstruction are present before the onset of airway infection and inflammation in cystic fibrosis. METHODS On the day they are born, piglets with cystic fibrosis lack airway infection and inflammation. Therefore, we used newborn wild-type piglets and piglets with cystic fibrosis to assess air trapping, airway size, and lung volume with inspiratory and expiratory X-ray computed tomography scans. Micro-computed tomography scanning was used to assess more distal airway sizes. Airway resistance was determined with a mechanical ventilator. Mean linear intercept and alveolar surface area were determined using stereologic methods. MEASUREMENTS AND MAIN RESULTS On the day they were born, piglets with cystic fibrosis exhibited air trapping more frequently than wild-type piglets (75% vs. 12.5%, respectively). Moreover, newborn piglets with cystic fibrosis had increased airway resistance that was accompanied by luminal size reduction in the trachea, mainstem bronchi, and proximal airways. In contrast, mean linear intercept length, alveolar surface area, and lung volume were similar between both genotypes. CONCLUSIONS The presence of air trapping, airflow obstruction, and airway size reduction in newborn piglets with cystic fibrosis before the onset of airway infection, inflammation, and mucus accumulation indicates that cystic fibrosis impacts airway development. Our findings suggest that early airflow obstruction and air trapping in infants with cystic fibrosis might, in part, be caused by congenital airway abnormalities.
Collapse
|
267
|
Noninvasive imaging of Staphylococcus aureus infections with a nuclease-activated probe. Nat Med 2014; 20:301-6. [PMID: 24487433 PMCID: PMC3949172 DOI: 10.1038/nm.3460] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 04/26/2013] [Indexed: 12/21/2022]
Abstract
Technologies that enable the rapid detection and localization of bacterial infections in living animals could address an unmet need for infectious disease diagnostics. We describe a molecular imaging approach for the specific, non-invasive detection of S. aureus based on the activity of its secreted nuclease, micrococcal nuclease (MN). Several short, synthetic oligonucleotides, rendered resistant to mammalian serum nucleases by various chemical modifications, flanked with a fluorophore and quencher, were activated upon degradation by recombinant MN and in S. aureus culture supernatants. A probe consisting of a pair of deoxythymidines flanked by several 2′-O-methyl-modified nucleotides was activated in culture supernatants of S. aureus but not in culture supernatants of several other pathogenic bacteria. Systemic administration of this probe to mice bearing bioluminescent S. aureus muscle infections resulted in probe activation at the infection sites in an MN-dependent manner. This novel bacterial imaging approach has potential clinical applicability for S. aureus and several other medically significant pathogens.
Collapse
|
268
|
Portulano C, Paroder-Belenitsky M, Carrasco N. The Na+/I- symporter (NIS): mechanism and medical impact. Endocr Rev 2014; 35:106-49. [PMID: 24311738 PMCID: PMC3895864 DOI: 10.1210/er.2012-1036] [Citation(s) in RCA: 199] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 10/11/2013] [Indexed: 12/26/2022]
Abstract
The Na(+)/I(-) symporter (NIS) is the plasma membrane glycoprotein that mediates active I(-) transport in the thyroid and other tissues, such as salivary glands, stomach, lactating breast, and small intestine. In the thyroid, NIS-mediated I(-) uptake plays a key role as the first step in the biosynthesis of the thyroid hormones, of which iodine is an essential constituent. These hormones are crucial for the development of the central nervous system and the lungs in the fetus and the newborn and for intermediary metabolism at all ages. Since the cloning of NIS in 1996, NIS research has become a major field of inquiry, with considerable impact on many basic and translational areas. In this article, we review the most recent findings on NIS, I(-) homeostasis, and related topics and place them in historical context. Among many other issues, we discuss the current outlook on iodide deficiency disorders, the present stage of understanding of the structure/function properties of NIS, information gleaned from the characterization of I(-) transport deficiency-causing NIS mutations, insights derived from the newly reported crystal structures of prokaryotic transporters and 3-dimensional homology modeling, and the novel discovery that NIS transports different substrates with different stoichiometries. A review of NIS regulatory mechanisms is provided, including a newly discovered one involving a K(+) channel that is required for NIS function in the thyroid. We also cover current and potential clinical applications of NIS, such as its central role in the treatment of thyroid cancer, its promising use as a reporter gene in imaging and diagnostic procedures, and the latest studies on NIS gene transfer aimed at extending radioiodide treatment to extrathyroidal cancers, including those involving specially engineered NIS molecules.
Collapse
Affiliation(s)
- Carla Portulano
- Department of Molecular and Cellular Physiology (C.P., N.C.), Yale University School of Medicine, New Haven, Connecticut 06510; and Department of Molecular Pharmacology (M.P.-B.), Albert Einstein College of Medicine, Bronx, New York 10469
| | | | | |
Collapse
|
269
|
Assessing mucociliary transport of single particles in vivo shows variable speed and preference for the ventral trachea in newborn pigs. Proc Natl Acad Sci U S A 2014; 111:2355-60. [PMID: 24474805 DOI: 10.1073/pnas.1323633111] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mucociliary transport (MCT) is an innate defense mechanism that removes particulates, noxious material, and microorganisms from the lung. Several airway diseases exhibit abnormal MCT, including asthma, chronic bronchitis, and cystic fibrosis. However, it remains uncertain whether MCT abnormalities contribute to the genesis of disease or whether they are secondary manifestations that may fuel disease progression. Limitations of current MCT assays and of current animal models of human disease have hindered progress in addressing these questions. Therefore, we developed an in vivo assay of MCT, and here we describe its use in newborn wild-type pigs. We studied pigs because they share many physiological, biochemical, and anatomical features with humans and can model several human diseases. We used X-ray multidetector-row-computed tomography to track movement of individual particles in the large airways of newborn pigs. Multidetector-row-computed tomography imaging provided high spatial and temporal resolution and registration of particle position to airway anatomy. We discovered that cilia orientation directs particles to the ventral tracheal surface. We also observed substantial heterogeneity in the rate of individual particle movement, and we speculate that variations in mucus properties may be responsible. The increased granularity of MCT data provided by this assay may provide an opportunity to better understand host defense mechanisms and the pathogenesis of airway disease.
Collapse
|
270
|
Lovewell RR, Patankar YR, Berwin B. Mechanisms of phagocytosis and host clearance of Pseudomonas aeruginosa. Am J Physiol Lung Cell Mol Physiol 2014; 306:L591-603. [PMID: 24464809 DOI: 10.1152/ajplung.00335.2013] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic bacterial pathogen responsible for a high incidence of acute and chronic pulmonary infection. These infections are particularly prevalent in patients with chronic obstructive pulmonary disease and cystic fibrosis: much of the morbidity and pathophysiology associated with these diseases is due to a hypersusceptibility to bacterial infection. Innate immunity, primarily through inflammatory cytokine production, cellular recruitment, and phagocytic clearance by neutrophils and macrophages, is the key to endogenous control of P. aeruginosa infection. In this review, we highlight recent advances toward understanding the innate immune response to P. aeruginosa, with a focus on the role of phagocytes in control of P. aeruginosa infection. Specifically, we summarize the cellular and molecular mechanisms of phagocytic recognition and uptake of P. aeruginosa, and how current animal models of P. aeruginosa infection reflect clinical observations in the context of phagocytic clearance of the bacteria. Several notable phenotypic changes to the bacteria are consistently observed during chronic pulmonary infections, including changes to mucoidy and flagellar motility, that likely enable or reflect their ability to persist. These traits are likewise examined in the context of how the bacteria avoid phagocytic clearance, inflammation, and sterilizing immunity.
Collapse
Affiliation(s)
- Rustin R Lovewell
- Dept. of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, 1 Medical Center Dr., Lebanon, NH 03756.
| | | | | |
Collapse
|
271
|
Abou Alaiwa MH, Beer AM, Pezzulo AA, Launspach JL, Horan RA, Stoltz DA, Starner TD, Welsh MJ, Zabner J. Neonates with cystic fibrosis have a reduced nasal liquid pH; a small pilot study. J Cyst Fibros 2014; 13:373-7. [PMID: 24418186 DOI: 10.1016/j.jcf.2013.12.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 12/11/2013] [Accepted: 12/12/2013] [Indexed: 10/25/2022]
Abstract
BACKGROUND Disrupted HCO3(-) transport and reduced airway surface liquid (ASL) pH in cystic fibrosis (CF) may initiate airway disease. We hypothesized that ASL pH is reduced in neonates with CF. METHODS In neonates with and without CF, we measured pH of nasal ASL. We also measured nasal pH in older children and adults. RESULTS In neonates with CF, nasal ASL (pH5.2 ± 0.3) was more acidic than in non-CF neonates (pH6.4 ± 0.2). In contrast, nasal pH of CF children and adults was similar to values measured in people without CF. CONCLUSIONS At an age when infection, inflammation and airway wall remodeling are minimal, neonates with CF had an acidic nasal ASL compared to babies without CF. The CF:non-CF pH difference disappeared in older individuals, perhaps because secondary manifestations of disease increase ASL pH. These results aid understanding of CF pathogenesis and suggest opportunities for therapeutic intervention and monitoring of disease.
Collapse
Affiliation(s)
- Mahmoud H Abou Alaiwa
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Alison M Beer
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Alejandro A Pezzulo
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Janice L Launspach
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Rebecca A Horan
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - David A Stoltz
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Timothy D Starner
- Department of Pediatrics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Michael J Welsh
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Howard Hughes Medical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | - Joseph Zabner
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
272
|
Becker KA, Henry B, Ziobro R, Riethmüller J, Gulbins E. Lipids in cystic fibrosis. Expert Rev Respir Med 2014; 5:527-35. [DOI: 10.1586/ers.11.36] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
273
|
Venkatakrishnan V, Packer NH, Thaysen-Andersen M. Host mucin glycosylation plays a role in bacterial adhesion in lungs of individuals with cystic fibrosis. Expert Rev Respir Med 2014; 7:553-76. [DOI: 10.1586/17476348.2013.837752] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
274
|
Abstract
Airway remodeling comprises the structural changes of airway walls, induced by repeated injury and repair processes. It is characterized by the changes of tissue, cellular, and molecular composition, affecting airway smooth muscle, epithelium, blood vessels, and extracellular matrix. It occurs in patients with chronic inflammatory airway diseases such as asthma, COPD, bronchiectasis, and cystic fibrosis. Airway remodeling is arguably one of the most intractable problems in these diseases, leading to irreversible loss of lung function. Current therapeutics can ameliorate inflammation, but there is no available therapy proven to prevent or reverse airway remodeling, although reversibility of airway remodeling is suggested by studies in animal models of disease. Airway remodeling is often considered the result of longstanding airway inflammation, but it may be present to an equivalent degree in the airways of children with asthma, raising the necessity for early and specific therapeutic interventions. In this review, we consider the factors that may contribute to airway remodeling and discuss the current and potential therapeutic interventions.
Collapse
Affiliation(s)
- Nobuaki Hirota
- Meakins-Christie Laboratories, Department of Medicine, McGill University, Montreal, QC, Canada
| | - James G Martin
- Meakins-Christie Laboratories, Department of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
275
|
Teague WG. Trouble from the Start: Airway Structural Anomalies Present at Birth in the Cystic Fibrosis Piglet. Am J Respir Crit Care Med 2013; 188:1391-2. [DOI: 10.1164/rccm.201311-1941ed] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
276
|
Early airway structural changes in cystic fibrosis pigs as a determinant of particle distribution and deposition. Ann Biomed Eng 2013; 42:915-27. [PMID: 24310865 DOI: 10.1007/s10439-013-0955-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 11/26/2013] [Indexed: 10/25/2022]
Abstract
The pathogenesis of cystic fibrosis (CF) airway disease is not well understood. A porcine CF model was recently generated, and these animals develop lung disease similar to humans with CF. At birth, before infection and inflammation, CF pigs have airways that are irregularly shaped and have a reduced caliber compared to non-CF pigs. We hypothesized that these airway structural abnormalities affect airflow patterns and particle distribution. To test this hypothesis we used computational fluid dynamics (CFD) on airway geometries obtained by computed tomography of newborn non-CF and CF pigs. For the same flow rate, newborn CF pig airways exhibited higher air velocity and resistance compared to non-CF. Moreover we found that, at the carina bifurcation, particles greater than 5-μm preferably distributed to the right CF lung despite almost equal airflow ventilation in non-CF and CF. CFD modeling also predicted that deposition efficiency was greater in CF compared to non-CF for 5- and 10-μm particles. These differences were most significant in the airways included in the geometry supplying the right caudal, right accessory, left caudal, and left cranial lobes. The irregular particle distribution and increased deposition in newborn CF pig airways suggest that early airway structural abnormalities might contribute to CF disease pathogenesis.
Collapse
|
277
|
Wong JK, Ranganathan SC, Hart E. Staphylococcus aureus in early cystic fibrosis lung disease. Pediatr Pulmonol 2013; 48:1151-9. [PMID: 23970476 DOI: 10.1002/ppul.22863] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 06/29/2013] [Indexed: 01/04/2023]
Abstract
Staphylococcus aureus: is a common bacterial organism infecting children with cystic fibrosis (CF). Emerging evidence suggests early lower airway infection with this organism in young children with CF results in the deterioration of lung function, poorer nutrition parameters and heightens the airway inflammatory response. Despite contributing significantly to the burden of early lung disease among this group, there are ongoing controversies in the management of S. aureus infection, and gaps in our understanding of exactly how this organism causes lung disease. To reduce the morbidity and mortality of early infection ongoing research is needed to: (i) understand the early host immune response that enables this pathogen to reside within the CF lung; (ii) determine if there are organism specific factors that are associated with CF lung disease; and (iii) clarify the utility of anti-staphylococcal antibiotic prophylaxis and/or eradication in the treatment of this patient population.
Collapse
Affiliation(s)
- John K Wong
- Department of Respiratory Medicine, Royal Children's Hospital, Melbourne, Australia; Murdoch Childrens Research Institute, Melbourne, Australia
| | | | | | | |
Collapse
|
278
|
Chang EH. New insights into the pathogenesis of cystic fibrosis sinusitis. Int Forum Allergy Rhinol 2013; 4:132-7. [PMID: 24282147 DOI: 10.1002/alr.21252] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 10/11/2013] [Accepted: 10/15/2013] [Indexed: 12/19/2022]
Abstract
BACKGROUND People with cystic fibrosis (CF) sinus disease have developmental sinus abnormalities with airway bacterial infection, inflammation, impaired mucociliary clearance and thick obstructive mucus. The pathophysiology of airway disease in CF is not completely understood, and current treatments in CF sinus disease ameliorate symptoms but do not provide a cure. METHODS This manuscript reviews the history of CF, its manifestations in sinus disease, and the potential impact and relationship of CF on the upper and lower airway. RESULTS There is increasing evidence that CF sinus disease may affect CF lung disease, the most common cause of mortality in CF. We have been limited in treating the symptoms of advanced CF sinus disease with our current therapies. CONCLUSIONS Recent discoveries in the pathophysiology of CF using the CF porcine animal model and exciting treatments that address the primary gene defect that may translate into improved outcomes in CF and non-CF sinusitis in humans.
Collapse
Affiliation(s)
- Eugene H Chang
- Department of Otolaryngology-Head and Neck Surgery, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA
| |
Collapse
|
279
|
Griffin MA, Restrepo MS, Abu-El-Haija M, Wallen T, Buchanan E, Rokhlina T, Chen YH, McCray PB, Davidson BL, Divekar A, Uc A. A novel gene delivery method transduces porcine pancreatic duct epithelial cells. Gene Ther 2013; 21:123-30. [PMID: 24257348 PMCID: PMC3946305 DOI: 10.1038/gt.2013.62] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Revised: 08/17/2013] [Accepted: 09/27/2013] [Indexed: 01/02/2023]
Abstract
Gene therapy offers the possibility to treat pancreatic disease in Cystic Fibrosis (CF), caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene; however gene transfer to the pancreas is untested in humans. The pancreatic disease phenotype is very similar between humans and pigs with CF, thus CF pigs create an excellent opportunity to study gene transfer to the pancreas. There are no studies showing efficient transduction of pig pancreas with gene transfer vectors. Our objective is to develop a safe and efficient method to transduce wild-type (WT) porcine pancreatic ducts that express CFTR. We catheterized the umbilical artery of WT newborn pigs and delivered an adeno-associated virus serotype 9 vector expressing green fluorescent protein (AAV9CMV.sceGFP) or vehicle to the celiac artery, the vessel that supplies major branches to the pancreas. This technique resulted in stable and dose-dependent transduction of pancreatic duct epithelial cells that expressed CFTR. Intravenous injection of AAV9CMV.sceGFP did not transduce the pancreas. Our technique offers an opportunity to deliver the CFTR gene to the pancreas of CF pigs. The celiac artery can be accessed via umbilical artery in newborns and via femoral artery at older ages; delivery approaches which can be translated to humans.
Collapse
Affiliation(s)
- M A Griffin
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - M S Restrepo
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - M Abu-El-Haija
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - T Wallen
- Department of Otolaryngology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - E Buchanan
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - T Rokhlina
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Y H Chen
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - P B McCray
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - B L Davidson
- 1] Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA [2] Department of Neurology and Physiology & Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - A Divekar
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - A Uc
- 1] Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA [2] Department of Radiation Oncology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
280
|
Olivier AK, Naumann P, Goeken A, Hochstedler C, Sturm M, Rodgers JR, Gibson-Corley KN, Meyerholz DK. Genetically modified species in research: Opportunities and challenges for the histology core laboratory. J Histotechnol 2013; 35:63-67. [PMID: 22904582 DOI: 10.1179/2046023612y.0000000003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Translational research using animal models has traditionally involved genetically modified rodents; however there is increasing use of other novel genetically engineered species. As histology laboratories interface with researchers studying these novel species there will be many situations in which protocols will need to be adapted to the species, model and research goals. This paper gives examples of protocol adaptations to meet research needs and addresses common considerations that should be addressed for all research tissues submitted to the histotechnology laboratory. Positioning the histotechnologist, as well as the investigator, to meet the challenges associated with novel research models will help maximize research efficacy and quality.
Collapse
Affiliation(s)
- Alicia K Olivier
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, USA
| | | | | | | | | | | | | | | |
Collapse
|
281
|
Cao H, Machuca TN, Yeung JC, Wu J, Du K, Duan C, Hashimoto K, Linacre V, Coates AL, Leung K, Wang J, Yeger H, Cutz E, Liu M, Keshavjee S, Hu J. Efficient gene delivery to pig airway epithelia and submucosal glands using helper-dependent adenoviral vectors. MOLECULAR THERAPY-NUCLEIC ACIDS 2013; 2:e127. [PMID: 24104599 PMCID: PMC3890457 DOI: 10.1038/mtna.2013.55] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 08/02/2013] [Indexed: 11/09/2022]
Abstract
Airway gene delivery is a promising strategy to treat patients with life-threatening lung diseases such as cystic fibrosis (CF). However, this strategy has to be evaluated in large animal preclinical studies in order to translate it to human applications. Because of anatomic and physiological similarities between the human and pig lungs, we utilized pig as a large animal model to examine the safety and efficiency of airway gene delivery with helper-dependent adenoviral vectors. Helper-dependent vectors carrying human CFTR or reporter gene LacZ were aerosolized intratracheally into pigs under bronchoscopic guidance. We found that the LacZ reporter and hCFTR transgene products were efficiently expressed in lung airway epithelial cells. The transgene vectors with this delivery can also reach to submucosal glands. Moreover, the hCFTR transgene protein localized to the apical membrane of both ciliated and nonciliated epithelial cells, mirroring the location of wild-type CF transmembrane conductance regulator (CFTR). Aerosol delivery procedure was well tolerated by pigs without showing systemic toxicity based on the limited number of pigs tested. These results provide important insights into developing clinical strategies for human CF lung gene therapy.Molecular Therapy-Nucleic Acids (2013) 2, e127; doi:10.1038/mtna.2013.55; published online 8 October 2013.
Collapse
Affiliation(s)
- Huibi Cao
- Department of Physiology & Experimental Medicine, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
282
|
Hajighasemi-Ossareh M, Borthwell RM, Lachowicz-Scroggins M, Stevens JE, Finkbeiner WE, Widdicombe JH. Distribution and size of mucous glands in the ferret tracheobronchial tree. Anat Rec (Hoboken) 2013; 296:1768-74. [PMID: 24106034 DOI: 10.1002/ar.22783] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 06/19/2013] [Accepted: 06/26/2013] [Indexed: 12/14/2022]
Abstract
A transgenic ferret model of cystic fibrosis has recently been generated. It is probable that malfunction of airway mucous glands contributes significantly to the airway pathology of this disease. The usefulness of the ferret model may therefore depend in part on how closely the airway glands of ferrets resemble those of humans. Here, we show that in the ferret trachea glands are commonest in its most ventral aspect and disappear about half way up the lateral walls; they are virtually absent from the dorsal membranous portion. Further, the aggregate volume of glands per unit mucosal surface declines progressively by about 60% between the larynx and the carina. The average frequency of glands openings for the ferret trachea as a whole is only about one-fifth that in humans (where gland openings are found at approximately the same frequency throughout the trachea). Glands in the ferret trachea are on average about one-third the size of those in the human. Therefore, the aggregate volume of tracheal glands (per unit mucosal surface area) in the ferret is only about 6% that in humans. As in other mammalian species, airway glands in the ferret disappear at an airway internal diameter of ∼1 mm, corresponding approximately in this species to airway generation 6.
Collapse
|
283
|
Multicenter intestinal current measurements in rectal biopsies from CF and non-CF subjects to monitor CFTR function. PLoS One 2013; 8:e73905. [PMID: 24040112 PMCID: PMC3769519 DOI: 10.1371/journal.pone.0073905] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 07/23/2013] [Indexed: 11/30/2022] Open
Abstract
Intestinal current measurements (ICM) from rectal biopsies are a sensitive means to detect cystic fibrosis transmembrane conductance regulator (CFTR) function, but have not been optimized for multicenter use. We piloted multicenter standard operating procedures (SOPs) to detect CFTR activity by ICM and examined key questions for use in clinical trials. SOPs for ICM using human rectal biopsies were developed across three centers and used to characterize ion transport from non-CF and CF subjects (two severe CFTR mutations). All data were centrally evaluated by a blinded interpreter. SOPs were then used across four centers to examine the effect of cold storage on CFTR currents and compare CFTR currents in biopsies from one subject studied simultaneously either at two sites (24 hours post-biopsy) or when biopsies were obtained by either forceps or suction. Rectal biopsies from 44 non-CF and 17 CF subjects were analyzed. Mean differences (µA/cm2; 95% confidence intervals) between CF and non-CF were forskolin/IBMX=102.6(128.0 to 81.1), carbachol=96.3(118.7 to 73.9), forskolin/IBMX+carbachol=200.9(243.1 to 158.6), and bumetanide=-44.6 (-33.7 to -55.6) (P<0.005, CF vs non-CF for all parameters). Receiver Operating Characteristic curves indicated that each parameter discriminated CF from non-CF subjects (area under the curve of 0.94-0.98). CFTR dependent currents following 18-24 hours of cold storage for forskolin/IBMX, carbachol, and forskolin/IBMX+carbachol stimulation (n=17 non-CF subjects) were 44%, 47.5%, and 47.3%, respectively of those in fresh biopsies. CFTR-dependent currents from biopsies studied after cold storage at two sites simultaneously demonstrated moderate correlation (n=14 non-CF subjects, Pearson correlation coefficients 0.389, 0.484, and 0.533). Similar CFTR dependent currents were detected from fresh biopsies obtained by either forceps or suction (within-subject comparisons, n=22 biopsies from three non-CF subjects). Multicenter ICM is a feasible CFTR outcome measure that discriminates CF from non-CF ion transport, offers unique advantages over other CFTR bioassays, and warrants further development as a potential CFTR biomarker.
Collapse
|
284
|
Abstract
The clinical manifestations of cystic fibrosis (CF) result from dysfunction of the cystic fibrosis transmembrane regulator protein (CFTR). The majority of people with CF have a limited life span as a consequence of CFTR dysfunction in the respiratory tract. However, CFTR dysfunction in the gastrointestinal (GI) tract occurs earlier in ontogeny and is present in all patients, regardless of genotype. The same pathophysiologic triad of obstruction, infection, and inflammation that causes disease in the airways also causes disease in the intestines. This article describes the effects of CFTR dysfunction on the intestinal tissues and the intraluminal environment. Mouse models of CF have greatly advanced our understanding of the GI manifestations of CF, which can be directly applied to understanding CF disease in humans.
Collapse
Affiliation(s)
- Robert C De Lisle
- Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, Kansas 66160
| | | |
Collapse
|
285
|
Normal CFTR inhibits epidermal growth factor receptor-dependent pro-inflammatory chemokine production in human airway epithelial cells. PLoS One 2013; 8:e72981. [PMID: 23977375 PMCID: PMC3745379 DOI: 10.1371/journal.pone.0072981] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Accepted: 07/18/2013] [Indexed: 01/14/2023] Open
Abstract
Mutations in cystic fibrosis transmembrane conductance regulator (CFTR) protein cause cystic fibrosis, a disease characterized by exaggerated airway epithelial production of the neutrophil chemokine interleukin (IL)-8, which results in exuberant neutrophilic inflammation. Because activation of an epidermal growth factor receptor (EGFR) signaling cascade induces airway epithelial IL-8 production, we hypothesized that normal CFTR suppresses EGFR-dependent IL-8 production and that loss of CFTR at the surface exaggerates IL-8 production via activation of a pro-inflammatory EGFR cascade. We examined this hypothesis in human airway epithelial (NCI-H292) cells and in normal human bronchial epithelial (NHBE) cells containing normal CFTR treated with a CFTR-selective inhibitor (CFTR-172), and in human airway epithelial (IB3) cells containing mutant CFTR versus isogenic (C38) cells containing wild-type CFTR. In NCI-H292 cells, CFTR-172 induced IL-8 production EGFR-dependently. Pretreatment with an EGFR neutralizing antibody or the metalloprotease TACE inhibitor TAPI-1, or TACE siRNA knockdown prevented CFTR-172-induced EGFR phosphorylation (EGFR-P) and IL-8 production, implicating TACE-dependent EGFR pro-ligand cleavage in these responses. Pretreatment with neutralizing antibodies to IL-1R or to IL-1alpha, but not to IL-1beta, markedly suppressed CFTR-172-induced EGFR-P and IL-8 production, suggesting that binding of IL-1alpha to IL-1R stimulates a TACE-EGFR-IL-8 cascade. Similarly, in NHBE cells, CFTR-172 increased IL-8 production EGFR-, TACE-, and IL-1alpha/IL-1R-dependently. In IB3 cells, constitutive IL-8 production was markedly increased compared to C38 cells. EGFR-P was increased in IB3 cells compared to C38 cells, and exaggerated IL-8 production in the IB3 cells was EGFR-dependent. Activation of TACE and binding of IL-1alpha to IL-1R contributed to EGFR-P and IL-8 production in IB3 cells but not in C38 cells. Thus, we conclude that normal CFTR suppresses airway epithelial IL-8 production that occurs via a stimulatory EGFR cascade, and that loss of normal CFTR activity exaggerates IL-8 production via activation of a pro-inflammatory EGFR cascade.
Collapse
|
286
|
Harris WT, Kelly DR, Zhou Y, Wang D, MacEwen M, Hagood JS, Clancy JP, Ambalavanan N, Sorscher EJ. Myofibroblast differentiation and enhanced TGF-B signaling in cystic fibrosis lung disease. PLoS One 2013; 8:e70196. [PMID: 23950911 PMCID: PMC3741283 DOI: 10.1371/journal.pone.0070196] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 06/14/2013] [Indexed: 12/15/2022] Open
Abstract
Rationale TGF-β, a mediator of pulmonary fibrosis, is a genetic modifier of CF respiratory deterioration. The mechanistic relationship between TGF-β signaling and CF lung disease has not been determined. Objective To investigate myofibroblast differentiation in CF lung tissue as a novel pathway by which TGF-β signaling may contribute to pulmonary decline, airway remodeling and tissue fibrosis. Methods Lung samples from CF and non-CF subjects were analyzed morphometrically for total TGF-β1, TGF-β signaling (Smad2 phosphorylation), myofibroblast differentiation (α-smooth muscle actin), and collagen deposition (Masson trichrome stain). Results TGF-β signaling and fibrosis are markedly increased in CF (p<0.01), and the presence of myofibroblasts is four-fold higher in CF vs. normal lung tissue (p<0.005). In lung tissue with prominent TGF-β signaling, both myofibroblast differentiation and tissue fibrosis are significantly augmented (p<0.005). Conclusions These studies establish for the first time that a pathogenic mechanism described previously in pulmonary fibrosis is also prominent in cystic fibrosis lung disease. The presence of TGF-β dependent signaling in areas of prominent myofibroblast proliferation and fibrosis in CF suggests that strategies under development for other pro-fibrotic lung conditions may also be evaluated for use in CF.
Collapse
Affiliation(s)
- William T Harris
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
287
|
Rab A, Rowe SM, Raju SV, Bebok Z, Matalon S, Collawn JF. Cigarette smoke and CFTR: implications in the pathogenesis of COPD. Am J Physiol Lung Cell Mol Physiol 2013; 305:L530-41. [PMID: 23934925 DOI: 10.1152/ajplung.00039.2013] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a progressive respiratory disorder consisting of chronic bronchitis and/or emphysema. COPD patients suffer from chronic infections and display exaggerated inflammatory responses and a progressive decline in respiratory function. The respiratory symptoms of COPD are similar to those seen in cystic fibrosis (CF), although the molecular basis of the two disorders differs. CF is a genetic disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene encoding a chloride and bicarbonate channel (CFTR), leading to CFTR dysfunction. The majority of COPD cases result from chronic oxidative insults such as cigarette smoke. Interestingly, environmental stresses including cigarette smoke, hypoxia, and chronic inflammation have also been implicated in reduced CFTR function, and this suggests a common mechanism that may contribute to both the CF and COPD. Therefore, improving CFTR function may offer an excellent opportunity for the development of a common treatment for CF and COPD. In this article, we review what is known about the CF respiratory phenotype and discuss how diminished CFTR expression-associated ion transport defects may contribute to some of the pathological changes seen in COPD.
Collapse
Affiliation(s)
- Andras Rab
- Dept. of Cell, Developmental and Integrative Biology, Univ. of Alabama at Birmingham, 1918 Univ. Blvd., MCLM 395, Birmingham, AL 35294.
| | | | | | | | | | | |
Collapse
|
288
|
Murphy SV, Atala A. Cell therapy for cystic fibrosis. J Tissue Eng Regen Med 2013; 9:210-23. [DOI: 10.1002/term.1746] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 01/11/2013] [Accepted: 03/16/2013] [Indexed: 12/13/2022]
Affiliation(s)
- Sean V. Murphy
- Wake Forest Institute for Regenerative Medicine; Wake Forest University Health Sciences; Winston-Salem NC USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine; Wake Forest University Health Sciences; Winston-Salem NC USA
| |
Collapse
|
289
|
Aarbiou J, Copreni E, Buijs-Offerman RM, van der Wegen P, Castellani S, Carbone A, Tilesi F, Fradiani P, Hiemstra PS, Yueksekdag G, Diana A, Rosenecker J, Ascenzioni F, Conese M, Scholte BJ. Lentiviral small hairpin RNA delivery reduces apical sodium channel activity in differentiated human airway epithelial cells. J Gene Med 2013; 14:733-45. [PMID: 23074129 DOI: 10.1002/jgm.2672] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 09/27/2012] [Accepted: 10/07/2012] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Epithelial sodium channel (ENaC) hyperactivity has been implicated in the pathogenesis of cystic fibrosis (CF) by dysregulation of fluid and electrolytes in the airways. In the present study, we show proof-of-principle for ENaC inhibition by lentiviral-mediated RNA interference. METHODS Immortalized normal (H441) and CF mutant (CFBE) airway cells, and differentiated human bronchial epithelial cells in air liquid interface culture (HBEC-ALI) were transduced with a vesicular stomatitis virus G glycoprotein pseudotyped lentiviral (LV) vector expressing a short hairpin RNA (shRNA) targeting the α subunit of ENaC (ENaCα), and a marker gene. Efficacy of ENaCα down-regulation was assayed by the real-time polymerase chain reaction (PCR), membrane potential assay, western blotting, short-circuit currents and fluid absorption. Off-target effects were investigated by a lab-on-a-chip quantitative PCR array. RESULTS Transduction to near one hundred percentage efficiency of H441, CFBE and HBEC-ALI was achieved by the addition of the LV vector before differentiation and polarization. Transduction resulted in the inhibition of ENaCα mRNA and antigen expression, and a proportional decrease in ENaC-dependent short circuit current and fluid transport. No effect on transepithelial resistance or cAMP-induced secretion responses was observed in HBEC-ALI. The production of interferon α and pro-inflammatory cytokine mRNA, indicating Toll-like receptor 3 or RNA-induced silencing complex mediated off-target effects, was not observed in HBEC-ALI transduced with this vector. CONCLUSIONS We have established a generic method for studying the effect of RNA interference in HBEC-ALI using standard lentiviral vectors. Down-regulation of ENaCα by lentiviral shRNA expression vectors as shown in the absence off-target effects has potential therapeutic value in the treatment of cystic fibrosis.
Collapse
Affiliation(s)
- Jamil Aarbiou
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
290
|
Abstract
PURPOSE OF REVIEW The field of cystic fibrosis (CF) is changing dramatically as the scientific knowledge accumulated since the cloning of the cystic fibrosis transmembrane conductance regulator (CFTR) gene is being translated into effective therapies to correct the basic defect and provide better disease models and in-depth understanding of the basic mechanisms of disease. RECENT FINDINGS This review focuses on three main aspects of the recent advances in the field: understanding the lung disease pathophysiology (in particular, the early events that condition its onset), better definition of the complex microbiology of the CF airway, and therapeutic developments. Although the most recently developed therapies, whether approved or under study, do not constitute a definitive cure, the benefit to patients is already becoming clearly apparent. SUMMARY As the field continues to change rapidly and new therapies are being identified, CF has become a paradigm for the application of concepts such as translational medicine, genomic medicine, and personalized care, with measurable clinical benefit for the patients affected by this disease.
Collapse
|
291
|
Rogers GB, Hoffman LR, Carroll MP, Bruce KD. Interpreting infective microbiota: the importance of an ecological perspective. Trends Microbiol 2013; 21:271-6. [PMID: 23598051 PMCID: PMC3880558 DOI: 10.1016/j.tim.2013.03.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 03/20/2013] [Accepted: 03/22/2013] [Indexed: 01/09/2023]
Abstract
Complex microbiota are being reported increasingly across a range of chronic infections, including those of the cystic fibrosis airways. Such diversity fits poorly into classical models of sterile tissue infections, which generally involve one species, and where microbe-outcome associations usually imply causality. It has been suggested that microbiota at sites of infection could represent pathogenic entities, analogous to individual species. We argue that our ability to identify causality in microbiota-disease associations is, however, inherently confounded. Although particular microbiota may be associated with clinical outcomes, niche characteristics at sites of infection will shape microbiota composition through exerting selective pressures. Here, we suggest that ecological theory can inform clinical understanding.
Collapse
Affiliation(s)
- Geraint B Rogers
- Institute of Pharmaceutical Science, Molecular Microbiology Research Laboratory, King's College London, London, UK.
| | | | | | | |
Collapse
|
292
|
Bartlett JA, Albertolle ME, Wohlford-Lenane C, Pezzulo AA, Zabner J, Niles RK, Fisher SJ, McCray PB, Williams KE. Protein composition of bronchoalveolar lavage fluid and airway surface liquid from newborn pigs. Am J Physiol Lung Cell Mol Physiol 2013; 305:L256-66. [PMID: 23709621 DOI: 10.1152/ajplung.00056.2013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The airway mucosa and the alveolar surface form dynamic interfaces between the lung and the external environment. The epithelial cells lining these barriers elaborate a thin liquid layer containing secreted peptides and proteins that contribute to host defense and other functions. The goal of this study was to develop and apply methods to define the proteome of porcine lung lining liquid, in part, by leveraging the wealth of information in the Sus scrofa database of Ensembl gene, transcript, and protein model predictions. We developed an optimized workflow for detection of secreted proteins in porcine bronchoalveolar lavage (BAL) fluid and in methacholine-induced tracheal secretions [airway surface liquid (ASL)]. We detected 674 and 3,858 unique porcine-specific proteins in BAL and ASL, respectively. This proteome was composed of proteins representing a diverse range of molecular classes and biological processes, including host defense, molecular transport, cell communication, cytoskeletal, and metabolic functions. Specifically, we detected a significant number of secreted proteins with known or predicted roles in innate and adaptive immunity, microbial killing, or other aspects of host defense. In greatly expanding the known proteome of the lung lining fluid in the pig, this study provides a valuable resource for future studies using this important animal model of pulmonary physiology and disease.
Collapse
Affiliation(s)
- Jennifer A Bartlett
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
293
|
Bessich JL, Nymon AB, Moulton LA, Dorman D, Ashare A. Low levels of insulin-like growth factor-1 contribute to alveolar macrophage dysfunction in cystic fibrosis. THE JOURNAL OF IMMUNOLOGY 2013; 191:378-85. [PMID: 23698746 DOI: 10.4049/jimmunol.1300221] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Alveolar macrophages are major contributors to lung innate immunity. Although alveolar macrophages from cystic fibrosis (CF) transmembrane conductance regulator(-/-) mice have impaired function, no study has investigated primary alveolar macrophages in adults with CF. CF patients have low levels of insulin-like growth factor 1 (IGF-1), and our prior studies demonstrate a relationship between IGF-1 and macrophage function. We hypothesize that reduced IGF-1 in CF leads to impaired alveolar macrophage function and chronic infections. Serum and bronchoalveolar lavage (BAL) samples were obtained from eight CF subjects and eight healthy subjects. Macrophages were isolated from BAL fluid. We measured the ability of alveolar macrophages to kill Pseudomonas aeruginosa. Subsequently, macrophages were incubated with IGF-1 prior to inoculation with bacteria to determine the effect of IGF-1 on bacterial killing. We found a significant decrease in bacterial killing by CF alveolar macrophages compared with control subjects. CF subjects had lower serum and BAL IGF-1 levels compared with healthy control subjects. Exposure to IGF-1 enhanced alveolar macrophage macrophages in both groups. Finally, exposing healthy alveolar macrophages to CF BAL fluid decreased bacterial killing, and this was reversed by the addition of IGF-1, whereas IGF-1 blockade worsened bacterial killing. Our studies demonstrate that alveolar macrophage function is impaired in patients with CF. Reductions in IGF-1 levels in CF contribute to the impaired alveolar macrophage function. Exposure to IGF-1 ex vivo results in improved function of CF alveolar macrophages. Further studies are needed to determine whether alveolar macrophage function can be enhanced in vivo with IGF-1 treatment.
Collapse
Affiliation(s)
- Jamie L Bessich
- Section of Pulmonary and Critical Care Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA
| | | | | | | | | |
Collapse
|
294
|
Lebeaux D, Chauhan A, Rendueles O, Beloin C. From in vitro to in vivo Models of Bacterial Biofilm-Related Infections. Pathogens 2013; 2:288-356. [PMID: 25437038 PMCID: PMC4235718 DOI: 10.3390/pathogens2020288] [Citation(s) in RCA: 328] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 05/01/2013] [Accepted: 05/08/2013] [Indexed: 12/13/2022] Open
Abstract
The influence of microorganisms growing as sessile communities in a large number of human infections has been extensively studied and recognized for 30–40 years, therefore warranting intense scientific and medical research. Nonetheless, mimicking the biofilm-life style of bacteria and biofilm-related infections has been an arduous task. Models used to study biofilms range from simple in vitro to complex in vivo models of tissues or device-related infections. These different models have progressively contributed to the current knowledge of biofilm physiology within the host context. While far from a complete understanding of the multiple elements controlling the dynamic interactions between the host and biofilms, we are nowadays witnessing the emergence of promising preventive or curative strategies to fight biofilm-related infections. This review undertakes a comprehensive analysis of the literature from a historic perspective commenting on the contribution of the different models and discussing future venues and new approaches that can be merged with more traditional techniques in order to model biofilm-infections and efficiently fight them.
Collapse
Affiliation(s)
- David Lebeaux
- Institut Pasteur, Unité de Génétique des Biofilms, 25 rue du Dr. Roux, 75724 Paris cedex 15, France.
| | - Ashwini Chauhan
- Institut Pasteur, Unité de Génétique des Biofilms, 25 rue du Dr. Roux, 75724 Paris cedex 15, France.
| | - Olaya Rendueles
- Institut Pasteur, Unité de Génétique des Biofilms, 25 rue du Dr. Roux, 75724 Paris cedex 15, France.
| | - Christophe Beloin
- Institut Pasteur, Unité de Génétique des Biofilms, 25 rue du Dr. Roux, 75724 Paris cedex 15, France.
| |
Collapse
|
295
|
Stoltz DA, Rokhlina T, Ernst SE, Pezzulo AA, Ostedgaard LS, Karp PH, Samuel MS, Reznikov LR, Rector MV, Gansemer ND, Bouzek DC, Abou Alaiwa MH, Hoegger MJ, Ludwig PS, Taft PJ, Wallen TJ, Wohlford-Lenane C, McMenimen JD, Chen JH, Bogan KL, Adam RJ, Hornick EE, Nelson GA, Hoffman EA, Chang EH, Zabner J, McCray PB, Prather RS, Meyerholz DK, Welsh MJ. Intestinal CFTR expression alleviates meconium ileus in cystic fibrosis pigs. J Clin Invest 2013; 123:2685-93. [PMID: 23676501 DOI: 10.1172/jci68867] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 03/07/2013] [Indexed: 12/20/2022] Open
Abstract
Cystic fibrosis (CF) pigs develop disease with features remarkably similar to those in people with CF, including exocrine pancreatic destruction, focal biliary cirrhosis, micro-gallbladder, vas deferens loss, airway disease, and meconium ileus. Whereas meconium ileus occurs in 15% of babies with CF, the penetrance is 100% in newborn CF pigs. We hypothesized that transgenic expression of porcine CF transmembrane conductance regulator (pCFTR) cDNA under control of the intestinal fatty acid-binding protein (iFABP) promoter would alleviate the meconium ileus. We produced 5 CFTR-/-;TgFABP>pCFTR lines. In 3 lines, intestinal expression of CFTR at least partially restored CFTR-mediated anion transport and improved the intestinal phenotype. In contrast, these pigs still had pancreatic destruction, liver disease, and reduced weight gain, and within weeks of birth, they developed sinus and lung disease, the severity of which varied over time. These data indicate that expressing CFTR in intestine without pancreatic or hepatic correction is sufficient to rescue meconium ileus. Comparing CFTR expression in different lines revealed that approximately 20% of wild-type CFTR mRNA largely prevented meconium ileus. This model may be of value for understanding CF pathophysiology and testing new preventions and therapies.
Collapse
Affiliation(s)
- David A Stoltz
- Department of Internal Medicine, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa 52242, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
296
|
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) protein is highly expressed in the pancreatic duct epithelia and permits anions and water to enter the ductal lumen. This results in an increased volume of alkaline fluid allowing the highly concentrated proteins secreted by the acinar cells to remain in a soluble state. This work will expound on the pathophysiology and pathology caused by the malfunctioning CFTR protein with special reference to ion transport and acid-base abnormalities both in humans and animal models. We will also discuss the relationship between cystic fibrosis (CF) and pancreatitis, and outline present and potential therapeutic approaches in CF treatment relevant to the pancreas.
Collapse
Affiliation(s)
- Michael Wilschanski
- Pediatric Gastroenterology, Hadassah University Hospital, Jerusalem 91240, Israel
| | | |
Collapse
|
297
|
Walters EM, Prather RS. Advancing swine models for human health and diseases. MISSOURI MEDICINE 2013; 110:212-215. [PMID: 23829105 PMCID: PMC6179855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Swine models are relatively new kids on the block for modeling human health and diseases when compared to rodents and dogs. Because of the similarity to humans in size, physiology, and genetics, the pig has made significant strides in advancing the understanding of the human condition, and is thus an excellent choice for an animal model. Recent technological advances to genetic engineering of the swine genome enhance the utility of swine as models of human genetic diseases.
Collapse
Affiliation(s)
- Eric M Walters
- Division of Animal Sciences, National Swine Resource and Research Center, University of Missouri, USA.
| | | |
Collapse
|
298
|
Ericsson AC, Crim MJ, Franklin CL. A brief history of animal modeling. MISSOURI MEDICINE 2013; 110:201-205. [PMID: 23829102 PMCID: PMC3979591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Comparative medicine is founded on the concept that other animal species share physiological, behavioral, or other characteristics with humans. Over 2,400 years ago it was recognized that by studying animals, we could learn much about ourselves. This technique has now developed to the point that animal models are employed in virtually all fields of biomedical research including, but not limited to, basic biology, immunology and infectious disease, oncology, and behavior.
Collapse
MESH Headings
- Animals
- History, 15th Century
- History, 16th Century
- History, 17th Century
- History, 18th Century
- History, 19th Century
- History, 20th Century
- History, 21st Century
- History, Ancient
- Humans
- Models, Animal
- Translational Research, Biomedical/history
Collapse
Affiliation(s)
- Aaron C Ericsson
- Mutant Mouse Regional Resource Center, Comparative Medicine Program, Department of Veterinary Pathobiology, University of Missouri, USA.
| | | | | |
Collapse
|
299
|
Chan YR, Chen K, Duncan SR, Lathrop KL, Latoche JD, Logar AJ, Pociask DA, Wahlberg BJ, Ray P, Ray A, Pilewski JM, Kolls JK. Patients with cystic fibrosis have inducible IL-17+IL-22+ memory cells in lung draining lymph nodes. J Allergy Clin Immunol 2013; 131:1117-29, 1129.e1-5. [PMID: 22795370 PMCID: PMC3488163 DOI: 10.1016/j.jaci.2012.05.036] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 05/01/2012] [Accepted: 05/31/2012] [Indexed: 01/22/2023]
Abstract
BACKGROUND IL-17 is an important cytokine signature of the TH differentiation pathway TH17. This T-cell subset is crucial in mediating autoimmune disease or antimicrobial immunity in animal models, but its presence and role in human disease remain to be completely characterized. OBJECTIVE We set out to determine the frequency of TH17 cells in patients with cystic fibrosis (CF), a disease in which there is recurrent infection with known pathogens. METHODS Explanted lungs from patients undergoing transplantation or organ donors (CF samples=18; non-CF, nonbronchiectatic samples=10) were collected. Hilar nodes and parenchymal lung tissue were processed and examined for TH17 signature by using immunofluorescence and quantitative real-time PCR. T cells were isolated and stimulated with antigens from Pseudomonas aeruginosa and Aspergillus species. Cytokine profiles and staining with flow cytometry were used to assess the reactivity of these cells to antigen stimulation. RESULTS We found a strong IL-17 phenotype in patients with CF compared with that seen in control subjects without CF. Within this tissue, we found pathogenic antigen-responsive CD4+IL-17+ cells. There were double-positive IL-17+IL-22+ cells [TH17(22)], and the IL-22+ population had a higher proportion of memory characteristics. Antigen-specific TH17 responses were stronger in the draining lymph nodes compared with those seen in matched parenchymal lungs. CONCLUSION Inducible proliferation of TH17(22) with memory cell characteristics is seen in the lungs of patients with CF. The function of these individual subpopulations will require further study regarding their development. T cells are likely not the exclusive producers of IL-17 and IL-22, and this will require further characterization.
Collapse
Affiliation(s)
- Yvonne R Chan
- Division of Pulmonary, Allergy and Critical Care Medicine, the Eye and Ear Institute, University of Pittsburgh, and the Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh, Pittsburgh, PA 15213, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
300
|
Fan N, Lai L. Genetically modified pig models for human diseases. J Genet Genomics 2013; 40:67-73. [PMID: 23439405 DOI: 10.1016/j.jgg.2012.07.014] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 12/10/2012] [Accepted: 12/30/2012] [Indexed: 02/08/2023]
Abstract
Genetically modified animal models are important for understanding the pathogenesis of human disease and developing therapeutic strategies. Although genetically modified mice have been widely used to model human diseases, some of these mouse models do not replicate important disease symptoms or pathology. Pigs are more similar to humans than mice in anatomy, physiology, and genome. Thus, pigs are considered to be better animal models to mimic some human diseases. This review describes genetically modified pigs that have been used to model various diseases including neurological, cardiovascular, and diabetic disorders. We also discuss the development in gene modification technology that can facilitate the generation of transgenic pig models for human diseases.
Collapse
Affiliation(s)
- Nana Fan
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | | |
Collapse
|